Sample records for prograding turbidite complex

  1. Measured sections and discussion of the main turbidite member, Middle Pennsylvanian Minturn Formation, northern Sangre de Cristo Range, Custer and Saguache counties, Colorado

    USGS Publications Warehouse

    Soulliere, S.J.; DeAngelis, B.L.; Lindsey, D.A.

    1984-01-01

    The main turbidite member is the thickest and most extensive of the intervals of prodelta turbidites in the Minturn Formation. Each turbidite interval is part of a coarsening upward sequence interpreted as a prograding fan delta. A typical prograding cycle consists of prodelta marine shale and siltstone, prodelta turbidite sandstones, delta-front sandstone and conglomerate, and deltaic and alluvial-plain sandstone, siltstone, and shale. Fossils of 1and plants (mostly Calamites, including some in growth position) are locally abundant in deltaic and alluvial sediments of the prograding cycles. The turbidites are regarded as having been deposited offshore from alluvial systems.

  2. Controls of bioclastic turbidite deposition in eastern Muertos Trough northeast Caribbean Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsthoff, G.M.; Holcombe, T.L.

    1985-02-01

    A study of seismic-reflection profiles and sediment cores establishes regional bathymetric and source area control over the composition, transport, and distribution of turbidites in the eastern Muertos Trough, Bioclastic (carbonate) turbidites dominate the eastern portion of the trough. Analyses of carbon content and sand-sized components suggest that the bioclastic turbidites (characterized by planktonic foraminifera, pteropods, and sponge spicules) are reworked pelagic oozes originally deposited on the outer-shelf and upper-slope areas south of St. Croix and eastern Puerto Rico. The presence of several intrashelf and upper-slope basins prohibits shallow-water carbonate sediments from entering the Muertos Trough. Volcanic rock fragments derived frommore » Puerto Rico are transported to the trough via the Guayanilla Canyon system. Mixing of the volcanic fragments with outer-shelf and upper-slope lutites results in mixed bioclastic-terrigenous turbidites south of central and western Puerto Rico. The paucity of shallow-water carbonate sediments in the trough suggests that the submarine canyons are effective conduits for the rapid transport of volcaniclastic sands across the shelf and thereby prevent extensive mixing with inner- and middle-shelf carbonate sediments. Sediment transport within the trough is primarily axial in an east-west direction. Outer trench-wall fault scarps, south of Guayanilla Canyon, limit the southerly progradation of the trench-wedge facies and deflect incoming gravity flows in a down-axis (westward) direction. Where no faults exist, the trench wedge progrades southward and interfingers with the pelagic sediments of the northern Venezuelan basin.« less

  3. Seismic patterns of a muddy contourite fan (Vema Channel, South Brazilian Basin) and a sandy distal turbidite deep-sea fan (Cap Ferret system, Bay of Biscay): a comparison

    NASA Astrophysics Data System (ADS)

    Faugères, J. C.; Imbert, P.; Mézerais, M. L.; Crémer, M.

    1998-01-01

    The aim of this paper is to discriminate the depositional facies, geometries and mechanisms of deposition of contouritic fans from those of turbidite distal fans, with a view to provide better resolution of reservoir prediction. Two examples are analysed: the Vema contouritic drift in the South Brazilian Basin and the Cap Ferret turbiditic fan in the Bay of Biscaye. The Vema contourite fan is a Neogene mud-rich accumulation (200-400 m thick), fed by Antarctic Bottom Water bottom currents and located downstream of the Rio Grande Rise. It forms one single-mound fan-shaped body in between two major channels, and where the main part of the deep circulation is funnelled into. As a result of the morphological and hydrological background, the comourite drift progrades mostly downstream. The accumulation was built as several depositional units ('channel-levee' systems) bounded by widespread discontinuities showing erosional patterns. This resulted from episodes of strong and/or unstable current activity producing the discontinuities, alternating with periods of relatively weak and stable currents and major deposition. The Pliocene-Quaternary Cap Ferret distal deep-sea fan is a thick (500 m) sand-rich turbiditic accumulation fed directly by an uplifting mountain range. The accumulation is developed downstream of a main turbiditic feeder channel and the volume of sediment involved is much higher than for the Vema contourite fan. It shows a complex network of shallow channels and low-relief levees which merge downstream into thin, sandy, sheet-like deposits. Several depositional units are stacked vertically. Each unit is built by the lateral migration of a 'channel-levee' system. The stacking pattern of the successive units is prograding towards the basin. The presence of major discontinuities cutting throughout a whole accumulation, and the fairly irregular geometry of the 'channel-levee' deposits (absence of any obvious migrating trend), appear to be the most distinctive features of a contourite fan. On the other hand, the lateral migration of the 'channel-level' geometries and the presence of erosional surfaces of limited extent and restricted to the channels, are the main diagnostic features of a distal turbidite fan. Otherwise the seismo-facies are fairly similar in both sedimentary bodies.

  4. A comparison of different turbidite plays in the Yinggehai and Qiongdongnan Basins of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardwell, R.K.; Norris, J.W.

    1996-12-31

    Three different types of turbidite plays have been drilled in the Yinggehai and Qiongdongnan basins of the South China Sea: slope fan turbidites, bottomset turbidites, and channel fill turbidites. Each play type has a distinctive well log signature, lithology, seismic reflector geometry, and reservoir character. Slope fan turbidites are encountered in the YA 21-1-3 well. Well logs are characterized by a ratty SP curve, and mud logs indicate that the turbidites are composed of up to 80 m of sands and silts. Seismic profiles show that these turbidites are found in a distributary channel and levee system on the shelf.more » Bottomset turbidites are encountered in the LD 15-1-1 well. Well logs are characterized by an upward coarsening SP curve, and mud logs indicate that the turbidites are composed of up to 10 m of silty sand. Seismic profiles show these turbidites are deposited by the slumping of shelf sands during a continuous lowstand progradation. Channel fill turbidites are encountered in the LD 30-1-1 well. Well logs are characterized by a blocky SP curve, and mud logs indicate that the turbidites are composed of up to 100 m of massive sand. Seismic profiles show that these turbidites are associated with channel systems that trend parallel to the local basin axis. Distinct cut and fill geometries indicate that the turbidite sands were deposited in a preexisting channel cut.« less

  5. A comparison of different turbidite plays in the Yinggehai and Qiongdongnan Basins of the South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardwell, R.K.; Norris, J.W.

    1996-01-01

    Three different types of turbidite plays have been drilled in the Yinggehai and Qiongdongnan basins of the South China Sea: slope fan turbidites, bottomset turbidites, and channel fill turbidites. Each play type has a distinctive well log signature, lithology, seismic reflector geometry, and reservoir character. Slope fan turbidites are encountered in the YA 21-1-3 well. Well logs are characterized by a ratty SP curve, and mud logs indicate that the turbidites are composed of up to 80 m of sands and silts. Seismic profiles show that these turbidites are found in a distributary channel and levee system on the shelf.more » Bottomset turbidites are encountered in the LD 15-1-1 well. Well logs are characterized by an upward coarsening SP curve, and mud logs indicate that the turbidites are composed of up to 10 m of silty sand. Seismic profiles show these turbidites are deposited by the slumping of shelf sands during a continuous lowstand progradation. Channel fill turbidites are encountered in the LD 30-1-1 well. Well logs are characterized by a blocky SP curve, and mud logs indicate that the turbidites are composed of up to 100 m of massive sand. Seismic profiles show that these turbidites are associated with channel systems that trend parallel to the local basin axis. Distinct cut and fill geometries indicate that the turbidite sands were deposited in a preexisting channel cut.« less

  6. Depositional model and seismic expression of turbidites in Campos basin, offshore Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardado, L.R.; Peres, W.E.; Souza Cruz, C.E.

    1986-05-01

    The Campos basin, located at the southeastern coast of Brazil, is one of the most prolific hydrocarbon areas along the Brazilian margin. The producing reservoirs range from the Neocomian to the early Miocene and were deposited in various environments. However, on deep-water submarine fans (turbidites), these reservoirs reach their maximum expression. The ratio between subsidence and sediment influx, associated to halokinesis, generated two major depositional styles for the sections before and after the early Oligocene, which affect the geometry of the turbidite bodies. Albian, Campanian, and Eocene turbidites occur mainly under the present continental shelf and are confined to thatmore » area. However, the Oligocene-Miocene turbidites occur mainly under the present slope. These younger turbidites were deposited as large submarine fans in broad subbasins as blankets, at the base of deep-water prograding sequences, and they have the potential for large hydrocarbon accumulations. These submarine fans are well defined on the seismic data, and specific processing improves the definition of anomalous amplitudes related to the presence of oil in the reservoirs.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.K.; Zambrano, E.

    The Trujillo Formation, overlying the Paleocene Cerro Verde and Valle Hondo formations, reveals a turbiditic origin in a lowstand shelf-edge and bathyal setting in two excellent road sections on the Valera-Carache road and many creek sections. The basal outcrop shows well developed fining upward (FU) sequences of proximal channel turbidite and overbank origin (abandonment phase) and minor coarsening upward (CU) sequences representing progradational pulse in overbank areas. The FU (and thinning-upward) sequence, overlying a shale, consists of: (a) basal stacked conglomeratic arenites (probably inner fan channels) with graded beds, imbricate casts and transported shells; (b) a sand/shale alternating unit (channelmore » margin/interchannel) with flame structure, lenticular bedding, infrequent Tb-d Sequence, rippled flats, and rare Planolites; and (c) a dark shale (overbank-interchannel lows) with scarce Chondrites and Scaladtuba traces. The CU sequence consists of thickening-upward heterolithic facies overlain by lenticular stacked pebbly arenites. The upper unit exposed near Puente Gomez is a typical progradational lobe starting with a basal shale, with intraformational diastems and slumped beds, and Tb-d and Tb-e sequences in thin intercalated sandstones; a heterolithic facies with flute/groove casts, Planolites, Thalassinoides and Neonereites occurs between the shale and a thick cross-stratified sandstone at the top. This CU lobe sequence is discordantly(?) overlain by a thin wedge of massive bedded pebbly sandstones of Middle Eocene(?) Misoa Formation. Unlike the southwesterly sourced subsurface turbidites, those in this area were probably sourced from both the south and north, though locally the southern source might have been more important.« less

  8. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

    NASA Astrophysics Data System (ADS)

    Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe

    2017-08-01

    The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A conceptual lithostratigraphic model is proposed for five morpho-sedimentary environments: lobe rims, lobe body, distributaries, levees, feeding channel. This study shows that high-resolution bathymetry ROV observations are necessary to fully understand the build-up processes of modern channel-mouth lobes.

  9. Depositional sequences and facies in the Torok Formation, National Petroleum Reserve, Alaska (NPRA)

    USGS Publications Warehouse

    Houseknecht, David W.; Schenk, Christopher J.

    2002-01-01

    Brookian turbidites (Cretaceous through Tertiary) have become oil exploration objectives on the NorthSlope of Alaska during the past decade, and it is likely this focus will extend into the National Petroleum Reserve-Alaska (NPRA). A regional grid of 2-D seismic data, sparse well control, and field work in the Brooks Range foothills provide constraints for an ongoing effort to establish a sequence stratigraphic framework for Brookian turbidites in the Torok Formation across NPRA. The Torok Formation and overlying Nanushuk Formation (both mostly Albian) display the overall seismic geometry of bottomset-clinoform-topset strata indicating northeastward migration of a shelf margin. Within bottomset and clinoform strata of the Torok, depositional sequences have been identified that represent four distinct phases of shelf-margin sedimentation. (1) Regression, representing low relative sea level, is characterized by the development of an erosional surface on the shelf and upper slope, and the deposition of turbidite channel deposits on the middle to lower slope and submarine fan deposits at the base of slope. These deposits constitute a lowstand systems tract (LST). (2) Transgression, representing rising relative sea level, is characterized by the deposition of a mudstone drape on the basin floor, slope, and outer shelf. This drape comprises relatively condensed facies that constitute a transgressive systems tract (TST). (3) Aggradation, representing high relative sea level, is characterized by the deposition of relatively thick strata on the outer shelf and moderately thick mudstones on the slope. (4) Progradation, also representing high relative sea level, is characterized by the deposition of relatively thin strata on the outer shelf and very thick mudstones on the slope. Together, deposits of the aggradation and progradation phases constitute a highstand systems tract (HST). Large scale geometries of Torok strata vary across the Colville basin. In southern NPRA, high rates of subsidence accommodated the deposition of a "foredeep clinoform wedge" that contains a high proportion of sand-rich LST deposits. In northern NPRA, lower rates of subsidence favored the accumulation of mud-rich HST deposits. The most favorable stratigraphic trapping geometries in the Torok Formation occur where amalgamated sandstones deposited in turbidite channels incised on the mid- to lower-slope and on the proximal parts of submarine fans during regression (LSTs) are capped by relatively condensed mudstone facies deposited during transgression (TSTs). Common successions observed in Torok cores include a spectrum of slope and turbidite facies. Upper slope facies comprise laminated mudstones and siltstones that locally display evidence of slumping, sliding, and chaotic failure. Lower slope facies comprise heterolithic turbidites at some locations and interlaminated mudstones and thin, very fine-grained sandstones at others. Torok turbidites include amalgamated sandstones deposited in channel systems as well as thin-bedded, widespread sandstones deposited by unconfined flows on lobes or in channel overbank settings. These turbidite facies likely occur in both channel-lobe systems and slope apron systems within the Torok.

  10. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1990-01-01

    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural controls on Ebro margin growth. Deforestation of the drainage basin more than doubled the normal Holocene sediment supply, and construction of dams then reduced the supply by 95%. This reduction of the past 50 years has caused erosion of the delta and contamination of bottom sediment because normal Holocene sediment discharge is not available to prograde the delta or help dilute pollutants. ?? 1990.

  11. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical gradients in vesicomyid assemblages, and by the vesicomyid population characteristics that vary in density, size and composition. By modifying the sediment geochemistry differently according to their morphology and physiology, the different vesicomyid species play an important role structuring macrofauna composition and vertical distribution. Dynamics of turbiditic deposits at a longer temporal scale (thousands of years) and their spatial distribution in the lobe area also resulted in high heterogeneity of the "cold-seep-like communities". Dynamics of chemosynthetic habitats and associated macrofauna in the active lobe area resembled those previously observed at the Regab pockmark along the Congo margin and rapid succession is expected to cope with high physical disturbance by frequent turbiditic events and huge sedimentation rates. Finally, we propose a model of the temporal evolution of these peculiar habitats and communities on longer timescales in response to changes in distributary channels within the lobe complex.

  12. Sedimentation patterns in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia: Evidence for Archean rifted continental margins

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth A.

    1982-01-01

    Archean supracrustal sequences in the Barberton Mountain Land, South Africa, and the Pilbara Block, Australia, consist of lower volcanic and upper dominantly terrigenous clastic intervals. As evidenced by the paleoenvironments of intercalated sedimentary horizons, volcanism occurred mainly in shallow waters. The overlying ca 3.3 Ga sedimentary intervals contain various common as well as unique paleoenvironments, the understanding of which places significant constraints on Archean crustal models. Lateral and vertical associations of inferred paleoenvironments are used to interpret the geotectonic history of the Archean depositories. The early sedimentary history of the greenstone belts is characterized by terrestrial and subaqueous graben-fill associations of facies related to the initial rift stage of basin development. Continued rifting and initial spreading produced submarine grabens within which ironformations accumulated in response to waning volcanism. Source area uplift resulted in progradation of submarine fans across the basinal chemical sediments. The turbidites are gradational directly into braided alluvial sediments, in part of fan delta origin, suggesting that the continental to marine transition occurred along a narrow continental shelf. In the Barberton Mountain Land the steep-rift margin was succeeded by the development of a stable continental shelf or shelf rise margin through progradation of the turbidite wedge possibly in association with a eustatic rise in sea-level related to continued spreading. On this shelf extensive tidal, deltaic and barrier beach sediments accumulated. Sedimentation was terminated by closure of the passive margin oceans. The late-Archean Pongola Supergroup in South Africa is considered to be the late-orogenic molasse response to this closure and represents the completion of the Wilson cycle.

  13. Sedimentation of deep-water turbidites in the SW part of the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Vrbanac, Boris; Velić, Josipa; Malvić, Tomislav

    2010-02-01

    The Sava Depression and the Bjelovar Subdepression belong to the SW margin of the Pannonian Basin System, which was part of the Central Paratethys during the Pannonian period. Upper Pannonian deposits of the Ivanic-Grad Formation in the Sava Depression include several lithostratigraphic members such as Iva and Okoli Sandstone Member or their lateral equivalents, the Zagreb Member and Lipovac Marlstone Member. Their total thickness in the deepest part of the Sava Depression reaches up to 800 meters, while it is 100-200 meters in the margins of the depression. Deposits in the depression are composed of 4 facies. In the period of turbiditic activities these facies are primarily sedimented as different sandstone bodies. In the Bjelovar Subdepression, two lithostratigraphic members (lateral equivalent) were analysed, the Zagreb Member and Okoli Sandstone Member. The thickness of the Bjelovar Subdepression ranges from 50 meters along the S and SE margins to more than 350 meters along the E margin. Generally, detritus in the north-west part of the analysed area originated from a single source, the Eastern Alps, as demonstrated by sedimentological and physical properties, the geometry of the sandstone body and the fossil content. This clastic material was found to be dispersed throughout the elongated and relatively narrow Sava Depression and in the smaller Bjelovar Subdepression. Sedimentation primarily occurred in up to 200 meters water depth and was strongly influenced by the sub-aqueous paleorelief, which determined the direction of the flow of turbidity currents and sandstone body geometries. The main stream with medium- and fine-grained material was separated by two independent turbiditic flows from N-NW to the SE-E. Variability in the thickness of sandstone bodies is the result of differences in subsidence and cycles of progradation and retrogradation of turbidite fans.

  14. Geology and origin of the late Proterozoic Darb Zubaydah ophiolite, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, J.E.

    1990-01-01

    The Darb Zubaydah ophiolite, north-central Arabian Shield, preserves a largely intact section consisting of ultramafic rocks, gabbro, diabase, granodiorite, and interbedded volcanic and sedimentary rocks. Formation of these rocks within or near an island arc is indicated by the absence of pelagic sediments and the abundance of pillow basalt, turbiditic sediments, lahar deposits, and basaltic to rhyolitic tuff. The oldest extrusive rocks formed in a young, relatively unevolved island arc or in a back-arc basin sufficiently close to an arc to receive calc-alkaline lava flows and coarse-grained, arc-derived detritus. Overlying turbidites and lahar deposits of the Kaffan sandstone point to the initiation of a rifting event. High-Ti basalts, which erupted above the Kaffan sandstone, and related diabase are interpreted to be magmatic products of incipient intra-arc rifting. Renewed arc volcanism produced calc-alkaline volcanic rocks that interfingered with the high-Ti basalt and later dominated the section as the volcanic apron of the arc prograded basinward. Extrusion of voluminous calc-alkaline tuff may have been contemporaneous with intrusion of granodiorite and gravity-driven landsliding. -from Author

  15. Navy Fan, California Borderland: Growth pattern and depositional processes

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.

    1984-01-01

    Navy Fan is a Late Pleistocene sand-rich fan prograding into an irregularly shaped basin in the southern California Borderland. The middle fan, characterized by one active and two abandoned 'distributary' channels and associated lobe deposits, at present onlaps part of the basin slope directly opposite from the upper-fan valley, thus dividing the lower-fan/basin-plain regions into two separate parts of different depths. Fine-scale mesotopographic relief on the fan surface and correlation of individual turbidite beds through nearly 40 cores on the middle and lower fan provide data for evaluating the Late Pleistocene and Holocene depositional processes. ?? 1984 Springer-Verlag New York Inc.

  16. 3D stratigraphic modeling of the Congo turbidite system since 210 ka: an investigation of factors controlling sedimentation

    NASA Astrophysics Data System (ADS)

    Laurent, Dimitri; Picot, Marie; Marsset, Tania; Droz, Laurence; Rabineau, Marina; Granjeon, Didier; Molliex, Stéphane

    2017-04-01

    The geometry and internal functioning of turbidite systems are relatively well-constrained today. However, the respective role of autogenic (topographic compensation, dynamics of turbidity currents…) and allogenic factors (tectonics, sea-level, climate) governing their architectural evolution is still under debate. The geometry of the Quaternary Congo Fan is characterized by successive sedimentary prograding/retrograding cycles bounded by upfan avulsions, reflecting a periodic control of sedimentation (Picot et al., 2016). Multi-proxy studies revealed a strong interplay between autogenic control and climate forcing as evidenced by changes in fluvial sediment supplies consistent with arid and humid periods in the Congo River Basin. In the light of these results, the aim of this study is to investigate the relative impact of internal and external forcing factors controlling, both in time and space, the formation and evolution of depocenters of the Congo Deep-Sea Fan since 210 ka. This work represents the first attempt to model in 3D the stratigraphic architecture of the Congo turbidite system using DionisosFlow (IFP-EN), a diffusion process-based software. It allows the simulation of sediment transport and the 3D geometry reproduction of sedimentary units based on physical processes such as sea level changes, tectonics, sediment supply and transport. According to the modeling results, the role of topographic compensation in the deep-sea fan geometry is secondary compared to climate changes in the drainage basin. It appears that a periodic variation of sediment discharge and water flow is necessary to simulate the timing and volume of prograding/retrograding sedimentary cycles and more particularly the upfan avulsion events. The best-fit simulations show that the overriding factor for such changes corresponds to the expansion of the vegetation cover in the catchment basin associated to the Milankovitch cycle of precession which controlled the West African Monsoon intensity. These external forcing factors are responsible for the evolution of the capacity of turbidity currents by directly acting on the river runoff magnitude and the sediment budget according to the balance between mechanical and chemical erosion. If the sediment supply is the key parameter for the large scale sedimentary cycles, a steep increase of the sand/mud ratio leads to the development of sub-cycles characterized by middle fan avulsions. We identified these events as related to abrupt destabilizations of river mouth bars linked to periodic Congo River floods. Finally, the local slope gradient only plays a role in the maximal length of the turbidity currents and deposition in the most distal part of the basin. To conclude, the stratigraphic modeling allows us to propose an evolutionary "source to sink" model of the Quaternary Congo Fan, emphasizing the interconnection through time between drainage basin responses to climate change and sedimentary transfers in the deep-water environment. Picot, M. et al., 2016. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Marine and Petroleum Geology, 72, 423-446. Keywords: Congo, sedimentary basin, Quaternary, turbidite system, sedimentary cycles, geophysical data, stratigraphic modeling, DionisosFlow

  17. Distal turbidite fan/lobe succession of the Late Oligocene Zuberec Fm. - architecture and hierarchy (Central Western Carpathians, Orava-Podhale basin)

    NASA Astrophysics Data System (ADS)

    Starek, Dušan; Fuksi, Tomáš

    2017-08-01

    A part of the Upper Oligocene sand-rich turbidite systems of the Central Carpathian Basin is represented by the Zuberec Formation. Sand/mud-mixed deposits of this formation are well exposed in the northern part of the basin, allowing us to interpret the turbidite succession as terminal lobe deposits of a submarine fan. This interpretation is based on the discrimination of three facies associations that are comparable to different components of distributive lobe deposits in deep-water fan systems. They correspond to the lobe off-axis, lobe fringe and lobe distal fringe depositional subenvironments, respectively. The inferences about the depositional paleoenvironment based on sedimentological observations are verified by statistical analyses. The bed-thickness frequency distributions and vertical organization of the facies associations show cyclic trends at different hierarchical levels that enable us to reconstruct architectural elements of a turbidite fan. First, small-scale trends correspond with shift in the lobe element centroid between successive elements. Differences in the distribution and frequency of sandstone bed thicknesses as well as differences in the shape of bed-thickness frequency distributions between individual facies associations reflect a gradual fining and thinning in a down-dip direction. Second, meso-scale trends are identified within lobes and they generally correspond to the significant periodicity identified by the time series analysis of the bed thicknesses. The meso-scale trends demonstrate shifts in the position of the lobe centroid within the lobe system. Both types of trends have a character of a compensational stacking pattern and could be linked to autogenic processes. Third, a largescale trend documented by generally thickening-upward stacking pattern of beds, accompanied by a general increase of the sandstones/mudstones ratio and by a gradual change of percentage of individual facies, could be comparable to lobe-system scale. This trend probably indicates a gradual basinward progradation of lobe system controlled by allogenic processes related to tectonic activity of sources and sea-level fluctuations.

  18. Paleogeography and sedimentology of Upper Cretaceous turbidites, San Diego, California.

    USGS Publications Warehouse

    Nilsen, T.H.; Abbott, P.L.

    1981-01-01

    Upper Cretaceous (Campanian and Maestrichtian) marine strata of the Rosario Group in the San Diego area include the Point Loma Formation and overlying Cabrillo Formation. Thes units contain 6 facies associations which define a deep-sea fan deposited by westward-flowing sediment gravity flows that transported sediments derived chiefly from batholithic and pre-batholithic metamorphic rocks of the Peninsular Ranges. The sedimentary basin initially deepened abruptly. The fan then prograded westward into the basin, with a retrogradational phase recorded in the uppermost part of the sequence. The fan was deposited along the eastern edge of a forearc basin similar to that of the Great Valley sequence in northern California. The western part of the fan appears to have been truncated by late Cenozoic strike-slip faulting.-from Authors

  19. Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Sliter, R.

    2006-01-01

    Small turbidite systems offshore from southern California provide an opportunity to track sediment from river source through the turbidity-current initiation process to ultimate deposition, and to evaluate the impact of changing sea level and tectonics. The Santa Monica Basin is almost a closed system for terrigenous sediment input, and is supplied principally from the Santa Clara River. The Hueneme fan is supplied directly by the river, whereas the smaller Mugu and Dume fans are nourished by southward longshore drift. This study of the Late Quaternary turbidite fill of the Santa Monica Basin uses a dense grid of high-resolution seismic-reflection profiles tied to new radiocarbon ages for Ocean Drilling Program (ODP) Site 1015 back to 32 ka. Over the last glacial cycle, sedimentation rates in the distal part of Santa Monica Basin averaged 2-3 mm yr-1, with increases at times of extreme relative sea-level lowstand. Coarser-grained mid-fan lobes prograded into the basin from the Hueneme, Mugu and Dume fans at times of rapid sea-level fall. These pulses of coarse-grained sediment resulted from river channel incision and delta cannibalization. During the extreme lowstand of the last glacial maximum, sediment delivery was concentrated on the Hueneme Fan, with mean depositional rates of up to 13 mm yr-1 on the mid- and upper fan. During the marine isotope stage (MIS) 2 transgression, enhanced rates of sedimentation of > 4 mm yr-1 occurred on the Mugu and Dume fans, as a result of distributary switching and southward littoral drift providing nourishment to these fan systems. Longer-term sediment delivery to Santa Monica Basin was controlled by tectonics. Prior to MIS 10, the Anacapa ridge blocked the southward discharge of the Santa Clara River into the Santa Monica Basin. The pattern and distribution of turbidite sedimentation was strongly controlled by sea level through the rate of supply of coarse sediment and the style of initiation of turbidity currents. These two factors appear to have been more important than the absolute position of sea level. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  20. Rethinking turbidite paleoseismology along the Cascadia subduction zone

    USGS Publications Warehouse

    Atwater, Brian F.; Carson, Bobb; Griggs, Gary B.; Johnson, H. Paul; Salmi, Marie

    2014-01-01

    A stratigraphic synthesis of dozens of deep-sea cores, most of them overlooked in recent decades, provides new insights into deep-sea turbidites as guides to earthquake and tsunami hazards along the Cascadia subduction zone, which extends 1100 km along the Pacific coast of North America. The synthesis shows greater variability in Holocene stratigraphy and facies off the Washington coast than was recognized a quarter century ago in a confluence test for seismic triggering of sediment gravity flows. That test compared counts of Holocene turbidites upstream and downstream of a deep-sea channel junction. Similarity in the turbidite counts among seven core sites provided evidence that turbidity currents from different submarine canyons usually reached the junction around the same time, as expected of widespread seismic triggering. The fuller synthesis, however, shows distinct differences between tributaries, and these differences suggest sediment routing for which the confluence test was not designed. The synthesis also bears on recent estimates of Cascadia earthquake magnitudes and recurrence intervals. The magnitude estimates hinge on stratigraphic correlations that discount variability in turbidite facies. The recurrence estimates require turbidites to represent megathrust earthquakes more dependably than they do along a flow path where turbidite frequency appears limited less by seismic shaking than by sediment supply. These concerns underscore the complexity of extracting earthquake history from deep-sea turbidites at Cascadia.

  1. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and transported eastward on the Last Chance thrust. By middle Sakmarian (middle middle Wolfcampian) time (within Fusulinid Zone 4), emplacement of the Last Chance allochthon was complete, and subsidence caused by thrust loading had resulted in development of a new turbidite basin (Darwin Basin) along the former western part of the Bird Spring Shelf. At the same time, farther east into the craton, paralic facies began prograding westward, so that the youngest fusulinid-bearing limestones on the shelf in this area become progressively younger to the west. Eventually, in Artinskian to Kungurian (late Wolfcampian to Leonardian) time (Fusulinid Zones 5 and 6), deposition of fusulinid-bearing limestone on the shelf was restricted to a marginal belt between the prograding paralic facies to the east and the Darwin Basin to the west. Development of the Keeler Basin in Pennsylvanian to earliest Permian time was approximately coeval with collision between South America-Africa (Gondwana) and North America (Laurentia) on the Ouachita-Marathon orogenic belt. This basin developed inboard of a northwest-trending, sinistral fault zone that truncated the continental margin. Later, in the Early Permian, the Last Chance allochthon, which was part of a northeast-trending belt of deformation that extended into northeastern Nevada, was emplaced. This orogenic belt probably was driven by convergence at the continental margin to the northwest. This work adds significant detail to existing interpretations of the late Paleozoic as a time of major tectonic instability on the continental margin of southeastern California as it changed from a relatively passive margin that had characterized most of the Paleozoic to an active convergent margin that would characterize the Mesozoic. ?? 2007 The Geological Society of America. All rights reserved.

  2. Benthic foraminiferal assemblages reveal the history of the Burdigalian Seaway

    NASA Astrophysics Data System (ADS)

    Piller, W. E.; Grunert, P.; Harzhauser, M.

    2013-12-01

    The opening and closure of seaways have immanent paleoclimatic, paleoceanographic and paleobiogeographic consequences as they determine the exchange of water masses. During the Oligocene to Miocene severe alterations of marine gateway configuration shaped the evolution of the Mediterranean - Paratethys region. From early to middle Burdigalian (20.4-17.5 Myrs) the Burdigalian Seaway connected the western Mediterranean Sea with the Central Paratethys Sea via the North Alpine Foreland Basin (NAFB). Its evolution resulted in profound paleoceanograpic and -geographic changes, and initiated a wave of faunal immigration from the Atlantic and Mediterranean into the Paratethys that had a severe impact on marine ecosystems. A detailed Early Miocene proxy record integrating seismic images, microfossil assemblages and geochemical analyses has been recently established for the Puchkirchen Basin (PB) as part of the NAFB. Herein, we exemplarily show the reconstruction of the dynamic early to middle Burdigalian paleoenvironment based on a quantitative evaluation of benthic foraminiferal assemblages from drill-sites and outcrops. Four major phases in PB development are distinguished, and new stratigraphic constraints allow discussing the results in the context of the evolution of the Burdigalian Seaway: 1. The global early Burdigalian sea-level rise initiated a marine transgression in the NAFB. In the PB, a long-lived basin-axial channel system was reactivated resulting in turbiditic and mass-flow deposition. The unstable upper bathyal environment is reflected in a low diverse autochthonous benthic foraminiferal fauna mainly composed of Bathysiphon filiformis. 2. The perpetuating transgression flooded large shelf areas and established the Burdigalian Seaway. The channel belt was cut off from its sediment sources and shut down. Subsequently, sedimentation was controlled by episodic turbidites from the southern basin margin, and large NE prograding delta fans. High sedimentation rates and strong terrestrial input led to the development of diverse foraminiferal faunas that are largely composed of agglutinated species. The encountered astrorhizids, ammodiscids and textualriids are adapted to high organic matter input and suboxic bottom-waters. Assemblages dominated by Bathysiphon filiformis occur in phases of turbidite deposition. 3. At ~19 Ma the Burdigalian Seaway became a vast shelf sea when increasing sedimentation rates led to the upfill of the PB. At the same time marine sedimentation reached its maximum extent in the NAFB. Characteristic hyaline shelf faunas composed of Lenticulina, Amphicoryna, Melonis, Cibcidoides and Ammonia developed along the inner-outer neritic shelf environments. 4. The beginning of a regression at ~18 Ma heralded the closure of the Burdigalian Seaway. Biofacies distribution shows a prograding tide-influenced shelf and widespread shallow water environments largely dominated by Ammonia, Elphidium and Cibicidoides developed. The closure of the Burdigalian Seaway initiated a major paleogeographic reorganization resulting in the final retreat of the Central Paratethys towards the east.

  3. Sea-level changes and shelf break prograding sequences during the last 400 ka in the Aegean margins: Subsidence rates and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Lykousis, V.

    2009-09-01

    The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences. The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka -1, while the lowest values (0.34-0.60 m ka -1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34-0.90 m ka -1) were estimated for the period 146-18 ka BP (oxygen isotopic stages 6-2) and higher (1.46-1.88 m ka -1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10-8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka. During the isotopic stages 8, 10, 11 and 12, almost the 50-60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.

  4. Oligocene tectonics and sedimentation, California

    USGS Publications Warehouse

    Nilsen, T.H.

    1984-01-01

    During the Oligocene epoch, California was marked by extensive nonmarine sedimentation, in contrast to its pre-Oligocene and post-Oligocene depositional history. The Oligocene continental deposits are especially widespread in southern California and fill a number of small and generally partly restricted basins. Fluvial facies in many basins prograded over previously deposited lower Tertiary turbidites. Volcanism, from widespread centers, was associated with the nonmarine sedimentation. However, some basins remained marine and a few contain Oligocene turbidites and pelagic sediments deposited at bathyal depths. The Oligocene redbeds of California do not form a post-orogenic molasse sequence comparable to the Old Red Sandstone or Alpine molasse. They are synorogenic and record local uplift of basins and surrounding source areas. Late Cretaceous to contemporary orogenesis in California has been generally characterized by the formation of small restricted basins of variable depth adjacent to small upland areas in response to strike-slip faulting. Deposition of Oligocene redbeds was associated with climatic change from warm and humid to cold and semiarid, and a global lowering of sea level. Oligocene tectonism occurred during the transition from subduction of the Farallon Plate to initiation of the modern San Andreas transform system. However, the major influence that caused uplift, formation of fault-bounded basins, and extensive redbed deposition, especially in southern California, was the approach of the Pacific-Farallon spreading ridge to the western margin of California. ?? 1984.

  5. Quaternary sedimentation and subsidence history of Lake Baikal, Siberia, based on seismic stratigraphy and coring

    USGS Publications Warehouse

    Colman, Steven M.; Karabanov, E.B.; Nelson, C. H.

    2003-01-01

    The long, continuous, high-latitude, stratigraphic record of Lake Baikal was deposited in three broad sedimentary environments, defined by high-resolution seismic-reflection and coring methods: (1) turbidite depositional systems, by far the most widespread, characterizing most of the margins and floors of the main basins of the lake, (2) large deltas of major drainages, and (3) tectonically or topographically isolated ridges and banks. Holocene sedimentation rates based on radiocarbon ages vary by more than an order of magnitude among these environments, from less than about 0.03 mm/yr on ridges and banks to more than about 0.3 mm/yr on basin floors. Extrapolating these rates, with a correction for compaction, yields tentative estimates of about 25 and 11 Ma for the inception of rifting in the Central and North basins, respectively, and less than 6 Ma for the 200-m sediment depth on Academician Ridge. The Selenga Delta has the distinctive form of a classic prograding Gilbert-type delta, but its history appears to represent a complex combination of tectonism and sedimentation. The central part of the delta is underlain by prograding, shallow-water sequences, now several hundred meters below the lake surface. These deposits and much of the delta slope are mantled by fine-grained, deep-water, hemipelagic deposits whose base is estimated to be about 650,000 years old. Modern coarse-grained sediment bypasses the delta slope through fault-controlled canyons that feed large, subaqueous fans at the ends of the South and Central basins. These relations, along with abundant other evidence of recent faulting and the great depths of the Central and South basins, suggest that these two rift basins have experienced a period of unusually rapid subsidence over the last 650,000 years, during at least part of which sedimentation has failed to keep pace.

  6. Depositional and deformational history of the Franciscan complex, northernmost California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalto, K.R.

    1990-05-01

    Pervasive extensional shear fractures and curvilinear arrays of clay and silt-filled veins in Franciscan Complex melanges and turbidites formed when Franciscan sediments were unlithified. Sandstone dikes both crosscut and follow fractures. Several scales of extensional faulting account for the juxtaposition of turbidites of different facies and/or with varying degrees of stratal disruption, the formation of sandstone lozenges and pinch-and-swell structures, and the formation of scaly foliation within the matrix of melange units. Within turbidites, the upper laminated portions of beds commonly contain abundant listric microfaults and the more massive lower portions of beds contain sediment-filled vein arrays. Veining and faultingmore » occurred concurrently and resulted in differential extension of upper verses lower portions of beds. The finer sediment in veins reflects both cataclasis and filtering in of clay and silt from vein walls. Most Franciscan rocks record an early pervasive, layer-parallel flattening strain, which may be related to the gravitational collapse of late Mesozoic Franciscan inner trench slope sediments that accompanied accretionary prism expansion resulting from underplating. However, some turbidites record noncoaxial extension that resulted from downslope creep of sediments. At Crescent City, sediment creep resulted in oversteepening of the Franciscan inner trench slope, which, in turn, may have triggered large-scale failure of slope materials resulting in the emplacement of the Crescent City olistostrome. The olistostrome crops out for 12 km along the coast, is up to 600 m thick, is in depositional contact with turbidites, and contains chiefly sandstone, greenstone, chert olistoliths up to 200 m across, and zones of slump-folded turbidites.« less

  7. Stratigraphic Stacking of Deepmarine Channel Levee Turbidites: Scales of Cyclicity and their Origin. Examples from the Laingsburg Fm. (Karoo, South Africa) and the Rosario Fm. (Baja, Mexico)

    NASA Astrophysics Data System (ADS)

    Kane, I. A.; Hodgson, D.

    2009-12-01

    Thinning upwards of the turbidite beds that form deepmarine channel levees is a common motif reported from modern and recent levees on the seafloor, from subsurface examples, and from outcropping ancient examples. Because levees are thought to be built by deposition from turbidity currents superelevated over their channel form, the volume and style of overbank deposition are controlled primarily by the relationship between levee height (i.e., thalweg to crest) and flow thickness, determining the amount of overspill. Thus stratigraphic variability of turbidite thickness is explained by some change in either or both of those factors, which may arise autocyclicly or allocyclicly. Variation in the ratio of intra-channel and extra-channel deposition can be an autocyclic stratigraphic response, e.g., in bypass dominated systems, thalweg aggradation may be retarded with respect to levee aggradation, hence as levee relief increases, flows become more confined and, given a relatively narrow range of flow sizes, the volume of overbank flow and deposit thickness decrease with stratigraphic height. However, the same stratigraphic response of the levee may occur due to allocyclic flow magnitude variation, i.e., through decreasing flow magnitude. In both the autocyclic and allocyclic case the stratigraphic response of the levee may be one of thinning upwards, even if the overall system response may be one of progradation (autocyclic bypassing case) or retrogradation (allocyclic decreasing flow magnitude case), with entirely different connotations for sequence stratigraphic interpretation. Here we report examples of different scales of bed thickness cyclicity (both thickening and thinning upward cycles superimposed by smaller scale cycles) within levees of the Rosario Formation, Baja California, Mexico, and from the Laingsburg Formation, Karoo, South Africa, and, together with published examples, discuss criteria for the recognition, and drivers of, autocyclic and allocyclic bed thickness trends.

  8. Cenomanian to Eocene Stratigraphy of the Jeanne d'Arc Basin Offshore Newfoundland, Canada, with Detailed Examination of Depositional Architecture of the South Mara Member

    NASA Astrophysics Data System (ADS)

    Karlzen, Kyle

    The South Mara Member in the Jeanne d'Arc Basin offshore Newfoundland, Canada forms significant sand deposits within the post-rift Early Eocene basin. This thesis present through examination of seismic and well data the Cenomanian to Eocene stratigraphy and depositional environments with a detailed examination of transport conduits and depositional architecture of the South Mara Member. South Mara submarine fan deposits are found in the northern basin and deltaic deposits are found in the southern basin. This study proposes north-eastward prograding deltas and mounded pro-delta turbidites were transported through the Cormorant Canyon system onto the peneplain surface on the uplifted Morgiana Anticlinorium. The Cormorant canyons cut into top seals of Lower Cretaceous reservoir units and pose a risk to hydrocarbon exploration of older strata; however, they create hydrocarbon migration pathways between Lower Cretaceous to Eocene reservoir zones.

  9. A simple tectonic model for crustal accretion in the Slave Province: A 2.7-2.5 Ga granite greenstone terrane

    NASA Technical Reports Server (NTRS)

    Hoffman, P. F.

    1986-01-01

    A prograding (direction unspecified) trench-arc system is favored as a simple yet comprehensive model for crustal generation in a 250,000 sq km granite-greenstone terrain. The model accounts for the evolutionary sequence of volcanism, sedimentation, deformation, metamorphism and plutonism, observed througout the Slave province. Both unconformable (trench inner slope) and subconformable (trench outer slope) relations between the volcanics and overlying turbidities; and the existence of relatively minor amounts of pre-greenstone basement (microcontinents) and syn-greenstone plutons (accreted arc roots) are explained. Predictions include: a varaiable gap between greenstone volcanism and trench turbidite sedimentation (accompanied by minor volcanism) and systematic regional variations in age span of volcanism and plutonism. Implications of the model will be illustrated with reference to a 1:1 million scale geological map of the Slave Province (and its bounding 1.0 Ga orogens).

  10. Seismic modeling of complex stratified reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Hung-Liang

    Turbidite reservoirs in deep-water depositional systems, such as the oil fields in the offshore Gulf of Mexico and North Sea, are becoming an important exploration target in the petroleum industry. Accurate seismic reservoir characterization, however, is complicated by the heterogeneous of the sand and shale distribution and also by the lack of resolution when imaging thin channel deposits. Amplitude variation with offset (AVO) is a very important technique that is widely applied to locate hydrocarbons. Inaccurate estimates of seismic reflection amplitudes may result in misleading interpretations because of these problems in application to turbidite reservoirs. Therefore, an efficient, accurate, and robust method of modeling seismic responses for such complex reservoirs is crucial and necessary to reduce exploration risk. A fast and accurate approach generating synthetic seismograms for such reservoir models combines wavefront construction ray tracing with composite reflection coefficients in a hybrid modeling algorithm. The wavefront construction approach is a modern, fast implementation of ray tracing that I have extended to model quasi-shear wave propagation in anisotropic media. Composite reflection coefficients, which are computed using propagator matrix methods, provide the exact seismic reflection amplitude for a stratified reservoir model. This is a distinct improvement over conventional AVO analysis based on a model with only two homogeneous half spaces. I combine the two methods to compute synthetic seismograms for test models of turbidite reservoirs in the Ursa field, Gulf of Mexico, validating the new results against exact calculations using the discrete wavenumber method. The new method, however, can also be used to generate synthetic seismograms for the laterally heterogeneous, complex stratified reservoir models. The results show important frequency dependence that may be useful for exploration. Because turbidite channel systems often display complex vertical and lateral heterogeneity that is difficult to measure directly, stochastic modeling is often used to predict the range of possible seismic responses. Though binary models containing mixtures of sands and shales have been proposed in previous work, log measurements show that these are not good representations of real seismic properties. Therefore, I develop a new approach for generating stochastic turbidite models (STM) from a combination of geological interpretation and well log measurements that are more realistic. Calculations of the composite reflection coefficient and synthetic seismograms predict direct hydrocarbon indicators associated with such turbidite sequences. The STMs provide important insights to predict the seismic responses for the complexity of turbidite reservoirs. Results of AVO responses predict the presence of gas saturation in the sand beds. For example, as the source frequency increases, the uncertainty in AVO responses for brine and gas sands predict the possibility of false interpretation in AVO analysis.

  11. Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fabbi, Simone; Santantonio, Massimo

    2012-12-01

    The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then buried by base-of-escarpment proximal turbidites, forming a bypass wedge. Such a contact would be imaged along a seismic section as an unconformity, suggestive of shut-off of the local carbonate factory and onlap by pelagic mud. The composition of the turbidites, however, at least initially duplicates that of the clinoforms, indicating that the footwall top was still productive, yet the mechanisms of sediment shedding into the basin had changed due to the modifications of submarine topography induced by synsedimentary tectonics.

  12. Facies, Stratigraphic and Depositional Model of the Sediments in the Abrolhos Archipelago (Bahia, BRAZIL)

    NASA Astrophysics Data System (ADS)

    Matte, R. R.; Zambonato, E. E.

    2012-04-01

    Located in the Mucuri Basin on the continental shelf of southern Bahia state, northeast Brazil, about 70 km from the city of Caravelas,the Abrolhos archipelago is made up of five islands; Santa Barbara, Redonda, Siriba, Guarita and Sueste. The exhumed sediments in the Abrolhos archipelago are a rare record of the turbidite systems which fill the Brazilian Atlantic Basin, and are probably an unprecedented example of a plataform turbidite system (Dr. Mutti, personal communication). Despite the limited area, the outcrops display a wide facies variation produced by different depositional processes, and also allow for the observation of the layer geometries. Associated with such sedimentary rocks, the Abrolhos Volcanic Complex belongs stratigraphically to the Abrolhos Formation. These igneous rocks were dated by the Ar / Ar method, with ages ranging from 60 to 40 My, placing such Volcanic Complex between the Paleocene and Eocene. The sedimentary section is best exposed in the Santa Barbara and Redonda islands and altogether it is 70 m thick. The measured vertical sections show a good stratigraphic correlation between the rocks of the western portion of the first island and those of Redonda Island. However, there is no correlation between the eastern and western portions of Santa Barbara Island, since they are very likely interrupted by the igneous intrusion and possibly by faulting. The sedimentary stack consists of deposits with alternated regressive and transgressive episodes interpreted as high frequency sequences. The coarse facies, sandstones and conglomerates, with abrupt or erosive bases record regressive phases. On the other hand, finer sandstones and siltstones facies, which are partly bioturbated, correspond to phases of a little sediment supply. In the central and eastern portions of Santa Barbara Island, there is a trend of progradational stacking, while both in the western portion of Santa Barbara and in Redonda islands an agradational trend is observed. The predominance of layers with tabular geometry, characteristic of turbidite lobes, the presence of hummocky stratification, trace fossils typical of shallow water (Ophiomorphs and Thalassinoides), all associated with the occurrence of the carbonaceous material as well as plant fragments suggest a deltaic/ plataform depositional context. Textural features and sedimentary structures observed in the conglomerates and sandstones show the action of gravitational flows of high and low density. The fine interlaminated sandstones and siltstones later deformed as slumps or slides, and conglomerates with oriented clasts indicate, respectively, mass movements and action of debris flow. Conglomeratic lags levels record a bypass phenomenon. There are no biostratigraphic data in these studied outcrops. However, petrographic analyses revealed the presence of fragments of igneous rocks (basalts and diabases) in both sandstones and conglomerates, suggesting a relative contemporaneity between igneous activity and sediment deposition. Futhermore, petrographic analyses also found poor permo-porous conditions in the reservoirs due to the presence of fragments of volcanic rocks and the abundance of intraclasts / pseudomatrix.

  13. Hydrocarbon traps within a seismic sequence framework, Stevens turbidites, southern San Joaquin Valley, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewlett, J.S.; Jordan, D.W.; Crebs, T.J.

    1991-02-01

    Interpretation of the seismic sequence framework and log and lithologic character of upper Miocene Stevens turbidites on the Bakersfield arch has led to an improved understanding of the expression of stratigraphic trapping that should reduce exploration risk in the basin, and may aid exploration efforts in similar sand-rich systems globally. These deepwater sandstones are contained within three lowstand turbidite systems (LTS) that were deposited in a narrow deepwater basin adjacent to the ancestral Sierra Nevada. the oldest LTS, the Coulter, was transported through several submarine canyons incised into the Fruitvale Shale. In contrast, numerous smaller scale erosional features located onmore » the high-relief slopes of the highstand Santa Margarita deltas, fed the overlying Gosford and Bellevue LTS. The systems consist of sandy, high-density (primarily) and low-density turbidites that were deposited within channel-lobe complexes. On the arch, 472 MMBO and 1.3 tcf have been produced from four seismically detectable traps with strong stratigraphic components: (1) sandstone permeability changes within turbidite wedges that thin rapidly onto structure (2) confined (channelized) turbidites that lap out on a structure (e.g., F-1 sand, South Coles levee), (3) channelized turbidites that pinch out within slope gullies, and (4) depositional compaction anticlines occurring in conjunction with low-gradient regional structure. Condensed section sediments form regional and reservoir-scale seals. Rapid lateral facies changes and grain size variations provide additional seal facies.« less

  14. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region. Piston-core surveys have demonstrated that turbidite sediments above the accretionary prism and in the abyssal plain are mostly coarse sandy deposits covered by recent pelagic planktonic-rich sediments, which indicate that sand deposition has slow down during the post-glacial sea level rise. Numerical stratigraphic modeling suggests that during the last glacial event, the main depocenters were located above the tectonic prism and in the abyssal plain, at the front of the prism and that, during the Holocene eustatic rise, a large accommodation space formed on the shelf confining sedimentation mostly on the Orinoco deltaic platform and producing a starvation downstream in the turbidite system. This is in good agreement with the piston coring results which show low deep turbidite sedimentation rates during recent times.

  15. Non-cohesive silt turbidity current flow processes; insights from proximal sandy-silt and silty-sand turbidites, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Strachan, Lorna J.; Bostock, Helen C.; Barnes, Philip M.; Neil, Helen L.; Gosling, Matthew

    2016-08-01

    Silt-rich turbidites are commonly interpreted as distal marine deposits. They are associated with interlaminated clay and silt deposition from the upper and rear portions of turbidity currents. Here, multibeam bathymetry and shallow sediment core data from the intra-slope Secretary Basin, Fiordland, New Zealand, located < 10 km from shore, are used to describe a suite of late Holocene proximal sandy-silt and silty-sand turbidites that contain negligible clay and a wide variety of vertical grading patterns. The steep, rugged catchment to the Secretary Basin is dominated by a complex tributary turbidite channel network that feeds the low gradient Secretary Basin floor intra-slope lobe. Sediment core T49 is located within the lobe and positioned between shallow channels that are prone to deposition from decelerating, silty-sand and sandy-silt turbidity currents. The wide variety of sedimentary structures and vertical grading patterns, dominated by inversely graded beds, implies a range of non-cohesive flow processes, with deposition from multiphase, mixed mode (turbulent and laminar) flows that have undergone a variety of up-dip flow transformations. Most flows were initially erosive followed by deposition of partitioned 2- or 3- phase mixed mode flows that include high-density transitional and laminar flows that can be fore- or after-runners to low-density turbulent flow sections. Turbulence is inferred to have been suppressed in high-density flows by increasing flow concentration of both sands and silts. The very fine and fine sand modal grain sizes of sandy-silt and silty-sand turbidites are significantly coarser than classical abyssal plain silt turbidites and are generally coarser than overbank silt turbidites. While the low percentage of clays within Secretary Basin sandy-silt and silty-sand turbidites represents a fundamental difference between these and other silt and mud turbidites, we suggest these beds represent a previously undescribed suite of proximal continental slope deposits.

  16. Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.; Hanson, A.D.; Buck, B.J.; Zybala, J.G.; Rudin, M.J.

    2005-01-01

    Turbidites, which have accumulated in Lake Mead since completion of the Hoover Dam in 1935, have been mapped using high-resolution seismic and coring techniques. This lake is an exceptional natural laboratory for studying fine-grained turbidite systems in complex topographic settings. The lake comprises four relatively broad basins separated by narrow canyons, and turbidity currents run the full length of the lake. The mean grain size of turbidites is mostly coarse silt, and the sand content decreases from 11-30% in beds in the easternmost basin nearest the source to 3-14% in the central basins to 1-2% in the most distal basin. Regionally, the seismic amplitude mimics the core results and decreases away from the source. The facies and morphology of the sediment surface varies between basins and suggests a regional progression from higher-energy and possibly channelized flows in the easternmost basin to unchannelized flows in the central two basins to unchannelized flows that are ponded by the Hoover Dam in the westernmost basin. At the local scale, turbidites are nearly flat-lying in the central two basins, but here the morphology of the basin walls strongly affects the distribution of facies. One of the two basins is relatively narrow, and in sinuous sections reflection amplitude increases toward the outsides of meanders. Where a narrow canyon debouches into a broad basin, reflection amplitude decreases radially away from the canyon mouth and forms a fan-like deposit. The fine-grained nature of the turbidites in the most distal basin and the fact that reflections drape the underlying pre-impoundment surface suggest ponding here. The progression from ponding in the most distal basin to possibly channelized flows in the most proximal basin shows in plan view a progression similar to the stratigraphic progression documented in several minibasins in the Gulf of Mexico. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  17. Publications - RI 97-14A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Complex; Mystic Terrane; Ordovician; Ores; Paleocurrent; Paleoenvironment; Paleontology; Paleozoic; Peat ; Tertiary; Triassic; Turbidites; Veleska Lake Volcanic Complex; Volcanic; Yukon-Tanana Terrane Top of Page

  18. Asymmetric progradation of a coastal mangrove forest controlled by combined fluvial and marine influence, Cù Lao Dung, Vietnam

    NASA Astrophysics Data System (ADS)

    Fricke, A. T.; Nittrouer, C. A.; Ogston, A. S.; Vo-Luong, H. P.

    2017-09-01

    Mangrove forests are an important means of coastal protection along many shorelines in the tropics, and are often associated with large rivers there. Isolating the contribution of any one factor to the progradation or retreat of a coastal mangrove forest is often hindered by the physical separation between sites that are subject to vastly different combinations of marine and fluvial influence. The mangrove forest at the seaward end of Cù Lao Dung, an island in the Mekong Delta, includes areas with progradation rates of 10 s m y-1, and areas that have experienced little to no progradation in recent decades. The physical proximity (<12 km) of these two environments allows detailed hydrodynamic and sediment-dynamic measurements to be related directly to morphologic change and century-scale stratigraphy. Contrary to conventional understanding, the region of mangrove forest prograding most rapidly is subject to the greatest wave attack, while progradation is slowest in the most quiescent area. Limited progradation here is the product of a reduction in the supply of sediment to certain parts of the mangrove forest due to nearby estuarine dynamics operating on spring-neap timescales. Measurements of sediment flux show net transport into the rapidly prograding part of the forest, and transport out from the part of the forest with minimal progradation. Century-scale rates of sediment accumulation determined using 210Pb geochronology are consistent with in-situ dynamical measurements and geomorphic evolution of the mangrove forest. Where progradation is most rapid, sediment accumulation rates (3.0-5.1 cm y-1) exceed the rate of local sea-level rise (∼1.5 cm y-1). In contrast, sediment-accumulation rates in the area of minimal progradation (0.8-2.8 cm y-1) only somewhat exceed the rate of local sea-level rise, if at all. Physical stratification is well preserved in cores from areas of rapid progradation, consistent with energetic transport processes and an ample sediment supply. Greater impact from bioturbation and episodic sediment delivery produce more variable bedding where progradation is less rapid. The presence of a supply-limited mangrove forest adjacent to a major sediment source highlights the complexity of sediment-supply pathways in coastal mangrove environments.

  19. Morphology and sediment dynamics of the Capbreton canyon (Bay of Biscay, SW France)

    NASA Astrophysics Data System (ADS)

    Gaudin, M.; Umr 5805; Ifremer Team

    2003-04-01

    The Canyon of Capbreton extending in the Bay of Biscay (SW France) is the deepest canyon in the world. Its structure and morphology was studied using new multibeam bathymetry, acoustic imagery and high-resolution seismic data. The canyon head appears only 250 m away from the coast line and runs westward parallel to the north coast of Spain for 160 km due to structural control, then turns northward, widens and abruptly disappears in the continental rise by 3500 m water depth. Its northern margin is flat and progrades clearly westward. Conversely the southern margin is steep and progrades towards the north (i.e. towards the canyon). Down to 800 m water depth, the canyon deeply incises the continental shelf and the axial channel is meandering (sinuosity of 1.9). The canyon shows both major and minor stream beds, perched tributary valleys, nested terraces and abandoned meanders. The terraces have three morphologies: (1) flat, (2) with a raised side or (3) with a horseshoe structure. These morphologies have been interpreted as overbank deposits or nested levees (1 and 2) or as the result of meander abandon (3). Terraces of types (1) and (2) contain mainly fine deposits resulting from decantation of the top of turbulent surges that flow in the canyon. Westward (800 to 2000 m water depth) the main talweg remains sinuous (1.7). On the southern margin, several straight or slightly sinuous S-N tributary valleys are followed by alignments of pockmarks that also indicate a structural control. On the northern margin, a single large tributary valley with a sinuous central talweg, flowing from the upper Aquitaine continental slope, is interpreted as a giant slump scar due to sediment instability. This valley is bordered to the west by a topographic high with sediment waves on the external flank that might be interpreted as a sedimentary levee. The canyon recorded a recent turbidite activity. An 18 cm-thick turbidite was deposited at 650 m water depth by a turbidity current triggered by the storm which affected the French Atlantic coast on 27.12.1999. These present sedimentary processes contribute to maintain the freshness of the canyon morphology. However, the present frequency (in the range of one event every ten years) of gravity processes is too low to explain the incision. This suggests an increased activity when the canyon head was connected to the Adour River (previous to 1310 AD).

  20. Early Pliocene Hiatus in Sand Output by the Colorado River: Evidence From Marine Deposits in the Salton Trough, Southern California

    NASA Astrophysics Data System (ADS)

    Dorsey, R. J.; Bykerk-Kauffman, A.

    2015-12-01

    Early Pliocene deposits in the western Salton Trough preserve a high-fidelity record of sediment dispersal into the marine realm during initiation and early evolution of the Colorado River (CR). Grain-size fractionation, sediment routing, and transport dynamics of the early CR delta are recorded in sediments of the Fish Creek - Vallecito basin, which was located ~100 km south of Yuma along the transform plate boundary at 5 Ma. Early Pliocene delivery of CR sand to the basin took place in two distinct pulses: (1) deposition of sandy turbidites (Wind Caves Mbr of the Latrania Fm) in a restricted submarine canyon at Split Mt Gorge between ~5.3 and 5.1 Ma; and (2) progradation of a thick, widespread, coarsening-up deltaic sequence of marine mudstone, sandstone, and coquinas (Deguynos Fm) between ~4.8 and 4.2 Ma. Estimated flux of CR sediment during Wind Caves deposition was weak (~3-5 Mt/yr) compared to the long-term average (172±64 Mt/yr). The two pulses of CR sand input are separated by the Coyote Clay (CC, ~5.1-4.8 Ma), a regionally correlable, greenish-yellow-weathering marine claystone unit at the base of the Deguynos Fm. CC gradationally overlies Wind Caves turbidites in the area of the paleocanyon. In contrast, in the Coyote Mts 15-23 km to the south and SE, CC rests on coarse-grained locally-derived late Miocene sedimentary rocks, Alverson volcanics, and metamorphic basement rock along a regional unconformity. Identical claystone facies occur in the NW Indio Hills (restores to Yuma at the mouth of the CR at 5 Ma), and Sierra Cucapa in Mexico (~200 km south of Yuma at 5 Ma). Marine localities outside of the Wind Caves paleocanyon experienced slow to negligible sedimentation along a rugged rocky shoreline until abrupt arrival of CR-derived clay. CC accumulated in a sand-starved, pro-delta marine setting (Winker, 1987) over an inferred N-S distance of ~200 km. We therefore reject an alternate hypothesis that CC accumulated on the muddy slope of the prograding CR delta (Cloos, 2014). The CC records a pronounced 200-300 Kyr hiatus in delivery of sand from the CR to the basin at ca. 5 Ma that requires a regional explanation. The hiatus could have been caused by (1) global sea-level rise, (2) accelerated basin subsidence, or (3) tectonic damming and ponding of the lower CR by fault-related bedrock uplift in the Chocolate Mts.

  1. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.; Yang, H.

    2006-01-01

    Using detrital zircon geochronology, turbidite deposystems fed from distinct sediment sources can be distinguished within the Songpan-Ganzi complex, a collapsed Middle to Late Triassic turbidite basin of central China. A southern Songpan-Ganzi deposystem initially was sourced solely by erosion of the Qinling-Dabie orogen during early Late Triassic time, then by Qinling-Dabie orogen, North China block, and South China block sources during middle to late Late Triassic time. A northern Songpan-Ganzi system was sourced by erosion of the Qinling-Dabie orogen and the North China block throughout its deposition. These separate deposystems were later tectonically amalgamated to form one complex and then uplifted as the eastern Tibet Plateau. ?? 2006 Geological Society of America.

  2. Complexities within distal sheet turbidite deposits: case study 160,000ka Icod Turbidite, Moroccan Turbidite System

    NASA Astrophysics Data System (ADS)

    Hunt, James; Wynn, Russell

    2010-05-01

    The Icod landslide from the northern flank of Tenerife not only generated a debris avalanche phase (Watts & Masson, 1995; Masson et al. 2002), but produced a volcaniclastic turbidite that spans three interconnected basins. The Icod turbidite (160,000ka) was reported and correlated during work in the Madeira Abyssal Plain (Pearce & Jarvis, 1992; Rothwell, Pearce & Weaver, 1992). Here it forms a series of vertically stacked sand bodies accumulating into a single event bed. However, the Madeira Abyssal Plain is fed from the Agadir Basin by a series of channels, thus invoking a level of complexity to the deposit with the flow exiting channels at different times. The Icod turbidite can be found deposited more proximally to source in the Agadir Basin as a 0.3-0.6m stacked sand with accompanying 0.2-1.5m mudcap. With this stacked sand facies present here a number of other mechanisms can still be viable: (1) multistage retrogressive landslide failure, (2) flow reflection and (3) internal waves. Geochemical methodologies including ICP-AES, ICP-MS, XRF, ITRAX micro-XRF, SEM EDS and laser-diffraction grain-size analysis have been employed here to investigate the potential of a retrogressive failure at source being the driver of this facies. Evidence suggests that this stacked sand facies in this case is derived from the failure mechanism at source. Five vertical sand packages have been identified and correlated through the Agadir Basin, with the initial basal package representing the thickest. However, this amalgamated sand displays degrees of complexity with correlated internal erosional surfaces marked by sand-sand grain-size breaks. There are also sand-sand grain-size breaks found at the transition between facies associated with flow properties i.e. Bouma Tb parallel laminations and Bouma Tc ripple laminations. Each of the stacked sand intervals also has a sand-mud grain-size break present at the top of the package. This sand-mud break could possibly indicate (1) bypass of coarse silt or (2) removal of previously deposited silt by erosion of a post-depositional mudflow associated with mudcap remobilisation. Further to the stacked subunit facies and grain-size breaks, there are additional complexities to the deposit. An omission of a typical Bouma Ta facies is observed, replaced with a thick well-developed banded Bouma Tb, representing density sorting and flow fractionation of dense basaltic clasts and >100μm foraminifera. Above developing ripple laminations associated with Bouma Tc development is a 0.2-0.5m thick convolute laminated sand. This convoluted sand represents increasing shear stress across developing ripples. Grain-size analysis and ITRAX x-radiographs highlighted an additional process within the mudcaps of the Icod turbidite within the Agadir Basin. The mudcap thickens towards the base of incline from the Agadir Basin to the Selvage Islands. Within the cores with an over-thickened mudcap, the mudcap contained silt contortions. X-radiographs using ITRAX further displayed these contorted silts in the mudcaps. Grain-size analysis was used to confirm the presence of silt and poor sorting through the regions of contortions. These contorted muds have a debritic fabric, and could represent post-depositional remobilisation of the accumulative suspended clay fraction as a mudflow, as it was settling on a gradient and destabilising. This presentation will show the complexities present in even distal sheet turbidites, and that detailed multidisciplinary studies are required to unravel the mechanisms at work during their deposition. Pearce, T.J., & Jarvis I. 1992. Composition and provenance of turbidite sands: Late Quaternary, Madeira Abyssal Plain. Rothwell, R.G., Pearce, I., & Weaver, P.P.E. 1992. Late Quaternary evolution of the Madeira Abyssal Plain, Canary Basin, NE Atlantic. Basin Research, vol.4, no.2, p.103-131. Watts, A.B., & Masson, D.G. 1995. A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research, vol.100, no.B12, p.24,487-24,498. Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P., & Canals, M. 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57, p.1-35.

  3. Insights into alluvial fan dynamics: Evolution of the Miocene Elephant Trees Formation, Anza Borrego Desert, CA

    NASA Astrophysics Data System (ADS)

    Steel, E.; Simkins, L. M.; Reynolds, L.; Fidler, M. K.

    2017-12-01

    The Cenozoic Fish Creek - Vallecito Basin formed through extension and transtention associated with the localization of the Pacific-North American plate boundary in the Salton Trough region of Southern California. The exhumation of this basin along the hanging wall of the West Salton Detachment Fault since 1 Ma exposed a well-preserved sedimentary sequence that records an abrupt shift from the alluvial and fluvial deposits of the Elephant Trees Formation to the marine turbidites of the Latrania Formation. This transition marks the rapid marine incursion into the Gulf of California at 6.3 Ma (Dorsey et al., 2011). The Elephant Trees Formation is, therefore, a key transitional unit for understanding environmental change during the early stages of basin formation and the initial opening of the Gulf of California. Here, we present a detailed investigation of the characteristics of the Elephant Trees Formation, including bed thickness, clast size, paleoflow indicators, sedimentary structures, and sorting to understand the changing depositional environments associated with the onset of relative plate motion in the Gulf of California - Salton Trough corridor. This study aims to answer key questions regarding both regional tectonics and the dynamics of alluvial fan progradation, including 1) Does the Elephant Trees Formation record initiation of rapid basin subsidence and basinward progradation of alluvial fans? And 2) if so, what insights can the Elephant Trees Formation provide regarding the dynamics of debris flows and alluvial fan evolution? Our results improve understanding of proximal to distal facies variations within alluvial fan deposits and further refine the paleogeography during time of deposition of the Elephant Trees Formation ( 6.3 - 8.0 Ma) leading up to the timing of rapid marine incursion.

  4. Seismo-turbidite Sedimentology: Implications for Active Tectonic Margin Stratigraphy and Sediment Facies Patterns

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Goldfinger, C.; Gutierrez Pastor, J.; Polonia, A.; Van Daele, M. E.

    2014-12-01

    Earthquakes generate mass transport deposits (MTDs); megaturbidites (MTD overlain by coeval turbidite); multi-pulsed, stacked, and mud homogenite seismo-turbidites; tsunamites; and seiche deposits. The strongest (Mw 9) earthquake shaking signatures appear to create multi-pulsed individual turbidites, where the number and character of multiple coarse-grained pulses for correlative turbidites generally remain constant both upstream and downstream in different channel systems. Multiple turbidite pulses, that correlate with multiple ruptures shown in seismograms of historic earthquakes (e.g. Chile 1960, Sumatra 2004 and Japan 2011), support this hypothesis. The weaker (Mw = or < 8) (e.g. northern California San Andreas) earthquakes generate dominantly upstream simple fining-up (uni-pulsed) turbidites in single tributary canyons and channels; however, downstream stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Proven tsunamites, which result from tsunami waves sweeping onshore and shallow water debris into deeper water, are a fine-grained turbidite cap over other seismo-turbidites. In contrast, MTDs and seismo-turbidites result from slope failures. Multiple great earthquakes cause seismic strengthening of slope sediment, which results in minor MTDs in basin floor turbidite system deposits (e.g. maximum run-out distances of MTDs across basin floors along active margins are up to an order of magnitude less than on passive margins). In contrast, the MTDs and turbidites are equally intermixed in turbidite systems of passive margins (e.g. Gulf of Mexico). In confined basin settings, earthquake triggering results in a common facies pattern of coeval megaturbidites in proximal settings, thick stacked turbidites downstream, and ponded muddy homogenite turbidites in basin or sub-basin centers, sometimes with a cap of seiche deposits showing bi-directional flow patterns.

  5. The Valley and Ridge Province of eastern Pennsylvania - stratigraphic and sedimentologic contributions and problems ( USA).

    USGS Publications Warehouse

    Epstein, J.B.

    1986-01-01

    The rocks in the area, which range from Middle Ordovician to Late Devonian in age, are more than 7620 m thick. This diversified group of sedimentary rocks was deposited in many different environments, ranging from deep sea, through neritic and tidal, to alluvial. In general, the Middle Ordovician through Lower Devonian strata are a sedimentary cycle related to the waxing and waning of Taconic tectonism. The sequence began with a greywacke-argillite suite (Martinsburg Formation) representing synorogenic basin deepening. This was followed by basin filling and progradation of a sandstone-shale clastic wedge (Shawangunk Formation and Bloomsburg Red Beds) derived from the erosion of the mountains that were uplifted during the Taconic orogeny. The sequence ended with deposition of many thin units of carbonate, sandstone, and shale on a shelf marginal to a land area of low relief. Another tectonic-sedimentary cycle, related to the Acadian orogeny, began with deposition of Middle Devonian rocks. Deep-water shales (Marcellus Shale) preceded shoaling (Mahantango Formation) and turbidite sedimentation (Trimmers Rock Formation) followed by another molasse (Catskill Formation). -from Author

  6. A revised classification and terminology for stacked and amalgamated turbidites in environments dominated by (hemi)pelagic sedimentation

    NASA Astrophysics Data System (ADS)

    Van Daele, Maarten; Meyer, Inka; Moernaut, Jasper; De Decker, Steven; Verschuren, Dirk; De Batist, Marc

    2017-07-01

    Stacked or amalgamated turbidites provide an opportunity to infer the synchronous triggering of multiple slope failures, which is a criterion often used to attribute these slope failures to earthquake shaking; and such turbidites are thus a proxy for reconstructing long-term earthquake recurrence. However, other processes, such as erosion, reflecting turbidity currents and seiching, may produce similar amalgamated/stacked deposits. Here we study two turbidites from Lake Challa, a crater lake on the lower slopes of Kilimanjaro (Kenya/Tanzania). The occurrence in Lake Challa of both single slope failures and basin-wide landslide events, all accompanied by distal turbidites, provides an excellent opportunity to assess the characteristics and significance of amalgamated/stacked turbidites in an enclosed lake basin with diatomaceous sediments, reflecting hemipelagic sedimentation in offshore areas. We also compare the characteristics of amalgamated/stacked turbidites in basins other than Lake Challa to discuss potential causes of different amalgamation patterns (stacked or multi-pulsed character). The low density and elongated shape of diatom frustules increases grain-to-grain interaction and thereby damps turbulence, resulting in faster bed aggradation and a stacked character of the amalgamated turbidites. Finally, as currently both synchronously and non-synchronously triggered turbidites are in literature referred to as ;stacked turbidite;, we propose a revised terminology that differentiates an ;amalgamated turbidite; from a ;turbidite stack;. In sedimentary environments that are dominated by (hemi)pelagic sedimentation, and where turbidity currents are anomalous events, an ;amalgamated turbidite; can often be shown to be the result of synchronous triggering, while a ;turbidite stack; must always result from a succession of discrete events.

  7. Boundary current-controlled turbidite deposition: A sedimentation model for the Southern Nares Abyssal Plain, Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Kuijpers, A.; Duin, E. J. Th.

    1986-03-01

    Examination of 38 sediment cores, bottom photographs, 7,000 km of 3.5 kHz reflection profiles and other seismic data from the southern part of the Nares Abyssal Plain suggests that complex sedimentary patterns and high sedimentation rates can be largely attributed to effects of a deep boundary current flowing eastward along the north flank of the Greater Antilles Outer Ridge. It is concluded that the areal dispersal pattern of turbidites on the plain results mainly from Quaternary climatically-induced fluctuations of the boundary current intensity.

  8. Paleogeographic controls of coal accumulation, Cretaceous Blackhawk Formation and Star Point Sandstone, Wasatch Plateau, Utah.

    USGS Publications Warehouse

    Flores, R.M.; Blanchard, L.F.; Sanchez, J.D.; Marley, W.E.; Muldoon, W.J.

    1984-01-01

    Considers the paleogeographic controls affecting the accumulation of coals in delta-barrier-island complexes. Progradation, lateral shifting, and abandonment of these complexes created four major landward-thinning tongues.-from Authors

  9. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin: Processes, genesis, and implications

    NASA Astrophysics Data System (ADS)

    Gong, Chenglin; Wang, Yingmin; Zheng, Rongcai; Hernández-Molina, F. Javier; Li, Yun; Stow, Dorrik; Xu, Qiang; Brackenridge, Rachel E.

    2016-10-01

    Our understanding of reworked turbidites is still in its infancy, and their flow processes and genesis still remain understudied. Core data from the middle Miocene Zhujiang Formation in the Pearl River Mouth Basin allow us to differentiate reworked turbidites, yielding two main contributions. Firstly, reworked turbidites are distinguished from turbidites by the association of traction structures and tidal signatures, which occur in discrete units rather than forming a classic ;Bouma Sequence; for turbidites. Sedimentological characteristics of reworked turbidites proposed here will help to obtain a robust set of diagnostic criteria for the recognition of deep-water non-turbidite deepwater units as reservoirs. Secondly, our results suggest that, in the down-slope direction, classic detritus carried in turbidity flows would synchronously be bidirectionally reworked by internal tides and waves, resulting in tidal signatures seen in the interpreted reworked turbidites. In the along-slope direction, upper parts of dilute turbidity currents would mix vertically with seawater, and muddy fines would be winnowed away by contour currents, whereas lower parts of dilute turbidity currents would probably drop their coarse particles, resulting in traction structures recognized in the documented reworked turbidites. Our work highlights the influence of bottom currents on the development and modification of turbidites and suggests that reworked turbidites were created by the combined action of down-slope transport and reworking and along-slope winnowing and sorting, helping to better understand flow processes and genesis of non-turbidite reservoirs with a great economic interest.

  10. Ichnology of fine-grained mixed carbonate-siliciclastic turbidites, Wood River Formation, Pennsylvanian-Permian south-central Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, B.R.; Link, P.K.

    1991-06-01

    In south-central Idaho, the Wood River Formation (Pennsylvanian-Permian) contains a stratigraphic megacycle over 2,000 m thick that is composed of fine-grained mixed carbonate-siliciclastic turbidites. Complete and partial (Bouma) turbidite structural sequences in these rocks are arranged in upward thinning cycles 15 to 30 m thick in which top-cut-out (Ta-c) turbidite facies in the lower part grade vertically into base-cut-out (Td-f) turbidites in the upper part. These cycles are interpreted to represent the autocyclic lateral migration of turbidite lobes. A mixed trace fossil assemblage of pascichnia and fordinichnia are present in these rocks and can be separated into pre-depositional and post-turbiditemore » ichnocoenoses. Quiet-water, pre-turbidite deposits are dark-colored, laminated, and carbonaceous, and represent anoxic to dysoxic inter-turbidite basinal conditions; they contain only Chondrites traces. Turbidity currents introduced oxygenated bottom water which fostered the temporary development of a post-turbidite ichnocoenose of pascichnia which is best developed in the medial portion of turbidite beds and lobes. Trace fossil tiering shows that a post-turbidite ichnocoenose of fodinichnia also developed, and persisted after the disappearance of pascichnia. Animals that produced the fodinichnial traces probably were part of an autochthonous benthic fauna rather than a short-lived allochthonous fauna. They may have migrated with the slowly avulsing turbidite lobes and exploited allochthonous oxygen and the carbonaceous food supply.« less

  11. Late Glacial and Holocene gravity deposits in the Gulf of Lions deep basin, Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dennielou, B.; Bonnel, C.; Sultan, N.; Voisset, M.; Berné, S.; Beaudouin, C.; Guichard, F.; Melki, T.; Méar, Y.; Droz, L.

    2003-04-01

    Recent investigations in the Gulf of Lions have shown that complex gravity processes and deposits occurred in the deep basin since the last Glacial period. Besides the largest western Mediterranean turbiditic system, Petit-Rhône deep-sea fan (PRDSF), whose built-up started at the end of Pliocene, several sedimentary bodies can be distinguished: (1) The turbiditic Pyreneo-Languedocian ridge (PLR), at the outlet of the Sète canyon network, whose activity is strongly connected to the sea level and the connection of the canyons with the rivers. It surface shows long wave-length sediment waves, probably in relation with the turbiditic overspill. (2) An acoustically chaotic unit, filling the topographic low between the PRDSF and the PLR, the Lower Interlobe Unit. Possible source areas are the Sète canyon and/or the Marti Canyon. (3) An acoustically transparent unit, below the neofan, filling the same topographic low, the Western Transparent Unit, interpreted as a debris-flow. Recent sediment cores have shown that this sedimentary is composed of folded, laminated mud, both in its northern and southern fringes. (4) The Petit-Rhône neofan, a channelized turbiditic lobe resulting from the last avulsion of the Petit-Rhône turbiditic channel and composed of two units. The lower, acoustically chaotic facies unit, corresponding to an initial stage of the avulsion, similar to the HARP facies found on the Amazon fan. The upper, transparent, slightly bedded, channel-levee shaped unit, corresponding to the channelized stage of the avulsion. (5) Up to ten, Deglacial to Holocene, thin, fine sand layers, probably originating from shelf-break sand accumulations, through the Sète canyon network. (6) Giant scours, in the southern, distal part of the neofan, possibly linked to turbiditic overflow from the neo-channel, probably corresponding to channel-lobe transition zone features (Wynn et al. 2002). Recent investigations have shown no evidence of bottom current features.

  12. Architecture and reservoir quality of low-permeable Eocene lacustrine turbidite sandstone from the Dongying Depression, East China

    NASA Astrophysics Data System (ADS)

    Munawar, Muhammad Jawad; Lin, Chengyan; Chunmei, Dong; Zhang, Xianguo; Zhao, Haiyan; Xiao, Shuming; Azeem, Tahir; Zahid, Muhammad Aleem; Ma, Cunfei

    2018-05-01

    The architecture and quality of lacustrine turbidites that act as petroleum reservoirs are less well documented. Reservoir architecture and multiscale heterogeneity in turbidites represent serious challenges to production performance. Additionally, establishing a hierarchy profile to delineate heterogeneity is a challenging task in lacustrine turbidite deposits. Here, we report on the turbidites in the middle third member of the Eocene Shahejie Formation (Es3), which was deposited during extensive Middle to Late Eocene rifting in the Dongying Depression. Seismic records, wireline log responses, and core observations were integrated to describe the reservoir heterogeneity by delineating the architectural elements, sequence stratigraphic framework and lithofacies assemblage. A petrographic approach was adopted to constrain microscopic heterogeneity using an optical microscope, routine core analyses and X-ray diffraction (XRD) analyses. The Es3m member is interpreted as a sequence set composed of four composite sequences: CS1, CS2, CS3 and CS4. A total of forty-five sequences were identified within these four composite sequences. Sand bodies were mainly deposited as channels, levees, overbank splays, lobes and lobe fringes. The combination of fining-upward and coarsening-upward lithofacies patterns in the architectural elements produces highly complex composite flow units. Microscopic heterogeneity is produced by diagenetic alteration processes (i.e., feldspar dissolution, authigenic clay formation and quartz cementation). The widespread kaolinization of feldspar and mobilization of materials enhanced the quality of the reservoir by producing secondary enlarged pores. In contrast, the formation of pore-filling authigenic illite and illite/smectite clays reduced its permeability. Recovery rates are higher in the axial areas and smaller in the marginal areas of architectural elements. This study represents a significant insight into the reservoir architecture and heterogeneity of lacustrine turbidites, and the understanding of compartmentalization and distribution of high-quality sand reservoirs can be applied to improve primary and secondary production in these fields.

  13. Transition from marine deep slope deposits to evaporitic facies of an isolated foreland basin: case study of the Sivas Basin (Turkey)

    NASA Astrophysics Data System (ADS)

    Pichat, Alexandre; Hoareau, Guilhem; Legeay, Etienne; Lopez, Michel; Bonnel, Cédric; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2017-04-01

    The Sivas Basin, located in the central part of the Anatolian Plateau in Turkey, formed after the closure of the northern Neotethys from Paleocene to Pliocene times. It developed over an ophiolitic basement obducted from the north during the Late Cretaceous. During Paleocene to Eocene times, the onset of the Tauride compression led to the development of a foreland basin affected by north-directed thrusts. The associate general deepening of the basin favored the accumulation of a thick marine turbiditic succession in the foredeep area, followed by a fast shallowing of the basin and thick evaporitic sequence deposition during the late Eocene. We present here the detailed sedimentological architecture of this flysch to evaporite transition. In the northern part of the basin, volcanoclastic turbidites gradually evolved into basinal to prodelta deposits regularly fed by siliciclastic material during flood events. Locally (to the NE), thick-channelized sandstones are attributed to the progradation of delta front distributary channels. The basin became increasingly sediment-starved and evolved toward azoic carbonates and shaly facies, interlayered with organic-rich shales before the first evaporitic deposits. In the southern part of the basin, in the central foredeep, the basinal turbidites become increasingly gypsum-rich and record a massive mega-slump enclosing olistoliths of gypsum and of ophiolitic rocks. Such reworked evaporites were fed by the gravitational collapsing of shallow water evaporites that had previously precipitated in silled piggy-back basins along the southern fold-and-thrust-belt of the Sivas Basin. Tectonic activity that led to the dismantlement of such evaporites probably also contributed to the closure of the basin from the marine domain. From the north to the south, subsequent deposits consist in about 70 meters of secondary massive to fine-grained gypsiferous beds interpreted as recording high to low density gypsum turbidites. Such facies were probably fed from shallow water evaporitic platforms developing contemporaneously along the borders of the halite-? and gypsum-saturated basin. Finally, the reworked evaporites are sealed by a thick (> 100 m) chaotic and coarse crystalline gypsum mass, carrying folded rafts and boudins of carbonate and gypsum beds. Such unit is interpreted as a gypsiferous caprock resulting from the leaching of significant amount of halite deposits. Gypsum crystals are secondary and grew from the hydration of anhydrite grains left as a residual phase after the leaching of halite. The halite probably formed in a perennial shallow hypersaline basin fed in solute by marine seepages. This former halite sequence is interpreted to have triggered mini-basin salt tectonics during the Oligo-Miocene. The described facies and proposed scenario of the Tuzhisar Formation in the central part of the Sivas Basin may find analogies with other Central Anatolian Basins (e.g. the Ulukisla Basin) or with other basin-wide salt accumulations in the world (e.g. in the Carpathian Foredeep).

  14. Holocene ruptures along the North Anatolia Fault in the Marmara Sea, Turkey: Sedimentary processes, spatial extent and age

    NASA Astrophysics Data System (ADS)

    Braudy, N.; McHugh, C. M.; Cagatay, M.; Seeber, L.; Henry, P.; Geli, L.

    2010-12-01

    The North Anatolian fault (NAF), which extends east west for over 1600 km across Turkey, is one of the world's major continental transforms. Since 1939, a sequence of M>7 earthquakes ruptured progressively westward the entire NAF east of Marmara. The most recent and westernmost events in this sequence, the Mw7.4 Izmit and the Mw7.2 Duzce main shocks of 1999, ruptured about 160 km of the fault and were particularly destructive (~17,000 deaths). The only portion of the NAF that did not rupture in the last century is the segment beneath the Marmara Sea that is considered a seismic gap and presents high risk to Istanbul and surroundings. To decipher Holocene earthquake ruptures and the processes leading to their signature in the sedimentary record we applied submarine paleoseismology techniques to study a transect of three 10 m long cores recovered from the Central Basin. The sediments were analyzed with x-ray radiography, for grain size variability at cm-scale, geochemical elements at mm-scale and physical properties. These measurements were calibrated to a chronology developed from short-lived radioisotopes (137-Cs, 210-Pb) and radiocarbon. Turbidites were sampled from the deepest part of the Central Basin, from 1248 to 1262 m depth. As previously documented by McHugh et al (2006), these turbidites are characterized by multiple sand and coarse silt beds, each normally graded, and that together grade upwards into a non-stratified silt that also fines upwards. Elemental concentrations of Al and Si increase with the sand and coarser silt components indicative of an influx of terrigenous components. These complex turbidites-homogenites are as thick as 1 m and dominate the sedimentation in the basin (≈80%). The remainder includes 10 to 20 cm thick fining upwards silt deposits. We interpret these depositional events to represent large earthquakes, the ones including transport of sand are proximal, and the ones without the sand are distal. We measured concentrations of Ca within the coarse component of the complex turbidite and depletion of Mn above. These elemental trends, previously documented by Cagatay et al (2008) can generally be associated with the turbidite-homogenite units and are linked to diagnetic processes resulting from diffuse fluid/gas escape during strong shaking of the sea floor or after the earthquake. Fifteen turbidites-homogenites were preserved within the past 4000 years with an average recurrence interval of 300 years. This is consistent with previous estimates and with a constant slip rate for the NAF for the mid to late Holocene. We have tentatively linked one of the turbidite-homogenite deposits to the 740 AD historical earthquake and two others to possibly the 1912 > Ms 7.4 and more distal 1963 or 1964 events Ms >6.4 linked to the Yalova and Manyas faults, respectively.

  15. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    USGS Publications Warehouse

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between ~ 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level ~ 5.1–4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for ~ 200–300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting ~ 4.8–4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network.

  16. Geology of the Blue Mountains region of Oregon, Idaho, and Washington; stratigraphy, physiography, and mineral resources of the Blue Mountains region

    USGS Publications Warehouse

    Vallier, T. L.; Brooks, H.C.

    1994-01-01

    PART 1: Stratigraphic and sedimentological analysis of sedimentary sequences from the Wallowa terrane of northeastern Oregon has provided a unique insight into the paleogeography and depositional history of the terrane, as well as establishing important constraints on its tectonic evolution and accretionary history. Its Late Triassic history is considered here by examining the two most important sedimentary units in the Wallowa terrane-the Martin Bridge Limestone and the Hurwal Formation. Conformably overlying epiclastic volcanic rocks of the Seven Devils Group, the Martin Bridge Limestone comprises shallow-water platform carbonate rocks and deeper water, off-platform slope and basin facies. Regional stratigraphic and tectonic relations suggest that the Martin Bridge was deposited in a narrow, carbonate-dominated (forearc?) basin during a lull in volcanic activity. The northern Wallowa platform was a narrow, rimmed shelf delineated by carbonate sand shoals. Interior parts of the shelf were characterized by supratidal to shallow subtidal carbonates and evaporites, which were deposited in a restricted basin. In the southern Wallowa Mountains, lithofacies of the Martin Bridge are primarily carbonate turbidites and debris flow deposits, which accumulated on a carbonate slope apron adjacent to the northern Wallowa rimmed shelf from which they were derived. Drowning of the platform in the latest Triassic, coupled with a renewed influx of volcanically derived sediments, resulted in the progradation of fine-grained turbidites of the Hurwal Formation over the carbonate platform. Within the Hurwal, Norian conglomerates of the Excelsior Gulch unit contain exotic clasts of radiolarian chert, which were probably derived from the Bakei terrane. Such a provenance provides evidence of a tectonic link between the Baker and Wallowa terranes as early as the Late Triassic, and offers support for the theory that both terranes were part of a more extensive and complex Blue Mountains island-arc terrane. PART 2: Mesozoic rocks exposed along the Snake River in the northern Wallowa terrane represent a volcanic island and its associated sedimentary basins within the Blue Mountains island arc of Washington, Oregon, and Idaho. In the northern part of the Wallowa terrane, rock units include the Wild Sheep Creek, Doyle Creek, and Coon Hollow Formations, the (informal) Imnaha intrusion, and the (informal) Dry Creek stock. The volcanic rocks of the Ladinian to Karnian Wild Sheep Creek Formation show two stages of evolution-an early dacitic phase Gower volcanic faciesY and a late mafic phase (upper volcanic facies). The two volcanic facies are separated by eruption-generated turbidites of siliceous argillites and arkosic arenites (argillitesandstone facies). The two magmatic phases of the Wild Sheep Creek Formation may be recorded by the compositional zoning from older quartz diorite and diorite to younger gabbro in the Imnaha intrusion. Although the Late Triassic Imnaha intrusion is in fault contact with the Wild Sheep Creek Formation, it may be a subduction-related pluton and was the likely magma source for the Wild Sheep Creek Formation. Interbedded with the upper volcanic facies are eruption-generated turbidite and debris flow deposits (sandstone-breccia facies) and thick carbonate units (limestone facies). The limestone facies consists of two marker units, which may represent carbonate platform environments. Clast imbrication, fossil orientation, and cross-stratification in the Wild Sheep Creek Formation indicate a shoaling to subaerial volcanic island to the south and southeast; sediment was transported to the north and northwest. The Karnian Doyle Creek Formation consists largely of epiclastic conglomerate, sandstone, and shale that were deposited in welloxygenated basins. Vitric tuffs interbedded with these sediments suggest shallow or subaerial pyroclastic eruptions. Quartz diorite clasts in this formation may indicate uplift

  17. Submarine fan facies of Upper Cretaceous Strata, Southern San Rafael Mountains, Santa Barbara County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyne, C.D.

    1986-04-01

    A 2900-m thick Campanian-Maestrichtian(.) turbidite sequence in Upper Mono Creek Canyon is interpreted to be a progradational submarine fan complex comprised of outer fan, middle fan, inner fan, and slope facies. The basal 600 m of the section consists of thinly bedded, laterally continuous fine sandstones, siltstones, and mudstones (mainly Mutti and Ricci Lucci facies D), interpreted to be outer fan interlobe and lobe-fringe deposits. These are punctuated by infrequent medium to very thickly bedded, flat-based, fine to coarse sandstones (facies C and B), which commonly coarsen and thicken upward, and are interpreted to be depositional lobes. Overlying these depositsmore » are approximately 1400 m of middle fan deposits composed of frequent lenticular, commonly channelized and amalgamated, thickly bedded, fine to very coarse sandstones (facies C and B) organized in fining- and thinning-upward sequences, interpreted to be braided-channel deposits. These alternate with less common nonchannelized coarsening- and thickening-upward sequences suggestive of lobe-apical cycles. These multistory sand deposits are nested within thick intervals of fine sandstones, siltstones, and mudstones (facies C and D), interpreted to be levee, crevasse-splay, and interchannel deposits. Interfingered with and overlying these deposits are approximately 500 m of fining- and thinning-upward or noncyclic, erosionally based, commonly amalgamated, very thickly bedded, medium to very coarse sandstones, pebbly sandstones, and conglomerates (facies A and B), interpreted to be inner fan deposits. Intercalated within this facies, infrequent, laterally discontinuous, thin to thickly bedded, fine to coarse sandstones, siltstones, and mudstones exist, interpreted to be interchannel, levee, and possibly channel-fill deposits.« less

  18. The geomorphology of the Mississippi River chenier plain

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.

    1989-01-01

    The chenier plain of the Mississippi River is a shore-parallel zone of alternating transgressive clastic ridges separated by progradational mudflats. The term chenier is derived from the cajun term chene for oak, the tree species that colonizes the crests of the higher ridges. The Mississippi River chenier plain stretches 200 km from Sabine Pass, Texas, to Southwest Point, Louisiana and ranges between 20 and 30 km wide, with elevations of 2-6 m. The timing and the process of formation could be re-evaluated in the light of new chronostratigraphic findings in the Mississippi River delta plain. The stratigraphic relationship between the Teche and Lafourche delta complexes and Ship Shoal offshore indicates that these delta complexes belong to different delta plains that developed at different sealevels. It appears that the Teche delta complex is associated with the late Holocene delta plain which developed 7000 to 3000 yrs B.P. when sealevel stood 5-6 m lower than present. A regional transgression occurred between approximately 3000 BP and 2500 yrs B.P., leading to the transgressive submergence of the late Holocene delta plain, producing the regional Teche shoreline. The timing of this transgression conforms to the age of the most landward ridge in the chenier plain, the Little Chenier-Little Pecan Island trend, which dates at about 2500 yrs B.P. This ridge trend was originally interpreted as representing the Teche delta complex switching event with the landward Holocene/Pleistocene contact representing the high stand shoreline. The implication of this new interpretation is that the Little Chenier-Little Pecan Island trend represents the high stand shoreline, a continuation of the Teche shoreline separating the late Holocene and Recent delta plains, and that the Holocene/Pleistocene contact represents the leading edge of the marshes transgressing onto the Prairie Terrace. Significant mudflat progradation seems to require a westerly position of the Mississippi River, but the numerous different forms and ages of cheniers do not correspond well to the timing of major delta complex switching. Progradation of the chenier plain appears to be associated with building of the Recent delta plain and not the Teche complex of the late Holocene delta plain. The occurrence of individual ridges appears to be primarily tied to delta lobe switching within the Lafourche complex and variations in sediment supply from local rivers. The recent development of the Atchafalaya delta complex to the west is the closest position of an active distributary to the chenier plain since sealevel stabilization; a new episode of rapid mudflat progradation is thus taking place. ?? 1989.

  19. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud turbidites reflect uniform, steady flow characteristics and a depositional sorting mechanism for silt-clay separation; whereas disorganized turbidites reflect an unsteady flow type, either as a short-lived surge or as a mud-contaminated mid-flow. Fine-grained carbonate turbidites show certain distinctive characteristics linked to the different dynamic behaviour of fine carbonate material. Hemiturbidites are the result of long-distance transport and an upward buoyancy mechanism during deposition.

  20. Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African craton: relations with late Proterozoic intracratonic troughs

    NASA Astrophysics Data System (ADS)

    Alvarez, Philippe

    1995-09-01

    During Late Proterozoic times, the Archaean Central African craton was affected by trough faulting which led to the formation of grabens, the Sangha aulacogen being the main structure of this type in the studied area. This transverse basin connects with other basins on the northern and south-western borders of the craton. During the Cryogenian, this network of basins was filled with fluvio-deltaic and lacustrine periglacial deposits. The glacio-eustatic transgression in Neoproterozoic III (end-Proterozoic) times flooded extensive areas of shelf on the northern edge of the craton, leading to the development of carbonate sedimentation in a broad outer shelf environment associated with nearshore barriers and evaporitic lagoons. These facies are similar to those developed in the West Congolian Schisto-calcaire (shale-limestone) ramp succession. The North-Central African ramp succession (sediment slope) contains an example of tidal rhythmites in vertical accretion, which occurs beneath the barrier deposits on the subtidal outer shelf. Mathematical analysis of the bedding pattern yields a period of 29 30 days for the lunar month, a result which is in agreement with astrophysical evidence for this epoch (i.e. 650 Ma ago). Major subsidence and seismic activity on this gently sloping platform, associated with the proximity of the Sangha aulacogen, caused the triggering of carbonate turbidites and mass flow deposits. The proliferation of microbial mats under euphotic conditions on an extensive shelf led to the build-up of a carbonate platform. During early Neoproterozoic III times, the West Congolian and North-Central African ramps prograded northwards and southwards, respectively, into the Sangha aulacogen. The sea at that time was restricted to a long graben-like basin, while a remaining area of marine sedimentation persisted into the Palaeozoic. Thus the pattern of end-Proterozoic carbonate sedimentation on the borders of the Central African craton can be interpreted in terms of an overall gently sloping ramp model with progradation converging towards the Sangha aulacogen.

  1. Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African craton: relations with Late Proterozoic intracratonic troughs

    NASA Astrophysics Data System (ADS)

    Alvarez, Philippe

    During Late Proterozoic times, the Archaean Central African craton was affected by trough faulting which led to the formation of grabens, the Sangha aulacogen being the main structure of this type in the studied area. This transverse basin connects with other basins on the northern and south-western borders of the craton. During the Cryogenian, this network of basins was filled with fluvio-deltaic and lacustrine periglacial deposits. The glacio-eustatic transgression in Neoproterozoic III (end-Proterozoic) times flooded extensive areas of shelf on the northern edge of the craton, leading to the development of carbonate sedimentation in a broad outer shelf environment associated with nearshore barriers and evaporitic lagoons. These facies are similar to those developed in the West Congolian Schisto-calcaire (shale-limestone) ramp succession.The North-Central African ramp succession (sediment slope) contains an example of tidal rhythmites in vertical accretion, which occurs beneath the barrier deposits on the subtidal outer shelf. Mathematical analysis of the bedding pattern yields a period of 29-30 days for the lunar month, a result which is in agreement with astrophysical evidence for this epoch (i.e. 650Ma ago). Major subsidence and seismic activity on this gently sloping platform, associated with the proximity of the Sangha aulacogen, caused the triggering of carbonate turbidites and mass flow deposits. The proliferation of microbial mats under euphotic conditions on an extensive shelf led to the build-up of a carbonate platform. During early Neoproterozoic III times, the West Congolian and North-Central African ramps prograded northwards and southwards, respectively, into the Sangha aulacogen. The sea at that time was restricted to a long graben-like basin, while a remaining area of marine sedimentation persisted into the Palaeozoic. Thus the pattern of end-Proterozoic carbonate sedimentation on the borders of the Central African craton can be interpreted in terms of an overall gently sloping ramp model with progradation converging towards the Sangha aulacogen.

  2. Building an 18 000-year-long paleo-earthquake record from detailed deep-sea turbidite characterisation in Poverty Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Pouderoux, H.; Lamarche, G.; Proust, J.-N.

    2012-06-01

    Two ~20 m-long sedimentary cores collected in two neighbouring mid-slope basins of the Paritu Turbidite System in Poverty Bay, east of New Zealand, show a high concentration of turbidites (5 to 6 turbidites per meter), interlaid with hemipelagites, tephras and a few debrites. Turbidites occur as both stacked and single, and exhibit a range of facies from muddy to sandy turbidites. The age of each turbidite is estimated using the statistical approach developed in the OxCal software from an exceptionally dense set of tephrochronology and radiocarbon ages (~1 age per meter). The age, together with the facies and the petrophysical properties of the sediment (density, magnetic susceptibility and P-wave velocity), allows the correlation of turbidites across the continental slope (1400-2300 m water depth). We identify 73 synchronous turbidites, named basin events, across the two cores between 819 ± 191 and 17 729 ± 701 yr BP. Compositional, foraminiferal and geochemical signatures of the turbidites are used to characterise the source area of the sediment, the origin of the turbidity currents, and their triggering mechanism. Sixty-seven basin events are interpreted as originated from slope failures on the upper continental slope in water depth ranging from 150 to 1200 m. Their earthquake trigger is inferred from the heavily gullied morphology of the source area and the water depth at which slope failures originated. We derive an earthquake mean return time of ~230 yr, with a 90% probability range from 10 to 570 yr. The earthquake chronology indicates cycles of progressive decrease of earthquake return times from ~400 yr to ~150 yr at 0-7 kyr, 8.2-13.5 kyr, 14.7-18 kyr. The two 1.2 kyr-long intervals in between (7-8.2 kyr and 13.5-14.7 kyr) correspond to basin-wide reorganisations with anomalous turbidite deposition (finer deposits and/or non deposition) reflecting the emplacement of two large mass transport deposits much more voluminous than the "classical" earthquake-triggered turbidites. Our results show that the progressive characterisation of a turbidite record from a single sedimentary system can provide a continuous paleo-earthquake history in regions of short historical record and incomplete onland paleo-earthquake evidences. The systematic description of each turbidite enables us to infer the triggering mechanism.

  3. Massive sulfide metallogenesis at a late Mesozoic sediment-covered spreading axis: Evidence from the Franciscan complex and contemporary analogues

    USGS Publications Warehouse

    Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.

    1993-01-01

    The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.

  4. Massive sulfide metallogenesis at a late Mesozoic sediment-covered spreading axis: Evidence from the Franciscan complex and contemporary analogues

    NASA Astrophysics Data System (ADS)

    Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.

    1993-02-01

    The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.

  5. Giant Scour on Eel Fan, California Records Decadal Trubidite Recurrence Interval

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; McGann, M.; Edwards, B. D.; Barnes, P.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Sumner, E.; Caress, D. W.

    2013-12-01

    Analysis of an exceptional exposure of thinly bedded turbidites in the headwall of a giant submarine scour on Eel Submarine Fan reveals that turbidites were being emplaced with a remarkably high frequency during the late Pleistocene to early Holocene. ROV observations, vibracores and push cores show an 87 m thick outcrop of fine-grained turbidites that are between 3 and 40 cm thick. The turbidites are composed of fining-upwards cycles grading from fine or very fine sand through to silty-mud. Within turbidites reversals in grain size occur representing fluctuating flow conditions. An abundance of woody material and shallow dwelling foraminifera within the turbidites demonstrates the flows originated in shallow water. The silty-mud horizons are barren of pelagic foraminifera, suggesting that they are the late stages of turbidites and that intervening hemipelagic material is absent. Twenty-one 14C measurements made on the transported shallow-water foraminifera and wood fragments within eighteen push cores taken from the scarp reveal that the entire 87 m section was deposited 6 to 14 thousand years BP. Shipboard video observations indicate the appearance of the scarp face is similar throughout the exposed face. In a 10 m section with excellent video, 88 turbidites were counted. Assuming that the entire 87 m face comprises the same rhythmic alterations, more than 766 turbidites were deposited during this ~8,000 year interval. This requires a decadal turbidite recurrence interval. As these deposits are downstream of the Eel River, these data have intriguing implications about the enhanced impact of the Eel River during the late Pleistocene and early Holocene.

  6. Turbidites as proxy for past flood events: Testing this approach in a large clastic system (Lake Geneva, France/Switzerland)

    NASA Astrophysics Data System (ADS)

    Kremer, Katrina; Girardclos, Stéphanie

    2017-04-01

    Turbidites recorded in lake sediments are often used to reconstruct the frequency of past flood and also seismological events. However, for such a reconstruction, the origin and causes of the recorded turbidites need to be clearly identified. In this study, we test if turbidites can be used as paleohydrological archive based on the the sedimentary record of Lake Geneva resulting from inputs by the Rhone and Dranse clastic river systems. Our approach is based on several methods combining high-resolution seismic reflection data with geophysical (magnetic susceptibility, grain size) and high-resolution XRF/XRD data measured on ca. 10-m-long sediment cores (dated by radiocarbon ages and 137Cs activity). This dataset allows distinguishing between the different sources (rivers or hemipelagic sediment) of the turbidites deposited in the deep basin of Lake Geneva. However, no clear distinction between the various trigger processes (mass failures or floods) could be made, thus flood deposits could not be clearly identified. From our results, we also conclude that the lack of turbidite deposits in the deep basin between the 15th and 18th century seems to be linked to a change in turbidite depocentre due to the Rhone River mouth shifting possibly triggered by human activity and not by any direct climate effect. This study demonstrates that a least two conditions are needed to perform an adequate paleohydrological interpretation based on turbidite records: (1) the holistic understanding of the basin sedimentary system and (2) the distinction of flood-induced turbidites from other types of turbidites (mass failures etc.).

  7. The changing architecture of sea-level lowstand deposits across the Mid-Pleistocene Transition: South Evoikos Gulf, Greece

    NASA Astrophysics Data System (ADS)

    Anastasakis, George; Piper, David J. W.

    2013-08-01

    On subsiding continental shelves, the style of stacked coastal and deltaic progradational packages is directly dependent on relative sea-level changes. In the past ˜0.6 Ma, sea-level change has been dominated by asymmetric 100 ka eustatic sea-level cycles, whereas the record of sea-level changes in earlier Pleistocene progradational sequences is less clear. In a steadily subsiding basin in which accommodation balances sediment flux, the depth of a eustatic lowstand determines the paleo-depth of the deepest clinoform inflection point and the seaward limit of the erosional transgressive surface, whereas the duration of a lowstand controls the amount of progradation that takes place. We report high-resolution seismic profiles of an exceptionally preserved coastal progradational sequence from a coastal embayment in the Aegean Sea that is subsiding at ˜100 m/Ma. The seismic profiles show clinoforms of smaller amplitude and volume that were deposited before the 100 ka cyclic progradational units. This contrasts with literature reports of complexity in progradational sequences at that time. We assume that published stacked benthic foram O-isotope records are a good proxy for the duration and a reasonable proxy for the amplitude of Pleistocene eustatic sea-level cycles. The MIS 6-5 eustatic sea-level rise is recognised based on sedimentation rates from cores. The underlying major progradational units are correlated with the long-duration, extreme lowstand 100 ka cycles of MIS 6, 12 and 16. Changes in the elevation of lowstand inflection points in clinoforms are used to tentatively extend the record back to MIS 38, by comparison with the benthic foram proxy. The deposits of the higher and longer highstands of MIS 25, 31 and 37 are also recognised. This record provides a testable template for future studies of short early Pleistocene sections on land and raises questions of detail about parts of the published δ18O records. It independently supports the recent evidence that the Mid-Pleistocene transition was an abrupt event, with an extreme lowstand in MIS 22.

  8. Sub-decadal turbidite frequency during the early Holocene: Eel Fan, offshore northern California

    USGS Publications Warehouse

    Paull, Charles K.; McGann, Mary L.; Sumner, Esther J; Barnes, Philip M; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto; Edwards, Brian D.; Caress, David W

    2014-01-01

    Remotely operated and autonomous underwater vehicle technologies were used to image and sample exceptional deep sea outcrops where an ∼100-m-thick section of turbidite beds is exposed on the headwalls of two giant submarine scours on Eel submarine fan, offshore northern California (USA). These outcrops provide a rare opportunity to connect young deep-sea turbidites with their feeder system. 14C measurements reveal that from 12.8 ka to 7.9 ka, one turbidite was being emplaced on average every 7 yr. This emplacement rate is two to three orders of magnitude higher than observed for turbidites elsewhere along the Pacific margin of North America. The turbidites contain abundant wood and shallow-dwelling foraminifera, demonstrating an efficient connection between the Eel River source and the Eel Fan sink. Turbidite recurrence intervals diminish fivefold to ∼36 yr from 7.9 ka onward, reflecting sea-level rise and re-routing of Eel River sediments.

  9. Response of Cenozoic turbidite system to tectonic activity and sea-level change off the Zambezi Delta

    NASA Astrophysics Data System (ADS)

    Castelino, Jude A.; Reichert, Christian; Jokat, Wilfried

    2017-09-01

    Submarine fans and turbidite systems are important and sensitive features located offshore from river deltas that archive tectonic events, regional climate, sea level variations and erosional process. Very little is known about the sedimentary structure of the 1800 km long and 400 km wide Mozambique Fan, which is fed by the Zambezi and spreads out into the Mozambique Channel. New multichannel seismic profiles in the Mozambique Basin reveal multiple feeder systems of the upper fan that have been active concurrently or consecutively since Late Cretaceous. We identify two buried, ancient turbidite systems off Mozambique in addition to the previously known Zambezi-Channel system and another hypothesized active system. The oldest part of the upper fan, located north of the present-day mouth of the Zambezi, was active from Late Cretaceous to Eocene times. Regional uplift caused an increased sediment flux that continued until Eocene times, allowing the fan to migrate southwards under the influence of bottom currents. Following the mid-Oligocene marine regression, the Beira High Channel-levee complex fed the Mozambique Fan from the southwest until Miocene times, reworking sediments from the shelf and continental slope into the distal abyssal fan. Since the Miocene, sediments have bypassed the shelf and upper fan region through the Zambezi Valley system directly into the Zambezi Channel. The morphology of the turbidite system off Mozambique is strongly linked to onshore tectonic events and the variations in sea level and sediment flux.

  10. Upside-down sequence stratigraphy, sandy highstands, and muddy prograding complexes in the Surma Basin, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radovich, B.J.; Hoffman, M.W.; Perlmutter, M.A.

    1995-12-31

    Several large, TCF-size gas fields have been discovered in the Surma Basin, Bangladesh. Detailed sequence stratigraphy was performed on log and seismic data to study these fields and future potential of the area. The prospective section is Upper Miocene sands caught up in a series of younger compressional fault-related folds caused by the Indian Plate colliding with S.E. Asia in the late Tertiary. World-class gas/water contacts are observed on the seismic data over the fields. Sequence stratigraphic techniques reveal an ordered, predictable stratigraphic architecture of sandy highstands and transgressions, and muddy aggraded prograding complexes with deep incisions at each sequencemore » boundary. This serves as a framework to understand the hydrocarbon accumulations in the area. Cyclostratigraphy is used to understand the unusual lithology distributions in the basin.« less

  11. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.

  12. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  13. Textural and isotopic development of marble assemblages during the Barrovian-style M2 metamorphic event, Naxos, Greece

    NASA Astrophysics Data System (ADS)

    Baker, Judy; Matthews, Alan

    1994-03-01

    A detailed petrological analysis of the marble assemblages observed within the M2 metamorphic complex on Naxos is presented. Two distinct periods of mineral growth are documented; the first is associated with prograde M2 metamorphism and the second with retrograde M2 metamorphism occurring during ductile extensional thinning of the complex. The textural and miner-alogical characteristics and the carbon and oxygen isotope compositions of each generation are described, and the P-T-X CO 2 conditions at which these two mineral generations were stable, and the compositions of the fluids present during metamorphism are characterised. Whereas the low variance and stable isotope compositions of prograde siliceous dolomite assemblages are consistent with internally buffered fluid evolution, the retrograde mineral generation is shown to have grown as a result of the infiltration of a water-rich fluid phase that transported silica, Al2O3, Na2O and FeO into the host rocks. This observation, together with the stable isotope compositions of the retrograde calcite, and the fact that occurrences of veins of this type are limited to marbles in the highest grade areas ( T>600° C) of the metamorphic complex, suggests that the fluids responsible for vein formation were generated during the crystallisation of melts as the metamorphic complex cooled from peak temperatures. The existence of this second generation of minerals has significant implications for previous studies of heat transport by fluid flow on Naxos, because many of the unusually low δ18O compositions of pelites at high grades may be ascribable to the effects of interaction with retrograde M2 fluids, rather than with prograde fluids.

  14. The nature of matrix in mixed siliciclastic-carbonate turbidites: An example from the Oquirrh-Wood River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, J.K.

    1992-01-01

    Upper Pennsylvanian to Lower Permian strata of the Oquirrh-Wood River basin (OWRB) in southern Idaho are dominated by mixed siliciclastic-carbonate sediment gravity flows, including amalgamated sandy turbidites or grain flows, and silty turbidites. Previously, the petrology of the carbonate fraction of mixed siliciclastic-carbonate turbidites from the OWRB has been described as predominantly micrite. A source of micrite is present in phylloid algal mounds, which comprise a carbonate platform on the eastern basin margin. Visible micritized skeletal grains and fusulinids are uncommon in these sediments. It has been proposed that the micrite was subsequently neomorphosed to microspar or large, blocky spar.more » The actual volume of micrite in these deposits is enigmatic. Classic studies of turbidite hydrodynamics indicate that matrix accounts for no more than 20 percent, and commonly less, of the experimental turbidite deposits. Therefore, it is unlikely, based on hydrodynamics, that mixed siliciclastic-carbonate turbidites contain more than 20 percent micritic matrix. To resolve this enigma, multiple samples of the siliciclastic-carbonate turbidites from the OWRB were examined using a fluorescence (blue-light) microscope and the white-card technique. Under fluorescence the carbonate fraction of these samples was determined to contain micritized skeletal fragments; peloids, and micritized fusulinids. During diagenesis many of the carbonate grains were deformed and crushed to form carbonate pseudomatrix. Abundant carbonate grains indicate that mixed siliciclastic-carbonate turbidites from the OWRB adhere to established hydrodynamic principles, and contain less than 20 percent detrital matrix.« less

  15. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    NASA Astrophysics Data System (ADS)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    Deltas are very sensitive environments and highly vulnerable to variations in water discharge and the amount of suspended sediment load provided by the delta-forming currents. Human activities in the watershed, such as building of dams and irrigation ditches, or river bed deviations, may affect the discharge regime and sediment input, thus affecting delta growth. Underwater currents create deeply incised canyons cutting into the delta lobes. Understanding the sedimentary processes in these subaquatic canyons is crucial to reconstruct the fluvial evolution and human impact on deltaic environments and to carry out a geological risk assessment related to mass movements, which may affect underwater structures and civil infractructure. Recently acquired high-resolution multibeam bathymetry on the Rhone Delta in Lake Geneva (Sastre et al. 2010) revealed the complexity of the underwater morphology formed by active and inactive canyons first described by Forel (1892). In order to unravel the sedimentary processes and sedimentary evolution in these canyons, 27 sediment cores were retrieved in the distal part of each canyon and in the canyon floor/levee complex of the active canyon. Geophysical, sedimentological, geochemical and radiometric dating techniques were applied to analyse these cores. Preliminary data show that only the canyon originating at the current river mouth is active nowadays, while the others remain inactive since engineering works in the watershed occurred, confirming Sastre et al. (2010). However, alternating hemipelagic and turbiditic deposits on the easternmost canyons, evidence underflow processes during the last decades as well. Two canyons, which are located close to the Rhone river mouth, correspond to particularly interesting deeply incised crevasse channels formed when the underwater current broke through the outer bend of a meander in the proximal northern levee. In these canyons, turbidites occur in the sediment record indicating ongoing sediment dynamics during whether extreme flood events or mass-movements due to deltaic scarp failures. The active canyon shows a classic turbiditic system with frequent spillover processes in the canyon floor/levee complex. Geotechnical measurements, a decrease in the frequency of turbidites and a fining upward sequence along the levee suggest that erosion dominates sedimentation in the canyon floor, while sedimentation dominates in the rapid levee building-up process, with sedimentation rates that exceed 3cm/yr in the proximal areas. Therefore, mechanisms controlling the sedimentary evolution on the active canyon result in a complex interplay between erosion and sedimentation. Further research will provide a detailed evaluation of the human impact on sedimentary dynamic in the Rhone Delta subaquatic canyons.

  16. Tectonic controls of a backarc trough-fill turbidite system: The Pliocene Tamugigawa Formation in the Niigata Shin'etsu inverted rift basin, Northern Fossa Magna, central Japan

    NASA Astrophysics Data System (ADS)

    Takano, Osamu; Tateishi, Masaaki; Endo, Masataka

    2005-05-01

    The Pliocene Tamugigawa Formation in the Niigata-Shin'etsu inverted rift basin, Northern Fossa Magna, located in the junction zone of the NE and SW Japan arcs, demonstrates a trough-fill turbidite system, which is topographically controlled in depositional style and shows notable contrasts in depositional architecture from sandy radial-fan-type turbidite systems. The Tamugigawa trough-fill turbidite system shows an elongated morphology parallel to the basin extent and facies associations consisting of trough-fill, lateral-supply and trough-side elements. The trough-fill elements comprise thick-bedded sheet sandstone and sheet-flow turbidite associations, which show sheet-like sedimentation configuration, instead of depositional lobes, without distinct upward fining and coarsening successions. The lateral-supply elements form an intra-trough small fan along a lateral sediment-supply system into the troughs, and consist mainly of coarser-grained distributary-channel fills and sheet sandstones. The trough-side elements consist of slope-mudstone and spillover associations, which were deposited on the structural highs beside the troughs. The Tamugigawa trough-fill turbidites were deposited through three phases: (a) initial ponding stage with thick, sheet sandstones provided by the lateral-supply system, (b) main filling stage with sheet-flow turbidites provided by the longitudinal supply system, and (c) filled-up stage characterized by minor-scale channel-levee systems. Basin-wide tectono-sedimentary studies reveal that the trough-fill turbidites were characteristically formed during the compressional-stress-field stage related to basin inversion. The compressional stress induced basin-floor syndepositional folding and coarse clastic supply from the uplifted provenance, resulting in topographically restricted turbidite deposition within the troughs. In contrast, turbidites of the post-rift stage, prior to basin inversion, show no topographical control because of the simple and wide rift-basin topography, relative to the amount of sediment supply. It is concluded that the trough-fill turbidites of the Niigata-Shin'etsu basin have been strongly affected by basin tectonics in their depositional architecture and formation phases.

  17. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective

    USGS Publications Warehouse

    Piper, David J.W.; Normark, William R.

    2009-01-01

    How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients < 0.5° at the base of slope and on the mid fan. Highly turbulent flows, from transformation of retrogressive failures and from ignitive flows that are triggered by oceanographic processes, tend to cannibalize these more proximal sediments and redeposit them on lower gradients on the basin plain. Such conduit flushing provides most of the sediment in large turbidites. Initiation mechanism exerts a strong control on the duration of turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit.

  18. Mechanisms of muddy clinothem progradation on the Southwest Louisiana Chenier Plain inner shelf

    NASA Astrophysics Data System (ADS)

    Denommee, Kathryn C.; Bentley, Samuel J.; Harazim, Dario

    2018-06-01

    In both modern and ancient shelf settings, mud-dominated successions commonly contain complex stratigraphic geometries in which low-gradient clinothems feature prominently. Despite their ubiquity, the full range of mechanisms responsible for sediment dispersal and clinothem progradation in such settings is not well understood. Using sediment core data (210PbXS, 137Cs, grain size, porosity, X-radiography) and shallow seismic observations, this study examines the mechanisms of across-shelf sediment transport and clinothem progradation on the muddy Southwest Louisiana Atchafalaya Chenier Plain inner shelf. Observations indicate that rapid transfer of organic matter-rich sediment to the outer topsets and clinothem rollover occurs mainly via hydrodynamic fluid-mud processes during times of high wave-current bed shear stress (e.g., during the passage of storms). Rapid sedimentation, wave perturbation, and the development of biogenic methane within the shallow seabed result in the generation of large internal pore water pressures such that the clinothem rollover and foreset sediments are inherently in a condition of incipient failure. Subsequent basinward sediment transfer to the foresets occurs largely in association with low-gradient (<0.02°) mass-failure events, evidenced by widespread scarping and mudflows on the seabed. These represent an important and as yet unattributed mechanism for clinothem progradation in the study area and are likely to drive basinward sediment transport in other muddy shelf clinothem systems, both modern and ancient.

  19. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Technical Reports Server (NTRS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  20. Source to Sink Tectonic Fate of Large Oceanic Turbidite Systems and the Rupturing of Great and Giant Megathrust Earthquakes (Invited)

    NASA Astrophysics Data System (ADS)

    Scholl, D. W.; Kirby, S. H.; von Huene, R.

    2010-12-01

    OCEAN FLOOR OBSERVATIONS: Oceanic turbidite systems accumulate above igneous oceanic crust and are commonly huge in areal and volumetric dimensions. For example, the volume of the Zodiac fan of the Gulf of Alaska is roughly 300,000 cubic km. Other large oceanic systems construct the Amazon cone, flood the Bay of Bengal abyss, and accumulate along trench axes to thickness of 1 to 7 km and lengths of 1000 to 3000 km, e.g., the Aleutian-Alaska, Sumatra-Andaman, Makran, and south central Chile Trenches. THE ROCK RECORD: Despite the large dimensions of oceanic turbidite systems, they are poorly preserved in the rock record. This includes oceanic systems deposited in passive-margin oceans, e.g., the Paleozoic Iapetus and Rheric oceans of the Atlantic realm, This circumstance does not apply to Cretaceous and E. Tertiary rock sequences of the north Pacific rim where oceanic turbidite deposits are preserved as accretionary complexes, e.g., the Catalina-Pelona-Orocopia-Rand schist of California and the Chugach-Kodiak complex of Alaska. These rock bodies are exhumed crustal underplates of once deeply (15-30 km) subducted oceanic turbidite systems. PATH FROM SOURCE TO TECTONIC SINK: The fate of most oceanic turbidite systems is to be removed from the sea floor and, ultimately, destroyed. This circumstance is unavoidable because most of them are deposited on lower plate crust destined for destruction in a subduction zone. During the past 4-5 myr alone a volume of 1-1.5 million cubic km of sediment sourced from the glaciated drainages of the Gulf of Alaska flooded the 3000-km-long Aleutian-Alaska trench axis. A small part of this volume accumulated tectonically as a narrow, 10-30-km wide accretionary frontal prism. But about 80 percent was subducted and entered the subduction channel separating the two plates. The subduction channel, roughly 1 km thick, conveys the trench turbidite deposits landward down dip along the rupturing width of the seismogenic zone. SEISMIC CONSEQUENCE OF THE TECTONIC SINK: Most great (Mw8.0 and larger) and giant (Mw8.5 and larger) megathrust earthquakes rupture along subduction zones fronted by thick sediment-filled (1 km and thicker) trench axes. For example, 75 percent of giant earthquakes broke at these trenches, and all earthquakes exceeding Mw9.0 ruptured adjacent to thickly sedimented trenches (2 km and thicker). Ruff (1989) first suggested that subduction of a thick section of sediment forms a relatively homogenous layer between the upper and lower plates that laterally smoothes the roughness of subducting sea-floor relief and rupture-arresting asperities. This condition favors long trench-parallel rupturing (more than 250 km), the hallmark of all great and giant megathrust earthquakes. In positive feedback, these huge strain-releasing shocks produce strong seafloor motions that trigger the flushing of sediment-charged turbidity currents to the trench axis and adjacent overflow fans. Subduction of these deposits recharges the subduction channel, sustaining conditions favorable to future great and giant megathrust ruptures. [Ruff, L., 1989, Do trench sediments affect great earthquakes occurrence in subduction zones, Pure and Applied Geophysics, v. 129, Nos. 1/2, p. 263-282].

  1. Eustatic control of turbidites and winnowed turbidites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, G.; Moiola, R.J.

    1982-05-01

    Global changes in sea level, primarily the results of tectonism and glaciation, control deep-sea sedimentation. During periods of low sea level the frequency of turbidity currents is greatly increased. Episodes of low sea level also cause vigorous contour currents, which winnow away the fines of turbidites. In the rock record, the occurrence of most turbidites and winnowed turbidities closely corresponds to global lowstands of paleo-sea level. This observation may be useful in predicting the occurrence of deep-sea reservoir facies in the geologic record.

  2. Plate Tectonics at 3.8-3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland.

    PubMed

    Komiya; Maruyama; Masuda; Nohda; Hayashi; Okamoto

    1999-09-01

    A 1&rcolon;5000 scale mapping was performed in the Isukasia area of the ca. 3.8-Ga Isua supracrustal belt, southern West Greenland. The mapped area is divided into three units bounded by low-angle thrusts: the Northern, Middle, and Southern Units. The Southern Unit, the best exposed, is composed of 14 subunits (horses) with similar lithostratigraphy, bound by layer-parallel thrusts. Duplex structures are widespread in the Isua belt and vary in scale from a few meters to kilometers. Duplexing proceeded from south to north and is well documented in the relationship between link- and roof-thrusts. The reconstructed lithostratigraphy of each horse reveals a simple pattern, in ascending order, of greenstone with low-K tholeiitic composition with or without pillow lava structures, chert/banded iron-formation, and turbidites. The cherts and underlying low-K tholeiites do not contain continent- or arc-derived material. The lithostratigraphy is quite similar to Phanerozoic "oceanic plate stratigraphy," except for the abundance of mafic material in the turbidites. The evidence of duplex structures and oceanic plate stratigraphy indicates that the Isua supracrustal belt is the oldest accretionary complex in the world. The dominantly mafic turbidite composition suggests that the accretionary complex was formed in an intraoceanic environment comparable to the present-day western Pacific Ocean. The duplex polarity suggests that an older accretionary complex should occur to the south of the Isua complex. Moreover, the presence of seawater (documented by a thick, pillow, lava unit at the bottom of oceanic plate stratigraphy) indicates that the surface temperature was less than ca. 100 degrees C in the Early Archean. The oceanic geotherm for the Early Archean lithosphere as a function of age was calculated based on a model of transient half-space cooling at given parameters of surface and mantle temperatures of 100 degrees and 1450 degrees C, respectively, suggesting that the Archean oceanic lithosphere was rigid. These conclusions-rigidity and lateral plate movement-support the idea that the modern style of plate tectonics was in operation only 0.7-0.8 G.yr. after the formation of the Earth.

  3. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be extrapolated regionally. The location of an elliptical zone of active seismicity over the inferred provenance of the turbidites suggests that they were triggered by large earthquakes. Distal turbidite sediment accumulation rates were more than two orders of magnitude greater than pelagic sediment accumulation rates on the Canada Abyssal Plain during the last 8000 years. This disparity reconciles the discrepancy between the high accumulation rates assumed by some for the Arctic Ocean because of the numerous major rivers and large ice sheets that discharge into this small mediterranean basin and the low pelagic sedimentation rates that have been reported from the Arctic Ocean.

  4. A Storegga age turbidite at Eirik Drift, South Greenland: evidence for synchronous turbidite deposition at 8.2 ka BP in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Watts, Millie; Taylor, Vicki; Talling, Peter; Hunt, James; Stanford, Jennifer

    2016-04-01

    Eirik Drift contains a high-resolution record of climatic and oceanic variability. In addition, it records several submarine landslides throughout the Holocene. Submarine landslides and associated tsunamis are potentially damaging, and have the potential to travel significant distances across the North Atlantic. Two cores taken from Eirik Drift (D298-P2) show an expanded Holocene section of hemipelagite and contain a fine grained turbidite dated to 8.17 ka BP (+/- 200 years). This event is coincident with both the 8.2 ka BP climatic anomaly, and the Storegga Slide. Paleoenvironmental proxies suggest this 8.2 ka BP turbidite was deposited during the coldest part of the 8.2 ka BP event, interpreted here as a longer duration cooling. This Holocene Storegga Slide triggered a major tsunami, evidence of which has been found across Northern European coastlines and the East Greenland coast. Here we show that the 8.2 ka BP turbidite has a different provenance both to other turbidites within the D298 core, and the main body of the Storegga Slide turbidite, and is unique within the Eirik Drift sequence. We interpret this event within the core as a distal deposit of a turbidite transported within the Western boundary Under Current, potentially related to a more northerly Greenland impact of the Storegga Tsunami. The fine-grained nature of the deposit suggests significant transport, supporting the hypothesis this event relates to a Greenland impact of the Storegga Tsunami.

  5. Carbonate pseudomatrix in siliciclastic-carbonate turbidites from the Oquirrh-Wood River basin, southern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, J.K.

    1994-01-01

    Upper Pennsylvanian to Lower Permian mixed siliciclastic-carbonate sandy turbidites from the Oquirrh-Wood River basin in southern Idaho contain 20 to 60 modal percent microspar and pseudospar. Previous interpretations suggested that neomorphism of detrital lime mud produced the observed carbonate textures. The original detrital lime mud produced the observed carbonate textures. The original detrital lime mud content, based on these interpretations, indicates matrix-rich, poorly sorted turbidite deposits. However, observed turbidite hydrodynamics, and grain-size data from experimental and naturally occurring sandy turbidite deposits, indicate that T[sub n]-T[sub c] intervals of sandy turbidites are generally moderately well sorted, with low matrix content. Fluorescencemore » microscopy reveals that the carbonate fraction of these mixed siliciclastic-carbonate turbidites contains micritized skeletal grains and fusulinids, and algal peloids. These micritized grains and peloids were physically compacted and neomorphosed to form a carbonate pseudomatrix. Formation of carbonate pseudomatrix is analogous to formation of pseudomatrix in siliciclastic lithic sands, which includes crushing and recrystallization of lithic grains. Grain-size analysis of siliciclastic and slightly compacted carbonate grains indicates that these are moderately well sorted turbidite deposits with similar grain-size populations in both fractions. Lack of recognition of carbonate pseudomatrix could lead to erroneous interpretations of carbonate petrology. Identification of carbonate pseudomatrix is important to the study of mixed siliciclastic-carbonate gravity-flow deposits. This study demonstrates the value of fluorescence microscopy in the recognition of carbonate pseudomatrix.« less

  6. The Bouma Sequence and the turbidite mind set

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.

    1997-11-01

    Conventionally, the Bouma Sequence [Bouma, A.H., 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.], composed of T a, T b, T c, T d, and T e divisions, is interpreted to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences can also be interpreted to be deposits formed by processes other than turbidity currents, such as sandy debris flows and bottom-current reworking. Many published examples of turbidites, most of them hydrocarbon-bearing sands, in the North Sea, the Norwegian Sea, offshore Nigeria, offshore Gabon, Gulf of Mexico, and the Ouachita Mountains, are being reinterpreted by the present author as dominantly deposits of sandy debris flows and bottom-current reworking with only a minor percentage of true turbidites (i.e., deposits of turbidity currents with fluidal or Newtonian rheology in which sediment is suspended by fluid turbulence). This reinterpretation is based on detailed description of 21,000 ft (6402 m) of conventional cores and 1200 ft (365 m) of outcrop sections. The predominance of interpreted turbidites in these areas by other workers can be attributed to the following: (1) loose applications of turbidity-current concepts without regard for fluid rheology, flow state, and sediment-support mechanism that result in a category of 'turbidity currents' that includes debris flows and bottom currents; (2) field description of deep-water sands using the Bouma Sequence (an interpretive model) that invariably leads to a model-driven turbidite interpretation; (3) the prevailing turbidite mind set that subconsciously forces one to routinely interpret most deep-water sands as some kind of turbidites; (4) the use of our inability to interpret transport mechanism from the depositional record as an excuse for assuming deep-water sands as deposits of turbidity currents; (5) the flawed concept of high-density turbidity currents that allows room for interpreting debris-flow deposits as turbidites; (6) the flawed comparison of subaerial river currents (fluid-gravity flows dominated by bed-load transport) with subaqueous turbidity currents (sediment-gravity flows dominated by suspended load transport) that results in misinterpreting ungraded or parallel-stratified deep-sea deposits as turbidites; and (7) the attraction to use obsolete submarine-fan models with channels and lobes that require a turbidite interpretation. Although the turbidite paradigm is alive and well for now, the turbidites themselves are becoming an endangered facies!

  7. Late-stage development of the Bryant Canyon turbidite pathway on the Louisiana continental slope

    USGS Publications Warehouse

    Twichell, David C.; Nelson, Hans; Damuth, John E.

    2000-01-01

    GLORIA sidescan imagery, multibeam bathymetry, seismic profiles, and piston cores (3–5 m penetration) reveal the near-surface geology of the Bryant Canyon turbidite pathway on the continental margin of Louisiana. This pathway extends from the continental shelf edge, across the continental slope, to a deep-sea fan on the continental rise. The pathway is narrow (<2 km) where it crosses shallow salt deposits. Turbidites have been sampled from these narrow segments, and radiocarbon dates indicate that some of them accumulated as recently as 10,150 yr B.P. The pathway broadens however, where it crosses mini-basins whose floors are covered largely by muddy mass-transport deposits and coarse silt turbidites. Mass-transport deposits in the upper 4.7 m of cores from the floors of mini-basins accumulated 18,140-3,400 yr. BP. Seismic profiles show that the mass-transport deposits in some of the mini-basins are as much as 225 milliseconds thick and that turbidites in the basin floor are buried by these deposits. Salt movement has had a major impact on this pathway, and its thalweg no longer has a continuous down-slope gradient. Some mini-basin floors along the pathway are now more than 500 m deeper than their basin’s spill point. We propose a 6-stage conceptual model to explain our observations for the evolution of a mini-basin along this turbidite pathway. In this model, an active channel feeds sand to a mini-basin (Stabe B). Once the mini-basin is filled, the sand deposit is entrenched by a bypass channel (Stage C). When the turbidite system shuts off, salt migration oversteepens the mini-basin walls (Stage D) which collapse and create a layer of mass-transport deposits on the mini-basin floor (Stage E). The depositional succession is capped by a layer of highstand hemipelagic drape (Stage F). The Bryant Canyon turbidite pathway provides a recent example of a large turbidite pathway in the Gulf of Mexico that crosses an area of active salt tectonics thus providing a conceptual model for older systems in similar settings. In Bryant Canyon, thick turbidite sands presumably are found in mini-basins however, they are sealed by thick, fine-grained, mass-transport deposits which terminate mini-basin turbidite deposition cycles. The importance of mass-transport deposits in basins along this turbidite pathway is in startling contrast to the Trinity-Brazos pathway whose shallow subsurface expression is virtually free of mass-transport deposits and has undergone minimal deformation by salt movement.

  8. Thermal Evolution of Juvenile Subduction Zones ' New Constraints from Lu-Hf Geochronology on HP oceanic rocks (Halilbaǧi, Central Anatolia)

    NASA Astrophysics Data System (ADS)

    Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca

    2015-04-01

    The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit record the progressive thermal maturation of the juvenile Neotethyan subduction zone. This period of ~23 myr between subduction initiation and thermal "steady state" is significantly shorter than that obtained for the Rio San Juan Complex (~60 myr; Krebs et al. 2008, Lithos, 103, 106-137), but compares well with that for the Franciscan Complex (~22 myr; Anczkiewicz et al. 2004, EPSL, 225, 147-161) and falls in the range predicted in numerical simulations (e.g., Gerya et al. 2002, Tectonics, 21/6, 1056).

  9. Modeling Stratigraphic Architecture of Deep-water Deposits Using a Small Unmanned Aircraft: Neogene Thin-bedded Turbidites, East Coast Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Nieminski, N.; Graham, S. A.

    2014-12-01

    One of the outstanding challenges of field geology is inaccessibility of exposure. The ability to view and characterize outcrops that are difficult to study from the ground is greatly improved by aerial investigation. Detailed stratigraphic architecture of such exposures is best addressed by using advances and availability of small unmanned aircraft systems (sUAS) that can safely navigate from high-altitude overviews of study areas to within a meter of the exposure of interest. High-resolution photographs acquired at various elevations and azimuths by sUAS are then used to convert field measurements to digital representations in three-dimensions at a fine scale. Photogrammetric software is used to capture complex, detailed topography by creating digital surface models with a range imaging technique that estimates three-dimensional structures from two-dimensional image sequences. The digital surface model is overlain by detailed, high-resolution photography. Pairing sUAS technology with readily available photogrammetry software that requires little processing time and resources offers a revolutionary and cost-effective methodology for geoscientists to investigate and quantify stratigraphic and structural complexity of field studies from the convenience of the office. These methods of imaging and modeling remote outcrops are demonstrated in the East Coast Basin, New Zealand, where wave-cut platform exposures of Miocene deep-water deposits offer a unique opportunity to investigate the flow processes and resulting characteristics of thin-bedded turbidite deposits. Stratigraphic architecture of wavecut platform and vertically-dipping exposures of these thin-bedded turbidites is investigated with sUAS coupled with Structure from Motion (SfM) photogrammetry software. This approach allows the geometric and spatial variation of deep-water architecture to be characterized continuously along 2,000 meters of lateral exposure, as well as to measure and quantify cyclic variations in thin-bedded turbidites at centimeter scale. Results yield a spatial and temporal understanding of a deep-water depositional system at a scale that was previously unattainable using conventional field geology techniques, and a virtual outcrop that can be used for classroom education.

  10. Sequence stratigraphy of upper Paleogene to Neogene carbonates exposed from Guánica bay to Guayanilla, Southern Puerto Rico.

    NASA Astrophysics Data System (ADS)

    Flores Hots, V. E.; Santos, H.

    2016-12-01

    Detailed stratigraphic columns were measured and microfacies analysis was performed in southwestern Puerto Rico to conduct a sequence stratigraphic analysis of Paleogene to Neogene strata. Two of the best exposed outcrops include the Guánica Bay and outcrops along Highway PR-132 in Guayanilla. Three depositional sequences, separated by two major sequence boundaries were found. The lower sequence occurs within the Juana Díaz Formation and is an open shelf to reef facies indicative of a Transgressive System Tract (TST), that is overlain by a High Stand System Tract (HST) marked by reef progradation. The HST in both Guánica Bay and Guayanilla is characterized by coral-rhodolith cyclicity however sections in Guánica Bay show pervasive recrystallization due to diagenetic alteration as a result of a long periods of exposure. This first sequence is Oligocene in age. The middle sequence, exposed at the eastern section of the Guánica Bay is also part of the Juana Díaz Formation and includes a turbiditic Lowstand System Tract (LST) of slope-like deposits flow, a TST constituted by coral rubble and skeletal grainstones belonging to a shallow island slope environment; and a HST that consists of an island slope chalk facies intercalated with turbidite grainstones derived storm events at the Guayanilla location. During the deposition of the middle sequence the Guánica Bay west section was topographically higher and exposed. The upper depositional sequence is Miocene in age and is composed of a TST with the transgression starting distally in the Guánica area and transgressing northward toward the Guayanilla area. These was correlated using high resolution 87Sr/86Sr isotope concentrations of shallow marine mollusks Kuphus incrassatus in the Ponce Formation at the Guánica Bay and Guayanilla locations. Facies patterns like the ones in the studied outcrops of southwestern Puerto Rico provide an exemplary environmental model of variability of paleodepositional relief, tectonic setting, variability in depositional setting of reef Sediment acumulations, the influence of storm events and variability in rock porosity by diagenetic processes yielding valuable models that may apply to potential Oligocene - Miocene hydrocarbon reservoirs.

  11. The long-term evolution of the Congo deep-sea fan: A basin-wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project)

    NASA Astrophysics Data System (ADS)

    Anka, Zahie; Séranne, Michel; Lopez, Michel; Scheck-Wenderoth, Magdalena; Savoye, Bruno

    2009-05-01

    We have integrated the relatively unknown distal domains of the Lower Congo basin, where the main depocenters of the Congo submarine fan are located, with the better-constrained successions on the shelf and upper slope, through the analysis of thousands of km of 2D seismic reflection profiles off-shore the Congo-Angola passive margin. The basin architecture is depicted by two ca. 800-km-long regional cross sections through the northern (Congo) and southern (Angola) margin. A large unit deposited basinward of the Aptian salt limit is likely to be the abyssal-plain equivalent of the upper-Cretaceous carbonate shelf that characterized the first post-rift deposits in West-equatorial African margins. A latest-Turonian shelf-deepening event is recorded in the abyssal plain as a long period (Coniacian-Eocene) of condensed sedimentation and basin starvation. The onset of the giant Tertiary Congo deep-sea fan in early Oligocene following this event reactivates the abyssal plain as the main depocenter of the basin. The time-space partitioning of sedimentation within the deep-sea fan results from the interplay among increasing sediment supply, margin uplift, rise of the Angola salt ridge, and canyon incision throughout the Neogene. Oligocene-early Miocene turbidite sedimentation occurs mainly in NW-SE grabens and ponded inter-diapir basins on the southern margin (Angola). Seaward tilting of the margin and downslope salt withdrawal activates the up-building of the Angola escarpment, which leads to a northward (Congo) shift of the transfer zones during late Miocene. Around the Miocene-Pliocene boundary, the incision of the Congo submarine canyon confines the turbidite flows and drives a general basinward progradation of the submarine fan into the abyssal plain The slope deposition is dominated by fine-grained hemipelagic deposits ever since. Results from this work contribute to better understand the signature in the ultra-deep deposits of processes acting on the continental margin as well as the basin-wide sediment redistribution in areas of high river input.

  12. Holocene evolution of the western Orinoco Delta, Venezuela

    USGS Publications Warehouse

    Aslan, A.; White, W.A.; Warne, A.G.; Guevara, E.H.

    2003-01-01

    The pristine nature of the Orinoco Delta of eastern Venezuela provides unique opportunities to study the geologic processes and environments of a major tropical delta. Remote-sensing images, shallow cores, and radiocarbon-dating of organic remains form the basis for describing deltaic environments and interpreting the Holocene history of the delta. The Orinoco Delta can be subdivided into two major sectors. The southeast sector is dominated by the Rio Grande-the principal distributary-and complex networks of anastomosing fluvial and tidal channels. The abundance of siliciclastic deposits suggests that fluvial processes such as over-bank flooding strongly influence this part of the delta. In contrast, the northwest sector is represented by few major distributaries, and overbank sedimentation is less widespread relative to the southeast sector. Peat is abundant and occurs in herbaceous and forested swamps that are individually up to 200 km2 in area. Northwest-directed littoral currents transport large volumes of suspended sediment and produce prominent mudcapes along the northwest coast. Mapping of surface sediments, vegetation, and major landforms identified four principal geomorphic systems within the western delta plain: (1) distributary channels, (2) interdistributary flood basins, (3) fluvial-marine transitional environments, and (4) marine-influenced coastal environments. Coring and radiocarbon dating of deltaic deposits show that the northern delta shoreline has prograded 20-30 km during the late Holocene sea-level highstand. Progradation has been accomplished by a combination of distributary avulsion and mudcape progradation. This style of deltaic progradation differs markedly from other deltas such as the Mississippi where distributary avulsion leads to coastal land loss, rather than shoreline progradation. The key difference is that the Orinoco Delta coastal zone receives prodigious amounts of sediment from northwest-moving littoral currents that transport sediment from as far away as the Amazon system (???1600 km). Late Holocene progradation of the delta has decreased delta-plain gradients, increased water levels, and minimized over-bank flooding and siliciclastic sedimentation in the northwest sector. These conditions, coupled with large amounts of direct precipitation, have led to widespread peat accumulation in interdistributary basins. Because peat-forming environments cover up to 5000 km2 of the delta plain, the Orinoco may be an excellent analogue for interpreting ancient deltaic peat deposits.

  13. Records of Coastal Change within a Progradational, Wave-Dominated Barrier Island: Morphostratigraphic Framework of the Southern Recurved Spit of Assateague Island, VA

    NASA Astrophysics Data System (ADS)

    Shawler, J. L.; Seminack, C.; DeMarco, K. R.; Hein, C. J.; Petruny, L. M.

    2017-12-01

    Although generally retrogradational in nature, barrier islands commonly contain progradational segments which may preserve records of past coastal dynamics and environmental changes which affected their formation. In particular, recurved-spit ridges may record former shoreline positions on the surface, while in their stratigraphic architecture contain evidence of the processes influencing spit growth. This study uses topographic mapping and nearly 40 km of ground-penetrating radar (GPR) transects to investigate the pre-historic (ca. 1000-1850 C.E.) and historic elongation of Assateague Island, VA (USA) and affiliated progradation of Chincoteague Island. These data uncovered three previously unknown former tidal inlets which have no discernible surface signatures. GPR data further reveal southerly migration (up to 95 m) and closure of these tidal inlets. In addition, GPR data indicates the apparent overprinting of multiple inlets, suggesting later reoccupation of former channels. Seaward-dipping clinoforms (5-15°) indicate that, following inlet closure, the island widened and elongated through beach-ridge growth, proceeded by the development of aeolian foredune ridges. In particular, two large (5 m elevation, 150 m wide) ridges, bounded by smaller (1-3 m elevation, 20-50 m wide) ridge sets, comprise the relict recurved-spit of Assateague Island. This contrasts with the adjacent beach-ridge plain of Chincoteague Island, where surface morphology is characterized by more spatially uniform ridges (1-2 m high, 50-100 m wide). Thus, despite sharing similar internal structure as imaged in GPR, the formational processes associated with these two systems differ: the large, widely-spaced ridges of Assateague are likely indicative of punctuated progradation possibly associated with sediment pulses or complex inlet dynamics, whereas Chincoteague Island may have been built in a semi-protected environment through sediment delivered by inlet bypassing and local longshore transport reversal. Together, these results underscore the synergistic nature of lateral accretion, tidal inlet reworking, and ridge development in the evolution of recurved-spit complexes.

  14. Paleoseismic events inferred from marine seismogenic turbidites of the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Omura, A.; Yamaguchi, A.; Suganuma, Y.; Kanamatsu, T.; Murayama, M.

    2016-12-01

    Paleoseismology using marine seismogenic turbidites is a developing field especially in subduction margins. However, very fine-grained turbidites are difficult to distinguish from hemipelagic mud. The primary focus of this study is to understand the characteristics of the muddy turbidites. The second focus is to discuss the muddy turbidites distributions and their ages from a longer sediment core, and understand the paleoseismic records of eastern Nankai Trough, Japan. The samples used in this study include multiple cores and a piston core which were collected from the sedimentary basin southwest off Kii Peninsula during the R/V Shinsei Maru KS-14-8 cruise. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without terrestrial sediment supply. The basin exhibits a terminal basin that captures all sediments supplied from outside. From the multiple core samples, the Cs-137 and Pb- 210 concentration distribution indicates that the muddy sediment layer in the upper 17 cm was formed from the 2004 off the Kii Peninsula earthquake. Visual observation and X-ray CT scans were conducted alongside other measurements for anisotropy of magnetic susceptibility (AMS), paleomagnetism, rock magnetism, electrical resistivity, and X-ray fluorescence core scanning (XRF). Muddy seismogenic turbidites associated with the 2004 off the Kii Peninsula earthquake have thick homogeneous clay layer above the silty lamination. The magnetic susceptibility decreases upwards in the lamination. This specific feature is thought to have formed as the muddy turbiditity current slowly decelerated and slowly settled down the slope. From the results of XRF core scanning, Ca and Fe have a peak at basement of turbidites, and decrease upwards. Ca is thought to correspond to amount of the foraminiferas. In piston core, we observed the same sedimentary and magnetic characteristics as the multiple cores. Based on stratigraphic information from volcanic ash and radiocarbon age of the foraminifera, intercalation pattern of muddy turbidite layers almost consistent with the known past earthquake recurrence times in the Nankai subduction margin. Reversed age recognized beneath the thick turbidite layer suggests reworking of landslide deposits probably due to the strong shaking.

  15. Controlling factors of stratigraphic occurrences of fine-grained turbidites: Examples from the Japanese waters

    NASA Astrophysics Data System (ADS)

    Ikehara, K.

    2017-12-01

    Fine-grained turbidite has been used for subaqueous paleoseismology, and has been recognized from shallow- to deep-water environments around the Japanese islands. Stratigraphic occurrence of fine-grained turbidites in the deepest Beppu Bay, south Japan, with its water depth of 75 m suggest clear influence of sea-level changes. Turbidite frequency was high during the post glacial sea-level rising and last 2.7 ka, and was low during the Holocene maximum sea-level highstand (5.3-2.7 ka). Retreat and progress of coastal delta front of the nearby river might affect the sediment supply to the deepest basin. On the other hand, fine-grained turbidites found in the forearc basins ( 3500 and 4500 m in water depths) and trench floor ( 6000 m in water depth) along the southern Ryukyu arc have no clear relation with sea-level changes. Sediment and bathymetric characteristics suggest that origin of these fine-grained turbidites is Taiwan. Remarkable tectonic uplift of Taiwanese coast with small mountainous rivers and narrow shelf may produce the continuous supply of fine-grained turbidites in this area. The Japan Trench floor composes of a series of small basins reflecting subducting horst-graben structure of the Pacific Plate. Each small basin acts as a natural sediment trap receiving the earthquake-induced turbidity currents. Thick fine-grained turbidites are also occurred in the small basins in the Japan Trench floor ( 7500 m in water depth). These are most likely induced by huge earthquakes along the Japan Trench. Thus, their stratigraphic occurrences might have close relation with recurrence of huge earthquakes in the past.

  16. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Operators Offshore, Inc.

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less

  17. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  18. Turbidite carbon distribution by Ramped PyrOx, Astoria Canyon

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Galy, V.; McNichol, A. P.

    2017-12-01

    The magnitude and nature of carbon preserved in marine sediments can be affected by long-term processes such as climate change and tectonic transport; preservation of carbon can also be affected by short-term, episodic disturbances such as storm events, landslides, and earthquakes. In margins with active canyons, these systems can be efficient burial networks for carbon. The downslope displacement and reorganization of sediment and associated organic carbon (OC) during turbidite formation alters oxygen diffusion and the potential for aerobic oxidation, thereby modifying the redox geochemistry of the sediment package. Generally termed as a `burn-down', reactions at the subsurface oxidation front are linked to a loss of OC preservation within turbidite sequences. Still debated is the source of the OC residual within `burn-down' events, primarily whether the preserved material is dominated by terrestrial or marine components. To better understand the significance of canyon systems and turbidite deposits in the transport, preservation, and `burn-down' of organic carbon, samples from these systems can be studied using the Ramped PyrOx (RPO) technique. Whereas bulk radiocarbon measurements are unsuitable within turbidite deposits, RPO is well suited for characterizing the distribution of carbon sources within a turbidite interval. To complement RPO analyses, OC and N content, stable carbon isotope composition, gamma ray attenuation bulk density, computerized tomography, and magnetic susceptibility were determined. The turbidite systems of the Cascadia Subduction Zone have been extensively studied in relation to the Holocene paleoseismic record. Gravity cores collected in 2011 aboard the R/V Wecoma capture turbidite deposits in Astoria Canyon and demonstrate characteristics of `burn down' intervals. RPO data from within a 15 cm turbidite interval indicate minimal variation in reactivity structure, stable carbon isotope values and radiocarbon age, suggesting a shared source of sediment input. Such similarities imply minimal source-selective OC alteration and are consistent with a singular event (e.g. - flood) associated with late Holocene warm interval influence on the Columbia River Basin.

  19. Turbidite event history--Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone

    USGS Publications Warehouse

    Goldfinger, Chris; Nelson, C. Hans; Morey, Ann E.; Johnson, Joel E.; Patton, Jason R.; Karabanov, Eugene B.; Gutierrez-Pastor, Julia; Eriksson, Andrew T.; Gracia, Eulalia; Dunhill, Gita; Enkin, Randolph J.; Dallimore, Audrey; Vallier, Tracy; Kayen, Robert; Kayen, Robert

    2012-01-01

    Turbidite systems along the continental margin of Cascadia Basin from Vancouver Island, Canada, to Cape Mendocino, California, United States, have been investigated with swath bathymetry; newly collected and archive piston, gravity, kasten, and box cores; and accelerator mass spectrometry radiocarbon dates. The purpose of this study is to test the applicability of the Holocene turbidite record as a paleoseismic record for the Cascadia subduction zone. The Cascadia Basin is an ideal place to develop a turbidite paleoseismologic method and to record paleoearthquakes because (1) a single subduction-zone fault underlies the Cascadia submarine-canyon systems; (2) multiple tributary canyons and a variety of turbidite systems and sedimentary sources exist to use in tests of synchronous turbidite triggering; (3) the Cascadia trench is completely sediment filled, allowing channel systems to trend seaward across the abyssal plain, rather than merging in the trench; (4) the continental shelf is wide, favoring disconnection of Holocene river systems from their largely Pleistocene canyons; and (5) excellent stratigraphic datums, including the Mazama ash and distinguishable sedimentological and faunal changes near the Pleistocene-Holocene boundary, are present for correlating events and anchoring the temporal framework. Multiple tributaries to Cascadia Channel with 50- to 150-km spacing, and a wide variety of other turbidite systems with different sedimentary sources contain 13 post-Mazama-ash and 19 Holocene turbidites. Likely correlative sequences are found in Cascadia Channel, Juan de Fuca Channel off Washington, and Hydrate Ridge slope basin and Astoria Fan off northern and central Oregon. A probable correlative sequence of turbidites is also found in cores on Rogue Apron off southern Oregon. The Hydrate Ridge and Rogue Apron cores also include 12-22 interspersed thinner turbidite beds respectively. We use 14C dates, relative-dating tests at channel confluences, and stratigraphic correlation of turbidites to determine whether turbidites deposited in separate channel systems are correlative - triggered by a common event. In most cases, these tests can separate earthquake-triggered turbidity currents from other possible sources. The 10,000-year turbidite record along the Cascadia margin passes several tests for synchronous triggering and correlates well with the shorter onshore paleoseismic record. The synchroneity of a 10,000-year turbidite-event record for 500 km along the northern half of the Cascadia subduction zone is best explained by paleoseismic triggering by great earthquakes. Similarly, we find a likely synchronous record in southern Cascadia, including correlated additional events along the southern margin. We examine the applicability of other regional triggers, such as storm waves, storm surges, hyperpycnal flows, and teletsunami, specifically for the Cascadia margin. The average age of the oldest turbidite emplacement event in the 10-0-ka series is 9,800±~210 cal yr B.P. and the youngest is 270±~120 cal yr B.P., indistinguishable from the A.D. 1700 (250 cal yr B.P.) Cascadia earthquake. The northern events define a great earthquake recurrence of ~500-530 years. The recurrence times and averages are supported by the thickness of hemipelagic sediment deposited between turbidite beds. The southern Oregon and northern California margins represent at least three segments that include all of the northern ruptures, as well as ~22 thinner turbidites of restricted latitude range that are correlated between multiple sites. At least two northern California sites, Trinidad and Eel Canyon/pools, record additional turbidites, which may be a mix of earthquake and sedimentologically or storm-triggered events, particularly during the early Holocene when a close connection existed between these canyons and associated river systems. The combined stratigraphic correlations, hemipelagic analysis, and 14C framework suggest that the Cascadia margin has three rupture modes: (1) 19-20 full-length or nearly full length ruptures; (2) three or four ruptures comprising the southern 50-70 percent of the margin; and (3) 18-20 smaller southern-margin ruptures during the past 10 k.y., with the possibility of additional southern-margin events that are presently uncorrelated. The shorter rupture extents and thinner turbidites of the southern margin correspond well with spatial extents interpreted from the limited onshore paleoseismic record, supporting margin segmentation of southern Cascadia. The sequence of 41 events defines an average recurrence period for the southern Cascadia margin of ~240 years during the past 10 k.y. Time-independent probabilities for segmented ruptures range from 7-12 percent in 50 years for full or nearly full margin ruptures to ~21 percent in 50 years for a southern-margin rupture. Time-dependent probabilities are similar for northern margin events at ~7-12 percent and 37-42 percent in 50 years for the southern margin. Failure analysis suggests that by the year 2060, Cascadia will have exceeded ~27 percent of Holocene recurrence intervals for the northern margin and 85 percent of recurrence intervals for the southern margin. The long earthquake record established in Cascadia allows tests of recurrence models rarely possible elsewhere. Turbidite mass per event along the Cascadia margin reveals a consistent record for many of the Cascadia turbidites. We infer that larger turbidites likely represent larger earthquakes. Mass per event and magnitude estimates also correlate modestly with following time intervals for each event, suggesting that Cascadia full or nearly full margin ruptures weakly support a time-predictable model of recurrence. The long paleoseismic record also suggests a pattern of clustered earthquakes that includes four or five cycles of two to five earthquakes during the past 10 k.y., separated by unusually long intervals. We suggest that the pattern of long time intervals and longer ruptures for the northern and central margins may be a function of high sediment supply on the incoming plate, smoothing asperities, and potential barriers. The smaller southern Cascadia segments correspond to thinner incoming sediment sections and potentially greater interaction between lower-plate and upper-plate heterogeneities. The Cascadia Basin turbidite record establishes new paleoseismic techniques utilizing marine turbidite-event stratigraphy during sea-level highstands. These techniques can be applied in other specific settings worldwide, where an extensive fault traverses a continental margin that has several active turbidite systems.

  20. Deep-sea fan deposition of the lower Tertiary Orca Group, eastern Prince William Sound, Alaska

    USGS Publications Warehouse

    Winkler, Gary R.

    1976-01-01

    The Orca Group is a thick, complexly deformed, sparsely fossiliferous sequence of flysch-like sedimentary and tholeiitic volcanic rocks of middle or late Paleocene age that crops out over an area of. roughly 21,000 km2 in the Prince William Sound region and the adjacent Chugach Mountains. The Orca Group also probably underlies a large part of the Gulf of Alaska Tertiary province and the continental shelf south of the outcrop belt; coextensive rocks to the southwest on Kodiak Island are called the Ghost Rocks and Sitkalidak Formations. The Orca Group was pervasively faulted, tightly folded, and metamorphosed regionally to laumontite and prehnite-pumpellyite facies prior to, and perhaps concurrently with, intrusion of early Eocene granodiorite and quartz monzonite plutons. In eastern Prince William Sound, 95% of the Orca sedimentary rocks are interbedded feldspathic and lithofeldspathic sandstone, siltstone, and mudstone turbidites. Lithic components vary widely in abundance and composition, but labile sedimentary and volcanic grains dominate. A widespread yet minor amount of the mudstone is hemipelagic or pelagic, with scattered foraminifers. Pebbly mudstone with rounded clasts of exotic lithologies and locally conglomerate with angular blocks of deformed sandstone identical to the enclosing matrix are interbedded with the turbidites. Thick and thin tabular bodies of altered tholeiitic basalt are locally and regionally conformable with the sedimentary rocks, and constitute 15-20% of Orca outcrops in eastern Prince William Sound. The basalt consists chiefly of pillowed and nonpillowed flows, but also includes minor pillow breccia, tuff, and intrusive rocks. Nonvolcanic turbidites are interbedded with the basalt; lenticular bioclastic limestone, red and green mudstone, chert, and conglomerate locally overlie the basalt, but are supplanted upward by turbidites. From west to east, basalts within the Orca Group become increasingly fragmental and amygdaloidal. Such textural changes probably indicate shallower water to the east. A radial distribution of paleocurrents and distinctive associations of turbidite facies within the sedimentary rocks suggest that the Orca Group in eastern Prince William Sound was deposited on a westward-sloping, complex deep-sea fan. Detritus was derived primarily from 'tectonized' sedimentary, volcanic, and plutonic rocks. Coeval submarine volcanism resulted in intercalation of basalt within prisms of terrigenous sediment.

  1. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar regime during the Pliocene-Pleistocene, when most sediment delivered to the margin is trapped in the outer shelf and slope-forming steep prograding wedges. During the warmer but still polar, Holocene, biogenic sediment accumulates quickly in deep inner-shelf basins during the high-stand intervals. These sediments contain an ultrahigh resolution (annual to millennial) record of climate variability. Validation of our inferences about the nature and timing of Wilkes Land glacial sequences can be achieved by deep sampling (i.e., using IODP-type techniques). The most complete record of the long-term history of glaciation in this margin can be obtained by sampling both (1) the shelf, which contains the direct (presence or no presence of ice) but low-resolution record of glaciation, and (2) the rise, which contains the distal (cold vs. warm) but more complete record of glaciation. The Wilkes Land margin is the only known Antarctic margin where the presumed "onset" of glaciation unconformity (WL-U3) can be traced from shelf to the abyssal plain, allowing links between the proximal and the distal records of glaciation to be established. Additionally, the eastern segment of the Wilkes Land margin may be more sensitive to climate change because the East Antarctic Ice Sheet (EAIS) is grounded below sea level. Therefore, the Wilkes Land margin is not only an ideal location to obtain the long-term EAIS history but also to obtain the shorter-term record of ice sheet fluctuations at times that the East Antarctic Ice Sheet is thought to have been more stable (after 15 Ma-recent). ?? 2004 Elsevier B.V. All rights reserved.

  2. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level 5.1-4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for 200-300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting 4.8-4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network. Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology".

  3. Sedimentation along the Eastern Chenier Plain Coast: Down Drift Impact of a Delta Complex Shift

    NASA Technical Reports Server (NTRS)

    Huh, Oscar K.; Walker, Nan D.; Moeller, Christopher

    2001-01-01

    The Mississippi River Chenier Plain is a shore parallel landform (down-drift from the Atchafalaya distributary of the Mississippi River) consisting of an alternating series of transgressive sand-shell ridges and regressive, progradational mudflats. The late 1940s shift of 1/3 of the flow of the Mississippi to the newly developing Atchafalaya delta complex to the west has resulted in injection of the river waters and suspended sediment into the westward flowing currents of the coastal current system. This has reactivated the dormant processes of mud accumulation along this coast. These environmental circumstances have provided the opportunity to: (1) investigate the depositional processes of the prograding, fine grained, mud flat facies of the open Chenier main coast and (2) to test the hypothesis that the impacts of the frequent cold front passages of fall, winter and spring exceed those of the occasional and more localized hurricane in shaping the coast and powering the dominant sedimentary processes. We conducted field investigations with the benefit of multi - scale, time series environmental surveillance by remote sensing systems, including airborne and satellite sensors. These systems provided invaluable new information on areal geomorphic patterns and the behavior of the coastal waters. This is a classic case of weather impacting inner shelf waters and sediments and causing the development of a new landform. It is clear that mud flats of the eastern chenier plain are prograding seaward, as well as progressively growing in a westerly direction.

  4. Sea level controls on the textural characteristics and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Hiscott, R.N.

    1998-01-01

    Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan. lenticular sand sheets on the middle fan. and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times: the most recently active of the lowstand fan valleys. Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to 'underfit' talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.

  5. Holocene turbidite and onshore paleoseismic record of great earthquakes on the Cascadia Subduction Zone: relevance for the Sumatra 2004 Great Earthquake

    NASA Astrophysics Data System (ADS)

    Gutierrez-Pastor, J.; Nelson, C. H.; Goldfinger, C.; Johnson, J.

    2005-05-01

    Marine turbidite stratigraphy, onshore paleoseismic records of tsunami sand beds and co-seismic subsidence (Atwater and Hemphill-Haley, 1997; Kelsey et al., 2002; Witter et al., 2003) and tsunami sands of Japan (Satake et al., 1996) all show evidence for great earthquakes (M ~ 9) on the Cascadia Subduction Zone. When a great earthquake shakes 1000 kilometers of the Cascadia margin, sediment failures occur in all tributary canyons and resulting turbidity currents travel down the canyon systems and deposit synchronous turbidites in abyssal seafloor channels. These turbidite records provide a deepwater paleoseismic record of great earthquakes. An onshore paleoseismic record develops from rapid coseismic subsidence resulting in buried marshes and drowned forests, and subsequent tsunami sand layer deposition. The Cascadia Basin provides the longest paleoseismic record of great earthquakes that is presently available for a subduction zone. A total of 17 synchronous turbidites have deposited along ~700 km of the Cascadia margin during the Holocene time of ~10,000 cal yr. Because the youngest paleoseismic event in all turbidite and onshore records is 300 AD, the average recurrence interval of Great Earthquakes is ~ 600 yr. At least 6 smaller events have also ruptured shorter margin segments. Linkage of the rupture length of these events comes from relative dating tools such as the "confluence test" of Adams (1990), radiocarbon ages of onshore and offshore events and physical property correlation of individual event "signatures". We use both 14C ages and analysis of hemipelagic sediment thickness between turbidites (H), where H/sedimentation rate = time between turbidite events to develop two recurrence histories. Utilizing the most reliable 14C and hemipelagic data sets from turbidites for the past ~ 5000 yr, the minimum recurrence time is ~ 300 yr and maximum time is ~ 1300 yr. There also is a recurrence pattern through the entire Holocene that consists of a long time interval followed by 2 to 5 short intervals that is apparent as well in the land records. This pattern has repeated five times in the Holocene. Both onshore paleoseismic records and turbidite synchroneity for hundreds of kilometers, suggest that the Holocene turbidite record of the Cascadia Subduction Zone is caused dominantly by triggering of great earthquakes similar in rupture length to the Sumatra 2004 earthquake. The recent Sumatra subduction zone great earthquake of 2004 and the 1700 AD Cascadia tsunami sand of 3m height preserved in Japan (Satake et al., 1996) show that ocean-basin wide tsunami deposits result from these great earthquakes, which rupture the seafloor for hundreds of kilometers. Cascadia and Sumatra share many geological and physiographic similarities that favor the deposition of turbidites from great earthquakes, and tend to filter non earthquake turbidites from the record. Thus the paleoseismic methods developed in Cascadia could be applied to the Sumatran Subduction Zone and we expect that the turbidite record would yield a similar record ~10,000 yr in length. In Sumatra, the dearth of such records led to the lack of widespread recognition of the hazard, particularly from the northern Sumatra and Andaman-Nicobar region where geodetic data suggested weak plate locking. Evidence of a tsunami similar to the 2004 event from satellite imagery suggests the previous event was in the recent past.

  6. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia

    NASA Astrophysics Data System (ADS)

    Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam

    2018-02-01

    This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient deep-water channel-levee settings.

  7. Problems in turbidite research: A need for COMFAN

    USGS Publications Warehouse

    Normark, W.R.; Mutti, E.; Bouma, A.H.

    1984-01-01

    Comparison of modern submarine fans and ancient turbidite sequences is still in its infancy, mainly because of the incompatibility of study approaches. Research on modern fan systems mainly deals with morphologic aspects and surficial sediments, while observations on ancient turbidite formations are mostly directed to vertical sequences. The lack of a common data set also results from different scales of observation. To review the current status of modern and ancient turbidite research, an international group of specialists formed COMFAN (Committee on Fans) and met in September 1982 at the Gulf Research and Development Company research facilities in Pennsylvania. ?? 1984 Springer-Verlag New York Inc.

  8. Turbidite systems: State of the art and future directions

    USGS Publications Warehouse

    Normark, W.R.; Posamentier, H.; Mutti, E.

    1993-01-01

    The study of turbidite systems covering a wide range of physical scales has led to confus ion regarding the use of certain key terms and hence a breakdown in communication between workers involved in turbidite research. There are three fundamentally different scales and types of observations derived from the study of outcrop data (ancient systems), high-resolution seismic reflection and side scan sonar data (modern systems), and multichannel seismic reflection data (modern and older buried systems). Despite the variability of scale the same terms are used to describe features that may have little in common. Consequently, turbidite system terminology has become imprecise and even misleading in some cases, thus providing impediments to developing useful predictive models for processes, depositional environments, and lateral and vertical distribution of sand bodies within turbidite systems. To address this concern, we review the principal elements critical to deepwater systems: slump scars, submarine canyons, channels, channel fill deposits, overbank deposits, and lobes and discuss some of their recognition criteria with each different type of data base. Local and regional tectonic setting, relative sea level variations, and bottom current activity are probably the main factors that control size, external geometry, internal stratal configuration, and facies characteristics of both modern and ancient turbidite systems. These factors ultimately control the timing and bounding characteristics between stages of growth of deepwater systems. If comparison of elements from different turbidite deposits using various data types is carried out at similar physical and temporal scales, predictive models eventually may be improved.

  9. Comparison of earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) Fjords: Implications for paleoseismicity and sedimentology

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Viel, Matias; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Winiarski, Thierry; Desmet, Marc; Costa, Pedro J. M.; Ghaleb, Bassam; Jaouen, Alain; Locat, Jacques

    2012-01-01

    High-resolution seismic profiles along with physical and sedimentological properties of sediment cores from the Saguenay (Eastern Canada) and Reloncavi (Chile) Fjords allowed the identification of several decimeter to meter-thick turbidites. In both fjords, the turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M > 7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M ~ 8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In the Saguenay Fjord, the earthquake-triggered turbidites are sometimes underlying a hyperpycnite associated with the rapid breaching and draining of a natural dam formed by earthquake-triggered landslides. Similar hyperpycnal floods were also recorded in historical and continental geological archives for the 1960 and 1575 AD Chilean subduction earthquakes, highlighting the risk of such flood events several weeks or months after main earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, this paper also emphasizes the sensitivity of fjords to record historic and pre-historic seismicity.

  10. Palaeogeographic implications of the Messinian surface in the Valencia trough, northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Escutia, C.; Maldonado, A.

    1992-03-01

    Sparker (3000 J and 8000 J) and multichannel seismic reflection profiles across the Valencia trough show a Messinian unconformity incised by numerous valleys. The main feature of this surface is a large valley that generally underlies the present Valencia valley and is deeply entrenched into the Miocene deposits. The size of this palaeo-valley ranges from 0.5 km wide and 15-100 m deep at its western end, to 1.6-2.8 km wide and 200-250 m deep downstream. An important tributary system is observed, with a main canyon (6-8 km wide and 150-200 m deep) draining the Ebro margin, as well as many other smaller valleys draining the Catalan and Balearic margins. Downstream, other tributaries underlie the present canyons of the Catalan margin. The location of the tributary system is controlled by the Early Miocene rift structures. The relief of the Messinian surface is affected by post-Miocene deformation that results from salt diapirism, extensional faulting and related volcanism. Late Neogene to Quaternary volcanic edifices cut the Messinian surface and coincide with large residual magnetic anomalies. Lower Pliocene to Quaternary salt diapirism in the abyssal plain north of Menorca has created a series of structural highs. Between these highs are deep interdiapiric troughs or basins that have become sediment depocentres during the Plio-Quaternary. The complex network of erosional valleys from the Valencia trough continental margin demonstrates that the valley system in the basin was not related to the refilling of the Mediterranean, but to the Iberian and Balearic margin palaeodrainage that developed during the Messinian desiccation. The presence of at least three erosional unconformities suggests that there were alternating periods of flooding and retreat of Atlantic water during Messinian time. The Messinian subaerial margin with erosional valleys contrasts sharply with the Pliocene-Quaternary marine margin with progradational turbidite systems.

  11. Supercritical flows and their control on the architecture and facies of small-radius sand-rich fan lobes

    NASA Astrophysics Data System (ADS)

    Postma, George; Kleverlaan, Kick

    2018-02-01

    New insights into flow characteristics of supercritical, high-density turbidity currents initiated renewed interest in a sand-rich lobe complex near the hamlet of Mizala in the Sorbas Basin (Tortonian, SE Spain). The field study was done using drone-made images taken along bed strike in combination with physical tracing of bounding surfaces and section logging. The studied lobe systems show a consistent built-up of lobe elements of 1.5-2.0 m thick, which form the building 'blocks' of the lobe system. The stacking of lobe elements shows lateral shift and compensational relief infill. The new model outlined in this paper highlights three stages of fan lobe development: I. an early aggradational stage with lobe elements characterized by antidune and traction-carpet bedforms and burrowed mud intervals (here called 'distal fan' deposits); II. a progradational stage, where the distal fan deposits are truncated by lobe elements of amalgamated sandy to gravelly units characterized by cyclic step bedform facies (designated as 'supra fan' deposits). The supra fan is much more channelized and scoured and of higher flow energy than the distal-fan. Aggradation of the supra-fan is terminated by a 'pappy' pebbly sandstone and by substrate liquefaction, 'pappy' referring to a typical, porridge-like texture indicating rapid deposition under conditions of little-to-no shear. The facies-bounded termination of the supra-fan is here related to its maximum elevation, causing the lobe-feeding supercritical flow to choke and to expand upwards by a strong hydraulic jump at the channel outlet; III. a backfilling stage, characterized by backfilling of the remaining relief with progressively thinning and fining of turbidite beds and eventually with mud. The three-stage development for fan-lobe building is deducted from reoccurring architectural and facies characteristics in three successive fan-lobes. The validity of using experimental, supercritical-flow fan studies for understanding the intrinsic mechanisms in sand-rich-fan lobe development is discussed.

  12. Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (Central China) and their environmental and evolutionary significance

    USGS Publications Warehouse

    Buatois, Luis A.; Mángano, M. Gabriela; Wu, Xiantao; Zhang, Guocheng

    1996-01-01

    The Lower Jurassic Anyao Formation crops out near Jiyuan city, western Henan Province, central China. It is part of the infill of the nonmarine early Mesozoic Jiyuan‐Yima Basin. In the Jiyuan section, this unit is about 100 m thick and consists of laterally persistent, thin and thick‐bedded turbidite sandstones and mudstones displaying complete and base‐or top‐absent Bouma sequences, and thick‐bedded massive sandstones. The Anyao Formation records sedimentation within a lacustrine turbidite system developed in a pull‐apart basin. Processes involved include high and low density turbidity currents, sometimes affected by liquefaction or fluidization. Facies analysis suggests that this succession is formed by stacked aggradational turbidite lobes. The absence of thick mudstone packages indicates that background sedimentation was subordinate to high frequency turbidite deposition.The Anyao Formation hosts a moderately diverse ichnofauna preserved as hypichnial casts on the soles of thin‐bedded turbidite sandstones. The ichnofauna consists of Cochlichnus anguineus, Hel‐minthoidichnites tenuis, Helminthopsis abeli, H. hieroglyphica, Mono‐morphichnus lineatus, Paracanthorhaphe togwunia, Tuberculichnus vagans, Vagorichnus anyao, tiny grazing trails, and irregularly branching burrows. Vagorichnus anyao occurs not only as a discrete trace, but also as a compound ichnotaxon intergrading with Gordia marina and Tuberculichnus vagans. Both predepositional and post‐depositional traces are present on the soles of turbidites.This ichnofauna comprises both feeding and grazing traces produced by a deposit‐feeding lacustrine benthic biota. Crawling traces are rare. Although certain ichnofossils (e.g. V. anyao, P. togwunia) show overall similarities with deep‐sea agrichnia, they differ in reflecting remarkably less specialized feeding strategies, displaying overcrossing between specimens (and to a lesser extent, self‐crossing), and in the case of V’ anyaorecording post‐turbidite burrowing activity. The development of less specialized strategies than those displayed by deep‐marine ichnofaunas may be related to less stable conditions, typical of lake settings. Oxyenation, energy, sedimentation rate (both event and background), food supply, soft‐sediment deformation and erosion rate have mainly influenced trace‐fossil distribution. Turbidity currents would have ensured oxygen (as well as food) supply to deep lake settings, thus allowing the establishment of a moderately diverse biota. Biogenic structures were mostly confined to the outer, low energy areas. High sedimentation rates and strong erosion precluded preservation of ichnofossils in inner lobe settings.The Anyao ichnofauna is of significance in furthering knowledge of the colonization of deep lakes throughout the stratigraphie record and in identification of additional nonmarine ichnofacies. The ana‐lyzed ichnofauna resembles late Paleozoic lacustrine assemblages described from different localities around the world and is regarded as a Mesozoic example of the Mermia ichnofacies. However, when compared with Paleozoic assemblages, the Anyao ichnofauna shows a clear dominance of burrows over surface trails, deeper burrowing penetration, larger size, and presence of relatively more complex structures. The high burrow/surface trail ratio may be indicative of lower preservation potential in the latter, thus reflecting a tap‐honomic overprint. In contrast to the Paleozoic examples, the establishment of a relatively well‐developed lacustrine infauna may have precluded preservation of surface trails. Burrower activity probably obliterated biogenic structures formed close to the sediment‐water interface.

  13. Prograding coastal facies associations in the Vryheid formation (Permian) at Effingham quarries near Durban, South Africa

    NASA Astrophysics Data System (ADS)

    Tavener-Smith, R.

    1982-05-01

    This paper describes and interprets a flat-lying, sandstone—siltstone sequence 70 m thick in three disused quarries. The beds comprise the lowest part of the Vryheid Formation (middle Ecca) in the Durban vicinity. The sequence is conveniently divisible into two parts: the Lower Division constitutes a prograding beach barrier association, while the upper one represents a back barrier lagoonal complex. Fourteen sedimentary facies are described and interpreted to represent a range of depositional environments including open water shelf silts, sandy shoreface and littoral deposits, organic-rich muds and peats of lagoonal origin, a tidal inlet, washover fans and a fluvial channel sand. Among the conclusions reached are that the local middle Ecca coastline extended in a northwest to southeast direction and that progradation was towards the southwest; that the coastline was microtidal and that stormy conditions were common with prevalent palaeowinds from the northwest. The absence of invertebrate body fossils in these strata is attributed to penecontemporaneous solution of shelly remains. This is the first time that a coastal sequence has been identified on the southeast margin of the Main Karoo Basin of South Africa

  14. Long-term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands

    NASA Astrophysics Data System (ADS)

    Hunt, J. E.; Talling, P. J.; Clare, M. A.; Jarvis, I.; Wynn, R. B.

    2014-08-01

    Volcaniclastic turbidites on the Madeira Abyssal Plain provide a record of large-volume volcanic island flank collapses from the Canary Islands. This long-term record spans 17 Ma, and comprises 125 volcaniclastic beds. Determining the timing, provenance and volumes of these turbidites provides key information about the occurrence of mass wasting from the Canary Islands, especially the western islands of Tenerife, La Palma and El Hierro. These turbidite records demonstrate that landslides often coincide with protracted periods of volcanic edifice growth, suggesting that loading of the volcanic edifices may be a key preconditioning factor for landslide triggers. Furthermore, the last large-volume failures from Tenerife coincide with explosive volcanism at the end of eruptive cycles. Many large-volume Canary Island landslides also occurred during periods of warmer and wetter climates associated with sea-level rise and subsequent highstand. However, these turbidites are not serially dependent and any association with climate or sea level change is not statistically significant.

  15. Bacterial Diversity Across a Turbidite-Stranded Sediment-Water Interface, La Jolla Canyon, CA

    NASA Astrophysics Data System (ADS)

    Harrison, B. K.; Flood, B.; Myrbo, A.; Bailey, J.

    2016-12-01

    The emplacement of gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical (e.g., McKay and Pederson, 2014) and biological signatures (e.g., Anschutz et al., 2002) of turbidite deposition, the response of prokaryotes within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and allocthonous material must respond to substantially altered selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine 1) microbial community response to sedimentation 2) preservation and identification of microbial dispersal mechanisms. We collected Illumina MiSeq sequence libraries across an intact marine turbidite boundary at 25cm sediment depth in La Jolla canyon off the coast of California. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, the sedimentary boundary is sharply demarcated at the cm scale by the diversity and abundance of Chloroflexi, Planctomycetes, and Actinobacteria. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the stranded sediment-water interface reflect persistent turbidite-induced changes to the geochemical environment. This work raises the possibility that abrupt sedimentological events may alter the microbial community in a manner that persists with burial.

  16. Multiproxy Late Quaternary stratigraphy of the Nile deep-sea turbidite system — Towards a chronology of deep-sea terrigeneous systems

    NASA Astrophysics Data System (ADS)

    Ducassou, E.; Capotondi, L.; Murat, A.; Bernasconi, S. M.; Mulder, T.; Gonthier, E.; Migeon, S.; Duprat, J.; Giraudeau, J.; Mascle, J.

    2007-08-01

    Understanding the recent formation of a sedimentary system such as a deep-sea turbidite system (DSTS) requires an accurate stratigraphic control on deposits. Due to the important terrigeneous input which disrupts the sedimentary record, DSTS is an environment where stratigraphic control is difficult to assess. Most of the time, traditional stratigraphic tools are not accurate enough. This has led to a rather limited number of studies concerning stratigraphy in DSTS. In this study, we examine several hemipelagic long piston cores collected from the Nile DSTS (eastern Mediterranean), in order to understand the recent evolution of the complex sedimentary system in this area. The first aim of this study is to show how to obtain a reliable timeframe in DSTS. Indeed, we provided a detailed ecostratigraphical scheme based on planktonic foraminiferal distribution, oxygen isotope records and lithostratigraphy (sapropels and tephra) of three cores where the sedimentation is least disturbed. We have identified 29 foraminiferal ecozones during the last 250,000 years BP, with an approximately 2000-year time resolution. The time span of each ecozone was constrained by the oxygen isotope record, 14C AMS radiometric data, tephrochronology and the sapropel chronology. These high-resolution ecostratigraphical time subdivisions have been applied in discontinuous mixed hemipelagic/turbiditic sequences of a levee record. This example shows how to date gravity events, formation and time periods of sedimentary accumulations.

  17. Provenance of a large Lower Cretaceous turbidite submarine fan complex on the active Laurasian margin: Central Pontides, northern Turkey

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Meinhold, Guido; Kylander-Clark, Andrew R. C.

    2017-02-01

    The Pontides formed the southern active margin of Laurasia during the Mesozoic. They became separated from mainland Laurasia during the Late Cretaceous, with the opening of the Black Sea as an oceanic back-arc basin. During the Early Cretaceous, a large submarine turbidite fan complex developed in the Central Pontides. The turbidites cover an area of 400 km by 90 km with a thickness of more than 2 km. We have investigated the provenance of these turbidites-the Çağlayan Formation-using paleocurrent measurements, U-Pb detrital zircon ages, REE abundances of dated zircons and geochemistry of detrital rutile grains. 1924 paleocurrent measurements from 96 outcrop stations indicate flow direction from northwest to southeast in the eastern part of the Çağlayan Basin and from north-northeast to west-southwest in the western part. 1194 detrital zircon ages from 13 Lower Cretaceous sandstone samples show different patterns in the eastern, central and western parts of the basin. The majority of the U-Pb detrital zircon ages in the eastern part of the basin are Archean and Paleoproterozoic (61% of all zircon ages, 337 grains); rocks of these ages are absent in the Pontides and present in the Ukrainian Shield, which indicates a source north of the Black Sea. In the western part of the basin the majority of the zircons are Carboniferous and Neoproterozoic (68%, 246 grains) implying more local sources within the Pontides. The detrital zircons from the central part show an age spectrum as mixture of zircons from western and eastern parts. Significantly, Jurassic and Early Cretaceous zircons make up less than 2% of the total zircon population, which implies lack of a coeval magmatic arc in the region. This is compatible with the absence of the Lower Cretaceous granites in the Pontides. Thus, although the Çağlayan Basin occupied a fore-arc position above the subduction zone, the arc was missing, probably due to flat subduction, and the basin was largely fed from the Ukrainian Shield in the north. This also indicates that the Black Sea opened after the Early Cretaceous following the deposition of the Çağlayan Formation.

  18. Sedimentology of the Argo and Gascoyne abyssal plains, NW Australia: Report on Ocean Drilling Program Leg 123 (Sept. 1–Nov. 1, 1988)

    USGS Publications Warehouse

    Thurow, Jürgen

    1988-01-01

    Ocean Drilling Program Leg 123 drilled two sites in the Indian Ocean in order to study the rifting and early spreading of one of the world’s oldest ocean basins.Site 765 was drilled in 5714 meters of water on the Argo Abyssal Plain northwest of Australia. The sedimentary succession records the opening of an ocean basin, from the first sediments deposited atop young oceanic crust, to the present day. The oldest sediments are microlaminated brown silty claystones, locally rich in calcareous bioclasts. Most of the sequence is dominated by turbidites (primarily calcareous) which probably originated within canyons cut into the margin of the drowned platform of the North West Shelf of Australia.Site 766 is located in 3998 meters of water, at the base of the steep western margin of the Exmouth Plateau. The oldest sediments penetrated are glauconitic, volcaniclastic, and bioclastic sandstones and siltstones, which are interbedded with inclined basaltic sills. These sediments were deposited by a prograding submarine fan system which shed shallow marine sediments westward or northwestward off of the western rim of the Exmouth Plateau. Sandstones are succeeded by silty claystones, recording gradual abandonment or redirection of the fan system. An overlying sequence of pelagic and hemipelagic clayey and zeolitic calcareous oozes and chalks is succeeded by featureless and homogeneous pelagic nannofossil oozes.

  19. Magnetic properties of black mud turbidites from ODP Leg 116, distal Bengal Fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sager, W.W.; Hall, S.A.

    1991-03-01

    Turbidites from the distal Bengal Fan cored on ODP Leg 116 showed large magnetic susceptibility (MS) variations. MS peaks were traced to individual turbidites, the most magnetic being dark gray mud turbidites. In addition to large MS values, the turbidites stand out from surrounding layers because of high NRMs, ARMs, SIRMs, and ratios of ARM and SIRM to susceptibility. Alternating field and thermal demagnetization properties and IRM acquisition curves suggest titanomagnetite grains as the primary magnetic mineral with some amount of hematite present. These properties are similar to those of Deccan flood basalts and suggest this formation as a sourcemore » of magnetic grains. Magnetic granulometry tests implied that the magnetic particles behave as single-domain and pseudo single-domain grains. They also indicate that the large susceptibility peaks result from a tenfold increase in the concentration of titanomagnetite grains. Electron microscope, EDX, and SIRM analyses revealed detrital titanomagnetites with typical sizes around 8-10 {mu}m, but as large as 20-25 {mu}. These are probably the dominant magnetic grains in the black mud turbidites; however, ARM and susceptibility frequency-dependence suggested that there may also be a submicrometer fraction present. Most of the observed titanomagnetite grains are tabular and some display exsolution lamellae, accounting for the pseudo single-domain behavior despite their moderate sizes. Variations in individual MS peak shapes may reflect sedimentological factors such as current velocity changes. Moreover, downhole variations in the amplitudes of turbidite MS peaks suggest a tectonic or environmental influence.« less

  20. Holocene earthquake-triggered turbidites from the Saguenay (Eastern Canada) and Reloncavi (Chilean margin) fjords

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Chapron, Emmanuel; Mulsow, Sandor; Salas, Marcos; Debret, Maxime; Foucher, Anthony; Mulder, Thierry; Desmet, Marc; Costa, Pedro; Ghaleb, Bassam; Locat, Jacques

    2013-04-01

    Fjords are unique archives of climatic and environmental changes, but also of natural hazards. They can preserve thick sedimentary sequences deposited under very high sediment accumulation rates, making them ideally suited to record historical and pre-historical sedimentological events such as major landslides, floods or earthquakes. In fact, by carefully characterizing and dating the sediments and by comparing the basin fill seismic stratigraphy and sedimentary records with historical events, it is possible to "calibrate" recent rapidly deposited layers such as turbidites with a trigger mechanism and extend these observations further back in time by using seismic reflection profiles and longer sediment cores. Here, we will compare earthquake-triggered turbidites in fjords from the Southern and Northern Hemispheres: the Saguenay (Eastern Canada) and Reloncavi fjords (southern Chilean margin). In both settings, we will first look at basin fill geometries and at the sedimentological properties of historical events before extending the records further back in time. In both fjords, several turbidites were associated with large magnitude historic and pre-historic earthquakes including the 1663 AD (M>7) earthquake in the Saguenay Fjord, and the 1960 (M 9.5), 1837 (M~8) and 1575 AD major Chilean subduction earthquakes in the Reloncavi Fjord. In addition, a sand layer with sea urchin fragments and the exoscopic characteristics typical of a tsunami deposit was observed immediately above the turbidite associated with the 1575 AD earthquake in the Reloncavi Fjord and supports both the chronology and the large magnitude of that historic earthquake. In both fjords, as well as in other recently recognized earthquake-triggered turbidites, the decimeter-to meter-thick normally-graded turbidites are characterized by a homogeneous, but slightly fining upward tail. Finally, new radiocarbon results will be presented and indicate that at least 19 earthquake-triggered turbidites were recorded in the Reloncavi Fjord during the last 7500 cal BP.

  1. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    NASA Astrophysics Data System (ADS)

    Inglis, Edward C.; Debret, Baptiste; Burton, Kevin W.; Millet, Marc-Alban; Pons, Marie-Laure; Dale, Christopher W.; Bouilhol, Pierre; Cooper, Matthew; Nowell, Geoff M.; McCoy-West, Alex J.; Williams, Helen M.

    2017-07-01

    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

  2. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.

    2010-01-01

    To test the idea that the voluminous upper Middle to Upper Triassic turbidite strata in the Songpan-Ganzi complex of central China archive a detrital record of Dabie ultrahigh-pressure (UHP) terrane unroofing, we report 2080 single detrital U-Pb zircon ages by sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis from 29 eastern Songpan-Ganzi complex sandstone samples. Low (<0.07) Th/U zircons, consistent with crystallization under UHP conditions, are rare in eastern Songpan-Ganzi complex zircon, and U-Pb ages of low Th/U zircons are incompatible with a Dabie terrane source. An unweighted pair group method with arithmetic mean nearest-neighbor analysis of Kolmogorov-Smirnov two-sample test results reveals that the eastern Songpan-Ganzi complex is not a single contiguous turbidite system but is instead composed of three subsidiary depocenters, each associated with distinct sediment sources. The northeastern depocenter contains zircon ages characterized by Paleozoic and bimodally distributed Precambrian zircon populations, which, together with south-to southeast-directed paleocurrent data, indicate derivation from the retro-side of the Qinling-Dabie (Q-D) collisional orogen wedge. In the central depocenter, the dominantly Paleozoic detrital zircon signature and south-to southwest-oriented paleocurrent indicators reflect a profusion of Paleozoic zircon grains. These data are interpreted to reflect an influx of material derived from erosion of Paleozoic supra-UHP rocks of the Dabie terrane in the eastern Qinling-Dabie orogen, which we speculate may have been enhanced by development of a monsoonal climate. This suggests that erosional unroofing played a significant role in the initial phase of UHP exhumation and likely influenced the petrotectonic and structural evolution of the Qinling-Dabie orogen, as evidenced by compressed Triassic isotherms/grads reported in the Huwan shear zone that bounds the Dabie terrane to the north. The central depocenter deposits reflect a later influx of bimodally distributed Precambrian zircon, signifying either a decrease in the influx of Paleozoic zircon grains due to stalled UHP exhumation and/or dilution of the same influx of Paleozoic zircons by spilling of Precambrian zircon from the northeastern depocenter into the central depocenter basin, perhaps due to infilling and bypass of sediment from the northern depocenter or due to initial collapse and constriction of the eastern Songpan-Ganzi complex basin. The southeastern depocenter of the eastern Songpan-Ganzi complex bears significant Paleozoic, Neoproterozoic, and Paleoproterozoic zircon populations derived from the South China block and Yidun arc complex, likely recording nascent uplift of the Longmenshan deformation belt due to impingement of the Yidun arc complex upon the western margin of the South China block. ?? 2010 Geological Society of America.

  3. The Misis-Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Unlügenç, Ülvi Can; İnan, Nurdan; Ta ṡli, Kemal

    2004-01-01

    The Mid-Tertiary (Mid-Eocene to earliest Miocene) Misis-Andırın Complex documents tectonic-sedimentary processes affecting the northerly, active margin of the South Tethys (Neotethys) in the easternmost Mediterranean region. Each of three orogenic segments, Misis (in the SW), Andırın (central) and Engizek (in the NE) represent parts of an originally continuous active continental margin. A structurally lower Volcanic-Sedimentary Unit includes Late Cretaceous arc-related extrusives and their Lower Tertiary pelagic cover. This unit is interpreted as an Early Tertiary remnant of the Mesozoic South Tethys. The overlying melange unit is dominated by tectonically brecciated blocks (>100 m across) of Mesozoic neritic limestone that were derived from the Tauride carbonate platform to the north, together with accreted ophiolitic material. The melange matrix comprises polymict debris flows, high- to low-density turbidites and minor hemipelagic sediments. The Misis-Andırın Complex is interpreted as an accretionary prism related to the latest stages of northward subduction of the South Tethys and diachronous continental collision of the Tauride (Eurasian) and Arabian (African) plates during Mid-Eocene to earliest Miocene time. Slivers of Upper Cretaceous oceanic crust and its Early Tertiary pelagic cover were accreted, while blocks of Mesozoic platform carbonates slid from the overriding plate. Tectonic mixing and sedimentary recycling took place within a trench. Subduction culminated in large-scale collapse of the overriding (northern) margin and foundering of vast blocks of neritic carbonate into the trench. A possible cause was rapid roll back of dense downgoing Mesozoic oceanic crust, such that the accretionary wedge taper was extended leading to gravity collapse. Melange formation was terminated by underthrusting of the Arabian plate from the south during earliest Miocene time. Collision was diachronous. In the east (Engizek Range and SE Anatolia) collision generated a Lower Miocene flexural basin infilled with turbidites and a flexural bulge to the south. Miocene turbiditic sediments also covered the former accretionary prism. Further west (Misis Range) the easternmost Mediterranean remained in a pre-collisional setting with northward underthrusting (incipient subduction) along the Cyprus arc. The Lower Miocene basins to the north (Misis and Adana) indicate an extensional (to transtensional) setting. The NE-SW linking segment (Andırın) probably originated as a Mesozoic palaeogeographic offset of the Tauride margin. This was reactivated by strike-slip (and transtension) during Later Tertiary diachronous collision. Related to on-going plate convergence the former accretionary wedge (upper plate) was thrust over the Lower Miocene turbiditic basins in Mid-Late Miocene time. The Plio-Quaternary was dominated by left-lateral strike-slip along the East Anatolian transform fault and also along fault strands cutting the Misis-Andırın Complex.

  4. Variability over time in the sources of South Portuguese Zone turbidites: evidence of denudation of different crustal blocks during the assembly of Pangaea

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Ribeiro, C.; Vilallonga, F.; Chichorro, M.; Drost, K.; Silva, J. B.; Albardeiro, L.; Hofmann, M.; Linnemann, U.

    2014-07-01

    This study combines geochemical and geochronological data in order to decipher the provenance of Carboniferous turbidites from the South Portuguese Zone (SW Iberia). Major and trace elements of 25 samples of graywackes and mudstones from the Mértola (Visean), Mira (Serpukhovian), and Brejeira (Moscovian) Formations were analyzed, and 363 U-Pb ages were obtained on detrital zircons from five samples of graywackes from the Mira and Brejeira Formations using LA-ICPMS. The results indicate that turbiditic sedimentation during the Carboniferous was marked by variability in the sources, involving the denudation of different crustal blocks and a break in synorogenic volcanism. The Visean is characterized by the accumulation of immature turbidites (Mértola Formation and the base of the Mira Formation) inherited from a terrane with intermediate to mafic source rocks. These source rocks were probably formed in relation to Devonian magmatic arcs poorly influenced by sedimentary recycling, as indicated by the almost total absence of pre-Devonian zircons typical of the Gondwana and/or Laurussia basements. The presence of Carboniferous grains in Visean turbidites indicates that volcanism was active at this time. Later, Serpukhovian to Moscovian turbiditic sedimentation (Mira and Brejeira Formations) included sedimentary detritus derived from felsic mature source rocks situated far from active magmatism. The abundance of Precambrian and Paleozoic zircons reveals strong recycling of the Gondwana and/or Laurussia basements. A peri-Gondwanan provenance is indicated by zircon populations with Neoproterozoic (Cadomian-Avalonian and Pan-African zircon-forming events), Paleoproterozoic, and Archean ages. The presence of late Ordovician and Silurian detrital zircons in Brejeira turbidites, which have no correspondence in the Gondwana basement of SW Iberia, indicates Laurussia as their most probable source.

  5. Turbidite megabeds in an Oceanic Rift Valley recording jokulhlaups of late Pleistocene glacial lakes of the western United States

    USGS Publications Warehouse

    Zuffa, G.G.; Normark, W.R.; Serra, F.; Brunner, C.A.

    2000-01-01

    Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one ~60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jokulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.

  6. Reservoir evaluation of thin-bedded turbidites and hydrocarbon pore thickness estimation for an accurate quantification of resource

    NASA Astrophysics Data System (ADS)

    Omoniyi, Bayonle; Stow, Dorrik

    2016-04-01

    One of the major challenges in the assessment of and production from turbidite reservoirs is to take full account of thin and medium-bedded turbidites (<10cm and <30cm respectively). Although such thinner, low-pay sands may comprise a significant proportion of the reservoir succession, they can go unnoticed by conventional analysis and so negatively impact on reserve estimation, particularly in fields producing from prolific thick-bedded turbidite reservoirs. Field development plans often take little note of such thin beds, which are therefore bypassed by mainstream production. In fact, the trapped and bypassed fluids can be vital where maximising field value and optimising production are key business drivers. We have studied in detail, a succession of thin-bedded turbidites associated with thicker-bedded reservoir facies in the North Brae Field, UKCS, using a combination of conventional logs and cores to assess the significance of thin-bedded turbidites in computing hydrocarbon pore thickness (HPT). This quantity, being an indirect measure of thickness, is critical for an accurate estimation of original-oil-in-place (OOIP). By using a combination of conventional and unconventional logging analysis techniques, we obtain three different results for the reservoir intervals studied. These results include estimated net sand thickness, average sand thickness, and their distribution trend within a 3D structural grid. The net sand thickness varies from 205 to 380 ft, and HPT ranges from 21.53 to 39.90 ft. We observe that an integrated approach (neutron-density cross plots conditioned to cores) to HPT quantification reduces the associated uncertainties significantly, resulting in estimation of 96% of actual HPT. Further work will focus on assessing the 3D dynamic connectivity of the low-pay sands with the surrounding thick-bedded turbidite facies.

  7. Distributional prediction of Pleistocene forearc minibasin turbidites in the NE Nankai Trough area (off central Japan)

    NASA Astrophysics Data System (ADS)

    Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.

    2011-12-01

    Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.

  8. Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Taylor, S. R.; McCulloch, M. T.; Maynard, J. B.

    1990-07-01

    Petrographic, geochemical, and isotopic data for turbidites from a variety of tectonic settings exhibit considerable variability that is related to tectonic association. Passive margin turbidites (Trailing Edge, Continental Collision) display high framework quartz (Q) content in sands, evolved major element compositions (high Si/Al, K/Na), incompatible element enrichments (high Th/Sc, La/Sc, La/Yb), negative Eu-anomalies and variable Th/U ratios. They have low 143Nd /144Nd and high 87Sr /86Sr ( ɛNd = -26 to -10; 87Sr /86Sr = 0.709 to 0.734 ), indicating a dominance of old upper crustal sources. Active margin settings (Fore Arc, Continental Arc, Back Arc, Strike Slip) commonly exhibit quite different compositions. Th/Sc varies from <0.01 to 1.8, and ɛNd varies from -13.8 to +8.3. Eu-anomalies range from no anomaly ( Eu/Eu ∗ = 1.0 ) to Eu-depletions typical of post-Archean shales ( Eu/Eu ∗ = 0.65 ). Active margin data are explained by mixtures of young arc-derived material, with variable composition and old upper crustal sources. Major element data indicate that passive margin turbidites have experienced more severe weathering histories than those from active settings. Most trace elements are enriched in muds relative to associated sands because of dilution effects from quartz and calcite and concentration of trace elements in clays. Exceptions include Zr, Hf (heavy mineral influence) and Tl (enriched in feldspar) which display enrichments in sands. Active margin sands commonly exhibit higher Eu/Eu ∗ than associated muds, resulting from concentration of plagioclase during sorting. Some associated sands and muds, especially from active settings, have systematic differences in Th/Sc ratios and Nd-isotopic composition, indicating that various provenance components may separate into different grain-size fractions during sedimentary sorting processes. Trace element abundances of modern turbidites, from both active and passive settings, differ from Archean turbidites in several important ways. Modern turbidites have less uniformity, for example, in Th/Sc ratios. On average, modern turbidites have greater depletions in Eu (lower Eu/Eu ∗) than do Archean turbidites, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) are of greater importance for crustal evolution at modern continental margins than they were during the Archean. Modern turbidites do not display HREE depletion, a feature commonly seen in Archean data. HREE depletion ( Gd N/Yb N > 2.0 ) in Archean sediments results from incorporation of felsic igneous rocks that were in equilibrium (or their sources were in equilibrium) with garnet sometime in their history. Absence of HREE depletion at modern continental margins suggests that processes of crust formation (or mantle source compositions) may have differed. Differences in trace element abundances for Archean and modern turbidites add support to suggestions that upper continental crust compositions and major processes responsible for continental crust differentiation differed during the Archean. Neodymium model ages, thought to approximate average provenance age, are highly variable ( TDMND = 0-2.6 Ga) in modern turbidites, in contrast with studies that indicate Nd-model ages of lithified Phanerozoic sediment are fairly constant at about 1.5-2.0 Ga. This variability indicates that continental margin sediments incorporate new mantle-derived components, as well as continental crust of widely varying age, during recycling. The apparent dearth of ancient sediments with Nd-model age similar to stratigraphic age supports the suggestion that preservation potential of sediments is related to tectonic setting. Many samples from active settings have isotopic compositions similar to or only slightly evolved from mantle-derived igneous rocks. Subduction of active margin turbidites should be considered in models of crust-mantle recycling. For short-term recycling, such as that postulated for island arc petrogenesis, arc-derived turbidites cannot be easily recognized as a source component because of the lack of time available for isotopic evolution. If turbidites were incorporated into the sources of ocean island volcanics, the isotopic signatures would be considerably more evolved since most models call for long mantle storage times (1.0-2.0 Ga), prior to incorporation. Four provenance components are recognized on the basis of geochemistry and Nd-isotopic composition: (1) Old Upper Continental Crust (old igneous/metamorphic terranes, recycled sediment); (2) Young Undifferentiated Arc (young volcanic/plutonic source that has not experienced plagioclase fractionation); (3) Young Differentiated Arc (young volcanic/plutonic source that has experienced plagioclase fractionation); (4) MORB (minor). Relative proportions of these components are influenced by the plate tectonic association of the provenance and are typically (but not necessarily) reflected in the depositional basin. Provenance of quartzose (mainly passive settings) and non-quartzose (mainly active settings) turbidites can be characterized by bulk composition (e.g., Th/Sc) and Nd-isotopic composition (reflecting age).

  9. Upper Miocene reef complex of Mallorca, Balearic Islands, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomar, L.

    1988-02-01

    The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late Miocene carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the Miocene reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3)more » deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.« less

  10. Miocene-Oligocene sequence stratigraphy of the Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovell, R.; Elias, M.R.; Hill, R.E.

    1994-07-01

    The Malay Basin has experienced extension of the Eocene ( ) through Oligocene, sag in the early Miocene, and compression in the middle Miocene through Pliocene-Pleistocene. The interaction of structurally induced and glacial-eustatic accommodation changes has resulted in complex, interrelated play elements, including multiple reservoirs, diverse nonmarine sources, discontinuous migration pathways, and thin seals. Extensional subbasins were filled with braided streams, associated coastal plain, lacustrine deltas, and thick lake shales (groups M-K). This initial rift fill comprises an overall second order progradational cycle punctuated by 3rd-order cycles. These 3rd-order cycles are capped by thick, source-rich, lacustrine shale packages. The lowermore » Miocene section (groups I and J) consists of progradational to aggradational fluvial to tidally-dominated estuarine sands. Hydrocarbons are generated from interbedded coals and other coal-related lithologies.« less

  11. Structure, age and origin of the bay-mouth shoal deposits, Chesapeake Bay, Virginia

    USGS Publications Warehouse

    Colman, Steven M.; Berquist, C.R.; Hobbs, C. H.

    1988-01-01

    The mouth of Chesapeake Bay contains a distinctive shoal complex and related deposits that result from the complex interaction of three different processes: (1) progradation of a barrier spit at the southern end of the Delmarva Peninsula, (2) strong, reversing tidal currents that transport and rework sediment brought to the bay mouth from the north, and (3) landward (bayward) net non-tidal circulation and sediment transport. Together, these processes play a major role in changing the configuration of the estuary and filling it with sediment. The deposits at the mouth of the bay hold keys both to the evolution of the bay during the Holocene transgression and to the history of previous generations of the bay. The deposit associated with the shoals at the mouth of the bay, the bay-mouth sand, is a distinct stratigraphic unit composed mostly of uniform, gray, fine sand. The position and internal structure of the unit shows that it is related to near-present sea level, and thus is less than a few thousand years old. The processes affecting the upper surface of the deposit and the patterns of erosion and deposition at this surface are complex, but the geometry and structure of the deposit indicate that it is a coherent unit that is prograding bayward and tending to fill the estuary. The source of the bay-mouth sand is primarily outside the bay in the nearshore zone of the Delmarva Peninsula and on the inner continental shelf. The internal structure of the deposit, its surface morphology, its heavy-mineral composition, bottom-current studies, comparative bathymetry, and sediment budgets all suggest that sand is brought to the bay mouth by southerly longshore drift along the Delmarva Peninsula and then swept into the bay. In addition to building the southward- and bayward-prograding bay-mouth sand, these processes result in sand deposition tens of kilometers into the bay. ?? 1988.

  12. Early Campanian coastal progradational systems and their coal-forming environments, Wyoming to New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marley, W.E.; Flores, R.M.; Ethridge, F.G.

    1985-05-01

    Ammonite zones (Baculites obtusus-Scaphites hippocrepis) in the marine facies associated with the Mesaverde Formation in the Bighorn basin, Wyoming, Star Point Sandstone and Blackhawk Formation in the Wasatch Plateau, Utah, and the Point Lookout Sandstone, Menefee Formation, and Crevasse Canyon Formation in the Gallup coalfield, New Mexico, indicate that these formations were deposited during early Campanian time (80-84 Ma). The coal-forming environments of these early Campanian formations were located landward of wave-reworked coastal sand complexes of progradational systems along the western margin of the Cretaceous seaway from Wyoming to New Mexico. The Mesaverde coals accumulated in swamps of the lowermore » delta plain and coeval interdeltaic strandplain environments. The Star Point-Blackhawk coals accumulated in swamps of the lower delta plains of laterally shifting, prograding deltas and associated barrier ridge plains. The Point Lookout, Menefee, and Crevasse canyon coals formed in swamps of the lower delta plain and infilled lagoons behind barrier islands. Although the common coal-forming environments of these progradational systems are back barrier and delta plain, the former setting was the more conducive for accumulation of thick, laterally extensive coals. Economic coal deposits formed in swamps built on abandoned back-barrier platforms that were free of detrital influx and marine influence. Delta-plain coals tend to be lenticular and laterally discontinuous and thus uneconomic. The early Campanian coal-forming coastal-plain environments are analogous to modern peat-forming environments along the coast of Belize, Central America. Deltaic sediments deposited along the Belize coast by short-headed streams are reworked by waves into coastal barrier systems.« less

  13. 2 - 4 million years of sedimentary processes in the Labrador Sea: implication for North Atlantic stratigraphy

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Saint-Ange, F.; Campbell, C.; Piper, D. J.

    2012-12-01

    Marine sedimentary records from the western North Atlantic show that a significant portion of sediment deposited since the Pliocene originated from the Canadian Shield. In the Labrador Sea, previous studies have shown that bottom currents .strongly influenced sedimentation during the Pliocene, while during the Quaternary, intensification of turbidity current flows related to meltwater events were a dominant factor in supplying sediment to the basin and in the development of the North Atlantic Mid-Ocean Channel (NAMOC). Despite understanding this general pattern of sediment flux, details regarding the transfer of sediment from the Labrador Shelf to deep water and from the Labrador Sea to the North Atlantic remain poorly understood. Our study focuses on sedimentary processes occurring along the Labrador margin since the Pliocene and their consequences on the margin architecture, connection to the NAMOC, and role in sediment flux from the Labrador basin to the Sohm Abyssal Plain. Piston core and high resolution seismic data reveal that during the Pliocene to mid Pleistocene, widespread slope failures led to mass transport deposition along the entire Labrador continental slope. After the mid Pleistocene, sedimentation along the margin was dominated by the combined effects of glaciation and active bottom currents. On the shelf, prograded sedimentary wedges filled troughs and agraded till sheets form intervening banks. On the slope, stacked glaciogenic fans developed seaward of transverse troughs between 400 and 2800 mbsl. On the lower slope, seismic data show thick sediment drifts capped by glacio-marine mud. This unit is draped by well stratified sediment and marks a switch from a contourite dominated regime to a turbidite dominated regime. This shift occurred around 0.5 - 0.8 ka and correlates to the intensification of glaciations. Late Pleistocene sediments on the upper slope consist of stratified sediments related to proglacial plume fall-out. Coarse grained sediments, other than ice rafted detritus, by-passed the upper and middle slope and were transported to the lower slope and deep ocean. Seismic profiles and multibeam data along the Labrador Slope show a complex network of channels, with wide flat-bottomed channels off Saglek Bank to narrow channels off Cartwright Bank. The channels merge around 3000 mbsl to form single wide (~20 km) channels that eventually intersect, or flow parallel to the NAMOC. Rapid development of the NAMOC from the mid to late Pleistocene affected depositional patterns for sediment sourced from the Labrador margin. Downslope-transported sediment from the Labrador margin mostly tends to fill the basin or feed into NAMOC through tributary systems, whereas sediments derived from Hudson Strait feed the NAMOC and eventually the Sohm Abyssal plain. Sediment transported southward by the Western Boundary Undercurrent and Labrador Current likely reflect input along the margin, from Hudson Strait to Orphan Basin. Turbidite spill-over deposits are observed onlapping the continental margin of Labrador and Newfoundland as far south as Newfoundland Ridge.

  14. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system

    PubMed Central

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-01-01

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638

  15. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    PubMed

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  16. Immediate propagation of deglacial environmental change to turbidite systems along the Chilean continental slope

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Schwanghart, Wolfgang; Hebbeln, Dierk; Stuut, Jan-Berend; Strecker, Manfred

    2017-04-01

    Understanding how Earth-surface processes respond to past climatic perturbations is crucial for making informed predictions about future impacts of climate change on sediment fluxes. Sedimentary records provide the archives for inferring these processes but their interpretation is compromised by our incomplete understanding of how sediment-routing systems respond to millennial-scale climate cycles. We analyzed seven sediment cores recovered from turbidite depositional sites along the continental slope of the Chile convergent margin. These depositional systems represent the ultimate sedimentary archives before sediment gets recycled during subduction processes and provide relatively continuous and well-dated records. The study sites span a pronounced arid-to-humid gradient with variable topographic gradients and related connectivity of terrestrial and marine landscapes on the continental slope. This setting allowed us to study event-related depositional processes from the Last Glacial Maximum to present in different climatic and geomorphic settings. The turbidite record was quantified in terms of turbidite thickness and frequency. The three studied sites show a steep decline of turbidite deposition during deglaciation. High rates of sea-level rise significantly lag the decline in turbidite deposition by 3-6.5 kyrs. However, comparison to paleoclimate proxies shows that this spatio-temporal sedimentary pattern mirrors the deglacial humidity decrease and concomitant warming with little to no lag times. Our results suggest that the deglacial humidity decrease resulted in a decrease of fluvial sediment supply, which propagated rapidly through the highly connected systems into the marine sink in north-central Chile. In contrast, in south-central Chilean systems, connectivity between the Andean erosional zone and the fluvial transfer zone probably decreased abruptly by the deglaciation of piedmont lakes, resulting in a significant and rapid decrease of sediment supply to the ocean. Additionally, reduced moisture supply may have also contributed to the rapid decline of turbidite deposition. These different causes result in similar depositional patterns in the marine sinks. We conclude that turbiditic strata can act as reliable recorders of climate change across a wide range of climatic zones and geomorphic conditions. However, the underlying causes for similar signal manifestations in the sinks may differ, ranging from maintained high system connectivity to abrupt connectivity loss.

  17. Inheritance, Variscan tectonometamorphic evolution and Permian to Mesozoic rejuvenations in the metamorphic basement complexes of the Romanian Carpathians revealed by monazite microprobe geochronology

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2014-05-01

    Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly prograde medium-grade event. The ages recorded not only question some of the currently accepted correlations among basement units, but urge to reconsideration of the way in which the basement-cover relationships are interpreted and extrapolated.

  18. Modern configuration of the southwest Florida carbonate slope: Development by shelf margin progradation

    USGS Publications Warehouse

    Brooks, G.R.; Holmes, C.W.

    1990-01-01

    Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.

  19. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: Implications for evaluating source-to-sink flux at millennial time scales

    USGS Publications Warehouse

    Romans, B.W.; Normark, W.R.; McGann, M.M.; Covault, J.A.; Graham, S.A.

    2009-01-01

    Utilizing accumulations of coarse-grained terrigenous sediment from deep-marine basins to evaluate the relative contributions of and history of controls on sediment flux through a source-to-sink system has been difficult as a result of limited knowledge of event timing. In this study, six new radiocarbon (14C) dates are integrated with five previously published dates that have been recalibrated from a 12.5-m-thick turbidite section from Ocean Drilling Program (ODP) Site 1015 in Santa Monica Basin, offshore California. This borehole is tied to high-resolution seismic-reflection profiles that cover an 1100 km2 area of the middle and lower Hueneme submarine fan and most of the basin plain. The resulting stratigraphic framework provides the highest temporal resolution for a thick-bedded Holocene turbidite succession to date, permitting an evaluation of source-to-sink controls at millennial (1000 yr) scales. The depositional history from 7 ka to present indicates that the recurrence interval for large turbidity-current events is relatively constant (300-360 yr), but the volume of sediment deposited on the fan and in the basin plain has increased by a factor of 2 over this period. Moreover, the amount of sand per event on the basin plain during the same interval has increased by a factor of 7. Maps of sediment distribution derived from correlation of seismic-reflection profiles indicate that this trend cannot be attributed exclusively to autogenic processes (e.g., progradation of depocenters). The observed variability in sediment accumulation rates is thus largely controlled by allogenic factors, including: (1) increased discharge of Santa Clara River as a result of increased magnitude and frequency of El Ni??o-Southern Oscillation (ENSO) events from ca. 2 ka to present, (2) an apparent change in routing of coarse-grained sediment within the staging area at ca. 3 ka (i.e., from direct river input to indirect, littoral cell input into Hueneme submarine canyon), and (3) decreasing rates of sea-level rise (i.e., rate of rise slowed considerably by ca. 3 ka). The Holocene history of the Santa Clara River-Santa Monica Basin source-to-sink system demonstrates the ways in which varying sediment flux and changes in dispersal pathways affect the basinal stratigraphic record. ?? 2009 Geological Society of America.

  20. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.

  1. Flood characterization in Rhône prodelta sediments

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Joumes, Margot; Bassetti, Maria-Angela; Berné, Serge; Martinez, Philippe; Schneider, Jean-Luc

    2015-04-01

    Measurements on twin cores (RHSKS58 and RHSKS25) collected during the Rhosos cruise (2008) on the Rhone prodelta allowed to correlate specific sedimentary beds with historical floods of the Rhône River (1671AD-1986AD) using 137Cs and 206Pb/207Pb and large occurrence of freshwater ostracods of fluvial origin (Fanget, 2013 ; Fanget et al. 2013). Interpretation of short half-time radio-isotopes (210Pbxs), grain-size measurements with high-frequency sampling steps, together with the analysis of thin sections on indurated sediments and the measurement of major chemical elements using X-ray fluorescence (XRF) allowed to accurately characterize these flood beds. A few measurements of organic carbon and delta 13C have also been made. Major floods are characterized by grain-size variations that can either show a classical hyperpycnal sequence (with successive coarsening-up and fining-up units) or a classical turbidite sequence (fining-up trend). In any case, floods are characterized by an enrichment in quartz grains, a decrease in delta 13C values and an increase in organic matter content correlated with higher proportion of plant fragments. This testifies for a sudden continental input. Typical hyperpycnal sequences have been correlated with the change in daily discharge at the Rhône River mouth for floods between 1920 and 2000. These sequences are correlated with chemical elements that characterize a detrital input (high Ti/Ca, Si/Ca). The classical turbidites could result either from the distal transformation of hyperpycnal flows, from the rapid progradation of mouth bars, or more simply from the settling of turbulent clouds generated by prodelta slope failures during period of high sediment accumulation rates. Additional clay-rich beds could be correlated to the particle fall-out from hypopycnal plumes during low-magnitude floods. Fanget, A.-S. (2013). Enregistrements des changements rapides de l'environnement et du climat dans les sédiments holocènes du Golfe du Lion (NW Méditerranée). Thèse, Univ. Perpignan, 365 p. Fanget, A.-S. , Bassetti, M.-A., Arnaud, M., Chiffoleau, J.-F., Cossa, D., Goineau, A., Fontanier C., Buscail, R., Jouet, G., Maillet, G.M., Negri, A., Dennielou, B., Berné, S. (2013). Historical evolution and extreme climate events during the last 400 years on the Rhone prodelta (NW Mediterranean). Marine Geology, 346, 375-391.

  2. The role of sediment supply in large-scale stratigraphic architecture of ancient Gilbert-type deltas (Pliocene Siena-Radicofani Basin, Italy)

    NASA Astrophysics Data System (ADS)

    Martini, Ivan; Ambrosetti, Elisa; Sandrelli, Fabio

    2017-04-01

    Aggradation, progradation and retrogradation are the main patterns that define the large-scale architecture of Gilbert-type deltas. These patterns are governed by the ratio between the variation in accommodation space and sediment supply experienced during delta growth. Sediment supply variations are difficult to estimate in ancient settings; hence, it is rarely possible to assess its significance in the large-scale stratigraphic architecture of Gilbert-type deltas. This paper presents a stratigraphic analysis of a Pliocene deltaic complex composed of two coeval and narrowly spaced deltaic branches. The two branches recorded the same tectonic- and climate-induced accommodation space variations. As a result, this deltaic complex represents a natural laboratory for testing the effects of sediment supply variations on the stratigraphic architecture of Gilbert-type deltas. The field data suggest that a sediment supply which is able to counteract the accommodation generated over time promotes the aggradational/progradational attitude of Gilbert-type deltas, as well as the development of thick foreset deposits. By contrast, if the sediment supply is not sufficient for counterbalancing the generated accommodation, an aggradational/retrogradational stratigraphic architecture is promoted. In this case, the deltaic system is forced to withdraw during the different phases of generation of accommodation, with the subsequent flooding of previously deposited sub-horizontal topset deposits (i.e., the delta plain). The subsequent deltaic progradation occurs above these deposits and, consequently, the available space for foresets growth is limited to the water depth between the base-level and the older delta plain. This leads to the vertical stacking of relatively thin deltaic deposits with an overall aggradatational/retrogradational attitude.

  3. A ground penetrating radar investigation of a glacial-marine ice- contact delta, Pineo Ridge, eastern coastal Maine

    USGS Publications Warehouse

    Tary, A.K.; Duncan, M. FitzGerald; Weddle, T.K.

    2007-01-01

    In eastern coastal Maine, many flat-topped landforms, often identified as glacial-marine deltas, are cultivated for blueberry production. These agriculturally valuable features are not exploited for aggregate resources, severely limiting stratigraphic exposure. Coring is often forbidden; where permissible, coarse-grained surficial sediments make coring and sediment retrieval difficult. Ground penetrating radar (GPR) has become an invaluable tool in an ongoing study of the otherwise inaccessible subsurface morphology in this region and provides a means of detailing the large-scale sedimentary structures comprising these features. GPR studies allow us to reassess previous depositional interpretations and to develop alternative developmental models. The work presented here focuses on Pineo Ridge, a large, flat-topped ice-marginal glacial-marine delta complex with a strong linear trend and two distinct landform zones, informally termed East Pineo and West Pineo. Previous workers have described each zone separately due to local morphological variation. Our GPR work further substantiates this geomorphic differentiation. East Pineo developed as a series of deltaic lobes prograding southward from an ice-contact margin during the local marine highstand. GPR data do not suggest postdepositional modification by ice-margin re-advance. We suggest that West Pineo has a more complex, two-stage depositional history. The southern section of the feature consists of southward-prograding deltaic lobes deposited during retreat of the Laurentide ice margin, with later erosional modification during marine regression. The northern section of West Pineo formed as a series of northward-prograd- ing deltaic lobes as sediment-laden meltwater may have been diverted by the existing deposits of the southern section of West Pineo. ?? 2007 The Geological Society of America. All rights reserved.

  4. Archean deep-water depositional system: interbedded and banded iron formation and clastic turbidites in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Zentner, Danielle; Lowe, Donald

    2013-04-01

    The 3.23 billion year old sediments in the Barberton greenstone belt, South Africa include some of the world's oldest known deep-water deposits. Unique to this locality are turbidites interbedded with banded iron formation (BIF) and banded ferruginous chert (BFC). This unusual association may provide clues for reconstructing Archean deep-water depositional settings. For our study we examined freshly drilled core in addition to measuring ~500 m of outcrop exposures along road cuts. The stacking pattern follows an overall BIF to BFC to amalgamated turbidite succession, although isolated turbidites do occur throughout the sequence. The turbidites are predominately massive, and capped with thin, normally graded tops that include mud rip-ups, chert plates, and ripples. The lack of internal stratification and the amalgamated character suggests emplacement by surging high-density turbidity currents. Large scours and channels are absent and bedding is tabular: the flows were collapsing with little turbulence reaching the bed. In contrast, field evidence indicates the BIF and BFC most likely precipitated directly out of the water column. Preliminary interpretations indicate the deposits may be related to a pro-deltaic setting. (1) Deltaic systems can generate long-lived, high volume turbidity currents. (2) The contacts between the BIF, BFC, and turbidite successions are gradual and inter-fingered, possibly representing lateral facies relationships similar to modern pro-delta environments. (3) Putative fan delta facies, including amalgamated sandstone and conglomerate, exist stratigraphically updip of the basinal sediments.

  5. Stratigraphic Evolution of Brazos-Trinity Basin IV, Western Gulf of Mexico: Preliminary Results of IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Pirmez, C.; Behrmann, J.; Flemings, P. B.; John, C.

    2005-12-01

    IODP Expedition 308 drilled three sites across Brazos-Trinity Basin IV, at the terminal end of a system of four salt-withdrawal intra-slope basins offshore Texas. A 175 m thick succession of sand-rich turbidite fans, mass-transport deposits and hemipelagic sediments was deposited within the last ~120 ka in Basin IV, as recorded at Site U1320. Pre-fan deposits dating back to MIS 6 form a conformable succession of laminated and bioturbated clays, deposited from distal turbidity currents and/or river plumes. The pre-fan succession is capped by a hemipelagic clay interpreted to represent the high stand of sea level during MIS 5e. The basal turbidite deposits in the basin are mud-rich, with the exception of the very first turbidity currents to enter the basin. This initial pulse, possibly derived from failure of older shelf edge deposits, accumulated an ~8 m thick sand-rich interval. A pause in turbidity current influx lasted 30 to 40 kyrs, beginning a few thousand years before ash layer Y8 dated at 84 ka and the Emiliana huxleyi acme. During MIS 3 to MIS 2 sand-rich fans containing 5-25 m thick packets of very fine to lower medium sand beds accumulated up to 130 m of sediments. A 2-3 m thick microfossil-rich clay marks the end of turbidity current influx into the basin during the Holocene. The sedimentary record of Brazos-Trinity Basin IV shows that the accumulation of turbidites in the terminal end of this source to sink depositional system reflects a complex interaction between the availability of material and the initiation of flows at the source near the shelf edge, the interaction of turbidity currents with complex slope topography, and the effects of salt tectonics and flow processes on modifying this topography. The initial results indicate that sealevel changes alone cannot explain the sedimentation patterns observed in the basin.

  6. Substorm wave base felsic hydroclastic deposits in the Archean Lac des Vents volcanic complex, Abitibi belt, Canada

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf; Chown, E. H.; Potvin, Robin

    1994-05-01

    Volcaniclastic deposits of the 2.3-km-thick Archean Lac des Vents volcanic complex are an integral part of major submarine volcanic construction. The volcanic edifice, which formed on a subaqueous basalt plain, is comparable to modern seamounts resting on the ocean floor. The initial 770 m of the mafic-felsic edifice, subject of this study, is composed of massive, brecciated and pillowed basalts, massive to brecciated felsic lava flows and abundant felsic fragmental rocks of hydroclastic origin. Four distinct volcaniclastic lithofacies constitute the latter: (1) the pumice lapilli-tuff lithofacies; (2) the lapilli-tuff breccia lithofacies characterized by two sublithofacies; (3) the turbidite tuff and tuff-breccia lithofacies; and (4) the volcanic sandstone and breccia lithofacies. These four volcaniclastic lithofacies are considered to be the result of explosive and non-explosive hydrovolcanic fragmentation processes operating at depths below storm wave base (> 200 m). Primary deposition or limited remobilization of unconsolidated hydroclastic debris is shown by the preservation of delicate clasts and volcanic textures, and heat retention structures. The principal transport agents are high-concentration sediment gravity flows occurring under laminar and turbulent flow conditions. High- and low-density turbiditic tuffs and fine-grained tuff fallout deposits, are related to either the dissipating stages of volcanic eruptions or slumping of syneruptive volcanic debris on the flanks of a subaqueous volcanic edifice. Ubiquitous interstratification of volcaniclastic turbidites, shale, and pillowed basalt flows with the felsic lava flows and fragmental debris favours subaqueous deposition. These features combined with the absence of wave-induced sedimentary structures, imply deposition in water depths in excess of 200 m. Viscous feldspar-phyric massive and brecciated felsic flows, and associated volcaniclastics cross cut by felsic dykes, suggest vent proximity. The abundance of breccia-size hydroclastic debris is consistent with this interpretation. Collectively, these criteria argue for subaqueous fragmentation and deposition of volcaniclastics of inferred hydroclastic origin close to the central vent area at depths below storm wave base.

  7. Geochemical and Nd isotopic constraints for the origin of Late Archean turbidites from the Yellowknife area, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Yamashita, Katsuyuki; Creaser, Robert A.

    1999-10-01

    A detailed geochemical and isotopic study of Late Archean turbidites and volcanic rocks from the Yellowknife area, Slave province, was undertaken to constrain the nature of exposed crust at the time of 2.6 to 2.7 Ga crustal consolidation. The ɛNdT values of the volcanic rocks range from +1.7 to -4.4. This variation can be produced by assimilation of pre-2.8 Ga basement by a depleted mantle-derived magma, possibly followed by fractional crystallization. The turbidites are typically metamorphosed to greenschist to amphibolite facies, and where metamorphosed to greenschist facies, different units of Bouma sequence can be observed. The different units of Bouma sequence were sampled and analyzed separately to evaluate the possible differences in geochemical and isotopic signatures. The geochemical data presented here is in accord with the previously proposed model that argues for a mixture of 20% mafic-intermediate volcanic rocks, +55% felsic volcanic rocks, and +25% granitic rocks as a source of these turbidites. However, our revised calculation with the new data presented here argues for 1 to 2% input from an ultramafic source, as well as somewhat higher input from mafic-intermediate volcanic sources in the upper shale units compared to the lower sand units. The ɛNdT values of the turbidites generally are lower in the upper shale units compared to the lower sand units. Detailed inspection of trace-element data suggest that this is not an artifact of rare earth element-rich heavy minerals concentrating in the lower sand units of the turbidites, but rather is a result of “unmixing” of detritus with different ɛNdT values during sediment transportation and deposition. The upper shale units of the turbidites are isotopically compatible with a derivation mainly from crustally contaminated volcanic rocks, similar to those exposed in the Yellowknife area. The lower sand units contain a higher proportion of westerly derived plutonic rock detritus, characterized by higher ɛNdT, suggesting that there are area(s) west of Yellowknife not underlain by older (2.8-4.0 Ga) basement. The trace-element characteristics of these turbidites (i.e., Cr, Ni, La, Th, Sc, Eu/Eu∗, and GdN/YbN) are distinct from those of typical post-Archean turbidites. This observation is consistent with the models that predict that the chemical composition of the upper continental crust was slightly different in the Archean compared to post-Archean time.

  8. Slipstream: an early Holocene slump and turbidite record from the frontal ridge of the Cascadia accretionary wedge off western Canada and paleoseismic implications

    USGS Publications Warehouse

    Hamilton, T.S.; Enkin, Randolph J.; Riedel, Michael; Rogers, Gary C.; Pohlman, John W.; Benway, Heather M.

    2015-01-01

    Slipstream Slump, a well-preserved 3 km wide sedimentary failure from the frontal ridge of the Cascadia accretionary wedge 85 km off Vancouver Island, Canada, was sampled during Canadian Coast Guard Ship (CCGS) John P. Tully cruise 2008007PGC along a transect of five piston cores. Shipboard sediment analysis and physical property logging revealed 12 turbidites interbedded with thick hemipelagic sediments overlying the slumped glacial diamict. Despite the different sedimentary setting, atop the abyssal plain fan, this record is similar in number and age to the sequence of turbidites sampled farther to the south from channel systems along the Cascadia Subduction Zone, with no extra turbidites present in this local record. Given the regional physiographic and tectonic setting, megathrust earthquake shaking is the most likely trigger for both the initial slumping and subsequent turbidity currents, with sediments sourced exclusively from the exposed slump face of the frontal ridge. Planktonic foraminifera picked from the resedimented diamict of the underlying main slump have a disordered cluster of 14C ages between 12.8 and 14.5 ka BP. For the post-slump stratigraphy, an event-free depth scale is defined by removing the turbidite sediment intervals and using the hemipelagic sediments. Nine14C dates from the most foraminifera-rich intervals define a nearly constant hemipelagic sedimentation rate of 0.021 cm/year. The combined age model is defined using only planktonic foraminiferal dates and Bayesian analysis with a Poisson-process sedimentation model. The age model of ongoing hemipelagic sedimentation is strengthened by physical property correlations from Slipstream events to the turbidites for the Barkley Canyon site 40 km south. Additional modelling addressed the possibilities of seabed erosion or loss and basal erosion beneath turbidites. Neither of these approaches achieves a modern seabed age when applying the commonly used regional marine 14C reservoir age of 800 years (marine reservoir correction ΔR= 400 years). Rather, the top of the core appears to be 400 years in the future. A younger marine reservoir age of 400 years (ΔR = 0 years) brings the top to the present and produces better correlations with the nearby Effingham Inlet paleo-earthquake chronology based only on terrestrial carbon requiring no reservoir correction. The high-resolution dating and facies analysis of Slipstream Slump in this isolated slope basin setting demonstrates that this is also a useful type of sedimentary target for sampling the paleoseismic record in addition to the more studied turbidites from submarine canyon and channel systems. The first 10 turbidites at Slipstream Slump were deposited between 10.8 and 6.6 ka BP, after which the system became sediment starved and only two more turbidites were deposited. The recurrence interval for the inferred frequent early Holocene megathrust earthquakes is 460 ± 140 years, compatible with other estimates of paleoseismic megathrust earthquake occurrence rates along the subduction zone.

  9. Plio-Quaternary sedimentation in the Mozambique Channel and in the Zambezi Fan

    NASA Astrophysics Data System (ADS)

    Fierens, Ruth; Droz, Laurence; Toucanne, Samuel; Jorry, Stephan; Raisson, François

    2017-04-01

    The classical stratigraphic framework stating minimum land-to-sea transfers during periods of high relative sea-level is challenged by marine sedimentary systems in regions where climate (low latitude, monsoon-type) is dominated by the 23-ky cyclicity. Known turbidite systems at the lowest latitudes, like the Nile and Bengal systems (Ducassou et al., 2009; Weber et al., 1997) show that the supply of sediments to the deep oceanic domain could persist during relative high sea-level periods. But turbidite systems at low-latitudes still remain poorly understood. In this work, we use the Zambezi turbidite system as a case study to develop our understanding of the reactivity of deep marine sedimentary systems and land-sea transfers to low-latitude climate variability. The Zambezi Plio-Quaternary turbidite system ( 2000 km long x 500 km wide) is located within the Mozambique Channel (Indian Ocean; 11°-30°S), separating Madagascar from the African continent, in a context of high hydronamic conditions. An extensive dataset acquired strategically along the turbidite system was obtained within the scope of the PAMELA project (scientific project leaded by Ifremer and TOTAL in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN) and includes multibeam bathymetry, seismic reflection data and sediment cores. Preliminary results of morphological, seismic and sedimentological study suggest that this turbidite system in the Mozambique Channel is particular: i) The Zambezi Valley currently appears to be dominated by erosional or vacuity process over its entire length, which is observed within the valley as well as on the flanks; ii) Only two restricted zones of tubiditic deposition are identified; iii) The sedimentary record of the last 375 ky shows few turbidites that occurs both during glacial and interglacial periods, with a rate of recurrence of several tens of thousands of years. Additional sedimentological results demonstrate a high diversity in turbidite facies depending on the location in the Zambezi system and the pelagic sediments between these turbidites are carbon-rich and have a low sedimentation rate (average of 2.7 cm/ka). These results imply that multiple controlling factors (sediment supplies, geomorphology, along slope bottom currents inducing possible selective transport of fine particles and impact of climatic and eustatic cycles) impacted the sedimentation and led to the atypical architecture of the Zambezi turbidity system. The PhD thesis of Ruth Fierens is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Cited references Ducassou et al., 2009. Evolution of the Nile deep-sea turbidite system during the Late Quaternary: influence of climate change on fan sedimentation. Sedimentology 56(7), 2061-2090. Weber et al., 1997. Active growth of the Bengal Fan during sea-level rise and highstand. Geology, 25(4), 315-318.

  10. Occurrence of Quaternary turbidite deposits in the central South China Sea: Response to global sea-level changes

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhang, X.; Christophe, C.; Peleo-Alampay, A.; Guballa, J. D. S.; Li, P.; Liu, C.

    2016-12-01

    Terrigenous turbidite layers frequently occur at the upper 150-m-thick sedimentary sequence of Hole U1431D (15º22.54'N, 117 º00.00'E, 4240.5 m water depth), International Ocean Discovery Program (IODP) Expedition 349, near the relict spreading ridge in the central South China Sea. This study implies visual statistics combined with grain size, clay mineralogy, and Nd-Sr isotope analyses to reconstruct the occurrence of these turbidite layers. The age-model of combined calcareous nannofossils, planktonic foraminifers, and paleomagnetism suggests that the sedimentary sequence spans the entire Quaternary with an age of 2.6 Ma at the depth of 150 mcd below the seafloor. Our results show that the turbidite deposits are dominated by silt with sandy silt and silty clay, poorly sorted, and grading upward with erosion base. The occurrence of turbidite layers are highly frequent with about 3.06 layers per meter and an average thickness of 14.64 cm per layer above 96 mcd ( 1.6 Ma), while the lower part turbudite layers are less frequently developed with 1.16 layers per meter and an average thickness of 5.67 cm. Provenance analysis indicates that Taiwan, about 900 km northward to the studied site, is the major source for these terrigenous sediments, implying the long run-out turbidity current activity over the very low-gradient deep-sea plain of the South China Sea. The frequency of the turbidite layer occurrence is well correlated to the Quaternary global sea-level change history, with the high frequency occurred during the lower sea-level stands. Our study suggests that the glacial-interglacial-scale sea-level change has controlled terrigenous sediment input from Taiwan and the northern shelf of the South China Sea during the Quaternary. The increase of turbidite layer frequency since 1.6 Ma in the central South China Sea could be triggered by the enlarged amplitude of sea-level change.

  11. Submarine paleoseismology of the northern Hikurangi subduction margin of New Zealand as deduced from Turbidite record since 16 ka

    NASA Astrophysics Data System (ADS)

    Pouderoux, Hugo; Proust, Jean-Noël; Lamarche, Geoffroy

    2014-01-01

    Paleoseismic studies seek to characterise the signature of pre-historical earthquakes by deriving quantitative information from the geological record such as the source, magnitude and recurrence of moderate to large earthquakes. In this study, we provide a ˜16,000 yr-long paleo-earthquake record of the 200 km-long northern Hikurangi Margin, New Zealand, using cm-thick deep-sea turbidites identified in sediment cores. Cores were collected in strategic locations across the margin within three distinct morphological re-entrants - the Poverty, Ruatoria and Matakaoa re-entrants. The turbidite facies vary from muddy to sandy with evidence for rare hyperpycnites interbedded with hemipelagites and tephra. We use the Oxal probabilistic software to model the age of each turbidite, using the sedimentation rate of hemipelagite deduced from well-dated tephra layers and radiocarbon ages measurements on planktonic foraminifera.

  12. Northwest African Continental Margin: History of sediment accumulation, landslide deposits, and hiatuses as revealed by drilling the Madeira Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Weaver, P. P. E.

    2003-03-01

    ODP drill sites in the Madeira Abyssal Plain reveal sequences of organic-rich turbidites derived from the northwest African margin, in which each turbidite has a volume of tens to hundreds of cubic kilometers. The frequency of turbidite emplacement has been combined with core and seismic data to show the volume of redeposited sediment. The basin began to fill about 22 Ma with numerous small turbidites, up to 100 per million years, each with volumes of a few cubic kilometers. The total volume of turbidites deposited increased between 16 and 11 Ma, as did their individual volumes, and then declined to 7 Ma. At 7 Ma, there was a dramatic increase in the amount of turbidite input to 768 km3/Myr and a rise in the average volume of each unit to 59 km3. These high values have been maintained to the present day. The variations in the amount of redeposited sediment most likely reflect the rates of sedimentation on the northwest African margin since high sedimentation leads to oversteepening of the slopes and eventual mass wasting. The dramatic changes at about 7 Ma may be due to a large increase in upwelling off northwest Africa caused by circulation changes associated with increased glaciation of the poles. Up to 20% of sediment may be remobilized by landslides, with each event leaving a hiatus. Each of these hiatuses extends over an average area of ˜4800 km2 and represents removal of sediment layers several tens of meters thick and of several hundred thousand years duration.

  13. Annual layers revealed by GPR in the subsurface of a prograding coastal barrier, southwest Washington, U.S.A

    USGS Publications Warehouse

    Moore, L.J.; Jol, H.M.; Kruse, S.; Vanderburgh, S.; Kaminsky, G.M.

    2004-01-01

    The southwest Washington coastline has experienced extremely high rates of progradation during the late Holocene. Subsurface stratigraphy, preserved because of progradation and interpreted using ground-penetrating radar (GPR), has previously been used successfully to document coastal response to prehistoric storm and earthquake events. New GPR data collected at Ocean Shores, Washington, suggest that the historic stratigraphy of the coastal barrier in this area represents a higher resolution record of coastal behavior than previously thought. GPR records for this location at 200 MHz reveal a series of gently sloping, seaward-dipping reflections with slopes similar to the modern beach and spacings on the order of 20-45 cm. Field evidence and model results suggest that thin (1-10 cm), possibly magnetite-rich, heavy-mineral lags or low-porosity layers left by winter storms and separated by thick (20-40 cm) summer progradational sequences are responsible for generating the GPR reflections. These results indicate that a record of annual progradation is preserved in the subsurface of the prograding barrier and can be quantified using GPR. Such records of annual coastal behavior, where available, will be invaluable in understanding past coastal response to climatic and tectonic forcing. ?? 2004.

  14. Preservation of intragranular porosity within the Harrodsburg limestone (Middle Mississippian), Newtonville Consolidated Field, Spencer County, Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupp, J.A.

    Porosity preservation in the reservoir rocks within the Harrodsburg Limestone pool of the Newtonville Consolidated field, Spencer County, Indiana, is a function of both primary facies distribution and inhibited pore-filling sparry calcite cementation. Reservoir facies of the Harrodsburg mark the initial shallow-water phase in an overall shoaling-upward, prograding ramp succession beginning with deep basinal clastic sequences of shales and turbidites (early middle Mississippian) and culminating with sabkha and shallow marine carbonate deposits (middle middle Mississippian). Grainstones composed of bryozoans and pelmatozoan bioclasts were deposited oN the lower shoreface of a southwestward-deepening ramp in southern Indiana. Lateral distribution of coarse-grained, well-winnowed,more » southwestward and downdip-trending carbonate sequences was controlled by the undulatory and digitate nature of the ramp. Primary intragranular and minor intergranual porosity was preserved as early marine phreatic cementation created a rigid framework of grains resistant to further solution compaction. Fine-grained euhedral dolomite within proximal wackestones and mudstones formed as the product of a paleohydrologic system composed of plumes of fresh water that extended down through grainstone bodies and formed a periperhal zone of mixed meteoric and marine phreatic waters. Later coarse sparry calcite cement within peripheral grainstones resulted from burial cementation. Lack of significant water-filled porosity off the depositional structure indicates that the early presence of hydrocarbons within the primary pore system inhibited further cementation.« less

  15. Sedimentology and genetic stratigraphy of Dean and Spraberry Formations (Permian), Midland basin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handford, C.R.

    1981-09-01

    The Spraberry trend of west Texas, once known as the world's largest uneconomic oil field, will undoubtedly become an increasingly important objective for the development of enhanced oil recovery techniques in fine-grained, low-permeability, low-pressure reservoirs. As the trend expands, facies and stratigraphic data should be integrated into exploration strategies. The Spraberry and Dean Formations may be divided into three genetic sequences, each consisting of several hundred feet of interbedded shale and carbonate overlain by a roughly equal amount of sandstone and siltstone. These sequences record episodes of shelf-margin progradation, deep-water resedimentation of shelf-derived carbonate debris, followed by influxes of terrigenousmore » clastics into the basin by way of feeder channels or submarine canyons, and suspension settling of fine-grained sediment from the water column. Four lithofacies comprise the terrigenous clastics of the Spraberry and Dean Fomations: (1) cross-laminated, massive, and parallel-laminated sandstone, (2) laminated siltstone, (3) bioturbated siltstone, and (4) black, organic-rich shale. Carbonate lithofacies occur mostly in the form of thin-bedded turbidites, slump, and debris-flow deposits. Terrigenous clastic rocks display facies sequences, isopach patterns, and sedimentary structures suggestive of deposition from turbidity currents, and long-lived saline density underflow and interflow currents. Clastic isopach patterns reflect an overall southward thinning of clastics in the Midland basin. Channelized flow and suspension settling were responsible for the formation of elongate fan-shaped accumulations of clastic sediments.« less

  16. Magnetic study of turbidites

    NASA Astrophysics Data System (ADS)

    Tanty, Cyrielle; Valet, Jean Pierre; Carlut, Julie

    2015-04-01

    Turbidites induce sedimentary reworking and re-deposition caused by tsunami, earthquake, volcanic processes, and other catastrophic events. They result from rapid depositional processes and are thus considered not being pertinent for comparison with pelagic sediments. Turbidites are evidently ruled out from paleomagnetic records dealing with time-series. Consequently, no attention has ever been paid to the magnetization of turbidites which is fully justified if the high level of turbulence governing the depositional processes influences the acquisition of magnetization. In certain conditions like channeled turbidity currents, levees of sediment are generated and then associated with relatively calm although very fast redeposition processes. Such conditions will thus govern the subsequent acquisition of magnetization through mechanical lock-in of the magnetic grains. This situation is actually quite similar to what happens during the experiences of artificial redeposition that are conducted in laboratory. Therefore, combining laboratory experiments and studies of natural turbidites could reveal important information on the processes involved in the acquisition of magnetization, especially if the comparison with the overlying hemipelagic sediments does not show any striking difference. We will present the results of magnetic measurements performed on four different and relatively recent turbidites. We selected different origins associated either with spillover of channeled turbidity currents or with co-seismic faulting. Each event is characterized by a different thickness (ten to few tens of cm), lithology and mean granulometry (few tens of μm to hundreds of μm). We have carried out measurements of magnetic susceptibility, magnetic remanence, anisotropy of magnetic susceptibility (AMS) and we also scrutinize the evolution of various rock magnetic parameters (ARM, IRM, S ratio, magnetic grain sizes, hysteresis parameters…). The magnetic characteristics of the turbiditic levels have been compared with those of the surrounding hemipelagic sediments. In all cases, the magnetization of remanence reflect the expected field direction at the site location without significant change in direction inside the turbiditic levels. This is an indication that magnetization acquisition likely obeys the same rules as for slowly deposited hemipelagic sediments. As expected there is a grain size grading with relatively coarse sediment at the bottom and fine-grained sediment at the top, similarly to what is observed with laboratory redeposited sediments and thus further justify the comparison. Surprisingly, in most cases the magnetic grain sizes follow a similar pattern, which would imply that magnetic grains were not clustered inside sedimentary particles, otherwise we would expect a different relationship.

  17. Deep-Sea Turbidites as Guides to Holocene Earthquake History at the Cascadia Subduction Zone—Alternative Views for a Seismic-Hazard Workshop

    USGS Publications Warehouse

    Atwater, Brian F.; Griggs, Gary B.

    2012-01-01

    This report reviews the geological basis for some recent estimates of earthquake hazards in the Cascadia region between southern British Columbia and northern California. The largest earthquakes to which the region is prone are in the range of magnitude 8-9. The source of these great earthquakes is the fault down which the oceanic Juan de Fuca Plate is being subducted or thrust beneath the North American Plate. Geologic evidence for their occurrence includes sedimentary deposits that have been observed in cores from deep-sea channels and fans. Earthquakes can initiate subaqueous slumps or slides that generate turbidity currents and which produce the sedimentary deposits known as turbidites. The hazard estimates reviewed in this report are derived mainly from deep-sea turbidites that have been interpreted as proxy records of great Cascadia earthquakes. The estimates were first published in 2008. Most of the evidence for them is contained in a monograph now in press. We have reviewed a small part of this evidence, chiefly from Cascadia Channel and its tributaries, all of which head offshore the Pacific coast of Washington State. According to the recent estimates, the Cascadia plate boundary ruptured along its full length in 19 or 20 earthquakes of magnitude 9 in the past 10,000 years; its northern third broke during these giant earthquakes only, and southern segments produced at least 20 additional, lesser earthquakes of Holocene age. The turbidite case for full-length ruptures depends on stratigraphic evidence for simultaneous shaking at the heads of multiple submarine canyons. The simultaneity has been inferred primarily from turbidite counts above a stratigraphic datum, sandy beds likened to strong-motion records, and radiocarbon ages adjusted for turbidity-current erosion. In alternatives proposed here, this turbidite evidence for simultaneous shaking is less sensitive to earthquake size and frequency than previously thought. Turbidites far below a channel confluence, instead of representing the merged flows from two tributaries, monitor the dominant tributary only. Sandy beds low in the turbidites, instead of matching from channel to channel, permit divergent stratigraphic correlations; and rather than approximating strong-motion seismograms, the sandy beds more likely record processes internal to the generation and transformation of subaqueous mass movements. The age adjustments, instead of supporting other evidence that all the northern ruptures were long, are uncertain enough to accord with variation in rupture mode, and this variation improves agreement with onshore paleoseismology. Many of the turbidites counted as evidence for frequent earthquakes on the southern Cascadia plate boundary may instead reflect nearness to steep slopes. This report is meant to aid in the updating of national maps of seismic hazards in Canada and the United States. It offers three main conclusions for consideration at a U.S. hazard-map workshop slated for March 21-22, 2012: If giant earthquakes are the norm for the plate boundary offshore southern Washington, the strongest paleoseismic evidence for this rupture mode is the average earthquake-recurrence interval of about 500 years that is evidenced both offshore in lower Cascadia Channel and onshore at estuaries of southern Washington and northernmost Oregon. The plate boundary offshore southern British Columbia and northern Washington may be capable of producing great earthquakes at an average interval as short as 300 years that is evidenced mainly onshore. Review of more of the turbidite evidence now in press may clarify implications for the hazard maps. Further work on the deep-sea turbidites could target sedimentary processes and chronological uncertainties that may affect the turbidites' sensitivity to fault-rupture lengths and recurrence rates.

  18. Crater Lake, Oregon: a restricted basin with base-of-slope aprons of nonchannelized turbidites.

    USGS Publications Warehouse

    Nelson, C.H.; Meyer, A.W.; Thor, D.; Larsen, M.

    1986-01-01

    Base-of-slope aprons at the basin margin evolve to turbidites of mainly thin, fine-grained, basin-plain type, characterized by numerous flat and weak seismic reflectors in the central basin floor.-from Authors

  19. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas

    NASA Astrophysics Data System (ADS)

    Droxler, Andre W.; Schlager, Wolfgang

    1985-11-01

    The southern Tongue of the Ocean is a 1300-m-deep, flat-floored basin in the Bahamas that receives large amounts of sediment from the carbonate platforms surrounding it on three sides. We have examined five 8 13-m-long piston cores and determined bulk sedimentation rates, turbidite frequency, and turbidite accumulation rates for the past two glacial and interglacial periods. The mean of bulk sedimentation rates is four to six times higher in interglacial periods; average accumulation rates of recognizable turbidites are higher by a factor of 21 to 45, and interglacial turbidite frequency is higher by a factor of 6 to 14. Sediment composition indicates that increased interglacial rates are due to higher accumulation of platform-derived material. Additional data from other Bahamian basins as well as published material from the Caribbean strongly suggest that highstand shedding is a general trend in pure carbonate depositional systems. Carbonate platforms without a siliciclastic component export more material during highstands of sea level when the platform tops are flooded and produce sediment. The response of carbonate platforms to Quaternary sea-level cycles is opposed to that of siliciclastic ocean margins, where sediment is stored on the inner shelf during highstands and passed on to continental rises and abyssal plains during lowstands of sea level.

  20. Absolute age constraints on rapid, axial progradation of a high-relief clinoform depositional system in the Colville foreland basin, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lease, R. O.; Houseknecht, D. W.; Kylander-Clark, A. R.

    2014-12-01

    Lower Cretaceous strata of the Alaska North Slope contain the world's most voluminous (1.2 million km3), highest relief (>1 km thick), and longest (600 km west-east) foreland clinoform depositional sequence. Although the regional stratigraphic framework of the Torok-Nanushuk clinoform sequence is well known, absolute age constraints are lacking. Existing, relatively imprecise "Aptian-Albian" biostratigraphy has hindered a quantitative understanding of clinoform depositional processes. We establish chronostratigraphy for the Torok-Nanushuk clinoform sequence with detrital zircon U/Pb geochronology from 9 localities from exploration well cores and outcrop samples (n=1666 grains). Maximum depositional ages defined by young detrital zircon U/Pb age populations, likely derived from coeval volcanism in Russian Chukotka, become progressively younger in the direction of eastward progradation. These data reveal a major progradational surge between 116 and 104 Ma when the shelf margin prograded more than 525 km. The rapid progradation (~45 km/m.y.) and sediment flux (~100,000 km3/m.y.) of this high-relief clinoform deposystem was sustained for 12 m.y. and suggests a supply-dominated system. This deposystem filled relict Colville basin accommodation that had developed as a flexural response to earlier Brooks Range tectonic loading. Clinoform dip directions and detrital zircon provenance indicate that the sediment was derived primarily from Russian Chukotka during longitudinal, eastward sediment dispersal. Progradation slowed after 104 Ma when seismic stratigraphy shows a shift from progradational to aggradational shelf-margin trajectories. The shelf margin prograded only another 60 km eastward before a sequence-bounding retrogradation occurred at 96 Ma. Our chronostratigraphy quantifies that rates of progradation and sediment flux were three times greater than previously believed during the major phase of basin filling. These rates are among the highest in the world for a clinoform deposystem in a foreland basin. This system is unique in that nowhere else are such high rates sustained for this long a duration (12 m.y.) or this high of relief (>1 km).

  1. Integrating millennial and interdecadal shoreline changes: Morpho-sedimentary investigation of two prograded barriers in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Oliver, T. S. N.; Tamura, T.; Hudson, J. P.; Woodroffe, C. D.

    2017-07-01

    Prograded barriers are distinctive coastal landforms preserving the position of past shorelines as low relief, shore-parallel ridges composed of beach sediments and commonly adorned with variable amounts of dune sand. Prograded barriers have been valued as coastal archives which contain palaeoenvironmental information, however integrating the millennial timescale geological history of barriers with observed inter-decadal modern beach processes has proved difficult. Technologies such as airborne LiDAR, ground penetrating radar (GPR) and optically stimulated luminescence dating (OSL) were utilised at Boydtown and Wonboyn, in southeastern Australia, and combined with previously reported radiocarbon dates and offshore seismic and sedimentological data to reconstruct the morpho-sedimentary history of prograded barrier systems. These technologies enabled reconstruction of geological timescale processes integrated with an inter-decadal model of ridge formation explaining the GPR-imaged subsurface character of the barriers. Both the Boydtown and Wonboyn barriers began prograding 7500-8000 years ago when sea level attained at or near present height along this coastline and continued prograding until the present-day with an initially slower rate of shoreline advancement. Sources of sediment for progradation appear to be the inner shelf and shoreface with a large shelf sand body likely contributing to progradation at Wonboyn. The Towamba River seems to have delivered sediment to Twofold Bay during flood events after transitioning to a mature estuarine system sometime after 4000 cal. yr BP. Some of this material appears to have been reworked onto the Boydtown barrier, increasing the rate of progradation in the seaward 50% of the barrier deposited over the past 1500 years. The GPR imaged beachfaces are shown to have similar geometry to beach profiles following recent storm events and a model of ridge formation involving cut and fill of the beachface, and dune building in the backshore, explains the character of the preserved beachface record and the morphology of the ridges. This model is applicable to future management of individual beaches where such beaches are subject to ongoing cut and fill, dune building processes and inherited sediment budget conditions.

  2. Small scale turbidity currents in a tectonically active submarine graben, the Gulf of Corinth (Greece): their significance in dispersing mine tailings and their relevance to basin filling

    NASA Astrophysics Data System (ADS)

    Papatheodorou, G.; Stefatos, A.; Christodoulou, D.; Ferentinos, G.

    2003-04-01

    The Gulf of Corinth is an intra-plate active graben within the Aegean microplate, which is characterized by high frequency occurrence of gravitative mass movements. A detailed marine survey in Antikyra bay, on the northern margin of the graben, was carried out (i) to study the bathymetry and morphology of the seafloor and (ii) to examine the distribution and dispersion of bauxite “red-mud” tailings and the formation of present-day fine grained, thin bedded turbidites. The examination of high resolution seismic profiles has shown that the northern flank of the gulf of Corinth consists of the shelf, slope and basin floor. The shelf has an average width of 10 km and dips very gently at a gradient less than 1.2o to a depth of 300m. The slope extends from the 300m to the 700m isobath with a gradient ranging from 5o to 7.5o. The basin floor deeper than the 700m isobath is flat with a gradient less than 0.1o. The shelf break and upper slope are affected by mass-movements. The seafloor on slope is incised by numerous channels trending in a NNE-SSW direction. The floor of the plain is covered by ponded turbidites. The analysis of cores based on (i) the texture and the structure of the individual layers of the surficial sedimentary cover and (ii) the tracing of bauxite red-mud tailing which have been discharged since 1970 on the upper shelf of the Antikyra Bay, have shown that: (i) Shelf and upper slope sediments are transported to the basin floor by turbidity flows. (ii) The slope surface is affected by the erosional action of the turbidity currents. (iii) The basin floor is covered by thin-bedded fine-grained turbidites whose thickness ranges from 0.8-4 cm. (iv) The individual turbidite beds, which consist of silt and clay, are structureless and are separated by sharp, planar or erosional contacts. (v) Hemipelagic intercalations are absent. The number of turbiditic events recorded in the surveyed area is from 2-5 events over a period of 15 years or 122 to 333 events per 1000 years. Each turbidite is usually lobe shaped and has an areal coverage from 4 to 12 km2. The turbidites overlap and cover a total area of 48 km2. The total thickness of the turbidites deposited during this period was between 5 and 12 cm which indicate sedimentation rates from 320 to 800 cm per 1000 years. The turbidites form a sedimentary body over the surveyed area whose volume is conservatively estimated at 35 x 10-5 km3. The high sedimentation rates and the high frequency of turbiditic events suggest that they play an important role in the filling of seismically active basins and that their volumetric contribution to basin infill is comparable to that of megaturbidites.

  3. An outer ramp to basin plain transect: Interacting pelagic and calciturbidite deposition in the Eocene-Oligocene of the Tuscan Domain, Adria Microplate (Italy)

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro; Cornamusini, Gianluca

    2013-08-01

    The interaction of ramps, basin plains and turbidite systems on the scale of tens of km has been rarely observed in fossil examples. Deep marine Eocene-Oligocene beds are exposed in the axial zone of the Chianti Mountains, Italy, and compose a regionally continue stratigraphic succession known as the Scaglia Toscana Formation. The formation was deposited in the Tuscan Domain of the Adria Microplate. This research aims at depicting its depositional architecture and evolution in the type area. Stratigraphic and sedimentologic analyses were performed on a ca. 25 km-long transect that includes depositional systems sectioned both in the down- and along-dip directions. Shaly-carbonate deposits compose a complex of interacting ramps, basin plains and turbidite floor fan systems. Ramp deposits accumulated above the lysocline and in oxic conditions. Basin plain beds were deposited below the lysocline and were subject to episodes of oxygen depletion. Turbidity flows fed elongate fan lobes characterized by poor channelisation. The basin palaeogeography hampered the development of slope apron turbidite systems. The Eocene-Oligocene geodynamic setting of the Tuscan Domain was characterized by the evolution of a peripheral bulge and by the early structuring of a foredeep basin. Syn-sedimentary tectonism acted a primary role in the basin-scale arrangement. However other mechanisms also contributed to the local facies distribution, including the disposition of sediment-source areas and intrabasinal confinement morphologies, as well as relative oscillations of the depositional surface with respect to the lysocline and oxycline.

  4. Sediment dispersal patterns within the Nares Abyssal Plain: observations from GLORIA Sonographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shephard, L.E.; Tucholke, B.E.; Fry, V.A.

    1985-01-01

    Features evident on GLORIA sonographs from the Nares Abyssal Plain suggest a sediment dispersal pattern for turbidity currents that varies temporally and spatially, resulting in randomly distributed turbidite deposits in the distal abyssal plain east of 64/sup 0/W. Regional variations in backscatter intensities across the abyssal plain are related to the frequency and thickness of near-surface silt beds, basement highs disrupting the seafloor, and subtle changes in surface and sub-surface bedforms related to low-relief turbidite flow paths, biologic activity, and possibly erosion. High backscatter intensities, prevalent west of 64/sup 0/W, are generally associated with those areas containing thicker silt bedsmore » and very regular subbottom reflectors on 3.5 kHz profiles. Low backscatter intensities, prevalent east of 64/sup 0/W, are associated with those areas containing thin silt beds or stringers with a much higher percentage of pelagic clay. Seafloor lineaments occur throughout the survey area but decrease in abundance east of 64/sup 0/W. These features have no apparent relief when crossed by surface-towed seismic reflection profiles. In some instances the lineaments may correspond to low-relief turbidite flow paths that contain varying textural compositions resulting in increased backscatter. These features would be indicative of sediment transport directions. Other possible origins for the lineaments, that often appear trackline parallel, include near-surface morphology that is preferentially detected and aligned by GLORIA, or possibly the lineaments result from complex subbottom interference patterns that would not be readily apparent in areas with a more irregular seafloor.« less

  5. Footwall degradation styles and associated sedimentary facies distribution in SE Crete: Insights into tilt-block extensional basins on continental margins

    NASA Astrophysics Data System (ADS)

    Alves, Tiago M.; Cupkovic, Tomas

    2018-05-01

    Depositional facies resulting from footwall degradation in extensional basins of SE Crete are studied based on detailed geological maps, regional transects, lithological columns and outcrop photos. During an extensional episode affecting Crete in the late Miocene-early Pliocene, depocentres trending N20°E and N70°E were filled with fan deltas, submarine mass-wasting deposits, sandy turbidites and fine-grained hemipelagites sourced from both nearby and distal sediment sources. Deposition of proximal continental and shallow-marine units, and relatively deep (marine) turbidites and mass-transport deposits, occurred within a complex mosaic of tectonically controlled depocentres. The new geological maps and transects in this work reveal that depositional facies in SE Crete were controlled by: a) their relative proximity to active faults and uplifting footwall blocks, b) the relative position (depth and relative height above sea level) of hanging-wall basins, and c) the nature of the basement units eroded from adjacent footwall blocks. Distal sediment sources supplied background siliciclastic sediment ('hemipelagites'), which differ markedly from strata sourced from local footwalls. In parallel, mass-transport of sediment was ubiquitous on tectonically active slopes, and so was the presence of coarse-grained sediment with sizes varying from large blocks > 50 m-wide to heterolithic mass-transport deposits and silty-sandy turbidites. We expect similar tectono-sedimentary settings to have predominated in tectonically active Miocene basins of the eastern Mediterranean, in which hydrocarbon exploration is occurring at present, and on rifted continental margins across the world.

  6. Submarine canyon and fan systems of the California Continental Borderland

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Romans, B.W.; Covault, J.A.; Dartnell, P.; Sliter, R.W.

    2009-01-01

    Late Quaternary turbidite and related gravity-flow deposits have accumulated in basins of the California Borderland under a variety of conditions of sediment supply and sea-level stand. The northern basins (Santa Barbara, Santa Monica, and San Pedro) are closed and thus trap virtually all sediment supplied through submarine canyons and smaller gulley systems along the basin margins. The southern basins (Gulf of Santa Catalina and San Diego Trough) are open, and, under some conditions, turbidity currents flow from one basin to another. Seismic-reflection profiles at a variety of resolutions are used to determine the distribution of late Quaternary turbidites. Patterns of turbidite-dominated deposition during lowstand conditions of oxygen isotope stages 2 and 6 are similar within each of the basins. Chronology is provided by radiocarbon dating of sediment from two Ocean Drilling Program sites, the Mohole test-drill site, and large numbers of piston cores. High-resolution, seismic-stratigraphic frameworks developed for Santa Monica Basin and the open southern basins show rapid lateral shifts in sediment accumulation on scales that range from individual lobe elements to entire fan complexes. More than half of the submarine fans in the Borderland remain active at any given position of relative sea level. Where the continental shelf is narrow, canyons are able to cut headward during sea-level transgression and maintain sediment supply to the basins from rivers and longshore currents during highstands. Rivers with high bedload discharge transfer sediment to submarine fans during both highstand and lowstand conditions. ?? 2009 The Geological Society of America.

  7. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians

    NASA Astrophysics Data System (ADS)

    Łapcik, Piotr

    2018-02-01

    Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.

  8. Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida

    USGS Publications Warehouse

    Lidz, B.H.

    2004-01-01

    Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.

  9. Accumulation of bank-top sediment on the western slope of Great Bahama Bank: rapid progradation of a carbonate megabank

    USGS Publications Warehouse

    Wilber, R. Jude; Milliman, John D.; Halley, Robert B.

    1990-01-01

    High-resolution seismic profiles and submersible observations along the leeward slope of western Great Bahama Bank show large-scale export of bank-top sediment and rapid progradation of the slope during the Holocene. A wedge-shaped sequence, up to 90 m thick, is present along most of the slope and consists of predominantly aragonite mud derived from the bank since flooding of the platform 6-8 ka. Total sediment volume of the slope sequence is 40%-80% that of Holocene sediment currently retained on the bank. Maximum rates of vertical accumulation and lateral progradation are 11-15 m/ka and 80-110 m/ka, respectively: 10 to 100 times greater than previously known for periplatform muds. Slope deposition of exported mud during sea-level highs appears to have been a major mechanism for the westward progradation of Great Bahama Bank throughout the Quaternary; this may provide a critical modern analogue for ancient progradational margins.

  10. Shelfal sediment transport by undercurrents forces turbidity current activity during high sea level, Chile continental margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.

    2016-04-01

    Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.

  11. Upslope deposition of extremely distal turbidites: an example from the Tiburon Rise, west-central Atlantic

    USGS Publications Warehouse

    Dolan, J.; Beck, C.; Ogawa, Y.

    1989-01-01

    These terrigenous silt and sand turbidities represent an unprecedented example of upslope turbidite deposition in an extremely distral setting. Flow thickness was the dominant control on deposition of these beds, rather than true upslope flow. -from Authors

  12. Changes in kerogen composition across an oxidation front in map turbidites as revealed by pyrolysis GC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoefs, M.J.L.; Sinninghe Damste, J.S.; Lange, G.L. de

    1996-12-31

    We have studied four Madeira Abyssal Plain (MAP) TOC rich turbidites for the influence of post depositional oxidation on organic matter composition. Kerogens were isolated and studied by pyrolysis-GC-MS analysis. This showed that the kerogen of the oxidized part of the turbidite is chemically significantly different from the unoxidized part. The relative amount of saturated and unsaturated n-alkanes has increased substantially (e.g. increase from 39 to 62%), at the cost of the isoprenoid alkanes and alkylated thiophenes (e.g. decrease from 16 to 6%, 8 to 3% respectively). In addition, large differences in the internal distributions of the various compound groupsmore » of the pyrolysates were observed. For example, prist-1-ene and 1,2,3,4-tetramethylbenzene were markedly decreased in the pyrolysates of the oxidized part of the turbidites. These results strongly support the selective preservation of high molecular weight aliphatic biopolymeric substances under oxidative conditions.« less

  13. Inverse analysis of turbidites by machine learning

    NASA Astrophysics Data System (ADS)

    Naruse, H.; Nakao, K.

    2017-12-01

    This study aims to propose a method to estimate paleo-hydraulic conditions of turbidity currents from ancient turbidites by using machine-learning technique. In this method, numerical simulation was repeated under various initial conditions, which produces a data set of characteristic features of turbidites. Then, this data set of turbidites is used for supervised training of a deep-learning neural network (NN). Quantities of characteristic features of turbidites in the training data set are given to input nodes of NN, and output nodes are expected to provide the estimates of initial condition of the turbidity current. The optimization of weight coefficients of NN is then conducted to reduce root-mean-square of the difference between the true conditions and the output values of NN. The empirical relationship with numerical results and the initial conditions is explored in this method, and the discovered relationship is used for inversion of turbidity currents. This machine learning can potentially produce NN that estimates paleo-hydraulic conditions from data of ancient turbidites. We produced a preliminary implementation of this methodology. A forward model based on 1D shallow-water equations with a correction of density-stratification effect was employed. This model calculates a behavior of a surge-like turbidity current transporting mixed-size sediment, and outputs spatial distribution of volume per unit area of each grain-size class on the uniform slope. Grain-size distribution was discretized 3 classes. Numerical simulation was repeated 1000 times, and thus 1000 beds of turbidites were used as the training data for NN that has 21000 input nodes and 5 output nodes with two hidden-layers. After the machine learning finished, independent simulations were conducted 200 times in order to evaluate the performance of NN. As a result of this test, the initial conditions of validation data were successfully reconstructed by NN. The estimated values show very small deviation from the true parameters. Comparing to previous inverse modeling of turbidity currents, our methodology is superior especially in the efficiency of computation. Also, our methodology has advantage in extensibility and applicability to various sediment transport processes such as pyroclastic flows or debris flows.

  14. Sedimentological analysis and long term chronostratigraphy (> 30 ka) of turbidite record offshore the central Algerian margin

    NASA Astrophysics Data System (ADS)

    Bachir, Roza Si; Babonneau, Nathalie; Cattaneo, Antonio; Ratzov, Gueorgui; Déverchère, Jacques; Yelles, Karim

    2016-04-01

    The Algerian margin is a Cenozoic passive margin located at the diffuse plate boundary between Eurasia and Africa, presently reactivated in compression. It is among the most seismically active areas of the Western Mediterranean and it suffered from numerous devastating earthquakes, for example the El Asnam earthquake in 1980 (Ms = 7.3) and the Boumerdès earthquake in 2003 (Ms = 6.7). A consistent dataset of sediment cores was collected between 2003 and 2007 during the MARADJA and PRISME cruises. Previous work has focused on the Holocene and allowed to highlight a consistent paleosesimological record in the central area of the Algerian margin (Algiers area). The purpose of this work is to extend the sedimentary analysis of turbiditic deposits over longer periods of time (throughout the Last Glacial Maximum), in order to determine whether the record of seismic events is exploitable, or if the impact of climate-driven and eustatic variations is dominant in turbidite triggering and accumulation. A sedimentological and stratigraphic approach was performed on the three most distal sediment cores of the area: PSM-KS21, PSM-KS23 and PSM-KS27. The establishment of an age model is based on radiocarbon dating and measurements of oxygen stable isotopes on planktonic foraminifera collected from the pelagic intervals (hemipelagites) interfingered with the turbidites. A homogeneous clay bed identifiable by its grey colour is a marker to correlate the three cores and it is dated between 18 and 19 ka BP. The PSM-KS23 core has the longest sedimentary record, thus it was used as a reference. Preliminary results show a significant increase in the number and thickness of individual turbidites between 10 and 20 ka BP. The expected results of this work are: 1) to determine whether the number of turbidites is consistent and correlates among the three cores; 2) to assess if the paleo-earthquake signal related to turbidites can be extracted beyond the Holocene; 3) to identify the recurrence interval of recorded paleo-earthquake events.

  15. Strain localization in a fossilized subduction channel: Insights from the Cycladic Blueschist Unit (Syros, Greece)

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Jolivet, Laurent; Roche, Vincent; Augier, Romain; Scaillet, Stéphane; Cardello, Giovanni Luca

    2016-03-01

    Syros Island is worldwide known for its preservation of HP-LT parageneses in the Cycladic Blueschist Unit (CBU) providing one of the best case-studies to understand the tectonometamorphic evolution of a subduction channel. Conflicting structural interpretations have been proposed to explain the geological architecture of Syros, in part reflecting a lack of consensus about the tectonic structure of the CBU. In this study, the geological and tectonometamorphic maps of Syros have been entirely redrawn in order to decipher the structure of a fossilized subduction channel. Based on structural and petrological observations, the CBU has been subdivided into three subunits separated by major ductile shear zones. New observations of the Vari Unit confirm that it rests on top of the CBU through a detachment or exhumation fault. While retrograde top-to-the E/NE shearing overprinting prograde deformation is widespread across the island, the prograde deformation has been only locally preserved within the less retrograded units. We show that after the prograde top-to-the S/SW shearing deformation, the CBU was exhumed by an overall top-to-the E/NE shearing from the depth of the eclogite-facies all the way to the depth of the greenschist-facies and finally, to the brittle crust. The exhumation process encompassed the syn-orogenic stage (contemporaneous of subduction, within the subduction channel - Eocene) to the post-orogenic stage (contemporaneous with the formation of the Aegean Sea - Oligocene to Miocene). From syn-orogenic to post-orogenic exhumation, deformation progressively localized toward the base of the CBU, along large-scale ductile shear zones, allowing the preservation of earlier HP-LT structures and HP-LT metamorphic parageneses. Finally, this study brings new insights on the tectonometamorphic evolution of a subduction channel showing how strain localizes during the history of an accretionary complex, both during the prograde and retrograde history.

  16. Barrier island evolution and reworking by inlet migration along the Mississippi-Alabama gulf coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucker, J.B.; Snowden, J.O.

    1990-09-01

    The five barrier islands along the Mississippi-Alabama coast are located 10 to 14 mi (16 to 23 km) offshore and separate Mississippi Sound from the Gulf of Mexico. The barrier islands in the chain are, from east to west: Dauphin Island, Petit Bois Island, Horn Island, Ship Island, and Cat Island. The islands are low sand bodies situated on a relatively broad Holocene sand platform that extends 70 mi (113 km) from Dauphin Island on the east to Cat Island on the west. The platform varies in thickness from 25 to 75 ft (7.6 to 23 m) and rests onmore » Holocene marine clays or on Pleistocene sediments. The barrier island chain predates the St. Bernard lobe of the Mississippi delta complex, which began to prograde about 3,000 years ago, and continued until it was abandoned approximately 1,500 years ago. In contrast to the other islands, Cat Island at the western down-drift end of the Mississippi-Alabama barrier island chain is characterized by more than 12 prominent east west-oriented progradational linear ridges. The ridge system of Cat Island is interpreted as a relict of an earlier stage in the life cycle of the barrier platform when there was a more robust littoral drift system and an abundant sediment supply During the Pre-St. Bernard Delta period of vigorous sedimentation, all of the islands in the barrier chain probably exhibited progradational ridges similar to those now found only on Cat Island. Presently, only vestigial traces of these progradational features remain on the islands to the east of Cat Island. Unlike Cat Island, which has been protected and preserved by the St. Bernard Delta, the other barrier islands have been modified and reworked during the past 1,500 years by processes of island and tidal inlet migration, accompanied by a general weakening of the littoral drift and a reduction of the available sediment supply.« less

  17. Paleoseismology under sea: First evidence for irregular seismic cycles during Holocene off Algeria from turbidites

    NASA Astrophysics Data System (ADS)

    Ratzov, Gueorgui; Cattaneo, Antonio; Babonneau, Nathalie; Déverchere, Jacques; Yelles, Karim; Bracene, Rabah

    2013-04-01

    According to simple models, stress build-up along a given fault is proportional to the time elapsed since the previous earthquake. Although the resulting « seismic gap » hypothesis suits well for moderate magnitude earthquake (Mw 4-5), large events (Mw>6) are hardly predictable and show great variation in recurrence intervals. Thus, models based on stress transfer and interactions between faults suggest that an earthquake may haste or delay the occurrence of next earthquake on adjacent fault by increasing or lowering the level of static stress. Here, we show that meaningful information of large earthquakes recurrence intervals over several seismic cycles may be obtained using turbidite record offshore the Algerian margin (Mediterranean Sea), an area prone to relatively large (M~7) earthquakes in historical times. Indeed, as evidenced on the Cascadia subduction zone, synchroneous turbidites over a large area and originated from independent sources, are most likely triggered by an earthquake. To test the method on this slowly convergent margin, we analysed turbidites in 3 sediment cores collected off the area shaken by the 1980 Ms 7.3 El Asnam and 1954 M6.7 Orléansville earthquakes. We used X-ray radioscopy, XRF major elements counter, magnetic susceptibility, and grain-size distribution to accurately discriminate turbidites (~instantaneous deposit) from hemipelagites (continuous background sedimentation). We dated turbidites by calculating hemipelagic sedimentation rates obtained with AMS radiocarbon ages, and applied the rates between turbidites. Finally, the age of events was compared to the only paleoseismic investigation available onland. We found that 10 to 25 turbidites deposited as single or multiple pulses over the last ~8ka. Once correlated from site to site, they support 14 seismic events. Most events are correlated with the paleoseismic record of the El Asnam fault, but uncorrelated events support that other faults were active. Only the first of the two major events of 1954 and 1980 triggered a turbidity current, implying that the sediment buffer on the continental shelf could not be reloaded in 26 years thus giving information on the minimum time resolution of our method. The new paleoseismic catalog shows a recurrence interval of 300-700 years for most events, but also a great interval of >1200 years without any major earthquake. This result suggest that the level of static stress may have drastically dropped as a result of three main events occurring within the 800 years prior the quiescence period. The quiescent period also supports a stress transfer and interaction between neighbouring faults.

  18. Distinguishing megathrust from intraplate earthquakes using lacustrine turbidites (Laguna Lo Encañado, Central Chile)

    NASA Astrophysics Data System (ADS)

    Van Daele, Maarten; Araya-Cornejo, Cristian; Pille, Thomas; Meyer, Inka; Kempf, Philipp; Moernaut, Jasper; Cisternas, Marco

    2017-04-01

    One of the main challenges in seismically active regions is differentiating paleo-earthquakes resulting from different fault systems, such as the megathrust versus intraplate faults in subductions settings. Such differentiation is, however, key for hazard assessments based on paleoseismic records. Laguna Lo Encañado (33.7°S; 70.3°W; 2492 m a.s.l.) is located in the Central Chilean Andes, 50 km east of Santiago de Chile, a metropole with about 7,000,000 inhabitants. During the last century the study area experienced 3 large megathrust earthquakes (1906, 1985 and 2010) and 2 intraplate earthquakes (1945 and 1958) (Lomnitz, 1960). While the megathrust earthquakes cause Modified Mercalli Intensities (MMIs) of VI to VII at the lake (Van Daele et al., 2015), the intraplate earthquakes cause peak MMIs up to IX (Sepúlveda et al., 2008). Here we present a turbidite record of Laguna Lo Encañado going back to 1900 AD. While geophysical data (3.5 kHz subbottom seismic profiles and side-scan sonar data) provides a bathymetry and an overview of the sedimentary environment, we study 15 short cores in order to understand the depositional processes resulting in the encountered lacustrine turbidites. All mentioned earthquakes triggered turbidites in the lake, which are all linked to slumps in proximal areas, and are thus resulting from mass wasting of the subaquatic slopes. However, turbidites linked to the intraplate earthquakes are additionally covered by turbidites of a finer-grained, more clastic nature. We link the latter to post-seismic erosion of onshore landslides, which need higher MMIs to be triggered than subaquatic mass movements (Howarth et al., 2014). While intraplate earthquakes can cause MMIs up to IX and higher, megathrust earthquakes do not cause sufficiently high MMIs at the lake to trigger voluminous onshore landslides. Hence, the presence of these post-seismic turbidites allows to distinguish turbidites triggered by intraplate earthquakes from those triggered by megathrust earthquakes. These findings are an important step forward in the interpretation of lacustrine turbidites in subduction settings, and will eventually improve hazard assessments based on such paleoseismic records in the study area, and in other subduction zones. References Howarth et al., 2014. Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand. Earth and Planetary Science Letters 403, 340-351. Lomnitz, 1960. A study of the Maipo Valley earthquakes of September 4, 1958, Second World Conference on Earthquake Engineering, Tokyo and Kyoto, Japan, pp. 501-520. Sepulveda et al., 2008. New Findings on the 1958 Las Melosas Earthquake Sequence, Central Chile: Implications for Seismic Hazard Related to Shallow Crustal Earthquakes in Subduction Zones. Journal of Earthquake Engineering 12, 432-455. Van Daele et al., 2015. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 62, 1466-1496.

  19. Seismic Shaking, Tsunami Wave Erosion And Generation of Seismo-Turbidites in the Ionian Sea

    NASA Astrophysics Data System (ADS)

    Polonia, Alina; Nelson, Hans; Romano, Stefania; Vaiani, Stefano Claudio; Colizza, Ester; Gasparotto, Giorgio; Gasperini, Luca

    2016-04-01

    We are investigating the effects of earthquakes and tsunamis on the sedimentary record in the Ionian Sea through the analysis of turbidite deposits. A comparison between radiometric dating and historical earthquake catalogs suggests that recent turbidite generation is triggered by great earthquakes in the Calabrian and hellenic Arcs such as the AD 1908 Messina, AD 1693 Catania, AD 1169 Eastern Sicily and AD 365 Crete earthquakes. Textural, micropaleontological, geochemical and mineralogical signatures of the youngest three seismo-turbidites reveal cyclic patterns of sedimentary units. The basal stacked turbidites result from multiple slope failure sources as shown by different sedimentary structures as well as mineralogic, geochemical and micropaleontological compositions. The homogenite units, are graded muds deposited from the waning flows of the multiple turbidity currents that are trapped in the Ionian Sea confined basin. The uppermost unit is divided into two parts. The lower marine sourced laminated part without textural gradation, we interpret to result from seiching of the confined water mass that appears to be generated by earthquake ruptures combined with tsunami waves. The uppermost part we interpret as the tsunamite cap that is deposited by the slow settling suspension cloud created by tsunami wave backwash erosion of the shoreline and continental shelf. This tsunami process interpretation is based on the final textural gradation of the upper unit and a more continental source of the tsunami cap which includes C/N >10, the lack of abyssal foraminifera species wirth the local occurrence of inner shelf foraminifera. Seismic reflection images show that some deeper turbidite beds are very thick and marked by acoustic transparent homogenite mud layers at their top. Based on a high resolution study of the most recent of such megabeds (Homogenite/Augias turbidite, i.e. HAT), we show that it was triggered by the AD 365 Crete earthquake. Radiometric dating support a scenario of synchronous deposition of the HAT in an area as wide as 150.000 km2, which suggests basin-scale sediment remobilization processes. The HAT in our cores is made up of a base to top sequence of stacked and graded sand/silt units with different compositions related to the Malta, Calabria and Sicilian margin locations. This composition suggests multiple synchronous slope failures typical of seismo-turbidites; however, the Crete earthquake source is too distant from the Italian margins to cause sediment failures by earthquake shaking. Consequently, because our present evidence suggests shallow-water sediment sources, we reinforce previous interpretations that the HAT is a deep-sea "tsunamite" deposit. Utilizing the expanded stratigraphy of the HAT, together with the heterogeneity of the sediment sources of the Ionian margins, we are trying to unravel the relative contribution of seismic shaking (sediment failures, MTDs, turbidity currents) and of tsunami wave processes (overwash surges, backwash flows, turbidity currents) for seismo-turbidite generation.

  20. Sedimentology, Petrography and Microfacies of the Paleogene Carbonate Sequence - Yaxcopoil-1 Borehole (Chicxulub, Yucatan)

    NASA Astrophysics Data System (ADS)

    Escobar-Sanchez, E.; Fucugauchi, J. U.

    2013-05-01

    Chicxulub crater is one the three largest known impact craters on Earth, formed 66 Ma-old, with multi-ring basin morphology. Crater is located in northwestern Yucatan, southern Gulf of Mexico, with rim diameter of 200 km and crater center at Chicxulub Perto in the coastline. It is buried beneath the carbonate and evaporitic Cenozoic sequence. Study of the structure requires geophysics and drilling, with several boreholes drilled in the peninsula. The Yaxcopoil-1 borehole was drilled south of Merida, about 62 km from center, as part of the Chicxulub Scientific Drilling Program. One of the main objectives was to determine the role of the Chicxulub impact event in the K/Pg mass extinction and boundary events. We present a sedimentological and petrological study of the carbonate sequence in the interval from 404 m to 792 m overlying the K/Pg boundary. The well reached a depth of 1510.6 m. In this interval, we identified twelve units marked by different lithological and sedimentological changes, and supplemented by thin section analysis. Facies are composed mainly of marls, argillaceous, limestones, dolomitized limestones, calcareous breccias and calcarenites with shales thin beds. From the microfacies study we observed several major changes in the microfacies. From bottom of the sequence several textural changes cyclic from mudstone to bioclastic planktic foraminiferal wackestone, bioclastic packstone and some bioclastic grainstone. Two textures dominated in the calcareous sequence: bioclastic wackestone and packstone microfacies. From the microfacies study, we derived inferences on stable environmental conditions. We observed benthic and planktic foraminiferal layers. The benthic foraminifera strongly depend on environmental parameters, such as nutrient supply or oxygenation of the sea bottom water in the Paleocene and Eocene. Changes suggest occurrence of a progradational event, with a relative increase in sea level very slowly, with the sediment enough to overcome the elevation. In the last meters of Unit 2 (778-772 m), a series of thin layers of marl and calcareous shale interbedded with wackestone are interpreted as a transgressive event. In the first few meters of Unit 3 provides greater energy currents causing variations in the grain size. Petrographic observations show that planktonic and benthic facies are arranged as intermittent flows in parts of the unit, which points to flow currents. Predominance of coarse-grained facies rich in carbonates possibly indicates a prograding event into deep areas. In the sequence several possible changes in sea level are recorded, especially from Unit 5 to 8 Unit, where a possible limit between the Paleocene and Eocene is located between Unit 6 and Unit 7, at about 660 m. Biostratigraphy was obtained by zones corresponding to P4 and P5. In Unit 8 contains the first record of turbidite or storm deposits outer shelf environments that could be related to platform progradation. The Paleocene-Eocene thermal maximum represents a period of global warming and sea level rise. The sedimentological and micropaleontological changes may be correlated with the faunal turnover in the Gulf of Mexico, providing a complementary tool for biostratigraphic inferences.

  1. Restoration of original 3D sedimentary geometries in deformed basin fill supporting reservoir characterization

    NASA Astrophysics Data System (ADS)

    Back, S.

    2009-04-01

    A large progradational clastic system centred on Brunei Darussalam has been present on the NW Borneo margin since the early middle Miocene. This system has many sedimentary and structural similarities with major deltaic provinces such as the Niger and Nile. It differs from these systems by being affected in the hinterland by contemporaneous compressional tectonics. Uplift partially forced strong progradation of the clastic system, but also folded older deltaic units. Erosion and the exhumation of folded strata in the area of the Jerudong Anticline resulted in the exposure of large-scale prograding clinoforms and syn-sedimentary deltaic faults of middle Miocene age along a natural cross-section of several tens of kilometres in extent. Westward of the key outcrop sites on the Jerudong Anticline, the middle Miocene deltaic units are overlain by late Miocene, Pliocene and Quaternary clastics up to 3 kilometres thick. Both, the middle Miocene target units of this study as well as the late Miocene to recent overburden are recorded in the subsurface of the Belait Syncline on regional 2D seismic lines (total line length around 1400 km) and at 7 well locations. In this study, we integrate the available geophysical subsurface information with existing structural, sedimentological and geomorphological field data of the "classic" Jerudong Anticline exposures (e.g., Back et al. 2001, Morley et al. 2003, Back et al. 2005) into a static 3D surface-subsurface model that provides quantitative constraints on the structural and stratigraphic architecture of the Miocene Belait delta and the overlying units in three dimensions, supporting basin-scale as well as reservoir-scale analysis of the subsurface rock volume. Additionally, we use the static surface-subsurface model as input for a tectonic retro-deformation of the study area, in which the 3D paleo-relief of the middle Miocene Belait delta is restored by unfolding and fault balancing (Back et al. 2008). This kinematic reconstruction ultimately provides a detailed view into the stratal architecture of middle Miocene delta clinoforms, indicating a close relationship between delta-lobe activity, clinoform morphology, and the generation of slumps and turbidites. Literature BACK, S., MORLEY, C.K., SIMMONS, M.D. & LAMBIASE, J.J. (2001): Depositional environment and sequence stratigraphy of Miocene deltaic cycles exposed along the Jerudong anticline, Brunei Darussalam. - Journal of Sedimentary Research, 71: 915-923. BACK, S., TIOE HAK JING, TRAN XUAN THANG & MORLEY, C.K. (2005): Stratigraphic development of synkinematic deposits in a large growth-fault system, onshore Brunei Darussalam. - Journal of the Geological Society, London, 162: 243-258. BACK, S., STROZYK, F., KUKLA, P.A. & LAMBIASE, J.J. (2008): 3D restoration of original sedimentary geometries in deformed basin fill, onshore Brunei Darussalam, NW Borneo. Basin Research, 20: 99-117. MORLEY, C.K., BACK, S., VANRENSBERGEN, P., CREVELLO, P. & LAMBIASE, J.J. (2003): Characteristics of repeated, detached, Miocene -Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo. - Journal of Structural Geology, 25: 1147-1169.

  2. Preliminary study of a potential CO2 reservoir area in Hungary

    NASA Astrophysics Data System (ADS)

    Sendula, Eszter; Király, Csilla; Szabó, Zsuzsanna; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Páles, Mariann; Forray, Viktória

    2014-05-01

    Since the first international agreement in 1997 (the Kyoto Protocol) the reduction of greenhouse gas emission has a key role in the European Union's energy and climate change policy. Following the Directive 2009/31/EC we are experiencing a significant change in the Hungarian national activity. Since the harmonization procedure, which was completed in May 2012, the national regulation obligates the competent authority to collect and regularly update all geological complexes that are potential for CO2 geological storage. In Hungary the most abundant potential storage formations are mostly saline aquifers of the Great Hungarian Plain (SE-Hungary), with sandstone reservoir and clayey caprock. The Neogene basin of the Great Hungarian Plain was subsided and then filled by a prograding delta system from NW and NE during the Late Miocene, mostly in the Pannonian time. The most potential storage rock was formed as a fine-grained sandy turbidite interlayered by thin argillaceous beds in the deepest part of the basin. It has relatively high porosity, depth and more than 1000 m thickness. Providing a regional coverage for the sandy turbidite, a 400-500 m thick argillaceous succession was formed in the slope environment. The composition, thickness and low permeability is expected to make it a suitable, leakage-safe caprock of the storage system. This succession is underlain by argillaceous rocks that were formed in the basin, far from sediment input and overlain by interfingering siltstone, sandstone and claystone succession formed in delta and shoreline environments and in the alluvial plain. Core samples have been collected from the potential reservoir rock and its cap rock in the Great Hungarian Plain's succession. The water compositions of the studied depth were known from well-log database. Using the information, acquired from these archive documents, we have constructed input data for geochemical modeling in order to to study the effect of pCO2 injection in the potential CO2 storage environment. From the potential reservoir rock samples (sandstone) thin sections were prepared to determine the mineral composition, pore distribution, pore geometry and grain size. The volume ratio of the minerals was calculated using pixel counter. To have more accurate mineral composition, petrographic observation and SEM analyzes have been carried out. The caprock samples involved in the study can be divided into mudstone and aleurolite samples. To determine the mineral composition of these samples, XRD, DTA, FTIR, SEM analysis has been carried out. To obtain a picture about the geochemical behavior of the potential CO2 storage system, geochemical models were made for the reservoir rocks. For the equilibrium geochemical model, PHREEQC 3.0 was used applying LLNL database. The data used in the model are real pore water compositions from the studied area and an average mineral composition based on petrographic microscope and SEM images. In the model we considered the cation-anion ratio (<10%) and the partial pressure of CO2. First of all, we were interested in the direction of the geochemical reactions during an injection process. Present work is focused on the mineralogy of the most potential storage rock and its caprock, and their expectable geochemical reactions for the effect of scCO2.

  3. Metamorphic P-T evolution of the Gotsu blueschists from the Suo metamorphic belt in SW Japan: Implications for tectonic correlation with the Heilongjiang Complex, NE China

    NASA Astrophysics Data System (ADS)

    Kabir, Md. Fazle; Takasu, Akira; Li, Weimin

    2018-05-01

    In the Gotsu area of the c. 200 Ma high-P/T Suo metamorphic belt in the Inner Zone of southwest Japan, blueschists occur as lenses or layers within pelitic schists. Prograde, peak, and retrograde stages are distinguished in the blueschists, and the prograde and the peak metamorphic conditions are determined using pseudosection modelling in the NCKFMASHO system. The prograde metamorphic stage is defined by inclusions in porphyroblastic epidote and glaucophane, such as phengite, chlorite, albite, epidote and glaucophane/winchite, and the estimated metamorphic conditions are <325 °C and < 4-5 kbar at the boundary between the glaucophane schist facies and the greenschist facies. The peak metamorphic stage is well-defined by the schistosity-forming minerals, i.e. epidote, glaucophanic amphibole, phengite, and chlorite, suggesting the glaucophane schist facies conditions of 475-500 °C and 14-16 kbar. Actinolite/magnesiohornblende, chlorite, and albite replacing the peak stage minerals suggest the retrograde metamorphism into the greenschist facies. The metamorphic facies series of the Suo belt is defined by pumpellyite-actinolite facies to epidote-blueschist facies, and it has a relatively lower-P/T compared with the c. 300 Ma Renge belt in the Inner Zone of southwest Japan, which is defined by a sequence of lawsonite-blueschist facies to glaucophane-eclogite facies. The P- {M}_{{H}_2O} pseudosection and water isopleth show that the rocks were dehydrated during the initial stage of the exhumation and remained in water-saturated conditions. Similarities of the detrital zircon and peak metamorphic ages of the blueschists from the Suo metamorphic belt in southwest Japan and the Heilongjiang Complex in northeast China suggest that both metamorphic belts were probably formed in the same Paleo-Pacific subduction system in the Late Triassic to Jurassic period.

  4. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan - A Rock-Eval survey

    NASA Astrophysics Data System (ADS)

    Baudin, François; Stetten, Elsa; Schnyder, Johann; Charlier, Karine; Martinez, Philippe; Dennielou, Bernard; Droz, Laurence

    2017-08-01

    The Congo River, the second largest river in the world, is a major source of organic matter for the deep Atlantic Ocean because of the connection of its estuary to the deep offshore area by a submarine canyon which feeds a vast deep-sea fan. The lobe zone of this deep-sea fan is the final receptacle of the sedimentary inputs presently channelled by the canyon and covers an area of 2500 km². The quantity and the source of organic matter preserved in recent turbiditic sediments from the distal lobe of the Congo deep-sea fan were assessed using Rock-Eval pyrolysis analyses. Six sites, located at approximately 5000 m water-depth, were investigated. The mud-rich sediments of the distal lobe contain high amounts of organic matter ( 3.5 to 4% Corg), the origin of which is a mixture of terrestrial higher-plant debris, soil organic matter and deeply oxidized phytoplanktonic material. Although the respective contribution of terrestrial and marine sources of organic matter cannot be precisely quantified using Rock-Eval analyses, the terrestrial fraction is dominant according to similar hydrogen and oxygen indices of both suspended and bedload sediments from the Congo River and that deposited in the lobe complex. The Rock-Eval signature supports the 70% to 80% of the terrestrial fraction previously estimated using C/N and δ13Corg data. In the background sediment, the organic matter distribution is homogeneous at different scales, from a single turbiditic event to the entire lobe, and changes in accumulation rates only have a limited effect on the quantity and quality of the preserved organic matter. Peculiar areas with chemosynthetic bivalves and/or bacterial mats, explored using ROV Victor 6000, show a Rock-Eval signature similar to background sediment. This high organic carbon content associated to high sedimentation rates (> 2 to 20 mm.yr-1) in the Congo distal lobe complex implies a high burial rate for organic carbon. Consequently, the Congo deep-sea fan represents an enormous sink of terrestrial organic matter when compared to other turbiditic systems over the world.

  5. Upslope deposition of extremely distal turbidites: An example from the Tiburon Rise, west-central Atlantic

    NASA Astrophysics Data System (ADS)

    Dolan, James; Beck, Christian; Ogawa, Yujiro

    1989-11-01

    Terrigenous silt and sand turbidites recovered from the crest of the Tiburon Rise in the west-central Atlantic represent an unprecedented example of upslope turbidite deposition in an extremely distal setting. These Eocene-Oligocene beds, which were derived from South America more than 1000 km to the southeast, were probably deposited by extremely thick (>1500 m) turbidity currents that flowed parallel to the southern margin of the rise. We suggest that flow thickness was the dominant control on deposition of these beds, rather than true upslope flow. This interpretation points out the importance of local bathymetry on the behavior of even extremely distal turbidity currents.

  6. The Itajaí foreland basin: a tectono-sedimentary record of the Ediacaran period, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Basei, M. A. S.; Drukas, C. O.; Nutman, A. P.; Wemmer, K.; Dunyi, L.; Santos, P. R.; Passarelli, C. R.; Campos Neto, M. C.; Siga, O.; Osako, L.

    2011-04-01

    The Itajaí Basin located in the southern border of the Luís Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajaí Group is represented by sandstones and conglomerates (Baú Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeirão Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeirão Neisse (arkosic sandstones and siltites), and Ribeirão do Bode (distal silty turbidites) formations. The Apiúna Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajaí Basin. The Brusque Group and the Florianópolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, São Miguel and Camboriú complexes. The lack of any oceanic crust in the Itajaí Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajaí Basin is temporally and tectonically correlated with the Camaquã Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriápolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.

  7. Porosity modification during and following deposition of deep-water sediments

    NASA Astrophysics Data System (ADS)

    Butler, R. W.; McCaffrey, W. D.; Haughton, P.; del Pino Sanchez, A.; Barker, S.; Hailwood, E.; Hakes, B.

    2005-12-01

    Deposition and early burial of sediments, especially sandy turbidites, are commonly accompanied by the reorganization of porosity structure through the localized expulsion of interstitial fluid. Fluid escape structures are preserved as thin sheets and pipes. Coeval sediment remobilization may be represented by shear structures, commonly taken to indicate down-slope creep and slumping. The history of shearing vs dewatering may be established from cross-cutting structures preserved in outcrop and/or core. Although these relationships are known for gravity-driven soft-sediment deformation on submarine slopes, they can also develop during deposition itself due to shear from the over-riding flow. Such deformation features, including pseudo s-c fabrics and distributed shear, together may previously have been misinterpreted as indicators of palaeoslope (slumps) or even of tectonic deformation. Progressive aggradation of sandy turbidites can show complex banded facies within which soft-sediment deformation is tiered. Syn-deposition micro-growth strata testify to ongoing seabed deformation occurring beneath active flows, while the bedforms themselves provide direct measurements of the magnitude of shear stresses imparted into the seabed and estimates of the shear strength of this substrate. Such banded facies may be interpreted in terms of cyclic partitioning of shear stress into the flow and the substrate. The modified porosity structures and related heterogeneities in permeability of such materials may persist during deeper burial, influencing the rheology of the sediment. These bed-scale processes are reflected in the quality and flow rates of hydrocarbon reservoirs. The reorganization of sand-body architecture through remobilization, by traction and/or down-slope failure, also has a strong impact on the permeability on the multi-bed scale (10s-100s m). Examples will be presented from hydrocarbon reservoirs in the subsurface and from outcrops of Tertiary turbidites in the Alpine-Apennine orogenic system.

  8. Lacustrine turbidites as a tool for quantitative earthquake reconstruction: New evidence for a variable rupture mode in south central Chile

    NASA Astrophysics Data System (ADS)

    Moernaut, Jasper; Daele, Maarten Van; Heirman, Katrien; Fontijn, Karen; Strasser, Michael; Pino, Mario; Urrutia, Roberto; De Batist, Marc

    2014-03-01

    Understanding the long-term earthquake recurrence pattern at subduction zones requires continuous paleoseismic records with excellent temporal and spatial resolution and stable threshold conditions. South central Chilean lakes are typically characterized by laminated sediments providing a quasi-annual resolution. Our sedimentary data show that lacustrine turbidite sequences accurately reflect the historical record of large interplate earthquakes (among others the 2010 and 1960 events). Furthermore, we found that a turbidite's spatial extent and thickness are a function of the local seismic intensity and can be used for reconstructing paleo-intensities. Consequently, our multilake turbidite record aids in pinpointing magnitudes, rupture locations, and extent of past subduction earthquakes in south central Chile. Comparison of the lacustrine turbidite records with historical reports, a paleotsunami/subsidence record, and a marine megaturbidite record demonstrates that the Valdivia Segment is characterized by a variable rupture mode over the last 900 years including (i) full ruptures (Mw ~9.5: 1960, 1575, 1319 ± 9, 1127 ± 44), (ii) ruptures covering half of the Valdivia Segment (Mw ~9: 1837), and (iii) partial ruptures of much smaller coseismic slip and extent (Mw ~7.5-8: 1737, 1466 ± 4). Also, distant or smaller local earthquakes can leave a specific sedimentary imprint which may resolve subtle differences in seismic intensity values. For instance, the 2010 event at the Maule Segment produced higher seismic intensities toward southeastern localities compared to previous megathrust ruptures of similar size and extent near Concepción.

  9. Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Schwanghart, Wolfgang; Hebbeln, Dierk; Stuut, Jan-Berend W.; Strecker, Manfred R.

    2017-09-01

    Understanding how Earth-surface processes respond to past climatic perturbations is crucial for making informed predictions about future impacts of climate change on sediment fluxes. Sedimentary records provide the archives for inferring these processes, but their interpretation is compromised by our incomplete understanding of how sediment-routing systems respond to millennial-scale climate cycles. We analyzed seven sediment cores recovered from marine turbidite depositional sites along the Chile continental margin. The sites span a pronounced arid-to-humid gradient with variable relief and related sediment connectivity of terrestrial and marine environments. These sites allowed us to study event-related depositional processes in different climatic and geomorphic settings from the Last Glacial Maximum to the present day. The three sites reveal a steep decline of turbidite deposition during deglaciation. High rates of sea-level rise postdate the decline in turbidite deposition. Comparison with paleoclimate proxies documents that the spatio-temporal sedimentary pattern rather mirrors the deglacial humidity decrease and concomitant warming with no resolvable lag times. Our results let us infer that declining deglacial humidity decreased fluvial sediment supply. This signal propagated rapidly through the highly connected systems into the marine sink in north-central Chile. In contrast, in south-central Chile, connectivity between the Andean erosional zone and the fluvial transfer zone probably decreased abruptly by sediment trapping in piedmont lakes related to deglaciation, resulting in a sudden decrease of sediment supply to the ocean. Additionally, reduced moisture supply may have contributed to the rapid decline of turbidite deposition. These different causes result in similar depositional patterns in the marine sinks. We conclude that turbiditic strata may constitute reliable recorders of climate change across a wide range of climatic zones and geomorphic conditions. However, the underlying causes for similar signal manifestations in the sinks may differ, ranging from maintained high system connectivity to abrupt connectivity loss.

  10. Giant landslides and turbidity currents in the Agadir Canyon Region, NW-Africa

    NASA Astrophysics Data System (ADS)

    Krastel, Sebastian; Wynn, Russell B.; Stevenson, Christopher; Feldens, Peter; Mehringer, Lisa; Schürer, Anke

    2017-04-01

    Coring and drilling of the Moroccan Turbidite System off NW-Africa revealed a long sequence of turbidites, mostly sourced from the Moroccan continental margin and the volcanic Canary Islands. The largest individual flow deposits in the Moroccan Turbidite System contain sediment volumes >100 km3, although these large-scale events are relatively infrequent with a recurrence interval of 10,000 years (over the last 200,000 years). The largest siliciclastic flow in the last 200,000 years was the 'Bed 5 event', which transported 160 km3 of sediment up to 2000 km from the Agadir Canyon region to the southwest Madeira Abyssal Plain. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during RV Maria S. Merian Cruise MSM32 in late 2013. A major landslide area was identified 200 km south of the Agadir Canyon. A landslide was traced from this failure area to the Agadir Canyon. This landslide entered the canyon in about 2500 m water depth. Despite a significant increase in slope angle, the landslide did not disintegrate into a turbidity current when entering the canyon but moved on as landslide for at least another 200 km down the canyon. The age of the landslide ( 145 ka) does not correspond to any major turbidte deposit in the Moroccan Turbidite System, further supporting the fact that the landslide did not disintegrate into a major turbidity current. A core taken about 350 m above the thalweg in the head region of Agadir Canyon shows a single coarse-grained turbidite, which resembles the composition of the Bed 5 event in the Madeira Abyssal Plain. Hence, the Bed 5 turbidite originated as a failure in the head region of the Agadir Canyon. Interestingly, this failure did not leave a major landslide scarp behind suggesting a small initial failure despite the large-volume deposits in the Madeira Abyssal Plain. The turbidity current must have eroded and incorporated huge amounts of sediments while traveling through the canyon.

  11. New sedimentary-core records and a recent co-seismic turbidite help to unravel the paleoseismicity of the Hikurangi Subduction Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip; Orpin, Alan; Howarth, Jamie; Patton, Jason; Lamarche, Geoffroy; Woelz, Susanne; Hopkins, Jenni; Gerring, Peter; Mitchell, John; Quinn, Will; McKeown, Monique; Ganguly, Aratrika; Banks, Simon; Davidson, Sam

    2017-04-01

    The Hikurangi margin straddles the convergent boundary between the Pacific and Australia tectonic plates and is New Zealand's potentially largest earthquake and tsunami hazard. The 3000 m-deep Hikurangi Trough, off eastern Marlborough, Wairarapa, Hawkes Bay, and East Cape, marks the location where the Pacific plate is subducting beneath the eastern continental margin of the North Island and northeastern South Island. To date the Hikurangi margin has a short historical record relative to the recurrence of great earthquakes and tsunami, and consequently the associated hazard remains poorly constrained. In October 2016 a new, international, 5-year project commenced to evaluate the pre-historic earthquake history of the margin. In November 2016 a RV Tangaroa voyage acquired 50 sediment cores up to 5.5 m long from sites on the continental margin between the Kaikoura coast and Poverty Bay. Core sites were selected using available 30 kHz multibeam bathymetry and backscatter data, sub-bottom acoustic profiles, archived sediment samples, and results from numerical modelling of turbidity currents. Sites fell into three general categories: turbidite distributary systems; small isolated slope-basins; and Hikurangi Channel, levees, and trough. Typical of the margin, the terrigenous-dominated sequence included layers of gravel, sand, mud, and volcanic ash. Many of these layers are turbidites, some of which may have been triggered by strong shaking associated with earthquakes (subduction megathrust and other coastal faults). Some cores contain up to 25 individual turbidites. This library of turbidites may provide the basis of new paleoseismic records that span several hundred kilometres of strike along the plate boundary. During the voyage the 14th November 2016 (NZDT) Mw 7.8 Kaikoura Earthquake occurred, causing strong ground shaking beneath the Kaikoura Canyon region. Sampling with a multicorer within five days of the earthquake, we recovered what appeared to be a very recently emplaced, still-fluidised, co-seismic turbidite about 10-20 cm thick over a very large region offshore of Marlborough and Wairarapa. This event appears to extend at least 300 km from Kaikoura and offers a rare opportunity to calibrate our paleoseismic data and to test hypotheses of turbidite triggering and emplacement. Up to five cores detected this highly fluidised layer overlying the pre-earthquake seabed, clearly visible as an oxidised layer. Our sampling spanned channel, channel-levee, and basin floor environments. On-board observations indicated that the turbidite was still settling on the seabed and the boundary with the overlying water column was diffuse. Further laboratory characterisation of the stratigraphy, physical properties, and benthic assemblages along with radionuclide analyses will test this hypothesis further.

  12. Late Cenozoic sea-level changes and the onset of glaciation: impact on continental slope progradation off eastern Canada

    USGS Publications Warehouse

    Piper, D.J.W.; Normark, W.R.

    1989-01-01

    Late Cenozoic sedimentation from four varied sites on the continental slopes off southeastern Canada has been analysed using high-resolution airgun multichannel seismic profiles, supplemented with some single channel data. Biostratigraphic ties are available to exploratory wells at three of the sites. Uniform, slow accumulation of hemipelagic sediments was locally terminated by the late Miocene sea-level lowering, which is also reflected in changes in foraminiferan faunas on the continental shelf. Data are very limited for the early Pliocene but suggest a return to slow hemipelagic sedimentation. At the beginning of the late Pliocene, there was a change in sedimentation style marked by a several-fold increase in accumulation rates and cutting of slope valleys. This late Pliocene cutting of slope valleys corresponds to the onset of late Cenozoic growth of the Laurentian Fan and the initiation of turbidite sedimentation on the Sohm Abyssal Plain. Although it corresponds to a time of sea-level lowering, the contrast with the late Miocene lowstand indicates that there must also have been a change in sediment delivery to the coastline, perhaps as a result of increased rainfall or development of valley glaciers. High sedimentation rates continued into the early Pleistocene, but the extent of slope dissection by gullies increased. Gully-cutting episodes alternated with sediment-draping episodes. Throughout the southeastern Canadian continental margin, there was a change in sedimentation style in the middle Pleistocene that resulted from extensive ice sheets crossing the continental shelf and delivering coarse sediment directly to the continental slope. ?? 1989.

  13. Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, D.M.; Snyder, W.S.; Spinosa, C.

    1991-02-01

    Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less

  14. Do submarine landslides and turbidites provide a faithful record of large magnitude earthquakes in the Western Mediterranean?

    NASA Astrophysics Data System (ADS)

    Clare, Michael

    2016-04-01

    Large earthquakes and associated tsunamis pose a potential risk to coastal communities. Earthquakes may trigger submarine landslides that mix with surrounding water to produce turbidity currents. Recent studies offshore Algeria have shown that earthquake-triggered turbidity currents can break important communication cables. If large earthquakes reliably trigger landslides and turbidity currents, then their deposits can be used as a long-term record to understand temporal trends in earthquake activity. It is important to understand in which settings this approach can be applied. We provide some suggestions for future Mediterranean palaeoseismic studies, based on learnings from three sites. Two long piston cores from the Balearic Abyssal Plain provide long-term (<150 ka) records of large volume turbidites. The frequency distribution form of turbidite recurrence indicates a constant hazard rate through time and is similar to the Poisson distribution attributed to large earthquake recurrence on a regional basis. Turbidite thickness varies in response to sea level, which is attributed to proximity and availability of sediment. While mean turbidite recurrence is similar to the seismogenic El Asnam fault in Algeria, geochemical analysis reveals not all turbidites were sourced from the Algerian margin. The basin plain record is instead an amalgamation of flows from Algeria, Sardinia, and river fed systems further to the north, many of which were not earthquake-triggered. Thus, such distal basin plain settings are not ideal sites for turbidite palaoeseimology. Boxcores from the eastern Algerian slope reveal a thin silty turbidite dated to ~700 ya. Given its similar appearance across a widespread area and correlative age, the turbidite is inferred to have been earthquake-triggered. More recent earthquakes that have affected the Algerian slope are not recorded, however. Unlike the central and western Algerian slopes, the eastern part lacks canyons and had limited sediment input in the Holocene. This indicates the eastern part is less sensitive to earthquake-triggered slope failures and is less suitable for future palaeoseismology investigations. Landslide events identified from contourite drift and mound sequences in the Tyrrhenian Sea indicate a regular temporal spacing. No landslides are identified over the last 10,000 years, however, and the inferred recurrence between events is in the order of tens to hundreds of thousands of years. The preconditioning agents and triggers for failures are interpreted to be related to oversteepening of depositional mounds, current-related erosion and geotechnical properties of contourite sediments, rather than earthquake effects. Major hiatuses (up to 2 Myr) result in local incompleteness of the depositional record. Therefore this setting is also unlikely to yield useful palaeoseismological records. This is not intended as a pessimistic tale, however, but instead aims to provide guidance for the future. Efforts should focus on sites that ideally feature: sediments that can be dated accurately from proximal to distal sites; near-constant sediment accumulation rates through time, that provide high enough sensitivities to failure; limited modification by bottom-currents; and, known historical earthquake events to correlate with dated deposits from box or multicoring.

  15. Architecture and sedimentology of turbidite reservoirs from Miocene Moco T and Webster zones, Midway-Sunset field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, M.H.; Hall, B.R.

    1989-03-01

    Thirty-five turbidite sandstone bodies from the Moco T and Webster reservoir zones were delineated for enhanced oil recovery projects in Mobil's MOCO FEE property, south Midway-Sunset field. The recognition of these sand bodies is based on mappable geometries determined from wireline log correlations, log character, core facies, reservoir characteristics, and comparison to nearby age-equivalent outcrops. These turbidite sands are composed of unconsolidated arkosic late Miocene sandstones (Stevens equivalent, Monterey Formation). They were deposited normal to paleoslope and trend southwest-northeast in an intraslope basin. Reservoir quality in the sandstone is very good, with average porosities of 33% and permeabilities of 1more » darcy.« less

  16. Extension, sedimentation and diapirism: understanding evolution of diapiric structures in the Central High Atlas using analogue modelling

    NASA Astrophysics Data System (ADS)

    Moragas, Mar; Vergés, Jaume; Nalpas, Thierry; Saura, Eduard; Diego Martín-Martín, Juan; Messager, Grégoire; Hunt, David William

    2017-04-01

    Analogue modelling has proven to be an essential tool for the study and analysis of the mechanisms involved in tectonic processes. Applied to salt tectonics, analogue modelling has been used to understand the mechanisms that trigger the onset of diapirs and the evolution of diapiric structures and minibasins. Analogue modelling has also been applied to analyse the impact of the progradation of sedimentary systems above a ductile layer, representing the source of diapirs. However, these models did not consider ongoing tectonic processes during progradation. To analyse how extension and sedimentary progradation influence on the formation of diapiric structures and their geometries, we present models composed of a mildly extension followed by post-extension period. Each model includes a particular sedimentary pattern: homogeneous sedimentation during extension and post-extension, homogeneous sedimentation during extension followed by prograding sedimentation during post-extension and prograding sedimentation during both extension and post-extension. Proximal high sedimentation rates enhance the mobilization of ductile material towards growing diapirs, resulting well-developed passive diapirs. Diapirs from distal domain of the model with post-extension progradation show silicone extrusions, that are caused by the decreased sedimentation rate associated to the progradation. By contrast, reduced sedimentation in the distal part of the model with syn- and post-extension progradation (3.5 times smaller than in the proximal domain) causes a limited migration of the silicone and hampers the transition from reactive diapirs to active and passive diapirs. These models show that the ratio between diapir growth and sedimentation rate, the time of the onset of the progradation and the relative thickness of the sedimentary cover beneath the prograding system have a clear impact on the final diapiric geometries. Additionally, we present two models with increasing amounts of shortening (6% and 10%). These models show that the presence and location of diapirs clearly controls the distribution of the deformation associated with the inversion, primarily affecting the post-diapiric layers in the vicinities of the salt structures whereas very little deformation occurs away from diapirs. This deformation pattern is observed in the Early to Middle Jurassic Tazoult salt wall and Azourki diapir of the Central High Atlas (Morocco). These structures show that the deformation associated with the Alpine orogeny is focused on the sedimentary units fossilizing the salt structures and mainly localised above them. The presented results provide key information that can be applied to other diapiric structures of the Central High Atlas diapiric basin and similar examples elsewhere. This study was part of a collaborative research project funded by Statoil Research Centre, Bergen (Norway). Additional funding by the CSIC-FSE 2007-2013 JAE-Doc postdoctoral research contract (E.S.), the projects Intramural Especial (CSIC 201330E030) and MITE (CGL 2014-59516). and by the Grup Consolidat de Recerca "Geologia Sedimentària" de la Generalitat de Catalunya (2014GSR251). We are grateful to Statoil for its support and permission to publish this study.

  17. Depositional dynamics in the El'gygytgyn Crater margin: implications for the 3.6 Ma old sediment archive

    NASA Astrophysics Data System (ADS)

    Schwamborn, G.; Fedorov, G.; Ostanin, N.; Schirrmeister, L.; Andreev, A.; El'gygytgyn Scientific Party, the

    2012-11-01

    The combination of permafrost history and dynamics, lake level changes and the tectonical framework is considered to play a crucial role for sediment delivery to El'gygytgyn Crater Lake, NE Russian Arctic. The purpose of this study is to propose a depositional framework based on analyses of the core strata from the lake margin and historical reconstructions from various studies at the site. A sedimentological program has been conducted using frozen core samples from the 141.5 m long El'gygytgyn 5011-3 permafrost well. The drill site is located in sedimentary permafrost west of the lake that partly fills the El'gygytgyn Crater. The total core sequence is interpreted as strata building up a progradational alluvial fan delta. Four macroscopically distinct sedimentary units are identified. Unit 1 (141.5-117.0 m) is comprised of ice-cemented, matrix-supported sandy gravel and intercalated sandy layers. Sandy layers represent sediments which rained out as particles in the deeper part of the water column under highly energetic conditions. Unit 2 (117.0-24.25 m) is dominated by ice-cemented, matrix-supported sandy gravel with individual gravel layers. Most of the Unit 2 diamicton is understood to result from alluvial wash and subsequent gravitational sliding of coarse-grained (sandy gravel) material on the basin slope. Unit 3 (24.25-8.5 m) has ice-cemented, matrix-supported sandy gravel that is interrupted by sand beds. These sandy beds are associated with flooding events and represent near-shore sandy shoals. Unit 4 (8.5-0.0 m) is ice-cemented, matrix-supported sandy gravel with varying ice content, mostly higher than below. It consists of slope material and creek fill deposits. The uppermost metre is the active layer (i.e. the top layer of soil with seasonal freeze and thaw) into which modern soil organic matter has been incorporated. The nature of the progradational sediment transport taking place from the western and northern crater margins may be related to the complementary occurrence of frequent turbiditic layers in the central lake basin, as is known from the lake sediment record. Slope processes such as gravitational sliding and sheet flooding occur especially during spring melt and promote mass wasting into the basin. Tectonics are inferred to have initiated the fan accumulation in the first place and possibly the off-centre displacement of the crater lake.

  18. Detrital zircon age and isotopic constraints on the provenance of turbidites from the southernmost part of the Beishan orogen, NW China

    NASA Astrophysics Data System (ADS)

    Guo, Q. Q.; Chung, S. L.; Lee, H. Y.; Xiao, W.; Hou, Q.; Li, S.

    2017-12-01

    The Altaids in Central and East Asia is one of the largest accretionary orogenic collages in the world. The Beishan orogen, linked the Tianshan and Xingmeng orogens, occupy a key position to trace the terminal processes of the Altaids. It comprises an assemblage of magmatic arcs and ophiolitic mélanges. The Permian clastic turbidites, situated between the Huaniushan arc and the Shibanshan arc, are the youngest reported deep-marine clasts in the Beishan orogen. They are separated into the Liuyuan turbidites (NT) to the north and the Heishankou turbidites (ST) to the south by the Liuyuan complex. Detrital zircon grains from the NT yielded a wide range, from 254-3111 Ma, with two age clusters at 273 Ma and 424 Ma, indicating they provenance from the Huaniushan arc to the north. Those from the ST yielded ages from 260-2209 Ma, with age clusters at 270 Ma, 295 Ma, 420 Ma and 878 Ma, indicating the provenance from the Shibanshan arc to the south. The youngest three grains from the NT yield a weighted mean age of 260 Ma and those from the ST an age of 255 Ma, indicating an End-Permian maximum depositional age. The Precambrian zircons of the NT have diverse ɛHf(t) values (-12.6 to +10.4), while those of the ST from -6 to -2.6, indicating distinguishing histories of their provenances. The NT have more positive ɛNd(t) values than the ST, suggesting more juvenile or less evolved crustal components in the source. Two contrasting provenances, together with data in the literature, define the latest suture in the Beishan region at 240-250 Ma. The younger peak of U-Pb analysis results of detrital zircons from the northern part of the final suture zone in the southern Altaids is younging eastward from 288 Ma to 247 Ma, which may characterize the closure of the Paleo-Asian Ocean from west to east in about 40 Ma. This identification of the latest suture in the southern Altaids provides new constraints on the Paleo-Asian Ocean - specifically the nature and timing of the end of the subduction - but also on the amalgamation of the super continental of Eurasia that consists of micro blocks with a variety of histories.

  19. Geochemistry of siliciclastic rocks in the Peninsular, Chugach, and Prince William terranes: Implications for the tectonic evolution of south central Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, S.A.; Casey, J.F.; Bradley, D.

    1992-01-01

    According to some interpretations, south-central Alaska consists of a series of unrelated terranes juxtaposed by dominantly strike-slip motions some time after formation. Alternatively, these so-called terranes may be related components of a seaward-facing arc, forearc, and accretionary prism. To shed new light on the tectonic history of this area, 150 samples of siliciclastic rocks were analyzed for major, trace, and rare earth elements (REE). Shales were sampled from the Upper Cretaceous Matanuska and Paleogene Chickaloon Fms. of the Peninsular Terrane (forearc basin); argillaceous melange matrix from the Mesozoic McHugh Complex and slate from turbidites of the Upper Cretaceous Valdez Groupmore » of the Chugach Terrane (landward part of accretionary prism); and slate from turbidites of the Paleogene Orea Group of the Prince William Terrane (seaward part of accretionary prism). One tectonic model that may fit these geochemical data requires an early linkage between the Peninsular and Chugach-Prince William composite terranes. The geochemical signatures suggest that the McHugh Complex was derived from a mafic volcanic source and may represent an early accretionary stage of sediments derived from an oceanic arc. The progressive continental enrichment of the Valdez and Orca Groups may reflect later accretionary processes during and/or after the collision of the Talkectna arc with the North American continent. The similar increasingly continental source documented in the geochemistry of the forearc basin shales of the Matanuska and Chickaloon Fms. may suggest: that the presently defined Peninsular, Chugach, and Prince William terranes collectively represent one continuously evolving, seaward facing arc, forearc, and accretionary prism complex.« less

  20. Small-scale spatial variation in near-surface turbidites around the JFAST site near the Japan Trench

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shuro; Kanamatsu, Toshiya; Kasaya, Takafumi

    2016-03-01

    This paper aims to improve our understanding of the depositional processes associated with turbidites related to recent earthquake events. A series of short sediment cores (ca. 20-30 cm long) were recovered from the landward slope of the Japan Trench around JFAST (Japan Trench Fast Drilling Project) site C0019 by a remotely operated vehicle, KAIKO 7000 II, and the sample sites were accurately located using an LBL (long base line) acoustic navigation system. The properties of the cores were analyzed using visual observations, soft X-ray radiographs, smear slides, measurement of anisotropy of magnetic susceptibility, and analysis of radioactive elements (134Cs, 137Cs, and excess 210Pb). For the first time, small-scale (ca. 200-1000 m) spatial variations in recent earthquake-triggered deep-sea turbidites, the formation of which was probably linked to the 2011 Tohoku-oki earthquake, are described. We also examine the submarine landslide that probably generated the sediment unit below the turbidites, which is thought to be an important process in the study area. The spatial distribution and characteristics of the near-surface seismoturbidite obtained immediately after the earthquake, presented here, will enable precise calibration of offshore evidence of recent earthquakes, and thus facilitate the use of the sedimentary archive for paleoseismic interpretations. Furthermore, although sampling for turbidite seismology on steep slopes has not been widely performed previously, our results suggest that the recent event deposits may be continuously tracked from the slope to the basin using a combination of the present sampling method and conventional large-scale investigation techniques.

  1. Deepwater Gulf of Mexico turbidites -- Compaction effects on porosity and permeability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermeier, R.M.

    1995-06-01

    The deepwater Gulf of Mexico is now a major area of activity for the US oil industry. Compaction causes particular concern because most prospective deepwater reservoirs are highly geo-pressured and many have limited aquifer support; water injection may also be problematic. To address some of the issues associated with compaction, the authors initiated a special core-analysis program to study compaction effects on turbidite sand porosity and permeability specifically. This program also addressed a number of subsidiary but no less important issues, such as sample characterization and quality, sample preparation, and test procedures. These issues are particularly pertinent, because Gulf ofmore » Mexico turbidites are generally unconsolidated, loose sands, and are thus susceptible to a whole array of potentially serious core-disturbing processes. One key result of the special core analysis program is that turbidite compressibilities exhibit large variations in both magnitude and stress dependence. These variations correlate with creep response in the laboratory measurements. The effects of compaction on permeability are significant. To eliminate complicating effects caused by fines movement, the authors made oil flow measurements at initial water saturation. The measurements indicate compaction reduces permeability four to five times more than porosity on a relative basis.« less

  2. Collisional Cascades Following Triton's Capture

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Hamilton, Douglas P.; Stewart-Mukhopadhyay, Sarah T.

    2017-10-01

    Neptune's moon Triton is widely thought to have been captured from heliocentric orbit, most likely through binary dissociation (Agnor and Hamilton, 2006). Triton's original eccentric orbit must have been subsequently circularized by satellite tides (Goldreich et al. 1989). Cuk and Gladman (2005) found that Kozai oscillations make early tidal evolution inefficient, and have proposed that collisions between Triton and debris from pre-existing satellites was the dominant mechanism of shrinking Triton's large post-capture orbit. However, Cuk and Hamilton (DPS 2016), using numerical simulations and results of Stewart and Leinhardt (2012), have found that collisions between regular satellites are unlikely to be destructive, while collisions between prograde moons and Triton are certainly erosive if not catastrophic. An obvious outcome would be pre-existing moon material gradually grinding down Triton and making it reaccrete in the local Laplace plane, in conflict with Triton's large current inclination. We propose that the crucial ingredient for understanding the early evolution of the Neptunian system are the collisions between the moons and the prograde and retrograde debris originating from the pre-existing moons and Triton. In particular, we expect early erosive impact(s) on Triton to generate debris that will, in subsequent collisions, disrupt the regular satellites. If the retrograde material were to dominate at some planetocentric distances, the end result may be a large cloud or disk of retrograde debris that would be accreted by Triton, shrinking Triton's orbit. Some of the prograde debris could survive in a compact disk interior to Triton's pericenter, eventually forming the inner moons of Neptune. We will present results of numerical modeling of these complex dynamical processes at the meeting.

  3. Controls on facies and sequence stratigraphy of an upper Miocene carbonate ramp and platform, Melilla basin, NE Morocco

    USGS Publications Warehouse

    Cunningham, K.J.; Collins, Luke S.

    2002-01-01

    Upwelling of cool seawater, paleoceanographic circulation, paleoclimate, local tectonics and relative sea-level change controlled the lithofacies and sequence stratigraphy of a carbonate ramp and overlying platform that are part of a temporally well constrained carbonate complex in the Melilla basin, northeastern Morocco. At Melilla, from oldest to youngest, a third-order depositional sequence within the carbonate complex contains (1) a retrogradational, transgressive, warm temperate-type rhodalgal ramp; (2) an early highstand, progradational, bioclastic platform composed mainly of a temperate-type, bivalve-rich molechfor facies; and (3) late highstand, progradational to downstepping, subtropical/tropical-type chlorozoan fringing Porites reefs. The change from rhodalgal ramp to molechfor platform occurred at 7.0??0.14 Ma near the Tortonian/Messinian boundary. During a late stage in the development of the bioclastic platform a transition from temperate-type molechfor facies to subtropical/tropical-type chlorozoan facies occurred and is bracketed by chron 3An.2n (??? 6.3-6.6 Ma). Comparison to a well-dated carbonate complex in southeastern Spain at Cabo de Gata suggests that upwelling of cool seawater influenced production of temperate-type limestone within the ramp and platform at Melilla during postulated late Tortonian-early Messinian subtropical/tropical paleoclimatic conditions in the western Paleo-Mediterranean region. The upwelling of cool seawater across the bioclastic platform at Melilla could be related to the beginning of 'siphoning' of deep, cold Atlantic waters into the Paleo-Mediterranean Sea at 7.17 Ma. The facies change within the bioclastic platform from molechfor to chlorozoan facies may be coincident with a reduction of the siphoning of Atlantic waters and the end of upwelling at Melilla during chron 3An.2n. The ramp contains one retrogradational parasequence and the bioclastic platform three progradational parasequences. Minor erosional surfaces that bound the upper surface of the ramp and upper surface of the oldest platform parasequence are related to relative falls in sea level induced by local volcanism and associated tectonic uplift. These local relative falls had little influence on a broader-scale rise to stillstand in relative sea level that controlled development of the transgressive and early highstand systems tracts represented in the ramp and platform, respectively. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. The fate of carbon and CO2 - fluid-rock interaction during subduction metamorphism of serpentinites

    NASA Astrophysics Data System (ADS)

    Menzel, Manuel D.; Garrido, Carlos J.; López Sánchez-Vizcaíno, Vicente; Marchesi, Claudio; Hidas, Károly

    2016-04-01

    Given to its large relevance for present and past climate studies, the deep carbon cycle received increasing attention recently. However, there are still many open questions concerning total mass fluxes and transport processes between the different carbon reservoirs in the Earth's interior. One key issue is the carbon transfer from the subducting slab into fluids and rocks in the slab and mantle wedge. This transfer is controlled by the amount and speciation of stable carbon-bearing phases, which have a strong impact on the pH, redox conditions and trace-element budget of slab fluids. As recent experiments and thermodynamic modeling have shown, water released from dehydrating serpentinites has a great potential to produce CO2-enriched slab fluids by dissolution of carbonate minerals. To constrain the fate of carbon and CO2-fluid-rock interactions during subduction metamorphism of serpentinites, we have studied carbonate-bearing serpentinites recording different prograde evolutions from antigorite schists to Chl-harzburgites in high-P massifs of the Nevado-Filabride Complex (Betic Cordillera, S. Spain). Our results indicate that dissolution of dolomite in marbles in contact with dehydrating serpentinites is spatially limited during prograde metamorphism of carbonate-bearing serpentinites, but it can lead to the formation of silicate-rich zones in marbles close to the contacts. In lower grade serpentinite massifs (1.0-1.5 GPa / 550 °C), the presence of marble lenses in contact with antigorite schists appears to promote local dehydration of serpentinite coupled with carbonation of antigorite, forming Cpx-Tr-Chl-bearing high grade ophicarbonate zones. At the Cerro del Almirez ultramafic massif, where a dehydration front from antigorite-serpentinite to prograde Chl-harzburgite is preserved (1.9 GPa / 680 °C), a significant amount of carbon is retained in prograde Chl-harzburgites and Tr-Dol-marble lenses. This observation is at odds with thermodynamic models that predict efficient carbonate dissolution during dehydration of carbonate-bearing antigorite serpentinite, and indicates that in natural systems substantial amounts of carbon can be recycled into the deep mantle via subduction of carbonate-bearing serpentinite.

  5. Testing 8000 years of submarine paleoseismicity record offshore western Algeria : First evidence for irregular seismic cycles

    NASA Astrophysics Data System (ADS)

    Ratzov, G.; Cattaneo, A.; Babonneau, N.; Yelles, K.; Bracene, R.; Deverchere, J.

    2012-12-01

    It is commonly assumed that stress buildup along a given fault is proportional to the time elapsed since the previous earthquake. Although the resulting « seismic gap » hypothesis suits well for moderate magnitude earthquakes (Mw 4-5), large events (Mw>6) are hardly predictable and depict great variation in recurrence intervals. Models based on stress transfer and interactions between faults argue that an earthquake may promote or delay the occurrence of next earthquakes on adjacent faults by increasing or lowering the level of static stress. The Algerian margin is a Cenozoic passive margin presently inverted within the slow convergence between Africa and Eurasia plates (~3-6 mm/yr). The western margin experienced two large earthquakes in 1954 (Orléansville, M 6.7) and 1980 (El Asnam, M 7.3), supporting an interaction between the two faults. To get meaningful statistics of large earthquakes recurrence intervals over numerous seismic cycles, we conducted a submarine paleoseismicity investigation based on turbidite chronostratigraphy. As evidenced on the Cascadia subduction zone, synchronous turbidites accumulated over a large area and originated from independent sources are likely triggered by an earthquake. To test the method on a slowly convergent margin, we analyze turbidites from three sediment cores collected during the Maradja (2003) and Prisme (2007) cruises off the 1954-1980 source areas. We use X-ray radioscopy, XRF major elements counter, magnetic susceptibility, and grain-size distribution to accurately discriminate turbidites from hemipelagites. We date turbidites by calculating hemipelagic sedimentation rates obtained with radiocarbon ages, and interpolate the rates between turbidites. Finally, the age of events is compared with the only paleoseismic study available on land (El Asnam fault). Fourteen possible seismic events are identified by the counting and correlation of turbidites over the last 8 ka. Most events are correlated with the paleoseismic record of the El Asnam fault, but uncorrelated events suggest that other faults were active. Only the 1954 event (not the 1980) triggered a turbidity current, implying that the sediment buffer on the continental shelf could not be reloaded in 26 years, thus arguing for a minimum time resolution of our method. The new paleoseismic catalog shows a recurrence interval of 300-700 years for most events, but also a great interval of >1200 years without any major earthquake. This result suggests that the level of static stress may have drastically dropped as a result of three main events occurring within the 800 years prior the quiescence period.

  6. New Evidence for opening of the Black Sea; U-Pb analysis of detrital zircons and paleocurrent measurements of the Early Cretaceous turbidites

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Kylander-Clark, Andrew R. C.

    2015-04-01

    Shelf to submarine turbidite fan deposits of the Early Cretaceous crop out over a large area along the southern coast of the Black Sea. Early Cretaceous turbidites have a thickness of over 2000 meters in the Central Pontides. The shelf of this turbidite basin, represented by shallow marine clastics and carbonates, crops out along the Black Sea coast between Zonguldak and Amasra. Paleocurrent directions in the Lower Cretaceous turbidites were measured in 90 localities using mostly flute and groove casts and to a lesser extend cross-beds. At the eastern part of the basin, the paleocurrents were from north to south. It is scattered in the west of the basin, however, the main paleocurrent directions were from the north. Detrital zircons were analyzed using LA-ICP-MS in eleven samples from the turbiditic sandstones and two samples from the shelf sandstones. Four samples are from the western part (two samples from shelf sediments), four samples from the central part and five samples from the eastern part of the Lower Cretaceous basin. 1085 of 1348 zircon analyses are concordant with rates of 95-105% and the zircon ages range between 141 ± 4 Ma (Berriasian) and 3469 ± 8 Ma (Paleoarchean). 22% of the detrital zircon ages are Paleoproterozoic, 20% Archean, 16% Carboniferous, 13% Neoproterozoic, 8% Permian, 6% Triassic, 5% Mesoproterozoic and 11% other ages. In the western part of the basin the Carboniferous zircons constitute the main population with a less dominant peak at Ordovician, Cambrian and Late Neoproterozoic. The zircons from the center of the basin show scattered distribution with dominant populations in the Triassic, Permian, Carboniferous, Silurian, Paleoproterozoic, Early Neoproterozoic-Late Mesoproterozoic, and minor peak at Late Neoarchean. On the other hand, zircons from the eastern most part of the basin, show dominant peaks in the Paleoproterozoic, Mesoarchean and Permian with minor peaks in Triassic, Carboniferous and Silurian. Anatolia and the Balkans have a late Neoproterozoic basement, whereas the East European Platform (EEP) has a Paleoproterozoic-Archean basement. The zircon and the paleocurrent data indicate that the eastern and central part of the Early Cretaceous turbidite basin was mainly fed by EEP, whereas local sources were dominant in the western part of the basin and especially fed from a crystalline basement of the Istanbul zone. This in turn indicates that the Black Sea did not form a major barrier between the Pontides and the EEP and was probably not open during the Early Cretaceous. Keywords: Central Pontides, Early Cretaceous, Paleocurrent, Provenance, U-Pb Detrital zircon.

  7. Metamorphism in the Potomac composite terrane, Virginia-Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, A.A. Jr.

    1985-01-01

    Metamorphic rocks in the Potomac Valley occur in three allochthon-precursory melange pairs unconformably overlain by the Popes Head Formation which is at greenschist facies of metamorphism. The highest motif, the Piney Branch Complex and Yorkshire Formation are also in the greenschist facies. The middle motif, consists of the Peters Creek Schist and the Sykesville Formation. Quartzose schists and metagraywacke of the Peters Creek contain serpentinite debris and have had a complex metamorphic history: Barrovian prograde to amphibolite facies (with sillimanite), a localized retrograde event producing chlorite phyllonite, and a later greenschist prograde event. The Sykeville is at biotite +/- garnetmore » grade and contains deformed olistoliths of Peters Creek, including phyllonite, at various grades. The lower motif consists of the Annandale Group (pelitic schists and metasandstone) and Indian Run Formation. The Annandale has experienced two greenschist metamorphisms. The Indian Run is at biotite +/- garnet grade and contains previously metamorphosed and deformed olistoliths of Annandale. The allochthons have had different histories, but after stacking they were metamorphosed with their melanges and the Popes Head to biotite grade. The Popes Head has experienced three phases of folding, the earliest synkinematic with Occoquan emplacement. These fold phases are superposed on earlier structures in the older rocks and are probably of Late Cambrian age (Penobscotian). Earlier deformation is probably of Late Proterozoic age (Cadomian). Neither of these deformations is recognized in North American rocks.« less

  8. The Late-Quaternary climatic signal recorded in a deep-sea turbiditic levee (Rhône Neofan, Gulf of Lions, NW Mediterranean): palynological constraints

    NASA Astrophysics Data System (ADS)

    Beaudouin, Célia; Dennielou, Bernard; Melki, Tarek; Guichard, François; Kallel, Nejib; Berné, Serge; Huchon, Agnès

    2004-11-01

    Siliciclastic turbidites represent huge volumes of sediments, which are of particular significance for (1) petroleum researchers, interested in their potential as oil reservoirs and (2) sedimentologists, who aim at understanding sediment transport processes from continent to deep-basins. An important challenge when studying marine turbidites has been to establish a reliable chronology for the deposits. Indeed, conventional marine proxies applied to hemipelagic sediments are often unreliable in detrital clays. In siliciclastic turbidites, those proxies can be used only in hemipelagic intervals, providing a poor constraint on their chronology. In this study, we have used sediments from the Rhône Neofan (NW Mediterranean Sea) to demonstrate that pollen grains can provide a high-resolution chronostratigraphical framework for detrital clays in turbidites. Vegetation changes occurring from the end of Marine Isotopic Stage 3 to the end of Marine Isotopic Stage 2 (from ˜30 to ˜18 ka cal. BP) are clearly recorded where other proxies have failed previously, mainly because the scarcity of foraminifers in these sediments prevented any continuous Sea Surface Temperature (SST) record and radiocarbon dating to be obtained. We show also that the use of palynology in turbidite deposits is able to contribute to oceanographical and sedimentological purposes: (1) Pinus pollen grains can document the timing of sea-level rise, (2) the ratio between pollen grains transported from the continent via rivers and dinoflagellate cysts (elutriating) allows us to distinguish clearly detrital sediments from pelagic clays. Finally, taken together, all these tools show evidence that the Rhône River disconnected from the canyon during the sea-level rise and thus evidence the subsequent rapid starvation of the neofan at 18.5 ka cal. BP. Younger sediments are hemipelagic: the frequency of foraminifers allowed to date sediments with radiocarbon. First results of Sea Surface Temperature obtained on foraminifers are in good agreement with the dinoflagellate cysts climatic signal. Both provide information on the end of the deglaciation and the Holocene.

  9. Sedimentologic and Geometric Characterization of Turbidites of Brazos-Trinity Basin IV in the Gulf of Mexico: Preliminary Results of IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Gutierrez-Pastor, J.; Pirmez, C.; Flemings, P. B.; Behrmann, J. H.; John, C. M.

    2005-12-01

    Brazos Trinity Basin IV is located about 200 km offshore Texas, and belongs to a linked system of four intra slope mini basins. Basin IV provides a type section to characterize turbidites in salt withdrawal mini-basins of the Gulf of Mexico. IODP Expedition 308 has cored and logged complete pre-fan and fan sequences that are clearly distinguished with high-resolution seismic profiles at Brazos Trinity Basin IV at Sites U1319, U1320 and U1321. Seismically imaged pre-fan and fan units also can be distinguished and correlated with the sedimentological and logging data. Turbidite facies display distinct properties in terms of grain size, bed thickness, color, organic matter content, vertical organization of beds and lateral distribution in all the units of the fan through the basin. The pre-fan sequence is composed of terrigenous laminated clay with color banding and it is interpreted to result from deposition from fluvial plumes and/or muddy turbidity currents overspilling from basins upstream of Basin IV. The lower fan is characterized by laminated and bioturbated muds with thin beds of silt and sand, and represent the initial infill of the basin by mostly muddy turbidity currents, although an exceptionally sand-rich unit occurs at the base of the lower fan. The middle and upper fan represent the main pulses of turbidity current influx into Basin IV, and contain fine to medium sand turbidite beds organized in packets ranging in thickness from 5 to 25 m. The middle fan displays an overall upward increase in sand content at Site U1320, suggesting increased flow by-pass from the updip basins through time. Key examples of turbidites from each fan unit are analysed in detail to infer the depositional processes and infilling history of Brazos-Trinity Basin IV. The study of turbidites in a calibrated basin such as Basin IV provides ground truth for the sedimentological processes and resultant seismic facies, which can be used to interpret the infill history of other intraslope basins with similar seismic facies in the Gulf of Mexico where well calibration is not available.

  10. Late Cambrian - Early Ordovician turbidites of Gorny Altai (Russia): Compositions, sources, deposition settings, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Kruk, Nikolai N.; Kuibida, Yana V.; Shokalsky, Sergey P.; Kiselev, Vladimir I.; Gusev, Nikolay I.

    2018-06-01

    The Cambrian-Ordovician transition was the time of several key events in the history of Central Asia. They were the accretion of Mariana-type island arc systems to the Siberian continent, the related large-scale orogeny and intrusions of basaltic and granitic magma and the formation of a huge turbidite basin commensurate with the Bengal Gulf basin in the western part of the Central Asian orogenic belt (CAOB). The structure of the basin, as well as the sources and environments of deposition remain open to discussion. This paper presents new major- and trace-element data on Late-Cambrian-Early Ordovician turbidites from different parts of the Russian Altai and a synthesis of Nd isotope composition and ages of detrital zircons. The turbidites share chemical similarity with material shed from weathered continental arcs. Broad variations of CIA (39-73) and ICV (0.63-1.66) signatures in sandstones suggest origin from diverse sources and absence of significant sorting. Trace elements vary considerably and have generally similar patterns in rocks from different terranes. On the other hand, there are at least two provinces according to Nd isotope composition and age of detrital zircons. Samples from eastern Russian Altai contain only Phanerozoic zircons and have Nd isotope ratios similar to those in Early Cambrian island arcs (εNdt + 4.4… + 5.4; TNd(DM)-2-st = 0.8-0.9 Ga). Samples from central, western, and southern parts of Russian Altai contain Precambrian zircons (some as old as Late Archean) and have a less radiogenic Nd composition (εNdt up to -3.6; TNd(DM)-2-st up to 1.5 Ga). The chemical signatures of Late Cambrian to Early Ordovician turbidites indicate a provenance chemically more mature than the island arc rocks, and the presence of zircons with 510-490 Ma ages disproves their genetic relation with island arcs. The turbidite basin formed simultaneously with peaks of granitic and alkali-basaltic magmatism in the western Central Asian orogen and resulted from interplay of plate tectonic and plume tectonic processes.

  11. Transposition of a Process-Based Model, Flumy: from Meandering Fluvial Systems to Channelized Turbidite Systems

    NASA Astrophysics Data System (ADS)

    Lemay, M.; Cojan, I.; Rivoirard, J.; Grimaud, J. L.; Ors, F.

    2017-12-01

    Channelized turbidite systems are among the most important hydrocarbon reservoirs. Yet building realistic turbidite reservoir models is still a challenge. Flumy has been firstly developed to simulate the long-term evolution of aggrading meandering fluvial systems in order to build facies reservoir models. In this study, Flumy has been transposed to channelized turbidite systems. The channel migration linear model of Imran et al. (1999) dedicated to subaqueous flows has been implemented. The whole model has been calibrated taking into account the differences on channel morphology, avulsion frequency, and aggradation and migration rates. This calibration and the comparison of the model to natural systems rely on: i) the channel planform morphology characterized by the meander wavelength, amplitude, and sinuosity; ii) the channel trajectory and the resulting stratigraphic architecture described using Jobe et al. (2016) indexes. Flumy succeeds in reproducing turbidite channel planform morphology as shown by the mean sinuosity of 1.7, the wavelength to width and amplitude to width ratios around 4 and 1 respectively. First-order meander architecture, characterized by the ratios meander belt width versus channel width, meander belt thickness versus channel depth, and the deduced stratigraphic mobility number (the ratio between lateral versus vertical channel displacements), is also well reproduced: 2.5, 3.8, and 0.6 respectively. Both lateral and downstream channel normalized migrations are around 3.5 times lower than in fluvial systems. All these values are absolutely coherent with the observations. In the other hand, the channel trajectory observed on seismic cross sections (hockey stick geometry) is not fully reproduced: the local stratigraphic mobility number is divided upward by 3 whereas up to 10 is expected. This behavior is generally explained in the literature by an increasing aggradation rate through time and/or flow stripping at outer bend that decreases lateral migration rate (Peakall et al., 2000). These processes are not currently simulated in Flumy, and need to be implemented. This study shows that Flumy model reproduces quite well the first order characteristics observed in the nature and can be used to simulate channelized turbidite reservoirs.

  12. Silurian trace fossils in carbonate turbidites from the Alexander Arc of southeastern Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soja, C.M.

    Early to Late Silurian (Wenlock-Ludlow) body and trace fossils from the Heceta Formation are preserved in the oldest widespread carbonates in the Alexander terrane of southeastern Alaska. They represent the earliest shelly benthos to inhabit a diversity of marine environments and are important indicators of the early stages in benthic community development within this ancient island arc. The trace fossils are significant because they add to a small but growing body of knowledge about ichnofaunas in deep-water Paleozoic carbonates. Proximal to medial carbonate turbidites yield a low-diversity suite of trace fossils that comprises five distinct types of biogenic structures. Beddingmore » planes reveal simple epichnial burrows (Planolites), cross-cutting burrows (Fucusopsis), and tiny cylindrical burrows. These and other casts, including chondrites( )-like burrow clusters, represent the feeding activities (fodinichnia) of preturbidite animals. Hypichnial burrows and rare endichnial traces reflect the activities of postturbidite animals. Broken and offset traces indicate that infaunal biota commenced burrowing before slumping and subsequent soft-sediment deformation. The abundance and density of trace fossils increases offshore in the medial turbidites associated with a decrease in the size and amount of coarse particles and with an increase in mud and preserved organic material. Although diversity levels are similar in the proximal and medial turbidite facies, they are much lower than in Paleozoic siliciclastic turbidites. This may reflect unfavorable environmental conditions for infaunal biota or paleobiogeographic isolation of the Alexander terrane during the Silurian. A greater use of trace fossils in terrane analysis will help to resolve this issue and should provide new data for reconstructing the paleogeography of circum-Pacific terranes.« less

  13. Model for turbidite-to-contourite continuum and multiple process transport in deep marine settings: examples in the rock record

    NASA Astrophysics Data System (ADS)

    Stanley, Daniel Jean

    1993-01-01

    Petrological analysis of geological sections in St. Croix in the Caribbean, the Niesenflysch in Switzerland and the Annot Sandstone in the French Maritime Alps sheds light on multiple process transport in deep marine settings. A model depicting a turbidite-to-contourite continuum of stratal types is applied to these three rock units. Recognition of a diverse suite of bedforms, coupled with analysis of paleocurrents, helps to better interpret depositional origin and basin paleogeography. The St. Croix strata record emplacement by gravity flows and, subsequently, by bottom currents flowing parallel to the base of slope; these sediments accumulated on a lower slope apron. A Niesenflysch section in the Swiss Alps west of Adelboden includes turbidites which were deposited at fairly regular intervals beyond the base of slope, in a setting more distal than that of the St. Croix sequences. Most of these turbidites appear to have been partially reworked by bottom currents related to basin circulation or to density flows from the basin margins. In the Annot Sandstone, reworked turbidites (termed transitional variants) and packets of entirely rippled strata are observed in submarine fan and slope sequences in the Peira-Cava area. In contrast to those in St. Croix and the Niesenflysch, the current-emplaced deposits of the Annot Sandstone are directly associated with fan-valley deposits. Such rippled strata in channels are deposits of gravity flow origin which were subsequently reworked downslope by currents generated by successive gravity flows; they also occur on levees by overbank flow. Consideration of multiple process transport is of special help to interpret sections which are poorly exposed, or which can be examined in cores, or which are located in sequences that have been highly deformed structurally.

  14. NEXT GENERATION OF TELESCOPES OR DYNAMICS REQUIRED TO DETERMINE IF EXO-MOONS HAVE PROGRADE OR RETROGRADE ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Karen M.; Fujii, Yuka

    2014-08-20

    We survey the methods proposed in the literature for detecting moons of extrasolar planets in terms of their ability to distinguish between prograde and retrograde moon orbits, an important tracer of the moon formation channel. We find that most moon detection methods, in particular, sensitive methods for detecting moons of transiting planets, cannot observationally distinguishing prograde and retrograde moon orbits. The prograde and retrograde cases can only be distinguished where the dynamical evolution of the orbit due to, e.g., three body effects is detectable, where one of the two cases is dynamically unstable, or where new observational facilities, which canmore » implement a technique capable of differentiating the two cases, come online. In particular, directly imaged planets are promising targets because repeated spectral and photometric measurements, which are required to determine moon orbit direction, could also be conducted with the primary interest of characterizing the planet itself.« less

  15. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton

    NASA Astrophysics Data System (ADS)

    Lu, Jun-Sheng; Zhai, Ming-Guo; Lu, Lin-Sheng; Wang, Hao Y. C.; Chen, Hong-Xu; Peng, Tao; Wu, Chun-Ming; Zhao, Tai-Ping

    2017-02-01

    The Taihua metamorphic complex in the southern part of the North China Craton is composed of tonalite-trondhjemite-granodiorite (TTG) gneisses, amphibolites, metapelitic gneisses, marbles, quartzites, and banded iron formations (BIFs). The protoliths of the complex have ages ranging from ∼2.1 to ∼2.9 Ga and was metamorphosed under the upper amphibolite to granulite facies conditions with NWW-SEE-striking gneissosity. Metapelitites from the Wugang area have three stages of metamorphic mineral assemblages. The prograde metamorphic mineral assemblage (M1) includes biotite + plagioclase + quartz + ilmenite preserved as inclusions in garnet porphyroblasts. The peak mineral assemblage (M2) consists of garnet porphyroblasts and matrix minerals of sillimanite + biotite + plagioclase + quartz + K-feldspar + ilmenite + rutile + pyrite. The retrograde mineral assemblage (M3), biotite + plagioclase + quartz, occurs as symplectic assemblages surrounding embayed garnet porphyroblasts. Garnet porphyroblasts are chemically zoned. Pseudosection calculated in the NCKFMASHTO model system suggests that mantles of garnet porphyroblasts define high-pressure granulites facies P-T conditions of 12.2 kbar and 830 °C, whereas garnet rims record P-T conditions of 10.2 kbar and 840 °C. Integrating the prograde mineral assemblages, zoning of garnet porphyroblasts with symplectic assemblages, a clockwise metamorphic P-T path can be retrieved. High resolution SIMS U-Pb dating and LA-ICP-MS trace element measurements of the metamorphic zircons demonstrate that metapelites in Wugang possibly record the peak or near peak metamorphic ages of ∼1.92 Ga. Furthermore, 40Ar/39Ar dating of biotite in metapelites suggests that the cooling of the Taihua complex may have lasted until ∼1.83 Ga. Therefore, a long-lived Palaeoproterozoic metamorphic event may define a slow exhumation process. Field relationship and new metamorphic data for the Taihua metamorphic complex does not support the previous model in which the Tran-North China Craton (TNCO) was formed through the collision between the East and West blocks.

  16. Early diagenesis in the Congo deep-sea fan sediments dominated by massive terrigenous deposits: Part I - Oxygen consumption and organic carbon mineralization using a micro-electrode approach

    NASA Astrophysics Data System (ADS)

    Pozzato, Lara; Cathalot, Cécile; Berrached, Chabha; Toussaint, Flora; Stetten, Elsa; Caprais, Jean-Claude; Pastor, Lucie; Olu, Karine; Rabouille, Christophe

    2017-08-01

    Organic matter (OM) transfer from the continent to the ocean occurs across margins which constitute a major area of OM recycling and burial. The lobe complex of the Congo deep-sea fan is connected to the river mouth by a canyon and alimented by recurrent turbidity currents, containing a large proportion of labile terrigenous OM and producing high sedimentation rates. These inputs support the development of ecosystems harboring rich assemblages of vesicomyid bivalves and bacterial mats, called Habitats. Here, we present O2 microprofiles and diffusive oxygen uptake rates (DOUs) obtained during the CONGOLOBE project at six sites of this active lobe complex by in situ and on-board methods based on micro-electrode profiling. The dataset is used to determine remineralization rates and study the biogeochemical dynamics of different ecosystems of the lobe area, in order to compare levee and background sediments to the Habitats developed on the flanks of the main turbiditic channel. Levee and background sediments are characterized by significantly higher DOUs than abyssal sediments at 5000 m meters depth (2-5 mmol O2 m-2 d-1versus 1.5-2.5 mmol O2 m-2 d-1) and the Habitats are hotspots of OM remineralization with DOU values ranging between 8 and 40 mmol O2 m-2 d-1. By comparing sites near the active channel to a site located 50 km away, we show that the lobe connection to the main turbiditic channel is vital to the dense benthic communities.

  17. Trace fossils and sedimentology of a Late Cretaceous Progradational Barrier Island sequence: Bearpaw and Horseshoe Canyon Formations, Dorothy, Alberta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, T.D.; Pemberton, A.G.; Ranger, M.J.

    A well-exposed example of a regressive barrier island succession crops out in the Alberta badlands along the Red Deer River Valley. In the most landward (northwestern) corner of the study area, only shallow-water and subaerial deposits are represented and are dominated by tidal inlet related facies. Seaward (southeast), water depth increases and the succession is typified by open-marine beach to offshore-related facies arranged in coarsening-upward progradational sequence. Detailed sedimentologic and ichnologic analyses of this sequence have allowed for its division into three distinct environmental zones (lower, middle, and upper). The lower zone comprises a laterally diverse assemblage of storm-influenced, lowermore » shoreface through offshore deposits. Outcrop in the northeast is dominated by thick beds of hummocky and/or swaley cross-stratified storm sand. In the southeast, storm events have only minor influence. This lower zone contains a wide diversity of well-preserved trace fossils whose distribution appears to have been influenced by gradients in wave energy, bottom stagnation, and the interplay of storm and fair-weather processes. The middle zone records deposition across an upper shoreface environment. Here, horizontal to low-angle bedding predominates, with interspersed sets of small- and large-scale cross-bedding increasing toward the top. A characteristic feature of the upper part of this zone is the lack of biogenic structures suggesting deposition in an exposed high-energy surf zone. The upper zone records intertidal to supratidal progradation of the shoreline complex. Planar-laminated sandstone forms a distinct foreshore interval above which rhizoliths and organic material become increasingly abundant, marking transition to the backshore. A significant feature of this zone is the occurrence of an intensely bioturbated interval toward the top of the foreshore.« less

  18. Sediment-hosted contaminants and distribution patterns in the Mississippi and Atchafalaya River Deltas

    USGS Publications Warehouse

    Flocks, James G.; Kindinger, Jack G.; Ferina, Nicholas; Dreher, Chandra

    2002-01-01

    The Mississippi and Atchafalaya Rivers transport very large amounts of bedload and suspended sediments to the deltaic and coastal environments of the northern Gulf of Mexico. Absorbed onto these sediments are contaminants that may be detrimental to the environment. To adequately assess the impact of these contaminants it is first necessary to develop an understanding of sediment distribution patterns in these deltaic systems. The distribution patterns are defined by deltaic progradational cycles. Once these patterns are identified, the natural and industrial contaminant inventories and their depositional histories can be reconstructed. Delta progradation is a function of sediment discharge, as well as channel and receiving-basin dimensions. Fluvial energy controls the sediment distribution pattern, resulting in a coarse grained or sandy framework, infilled with finer grained material occupying the overbank, interdistributary bays, wetlands and abandoned channels. It has been shown that these fine-grained sediments can carry contaminants through absorption and intern them in the sediment column or redistribute them depending on progradation or degradation of the delta deposit. Sediment distribution patterns in delta complexes can be determined through high-resolution geophysical surveys and groundtruthed with direct sampling. In the Atchafalaya and Mississippi deltas, remote sensing using High-Resolution Single-Channel Seismic Profiling (HRSP) and Sidescan Sonar was correlated to 20-ft vibracores to develop a near-surface geologic framework that identifies variability in recent sediment distribution patterns. The surveys identified bedload sand waves, abandoned-channel back-fill, prodelta and distributary mouth bars within the most recently active portions of the deltas. These depositional features respond to changes in deltaic processes and through their response may intern or transport absorbed contaminants. Characterizing these features provides insight into the fate of sediment-hosted contaminants.

  19. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngah, K.B.

    1996-12-31

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of themore » century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very {open_quote}high risk{close_quotes} targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell`s recent major gas discovery from a turbidite play in this basin.« less

  20. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngah, K.B.

    1996-01-01

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of themore » century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very [open quote]high risk[close quotes] targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell's recent major gas discovery from a turbidite play in this basin.« less

  1. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)

    NASA Astrophysics Data System (ADS)

    Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.

    2016-10-01

    This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.

  2. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  3. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    NASA Astrophysics Data System (ADS)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions (including turbiditic successions). In the Late Cisuralian (stage 4), important differences in sedimentation patterns are registered for the western arc-related basins and eastern intraplate basins. The former were locally dominated by volcaniclastic sediments or marine deposits, and the intraplate basins are characterized by shallow marine conditions punctuated by several episodes of deltaic progradation. Finally, in the Late Permian (stage 5), volcanism and volcaniclastic sedimentation dominated in basins located along the western South American margin. The intraplate basins in turn were characterized by T-R cycles composed of shallow marine, deltaic, and fluvial siliciclastic deposits.

  4. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin

    USGS Publications Warehouse

    Wolf, Stephen C.; Hamer, Michael R.

    1999-01-01

    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area studied; they are time and date coded, and color keyed to each ship ID data base listed at the bottom of each sheet. The first letter in the cruise ID is an abbreviation letter for the ship name, the following numbers represent the consecutive cruise number of that year, followed by the year number. The letters at the end of the ID represent the survey area, ie. NC- northern California, NP- north Pacific. Locations of selected sample seismic sections illustrated on sheets 3-5 also are shown. Scales for each of the sheets are the same as for sheets 3-5, which allows for overlaying of track data onto the interpretations shown on Maps A-C. Sheets 3 (MAP A), 4 (MAP B), and 5 (MAP C) show channel pathway location, bathymetric depth based on the USGS COW data base (Ca/Or/Wa), pathway morphology, and thickness of turbidite sediment fill at various locations. The interpreted turbidite sediments are color highlighted on the selected seismic sections to differentiate them from the typical deep sea sediments below and to the side of the turbidite pathways. Thickness of sediment fill, in meters, is shown along major pathways in white circular highlights. The data and interpretations rest on a background of USGS GLORIA side scan sonar imagery (1984) to illustrate the relationship of pathway position to sub sea features. Channel distance points are plotted along channel centerlines at 20,000 m intervals. These points begin at the start of each interpreted channel pathway. A bathymetric depth was assigned to each distance point. These data points were then used to construct channel gradient curves for the Astoria, Eel, Bear Valley, and Mendocino channel pathways. These gradients are plotted on sheet 6 of this report and illustrate the similarities and differences between each of the pathways. Sheet 7 shows various views of the Mendocino/Mattole Canyon heads as an example of useful derivative information of the Seabeam bathymetric data. These views illustrate that the Mendocino pathway probably was directed from it's canyon mouth, to the northwest at an earlier time, but was diverted to the west along the base of the Mendocino Ridge by a major fault event in the recent past. Offset of the southwest channel wall is readily evident in views B and D. This apparent disruption complicates the turbidite history of the Mendocino pathway.

  5. The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitude

    NASA Astrophysics Data System (ADS)

    Niemeyer, Hans; Götze, Jens; Sanhueza, Marcos; Portilla, Carolina

    2018-01-01

    A continental magmatic arc (the Famatinian magmatic arc) was developed on the western margin of Gondwana during the Early to Middle Ordovician. This has a northwestern orientation in the northern Chile-Argentina Andes between 21° and 26° south latitude with a northeastern directed subduction zone and developed on a continental crust represented by a metamorphic basement. A paleogeographical scheme for the Ordovician magmatic arc is proposed and two tectonic environments can be recognized from our own data and data from the literature: forearc and arc. The Cordón de Lila Complex can be assigned to a forearc position. Here the turbiditic flows become paralell to the northwestern elongation of the magmatic arc. The sedimentation in the frontal-arc high platform of the forearc is represented by stromatolitic limestones and a zone of phosphate production. The internal structure of the arc can be inferred from the petrographic composition of the turbidites: basaltic and andesitic lavas, dacitic and/or rhyolitic lavas and ash fall tuffs. Also the Quebrada Grande Formation was developed on the forearc. Plutonic Ordovician rocks testify the continuity of the magmatic arc. The data about the basement exposed in the present paper do not support the existence of the Arequipa-Antofalla Terrane.

  6. Ice-sheet sourced juxtaposed turbidite systems in Labrador Sea

    USGS Publications Warehouse

    Hesse, R.; Klaucke, I.; Ryan, William B. F.; Piper, D.J.W.

    1997-01-01

    Ice-sheet sourced Pleistocene turbidite systems of the Labrador Sea are different from non-glacially influenced systems in their facies distribution and depositional processes. Two large-scale sediment dispersal systems are juxtaposed, one mud-dominated and associated with the Northwest Atlantic Mid-Ocean Channel (NAMOC), the other sand-dominated and forming a huge submarine braided sandplain. Co-existence of the two systems reflects grain-size separation of the coarse and fine fractions on an enormous scale, caused by sediment winnowing at the entrance points of meltwater from the Laurentide Ice Sheet (LIS) to the sea (Hudson Strait, fiords) and involves a complex interplay of depositional and redepositional processes. The mud-rich NAMOC system is multisourced and represents a basinwide converging system of tributary canyons and channels. It focusses its sand load to the central trunk channel in basin centre, in the fashion of a "reverse" deep-sea fan. The sand plain received its sediment from the Hudson Strait by turbidity currents that were generated either by failure of glacial prodelta slopes at the ice margin, or by direct meltwater discharges with high bedload concentration. We speculate that the latter might have been related to subglacial-lake outburst flooding through the Hudson Strait, possibly associated with ice-rafting (Heinrich) events.

  7. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system

    USGS Publications Warehouse

    Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.

    2010-01-01

    Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.

  8. Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario Formation, Mexico

    NASA Astrophysics Data System (ADS)

    Hansen, Larissa; Callow, Richard; Kane, Ian; Kneller, Ben

    2017-08-01

    Thin-bedded turbidites deposited by sediment gravity flows that spill from submarine channels often contain significant volumes of sand in laterally continuous beds. These can make up over 50% of the channel-belt fill volume, and can thus form commercially important hydrocarbon reservoirs. Thin-bedded turbidites can be deposited in environments that include levees and depositional terraces, which are distinguished on the basis of their external morphology and internal architecture. Levees have a distinctive wedge shaped morphology, thinning away from the channel, and confine both channels (internal levees) and channel-belts (external levees). Terraces are flat-lying features that are elevated above the active channel within a broad channel-belt. Despite the ubiquity of terraces and levees in modern submarine channel systems, the recognition of these environments in outcrop and in the subsurface is challenging. In this outcrop study of the Upper Cretaceous Rosario Formation (Baja California, Mexico), lateral transects based on multiple logged sections of thin-bedded turbidites reveal systematic differences in sandstone layer thicknesses, sandstone proportion, palaeocurrents, sedimentary structures and ichnology between channel-belt and external levee thin-bedded turbidites. Depositional terrace deposits have a larger standard deviation in sandstone layer thicknesses than external levees because they are topographically lower, and experience a wider range of turbidity current sizes overspilling from different parts of the channel-belt. The thickness of sandstone layers within external levees decreases away from the channel-belt while those in depositional terraces are less laterally variable. Depositional terrace environments of the channel-belt are characterized by high bioturbation intensities, and contain distinctive trace fossil assemblages, often dominated by ichnofabrics of the echinoid trace fossil Scolicia. These assemblages contrast with the lower bioturbation intensities that are recorded from external levee environments where Scolicia is typically absent. Multiple blocks of external levee material are observed in the depositional terrace area where the proximal part of the external levee has collapsed into the channel-belt; their presence characterizes the channel-belt boundary zone. The development of recognition criteria for different types of channel-related thin-bedded turbidites is critical for the interpretation of sedimentary environments both at outcrop and in the subsurface, which can reduce uncertainty during hydrocarbon field appraisal and development.

  9. Multi-scale characterization of an upcurrent turbiditic pinch-out

    NASA Astrophysics Data System (ADS)

    Daghdevirenian, L. J. P.; Migeon, S.; Rubino, J. L., Sr.; Raisson, F.

    2017-12-01

    Continental margins with a steep topographic profile between their continental shelf and the basin exhibit a sudden slope break at the base of their continental slope. This slope break favors strong erosion or a by-pass and a fast accumulation of sediments on the base of the continental slope due to the hydraulic jump phenomena. Such a process is responsible for the construction of thick accumulations of limited extension and generally disconnected from the feeding tributaries. These accumulations usually onlap against the continental slope but their modality of pinch out is still questioned and it is the subject of this work. The Tabernas basin is located in South East of Spain, in the continuity of the Sorbas basin. Recent field works allowed identifying a "sedimentary" onlap associated with a small-scale sandy turbidite system that we discovered near the so-called El Buho area. The superb quality of the outcrops revealed, the presence of three successive onlap structures consisting in each case of a direct contact between fluvial conglomerates / marines conglomerates / marine marls / turbidite sands. Reconstruction of paleo-current direction gives a flow direction around N00, from north to south, suggesting the outcrops are cutting the pinch out of the sandy system in a longitudinal direction. A longitudinal and vertical transition of facies can be thus observed from marines' conglomerates to turbidite sands, respectively over distances of 500 m and 70 m. The complete evolution of facies along the pinch out consists of thick conglomerates in the proximal part to sandy turbidite channels then lobes in the distal part. The three successive onlap structures are located inside the channelize part of the system, just above a slope break structure. The basal units of the pinch out consist of an alternation of conglomerates and sandy bed, while the overlying units exhibits more sandy dominated beds. In order to reconstruct the architecture of the pinch out and to understand its process of formation, a complete photogrammetry acquisition was performed at the scale of the whole area This new dataset together with sedimentological logs and outcrop analysis allowed to model the multiple scale pinch out of a turbidite system against its adjacent continental slope, from the beds and the outcrops to regional scale given by the photogrammetry

  10. Gas-drag-assisted capture of Himalia's family

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija; Burns, Joseph A.

    2004-02-01

    To elucidate the capture of Jupiter's outer moons, we reverse-evolve satellites from their present orbits to their original heliocentric paths in the presence of Jupiter's primordial circumplanetary disk (Lubow et al., 1999, Astrophys. J. 526, 1001-1012; Canup and Ward, 2003, Astron. J. 124, 3404-3423). Our orbital histories use a symplectic integrator that allows dissipation. We assume that the present satellites Himalia, Elara, Lysithea, Leda, and S/2000 J11 are collisional fragments of a single parent. Our simulations show that this "prograde-cluster progenitor" (PCP) could be derived from objects with heliocentric orbits like those of the Hilda asteroid group. We show analytically that this capture is energetically possible. We also compare the spectroscopic characteristics of the prograde cluster members (Grav et al., 2003, Icarus, submitted for publication) with those of the Hildas, and conclude that the surface color of the prograde-cluster progenitor is consistent with an origin within the Hilda group. Accordingly, gas drag in the primordial jovian nebula is found to offer a plausible explanation for the origin of the prograde cluster. A similar capture mechanism is proposed for Saturn's Phoebe.

  11. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  12. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    This study characterizes the habitats and megafaunal community of the Congo distal lobe complex driven by turbidity currents through the use of remotely operated vehicle (ROV) still imagery transects covering distances in the order of kilometers. In this sedimentary, abyssal area about 5000 m deep and 750 km offshore from western Africa, large quantities of deposited organic material supplied by the Congo River canyon and channel support aggregations of large sized foraminifers (Bathysiphon sp.) and vesicomyid clams (Christineconcha regab, Abyssogena southwardae) often associated with methane cold seeps, as well as opportunistic deep-sea scavengers. Additionally, bacterial mats, assumed to be formed by large sulfur-oxidizing filamentous bacteria (Beggiatoa type), and black patches of presumably reduced sediment were seen which are, together with sulfur-oxidizing symbiont- bearing vesicomyids, indicators of sulfide-rich sediments. Habitat and faunal distribution were analyzed in relation to the microtopography obtained with the ROV multibeam echosounder, at three sites from the entrance of the lobe complex where the channel is still deep, to the main, flatter area of turbidite deposition. Specific characteristics of the system influence animal distributions: both the forams and the vesicomyid clams tended to avoid the channels characterized by high-speed currents, and are therefore preferentially located along channel flanks affected by sliding, and on levees formed by channel overspill. Foram fields are found in flat areas and form large fields, whereas the vesicomyids have a patchy distribution and appear to show a preference for regions of local topographical relief such as slide scars or collapsed blocks of sediments, which likely facilitate sulfide exhumation. The colonization of sulfide rich sediments by vesicomyids is limited, but nonetheless was seen to occur in the main deposition area where they have to cope with very high sedimentation rates (up to 20 cm/yr) and frequent turbidity currents. Other biological adaptations to the local conditions likely determine the presence and survival of animals in the system: large agglutinated forams are known to be adept at quickly colonizing disturbed sediment and capitalizing on abundant but irregular food sources, and vesicomyid clams have a mobile lifestyle that enables them to maintain their population in the ever changing landscape of sulfide-rich sediment outcrops. Turbiditic systems appear to be intermediate between other energy rich habitats sustaining chemosynthesis in the deep sea, being locally less stable in terms of energy supply than cold seeps, limiting the number of cold-seep specialists able to colonize, but constituting a longer lived habitat than food falls. Turbidite fans therefore represent distinct deep sea habitats that contribute to sustaining populations of both chemosynthesis-based and opportunistic taxa in the deep-sea.

  13. The morphodynamic significance of rapid shoreline progradation followed by vertical foredune building at Pedro Beach, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Oliver, Thomas; Tamura, Toru; Short, Andrew; Woodroffe, Colin

    2017-04-01

    Prograded coastal barriers are accumulations of marine and aeolian sands configured into shore-parallel ridges. A variety of ridge morphologies described around the world reflect differences in origin as a consequence of differing prevailing coastal morphodynamics. The 'morphodynamic approach' described by Wright and Thom (1977) expounds the coastal environmental conditions, hydrodynamic and morphodynamic processes and inheritance of evolutionary sequences over varying temporal scales which interdependently operate to produce an assemblage of coastal landforms adjusted, or adjusting to, a dynamic equilibrium. At Pedro Beach on the southeastern coast of Australia a large sandy deposit of foredune ridges provides an opportunity to explore the morphodynamic paradigm as it applies to coastal barrier systems using optically stimulated luminescence (OSL) dating, ground penetrating radar (GPR) and airborne LiDAR topography. The prograded barrier at Pedro Beach has formed following the stabilisation of the sea level at its present height on the southeast Australian coastline. A series of dune-capped ridges, increasing in height seawards, formed from 6000 years ago to 4000 years ago. During this time the shoreline straightened as bedrock accommodation space for Holocene sediments diminished. Calculation of Holocene sediment volumes utilising airborne LiDAR topography shows a decline in sediment volume over this time period coupled with a decrease in shoreline progradation rate from 0.75 m/yr to 0.49 m/yr. The average ridge 'lifetime' during this period increases resulting in higher ridges as dune-forming processes have longer to operate. Greater exposure to wave and wind energy also appears to have resulted in higher ridges as the sheltering effect of marginal headlands has diminished. A high outer foredune has formed through vertical accretion in the past 700 years, evidenced by GPR subsurface structures and upward younging of OSL ages, with a sample from 1 m deep within the crest of this dune returning an age of 90 ± 10. An inherited disequilibrium shoreface profile will drive onshore accumulation of sandy sediments forming a prograded barrier; however, if there is no longer 'accommodation space' for sediment, this will be an overriding factor causing the cessation of progradation as occurred 4000 years ago at Pedro Beach. Following progradation cessation, excess sediment in the disequilibrium shoreface profile will be moved alongshore as barrier progradation (embayment filling) has diminished the potential of headlands to act as impediments to sediment bypassing in the nearshore. It is hypothesised that the chronology and geomorphology of the Pedro Beach barrier system typifies the changing 'strength of influence' in the interaction between geologically inherited accommodation space, sediment delivery and beach/dune/shoreface dynamics over the mid-late Holocene. Wright, L. D., & Thom, B. G. (1977). Coastal depositional landforms: a morphodynamic approach. Progress in Physical Geography, 1(3), 412-459.

  14. Frequency and sources of basin floor turbidites in alfonso basin, Gulf of California, Mexico: Products of slope failures

    NASA Astrophysics Data System (ADS)

    Gonzalez-Yajimovich, Oscar E.; Gorsline, Donn S.; Douglas, Robert G.

    2007-07-01

    Alfonso Basin is a small margin basin formed by extensional tectonics in the actively rifting, seismically active Gulf of California. The basin is centered at 24°40' N and 110° 38' W, and is a closed depression (maximum depth 420 m) with an effective sill depth of about 320 m (deepest sill), a width of 20 km and length of 25 km. Basin floor area below a depth of 350 m is about 260 km 2. The climate is arid to semiarid but was wetter during the early (ca. 10,000-7000 Calendar years Before Present [BP]) and middle Holocene (ca. 7000-4000 Cal. Years BP). Basin-wide turbidity currents reach the floor of Alfonso Basin at centennial to millennial intervals. The peninsular drainages tributary to the basin are small and have maximum flood discharges of the order of 10 4m 3. The basin-floor turbidites thicker than 1 cm have volumes of the order of 10 6m 3 to 10 8m 3 and require a much larger source. The largest turbidite seen in our cores is ca. 1 m thick in the central basin floor and was deposited 4900 Calendar Years Before Present (BP). Two smaller major events occurred about 1500 and 2800 Cal. Years BP. Seismicity over the past century of record shows a clustering of larger epicenters along faults forming the eastern Gulf side of Alfonso Basin. In that period there have been four earthquakes with magnitudes above 7.0 but all are distant from the basin. Frequency of such earthquakes in the basin vicinity is probably millennial. It is concluded that the basin-wide turbidites thicker than 1 cm must be generated by slope failures on the eastern side of the basin at roughly millennial intervals. The thin flood turbidites have a peninsular source at centennial frequencies.

  15. Deciphering Depositional Signals in the Bed-Scale Stratigraphic Record of Submarine Channels

    NASA Astrophysics Data System (ADS)

    Sylvester, Z.; Covault, J. A.

    2017-12-01

    Submarine channels are important conduits of sediment transfer from rivers and shallow-marine settings into the deep sea. As such, the stratigraphic record of submarine-channel systems can store signals of past climate- and other environmental changes in their upstream sediment-source areas. This record is highly fragmented as channels are primarily locations of sediment bypass; channelized turbidity currents are likely to leave a more complete record in areas away from and above the thalweg. However, the link between the thick-bedded axial channel deposits that record a small number of flows and the much larger number of thin-bedded turbidites forming terrace- and levee deposits is poorly understood. We have developed a relatively simple two-dimensional model that, given a number of input flow parameters (mean velocity, grain size, duration of deposition, flow thickness), predicts the thickness and composition of the turbidite that is left behind in the channel and in the overbank areas. The model is based on a Rouse-type suspended sediment concentration profile and the Garcia-Parker entrainment function. In the vertical direction, turbidites tend to rapidly become thinner and finer-grained with height above thalweg, due to decreasing concentration. High near-thalweg concentrations result in thick axial beds. However, an increase in flow velocity can result in high entrainment and no deposition at the bottom of the channel, yet a thin layer of sand and mud is still deposited higher up on the channel bank. If channel thalwegs are largely in a bypass condition, relatively minor velocity fluctuations result in a few occasionally preserved thick beds in the axis, and numerous thin turbidites - and a more complete record - on the channel banks. We use near-seafloor data from the Niger Delta slope and an optimization algorithm to show how our model can be used to invert for likely flow parameters and match the bed thickness and grain size of 100 turbidites observed in a core taken from a slope channel terrace.

  16. The Jeanie Point complex revisited

    USGS Publications Warehouse

    Dumoulin, Julie A.; Miller, Martha L.

    1984-01-01

    The so-called Jeanie Point complex is a distinctive package of rocks within the Orca Group, a Tertiary turbidite sequence. The rocks crop out on the southeast coast of Montague Island, Prince William Sound, approximately 3 km northeast of Jeanie Point (loc. 7, fig. 44). These rocks consist dominantly of fine-grained limestone and lesser amounts of siliceous limestone, chert, tuff, mudstone, argillite, and sandstone (fig. 47). The Jeanie Point rocks also differ from those typical of the Orca Group in their fold style. Thus, the Orca Group of the area is isoclinally folded on a large scale (tens to hundreds of meters), whereas the Jeanie Point rocks are tightly folded on a 1- to 3- m-wavelength scale (differences in rock competency may be responsible for this variation in fold style).

  17. The Khoy ophiolite: new field observations, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Lechmann, Anna; Burg, Jean-Pierre; Mohammadi, Ali; Faridi, Mohammad

    2017-04-01

    The tectonic assemblage at the junction of the Bitlis-Zagros and Izmir-Ankara-Erzincan suture zones is exposed in the region of the Khoy Ophiolitic Complex, in the Azerbaijan Province of NW Iran. We present new petrography, major and trace element analyses, LA-ICP-MS U-Pb zircon ages and Sr-Nd-Pb isotope data of mantle and crustal suites together with field observations and stratigraphic ages obtained from foraminifera-bearing sediments. Ultramafic rocks crop out as mappable (km-scale) continuous units with fault bounded contacts to neighbouring lithologies and as blocks (m-scale) within an olistostrome. They vary from fresh lherzolite, harzburgite and dunite tectonites with primary mantle structures to completely serpentinized and metasomatized (with metamorphic olivine) samples. Rodingite dikes with MORB-REE signatures are common. Gabbros, also with MORB signature, occur only in small volumes. Pillow basalts have either a MORB or a calc-alkaline signature depending on sample location. First results show that the Khoy Ophiolitic Complex formed during the Jurassic (152-159 Ma) and came in a supra-subduction position, with calc-alkaline magmatism showing negative Nb-Ta and Ti anomalies, in Albian (105-109 Ma) times. Heavy minerals including Cr-spinel and serpentine within the turbidites of the region indicate that the ophiolites were being eroded as early as the Late Cretaceous. An Early Miocene olistostrome, containing blocks of the ophiolitic sequences unconformably covers the ophiolitic complex and the Late-Cretaceous to Eocene turbiditic sequences. A tuff layer dated at 43 Ma within a fine-grained and thin-bedded sandstone block within the olistostrome witnesses continuing volcanic activity in Eocene times. The Khoy Ophiolite compares well with the Inner Zagros and North Makran ophiolites, recording Jurassic extension in the Iranian continental margin followed by Late Cretaceous subduction. This work is supported by SNF Research Grant (project 200021_153124/1).

  18. Dynamics of the transfer of terrestrial organic matter in the late Quaternary turbiditic system of the Ogooué River (Gabon)

    NASA Astrophysics Data System (ADS)

    Mignard, Salomé; Mulder, Thierry; Martinez, Philippe; Garlan, Thierry

    2016-04-01

    In many cases (Hedges et al., 1995, Xing et al., 2011) the supply of terrestrial organic matter (OM) in the oceanic environment is confined to the continental and upper slope of continental margins. However, some recent studies (Huc et al., 2001, Baudin et al., 2010, Biscara et al., 2011, Stetten et al., 2015) demonstrated that significant amounts of continental OM can be transported and deposited in deep sea sediments. This transfer is more efficient in turbiditic systems which are linked to important river deltas. In such systems, the terrigenous influx are important and the downslope sediment-laden currents can indeed transport and rapidly bury important quantities of TOM transferred from the river mouth and the shelf to the abyssal plain. The turbiditic system associated with the Ogooué River offshore Gabon has been selected to study more precisely the modalities of transfer of continental OM from the shelf to the deep offshore. The works focuses on the concentration of OM in both hemipelagites and turbidites as well as the different parameters influencing the spatial distribution and concentration. For this study 10 cores located along the system from the continental shelf to the distal lobes have been selected. The quantity of OM in the sediments as well as its origin (continental vs marine) have been measured using bulk geochemical analyses (% OC, δ13Corg). The stratigraphy of the cores was determined using a combination of planktonic foraminiferal assemblages, δ18O on benthic foraminifers and 14C dates on planktonic foraminifers, and calcium carbonate content calibrated with XRF measurements. The studied cores contain various amounts of organic carbon ranging from 0.7wt% to more than 9wt%. The highest contents are found in turbidite beds where woody detritus and well preserved fragmentary leaf debris are concentrated. In the hemipelagic facies, organic matter is composed of a mixture of marine and land derived organic matter associated with clay-size sediments. This organic sedimentation is highly sensitive to the variations of the sea level due to the alternation between glacial and interglacial times. Glacial periods are characterized by higher amounts of organic matter in hemipelagic deposits, with a higher contribution of continental material, and by the presence of frequent organic rich turbiditic beds. On the contrary, during interglacial periods very few turbiditic events are recorded and the OM in hemipelagic sediments is mainly of marine origin and in lesser quantity. When the sea-level is high, the Ogooué delta is disconnected from the canyon heads and the sediments delivered by the river are deposited on the shelf and mobilized by the strong South-North coastal drift currents. During low sea-level periods, the river discharges its sediments rich in terrestrial OM directly in the canyons heads bypassing the shelf. The low sea level also generates increased erosion of the shelf sediments containing globally high rate of reworked continental OM.

  19. Emplacement mechanisms of the South Kona slide complex, Hawaii Island: Sampling and observations by remotely operated vehicle Kaiko

    USGS Publications Warehouse

    Yokose, H.; Lipman, P.W.

    2004-01-01

    Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized a-a lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands. ?? Springer-Verlag 2004.

  20. Formation of Tidally Induced Bars in Galactic Flybys: Prograde versus Retrograde Encounters

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.

    2018-04-01

    Bars in disk galaxies can be formed by interactions with other systems, including those of comparable mass. It has long been established that the effect of such interactions on galaxy morphology depends strongly on the orbital configuration, in particular the orientation of the intrinsic spin of the galactic disk with respect to its orbital angular momentum. Prograde encounters modify the morphology strongly, including the formation of tidally induced bars, while retrograde flybys should have little effect on morphology. Recent works on the subject reached conflicting conclusions, one using the impulse approximation and claiming no dependence on this angle in the properties of tidal bars. To resolve the controversy, we performed self-consistent N-body simulations of hyperbolic encounters between two identical Milky Way-like galaxies assuming different velocities and impact parameters, with one of the galaxies on a prograde and the other on a retrograde orbit. The galaxies were initially composed of an exponential stellar disk and an NFW dark halo, and they were stable against bar formation in isolation for 3 Gyr. We find that strong tidally induced bars form only in galaxies on prograde orbits. For smaller impact parameters and lower relative velocities, the bars are stronger and have lower pattern speeds. Stronger bars undergo extended periods of buckling instability that thicken their vertical structure. The encounters also lead to the formation of two-armed spirals with strength inversely proportional to the strength of the bars. We conclude that proper modeling of prograde and retrograde encounters cannot rely on the simplest impulse approximation.

  1. Authigenic chlorite as a controlling factor in the exploration of Turonian/Coniacian turbidites in the Santos Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porsche, E.; Lopes de Freitas, E.

    1996-08-01

    Upper Turonian/Coniacian and Campanian turbidites are major targets for petroleum exploration in the Santos Basin, southeastern Brazil. They occur between 140 and 1000 m of present water depth, are buried at about 4500 m, and reach thickness of up to 60 m. The main reservoir facies is composed of unstratified, fine to very fine grained, poorly sorted sandstones, which framework is compositionally immature, including a high proportion of feldspars and volcanic rock fragments. Early coating of grains by authigenic chlorite inhibited pressure solution and quartz cementation in the reservoir. This diagenetic characteristic allowed important preservation of primary porosity (>20%) inmore » the reservoir; nevertheless its permeability never exceeds 30 ml. The study of sedimentary facies and related depositional processes has been conducted to predict the distribution of petroleum-bearing turbidites throughout the Santos Basin; this comprises a major challenge for the petroleum exploration in this important Brazilian exploration frontier.« less

  2. Eye and sheath folds in turbidite convolute lamination: Aberystwyth Grits Group, Wales

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Woodcock, N. H.; Gladstone, C.

    2011-07-01

    Eye and sheath folds are described from the turbidites of the Aberystwyth Group, in the Silurian of west Wales. They have been studied at outcrop and on high resolution optical scans of cut surfaces. The folds are not tectonic in origin. They occur as part of the convolute-laminated interval of each sand-mud turbidite bed. The thickness of this interval is most commonly between 20 and 100 mm. Lamination patterns confirm previous interpretations that convolute lamination nucleated on ripples and grew during continued sedimentation of the bed. The folds amplified vertically and were sheared horizontally by continuing turbidity flow, but only to average values of about γ = 1. The strongly curvilinear fold hinges are due not to high shear strains, but to nucleation on sinuous or linguoid ripples. The Aberystwyth Group structures provide a warning that not all eye folds in sedimentary or metasedimentary rocks should be interpreted as sections through high shear strain sheath folds.

  3. Historical bac-barrier shoreline changes, Padre Island National Seashore, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prouty, J.S.

    1989-09-01

    Historical progradation rates of the Laguna Madre shoreline at Padre Island National Seashore have varied considerably, largely in response to rainfall fluctuations and perhaps grazing pressure. Analysis of aerial photographs indicates that near the northern margin of the National Seashore the shoreline prograded at an average rate of 26 ft/year between 1941 and 1950. The average rate of progradation increased to 42 ft/year between 1950 and 1964. Average rates then slowed in the late 1960s, and since 1969 the shoreline has prograded at an average rate of only 1 ft/year. Some areas of the shoreline are presently eroding. Early mapsmore » and accounts suggest that a century ago North Padre Island was largely vegetated. Overgrazing and a series of droughts in the late 19th and early 20th centuries denuded the island, and prevailing winds blew sand westward across the island into Laguna Madre. With higher than average rainfall in the past 2 decades and less grazing, the island has significantly revegetated. Winds now carry less sand to Laguna Madre; reduced sand supply is a major cause of present-day shoreline retreat.« less

  4. Gravity-Driven Deposits in an Active Margin (Ionian Sea) Over the Last 330,000 Years

    NASA Astrophysics Data System (ADS)

    Köng, Eléonore; Zaragosi, Sébastien; Schneider, Jean-Luc; Garlan, Thierry; Bachèlery, Patrick; Sabine, Marjolaine; San Pedro, Laurine

    2017-11-01

    In the Ionian Sea, the subduction of the Nubia plate underneath the Eurasia plate leads to an important sediment remobilization on the Calabrian Arc and the Mediterranean Ridge. These events are often associated with earthquakes and tsunamis. In this study, we analyze gravity-driven deposits in order to establish their recurrence time on the Calabrian Arc and the western Mediterranean Ridge. Four gravity cores collected on ridges and slope basins of accretionary prisms record turbidites, megaturbidites, slumping and micro-faults over the last 330,000 years. These turbidites were dated by correlation with a hemipelagic core with a multi-proxy approach: radiometric dating, δ18O, b* colour curve, sapropels and tephrochronology. The origin of the gravity-driven deposits was studied with a sedimentary approach: grain-size, lithology, thin section, geochemistry of volcanic glass. The results suggest three periods of presence/absence of gravity-driven deposits: a first on the western lobe of the Calabrian Arc between 330,000 and 250,000 years, a second between 120,000 years and present day on the eastern lobe of the Calabrian Arc and over the last 60,000 years on the western lobe, and a third on the Mediterranean Ridge over the last 37,000 years. Return times for gravity-driven deposits are around 1,000 years during the most important record periods. The turbidite activity also highlights the presence of volcaniclastic turbidites that seems to be link to the Etna changing morphology over the last 320,000 years.

  5. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  6. Delta progradation and Neoglaciation, Laguna Parón, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Seltzer, Geoffrey O.; Rodbell, Donald T.

    2005-10-01

    The history of Holocene glaciation serves as an important record of glacier mass balance and, therefore, of climatic change. The moraine record of Holocene glaciation in the tropical Andes, however, is fragmentary and poorly dated. In contrast, increases in the rate of accumulation of inorganic sediment in glacier-fed lakes have been linked to periods of Neoglaciation in many mountain regions. The interpretation of such a record of Neoglaciation from sediment cores in glacier-fed lakes in the tropical Andes can provide the continuity and chronologic control that is lacking in the existing moraine record. Unusual exposures of glacial lacustrine sediment in the Cordillera Blanca, Peru, provide a rare opportunity to assess the link between climatic change, glaciation, and lacustrine sedimentation.Intentional lowering of water levels in Laguna Parón (9°S, 77°44 W, 4200 m a.s.l.) in 1985 resulted in the incision and exposure of at least 20 m of deltaic deposits at the eastern end of the lake. Three deltaic units can be identified: horizontal topset beds, steeply dipping and deformed foreset beds, and horizontally laminated fine-grained sediment. Six radiocarbon ages ranging from 1800 +/- 210 to 465 +/- 95 14C yr BP on wood indicate that the average rate of delta progradation in the late Holocene has been approximately 290 m per 1000 yr. The lake formed during deglaciation at least 10 000 yr ago and if such a rate of progradation of the delta had prevailed over the entire Holocene, then the delta would be at least three times as extensive as it is today. Thus the rate of delta progradation has varied significantly over the Holocene. We suggest that the rate of delta progradation was at least three times greater when glaciers were in advanced positions. These positions are clearly delimited by Neoglacial moraines, which are within 1-2 km of the exposures studied and within 1 km of modern ice limits. The most recent increase in the rate of delta progradation is evidenced by an increase in sedimentation rate ca. 575 +/- 90 14C yrBP, coincident with the onset of the Little Ice Age.

  7. Submarine landslides in Arctic sedimentation: Canada Basin

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipolla, C.L.; Mayerhofer, M.

    The paper details the acquisition of detailed core and pressure data and the subsequent reservoir modeling in the Ozona Gas Field, Crockett County, Texas. The Canyon formation is the focus of the study and consists of complex turbidite sands characterized by numerous lenticular gas bearing members. The sands cannot be characterized using indirect measurements (logs) and no reliable porosity-permeability relationship could be developed. The reservoir simulation results illustrate the problems associated with interpreting typical pressure and production data in tight gas sands and details procedures to identify incremental reserves. Reservoir layering was represented by five model layers and layer permeabilitiesmore » were estimated based on statistical distributions from core measurements.« less

  9. Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China

    NASA Astrophysics Data System (ADS)

    Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian

    2001-11-01

    The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.

  10. Tectonic and climatic control of Paleogene sedimentation in the Rhenodanubian Flysch basin (Eastern Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Egger, Hans; Homayoun, Mandana; Schnabel, Wolfgang

    2002-10-01

    The Paleocene to lowermost Eocene formations of the Rhenodanubian Flysch were deposited in an abyssal environment at the continental rise to the south of the European Plate. The pattern of paleocurrents indicates a number of small distributary systems for the turbiditic material that entered the basin from the north and was deflected to the east and to the west. Heavy mineral assemblages in the turbidites suggest the erosion of medium-grade metasediments in the Danian and the progressive erosion of underlying metamorphic magmatic rocks in the Thanetian and Ypresian. The most obvious sedimentary event is the breakdown in turbidite sedimentation during the late Danian to the early Thanetian. Remarkably, this starvation of turbidites is associated with high values of chlorite in the clay mineral assemblages of interturbidite shales, indicating increased mechanical erosion of the adjoining land areas. Tectonic uplift of these areas and associated block faulting and tilting is assumed to be responsible for this increase in erosion as well as for the synchronous cutting off of the basin from the source area of the turbidites. This tectonic activity is related to the onset of the collision of the European and the Adriatic Plates. A second major event documented in the Paleogene record is the change from a predominantly siliciclastic system to a carbonate system in the latest Thanetian. Associated with the global negative carbon isotope excursion (CIE) in the upper part of calcareous nannozone NP9, calcareous mudturbidites become the prevailing rock type. Eutrophication of surface waters is indicated by acmes of diatoms, radiolaria and dinoflagellates at the level of the CIE. Together with slightly increased values of kaolinite in the clay mineral assemblages of interturbidite shales, this can be interpreted as a result of increased continental run-off due to high precipitation rates in a humid climate. The top of the increased kaolinite input is poorly constrained because of a very high input of smectite due to volcanic activity in sub-zone NP10a. This igneous activity is assigned to the opening of the Northern Atlantic Ocean and has no geodynamic relevance for the Rhenodanubian Basin.

  11. Salt tectonics in an experimental turbiditic tank

    NASA Astrophysics Data System (ADS)

    Sellier, Nicolas; Vendeville, Bruno

    2010-05-01

    We modelled the effect of the deposition of clastic sediments wedges along passive margin by combining two different experimental approaches. The first approach, which uses flume experiments in order to model turbiditic transport and deposition, had focused, so far mainly on the stratigraphic architecture and flow properties. But most experiments have not accounted for the impact of syndepositional deformation. The second approach is the classic tectonic modelling (sand-box experiments) is aimed essentially at understanding deformation, for example the deformation of a sediment wedge deposited onto a mobile salt layer. However, with this approach, the sediment transport processes are crudely modelled by adding each sediment layer uniformly, regardless of the potential influence of the sea-floor bathymetry on the depositional pattern. We designed a new tectono-stratigraphic modelling tank, which combines modelling of the turbiditic transport and deposition, and salt-related deformation driven by sediment loading. The set-up comprises a channel connected to a main water tank. A deformation box is placed at the mouth of the channel, on the base of the tank. The base of the box can be filled with various kinds of substrates either rigid (sand) or viscous (silicone polymer, simulating mobile salt layer having varying length and thickness). A mixture of fine-grained powder and water is maintained in suspension in a container, and then released and channelled toward the basin, generating an analogue of basin-floor fans or lobes. We investigated the effect of depositing several consecutive turbiditic lobes on the deformation of the salt body and its overburden. The dynamics of experimental turbidity currents lead to deposits whose thickness varied gradually laterally: the lobe is thick in the proximal region and thins progressively distally, thus creating a very gentle regional surface slope. As the fan grows by episodic deposition of successive turbiditic lobes, the model deforms spontaneously by vertical collapse and lateral spreading of the entire overburden. We conducted a series of systematic experiments varying the length and thickness of the salt body, as well as the sediment input and nature.

  12. The Characteristics of Turbidite Beds of Southwest Ryukyu Trench Floor: A new Approach From the X-ray Fluorescence Core Scanning Analysis

    NASA Astrophysics Data System (ADS)

    Hsiung, K. H.; Kanamatsu, T.; Ikehara, K.; Usami, K.; Saito, S.; Murayama, M.

    2017-12-01

    The southwest Ryukyu Trench near Taiwan is an ideal place for source-to-sink studies based on the distinctive sediment transport route between the terrestrial sediment source in Taiwan and the marine sink in the Ryukyu Trench. Using the bathymetric and seismic reflection data, we develop a sediment transport routes for understanding the ultimate sink of the southwest Ryukyu Trench floor. The southwest Ryukyu Trench floor can be regarded as the most distal depositional basin and isolated from the Ryukyu forearc basins. In addition, part of sediment from the proximal sources of the Ryukyu Islands and Yaeyama accretionary prism could be transported to the trench floor. We collected the piston core, PC04, from the southwest Ryukyu Trench floor of 6,147 m water depth in 3.23 m core length from cruise KR15-18, 2015. The coring site locates behind the natural levee of an obvious channel in the Ryukyu trench floor. The PC04 is composed of gray silty clay interbedded with numerous silt layers. Most of the silt layers are less than 2 cm in thickness. Based upon the core observation, X-ray fluorescence core scanning analysis and 14C age determinations, thirty-seven individual and thin beds were determined as turbidites. The results of X-ray fluorescence core scanning analysis provide continuous and high-resolution (1.0 mm of each point) assessment of relative change in the elemental ratios. Ca/Fe is a proxy for the terrigenous component of the sediment, indicating the High Ca and low Fe of each turbidite layers. Zr/Rb ratios of the marine sediments commonly used in the reflection of the original grain size variation. A large part of deep-sea turbidite beds are characterized by high Ca/Fe and Zr/Rb ratio values. These turbidite beds can be linked spatially over a distance of ˜200 km via submarine canyons within the Taiwan orogen. However, it is difficult to be linked temporally to certain events.

  13. Land-Marine Paleoseismic Integration for the Northern Cascadia Margin, USA

    NASA Astrophysics Data System (ADS)

    Goldfinger, C.; Galer, S.; Beeson, J. W.; Hamilton, T. S.; Black, B.; Romsos, C. G.; Nelson, C. H.; Morey, A. E.

    2015-12-01

    New and archive cores (N=70), bathymetric, backscatter and sub-bottom data from the Washington margin reveal patterns of Holocene sediment transport and deposition. Barkley, Nitinat, Juan de Fuca (JDF), Quillayute, Grays, Guide, and Willapa Canyons each have different post-glacial mechanisms of loading and dispersal of sediment via turbidity currents. In high-stand conditions, the northern canyons, Barkley, Nitinat, JDF, and Quillayute are mostly relict systems. The remaining canyons, Quinault, Grays, Guide, and Willapa, are recharged to varying degrees by northward transport of Columbia River derived sediment. All systems are nonetheless active conduits for turbidity currents during the Holocene. Sedimentologic and CT analyses, supported by radiocarbon ages, micropaleontology, and the Mazama Ash show that the Holocene sedimentary sequence consists of a series of sand to mud turbidites in the active portions of all systems, interbedded with hemipelagic sediment. The relict systems are finer grained, commonly not visually detected, with Holocene turbidite counts the same as recharged systems. Use of 1960's core sketches (Atwater) fails to capture the full record, as noted by Barnard (1973). Hydrodynamic models and heavy mineral distributions show that the northern canyon systems (Barkley, Nitinat, JDF, Quillayute) are independent of the southern systems, (Quinault, Guide, Grays, Willapa) during the Holocene. Best fitting flow inversions suggest turbidity currents range in height from 80-170 m, consistent with earlier work and backscatter observations. Mass balancing suggests sediment supplied to the slope canyons and abyssal channels is 4-6 times greater than supplied by recharge to the canyon heads by external sources, strongly indicating autogenic sourcing by earthquakes. Turbidite deposition off Washington is not very sensitive to either sediment supply or slope angle. Lithostratigraphic correlation and age models of Holocene turbidite sequences suggests deposition of ~ 20 Holocene turbidites in most parts of the Canyon systems, with little variation. The explanation most consistent with the data is triggering by a series of 18-20 Holocene earthquakes, in agreement temporal and lithostratigraphic linkages to new marine sites in Canada, as well and land paleoseismic data.

  14. Messinian deep-water turbidites and glacioeustatic sea-level changes in the North Atlantic: Linkage to the Mediterranean Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Zhang, Jijun; Scott, David B.

    1996-06-01

    Our benthic foraminiferal data clearly indicate eight layers of deep-water turbidites during the Messinian (MTL 1-8) and one in the early Pliocene (PTL 1) in Ocean Drilling Program Leg 105, Site 646B. These deep-water tuibidite deposits are characterized by highly concentrated agglutinated marsh benthic foraminifera (e.g., Trochammina cf. squamata, Ammotium sp. A, Miliammina fusca), rounded quartz, polished thick-walled benthic foraminifera, wood fragments, plant seeds, plant fruit, and highly concentrated mica and are interbedded with sediments containing deep-water benthic faunas. We suggest these turbidites deposited during sea-level low stands (˜80-100 m below sea level), and their ages are tentatively correlated to 6.59, 6.22, 6.01, 5.89, 5.75, 5.7, 5.65, 5.60, and 5.55 Ma, respectively, based on the Messinian oxygen isotope enrichments at Site 552A of Deep Sea Drilling Project Leg 81. The turbidites layers during the late Messinian, coeval with frequent climate changes suggested by six oxygen enrichment excursions of Site 552A, may have been in part linked to the late Messinian evaporite deposits in the Mediterranean Basin. The most profound climate changes at 5.75 and 5.55 Ma may have been related to the Lower and Upper Evaporites in the Mediterranean Basin. An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS .AGU.ORG, (LOGIN toAGU's FTP account using ANONYMOUS as the username and GUESTas the password. Go to the right directory by typing CD APEND. TypeLS to see what files are available. Type GET and the name of the file toget it. Finally, type EXIT to leave the system. (Paper 96PA00572,Messinian deep-water turbidites and glacioeustatic sea-level changes inthe North Atlantic: Linkage to the Mediterranean Salinity Crisis, JijunZhang and David B. Scott). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, D.C.20009; $15.00. Payment must accompany order.

  15. Thermobarometric and fluid expulsion history of subduction zones

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.

    1990-06-01

    Phanerozoic, unmetamorphosed, weathered, and altered lithotectonic complexes subjected to subduction exhibit the prograde metamorphic facies sequence: zeolite → prehnite-pumpellyite → glaucophane schist → eclogite. Parageneses reflect relatively high-P trajectories, accompanied by semicontinuous devolatilization. The thermal evolution of convergent plate junctions results in early production of high-rank blueschists, high-P amphibolites, and eclogues at depth within narrow subduction zones while the hanging wall lithosphere is still hot. Protracted underflow drains heat from the nonsubducted plate and, even at profound depths, generates very low-T/high-P parageneses. Inclusion studies suggest that two-phase immiscible volatiles (liquid H2O, and gaseous high-hydrocarbons, CH4 and CO2) are evolved in turn during progressive metamorphism of the subducted sections. Expulsion of pore fluids and transitions from weathered and altered supracrustal rocks to zeolite facies assemblages release far more fluid than the better understood higher-grade transformations. Many blueschist parageneses, such as those of the internal Western Alps, have been partially overprinted by later greenschist and/or epidote-amphibolite facies assemblages. Alpine-type postblueschist metamorphic paths involved fairly rapid, nearly adiabatic decompression; some terranes even underwent modest continued heating and fluid evolution during early stages of ascent. Uplift probably occurred as a consequence of the underthrusting of low-density island arc or microcontinental crust along the convergent plate junction, resulting in marked deceleration or cessation of lithospheric underflow, decoupling, and nearly isothermal rise of the recrystallized subduction complex. Other, less common blueschist terranes, such as the eastern Franciscan belt of western California, preserve metamorphic aragonite and other high-P minerals, and lack a low-pressure overprint; physical conditions during retrogression approximately retraced the prograde path or, for early formed high-grade blocks, reflect somewhat higher pressures and lower temperatures. Subducted sections constituting portions of the Franciscan-type of metamorphic belt evidently moved slowly back up the inclined lithospheric plate junction during continued convergence and sustained refrigeration. Upward motion due to isostatic forces was produced by tectonic imbrication of fault suces, laminar return flow in melange zones, and lateral extension of the underplated accretionary prism. The ease with which volatiles are expelled from a subduction complex and migrate upward along the plate junction zone is roughly proportional to the sandstone/shale ratio: low-permeability mudstones tend to maintain fluid values approaching lithostatic, lose strength, and deform chaotically (forming melange belts), whereas permeable sandstone-rich sections retain structural/stratigraphic coherence and fail brittlely (forming coherent terranes). Because of substantial updip expulsion of volatiles during prograde recrystallization, only small amounts of H2O and CO2 are available to support hydration and carbonation of the accretionary complex during its return toward the surface; thus limited back reaction takes place and occurs at low Pfluid/Plithostatic ratios, unless an abundance of volatiles is introduced during uplift.

  16. Interplay of late Cenozoic siliciclastic supply and carbonate response on the southeast Florida platform

    USGS Publications Warehouse

    Cunningham, K.J.; Locker, S.D.; Hine, A.C.; Bukry, D.; Barron, J.A.; Guertin, L.A.

    2003-01-01

    High-resolution seismic-reflection data collected along the length of the Caloosahatchee River in southwestern Florida have been correlated to nannofossil biostratigraphy and strontium-isotope chemostratigraphy at six continuously cored boreholes. These data are interpreted to show a major Late Miocene(?) to Early Pliocene fluvial-deltaic depositional system that prograded southward across the carbonate Florida Platform, interrupting nearly continuous carbonate deposition since early in the Cretaceous. Connection of the platform top to a continental source of siliciclastics and significant paleotopography combined to focus accumulation of an immense supply of siliciclastics on the southeastern part of the Florida Platform. The remarkably thick (> 100 m), sand-rich depositional system, which is characterized by clinoformal progradation, filled in deep accommodation, while antecedent paleotopography directed deltaic progradation southward within the middle of the present-day Florida Peninsula. The deltaic depositional system may have prograded about 200 km southward to the middle and upper Florida Keys, where Late Miocene to Pliocene siliciclastic form the foundation of the Quaternary carbonate shelf and shelf margin of the Florida Keys. These far-traveled siliciclastic deposits filled accommodation on the southeastern part of the Florida Platform so that paleobathymetry was sufficiently shallow to allow Quaternary recovery of carbonate sedimentation in the area of southern peninsular Florida and the Florida Keys.

  17. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy

    NASA Astrophysics Data System (ADS)

    Skora, Susanne; Lapen, Thomas J.; Baumgartner, Lukas P.; Johnson, Clark M.; Hellebrand, Eric; Mahlen, Nancy J.

    2009-10-01

    The distinct core-to-rim zonation of different REEs in garnet in metamorphic rocks, specifically Sm relative to Lu, suggests that Sm-Nd and Lu-Hf isochron ages will record different times along a prograde garnet growth history. Therefore, REE zonations in garnet must be measured in order to correctly interpret the isochron ages in terms of the garnet growth interval, which could span several m.y. New REE profiles, garnet crystal size distributions, and garnet growth modeling, combined with previously published Sm-Nd and Lu-Hf geochronology on a UHP eclogite of the Zermatt-Saas Fee (ZSF) ophiolite, Lago di Cignana (Italy), demonstrate that prograde garnet growth of this sample occurred over a ~ 30 to 40 m.y. interval. Relative to peak metamorphism at 38 to 40 Ma, garnet growth is estimated to have begun at ~ 11 to 14 kbar pressure at ~ 70 to 80 Ma. Although such a protracted garnet growth interval is surprising, this is supported by plate tectonic reconstructions which suggest that subduction of the Liguro-Piemont ocean occurred through slow and oblique convergence. These results demonstrate that REE zonations in garnet, coupled to crystal size distributions, provide a powerful means for understanding prograde metamorphic paths when combined with Sm-Nd and Lu-Hf geochronology.

  18. Coseismic slip on the southern Cascadia megathrust implied by tsunami deposits in an Oregon lake and earthquake-triggered marine turbidites

    NASA Astrophysics Data System (ADS)

    Witter, Robert C.; Zhang, Yinglong; Wang, Kelin; Goldfinger, Chris; Priest, George R.; Allan, Jonathan C.

    2012-10-01

    We test hypothetical tsunami scenarios against a 4,600-year record of sandy deposits in a southern Oregon coastal lake that offer minimum inundation limits for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern Cascadia megathrust and contrast with slip deficits implied by earthquake recurrence intervals from turbidite paleoseismology. We model the tsunamigenic seafloor deformation using a three-dimensional elastic dislocation model and test three Cascadia earthquake rupture scenarios: slip partitioned to a splay fault; slip distributed symmetrically on the megathrust; and slip skewed seaward. Numerical tsunami simulations use the hydrodynamic finite element model, SELFE, that solves nonlinear shallow-water wave equations on unstructured grids. Our simulations of the 1700 Cascadia tsunami require >12-13 m of peak slip on the southern Cascadia megathrust offshore southern Oregon. The simulations account for tidal and shoreline variability and must crest the ˜6-m-high lake outlet to satisfy geological evidence of inundation. Accumulating this slip deficit requires ≥360-400 years at the plate convergence rate, exceeding the 330-year span of two earthquake cycles preceding 1700. Predecessors of the 1700 earthquake likely involved >8-9 m of coseismic slip accrued over >260 years. Simple slip budgets constrained by tsunami simulations allow an average of 5.2 m of slip per event for 11 additional earthquakes inferred from the southern Cascadia turbidite record. By comparison, slip deficits inferred from time intervals separating earthquake-triggered turbidites are poor predictors of coseismic slip because they meet geological constraints for only 4 out of 12 (˜33%) Cascadia tsunamis.

  19. Sedimentation in the central segment of the Aleutian Trench: Sources, transport, and depositional style

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, A.J.; Scholl, D.W.; Vallier, T.L.

    1990-05-01

    The central segment of the Aleutian Trench (162{degree}W to 175{degree}E) is an intraoceanic subduction zone that contains an anomalously thick sedimentary fill (4 km maximum). The fill is an arcward-thickening and slightly tilted wedge of sediment characterized acoustically by laterally continuous, closely spaced, parallel reflectors. These relations are indicative of turbidite deposition. The trench floor and reflection horizons are planar, showing no evidence of an axial channel or any transverse fan bodies. Cores of surface sediment recover turbidite layers, implying that sediment transport and deposition occur via diffuse, sheetlike, fine-grained turbidite flows that occupy the full width of the trench.more » The mineralogy of Holocene trench sediments document a mixture of island-arc (dominant) and continental source terranes. GLORIA side-scan sonar images reveal a westward-flowing axial trench channel that conducts sediment to the eastern margin of the central segment, where channelized flow cases. Much of the sediment transported in this channel is derived from glaciated drainages surrounding the Gulf of Alaska which empty into the eastern trench segment via deep-sea channel systems (Surveyor and others) and submarine canyons (Hinchinbrook and others). Insular sediment transport is more difficult to define. GLORIA images show the efficiency with which the actively growing accretionary wedge impounds sediment that manages to cross a broad fore-arc terrace. It is likely that island-arc sediment reaches the trench either directly via air fall, via recycling of the accretionary prism, or via overtopping of the accretionary ridges by the upper parts of thick turbidite flows.« less

  20. Deep-water lithofacies and conodont faunas of the Lisburne Group, western Brooks Range, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1992

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Schmidt, Jeanine M.

    1993-01-01

    Deep-water lithofacies of the Lisburne Group occur in thrust sheets in the western part of the foreland fold and thrust belt of the Brooks Range and represent at least three discrete units. The Kuna Formation (Brooks Range allochthon) consists mostly of spiculitic mudstone and lesser shale; subordinate carbonate layers are chiefly diagenetic dolomite. Predominantly shale sections of the Kuna that contain few sponge spicules occur in the western part of the study area. The Akmalik Chert (Picnic Creek allochthon) is mostly radiolarian-spiculitic chert; rare limy beds are calcitized radiolarite. The Rim Butte unit (Ipnavik River allochthon) consists chiefly of calcareous turbidites, derived from both shallow- and deep-water sources, interbedded with spiculitic mudstone. Much of the material in the turbidites came from a contemporaneous carbonate platform and margin, but some fossils and lithic clasts were eroded from older, already lithified carbonate-platform rocks. All three units appear to be roughly coeval and are chiefly Osagean (late Early Mississippian) in age in the study area.Shallow-water lithofacies of the Lisburne Group exposed in the Howard Pass area (Brooks Range allochthon) are mostly of Meramecian (early Late Mississippian) age. Thus, these carbonate-platform rocks were not the source of the calcareous turbidites in the Rim Butte unit. Rim Butte turbidites could have been derived from older platform carbonate rocks such as those of the Utukok Formation (Kelly River allochthon) exposed mainly to the west of the Howard Pass quadrangle.

  1. Pb isotope compositions of modern deep sea turbidites

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; McLennan, S. M.

    2001-01-01

    Modern deep sea turbidite muds and sands collected from Lamont piston cores represent a large range in age of detrital sources as well as a spectrum of tectonic settings. Pb isotope compositions of all but three of the 66 samples lie to the right of the 4.56 Ga Geochron, and most also lie along a slope consistent with a time-integrated κ ( 232Th/ 238U) between 3.8 and 4.2. Modern deep sea turbidites show a predictable negative correlation between both Pb and Sr isotope ratios and ɛNd and ɛHf, clearly related to the age of continental sources. However, the consistency between Pb and Nd isotopes breaks down for samples with very old provenance ( ɛNd<-20) that are far less radiogenic than predicted by the negative correlation. The correlations among Sr, Nd and Hf isotopes also become more scattered in samples with very old provenance. The unradiogenic Pb isotopic character of modern sediments with Archean Nd model ages is consistent with a model where Th and U abundances of the Archean upper crust are significantly lower than the post-Archean upper crust.

  2. The radioisotopically constrained Viséan onset of turbidites in the Moravian-Silesian part of the Rhenohercynian foreland basin (Central European Variscides)

    NASA Astrophysics Data System (ADS)

    Jirásek, Jakub; Otava, Jiří; Matýsek, Dalibor; Sivek, Martin; Schmitz, Mark D.

    2018-03-01

    The Březina Formation represents the initiation of siliciclastic flysch turbidite sedimentation at the eastern margin of Bohemian Massif or within the Rhenohercynian foreland basin. Its deposition started after drowning of the Devonian carbonate platform during Viséan (Mississippian) times, resulting in a significant interval of black siliceous shale and variegated fossiliferous shale deposition in a starved basin. Near the top of the Březina Formation an acidic volcanoclastic layer (tuff) of rhyolitic composition has been dated with high precision U-Pb zircon chemical abrasion isotope dilution method at 337.73 ± 0.16 Ma. This new radiometric age correlates with the previously inferred stratigraphic age of the locality and the current calibration of the Early Carboniferous geologic time scale. Shales of the Březina Formation pass gradually upwards into the siliciclastics of the Rozstání Formation of the Drahany culm facies. Thus our new age offers one of the few available radioisotopic constraints on the time of onset of siliciclastic flysch turbidites in the Rhenohercynian foreland basin of the European Variscides.

  3. Towards inverse modeling of turbidity currents: The inverse lock-exchange problem

    NASA Astrophysics Data System (ADS)

    Lesshafft, Lutz; Meiburg, Eckart; Kneller, Ben; Marsden, Alison

    2011-04-01

    A new approach is introduced for turbidite modeling, leveraging the potential of computational fluid dynamics methods to simulate the flow processes that led to turbidite formation. The practical use of numerical flow simulation for the purpose of turbidite modeling so far is hindered by the need to specify parameters and initial flow conditions that are a priori unknown. The present study proposes a method to determine optimal simulation parameters via an automated optimization process. An iterative procedure matches deposit predictions from successive flow simulations against available localized reference data, as in practice may be obtained from well logs, and aims at convergence towards the best-fit scenario. The final result is a prediction of the entire deposit thickness and local grain size distribution. The optimization strategy is based on a derivative-free, surrogate-based technique. Direct numerical simulations are performed to compute the flow dynamics. A proof of concept is successfully conducted for the simple test case of a two-dimensional lock-exchange turbidity current. The optimization approach is demonstrated to accurately retrieve the initial conditions used in a reference calculation.

  4. The Accotink Schist, Lake Barcroft Metasandstone, and Popes Head Formation; keys to an understanding of the tectonic evolution of the northern Virginia Piedmont

    USGS Publications Warehouse

    Drake, Avery Ala; Lyttle, Peter T.

    1981-01-01

    The newly named Accotink Schist and Lake Barcroft Metasandstone of the Eastern Fairfax sequence are the structurally lowest metamorphic rocks in the northernmost Piedmont of Virginia. The Accotink consists of beds of pelitic schist that have thin basal intervals containing graded, very fine grained metasiltstone, as well as interbeds of metasandstone like that in the overlying Lake Barcroft Metasandstone. The unit is characterized by the Bouma turbidite sequences Te and Tde and can be assigned to turbidite facies D and E. The thickness of the Accotink is not known because its base is not exposed. The Accotink Schist grades up into the Lake Barcroft Metasandstone, which consists of two types of metasandstone. Type I metaarenite is quartzofeldspathic granofels which forms thick sequences of amalgamated beds that can best be described as belonging to the Bouma turbidite sequence Ta and to turbidite facies B 2 . Type II metagraywacke of the Lake Barcroft Metasandstone consists of micaceous metagraywacke in thin to medium beds, which can be described as belonging to the Buoma turbidite sequences Tabe and (or) Tae and to turbidite facies C. The Lake Barcroft Metasandstone appears to be about 400 m thick. It and the Accotink Schist are thought to represent a coarsening-upward sequence of an outer submarine-fan association of rocks. The Eastern Fairfax sequence is overlain by the Sykesville Formation. We believe that this contact is a movement surface upon which the Sykesville was emplaced by subaqueous sliding. The Sykesville contains isoclinally folded fragments, thought to be rip-ups, of Accotink and Lake Barcroft rocks. The Eastern Fairfax sequence is intruded by rocks of the Occoquan Granite batholith, which contains pendants of isoclinally folded schist and metagraywacke. Mter intrusion, the metasedimentary and plutonic rocks were folded together. Gamet and chlorite porphyroblasts within the Eastern Fairfax sequence appear to be related to the emplacement of the batholith. The minimum age of the Eastern Fairfax sequence is that of the Occoquan Granite batholith, currently thought to be about 560 m.y. The sequence, then, is considered to be of Early Cambrian age or older. The Accotink Schist and Lake Barcroft Metasandstone have some lithic similarity to the Loch Raven Schist and Oella Formation of Crowley (1976) of the Baltimore area, but a correlation is very uncertain at this time. The newly named Popes Head Formation overlies all other metasedimentary and transported meta-igneous rocks in northernmost Virginia west ofthe Occoquan Granite batholith and is intruded by the batholith. The Popes Head consists of a lower Old Mill Branch Metasiltstone Member and an upper Station Hills Phyllite Member. The Old Mill Branch consists largely of alternating coarser and finer grained strata that are mostly fine- to very fine grained, mineralogically quite mature graded metasiltstone, which can be described as belonging to Bouma turbidite sequence Tbde and (or) Tde, more rarely Tcde. The metasiltstone contains interbedded intervals in which both felsic and mafic metatuff contain pristine euhedral crystals of igneous minerals. We believe that the metatuff represents ash-fall deposits. The Old Mill Branch appears to be about 730 m thick. The Old Mill Branch grades up into the Station Hills Phyllite Member, which consists of thin- to medium-bedded pelitic phyllite and smaller amounts of very fine grained metasiltstone. The metasiltstone beds are graded, and many phyllite beds appear to have basal in- tervals containing graded, very fine grained metasiltstone. These beds can be described as belonging to Bouma turbidite sequence Tde. The Station Hills has intervals containing chlorite-rich phyllite, which probably represents mafic metatuff. No felsic metatuff has been recognized. The top of the Station Hills is not known, neither therefore, is its thickness. This unit appears to have a maximum thickness of about 300 m in northern

  5. Advance, Retreat, and Halt of Abrupt Gravel-Sand Transitions in Alluvial Rivers

    NASA Astrophysics Data System (ADS)

    Blom, Astrid; Chavarrías, Víctor; Ferguson, Robert I.; Viparelli, Enrica

    2017-10-01

    Downstream fining of bed sediment in alluvial rivers is usually gradual, but often an abrupt decrease in characteristic grain size occurs from about 10 to 1 mm, i.e., a gravel-sand transition (GST) or gravel front. Here we present an analytical model of GST migration that explicitly accounts for gravel and sand transport and deposition in the gravel reach, sea level change, subsidence, and delta progradation. The model shows that even a limited gravel supply to a sand bed reach induces progradation of a gravel wedge and predicts the circumstances required for the gravel front to advance, retreat, and halt. Predicted modern GST migration rates agree well with measured data at Allt Dubhaig and the Fraser River, and the model qualitatively captures the behavior of other documented gravel fronts. The analysis shows that sea level change, subsidence, and delta progradation have a significant impact on the GST position in lowland rivers.

  6. Depositional history, nannofossil biostratigraphy, and correlation of Argo Abyssal Plain Sites 765 and 261

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bown, Paul R.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites.Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features.Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765 's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765.AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the continental margin that lay below the photic zone, but above the CCD. The Jurassic-Lower Cretaceous section is about the same thickness across the AAP; turbidites in this interval appear to have had multiple sources along the Australian margin. The Upper Cretaceous-Cenozoic section, however, is three times thicker at Site 765 than at Site 261; turbidites in this interval were derived predominantly from the south.Patterns of sedimentation across the AAP have been influenced by shifts in sea level, the CCD, and configuration of the continental margin. Major pulses of calcareous turbidite deposition occurred during Valanginian, Aptian, and Neogene time—all periods of eustatic lowstands and depressed CCD levels. Sediment redeposited on the AAP has come largely from the Australian outer shelf, continental slope, or rise, rather than the continent itself. Most terrigenous detritus was trapped in epicontinental basins that have flanked northwestern Australia since the early Mesozoic.

  7. Refining the Bengal Fan stratigraphy - A first correlation of IODP Expedition 354 results and seismic data from the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Schwenk, Tilmann; Spiess, Volkhard; Bergmann, Fenna; France-Lanord, Christian; Klaus, Adam

    2016-04-01

    The Bengal Fan covers the floor of the entire Bay of Bengal from the continental margins of India and Bangladesh to the sediment-filled Sunda Trench off Myanmar and the Andaman Islands, and along the west side of the Ninetyeast Ridge. The deposition and progradation of the Bengal Fan started in the Eocene after the collision of India with Asia resulting in the build-up of the Himalaya and the formation of a large proto-Bay of Bengal. Continued convergence of the Indian and Australian plates with the Southeast Asian plate reduced the size of the bay and focused the source of turbidites finally into the present Bengal Basin, Bangladesh shelf, and the shelf canyon "Swatch of no Ground". Today, the Bengal Fan is mainly fed by the sediment load of the Ganges and Brahmaputra rivers, which drain the Himalayas at its southern and northern slope, respectively, and deliver their load to the delta in the Bengal Basin, to the Bengal Shelf and to the deep sea fan. Thus the Bengal Fan is a suitable recorder to study interactions among the growth of the Himalaya and Tibet, the development of the Asian monsoon, and processes affecting the carbon cycle and global climate. Because sedimentation in the Bengal Fan responds to both, climate and tectonic processes, its terrigenous sediment records the past evolution of both the Himalaya and regional climate. This evolution is also expressed in the stratigraphy of the fan in terms of unconformities and key horizons, average sedimentation rates as a function of distance from the basement ridges at 85°E and 90°E and the presence or absence of channel-levee systems. The histories of the Himalaya/Tibetan system and the Asian monsoon require sampling different periods of time with different levels of precision. Therefore IODP Expedition 354 drilled in February-March 2015 a seven site, 320 km-long transect across the Bengal Fan at 8°N. This strategy has been chosen because sediment transport took place by turbidity currents following transport channels leading to deposition on and between levees. As a consequence, depocenters were laterally shifting over hundreds of kilometers on millennial time scales. To archive a spatial and temporal overview of this primarily turbiditic depositional system, three deep penetration and additional four shallow holes were drilled. By that Expedition 354 has extended back the record of early fan deposition by 10 Ma into the Late Oligocene. As result of this drilling, numerous stratigraphic marker horizons across the transect could be identified, cored and dated. In combination with the available seismic data collected during the RV Sonne cruises SO125 and SO188, a detailed reconstruction of channel-levee growing, migration, abandonment, reoccupation and overall uniform growth of the fan can be carried out.

  8. Iron mineralization and associated skarn development around southern contact of the Eğrigöz pluton (northern Menderes Massif-Turkey)

    NASA Astrophysics Data System (ADS)

    Uǧurcan, Okşan Gökçen; Oyman, Tolga

    2016-11-01

    The Eğrigöz pluton is located in the northern portion of the Menderes Massif, which is the largest known metamorphic core complex that is also characterized by large-scale extension. Kalkan and Karaağıl skarn deposits are located on the southern border of the Eğrigöz Pluton, whereas Katrandağ mineralization developed along the roof pendant. Skarnization in these three areas is associated with the peraluminous, I-type, calc-alkaline, high-K calc-alkaline Eğrigöz Pluton. Geochemical characteristics of the pluton indicate that it was generated in a continental arc setting. Kalkan, Karaağıl, and Katrandağ skarns are hosted in marble bands in two-mica gneiss of the Kalkan Formation, a locally dolomitic and clay-bearing limestone of the Arıkaya Formation and locally dolomitised limestone of the Balıkbaşı Formation, respectively. Skarn development occurred sequentially in two stages, prograde and retrograde. In Kalkan skarn, prograde stage is characterized by clinopyroxene (Di56-73 Hd26-43 Joh1-2), garnet (Adr45-69 Grs30-52 Alm0-1.4 Sps0.7-2.3), amphibole, and magnetite, whereas retrograde stage is dominated by epidote, amphibole, chlorite, quartz, and calcite. In Karaağıl, both calcic and magnesian skarn association occurred as a result of local variations in dolomite content in Arıkaya Formation. The prograde assemblage of magnesian skarn is composed chiefly of spinel, amphibole and olivine. These mineral assemblages were, partially or fully, altered to serpentine, talc, and chlorite during retrograde alteration. Mesh textures of the serpentine indicates that the serpentine was altered from olivine. Olivine was completely destroyed during retrograde alteration without relict grains remaining. Calcic skarn paragenesis include garnet (Grs36-80Adr20-62Alm0-2.2Sps0.2-2.6), clinopyroxene (Di81-92 Hd7-19 Jo0-1), and plagioclase, that belongs to the earlier stage, and amphibole of the retrograde stage. High grossular end member of the garnet probably reflects host rock composition. The Katrandağ area differs from Kalkan and Karaağıl deposits in terms of initial metal content and gossan alteration due to the supergene alteration of galena dominated mineralization. In the Katrandağ, skarn that associated with iron and lead mineralization, both contain clinopyroxene and garnet. In the Kalkan skarn, fluid inclusion assemblages of prograde skarn association yield homogenization temperatures from 379 °C to over 600 °C, whereas those of retrograde minerals vary between 235 °C and 412 °C. Salinity values of the inclusions which obtained from prograde and retrograde assemblages are 9.2-22.4 and 6.4-20.1 wt%NaCl eq., respectively. Homogenization temperatures and salinity values of inclusions in clinopyroxene of Karaağıl calcic skarn are 420 to over 600 °C and 21-30 wt%NaCl eq., respectively.

  9. Volcanic influence of Mt. Fuji on the watershed of Lake Motosu and its impact on the lacustrine sedimentary record

    NASA Astrophysics Data System (ADS)

    Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Vander Auwera, Jacqueline; Obrochta, Stephen; Boes, Evelien; Nakamura, Atsunori; Fujiwara, Osamu; Shishikura, Masanobu; Schmidt, Sabine; Siani, Giuseppe; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.; QuakeRecNankai Team

    2018-01-01

    Lacustrine sediments are particularly sensitive to modifications within the lake catchment. In a volcanic area, sedimentation rates are directly affected by the history of the volcano and its eruptions. Here, we investigate the impact of Mt. Fuji Volcano (Japan) on Lake Motosu and its watershed. The lacustrine infill is studied by combining seismic reflection profiles and sediment cores. We show evidence of changes in sedimentation patterns during the depositional history of Lake Motosu. The frequency of large mass-transport deposits recorded within the lake decreases over the Holocene. Before 8000 cal yr BP, large sublacustrine landslides and turbidites were filling the lacustrine depression. After 8000 cal yr BP, only one large sublacustrine landslide was recorded. The change in sedimentation pattern coincides with a change in sediment accumulation rate. Over the last 8000 cal yr BP, the sediment accumulation rate was not sufficient enough to produce large sublacustrine slope failures. Consequently, the frequency of large mass-transport deposits decreased and only turbidites resulting from surficial slope reworking occurred. These constitute the main sedimentary infill of the deep basin. We link the change in sediment accumulation rate with (i) climate and vegetation changes; and (ii) the Mt. Fuji eruptions which affected the Lake Motosu watershed by reducing its size and strongly modified its topography. Moreover, this study highlights that the deposition of turbidites in the deep basin of Lake Motosu is mainly controlled by the paleobathymetry of the lakefloor. Two large mass-transport deposits, occurring around 8000 cal yr BP and 2000 cal yr BP respectively, modified the paleobathymetry of the lakefloor and therefore changed the turbidite depositional pattern of Lake Motosu.

  10. Contourite drifts on early passive margins as an indicator of established lithospheric breakup

    NASA Astrophysics Data System (ADS)

    Soares, Duarte M.; Alves, Tiago M.; Terrinha, Pedro

    2014-09-01

    The Albian-Cenomanian breakup sequence (BS) offshore Northwest Iberia is mapped, described and characterised for the first time in terms of its seismic and depositional facies. The interpreted dataset comprises a large grid of regional (2D) seismic-reflection profiles, complemented by Industry and ODP/DSDP borehole data. Within the BS are observed distinct seismic facies that reflect the presence of: (a) black shales and fine-grained turbidites, (b) mass-transport deposits (MTDs) and coarse-grained turbidites, and (c) contourite drifts. Borehole data show that these depositional systems developed as mixed carbonate-siliciclastic sediments proximally, and as organic-carbon-rich mudstones (black shales) distally on the Northwest Iberia margin. MTDs and turbidites tend to occur on the continental slope, frequently in association with large-scale olistostromes. Distally, these change into interbedded fine-grained turbidites and black shales showing widespread evidence of deep-water current activity towards the top of the BS. Current activity is expressed by intra-BS erosional surfaces and sediment drifts. The results in this paper are important as they demonstrate that contourite drifts are ubiquitous features in the study area after Aptian-Albian lithospheric breakup. Therefore, we interpret the recognition of contourite drifts in Northwest Iberia as having significant palaeogeographic implications. Contourite drifts materialise the onset of important deep-water circulation marking the establishment of oceanic gateways between two fully separated continental margins. As a corollary, we postulate the generation of deep-water geostrophic currents to have had significant impact on North Atlantic climate and ocean circulation during the Albian-Cenomanian, with the record of such impacts being preserved in the contourite drifts analysed in this work.

  11. The occurrence and transformation of lacustrine sediment gravity flow related to depositional variation and paleoclimate in the Lower Cretaceous Prosopis Formation of the Bongor Basin, Chad

    NASA Astrophysics Data System (ADS)

    Tan, Mingxuan; Zhu, Xiaomin; Geng, Mingyang; Zhu, Shifa; Liu, Wei

    2017-10-01

    Bed variability of sediment-gravity-flow deposits is quite prevalent in deep-marine settings, but it has not been well investigated in lacustrine settings. The depositional characteristics of various event beds are characterized in the North Slope Belt of the Bongor Basin (Chad), using detailed sedimentological, petrographic, geochemical as well as palynological analysis. Four bed types including classical turbidite bed, debrite bed, hybrid event bed, and hyperpycnite bed were distinguished based on their interpreted depositional processes. Variable mud contents of debrite beds and classic turbidite beds show distinct genetic characteristics in four core wells, whilst the high mud content of cohesive debrite interval and the low mud content of turbidite interval in hybrid event bed demonstrate the existence of flow transformation. Generally, several trace element and rare earth element proxy parameters show that these gravity-flow deposits of BS1-1 and D-3 cores are formed in more distal depositional settings than them of BN8 and BNE3 cores, which is also well consistent with sedimentological understandings achieved by seismic facies analysis. Although palynological results show a general hot arid climate during the deposition of the Prosopis Formation, but the climate-sensitive Sr/Cu ratio demonstrates that most sampled turbidite beds are postulated to be formed within a short humid pulse. The multi-approach analysis has illustrated that two potential forming mechanisms (delta-front-failure and flood-related origin) can be derived in different cored wells of such a small lacustrine rift basin. Differentiated flow transformation plays a significant role in the depositional characteristics and heterogenetic distribution of these event deposits.

  12. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Reczko, Boris F. F.

    1998-09-01

    Five genetic facies associations/architectural elements are recognised for the epeiric sea deposits preserved in the Early Proterozoic Timeball Hill Formation, South Africa. Basal carbonaceous mudrocks, interpreted as anoxic suspension deposits, grade up into sheet-like, laminated, graded mudrocks and succeeding sheets of laminated and cross-laminated siltstones and fine-grained sandstones. The latter two architectural elements are compatible with the Te, Td and Tc subdivisions of low-density turbidity current systems. Thin interbeds of stromatolitic carbonate within these first three facies associations support photic water depths up to about 100 m. Laterally extensive sheets of mature, cross-bedded sandstone disconformably overlie the turbidite deposits, and are ascribed to lower tidal flat processes. Interbedded lenticular, immature sandstones and mudrocks comprise the fifth architectural element, and are interpreted as medial to upper tidal flat sediments. Small lenses of coarse siltstone-very fine-grained sandstone, analogous to modern continental rise contourite deposits, occur within the suspension and distal turbidite sediments, and also form local wedges of inferred contourites at the transition from suspension to lowermost turbidite deposits. Blanketing and progressive shallowing of the floor of the Timeball Hill basin by basal suspension deposits greatly reduced wave action, thereby promoting preservation of low-density turbidity current deposits across the basin under stillstand or highstand conditions. A lowstand tidal flat facies tract laid down widespread sandy deposits of the medial Klapperkop Member within the formation. Salinity gradients and contemporaneous cold periglacial water masses were probably responsible for formation of the inferred contourites. The combination of the depositional systems interpreted for the Timeball Hill Formation may provide a provisional model for Early Proterozoic epeiric basin settings.

  13. Provenance of Conglomerates within a Late Cretaceous Turbidite Channel System on the North American Margin: the Rosario Formation, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Dos Santos, Thisiane; Kneller, Benjamin; Morton, Andrew; Armelenti, Garibaldi; Pantopoulos, George; De Ros, Luiz Fernando

    2017-04-01

    The Rosario Formation forms part of the Peninsular Ranges forearc basin complex, which crops out discontinuously along the Pacific coast of the Baja California Peninsula, Mexico. This study concerns the upper, deep marine part of the Rosario Formation , which includes several slope channel systems, one of these, the San Fernando channel systems consists of five channel complex sets (CCS1 to CCS5), each characterized by three filling stages. Stage I consists of predominantly clast­ and matrix-supported conglomerates, with subordinate medium to coarse grained sandstones. Stage II consists of units of clast-supported conglomerates with subordinate medium to coarse-grained sandstones, separated by mainly thinly-bedded turbidites (intercalation of thin beds of fine-grained sandstones and mudstones). Stage III consists mainly of hemipelagic mudstones. The main objective of this research is to determine source area and to compare the coarse fraction and finer fraction (fragments <2 cm) from conglomerates of each channel set, combining provenance methodology such as heavy minerals, clast counting, geochemistry, bulk petrography and U/Pb in detrital zircons by LA-ICPMS and SHRIMP. The heavy minerals assembly identified were Ca amphibole, epidote, clinozoisite, titanite, garnet, tourmaline, apatite, rutile and zircon, among them amphiboles are by far the most abundant detrital mineral. Clast counting and petrographic characterization showed that the pebble fraction of the conglomerates is constituted at least 18 different, and the majority being composed by pyroclastic, porphyritic volcanic and sandstone rocks. Bulk quantification indicates that the main provenance tectonic mode of the fine fraction of the conglomerates can be interpreted as dissected magmatic arc, with subordinate uplifted basement and recycled orogenic contributions. The preliminary conclusion is that the sedimentary supply to the Rosario Formation was mostly derived from volcanic and plutonic rocks of the Upper Peninsular Ranges Arc complex known as the Alisitos Arc, which follows the western margin of the Peninsular Ranges batholith, as well as from older magmatic arc, and from recycling of sedimentary/metasedimentary terrains.

  14. Cenozoic seismic stratigraphy of the SW Bermuda Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mountain, G.S.; Driscoll, N.W.; Miller, K.G.

    1985-01-01

    The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough tomore » erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.« less

  15. Thermal shallow water models of geostrophic turbulence in Jovian atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk

    2014-01-15

    Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their modelmore » does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune explains the transition from a prograde to a retrograde equatorial jet, while the broader jets are due to the deformation radius being a larger fraction of the planetary radius.« less

  16. Prograde infiltration of Cl-rich fluid into the granulitic continental crust from a collision zone in East Antarctica (Perlebandet, Sør Rondane Mountains)

    NASA Astrophysics Data System (ADS)

    Kawakami, Tetsuo; Higashino, Fumiko; Skrzypek, Etienne; Satish-Kumar, M.; Grantham, Geoffrey; Tsuchiya, Noriyoshi; Ishikawa, Masahiro; Sakata, Shuhei; Hirata, Takafumi

    2017-03-01

    Utilizing microstructures of Cl-bearing biotite in pelitic and felsic metamorphic rocks, the timing of Cl-rich fluid infiltration is correlated with the pressure-temperature-time (P-T-t) path of upper amphibolite- to granulite-facies metamorphic rocks from Perlebandet, Sør Rondane Mountains (SRM), East Antarctica. Microstructural observation indicates that the stable Al2SiO5 polymorph changed from sillimanite to kyanite + andalusite + sillimanite, and P-T estimates from geothermobarometry point to a counterclockwise P-T path characteristic of the SW terrane of the SRM. In situ laser ablation inductively coupled plasma mass spectrometry for U-Pb dating of zircon inclusions in garnet yielded ca. 580 Ma, likely representing the age of garnet-forming metamorphism at Perlebandet. Inclusion-host relationships among garnet, sillimanite, and Cl-rich biotite (Cl > 0.4 wt%) reveal that formation of Cl-rich biotite took place during prograde metamorphism in the sillimanite stability field. This process probably predated partial melting consuming biotite (Cl = 0.1-0.3 wt%). This was followed by retrograde, moderately Cl-bearing biotite (Cl = 0.1-0.3 wt%) replacing garnet. Similar timings of Cl-rich biotite formation in different samples, and similar f(H2O)/f(HCl) values of coexisting fluid estimated for each stage can be best explained by prograde Cl-rich fluid infiltration. Fluid-present partial melting at the onset of prograde metamorphism probably contributed to elevate the Cl concentration (and possibly salinity) of the fluid, and consumption of the fluid resulted in the progress of dehydration melting. The retrograde fluid was released from crystallizing Cl-bearing partial melts or derived externally. The prograde Cl-rich fluid infiltration in Perlebandet presumably took place at the uppermost part of the footwall of the collision boundary. Localized distribution of Cl-rich biotite and hornblende along large-scale shear zones and detachments in the SRM supports external input of Cl-rich fluids through tectonic boundaries during continental collision.

  17. Stratigraphy and sedimentology of the Mid-Cretaceous deposits of the Yukon-Koyukuk Basin, west central Alaska

    NASA Astrophysics Data System (ADS)

    Nilsen, Tor H.

    1989-11-01

    The northeast trending Yukon-Koyukuk basin of west central Alaska consists of two subbasins, the Kobuk-Koyukuk subbasin to the north and east and the Lower Yukon subbasin to the southwest. The subbasins are separated by an arcuate Lower Cretaceous volcanic pile, the Hogatza trend, which is thought to be an accreted volcanic arc. The oldest part of the sedimentary fill of the subbasins consists of Valanginian to lower Albian(?) volcaniclastic rocks deposited on the flanks of the Hogatza trend. Following subsidence of the Hogatza trend, mid-Cretaceous clastic sedimentary strata of mainly Albian and Cenomanian age, and possibly as thick as 8000 m, were shed into the basin; these deposits were derived from surrounding uplands or borderlands in the Seward Peninsula to the west, the Brooks Range to the north, and the Ruby geanticline to the southeast. These mid-Cretaceous basin fill deposits can be divided into four main facies: (1) basin margin conglomerate facies, chiefly alluvial fan deposits that were transported basinward and rest in part unconformably on the surrounding uplands; (2) shelf facies, chiefly cross-stratified and hummocky cross-stratified sandstone deposited by wave-generated currents on a shelf that rimmed the basin on its western and northern margins; (3) deltaic facies, chiefly sandstone and shale deposited in delta plain and delta front environments on a large constructional delta that prograded westward from the eastern basin margin across both subbasins and across the subsided southern part of the Hogatza trend; and (4) turbidite facies, chiefly interbedded sandstone and shale deposited as elongate deep-sea fans and related deep-sea clastic systems by flows that transported sediment to the axial parts of both subbasins, northeastward in the Lower Yukon subbasin and eastward to southward in the Kobuk-Koyukuk subbasin. Sedimentation appears to have ended in the Santonian, followed by uplift, folding, and faulting of the basin fill. Less deformed, lower Tertiary nonmarine volcanic and volcaniclastic rocks unconformably overlie the more highly deformed Cretaceous strata.

  18. Dating of coastal marine sediments: 210Pb versus 137Cs signal on the Danube-influenced Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Friedrich, Jana; Laptev, Gennady

    2010-05-01

    Coastal marine sediments represent a natural archive of pelagic processes, coastal erosion and river discharge of suspended matter. Correct dating of those sediments is a prerequisite for chronological reconstruction of the flux of pollutants and organic matter from the water column to the sediments and hence, the reconstruction of the pollution and eutrophication events. In the reconstruction of the sedimentation history during the pre-industrial and industrial periods, which usually spans the past 100 years, the natural occurring radionuclide 210Pb and the artificial radionuclides 137Cs and 241Am are widely applied tracers. 137Cs is used as an independent time marker for end the atmospheric bomb test fallout in 1963 and the Chernobyl accident in 1986. As the 137Cs signal is often weakened due to its mobility in sediments, 241Am, less mobile than 137Cs and derived from decay the bomb fallout of 241Pu, is used as a second time marker of the 1963 event. The northwestern shelf of the Black Sea has been seriously affected by eutrophication and pollution from the late 1960's to the mid-1990's, largely triggered by Danube River input of nutrients and pollutants. The aim of our study is ultimately to reconstruct the eutrophication history and recycling of nutrients following the deposition of organic matter. The ‘memory effect' of sediment recycling plays a critical role in maintaining eutrophic conditions in enclosed seas such as the Black Sea. Here we present results from sediment cores taken within the Danube River plume on the shallow northwestern shelf of the Black Sea. The cores have been dated in two laboratories to rule out artifacts. The sediment record is repeatedly interrupted by so-called turbidites that consist of stiff clay. The clay horizons display a drop in unsupported 210Pb and 137Cs and a higher signal of supported 210Pb than the non-clay horizons. Below the turbidite, the unsupported 210Pb and 137Cs increase again to values above the turbidite. This points to a non-marine origin of the turbidite. In such sediment sequence, the classical application of the CRS model would provide false ages and sedimentation rates. We hypothesize that the turbidite represents terrestrial clay eroded from the Danube Delta that had been transported in pulse-like events during flash floods of the Danube River.

  19. Quaternary Turbidite Sedimentation in the Moresby Trough, Preliminary Observations from the Papua New Guinea S2S Study Area

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Muhammad, Z.; Dickens, J.; Droxler, A.; Peterson, L.; Opdyke, B.

    2004-12-01

    Multicores and jumbo piston cores were collected from the Moresby Trough from the R/V Melville in March-April 204 to study patterns of off-shelf sediment flux from the Gulf of Papua to the deep sea over Pleistocene-Holocene timescales. The Moresby Trough represents the primary deep-sea sediment conduit linking the Source to Sink Gulf of Papua study area to the north with the Coral Sea Basin to the south. Core locations were navigated from the surface using dynamic positioning and multibeam bathymetric mosaics collected during the cruise. Selected cores have been analyzed using a multi-sensor core logger, X-radiography, granulometry, and Pb-210 geochronology. Most piston cores collected from the Moresby Trough contain abundant mafic sandy turbidites overlain by fine-grained hemipelagic deposits 1-2 m thick. X-radiographs of multicores reveal mostly bioturbated hemipelagics. However, one core, MV25-0403-24MC, was collected from the axis of a primary channel, and contains at least two fine-grained turbidites within the upper 0.5 m of sediment. The uppermost turbidite contains low but uniform activities of excess Pb-210, and may have been 15-20 cm thick at the time of deposition (i.e., before subsequent disruption by bioturbation), based on fabric and radiochemical evidence. Application of a simple box-model for physical mixing (i.e., during the flow) and subsequent decay suggests that the uppermost turbidite was deposited 70-120 years before present. Bioturbation has since reworked about 60% of the bed, suggesting that such beds will only escape destruction by bioturbation if they are > 10 cm thick, and are deposited more frequently than once per century. Based on these observations, we suggest that gravity flows are presently active in the Moresby trough, and may account for a significant fraction of the hemipelagic drape present in channel systems. However, fabric evidence for these thin, fine-grained beds may be obscured by subsequent bioturbation. Also, at some point in the past, possibly at the onset of the Holocene Transgression, the character of sediment flux to the Moresby Trough shifted from sandy mafic-rich sandy turbidity currents to much finer sediments, delivered downslope by both benthic flows and vertical flux through the water column.

  20. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained around 2 mbsf of PC03 core also indicates similar sedimentary process. However, we also obtained large age gap in a thick turbidite layer, indicating remobilization of deeper sediments by landslide. Our results revealed that the studied basin recorded various scales and styles of sediment remobilizations by earthquake shakings.

  1. In Situ Sedimentological Evidence for Climate Change in Early Mars Provided by the Curiosity Rover in Gale Crater

    NASA Astrophysics Data System (ADS)

    Heydari, Ezat; Fairen, Alberto G.

    2016-10-01

    The Striated formation is one of the rock units that was deposited in Gale crater, Mars, during the Late Noachian to Hesperian time (4.2 to 3.6 billion years ago). It crops out for 3 km along the Curiosity's traverse. The Striated formation strikes N65○E and has a depositional dip of 10○ - 20○ to SE. It consists of 500 m to 1000 m of highly rhythmic layers each 1 m to 4 m in thickness. Study of MAHLI and MastCam images provided by the Curiosity Rover indicates that layers form fining-upward cycles consisting of thick-bedded to massive conglomerate at the base that grades upward to thinly bedded conglomerate, then to pebbly sandstone, and topped by laminated, fine grained sandstone. Layers show slump folds, soft sediment deformation, and cross-beddings.The highly rhythmic occurrence and the fining-upward grain size characteristic indicate that each layer within the Striated formation is a coarse-grained turbidite: a type of rock that forms when sediments move down-hill by gravity-driven turbidity flows and deposit in deep waters. We propose that turbidite layers of the Striated formation are related to delivery of sediments to Gale crater by megafloods through its northern rim. Upon entering Gale crater, sediments moved down-hill and deposited as turbidite layers when the crater may have been filled to the rim with water. About 1000 to 3000 turbidite layers are present suggesting the occurrences of as many megafloods during hothouse climatic intervals when Mars was warmer than the Present and had plenty of liquid water. Floods were generated by one or a combination of the following processes: (1) torrential rain along the margins of Mars's Northern Ocean, 500 km to 1000 km to the north, (2) rapid melting of ice in highland areas, and (3) tsunamis formed by impacts on the Northern Ocean. Cold and/or dry climate of icehouse intervals may have followed each warming episode. Mars's climate forcing mechanism and periodicities of climate change are not clear at this point. However, the highly regular and rhythmic nature of turbidite layers point to an orbital triggering mechanism, possibly driven by changes in obliquity.

  2. Are North Slope surface alluvial fans pre-Holocene relicts?

    USGS Publications Warehouse

    Reimnitz, Erk; Wolf, Stephen C.

    1998-01-01

    The surface morphology of the northern slope of the Brooks Range (North Slope) from the Canning River, Alaska, eastward is dominated by a series of large alluvial fans and braided streams floored by coarse alluvium. On the basis of our studies, we conclude that the fans are not prograding now nor have they been prograding at any time during the Holocene. During the latest transgression and the following sea-level highstand, the North Slope depositional environment and climate probably differed greatly from the present ones.

  3. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is characterized by basal silt- to sand-rich clay dominated stratigraphic units. The upper most debris flow at Site UBGH2-5 extends into the overlying gas hydrate stability zone and IR core scans indicate that this section contains some amount of gas hydrate. The UBGH2 LWD and coring program also confirmed the occurrence of numerous volcaniclastic and siliciclastic sand reservoirs that were deposited as part of local to basin-wide turbidite events. Gas hydrate saturations within the turbidite sands ranged between 60-80 percent. In 2009, the Gulf of Mexico (GOM) Joint Industry Project (JIP) drilled seven wells at three sites, finding gas hydrate at high concentration in sands in four wells, with suspected gas hydrate at low to moderate saturations in two other wells. In the northern GOM, high sedimentation rates in conjunction with salt tectonism, has promoted the formation of complex seafloor topography. As a result, coarse-grained deposition can occur as gravity-driven sedimentation traversing the slope within intra-slope "ponded" accommodation spaces.

  4. Bahía de Banderas, Mexico: Morphology, Magnetic Anomalies and Shallow Structure

    NASA Astrophysics Data System (ADS)

    Mortera Gutiérrez, Carlos A.; Bandy, William L.; Ponce Núñez, Francisco; Pérez Calderón, Daniel A.

    2016-10-01

    The Bahía de Banderas lies within a tectonically complex area at the northern end of the Middle America Trench. The structure, morphology, subsurface geology and tectonic history of the bay are essential for unraveling the complex tectonic processes occurring in this area. With this focus, marine geophysical data (multi-beam bathymetry, high resolution seismic reflection and total field magnetic data) were collected within the bay and adjacent areas during four campaigns aboard the B.O. EL PUMA conducted in 2006 and 2009. These data image the detailed morphology of, and sedimentation patterns within, the Banderas Canyon (a prominent submarine canyon situated on the south side of the bay) as well as the shallow subsurface structure of the northern part of the bay and the submarine Marietas Ridge, which bounds the bay to the west. We find that the Marietas Ridge is presently a transtensional feature; the course of the Banderas Canyon is controlled by extensive turbidite fan sedimentation in its eastern extremity and by structural lineaments to the west; the canyon floor is filled by sediments and exhibits almost no evidence for recent tectonic movements; the southern canyon wall is quite steep and a few sediments are deposited as submarine fans at the base of the southern wall; and extensive turbidite fans form the lower part of the northern canyon wall, producing a gently sloping lower northern wall. We find no evidence for a regional east-west striking lineament between the bay and the Middle America Trench, which casts doubts on the previous assertion that the Banderas Canyon is unequivocally related to the presence of a regional half-graben. Finally, a N71°E oriented normal fault offsets the seafloor reflector by 15 m within the central part of the bay, suggesting that the bay is currently being subjected to NNW-SSE extension.

  5. Sedimentary patterns in perched spring travertines near Granada (Spain) as indicators of the paleohydrological and paleoclimatological evolution of a karst massif

    NASA Astrophysics Data System (ADS)

    Martín-Algarra, Agustín.; Martín-Martín, Manuel; Andreo, Bartolomé; Julià, Ramón; González-Gómez, Cecilio

    2003-10-01

    Perched spring travertines of the Granada basin (South Spain) constitute a perched system with four well-defined steps, which are formed by several facies associations deposited in different sub-environments (travertine pools, dams and cascades). These perched travertines are considered as a freshwater reef system with a facies zonation and stratigraphic architecture closely resembling that of marine reef terraces and prograding carbonate platforms. The travertine deposits have been dated by 230Th/ 234U and 14C methods. As in other Mediterranean areas, the travertine deposition occurred episodically during warm and wet interglacial periods coinciding with isotopic stages 9, 7 and 5, and with the transition between isotopic stages 2/1. During these periods, underground dissolution, large outflow in the springs and subsequent calcium carbonate precipitation occurred. In the same way that evolution of reef systems indicates sea level changes, the geomorphology, age and architecture of perched spring travertine systems may be used to interpret former climatically controlled changes in outflow, in base level marked by the altitude of springs and in the chemistry of spring waters. Thus, aggradation or climbing progradation may indicate an increase of outflow at the spring, progradation with toplap is due to a stable base level and, conversely, dowlapping progradation may signify that the base level was gradually dropping. Therefore, the travertines can be considered semiquantitative indicators of the paleohydrological evolution of karstic massifs and used as an important terrestrial proxy climate record.

  6. Prograde evolution of the Scottish Caledonides and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Thigpen, J. Ryan; Law, Richard D.

    2015-05-01

    Recent thermometric analyses of samples collected in thrust-parallel structural transects across the Scandian (435-415 Ma) orogenic wedge in northwest Scotland provide a comprehensive characterization of the synorogenic retro-wedge thermal architecture. However, the paucity of petrologically-important metamorphic mineral phases (e.g., staurolite, Al-silicates) has limited investigation of pressure-temperature (P-T) histories, which hinders our ability to examine the nature of orogen-scale kinematic and thermal coupling. New data collected along a foreland-to-hinterland transect from the Moine to the Naver thrust sheets provides additional constraints for characterizing the prograde metamorphic evolution. In addition, we characterized Ti diffusion profiles in quartz inclusions in garnet to constrain duration of metamorphic heating. These results are used to develop coupled kinematic-thermal models of Scandian orogenic evolution. Early garnet core growth conditions are constrained by isopleth intersections, with peak P-T estimates determined by conventional exchange and net transfer thermobarometry and thermodynamic calculations. Most samples follow normal prograde heating and burial profiles, with peak conditions of 450 °C and 5.0 kbar in the immediate hanging wall to the Moine thrust, increasing in temperature and pressure to 733 °C and 9.5 kbar in the immediate hanging wall to the Naver thrust. These normal prograde pressure trajectories are interpreted to reflect burial of incipient thrust sheets beneath the overriding wedge at the leading edge of the orogen. Prograde heating coeval with burial is interpreted to result from surface-directed isotherm perturbation due to thrust-related advection in the overriding wedge. One exception to this is a sample from the top of the Moine thrust sheet, where prograde heating occurs during decompression (540 °C and 8.1 kbar to 590 °C and 7.0 kbar). In this case, the short lag times between motion on the Moine and Ben Hope thrusts may have limited advectionary heating until after exhumation associated with motion on the underlying Moine thrust was underway. Ti diffusion profiles in quartz inclusions in garnet suggest the near-peak thermal evolution of these rocks occurred over very short time scales (< 200,000 years). While most of the garnets are inferred to be Scandian in age, we document evidence for pre-Scandian garnet cores in structurally higher (more hinterland positioned) samples that must have grown under higher temperatures. In the hanging wall of the Moine thrust, high grossular garnets with estimated formation conditions > 9 kbar are probably of detrital origin.

  7. Spatial delineation, fluid-lithology characterization, and petrophysical modeling of deepwater Gulf of Mexico reservoirs though joint AVA deterministic and stochastic inversion of three-dimensional partially-stacked seismic amplitude data and well logs

    NASA Astrophysics Data System (ADS)

    Contreras, Arturo Javier

    This dissertation describes a novel Amplitude-versus-Angle (AVA) inversion methodology to quantitatively integrate pre-stack seismic data, well logs, geologic data, and geostatistical information. Deterministic and stochastic inversion algorithms are used to characterize flow units of deepwater reservoirs located in the central Gulf of Mexico. A detailed fluid/lithology sensitivity analysis was conducted to assess the nature of AVA effects in the study area. Standard AVA analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generate typical Class III AVA responses. Layer-dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution, indicating that presence of light saturating fluids clearly affects the elastic response of sands. Accordingly, AVA deterministic and stochastic inversions, which combine the advantages of AVA analysis with those of inversion, have provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties and fluid-sensitive modulus attributes (P-Impedance, S-Impedance, density, and LambdaRho, in the case of deterministic inversion; and P-velocity, S-velocity, density, and lithotype (sand-shale) distributions, in the case of stochastic inversion). The quantitative use of rock/fluid information through AVA seismic data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, provides accurate 3D models of petrophysical properties such as porosity, permeability, and water saturation. Pre-stack stochastic inversion provides more realistic and higher-resolution results than those obtained from analogous deterministic techniques. Furthermore, 3D petrophysical models can be more accurately co-simulated from AVA stochastic inversion results. By combining AVA sensitivity analysis techniques with pre-stack stochastic inversion, geologic data, and awareness of inversion pitfalls, it is possible to substantially reduce the risk in exploration and development of conventional and non-conventional reservoirs. From the final integration of deterministic and stochastic inversion results with depositional models and analogous examples, the M-series reservoirs have been interpreted as stacked terminal turbidite lobes within an overall fan complex (the Miocene MCAVLU Submarine Fan System); this interpretation is consistent with previous core data interpretations and regional stratigraphic/depositional studies.

  8. Seismic analysis of clinoform depositional sequences and shelf-margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.; Schenk, C.J.

    2009-01-01

    Lower Cretaceous strata beneath the Alaska North Slope include clinoform depositional sequences that filled the western Colville foreland basin and overstepped the Beaufort rift shoulder. Analysis of Albian clinoform sequences with two-dimensional (2D) seismic data resulted in the recognition of seismic facies inferred to represent lowstand, transgressive and highstand systems tracts. These are stacked to produce shelf-margin trajectories that appear in low-resolution seismic data to alternate between aggradational and progradational. Higher-resolution seismic data reveal shelf-margin trajectories that are more complex, particularly in net-aggradational areas, where three patterns commonly are observed: (1) a negative (downward) step across the sequence boundary followed by mostly aggradation in the lowstand systems tract (LST), (2) a positive (upward) step across the sequence boundary followed by mostly progradation in the LST and (3) an upward backstep across a mass-failure d??collement. These different shelf-margin trajectories are interpreted as (1) fall of relative sea level below the shelf edge, (2) fall of relative sea level to above the shelf edge and (3) mass-failure removal of shelf-margin sediment. Lowstand shelf margins mapped using these criteria are oriented north-south in the foreland basin, indicating longitudinal filling from west to east. The shelf margins turn westward in the north, where the clinoform depositional system overstepped the rift shoulder, and turn eastward in the south, suggesting progradation of depositional systems from the ancestral Brooks Range into the foredeep. Lowstand shelf-margin orientations are consistently perpendicular to clinoform-foreset-dip directions. Although the Albian clinoform sequences of the Alaska North Slope are generally similar in stratal geometry to clinoform sequences elsewhere, they are significantly thicker. Clinoform-sequence thickness ranges from 600-1000 m in the north to 1700-2000 m in the south, reflecting increased accommodation from the rift shoulder into the foredeep. The unusually thick clinoform sequences suggest significant subsidence followed by rapid sediment influx. No claim to original US government works. Journal Compilation ?? Blackwell Publishing Ltd, European Association of Geoscientists & Engineers and International Association of Sedimentologists.

  9. Sequence stratigraphy of the siliciclastic East Puolanka Group, the Palaeoproterozoic Kainuu Belt, Finland

    NASA Astrophysics Data System (ADS)

    Strand, Kari

    2005-04-01

    The 2300-2600 m thick Palaeoproterozoic East Puolanka Group within the central Fennoscandian Shield records four major transgressions on the cratonic margin within the approximate time period 2.25-2.10 Ga. Stacking of siliciclastic facies in parasequences and parasequence sets provides data to evaluate oscillation of relative sea-level and subsidence on different temporal scales. The lowermost part of the passive margin prism is characterized by alluvial plain to shallow marine sediments deposited in incised valleys. The succeeding highstand period is recorded by ca. 250 m of progradational parasequence sets of predominantly rippled and horizontally laminated sandstones, representing stacked wave-dominated shoreline units in sequence 1, capped by a hiatus or, in some places, by a subaerial lava. As relative sea-level rose again, sand-rich barrier-beach complexes developed with microtidal lagoons and inlets, corresponding to a retrogradational parasequence set. This was followed by a highstand period, with aggradation and progradation of alluvial plain and coastal sediments grading up into wave-tide influenced shoreline deposits in sequence 2. In sequence 3, the succeeding mudstones represent tidal flat deposits in a back-barrier region. With continued transgression, the parasequences stacked retrogradationally, each flooding episode being recorded by increasingly deeper water deposits above low-angle cross-bedded sandstones of the swash zones. The succeeding highstand progradation is represented by alluvial plain deposits. The next transgressive systems tract, overlying an inferred erosional ravinement surface, is recorded by a retrogradational parasequence set dominated by low-angle cross-stratified swash zone deposits in sequence 4. The large-scale trough cross-bed sets in these parasequences represent sand shoals and sheets of the inner shelf system. The overall major transgression recorded in the lowermost part of the Palaeoproterozoic cratonic margin succession was related to first- to second-order sea-level changes, probably due to increasing regional thermal subsidence of the lithosphere following partial continental breakup. The stratigraphic evolution can be related to changes of relative sea-level with a frequency of ca. 25 million years, probably propagated by episodic thermal subsidence. The parasequences identified here are related to high-frequency cycles of relative sea-level change due to low-magnitude eustatic oscillations.

  10. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone)

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Flores, K. E.; Martin, C.; Harlow, G. E.

    2014-12-01

    The Guatemala Suture Zone is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schists, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). The North Motagua Mélange (NMM) outcrops north of the MFS and testifies the emplacement of exhumed subduction assemblages along a collisional tectonic setting. The NMM is composed of a serpentinite-matrix mélange that contains blocks of metabasites (subgreenschist facies metabasalt, grt-blueschist, eclogite, grt-amphibolite), vein-related rocks (jadeitite, omphacitite, albitite, mica-rock), and metatrondhjemites. Our new detailed petrographic and thermobarometric study on the garnet-bearing metabasites reveals a complex polymetamorphic history with multiple tectonic events. Eclogites show a classical clockwise PT path composed of (a) prograde blueschist/eclogite facies within garnet cores, (b) eclogite facies metamorphic peak at ~1.7 GPa and 620°C, (c) post-peak blueschist facies, (d) amphibolite facies overprint, and (e) late stage greenschist facies. Two types of garnet amphibolite blocks can be found, the first consist of (a) a relict eclogite facies peak at ~1.3 GPa and 550°C only preserved within anhedral garnet cores, and (b) surrounded by a post-peak amphibolite facies. In contrast, the second type displays a prograde amphibolite facies at 0.6-1.1 GPa and 400-650°C. The eclogites metamorphic peak suggests formation in a normal subduction zone at ~60 km depth, a subsequent exhumation to the middle section of the subduction channel (~35 km), and a later metamorphic reworking at lower P and higher T before its final exhumation. The first type of garnet amphibolite shows a similar trajectory as the eclogites but at warmer conditions. In contrast, the second type of garnet amphibolite recorded a single prograde evolution along a hotter thermal gradient. These different PT paths suggest multiple metamorphic events that may be related to subduction initiation, partial exhumation and storage of HP-LT rocks, subduction of buoyant crust, final exhumation and obduction.

  11. Compositional Analyses and Implications of Visible/Near-Infrared Spectra of Outer Irregular Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Hendrix, Amanda

    2017-10-01

    The existence of a visible-near infrared absorption feature attributed to aqueous alteration products has been suggested in both grey and reddened broadband photometry of some outer irregular jovian satellites. Moderate resolution VNIR narrowband spectroscopy was obtained of the jovian irregular satellites JVI Himalia, JVII Elara, JVIII Pasiphae, JIX Sinope, JX Lysithea, JXI Carme, JXII Ananke and JXVII Callirrhoe in 2006, 2008, 2009, and 2010 using the MMT Observatory facility Red Channel spectrograph to confirm the presence of this feature. The spectra are centered near 0.64 μm in order to cover the 0.7-μm feature entirely (generally ranging from 0.57 to 0.83 μm). The spectra generally have a dispersion/element of ~0.6 nm (6Å) some spectra are smoothed. These spectra sample three prograde (i = 28o), four retrograde (i = 149o, 165o) and one independent satellite.We observe these findings among the spectra:- An absorption feature centered near 0.7 µm exists in the spectra of the three prograde (i = 28o) satellites. This feature is spectrally broader than the 0.7-µm feature observed in C-complex asteroids. None appears spectrally reddened. This suggests that these prograde satellites have a common parent body.- A different absorption feature appears in the spectra of the three retrograde (i = 149o) satellites, also suggesting a common parent body. Varying reddening is observed. This feature is similar in spectral location and width to the 0.7-µm feature.- Reddening is observed in the individual observation of JXI Carme (i = 165o), and independent satellite JIX Sinope, similar to the D-class asteroid spectra dominating the Trojan population. A suggested absorption feature is being investigated.Mixing modeling of combinations of both expected and proposed compositions including carbonaceous materials, phyllosilicates, mafic silicates, and other opaque materials, is currently underway. Results will be reported and discussed at the meeting.Acknowledgments: The MMT Observatory is a joint facility of the University of Arizona and the Smithsonian Institution. This research has been supported by SSERVI CLASS.

  12. The first retrograde Trojan asteroid

    NASA Astrophysics Data System (ADS)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2018-04-01

    There are about six thousand asteroids which share Jupiter's orbit around the Sun. Called the 'Trojan asteroids', they co-exist easily with this giant planet because they travel in the same direction as it ('direct' or 'prograde' motion), and remain roughly 60 degrees ahead of or behind it in its orbit. Newly discovered asteroid 2015 BZ509 is on a retrograde orbit, but is nonetheless in a state dynamically analogous to that of the prograde Trojans. The discovery circumstances and the nature of the motion of this curious asteroid -the first of its kind- will be outlined.

  13. Geologic map of the Seldovia quadrangle, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Karl, Susan M.; Donley, D. Thomas

    1999-01-01

    This is a 1:250,000-scale map of the bedrock geology of the Seldovia quadrangle, south-central Alaska. The map area covers the southwestern end of the Kenai Peninsula, including the Kenai Lowlands and Kenai Mountains, on either side of Kachemak Bay. The waters of Cook Inlet cover roughly half of the map area, and a part of the Alaska Peninsula near Iliamna Volcano lies in the extreme northwest corner of the map. The bedrock geology is based on new reconnaissance field work by the U.S. Geological Survey during parts of the 1988-1993 field seasons, and on previous mapping from a number of sources. The new mapping focused on the previously little-known Chugach accretionary complex in the Kenai Mountains. Important new findings include the recognition of mappable subdivisions of the McHugh Complex (a subduction melange of mostly Mesozoic protoliths), more accurate placement of the thrust contact between the McHugh Complex and Valdez Group (Upper Cretaceous trench turbidites), and the recognition of several new near-trench plutons of early Tertiary age.

  14. Discriminating Sediment Supply versus Accommodation Controls on Late Cretaceous Foreland Basin Stratigraphic Architecture in the Book Cliffs, Utah using Detrital Zircon Double Dating

    NASA Astrophysics Data System (ADS)

    Bartschi, N.; Saylor, J. E.

    2016-12-01

    Middle to late Campanian strata of the Book Cliffs, Utah record the Late Cretaceous deposition of three clastic wedges in the North American Cordilleran foreland basin east of the Sevier thrust-belt. Variations in wedge geometries provide an opportunity to evaluate the effects of sediment supply versus accommodation on foreland basin stratal architecture. There is a significant increase in eastward progradation rate from the Lower to the Upper Castlegate Sandstone. However, the progradation rate decreases in the overlying Bluecastle and Price River formations, as well as the laterally equivalent Farrer and Tuscher formations. Rapid progradation during Upper Castlegate deposition may be caused by increased sediment supply from either rapid exhumation of the Sevier thrust-belt or introduction of a new sediment source. Alternatively, reduced accommodation within the proximal foreland basin from uplifts associated with Laramide deformation, or a transition from flexural to dynamic subsidence, could produce the observed rapid wedge progradation. Changes in sediment provenance and source-area exhumation rate can be identified using a combination of detrital zircon U-Pb geochronology and (U-Th)/He thermochronology. Quantitative comparisons between collected samples and published provenance data indicates an upsection increase in a new sediment source, revealing a significant overall shift in provenance between wedge boundaries. This change in provenance is coupled by an upsection decrease in lag time between the Lower and Upper Castlegate, consistent with an increase in exhumation rate. Conversely, there is no change in lag time between the Upper Castlegate and overlying Price River Formation, suggesting a relatively constant exhumation rate. Near-zero lag times during the Upper Castlegate is consistent with rapid exhumation associated with increased thrusting of the Sevier thrust-belt. Therefore, progradation of the Upper Castlegate can be attributed to an increase in sediment supply due to both rapid exhumation of the Sevier thrust-belt and introduction of a new sediment source. However, the data do not rule out the potential influence of reduced accommodation associated with early Laramide deformation during Upper Castlegate deposition.

  15. Detrital zircon age patterns from turbidites of the Balagne and Piedmont nappes of Alpine Corsica (France): Evidence for an European margin source

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Rossi, Philippe; Faure, Michel; Li, Xian-Hua; Ji, Wenbin; Chu, Yang

    2018-01-01

    At the front of metamorphic Cenozoic Alpine nappe of Schistes Lustrés, Western Alpine Corsica (France) exposes non- to very low grade metamorphic nappes, such as the Piedmont nappes, Upper nappes, and the Balagne nappe. The provenance of the Balagne nappe remains still opened: an origin close to the Corsican continental margin; or an origin far East from the Corsican margin toward the "Apenninic" oceanic domain. This would constrain that the Balagne ophiolite be derived from the opposite OCT (Ocean - Continent transition), close to a microcontinent located to the East of the Mesozoic Corsican margin. A systematic U-Pb dating of 586 detrital zircon grains collected from the turbidites in the Balagne and Piedmont nappes has been performed to constrain the source of sediments. The zircon grains yield U-Pb age spectra ranging from Neoarchean to Late Paleozoic with age peaks at 2600 Ma, 2080 Ma, 1830 Ma, 910 Ma, 600 Ma, 560 Ma, 450 Ma, 330 Ma and 280 Ma with different continental model ages (TDM2) from 3.5 Ga to 1.0 Ga. The variety of composition of the Corsican batholith, unique in its present Mediterranean environment, and in spite of Alpine transcurrent movements, provide a key to analyze the detrital zircon age distribution patterns of sedimentary rocks. These new results i) confirm the lack of any Cretaceous zircon that validates absence of a magmatic arc of this age, at least in the surroundings of the turbiditic formations from the Balagne and the Piedmont nappes; ii) fully support an European provenance of detritus of the Balagne nappe, iii) put forward evidence that no ophiolitic zircon was contained neither in the Cretaceous nor in the Eocene turbidites samples, and iv) question both the deposition of the Piedmont Narbinco flysch within the ocean continent transition and its possible relationships with the Late Cretaceous Pyrenean basins.

  16. Identifying glacial influences on sedimentation in tectonically-active, mass flow dominated arc basins with reference to the Neoproterozoic Gaskiers glaciation (c. 580 Ma) of the Avalonian-Cadomian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Carto, Shannon L.; Eyles, Nick

    2012-06-01

    Neoproterozoic 'Avalonian-Cadomian' volcanic arc basins once lay peripheral to Gondwana and are now found around the North Atlantic Ocean in New England, Atlantic Canada and northwestern Europe as 'peri-Gondwanan terranes.' Their thick (up to 9 km) marine fills are dominated by turbidites, debrites (diamictites and variably graded conglomerates), slumps and olistostromes recording the dominance of mass flow processes in arc basins oversupplied with volcaniclastic sediment. Several diamictite horizons in these basins were identified as glacial tillites more than one hundred years ago on the basis of poor textural sorting, and the lack of any understanding of mass flow processes. An association with thin-bedded turbidite facies, then interpreted as glaciolacustrine varvites, was seen as evidence for widespread glacial conditions which is still the basis today of a near global 'Gaskiers glaciation' at c. 580 Ma, despite classic sedimentological work which shows that the 'tillites' and 'varvites' of these basins are deep marine sediment gravity flow deposits. Only in two basins (Gaskiers Formation, Avalon Peninsula in Newfoundland, and the Konnarock Formation of Virginia) is a distal and regionally-restricted glacial influence on marine sedimentation identified from ice-rafted, striated dropstones in turbidites but terrestrial 'ice-contact' facies are absent. As revealed in this study, terrestrial glacial facies may not have survived frequent volcanic activity such as seen today on glaciated active plate margin volcanoes such as Mount Rainier in Washington USA, and Cotopaxi Volcano in Ecuador where primary glacial sediment is frequently reworked by lahars, pyroclastic flows, debris avalanches and outburst floods. The weight of evidence presented in this study indicates that ice covers during the Gaskiers glaciation were not widespread across the Avalonian-Cadomian back arc basins; the deep marine Grenada Basin (Caribbean Sea) filled with turbidites, debrites (lahars) and debris avalanches from the adjacent Lesser Antilles Arc is identified here as a modern analogue for these ancient basins.

  17. Detrital magnetization of laboratory-redeposited sediments

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Tanty, Cyrielle; Carlut, Julie

    2017-07-01

    We conducted several redeposition experiments in laboratory using natural and artificial sediments in order to investigate the role of grain size and lithology on sedimentary remanence acquisition. The role of grain size was investigated by using sorted sediment from natural turbidites. Taking advantage of the magnetic grain size distribution within turbidites, we compared redeposition experiments performed with coarse magnetic grains taken from the bottom layers of a turbidite with fine grains from the upper layers of the same turbidite. In order to document the magnetization acquired for increasing sediment concentrations that is analogous to increasing depth in the sediment column, the samples were frozen at temperatures between -5 and -10 °C. Magnetization acquisition behaved similarly in both situations, so that little smearing of the palaeomagnetic signal should be linked to grain size variability within this context. Other series of experiments were aimed at investigating the influence of lithology. We used clay or carbonated sediments that were combined with magnetic separates from basaltic rocks or with single-domain biogenic magnetite. The experiments revealed that the magnetization responded differently with clay and carbonates. Clay rapidly inhibited alignment of magnetic grains at low concentrations and, therefore, significant magnetization lock-in occurred despite large water contents, perhaps even within the bioturbated layer. Extension of the process over a deeper interval contributes to smear the geomagnetic signal and therefore to alter the palaeomagnetic record. In carbonates, the magnetization was acquired within a narrow window of 45-50 per cent sediment concentration, therefore, little smearing of the geomagnetic signal can be expected. Finally, experiments on carbonate sediments and biogenic magnetite with increasing field intensities indicate that magnetization acquisition is linear with respect to field intensity. Altogether, the results suggest that sediments with dominant carbonate content should be favoured for records of geomagnetic field changes provided that the minor clay fraction does not vary excessively. They confirm the advantage of using cultures of magnetotactic bacteria for redeposition experiments.

  18. Carbonate apron models: Alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration

    USGS Publications Warehouse

    Mullins, H.T.; Cook, H.E.

    1986-01-01

    Sediment gravity flow deposition along the deep-water flanks of carbonate platforms typically does not produce submarine fans. Rather, wedge-shaped carbonate aprons develop parallel to the adjacent shelf/slope break. The major difference between submarine fans and carbonate aprons is a point source with channelized sedimentation on fans, versus a line source with sheet-flow sedimentation on aprons. Two types of carbonate aprons may develop. Along relatively gentle (< 4??) platform-margin slopes, aprons form immediately adjacent to the shallow-water platform and are referred to as carbonate slope aprons. Along relatively steep (4-15??) platform margin slopes, redeposited limestones accumulate in a base-of-slope setting, by-passing an upper slope via a multitude of small submarine canyons, and are referred to as carbonate base-of-slope aprons. Both apron types are further subdivided into inner and outer facies belts. Inner apron sediments consist of thick, mud-supported conglomerates and megabreccias (Facies F) as well as thick, coarse-grained turbidites (Facies A) interbedded with subordinate amounts of fine-grained, peri-platform ooze (Facies G). Outer apron sediments consist of thinner, grain-supported conglomerates and turbidites (Facies A) as well as classical turbidites (Facies C) with recognizable Bouma divisions, interbedded with approximately equal proportions of peri-platform ooze (Facies G). Seaward, aprons grade laterally into basinal facies of thin, base-cut-out carbonate turbidites (Facies D) that are subordinate to peri-platform oozes (Facies G). Carbonate base-of-slope aprons grade shelfward into an upper slope facies of fine-grained peri-platform ooze (Facies G) cut by numerous small canyons that are filled with coarse debris, as well as intraformational truncation surfaces which result from submarine sliding. In contrast, slope aprons grade shelfward immediately into shoal-water, platform-margin facies without an intervening by-pass slope. The two carbonate apron models presented here offer alternatives to the submarine-fan model for paleoenvironmental analysis and hydrocarbon exploration for mass-transported carbonate facies. ?? 1986.

  19. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik A. V.; Shanmugam, Ganapathy

    1980-01-01

    A comparative study of the sequence of sedimentary structures in ancient and modern fine-grained turbidites is made in three contrasting areas. They are (1) Holocene and Pleistocene deep-sea muds of the Nova Scotian Slope and Rise, (2) Middle Ordovician Sevier Shale of the Valley and Ridge Province of the Southern Appalachians, and (3) Cambro-Ordovician Halifax Slate of the Meguma Group in Nova Scotia. A standard sequence of structures is proposed for fine-grained turbidites. The complete sequence has nine sub-divisions that are here termed T 0 to T 8. "The lower subdivision (T 0) comprises a silt lamina which has a sharp, scoured and load-cast base, internal parallel-lamination and cross-lamination, and a sharp current-lineated or wavy surface with 'fading-ripples' (= Type C etc. …)." (= Type C ripple-drift cross-lamination, Jopling and Walker, 1968). The overlying sequence shows textural and compositional grading through alternating silt and mud laminae. A convolute-laminated sub-division (T 1) is overlain by low-amplitude climbing ripples (T 2), thin regular laminae (T 3), thin indistinct laminae (T 4), and thin wipsy or convolute laminae (T 5). The topmost three divisions, graded mud (T 6), ungraded mud (T 7) and bioturbated mud (T 8), do not have silt laminae but rare patchy silt lenses and silt pseudonodules and a thin zone of micro-burrowing near the upper surface. The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites and is approximately equivalent to Bouma's (C)DE divisions. The repetition of partial sequences characterizes different parts of the slope/base-of-slope/basin plain environment, and represents deposition from different stages of evolution of a large, muddy, turbidity flow. Microstructural detail and sequence are well preserved in ancient and even slightly metamorphosed sediments. Their recognition is important for determining depositional processes and for palaeoenvironmental interpretation.

  20. Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.

  1. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic conditions in ocean passages.

  2. Trace fossil analysis of lacustrine facies and basins

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.

    1998-01-01

    Two ichnofacies are typical of lacustrine depositional systems. The Scoyenia ichnofacies characterizes transitional terrestrial/nonmarine aquatic substrates, periodically inundated or desiccated, and therefore is commonly present in lake margin facies. The Mermia ichnofacies is associated with well oxygenated, permanent subaqueous, fine-grained substrates of hydrologically open, perennial lakes. Bathymetric zonations within the Mermia ichnofacies are complicated by the wide variability of lacustrine systems. Detected proximal-distal trends are useful within particular lake basins, but commonly difficult to extrapolate to other lakes. Other potential ichnofacies include the typically marine Skolithos ichnofacies for high-energy zones of lakes and substrate-controlled, still unnamed ichnofacies, associated to lake margin deposits. Trace fossils are useful for sedimentologic analysis of event beds. Lacustrine turbidites are characterized by low-diversity suites, reflecting colonization by opportunistic organisms after the turbidite event. Underflow current beds record animal activity contemporaneous with nearly continuous sedimentation. Ichnologic studies may also help to distinguish between marine and lacustrine turbidites. Deep-marine turbidites host the Nereites ichnofacies that consists of high diversity of ornate grazing traces and graphoglyptids, recording highly specialized feeding strategies developed to solve the problem of the scarcity of food in the deep sea. Deep lacustrine environments contain the Mermia ichnofacies, which is dominated by unspecialized grazing and feeding traces probably related to the abundance and accessibility of food in lacustrine systems. The lower diversity of lacustrine ichnofaunas in comparison with deep-sea assemblages more likely reflects lower species diversity as a consequence of less stable conditions. Increase of depth and extent of bioturbation through geologic time produced a clear signature in the ichnofabric record of lacustrine facies. Paleozoic lacustrine ichnofaunas are typically dominated by surface trails with little associated bioturbation. During the Mesozoic, bioturbation depth was higher in lake margin facies than in fully lacustrine deposits. While significant degrees of bioturbation were attained in lake margin facies during the Triassic, major biogenic disruption of primary bedding in subaqueous lacustrine deposits did not occur until the Cretaceous.

  3. Quasi-periodic recurrence of great and giant earthquakes in South-Central Chile inferred from lacustrine turbidite records

    NASA Astrophysics Data System (ADS)

    Strasser, M.; Moernaut, J.; Van Daele, M. E.; De Batist, M. A. O.

    2017-12-01

    Coastal paleoseismic records in south-central Chile indicate that giant megathrust earthquakes -such as in AD1960 (Mw9.5)- occur on average every 300 yrs. Based on geodetic data, it was postulated that the area already has the potential for a Mw8 earthquake. However, to estimate the probability for such a great earthquake from a paleo-perspective, one needs to reconstruct the long-term recurrence pattern of megathrust earthquakes. Here, we present two long lacustrine records, comprising up to 35 earthquake-triggered turbidites over the last 4800 yrs. Calibration of turbidite extent with historical earthquake intensity reveals a different macroseismic intensity threshold (≥VII½ vs. ≥VI½) for the generation of turbidites at the coring sites. The strongest earthquakes (≥VII½) have longer recurrence intervals (292 ±93 yrs) than earthquakes with intensity of ≥VI½ (139 ±69 yrs). The coefficient of variation (CoV) of inter-event times indicate that the strongest earthquakes recur in a quasi-periodic way (CoV: 0.32) and follow a normal distribution. Including also "smaller" earthquakes (Intensity down to VI½) increases the CoV (0.5) and fits best with a Weibull distribution. Regional correlation of our multi-threshold shaking records with coastal records of tsunami and coseismic subsidence suggests that the intensity ≥VII½ events repeatedly ruptured the same part of the megathrust over a distance of at least 300 km and can be assigned to a Mw ≥ 8.6. We hypothesize that a zone of high plate locking -identified by GPS data and large slip in AD 1960- acts as a dominant regional asperity, on which elastic strain builds up over several centuries and mostly gets released in quasi-periodic great and giant earthquakes. For the next 110 yrs, we infer an enhanced probability for a Mw 7.7-8.5 earthquake whereas the probability for a Mw ≥ 8.6 (AD1960-like) earthquake remains low.

  4. Turbiditic systems on passive margins: fifteen years of fruitful industry-academic exchanges.

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.

    2012-04-01

    During the last fifteen years, with the oil discovery in deep offshore plays, new tools have been developed that deeply modified our knowledge on sedimentary gravity processes on passive margins: geometry, physical processes, but also the importance of the topography and the quantification of the stratigraphic parameters of control. The major breakthrough was of course the extensive 3D seismic data available around most of the world margins with a focus on gravity-tectonics dominated margins. The first major progress was the characterization of the sinuous channels infilling, their diversity and different models for their origin. This also was a better knowledge of the different types of slopes (graded vs. above-graded) and the extension of the concept of accommodation to deep-water environments (ponded, healed-slope, incised submarine valley and slope accommodation). The second step was the understanding of the synsedimentary deformations for the location and the growth of turbiditic systems on margins dominated by gravity tectonics, with the importance of the sedimentary flux and its variation through time and space. The third step is now the integration of the sedimentary system, from the upstream erosional catchment to the abyssal plain (source to sink approach), with the question of the sediment routing system. During the last 100 Ma, continents experienced major changes of both topography and climate. In the case of Africa, those are (1) the growth of the plateaus (and mainly the South African one) around 90-80 Ma (Late Cretaceous) and 40-20 Ma (Late Eocene-Early Miocene) and (2) a climate evolution from hot humid (50-40 Ma) to hot dry conditions since 20-15 Ma. This evolution changed the topography, the processes of erosion and the volume and nature (weathered vs. non weathered rocks) materials. Those are primary processes for controlling the deposition of turbiditic systems, and then to predict the location of sands. This will be discussed along the Atlantic margin of Africa. Keywords: Turbidite, Passive margins, Topography, Deformation, Source to sink

  5. Landslide oil field, San Joaquin Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B.P.; March, K.A.; Caballero, J.S.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones thatmore » lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.« less

  6. Equatorial origin for Lower Jurassic radiolarian chert in the Franciscan Complex, San Rafael Mountains, southern California

    USGS Publications Warehouse

    Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.

    1996-01-01

    Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.

  7. Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope

    USGS Publications Warehouse

    Kindinger, J.L.

    1988-01-01

    The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.

  8. Source of marine turbidites on the Andaman-Nicobar Islands: Nicobar Fan, Bengal Fan or paleo-Irrawaddy?

    NASA Astrophysics Data System (ADS)

    Carter, A.

    2017-12-01

    Marine turbidites from an axially fed submarine fan are intermittently exposed across the entire chain of the Andaman-Nicobar Islands. Known as the Andaman Flysch (AF) and loosely assigned to the Paleogene, it has been proposed that these rocks are sourced from the Himalaya and thus provide a unique window into early stages of orogenesis. Where the turbidites came from has been subject to debate; they are either Bengal Fan or forearc deposits cut off from the Bengal Fan and possibly sourced from the Irrawaddy delta. Following recent IODP drilling in the eastern Indian Ocean (Expeditions 354 and 362) it is now possible resolve this by comparing the provenance of AF turbidites with the Bengal and Nicobar Fans. The Andaman Flysch can be traced as detached outcrops all along the western side of the main islands of Andaman over a strike length of more than 200 km. Exposures along the east coast are confined to South Andaman Island. Petrographic and geochemical data show a common continental crust signal with minor contributions from arc material. But, there are also differences whereby west coast sandstones show significantly higher quartz content and less feldspars and rock fragments. Staurolite is also present in all samples from the western side, but is absent from east coast samples. Both detrital zircon U-Pb and Bulk rock Nd data record the presence of arc material likely from Myanmar. Detrital zircon data from the Nicobar Fan match the Andaman turbidites and indicate sources from the Greater and Tethyan Himalaya mixed with sediment from the Burmese arc. Transfer of Irrawaddy derived sediment to the Nicobar Fan is ruled out as sediment transfer across the fore-arc to the west was restricted by the then exposed Yadana and M8 highs in the north and the Sewell and Alcock Rises to the south. Sediment isopachs of the Martaban back arc basin, the main north-south-oriented depocentre in the Andaman Sea related to the development of the Thanlwin -Irrawaddy delta system also show no significant transfer of sediment to the west. The provenance of the western Andaman Flysch matches the Nicobar Fan and is similar to the provenance of Neogene sands deposited in the eastern Bengal and Surma basins linked to the westward migration of the Indo-Burmese wedge that reduced accommodation and diverted sediments south to the shelf and Nicobar Fan.

  9. An astrophysical interpretation of the remarkable g-mode frequency groups of the rapidly rotating γ Dor star, KIC 5608334

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Bedding, Timothy R.; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria; Shibahashi, Hiromoto; Li, Gang; Takata, Masao

    2018-06-01

    The Fourier spectrum of the γ-Dor variable KIC 5608334 shows remarkable frequency groups at ˜3, ˜6, ˜9, and 11-12 d-1. We explain the four frequency groups as prograde sectoral g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde sectoral g modes in a rapidly rotating star are proportional to |m| (i.e. ν ∝ |m|) in the corotating frame as well as in the inertial frame. This property is consistent with the frequency groups of KIC 5608334 as well as the period versus period-spacing relation present within each frequency group, if we assume a rotation frequency of 2.2 d-1, and that each frequency group consists of prograde sectoral g modes of |m| = 1, 2, 3, and 4, respectively. In addition, these modes naturally satisfy near-resonance conditions νi ≈ νj + νk with mi = mj + mk. We even find exact resonance frequency conditions (within the precise measurement uncertainties) in many cases, which correspond to combination frequencies.

  10. The Oligo-Miocene of Eil (NE Somalia): a prograding coral- Lepidocyclina system

    NASA Astrophysics Data System (ADS)

    Bosellini, A.; Russo, A.; Arush, M. A.; Cabdulqadir, M. M.

    The Oligo-Miocene succession of Eil is the product of a depositional regression and constitutes a 120-150 m thick depositional sequence that prograded seaward for at least 20-25 km. Its time-transgressive stratigraphy is documented physically by well exposed tangential clinoforms (previously considered as evidence of a tectonic coastal flexure) and biostratigraphically by the occurrence of calcareous nannoplankton, planktonic and benthonic foraminifera, and a rich coral fauna. The upper boundary of the sequence is indicated by a reefal toplap, which constitutes the flat surface of the Nogal Plateau. Age (Chattian to Burdigalian) and toplap relationships of the sequence indicate clearly that progradation took place after the Late Oligocene flooding which followed the strong fall of sea-level during the Chattian. Because of the horizontal geometry of the entire sedimentary system, it has been possible to make a clear environmental reconstruction and a facies model with original water depths. A worldwide Tertiary facies—the Lepidocyclina beds— was confined to the front of the reef, at depths ranging from 35-40 to 120-130 m.

  11. The Schistes à Blocs Fm: the ultimate member of the Annot Sandstones in the Southern Alps (France); slope gullies or canyon system?

    NASA Astrophysics Data System (ADS)

    Rubino, Jean-Loup; Mercier, Louison; Daghdevirenian, Laurent; Migeon, Sébastien; Bousquet, Romain; Broucke, Olivier; Raisson, Francois; Joseph, Philippe; Deschamp, Remi; Imbert, Patrice

    2017-04-01

    Described since a long time, the Schistes à Blocs Fm is the ultimate member of the famous tertiary Grès d'Annot Sandstones in southern alpine foredeep basin in SE France. It mainly consists of shales, silty shales, debris flows, olistoliths and a subordinate amount of sandstones. Since their introduction, and because of their location down to major thrust sheet, they have been considered as a tectono-sedimentary unit linked to the nappe's emplacement and refer as an olistostrome, (Kerckove 1964-1969). However they are separated from the underlying Annot Sandstones by a major erosional surface which deeply cuts, up to 500m, into the sandy turbidites; this surface definitively predates the infill and the nappe emplacement. This is supported by the fact that imbricates affect the upper part of the Schistes and also because of the age; the Schistes à Blocs being Upper Eocene to Lower Oligocene whilst the nappe is latest Oligocene to Lower Miocene. A detailed analysis of the erosional surface in la Bonette area reveals a complex geometry which shows obvious similarities with these observed either on submarine canyons or in slope dissected by gullies as shown by numerous seabeams or 3D seismic images. The infill is quite complex, no basal lag have been observed, however bioturbations suggest occurrence of by pass. Most commonly the lower part of the infill is made of muddy or silty sediments. In some areas, decametric to pluri hectometric olistoliths are interbedded within these deposits. Debris flows are also common with a muddy matrix and finally isolated turbidite channels including the same material than in the Annot Sandstones occur. The reworked material into the debris flows and in the olistoliths suggests that it doesn't only derived from canyon flanks (sandstones) but includes elements belonging to older tethyan series such as Triassic and Liassic carbonates which must be exposed on the sea floor on local highs in the more internal part of the Alps but much earlier than the nappe emplacement. In the forthcoming weeks, thanks to an already done drone acquisition of the cliffs, a 3D gridded model will be realize and will allow to discriminate if we are dealing with a major canyon with lateral irregularities or if, all incisions must be interpreted as numerous gullies entrenching the slope, it will also help to restore the offset of small normal faults affecting the surface. Such type of features are of primary importance in the deep sea sediment routine system; very few examples of mud filled prone canyon are published and because of the outcrop quality, this example can become a world class analog; particularly to highlight potential hydrocarbon trapping mechanism in turbidite systems. Many other outcrops, of a coeval Fm occur all along the Alps from Italy to Switzerland and can provide opportunities to analyze variation of geometrical elements and describe additional facies participating to the infill.

  12. Megaquakes, prograde surface waves and urban evolution

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.; Castaños, H.

    2013-05-01

    Cities grow according to evolutionary principles. They move away from soft-ground conditions and avoid vulnerable types of structures. A megaquake generates prograde surface waves that produce unexpected damage in modern buildings. The examples (Figs. 1 and 2) were taken from the 1985 Mexico City and the 2010 Concepción, Chile megaquakes. About 400 structures built under supervision according to modern building codes were destroyed in the Mexican earthquake. All were sited on soft ground. A Rayleigh wave will cause surface particles to move as ellipses in a vertical plane. Building codes assume that this motion will be retrograde as on a homogeneous elastic halfspace, but soft soils are intermediate materials between a solid and a liquid. When Poisson's ratio tends to ν→0.5 the particle motion turns prograde as it would on a homogeneous fluid halfspace. Building codes assume that the tilt of the ground is not in phase with the acceleration but we show that structures on soft ground tilt into the direction of the horizontal ground acceleration. The combined effect of gravity and acceleration may destabilize a structure when it is in resonance with its eigenfrequency. Castaños, H. and C. Lomnitz, 2013. Charles Darwin and the 1835 Chile earthquake. Seismol. Res. Lett., 84, 19-23. Lomnitz, C., 1990. Mexico 1985: the case for gravity waves. Geophys. J. Int., 102, 569-572. Malischewsky, P.G. et al., 2008. The domain of existence of prograde Rayleigh-wave particle motion. Wave Motion 45, 556-564.; Figure 1 1985 Mexico megaquake--overturned 15-story apartment building in Mexico City ; Figure 2 2010 Chile megaquake Overturned 15-story R-C apartment building in Concepción

  13. Gulf of Mexico Oil and Gas Atlas Series: Chronostratigraphically bound reservoir plays in Texas and federal offshore waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seni, S.J.; Desselle, B.A.; Standen, A.

    1994-09-01

    The search for additional hydrocarbons in the Gulf of Mexico is directing exploration toward both deep-water frontier trends and historically productive areas on the shelf. The University of Texas at Austin, Bureau of Economic Geology, in cooperation with the Minerals Management Service, the Gas Research Institute, and the U.S. Department of Energy, is responding to this need through a coordinated research effort to develop an oil and gas atlas series for the offshore northern Gulf of Mexico. The atlas series will group regional trends of oil and gas reservoirs into subregional plays and will display graphical location and reservoir datamore » on a computerized information system. Play methodology includes constructing composite type logs with producing zones for all fields, identifying progradational, aggradational, and retrogradational depositional styles, and displaying geologic data for type fields. Deep-water sand-rich depositional systems are identified separately on the basis of faunal ecozones, chronostratigraphic facies position, and log patterns. To date, 4 Oligocene, 19 Lower Miocene, and 5 Upper Miocene plays have been identified in Texas state offshore waters. Texas state offshore plays are gas prone and are preferentially trapped in rollover anticlines. Lower Miocene plays include deep-water sandstones of Lenticulina hanseni and jeffersonensis; progradational sandstones of Marginulina, Discorbis b, Siphonia davisi, and Lenticulina; transgressive sandstones associated with a barrier-bar system in the Matagorda area; and transgressive sandstones below Amphistegina B shale. Particularly productive gas-prone plays are progradational Siphonia davisi, shelf-margin deltas in the High Island area, and progradational Marginulina shelf and deltaic sands in association with large rollover anticlines in the Matagorda Island and Brazos areas.« less

  14. Turbidite geochemistry and evolution of the Izu-Bonin arc and continents

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Hiscott, R. N.; Vidal, Ph.

    1994-10-01

    The major and trace element and NdPb isotopic composition of Oligocene to Pleistocene volcaniclastic sands and sandstones derived from the Izu Bonin island arc has been determined. Many characteristics of the igneous sources are preserved and record the geochemical evolution of juvenile proto-continental crust in an island arc. After an initial boninitic phase, arc geochemistry has varied primarily as the result of backarc basin formation. The Izu arc source became depleted in incompatible trace elements during backarc basin formation, and re-enriched after spreading stopped in the basin. Renewed rifting during the Pliocene to Recent caused felsic magmatism as a result of easier eruption of differentiates rather than as a result of crustal melting. Four isotopically-distinct source components are recognized. Their combination in the sources of the Izu-Bonin and Mariana arcs initially was similar but diverged after backarc basin formation. The Izu arc turbidites are more similar to Archean than post-Archean sedimentary rocks, indicating that the production of new upper crust at subduction zones has changed little over time. The turbidites are similar in major element composition to average continental crust but are depleted in incompatible trace elements, especially Th and Nb. Consequently, the net effect of adding juvenile arc crust to continents is to reverse the trend of planetary trace element differentiation instead of continuing the process.

  15. Morphodynamics of an eroding beach and foredune in the Mekong River delta: Implications for deltaic shoreline change

    NASA Astrophysics Data System (ADS)

    Anthony, E. J.; Dussouillez, P.; Dolique, F.; Besset, M.; Brunier, G.; Nguyen, V. L.; Goichot, M.

    2017-09-01

    River delta shorelines composed of sand may be characterized by complex spatial and temporal patterns of erosion and accretion even when sand supply is readily available. This is especially the case for deltas with multiple mouths subject to significant wave and tide influence. High-resolution topographical and wave and current measurements were conducted from 2010 to 2012 at Ba Dông beach, a popular resort located on the largest of the multiple inter-distributary plains of the Mekong River delta. Ba Dông beach is a mesotidal, multiple bar-trough system. The upper beach corresponds to the current active beach ridge in the sequence of ridges that have marked the progradation of the inter-distributary delta plains, and is capped by a low foredune that protects villages and agricultural land from marine flooding. During the low river-flow season, the beach is characterized by Northeast monsoon waves and strong longshore currents that transport sediment towards the southwest. Weaker longshore currents towards the northeast are generated by Southwest monsoon waves during the high river-flow season. Ba Dông beach underwent strong erosion between 2010 and 2012, following a phase of massive accretion. In 2012, this erosion resulted in breaching of the foredune, contributing to concerns that the Mekong delta had become vulnerable to retreat. The local erosion at Ba Dông needs to be considered, however, in the broader context of delta shoreline morphodynamics, which involves space- and time-varying patterns of beach accretion and erosion. These patterns are the present expressions of plan-view beach-ridge morphology in the delta, which is characterized by flaring and truncations that reflect changing beach morphodynamics in the course of deltaic progradation. We surmise that these patterns are related to complex interactions involving river water and sediment discharge, waves and wave-generated longshore currents, tidal currents, and shoreline orientation.

  16. Boron isotope fractionation during high-pressure dehydration of antigorite serpentinite

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Garrido, C.; Agostini, S.; Padron Navarta, J.; López Sánchez-Vizcaíno, V.; Savov, I. P.; Marchesi, C.

    2011-12-01

    During subduction, antigorite-serpentinite is present in large volumes in both the downgoing slab and the overlying mantle wedge. There is strong evidence to suggest that deserpentinisation reactions are a source for several fluid mobile elements, including boron. The ultramafic rocks of Cerro del Almirez, Betic Cordillera, Spain are the only known outcrops that preserve evidence for the transition between antigorite-serpentinite and chlorite-harzburgite i.e., Almirez antigorite-serpentinite represents an early stage of prograde subduction zone metamorphism overprinting previously hydrated oceanic mantle. The stability of chlorite beyond the antigorite breakdown reaction limits the release of H2O to about 6-7 wt% (in the absence of chlorite up to 12 wt% H2O would be lost), i.e. the reaction at the antigorite-serpentinite / chlorite harzburgite front is a dehydration reaction which may fractionate boron isotopes because of the mineralogical change, because of the loss of fluid over a range of temperatures, or a combination of both. Although the behaviour of boron isotopes under closely controlled experimental conditions with a limited number of variables is reasonably well constrained, the mechanism or combination of mechanisms that fractionate 11B from 10B in natural samples can be complex and difficult to interpret, especially in samples of the sub-arc mantle wedge which is seldom accessible for direct examination. This study investigates the influence of dehydration reactions in the sub-arc region where fluid loss accompanies prograde metamorphism under well constrained pressure and temperature conditions. Initial results suggest that isotopes of boron are strongly fractionated during the dehydration of antigorite-serpentinite with marked differences in δ11B across the antigorite-serpentinite to chlorite-harzburgite isograd. Antigorite-serpentinite has a δ11B of +22.4 (± 0.9) whereas the dehydration reaction product, chlorite-harzburgite, has a δ11B ranging from +2.7 (± 0.4) to -3.5 (± 0.3). A single sample with a transitional antigorite-chlorite serpentinite lithology, taken from as near to the isograd as possible, preserves a δ11B of +3.3 (± 0.3). This suggests that a substantial proportion of fluid loss, and therefore the potential fractionation of boron isotopes, occurs early on in the prograde reaction - the largest changes in δ11B occurring between antigorite-serpentinite and the transitional lithology, while the prograde lithology preserves a narrower, yet still markedly heterogeneous range of δ11B. This suggests that dehydration of serpentinite results in a strong fractionation of boron isotopes and that the results of the dehydration reaction survive high P-T condition (650 °C, 1.7 GPa). Moreover, this may also indicate that a chlorite-hosted, B-rich reservoir with a heterogeneous δ11B can persist in the lithospheric mantle elsewhere and may modify basaltic melts with which it interacts.

  17. 3-D architecture modeling using high-resolution seismic data and sparse well control: Example from the Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapin, M.A.; Tiller, G.M.; Mahaffie, M.J.

    1996-12-31

    Economic considerations of the deep-water turbidite play, in the Gulf of Mexico and elsewhere, require large reservoir volumes to be drained by relatively few, very expensive wells. Deep-water development projects to date have been planned on the basis of high-quality 3-D seismic data and sparse well control. The link between 3-D seismic, well control, and the 3-D geological and reservoir architecture model are demonstrated here for Pliocene turbidite sands of the {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. This information was used to better understand potential reservoir compartments for development well planning.

  18. What can we learn about the history of oceanic shield volcanoes from deep marine sediments? Example from La Reunion volcanoes.

    NASA Astrophysics Data System (ADS)

    Bachelery, Patrick; Babonneau, Nathalie; Jorry, Stephan; Mazuel, Aude

    2014-05-01

    The discovery in 2006, during the oceanographic survey FOREVER, of large volcaniclastic sedimentary systems off La Réunion Island (western Indian ocean) revealed a new image of the evolution of oceanic shield volcanoes and their dismantling. Marine data obtained from 2006 to 2011 during the oceanographic surveys ERODER 1 to ERODER 4 included bathymetry, acoustic imagery, echosounding profiles, dredging and coring. Six major turbidite systems were mapped and described on the submarine flanks of La Reunion volcanic edifice and the surrounding oceanic plate. The interpretation of sediment cores enable us to characterise the processes of gravity-driven sediment transfer from land to deep sea and also to revisit the history of the volcanoes of La Réunion Island. Turbidite systems constitute a major component of the transfer of volcanic materials to the abyssal plain (Saint-Ange et al., 2011; 2013; Sisavath et al., 2011; 2012; Babonneau et al., 2013). These systems are superimposed on other dismantling processes (slow deformation such as gravity sliding or spreading, and huge landslides causing debris avalanches). Turbidite systems mainly develop in connection with the hydrographic network of the island, and especially at the mouths of large rivers. They show varying degrees of maturity, with canyons incising the submarine slope of the island and feeding depositional areas, channels and lobes extending over 150 km from the coast. The cores collected in turbidite systems show successions of thin and thick turbidites alternating with hemipelagic sedimentation. Sedimentological and stratigraphic analysis of sediment cores yielded a chronology of submarine gravity events. First-order information was obtained on the explosive activity of these volcanoes by identifying tephra layers in the cores (glass shards and pumice). In addition, major events of the volcanic and tectonic history of the island can be identified and dated. In this contribution, we focus most attention on the southernmost turbidite system (St-Joseph system). Sedimentary records allow us to establish a link between two major landslides affecting the flanks of Piton de la Fournaise volcano and the triggering of major turbidity currents. Thus, the age of these events could be obtained; their chronology being far too difficult to establish otherwise. In short: a beautiful example of the contribution of sedimentology to the study of the structural evolution of the volcanoes. References Babonneau N., Delacourt C., Cancouet R., Sisavath E., Bachelery P., Deschamps A., Mazuel A., Ammann J., Jorry S.J., Villeneuve N., 2013, Marine Geology, 346, 47-57. Saint-Ange F., Bachèlery P., Babonneau N., Michon, L., Jorry S.J., 2013, Marine Geology. 337, 35-52. Saint-Ange, F., Savoye, B., Michon, L., Bachelery, P., Deplus, C., De Voogd, B., Dyment, J., Le Drezen, E., Voisset, M., Le Friant, A., and Boudon, G., 2011. Geology, 39, 271-274, doi: 10.1130/G31478.1. Sisavath, E., Mazuel, A., Jorry, S., Babonneau, N., Bachèlery P., De Voogd, B., Salpin, M., Emmanuel, L., Beaufort, L., Toucanne, S., 2012, Sedimentary Geology, 281, p. 180-193, doi :10.1016/j.sedgeo.2012.09.010. Sisavath, E., Babonneau N., Saint-Ange F., Bachèlery P., Jorry S., Deplus C., De Voogd B., Savoye B., 2011, Marine Geology, v. 288, p. 1-17, doi:10.1016/j.margeo.2011.06.011.

  19. Memory in coastal systems: Post-tsunami beach recovery within a decade on the Thai coast.

    NASA Astrophysics Data System (ADS)

    Switzer, A.; Gouramanis, C.; Bristow, C. S.; Jankaew, K.; Rubin, C. M.; Lee, Y.; Carson, S.; Pham, D. T.; Ildefonso, S.

    2015-12-01

    Do coastlines have memory? In this study we used a combination of remote sensing, field surveys and Ground Penetrating Radar (GPR) to reconstruct the recovery of beaches at Phra Thong Island, Thailand. The study site was severely impacted by the 2004 Indian Ocean Tsunami. Here we show that within a decade the beaches have completely recovered without any human intervention. We apply GPR to image periods of aggradation, progradation and washover sedimentation and match these with local events including a storm in 2007. At one location the beach has locally prograded at least 10m after partially blocking the mouth of a creek that was reamed out by the retreating tsunami. Here we also used GPR to image the scour and recovery of the coastal system (see figure). The rapid recovery of the barrier beach and local progradation indicate that sediment scoured by the tsunami was not transported far offshore but remained in the littoral zone within reach of fair-weather waves that returned to the beach naturally. In both cases coastal processes have reconstructed the beach-dune system to an almost identical pre-tsunami state in under a decade.

  20. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki

    2002-09-01

    Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.

  1. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite particles are dispersed, and the suspension is stabilized supported by our SEM observations. In alkaline water, kaolinite reveals a lower degree of consolidation. While, alkaline water has no measurable effect on illite and chlorite surface properties due to the absence of modifications in charge. Illite and chlorite form with other clasts clusters or aggregate structures in suspension when the particle interactions are dominated by attractive energies were formed. The aggregate structure plays a major part in the flow behavior of clay suspensions. Flocs will immobilize the suspending medium, and give rise to increasing viscosity and yield strength of the suspension. S. Hage, A. Hubert-Ferrari, L. Lamair, U. Avşar, M. El Ouahabi, M. Van Daele, F. Boulvain, M.A. Bahri, A. Seret, Al. Plenevaux. Flow dynamics at the origin of thin sandy clay-rich lacustrine turbidites: Examples from Lake Hazar, Turkey, submitted to Sedimentology, in revision.

  2. Depositional environment and sedimentary of the basinal sediments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria

    NASA Astrophysics Data System (ADS)

    Stingl, K.

    1994-12-01

    The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.

  3. Tectonics of Precambrian basement along the Pacific margin of Antarctica and relation to western North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodge, J.W.; Hansen, V.L.; Walker, N.W.

    1993-02-01

    High-grade metamorphic rocks of the Precambrian Nimrod Group (NG) constitute one of few cratonal basement exposures in the Transantarctic Mountains. These rocks represent an outlier of the East Antarctic craton, evolved as part of Gondwana and pre-Gondwana (Rodinia) supercontinents. Despite pervasive, high-strain ductile deformation at T [>=] 650 C, they preserve petrologic and geochronologic evidence of an earlier history. Sm-Nd model ages from several NG lithologies, including that of a [approximately]1.7 Ga orthogneiss, range from about 2.7--2.9 Ga; these ages reflect both sedimentary and magmatic derivation from Archean crust. Individual detrital zircon U-Pb ages (about 1.7--2.6 Ga) from NG quartzitesmore » indicate clastic input from Archean to Paleoproterozoic source terrains. The Sm-Nd and U-Pb ages are reminiscent of both the Yavapai-Mazatzal (1.6--1.8 Ga) and Wyoming (> 2.5 Ga) provinces in western North America. U-Pb ages from syn-tectonic metaigneous and pelitic NG tectonites indicate that this basement complex was re-worked by the major ductile deformation in latest neoproterozoic to Early Cambrian time. Supracrustal assemblages that lie outboard of the Nimrod craton include Neoproterozoic graywacke, impure carbonate, and minor mafic volcanics (Beardmore Group), and Cambrian to Lower Ordovician carbonate and siliciclastic rocks (Byrd Group). Neoproterozoic ([approximately]750 Ma) rifting along the proto-Pacific margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism. Latest Neoproterozoic to early Paleozoic orogenesis occurred along a left-oblique convergent plate margin of East Antarctica is reflected by deposition of Beardmore turbidites and coeval mafic magmatism.« less

  4. Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry

    NASA Astrophysics Data System (ADS)

    Shi, Guanzhong; Song, Guangzeng; Wang, Hua; Huang, Chuanyan; Zhang, Lidong; Tang, Jianrong

    2016-09-01

    The geology in the Wuliji area (including the Enger Us and Quagan Qulu areas) is important for understanding the Late Paleozoic tectonics of the Solonker Zone. Ultramafic/mafic rocks in the Enger Us area, previously interpreted as an ophiolitic suture, are actually lava flows and sills in a Permian turbiditic sequence and a small body of fault breccia containing serpentinite. Subduction zone features, such as accretionary complexes, magmatic arc volcanics or LP/HP metamorphism are absent. Early Permian N-MORB mafic rocks and Late Permian radiolarian cherts accompanied by turbidites and tuffeous rocks indicate a deep water setting. In the Quagan Qulu area, outcrops of the Late Carboniferous to Permian Amushan Formation are composed of volcano-sedimenary rocks and guyot-like reef limestone along with a Late Permian volcano-sedimentary unit. A dacite lava in the Late Permian volcano-sedimentary unit yields a zircon U-Pb age of 254 Ma. The gabbros in the Quagan Qulu area are intruded into the Amushan Formation and caused contact metamorphism of country rocks. Sandstones in the Upper Member of the Amushan Formation contain detrital clasts of volcanic fragments and mineral clasts of crystalline basement rocks (i.e. biotite, muscovite and garnet). Geochemical analysis of volcaniclastic sandstones shows a magmatic affinity to both continental island arc (CIA) and active continental margin (ACM) tectonic settings. A Late Permian incipient rift setting is suggested by analyzing the lithostratigraphic sequence and related magmatism in the Wuliji area. The volcano-sedimentary rocks in the Wuliji area experienced a nearly N-S shortening that was probably related to the Early Mesozoic nearly N-S compression well developed in other areas close to the Wuliji area.

  5. Slump dominated upper slope reservoir facies, Intra Qua Iboe (Pliocene), Edop Field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugam, G.; Hermance, W.E.; Olaifa, J.O.

    An integration of sedimentologic and 3D seismic data provides a basis for unraveling complex depositional processes and sand distribution of the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Nearly 3,000 feet of conventional core was examined in interpreting slump/slide/debris flow, bottom current, turbidity current, pelagic/hemipelagic, wave and tide dominated facies. The IQI was deposited on an upper slope in close proximity to the shelf edge. Through time, as the shelf edge migrated seaward, deposition began with a turbidite channel dominated slope system (IQI 1 and 2) and progressed through a slump/debris flow dominated slope system (IQI 3,more » the principal reservoir) to a tide and wave dominated, collapsed shelf-edge deltaic system (IQI 4). Using seismic time slices and corresponding depositional facies in the core, a sandy {open_quotes}fairway{open_quotes} has been delineated in the IQI 3. Because of differences in stacking patterns of sandy and muddy slump intervals, seismic facies show: (1) both sheet-like and mounded external forms (geometries), and (2) parallel/continuous as well as chaotic/hummocky internal reflections. In wireline logs, slump facies exhibits blocky, coarsening-up, fining-up, and serrated motifs. In the absence of conventional core, slump facies may be misinterpreted and even miscorrelated because seismic facies and log motifs of slumps and debris flows tend to mimic properties of turbidite fan deposits. The slump dominated reservoir facies is composed of unconsolidated fine-grained sand. Thickness of individual units varies from 1 to 34 feet, but amalgamated intervals reach a thickness of up to 70 feet and apparently form connected sand bodies. Porosity commonly ranges from 20 to 35%. Horizontal permeability commonly ranges from 1,000 to 3,000 md.« less

  6. Sediment Flux from Source to Sink in the Brazos-Trinity Depositional System

    NASA Astrophysics Data System (ADS)

    Pirmez, C.; Prather, B. E.; Droxler, A.; Ohayer, W.

    2007-12-01

    During the Late Pleistocene a series of intra-slope basins offshore Texas in the Western Gulf of Mexico, received a high influx of clastic sediments derived primarily from the Brazos, Trinity, and Mississippi rivers. Sediment failures initiated at shelf edge deltas resulted in mass flows that negotiate a complex slope and basin topography caused by salt tectonics. Sediment locally fill ponded basins eventually spilling into subsequent basins downstream. Interaction between these flows and slope topography leads to a complex partitioning of sediment over time and space that can only be unraveled with high-resolution data. The availability of system-wide coverage with conventional 3d seismic surveys, a dense grid of high-resolution 2d seismic lines and cored wells from two of the four linked intraslope basins, makes this locale an ideal area to investigate the transfer of sediment across the continental margin, from river sources to the ultimate sink within an enclosed intraslope basin. Data from IODP Expedition 308 and industry wells, combined with data from previous studies on the shelf constrain an integrated seismic stratigraphic framework for the depositional system. Numerous radiocarbon age dates coupled with multiple stratigraphic tools (seismic-, bio-, and tephra correlations and oxygen isotope measurements) provide an unprecedented high-resolution chronology that allow for detailed estimation of sedimentation rates in this turbidite system and calculation of sediment volumes in each of the basins over time intervals of a few millennia during the late Pleistocene. We find that rates of sedimentation exceed 10 m/kyr during some periods of ultra-fast turbidite accumulation. Rates of channel incision and tectonic subsidence can also be calculated and are comparable to the rapid accumulation rates measured in the basin fill. Our observations indicate that while sealevel changes exert a first order control on delivery of sediment to the basins, the sedimentary record suggests that delta dynamics, basin tectonics and the interaction between gravity flows and basin topography are equally important in determining the distribution of sediments in time and space along this depositional system.

  7. Morpho-structural and ecological features of a shallow vermetid bioconstruction in the Tyrrhenian Sea (Mediterranean Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Donnarumma, Luigia; Sandulli, Roberto; Appolloni, Luca; Di Stefano, Floriana; Russo, Giovanni Fulvio

    2018-01-01

    Biogenic formations, built up by the sessile and gregarious vermetid gastropod Dendropoma cristatum, were studied from June to October 2014 along the rocky shores of Licosa islet (Gulf of Salerno, Tyrrhenian Sea), where they build up the northernmost reefs in the Mediterranean Sea in order to shed light on possible latitudinal changes. The islet has two differently exposed sides, with three types of vermetid formations: the first consists in a thin layer composed by vermetid gastropods and the coralline alga N. brassica-florida, widespread only in the sheltered side of the islet; the second is represented by small isolated pillows (13.9 ± 5.64 cm), all around the islet at depth of more than fifteen centimetres; the third is a well-structured reef, characterized by a dense layer of mollusc shells that overgrow each other, only found in the exposed side of the islet. The vermetid reef was monitored in two sites with different substrates: ancient walls, made of calcareous lateritious material, and the flysch rocks, composed by siliceous turbiditic deposits. While no differences arise in gastropod density related to rock type (calcareous lateritious material versus siliceous turbiditic deposits), significant differences have been found along a vertical gradient, seeing density increases from the upper intertidal to the upper subtidal level. The associated algal cover seems to be inversely related to the vermetid density. In the upper intertidal, D. cristatum was almost completely covered (about 83%) by a thick layer of encrusting alga N. brassica-florida. In the lower intertidal the encrusting alga disappear but the shells of vermetid gastropods were remarkably colonized by the erected red algae of the "Laurencia complex" (70%) while in the upper subtidal, the vermetid shells were scarcely covered, mainly by other algal species (13%). By comparing present data with those of Sicilian reefs no evidences arise due to the different latitude. Innovative approaches (Remotely Piloted Aircraft Systems technology and fractal geometry) applied to these marine bioconstructions, resulted very effective in mapping and structuring the complexity of the reefs.

  8. Long-distance multistep sediment transfer at convergent plate margins (Barbados, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Limonta, Mara; Garzanti, Eduardo; Resentini, Alberto; Andò, Sergio; Boni, Maria; Bechstädt, Thilo

    2015-04-01

    We present a regional provenance study of the compositional variability and long distance multicyclic transport of terrigenous sediments along the convergent and transform plate boundaries of Central America, from the northern termination of the Andes to the Lesser Antilles arc-trench system. We focus on high-resolution bulk-petrography and heavy-mineral analyses of modern beach and fluvial sediments and Cenozoic sandstones of Barbados island, one of the places in the world where an active accretionary prism is subaerially exposed (Speed et al., 2012). The main source of siliciclastic sediment in the Barbados accretionary prism is off-scraped quartzose to feldspatho-litho-quartzose metasedimentaclastic turbidites, ultimately supplied from South America chiefly via the Orinoco fluvio-deltaic system. Modern sand on Barbados island is either quartzose with depleted heavy-mineral suites recycled from Cenozoic turbidites and including epidote, zircon, tourmaline, andalusite, garnet, staurolite and chloritoid, or calcareous and derived from Pleistocene coral reefs. The ubiquitous occurrence of clinopyroxene and hypersthene, associated with green-brown kaersutitic hornblende in the north or olivine in the south, points to reworking of ash-fall tephra erupted from andesitic (St. Lucia) and basaltic (St. Vincent) volcanic centers in the Lesser Antilles arc transported by the prevailing anti-trade winds in the upper troposphere. Modern sediments on Barbados island and those shed by other accretionary prisms such as the Indo- Burman Ranges and Andaman-Nicobar Ridge (Garzanti et al., 2013) define the distinctive mineralogical signature of Subduction Complex Provenance, which is invariably composite. Detritus recycled dominantly from accreted turbidites and oceanic mudrocks is mixed in various proportions with detritus from the adjacent volcanic arc or carbonate reefs widely developed at tropical latitudes. Ophiolitic detritus may be locally prominent. Quantitative provenance analysis is a basic tool in paleogeographic reconstructions when multicyclic sediment dispersal along and across convergent plate margins occur. Such analysis provides the link between faraway factories of detritus and depositional sinks, as well as clues on subduction geometry and the nature of associated growing orogenic belts, and even information on climate, atmospheric circulation and weathering intensity in source regions. REFERENCES Garzanti, E., Limonta, M., Resentini, A., Bandopadhyay, P.C., Najman, Y., Andò, S., Vezzoli, G., 2013. Sediment recycling at convergent plate margins (Indo-Burman Ranges and Andaman-Nicobar Ridge). Earth Sci. Rev., 123, 113-132. Speed, C. and Sedlock, R. 2012. Geology and geomorphology of Barbados. Geol. Soc. Am. Spec. Pap., 491, 63 p.

  9. Tides and deltaic morphodynamics

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, Piret

    2016-04-01

    Tide-dominated and tide-influenced deltas are not widely recognized in the ancient record, despite the numerous modern and Holocene examples, including eight of the twelve modern largest deltas in the world, like the Ganges-Brahmaputra, Amazon, Chang Jiang, and Irrawadi. Furthermore, tide-dominated or tide-influenced deltas are suggested to be more common in inner-shelf or embayment settings rather than close to or at a shelf edge, primarily because wave energy is expected to be higher and tidal energy lower in outer shelf and shelf-edge areas. Thus, most shelf-edge deltas are suggested to be fluvial or wave dominated. However, there are ancient examples of tide-influenced shelf-edge deltas, indicating that the controls on tidal morphodynamics in deltas are not yet well understood. This paper asks the following questions: (1) How do tides influence delta deposition, beyond creating recognizable tidal facies? (2) Does tidal reworking create specific geometries in delta clinoforms? (3) Does tidal reworking change progradation rates of deltas? (4) Is significant tidal reworking of deltas restricted to inner-shelf deltas only? (5) What are the conditions at which deltas may be tidally influenced or tide-dominated in outer-shelf areas or at the shelf edge? (6) What are the main morphodynamic controls on the degree of tidal reworking of deltas? The paper utilizes a dataset of multiple ancient and modern deltas, situated both on the shelf and shelf edge. We show that beyond the commonly recognized shore-perpendicular morphological features and the recognizable tidal facies, the main effects of tidal reworking of deltas are associated with delta clinoform morphology, morphodynamics of delta lobe switching, delta front progradation rates, and the nature of the delta plain. Strong tidal influence is here documented to promote subaqueous, rapid progradation of deltas, by efficiently removing sediment from river mouth and thus reducing mouth bar aggradation and fluvial delta plain construction rates. Such subaqueous progradation of the delta front is decoupled from shoreline progradation. The delta plain of such tide-dominated deltas consists of a few distributary channels and tidal flats on top of the emerged tidal bars. The delta front clinoforms become gentler and longer, as ebb tidal currents together with river effluent efficiently transport sediment to the basin. Tide-dominated deltas tend to maintain a funnel shape and show low lobe switching rates, compared to fluvial-dominated and tide-influenced deltas. The funnel and thus river mouth position is further stabilized by fine-grained sediment accumulation on marginal tidal flats due to the flood current sediment transport. However, all these effect weaken as the deltas prograde to the shelf edge, due to the loss of vertical (and lateral) restriction and tidal amplification. Here significant tidal reworking tends to be restricted to topographic irregularities, caused by incision, delta-lobe or mouth bar deposition and avulsions, or tectonic processes. The role of such topographic restrictions is twofold, by reducing wave energy and amplifying tidal energy.

  10. Estimates of the dissipative heat and axial torque generated by ocean tides on icy satellites in the outer solar system.

    NASA Astrophysics Data System (ADS)

    Tyler, R.

    2012-09-01

    The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean surface area A, tidal equilibrium height ηF, dissipation quality factor Q,and c=(gh)1/2, cr=Ωa, with ocean thickness h, rotation rate Ω, and radius a. Torque due to tides forced by obliquity as a function of the parameters c/cr and Q. Retrograde ("Westward") and prograde ("Eastward") components shown in left and right panels, respectively. Log10 scale shown in colorbar.

  11. Summary of November 2010 meeting to evaluate turbidite data for constraining the recurrence parameters of great Cascadia earthquakes for the update of national seismic hazard maps

    USGS Publications Warehouse

    Frankel, Arthur D.

    2011-01-01

    This report summarizes a meeting of geologists, marine sedimentologists, geophysicists, and seismologists that was held on November 18–19, 2010 at Oregon State University in Corvallis, Oregon. The overall goal of the meeting was to evaluate observations of turbidite deposits to provide constraints on the recurrence time and rupture extent of great Cascadia subduction zone (CSZ) earthquakes for the next update of the U.S. national seismic hazard maps (NSHM). The meeting was convened at Oregon State University because this is the major center for collecting and evaluating turbidite evidence of great Cascadia earthquakes by Chris Goldfinger and his colleagues. We especially wanted the participants to see some of the numerous deep sea cores this group has collected that contain the turbidite deposits. Great earthquakes on the CSZ pose a major tsunami, ground-shaking, and ground-failure hazard to the Pacific Northwest. Figure 1 shows a map of the Pacific Northwest with a model for the rupture zone of a moment magnitude Mw 9.0 earthquake on the CSZ and the ground shaking intensity (in ShakeMap format) expected from such an earthquake, based on empirical ground-motion prediction equations. The damaging effects of such an earthquake would occur over a wide swath of the Pacific Northwest and an accompanying tsunami would likely cause devastation along the Pacifc Northwest coast and possibly cause damage and loss of life in other areas of the Pacific. A magnitude 8 earthquake on the CSZ would cause damaging ground shaking and ground failure over a substantial area and could also generate a destructive tsunami. The recent tragic occurrence of the 2011 Mw 9.0 Tohoku-Oki, Japan, earthquake highlights the importance of having accurate estimates of the recurrence times and magnitudes of great earthquakes on subduction zones. For the U.S. national seismic hazard maps, estimating the hazard from the Cascadia subduction zone has been based on coastal paleoseismic evidence of great earthquakes over the past 5,000 years. The instrumental catalog of earthquakes is of little use for constraining the hazard of the CSZ, because there are virtually no recorded earthquakes on most of the plate interface of the CSZ. There are no historical accounts in the past 150 years of large earthquakes on most of the CSZ. Until about 20 years ago, some interpreted this lack of recent and historical earthquakes as an indicator that the subduction zone was slipping aseismically and could not produce a great earthquake. The work of Brian Atwater and others, in the late 1980s and the 1990s (Atwater, 1987, 1992; Atwater and others, 1995; Nelson and others, 1996; Clague, 1997; Atwater and Hemphill-Haley, 1997; Atwater and others, 2004) demonstrated that submerged forests, buried soils, tsunami deposits, and liquefaction along and near the coast were compelling evidence of repeated great Cascadia earthquakes over at least the past 5,000 years. Atwater and Hemphill-Haley (1997) concluded from paleoseismic evidence at Willapa Bay, Washington, that great earthquakes ruptured the CSZ with an average recurrence time of about 500 years. The date of the last great CSZ earthquake, January 26, 1700, was established from historical records of the so-called orphan tsunami in Japan that is inferred to have been produced by this earthquake (Satake and others, 1996, 2003; Atwater and others, 2005) and is consistent with tree-ring data from drowned forests in Washington and Oregon. From modeling the observations of the tsunami, Satake and others (2003) estimated a moment magnitude of about 9.0 for this earthquake. Many other paleoseismic sites have been investigated along the Pacific Northwest coast from Vancouver Island to northern California and show evidence of great CSZ earthquakes. Nelson and others (2006) summarized the dates found from these studies and proposed correlations between sites indicating the extent of rupture for individual events. Dating of inferred tsunami deposits in Bradley Lake, Oregon by Kelsey and others (2005), as well as tsunami and subsidence evidence from Six Rivers, Oregon (Kelsey and others, 2002) and Coquille River (Witter and others, 2003), indicates that there were probably Mw 8 ruptures in the southern portion of the CSZ in addition to the Mw 9 events that rupture the whole length of the CSZ (Nelson and others, 2006). A parallel development over the past 20 years or more is the use of deep-sea turbidite deposits for identifying and dating great Cascadia earthquakes over the past 10,000 years (Adams, 1990; Goldfinger and others, 2003, 2008, in press; Goldfinger, 2011). Turbidites are sediment deposits in the deep ocean from turbidity currents, which are energetic flows of sediment and water along the continental shelf and slope. Adams (1990), using the counts of turbidites in deep-sea cores off the coast of Oregon and Washington collected and analyzed by Griggs (1969) and Griggs and others (1969), proposed that these turbidites were caused by the shaking of great Cascadia earthquakes. Part of his reasoning was that the number (13) of turbidite deposits that occurred since deposition of the Mazama Ash 7,000 years ago gave a recurrence time of about 500 years, consistent with that derived from the coastal submergence data. Adams (1990) also proposed the “confluence test” which evaluates the number of turbidites for submarine channels that form a confluence. He reported that the number of turbidites in the single downstream channel equaled the number in each of the tributary channels. He reasoned that this indicated that the turbidites in each tributary were simultaneously triggered and were, therefore, caused by a common forcing agent. He concluded that shaking from extended ruptures of great Cascadia earthquakes was the most likely cause of these turbidites. Based on the paleoseismic evidence of past great earthquakes, the hazard from the Cascadia subduction zone was included in the 1996 U.S. NSHM (Frankel and others, 1996), which were the basis for seismic provisions in the 2000 International Building Code. These hazard maps used the paleoseismic studies to constrain the recurrence rate of great CSZ earthquakes. Goldfinger and his colleagues have since collected many more deep ocean cores and done extensive analysis on the turbidite deposits that they identified in the cores (Goldfinger and others, 2003, 2008, in press; Goldfinger, 2011). Using their dating of the sediments and correlation of features in the logs of density and magnetic susceptibility between cores, they developed a detailed chronology of great earthquakes along the CSZ for the past 10,000 years (Goldfinger and others, in press). These correlations consist of attempting to match the peaks and valleys in logs of density and magnetic susceptibility between cores separated, in some cases, by hundreds of kilometers. Based on this work, Goldfinger and others (2003, 2008, in press) proposed that the turbidite evidence indicated the occurrence of great earthquakes (Mw 8) that only ruptured the southern portion of the CSZ, as well as earthquakes with about Mw 9 that ruptured the entire length of the CSZ. For the southernmost portion of the CSZ, Goldfinger and others (in press) proposed a recurrence time of Mw 8 or larger earthquakes of about 230 years. This proposed recurrence time was shorter than the 500 year time that was incorporated in one scenario in the NSHM’s. It is important to note that the hazard maps of 1996 and later also included a scenario or set of scenarios with a shorter recurrence time for Mw 8 earthquakes, using rupture zones that are distributed along the length of the CSZ (Frankel and others, 1996; Petersen and others, 2008). Originally, this scenario was meant to correspond to the idea that some of the 500-year averaged ruptures seen in the paleoseismic evidence could have been a series of Mw 8 earthquakes that occurred over a short period of time (a few decades), rather than Mw 9 earthquakes. Figure 2 shows the logic tree for the CSZ used in the 2008 NSHM’s (Petersen and others, 2008). This logic tree includes whole CSZ rupture earthquakes (Mw 8.8–9.2) and partial CSZ rupture earthquakes (Mw 8.0–8.7). In this latest version of the NSHM’s, the effective recurrence time of earthquakes on the CSZ with moment magnitudes greater than or equal to 8.0 over the various models is about 270 years (Petersen and others, 2008). This recurrence time applies to the entire CSZ, so that the hazard from great earthquakes was approximately equal along the whole zone, although the hazard estimates taper on the northern and southern ends of the CSZ, because of the way rupture zones of Mw 8 earthquakes were distributed along the strike of the CSZ. The NSHM will be updated in 2013, as part of the standard update cycle that corresponds to the update cycle of the national model building codes that are based on the seismic hazard maps. A meeting was necessary to assemble a wide group of experts to hear Dr. Goldfinger explain his methodology for dating and correlating the turbidites and for developing the earthquake chronology. The overall goal of the workshop was to evaluate observations of turbidite deposits to provide constraints on the recurrence times and rupture extents of great Cascadia subduction zone earthquakes for the next update of the NSHM. Before the meeting, participants were supplied with the U.S. Geological Survey (USGS) Professional Paper of Goldfinger and others (in press), as well as material from Brian Atwater and Alan Nelson. The agenda of the meeting was developed by Art Frankel, with assistance from Chris Goldfinger, Brian Atwater, Alan Nelson, Mark Petersen, and Craig Weaver. The meeting was hosted by Chris Goldfinger of Oregon State University. We stress that it is difficult to evaluate in a two-day meeting the large amount of work that Goldfinger and his colleagues have done over the past 15 years or more. This meeting is the first step in a process that develops the inputs to the update of the national maps. The conclusions of this workshop will be discussed and possibly modified at the regional Pacific Northwest workshop for the hazard maps to be held in early 2012. Vetting new research results using informed expert opinion is an integral part of updating the national maps and does not reflect on the veracity of these results.

  12. Publications - RI 2000-1B | Alaska Division of Geological & Geophysical

    Science.gov Websites

    ; Formations; Fossils; Geologic; Geologic Map; Geology; Glacial Processes; Kemik Sandstone; Marine; Marine ; Tectonics; Tertiary; Trace Fossils; Turbidites; Volcanic Ash Top of Page Department of Natural Resources

  13. Middle Micoene sandstone reservoirs of the Penal/Barrackpore field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, B.L.

    1991-03-01

    The Penal/Barrackpore field was discovered in 1938 and is located in the southern subbasin of onshore Trinidad. The accumulation is one of a series of northeast-southwest trending en echelon middle Miocene anticlinal structures that was later accentuated by late Pliocene transpressional folding. Relative movement of the South American and Caribbean plates climaxed in the middle Miocene compressive tectonic event and produced an imbricate pattern of southward-facing basement-involved thrusts. Further compressive interaction between the plates in the late Pliocene produced a transpressive tectonic episode forming northwest-southeast oriented transcurrent faults, tear faults, basement thrust faults, lystric normal faults, and detached simple foldsmore » with infrequent diapiric cores. The middle Miocene Herrera and Karamat turbiditic sandstones are the primary reservoir rock in the subsurface anticline of the Penal/Barrackpore field. These turbidites were sourced from the north and deposited within the marls and clays of the Cipero Formation. Miocene and Pliocene deltaics and turbidites succeed the Cipero Formation vertically, lapping into preexisting Miocene highs. The late Pliocene transpression also coincides with the onset of oil migration along faults, diapirs, and unconformities from the Cretaceous Naparima Hill source. The Lengua Formation and the upper Forest clays are considered effective seals. Hydrocarbon trapping is structurally and stratigraphically controlled, with structure being the dominant trapping mechanism. Ultimate recoverable reserves for the field are estimated at 127.9 MMBo and 628.8 bcf. The field is presently owned and operated by the Trinidad and Tobago Oil Company Limited (TRINTOC).« less

  14. Heavy mineral sorting and distributions within massive sandstone divisions (Bouma A divisions) of Brushy Canyon Formation turbidites

    NASA Astrophysics Data System (ADS)

    Motanated, K.; Tice, M. M.

    2009-12-01

    KANNIPA MOTANATED and MICHAEL M. TICE Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843-3115, USA Sediment sorting data are commonly used for interpreting depositional environments, analyzing mechanisms of deposition and transportation, and inferring relative transport distance of sediments. Typically, sorting in sandstones is estimated by point-counting thin sections which is a time consuming procedure and requires cutting sections of rock samples. We demonstrate a new technique for quantifying sediment sorting using element distribution maps obtained by x-ray fluorescence microscopy. We show that hydraulic sorting of Zr- and Ti- bearing grains (probably zircon and rutile, respectively) results in characteristic vertical profiles of Zr and Ti abundances within the Bouma A divisions of turbidites of the Brushy Canyon Formation, Delaware Basin, southern New Mexico. Zr- and Ti- bearing grains decrease in abundance and diameter from bases to tops of A divisions in every sample examined in this study. These results contrast with previous observations which suggest that grading in Brushy Canyon Formation structureless sandstones is absent or rare. The data support turbiditic interpretations of these rocks against traction current interpretations which rely on the lack of textural grading. Grading is reflected in vertical profiles of Ti/Al, Zr/Al and Zr/Ti ratios, which each decrease upward. These compositional variations could potentially be used as geochemical proxies for physical sorting, and might be useful for inferring depositional processes and relative transport distances.

  15. Overpressure and consolidation near the seafloor of Brazos-Trinity Basin IV, northwest deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Schneider, Julia; Flemings, Peter B.; Dugan, Brandon; Long, Hui; Germaine, John T.

    2009-05-01

    Pore water overpressures (u*) within mudstones beneath Brazos-Trinity Basin IV (deepwater Gulf of Mexico, offshore Texas) are greater than 70% of the hydrostatic vertical effective stress (σ'vh) [λ* = 0.7 = (u*/σ'vh)]. These results are compatible with recent observations that suggest sedimentation rates in this region are rapid (6 mm/a). We compare the petrophysical properties and pore pressures within a 127-m-thick package of mudstone penetrated at two locations: Integrated Ocean Drilling Program (IODP) sites U1319 and U1320. Site U1319 is at the margin of Brazos-Trinity Basin IV, whereas Site U1320 lies at its center, beneath 180 m of turbidite fill. Experimentally derived preconsolidation stresses and an in situ pore pressure measurement record overpressure at Site U1319 and Site U1320 (λ* ˜ 0.2 to 0.8 and λ* ˜ 0.8, respectively). We use these data to define an average vertical effective stress gradient. Assuming that void ratio (e) is proportional to the log of vertical effective stress (σ'v), we predict pore pressures (u) throughout the mudstone at both sites using bulk density data. Overpressures are greater at Site U1320 due to rapid deposition of the overlying turbidites. However, a large fraction of the overpressure induced by the turbidite load applied at Site U1320 has dissipated by drainage into the overlying basin fill. High overpressures near the seafloor drive shallow fluid flow, reduce slope stability, and may explain large submarine landslides.

  16. Tectonic control on sediment sources in the Jaca basin (Middle and Upper Eocene of the South-Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Roigé, Marta; Gómez-Gras, David; Remacha, Eduard; Daza, Raquel; Boya, Salvador

    2016-03-01

    The Eocene clastic systems of the Jaca foreland Basin (southern Pyrenees) allow us to identify changes in sediment composition through time. We provide new data on sediment composition and sources of the northern Jaca basin, whose stratigraphic evolution from Middle Lutetian deep-marine to Priabonian alluvial systems record a main reorganization in the active Pyrenean prowedge. Petrological analysis shows that the Banastón and the Lower Jaca turbidite systems (Middle-Upper Lutetian) were fed from an eastern source, which dominated during the sedimentation of the Hecho Group turbidites. In contrast, the upper part of the Jaca turbidite systems (Lutetian-Bartonian transition) records an increase in the number of subvolcanic rock and hybrid-sandstone fragments (intrabasinal and extrabasinal grains) being the first system clearly fed from the north. This change is interpreted as associated with an uplifting of the Eaux-Chaudes/Lakora thrust sheet in the northern Axial Zone. The Middle Bartonian Sabiñánigo sandstone derives from eastern and northeastern source areas. In contrast, the overlying Late Bartonian-Early Priabonian Atarés delta records sediment input from the east. The Santa Orosia alluvial system records a new distinct compositional change, with a very high content of hybrid-sandstone clasts from the Hecho Group, again from a northern provenance. Such cannibalized clasts were sourced from newly emerged areas of the hinterland, associated with the basement-involved Gavarnie thrust activity in the Axial Zone.

  17. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  18. Holocene Coastal Environments near Pompeii before the A.D. 79 Eruption of Mount Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Pescatore, Tullio; Senatore, Maria Rosaria; Capretto, Giovanna; Lerro, Gaia

    2001-01-01

    Studies of some 70 bore holes around ancient Pompeii, on the southwestern slope of the Somma-Vesuvius volcano, allow the reconstruction of Holocene environments earlier than the A.D. 79 eruption. This eruption produced about 10 km3 of pyroclastic material that buried the Roman cities of Pompeii, Herculaneum, and Stabiae and promoted a shoreline progradation of 1 km. The Sarno coastal plain, in a post-Miocene sedimentary basin, has been affected by Somma-Vesuvius volcanic activity since the late Pleistocene. At the Holocene transgressive maximum, the sea reached an area east of ancient Pompeii and formed a beach ridge (Messigno, 5600 and 4500 14C yr B.P.) more than 2 km inland from the present shore. Progradation of the plain due to high volcanic supply during the following highstand resulted in a new beach ridge (Bottaro-Pioppaino, 3600 14C yr B.P.) 0.5 km seaward of the Messigno ridge. Ancient Pompeii was built as the shoreline continued to prograde toward its present position. Deposits of the A.D. 79 eruption blanketed the natural levees of the Sarno River, marshes near the city and on the Sarno's floodplain, the morphological highs of Messigno and Bottaro-Pioppaino beach ridges, and the seashore. That shore was probably 1 km landward of the present one.

  19. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valluri, Monica; Abbott, Caleb; Shen, Juntai

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotatingmore » triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.« less

  20. Changes in the areal extents of the Athabasca River, Birch River, and Cree Creek Deltas, 1950-2014, Peace-Athabasca Delta, Canada

    NASA Astrophysics Data System (ADS)

    Timoney, Kevin; Lee, Peter

    2016-04-01

    Deltas form where riverborne sediment accumulates at the interface of river mouths and their receiving water bodies. Their areal extent is determined by the net effect of processes that increase their extent, such as sediment accumulation, and processes that decrease their extent, such as erosion and subsidence. Through sequential mapping and construction of river discharge and sediment histories, this study examined changes in the subaerial extents of the Cree Creek and Athabasca River Deltas (both on the Athabasca River system) and the Birch River Delta in northern Canada over the period 1950-2014. The purpose of the study was to determine how, when, and why the deltas changed in areal extent. Temporal growth patterns were similar across the Athabasca and Birch River systems indicative of a climatic signal. Little or no areal growth occurred from 1950 to 1968; moderate growth occurred between 1968 and the early to mid-1980s; and rapid growth occurred between 1992 and 2012. Factors that affected delta progradation included dredging, sediment supply, isostatic drowning, delta front bathymetry, sediment capture efficiency, and storms. In relation to sediment delivered, areal growth rates were lowest in the Athabasca Delta, intermediate in the Birch Delta, and highest in the Cree Creek Delta. Annual sediment delivery is increasing in the Cree Creek Delta; there were no significant trends in annual sediment delivery in the Birch and Athabasca Deltas. There was a lag of up to several years between sediment delivery events and progradation. Periods of delta progradation were associated with low water levels of the receiving basins. Predicted climate-change driven declines in river discharge and lake levels may accelerate delta progradation in the region. In the changing ecosystems of northeastern Alberta, inadequate monitoring of vegetation, landforms, and sediment regimes hampers the elucidation of the nature, rate, and causality of ecosystem changes.

  1. A Quasi-2D Delta-growth Model Accounting for Multiple Avulsion Events, Validated by Robust Data from the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Carlson, B.; Parker, G.

    2016-12-01

    The autogenic "life cycle" of a lowland fluvial channel building a deltaic lobe typically follows a temporal sequence that includes: channel initiation, progradation and aggradation, and abandonment via avulsion. In terms of modeling these processes, it is possible to use a one-dimensional (1D) morphodynamic scheme to capture the magnitude of the prograding and aggrading processes. These models can include algorithms to predict the timing and location of avulsions for a channel lobe. However, this framework falls short in its ability to evaluate the deltaic system beyond the time scale of a single channel, and assess sedimentation processes occurring on the floodplain, which is important for lobe building. Herein, we adapt a 1D model to explicitly account for multiple avulsions and therefore replicate a deltaic system that includes many lobe cycles. Following an avulsion, sediment on the floodplain and beyond the radially-averaged shoreline is redistributed across the delta topset and along the shoreline, respectively, simultaneously prograding and aggrading the delta. Over time this framework produces net shoreline progradation and forward-stepping of subsequent avulsions. Testing this model using modern systems is inherently difficult due to a lack of data: most modern delta lobes are active for timescales of centuries to millennia, and so observing multiple iterations of the channel-lobe cycle is impossible. However, the Yellow River delta (China) is unique because the lobe cycles here occur within years to decades. Therefore it is possible to measure shoreline evolution through multiple lobe cycles, based on satellite imagery and historical records. These data are used to validate the model outcomes. Our findings confirm that the explicit accounting of avulsion processes in a quasi-2D model framework is capable of capturing shoreline development patterns that otherwise are not resolvable based on previously published delta building models.

  2. The late Archean Schreiber Hemlo and White River Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction accretion complexes

    NASA Astrophysics Data System (ADS)

    Polat, A.; Kerrich, R.; Wyman, D. A.

    1998-04-01

    The late Archean (ca. 2.80-2.68 Ga) Schreiber-Hemlo and White River-Dayohessarah greenstone belts of the Superior Province, Canada, are supracrustal lithotectonic assemblages of ultramafic to tholeiitic basalt ocean plateau sequences, and tholeiitic to calc-alkaline volcanic arc sequences, and siliciclastic turbidites, collectively intruded by arc granitoids. The belts have undergone three major phases of deformation; two probably prior to, and one during the assembly of the southern Superior Province. Imbricated lithotectonic assemblages are often disrupted by syn-accretion strike-slip faults, suggesting that strike-slip faulting was an important aspect of greenstone belt evolution. Field relations, structural characteristics, and high-precision ICP-MS trace-element data obtained for representative lithologies of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts suggest that they represent collages of oceanic plateaus, juvenile oceanic island arcs, in subduction-accretion complexes. Stratigraphic relationships, structural, and geochemical data from these Archean greenstone belts are consistent with a geodynamic evolution commencing with the initiation of a subduction zone at the margins of an oceanic plateau, similar to the modern Caribbean oceanic plateau and surrounding subduction-accretion complexes. All supracrustal assemblages include both ocean plateau and island-arc geochemical characteristics. The structural and geochemical characteristics of vertically and laterally dismembered supracrustal units of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts cannot be explained either by a simple tectonic juxtaposition of lithotectonic assemblages with stratified volcanic and sedimentary units, or cyclic mafic to felsic bimodal volcanism models. A combination of out-of-sequence thrusting, and orogen-parallel strike-slip faulting of accreted ocean plateaus, oceanic arcs, and trench turbidites can account for the geological and geochemical characteristics of these greenstone belts. Following accretion, all supracrustal assemblages were multiply intruded by syn- to post-tectonic high-Al, and high-La/Yb n slab-derived trondhjemite-tonalite-granodiorite (TTG) plutons. The amalgamation processes of these lithotectonic assemblages are comparable to those of Phanerozoic subduction-accretion complexes, such as the Circum-Pacific, the western North American Cordilleran, and the Altaid orogenic belts, suggesting that subduction-accretion processes significantly contributed to the growth of the continental crust in the late Archean. The absence of blueschist and eclogite facies metamorphic rocks in Archean subduction-accretion complexes may be attributed to elevated thermal gradients and shallow-angle subduction. The melting of a hotter Archean mantle at ridges and in plumes would generate relatively small, hot, and hence shallowly subducting oceanic plates, promoting high-temperature metamorphism, migmatization, and slab melting. Larger, colder, Phanerozoic plates typically subduct at a steeper angle, generating high-pressure low-temperature conditions for blueschists and eclogites in the subduction zones, and low-La/Yb n granitoids from slab dehydration, and wedge melting. Metasedimentary subprovinces in the Superior Province, such as the Quetico and English River Subprovinces, have formerly been interpreted as accretionary complexes, outboard of the greenstone belt magmatic arcs. Here the greenstone-granitoid subprovinces are interpreted as collages of subduction-accretion complexes, island arcs and oceanic plateaus amalgamated at convergent plate margins, and the neighbouring metasedimentary subprovinces as foreland basins.

  3. Paleocene Wilcox cross-shelf channel-belt history and shelf-margin growth: Key to Gulf of Mexico sediment delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyu; Steel, Ronald; Ambrose, William

    2017-12-01

    Shelf margins prograde and aggrade by the incremental addition of deltaic sediments supplied from river channel belts and by stored shoreline sediment. This paper documents the shelf-edge trajectory and coeval channel belts for a segment of Paleocene Lower Wilcox Group in the northern Gulf of Mexico based on 400 wireline logs and 300 m of whole cores. By quantitatively analyzing these data and comparing them with global databases, we demonstrate how varying sediment supply impacted the Wilcox shelf-margin growth and deep-water sediment dispersal under greenhouse eustatic conditions. The coastal plain to marine topset and uppermost continental slope succession of the Lower Wilcox shelf-margin sediment prism is divided into eighteen high-frequency ( 300 ky duration) stratigraphic sequences, and further grouped into 5 sequence sets (labeled as A-E from bottom to top). Sequence Set A is dominantly muddy slope deposits. The shelf edge of Sequence Sets B and C prograded rapidly (> 10 km/Ma) and aggraded modestly (< 80 m/Ma). The coeval channel belts are relatively large (individually averaging 11-13 m thick) and amalgamated. The water discharge of Sequence Sets B and C rivers, estimated by channel-belt thickness, bedform type, and grain size, is 7000-29,000 m3/s, considered as large rivers when compared with modern river databases. In contrast, slow progradation (< 10 km/Ma) and rapid aggradation (> 80 m/Ma) characterizes Sequence Sets D and E, which is associated with smaller (9-10 m thick on average) and isolated channel belts. This stratigraphic trend is likely due to an upward decreasing sediment supply indicated by the shelf-edge progradation rate and channel size, as well as an upward increasing shelf accommodation indicated by the shelf-edge aggradation rate. The rapid shelf-edge progradation and large rivers in Sequence Sets B and C confirm earlier suggestions that it was the early phase of Lower Wilcox dispersal that brought the largest deep-water sediment volumes into the Gulf of Mexico. Key factors in this Lower Wilcox stratigraphic trend are likely to have been a very high initial sediment flux to the Gulf because of the high initial release of sediment from Laramide catchments to the north and northwest, possibly aided by modest eustatic sea-level fall on the Texas shelf, which is suggested by the early, flat shelf-edge trajectory, high amalgamation of channel belts, and the low overall aggradation rate of the Sequence Sets B and C.

  4. Determining sources of deep-sea mud by organic matter signatures in the Sunda trench and Aceh basin off Sumatra

    NASA Astrophysics Data System (ADS)

    Omura, Akiko; Ikehara, Ken; Arai, Kohsaku; Udrekh

    2017-12-01

    The content, optically determined properties, and stable isotope composition of organic carbon in fine-grained sediment cores were analyzed to investigate the origins of deep-sea sediments deposited in the Aceh forearc basin and on the Sunda trench floor off Sumatra from the late Pleistocene to the Holocene. In the Aceh basin, the depositional frequency of turbidite mud decreased as sea level rose during the deglaciation. The terrigenous organic carbon content was high at the end of the last glacial period, whereas during the deglaciation most of the organic carbon was of marine origin. In the Sunda trench, the Holocene turbidites consisted of remobilized slope sediments from two different sources: sediments derived from the old Bengal/Nicobar fan included thermally matured organic fragments, whereas those derived from the trench slope contained little terrigenous organic carbon.

  5. Submarine paleoseismology based on turbidite records.

    PubMed

    Goldfinger, Chris

    2011-01-01

    Many of the largest earthquakes are generated at subduction zones or other plate boundary fault systems near enough to the coast that marine environments may record evidence of them. During and shortly after large earthquakes in the coastal and marine environments, a spectrum of evidence may be left behind, mirroring onshore paleoseismic evidence. Shaking or displacement of the seafloor can trigger processes such as turbidity currents, submarine landslides, tsunami (which may be recorded both onshore and offshore), and soft-sediment deformation. Marine sites may also share evidence of fault scarps, colluvial wedges, offset features, and liquefaction or fluid expulsion with their onshore counterparts. This article reviews the use of submarine turbidite deposits for paleoseismology, focuses on the dating and correlation techniques used to establish stratigraphic continuity of marine deposits, and outlines criteria for distinguishing earthquake deposits and the strategies used to acquire suitable samples and data for marine paleoseismology.

  6. The Mt. Ochi melange (South Evvia Island, Greece): a case study for HP metamorphism and syn-convergent exhumation.

    NASA Astrophysics Data System (ADS)

    Moustaka, Eleni; Soukis, Konstantinos; Huet, Benjamin; Lozios, Stylianos; Magganas, Andreas

    2014-05-01

    The Attic-Cycladic complex (central Aegean Sea, Greece) experienced profound extension since at least the Oligo-Miocene boundary during which the previously thickened crust was reworked by a series of detachments forming the NE directed North Cycladic Detachment System (NCDS) and the SSW directed West Cycladic Detachment System (WCDS). South Evvia Island is located at the northwestern part of the Attic Cycladic complex linking the highly thinned and polymetamorphosed central part of the complex with mainland Greece. Furthermore, greenschists-facies retrograde metamorphism has only partially overprinted the HP mineral assemblages. Consequently, it is an ideal area to study tectonic processes associated with subduction, HP metamorphism and subsequent exhumation from eclogitic depths to the surface. Geological mapping in 1:2:000 scale revealed that the tectonostratigraphy of Mt. Ochi includes three distinct units all metamorphosed in HP conditions followed by greenschist facies overprint. These units are from top to bottom a) the Ochi Unit, a thick metavolcanosedimentary sequence with some intensely folded cipoline marble intercalations and isolated occurrences of metabasic rocks b) the ophiolitic mélange (metagabbros, metawherlites, peridotites, metabasites within a metasedimentary+serpentinite matrix) and c) the lowermost Styra Unit, a cipoline marble-dominated unit with thin mica schists and rare quartzitic layers often boudinaged. The thrust fault that was responsible for the juxtaposition of these three units acted in an early stage during HP metamorphism and it was isoclinally folded and sheared by the following syn-metamorphic deformation events. Detailed structural study in meso- and microscopic scale combined with petrological and geochemical analyses of the Mt Ochi rocks led to the distinction of at least three syn-metamorphic and two post-metamorphic deformation episodes that affected all units. The oldest structure identified is a relic foliation formed by the mineral assemblage Na-amphibole + lawsonite seen as inclusion in epidote porphyroblasts within the melange. It could represent a structure of the prograde path but it could also have formed during the peak HP event. This is followed by successive folding episodes that are related to axial plane foliations and a ~E-W intersection/stretching lineation formed by typical blueschist- to epidote-blueschist facies mineral assemblages. The main foliation that can be observed in all three units is a greenschist-facies axial plane foliation accompanied by a ~ENE-WSW stretching lineation. The shear sense during the prograde path is constantly towards the WSW. In the greenschists-facies an unambiguous top-to ENE can be observed mostly in mylonitic rocks. The following deformation episodes include semi-brittle to brittle structures (shear bands brittle open folds, crenulation cleavage, and faults with increasingly higher-angle) that are not as penetrative and record the passage of the units through the brittle-ductile transitions and to higher structural levels. The kinematics of these late episodes is also towards the NE. Based on the above, the Mt Ochi HP units exhibit a common tectonometamorphic evolution since at least the early stages of the prograde path. The Ochi Unit/Styra Unit contact is a structure that formed prior to or during peak HP metamorphism and therefore it couldn't have served as the normal fault to an extrusion wedge.

  7. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    USGS Publications Warehouse

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow occurrences of high gas hydrate concentrations contradict the previous model of gas hydrate formation at an accretionary prism. However, long-lived fluid flow (part of the old model) is still required to explain the shallow high gas hydrate concentrations, although it is most likely not pervasive throughout the entire accretionary prism, but rather localized and focused by the tectonic processes. Differences in the fluid flow regime across all of the transect drill sites indicate site-specific and probably disconnected (compartmented) deeper fluid sources in the various parts of the accretionary prism. The data and future analyses will yield a better understanding of the geologic controls, evolution and ultimate fate of gas hydrate in an accretionary prism as an important contribution to the role of gas hydrate methane gas in slope stability and possibly in climate change. ?? The Geological Society of London 2009.

  8. Provenance analysis of the Oligocene turbidites (Andaman Flysch), South Andaman Island: A geochemical approach

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, P. C.; Ghosh, Biswajit

    2015-07-01

    The Oligocene-aged sandstone-shale turbidites of the Andaman Flysch are best exposed along the east coast of the South Andaman Island. Previously undocumented sandstone-shale geochemistry, investigated here, provides important geochemical constraints on turbidite provenance. The average 70.75 wt% SiO2, 14.52 wt% Al2O3, 8.2 wt% FeMgO and average 0.20 Al2O3/SiO2 and 1.08 K2O/Na2O ratios in sandstones, compare with quartzwackes. The shale samples have average 59.63 wt% SiO2, 20.29 wt% Al2O3, 12.63 wt% FeMgO and average 2.42 K2O/Na2O and 0.34 Al2O3/SiO2 ratios. Geochemical data on CaO-Na2O-K2O diagram fall close to a granite field and on K2O/Na2O-SiO2 diagram within an active continental margin tectonic setting. The range and average values of Rb and Rb/Sr ratios are consistent with acid-intermediate igneous source rocks, while the values and ratios for Cr and Ni are with mafic rocks. Combined geochemical, petrographic and palaeocurrent data indicate a dominantly plutonic-metamorphic provenance with a lesser contribution from sedimentary and volcanic source, which is possibly the Shan-Thai continental block and volcanic arc of the north-eastern and eastern Myanmar. Chemical index of alteration (CIA) values suggests a moderate range of weathering of a moderate relief terrane under warm and humid climate.

  9. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based onmore » marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  10. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on markermore » correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.« less

  11. Compositional variations and differential diagenesis in Miocene turbidites from the western coast of Mallorca (Balearic Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Felder, Sonja; Westphal, Hildegard; Munnecke, Axel; Mateu Vicens, Guillem

    2010-05-01

    Compositional variations and differential diagenesis in Miocene turbidites from the western coast of Mallorca (Balearic Islands, Spain) Sonja Felder (1), Hildegard Westphal (1), Axel Munnecke (2), Guillem Mateu Vicens (1,3) (1) MARUM and Department of Geosciences, Universität Bremen, Leobener Straße, 28359 Bremen, Germany (2) GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany (3) Dipartimento di Scienze della Terra, Università di Roma "La Sapienza", Ple Aldo 7 Moro, 5. I-00185 Roma, Italy Cyclic alternations of limestone and marl beds crop out along the western coast of the Island of Mallorca. This Miocene succession is traditionally interpreted to represent more weathering-resistant turbidites interlayered by softer hemipelagic background sediment. However, the cementation patterns that dominate the appearance of the outcrop do not always consistently follow sedimentary layering; locally the cemented beds are systematically oblique to the sedimentary layers. Compositional studies demonstrate that differences in non-carbonate fraction, carbonate concentration and fossil content (e.g. foraminiferal assemblages) trace sedimentary bedding, regardless the diagenetic style. Limestone versus marl lithology, in contrast, is defined by the diagenetic style, tight cementation by calcite cements in the limestones versus low porosity and compaction in the marls. The reason for this striking pattern of diagenetic bedding cross-cutting sedimentary layers is assumed to be related to tectonic fracturing, opening pathways for diagenetic fluids. This example cautions the straight-forward interpretation of limestone-marl alternations as direct witnesses of environmental or climatic variations.

  12. Caribbean basin framework, 3: Southern Central America and Colombian basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolarsky, R.A.; Mann, P.

    1991-03-01

    The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas ofmore » Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.« less

  13. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  14. The Eocene Canopy of the Northwestern Gulf of Mexico explained by the Mechanism of Squeezed Diapirs - A Numerical Modeling Study

    NASA Astrophysics Data System (ADS)

    Gradmann, Sofie; Beaumont, Christopher

    2010-05-01

    Multiple salt canopies of variable size have developed in the Gulf of Mexico since the Palaeogene, and are now located at several different structural levels. Little is known about their emplacement and early evolution. In some cases, the underlying structures are shielded by salt from seismic imaging. In others, salt has been entirely evacuated from the canopies, and only a salt weld remains. Allochthonous salt structures can have a major influence on the structural evolution of a basin when they act as a detachment layer, and may also affect the sediment deposition patterns and the development of hydrocarbon systems. This study focuses on the evolution of a salt canopy located in the northwestern Gulf of Mexico. This canopy developed during the Eocene in the center of an up to 350 km wide Mid-Jurassic salt basin. In its later stages, it acted as a detachment surface for large-scale Oligo-Miocene gravity spreading. By localizing gravitational instabilities at the allochthonous level, the canopy likely postponed gravity-driven deformation above the distal part of the allochthonous salt basin until the late Oligocene, at which time the Perdido Fold Belt began to form at the distal end of the basin. We investigate the circumstances under which the Eocene canopy could have evolved via the mechanism of squeezed diapirs. During such a process, shortening of a region containing pre-existing diapirs will be absorbed by the salt (the weakest part of the system), which is then expelled upwards to the seafloor. We use 2D finite-element models to study the evolution of an analogous canopy. The models comprise a viscous salt layer overlain by a frictional-plastic passive margin sedimentary sequence from shelf to deep water, thereby incorporating the dynamical interaction of gravity spreading caused by shelf progradation. Model experiments include sediment compaction, flexural isostasy, loading by the overlying water column, and parametric calculations of the effects of pore-fluid pressures in the frictional-plastic sediments. The models integrate two phases of the basin evolution: Phase 1 in which diapirs develop during sediment aggradation, and Phase 2 in which sediment progradation leads to gravity spreading, shortening (squeezing) of the diapirs, expulsion of salt and the development of a canopy. The Phase 1 modeling presents a new mechanism for diapir initiation and evolution, which has remained a poorly understood aspect of salt tectonics. This mechanism is based on the idea that local bathymetric expressions (such as channel-levee systems or turbidite deposits) can be preserved by sedimentation patterns. These structures need to adjust isostatically relative to the salt layer. In an aggradational environment in which the bathymetric profile is maintained, this local balancing can create sufficient pressure differences to drive diapirism. These diapirs can form in a neutral stress regime and can fully develop before they get squeezed by shortening. The evolving model canopies show characteristics similar to the Eocene canopy of the northwestern Gulf of Mexico (such as its lateral extent, the structure of the underlying strata, and the postponing of deformation above the distal salt basin). They also share important characteristics with other canopies, for example, the Eocene canopy of the northern Gulf of Mexico.

  15. Chemostratigraphy of glaciomarine sediments in the Sarah Formation, northwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Craigie, Neil W.; Rees, Andrew J.

    2016-05-01

    The Sarah Formation of northern Saudi Arabia mainly consists of glacial 'outwash' sediments deposited by turbidite channels and fans. Prior to undertaking chemostratigraphy, the results of seismic interpretation revealed the Sarah Formation to be mainly deposited in a NW-SE trending turbidite system in the study area, comprising channels with associated fans. These are succeeded by fluvio marine sediments at the top of the Sarah Formation. In the absence of good biostratigraphic control, chemostratigraphy was found to be one of the few techniques that could be employed to produce a high resolution correlation scheme for four study wells. Geochemical data were acquired for 50 elements in 550 core samples by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry) and ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) but only the 'key' ratios Zr/Nb, Nb/Ti, Nb/Cr, Rb/K and Th/Cr were employed for chemostratigraphic purposes as they show significant trends that enable correlative boundaries to be identified and a hierarchical scheme to be proposed. Variations in these parameters are largely related to changes in source/provenance. In order to avoid geochemical variations relating to changes in grain size/lithology, separate schemes were proposed for the sandstone and mudrock samples. The sandstone scheme consists of a hierarchical order of three zones, seven subzones and five divisions, while the mudrock scheme is less detailed, comprising three zones and seven subzones. A 'finalised' scheme, based on a combination of the two aforementioned ones, was found to be more useful than employing the correlation proposed for individual lithologies. One of the main conclusions of the study was that the basal chemozones (general term used to describe any chemostratigraphic zone, subzone or division) were identified in wells B and C but were missing from A and D. It is thought that the areas around the two latter wells represented topographically 'high' areas during the deposition of the lowermost part of the Sarah Formation, hence the reason that these chemozones may be missing as a result of erosion/non-deposition. Conversely, chemozone C3-2a, occurring towards the top of the Sarah Formation turbidites, is correlative between all four wells. The turbidites are succeeded by the marginal marine sediments of chemozones M3-1 and C3-2bb at the top of the Sarah Formation.

  16. Expedition 354 on the Bengal fan: a Neogene record of Himalayan erosion

    NASA Astrophysics Data System (ADS)

    France-Lanord, C.; Spiess, V.; Schwenk, T.; Klaus, A.; Galy, A.

    2017-12-01

    Drilling in the Bengal fan generated a comprehensive record of Himalayan erosion over the Neogene and Quaternary. It documents the interplay between Himalayan tectonic and the monsoon. The fan is predominantly composed of detrital turbiditic sediments originating from Himalayan rivers, and transported through the delta and shelf canyon, supplying turbidity currents loaded with a wide spectrum of grain sizes. Turbiditic deposition makes that record at a given site is discontinuous which was the reason for an E-W transect approach. Exp. 354 drilled seven sites along a 320 km E-W transect at 8°N allowing the restitution of an almost complete record of Himalayan erosion at the scale of the Neogene. In spite of the transect's extension, a long absence of deposition was observed between 0.6 to 1.2 Ma indicating that turbiditic depocenter was derived more to the West for ca. 600 kyr. Turbidites have clear Himalayan origin with close mineralogical and isotopic analogy with those of the modern Ganga-Brahmaputra river sediments. Geochemistry shows relatively stable compositions throughout the Neogene and Quaternary and reveal a very weak regime of chemical weathering with no significant variation through time. Concentrations in mobile elements such as Na and K relative to Al are significantly higher than in modern sediments suggesting that weathering is amplified in the modern time. Low weathering of the sediments at 8°N indicates that erosion was dominated by physical processes and that transport is rapid enough to prevent evolution of particles in the floodplain. In the modern Himalaya, low weathering is achieved primarily by landslides and rapid transfer through the floodplain, i.e. limited recycling of sediment deposited in the floodplain. Both processes are favoured by the seasonality and the intensity of the monsoon. Although relatively stable, source tracers such as Sr-Nd isotopic compositions, and detrital carbonate compositions show organised variations with time. They imply that exposure to erosion of the different Himalayan formations has evolved as a result of the evolution of the thrusting structures. Data suggest that (1) Tethys Himalaya exposure to erosion was higher during Miocene than after 5 Ma and (2) that the exhumation of the Lesser Himalaya was initiated around 8 Ma.

  17. Larger earthquakes recur more periodically: New insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile

    NASA Astrophysics Data System (ADS)

    Moernaut, J.; Van Daele, M.; Fontijn, K.; Heirman, K.; Kempf, P.; Pino, M.; Valdebenito, G.; Urrutia, R.; Strasser, M.; De Batist, M.

    2018-01-01

    Historical and paleoseismic records in south-central Chile indicate that giant earthquakes on the subduction megathrust - such as in AD1960 (Mw 9.5) - reoccur on average every ∼300 yr. Based on geodetic calculations of the interseismic moment accumulation since AD1960, it was postulated that the area already has the potential for a Mw 8 earthquake. However, to estimate the probability of such a great earthquake to take place in the short term, one needs to frame this hypothesis within the long-term recurrence pattern of megathrust earthquakes in south-central Chile. Here we present two long lacustrine records, comprising up to 35 earthquake-triggered turbidites over the last 4800 yr. Calibration of turbidite extent with historical earthquake intensity reveals a different macroseismic intensity threshold (≥VII1/2 vs. ≥VI1/2) for the generation of turbidites at the coring sites. The strongest earthquakes (≥VII1/2) have longer recurrence intervals (292 ±93 yrs) than earthquakes with intensity of ≥VI1/2 (139 ± 69yr). Moreover, distribution fitting and the coefficient of variation (CoV) of inter-event times indicate that the stronger earthquakes recur in a more periodic way (CoV: 0.32 vs. 0.5). Regional correlation of our multi-threshold shaking records with coastal paleoseismic data of complementary nature (tsunami, coseismic subsidence) suggests that the intensity ≥VII1/2 events repeatedly ruptured the same part of the megathrust over a distance of at least ∼300 km and can be assigned to Mw ≥ 8.6. We hypothesize that a zone of high plate locking - identified by geodetic studies and large slip in AD 1960 - acts as a dominant regional asperity, on which elastic strain builds up over several centuries and mostly gets released in quasi-periodic great and giant earthquakes. Our paleo-records indicate that Poissonian recurrence models are inadequate to describe large megathrust earthquake recurrence in south-central Chile. Moreover, they show an enhanced probability for a Mw 7.7-8.5 earthquake during the next 110 years whereas the probability for a Mw ≥ 8.6 (AD1960-like) earthquake remains low in this period.

  18. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  19. New allocyclic dimensions in a prograding carbonate bank: Evidence for eustatic, tectonic, and paleoceanographic control (late Neogene, Bahamas)

    USGS Publications Warehouse

    Lidz, B.H.; McNeill, D.F.

    1997-01-01

    The deep-sea record, examined recently for the first time in a shallow-depocenter setting, has unveiled remarkable evidence for new sedimentary components and allocyclic complexity in a large, well-studied carbonate bank, the western Great Bahama Bank. The evidence is a composite foraminiferal signature - Paleocene to early Miocene (allogenic or reworked) and late Miocene to late Pliocene (host) planktic taxa, and redeposited middle Miocene shallow benthic faunas. Ages of the oldest and youngest planktic groups range from ??? 66 to ??? 2 Ma. The reworked and redeposited taxa are a proxy for significant sediment components that otherwise have no lithofacies or seismic resolution. The composite signature, reinforced by a distinctive distribution of the reworked and redeposited faunas, documents a much more complex late Neogene depositional system than previously known. The system is more than progradational. The source sequences that supplied the constituent bank-margin grains formed at different water depths and over hundreds of kilometers and tens of millions of years apart. New evidence from the literature and from data obtained during Ocean Drilling Program (OOP) Leg 166 in the Santaren Channel (Bahamas) support early interpretations based on the composite fossil record and provide valuable new dimensions to regional allocyclicity. The middle Miocene taxa were confined to the lower part of the section by the latest Miocene-earliest Pliocene(?) lowstand of sea level. An orderly occurrence of the allogenic taxa is unique to the global reworked geologic record and appears to have been controlled by a combination of Paleogene-early Neogene tectonics at the source, eustatic changes, and late Neogene current activity at the source and across the bank. The allogenic taxa expand the spatial and temporal range of information in the northern Bahamas by nearly an order of magnitude. In essence, some of the major processes active in the region during ??? 64 m.y. of the Cenozoic can be viewed from within a narrow (??? 6 m.y.) late Neogene window. In this case, the fossil record also serves to demonstrate the potential and significance in evaluating reworked and redeposited assemblages. Copyright ?? 1998, SEPM (Society for Sedimentary Geology).

  20. Late Cretaceous to Paleocene metamorphism and magmatism in the Funeral Mountains metamorphic core complex, Death Valley, California

    USGS Publications Warehouse

    Mattinson, C.G.; Colgan, J.P.; Metcalf, J.R.; Miller, E.L.; Wooden, J.L.

    2007-01-01

    Amphibolite-facies Proterozoic metasedimentary rocks below the low-angle Ceno-zoic Boundary Canyon Detachment record deep crustal processes related to Meso-zoic crustal thickening and subsequent extension. A 91.5 ?? 1.4 Ma Th-Pb SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) monazite age from garnet-kyanite-staurolite schist constrains the age of prograde metamorphism in the lower plate. Between the Boundary Canyon Detachment and the structurally deeper, subparallel Monarch Spring fault, prograde metamorphic fabrics are overprinted by a pervasive greenschist-facies retrogression, high-strain subhorizontal mylonitic foliation, and a prominent WNW-ESE stretching lineation parallel to corrugations on the Boundary Canyon Detachment. Granitic pegmatite dikes are deformed, rotated into parallelism, and boudinaged within the mylonitic foliation. High-U zircons from one muscovite granite dike yield an 85.8 ?? 1.4 Ma age. Below the Monarch Spring fault, retrogression is minor, and amphibolite-facies mineral elongation lineations plunge gently north to northeast. Multiple generations of variably deformed dikes, sills, and leucosomal segregations indicate a more complex history of partial melting and intrusion compared to that above the Monarch Spring fault, but thermobarometry on garnet amphibolites above and below the Monarch Spring fault record similar peak conditions of 620-680 ??C and 7-9 kbar, indicating minor (<3-5 km) structural omission across the Monarch Spring fault. Discordant SHRIMP-RG U-Pb zircon ages and 75-88 Ma Th-Pb monazite ages from leucosomal segregations in paragneisses suggest that partial melting of Proterozoic sedimentary protoliths was a source for the structurally higher 86 Ma pegmatites. Two weakly deformed two-mica leucogranite dikes that cut the high-grademetamorphic fabrics below the Monarch Spring fault yield 62.3 ?? 2.6 and 61.7 ?? 4.7 Ma U-Pb zircon ages, and contain 1.5-1.7 Ga cores. The similarity of metamorphic, leuco-some, and pegmatite ages to the period of Sevier belt thrusting and the period of most voluminous Sierran arc magmatism suggests that both burial by thrusting and regional magmatic heating contributed to metamorphism and subsequent partial melting. ??2007 Geological Society of America. All rights reserved.

  1. Coupled Modeling and Field Approach to Explore Patterns of Barrier Ridge and Swale Development

    NASA Astrophysics Data System (ADS)

    Ciarletta, D. J.; Lorenzo-Trueba, J.; Shawler, J. L.; Hein, C. J.

    2017-12-01

    Previous work has suggested the morphologies of barrier ridge and swale systems potentially reflect the environmental conditions under which they developed, especially in response to sediment budget. We use this inference to examine progradational dune systems on barriers along the USA Mid-Atlantic coast, constructing a simple morphodynamic model to capture the magnitude of changes in key processes affecting the pattern of ridge and swale development. Based on our initial investigation, we demonstrate a range of potential morphological patterns generated by the interaction of longshore transport, accommodation, overwash, aeolian sand flux, and vegetation controls. The patterns are based on three basic cross-sectional morphologies describing the spacing and width of ridges. Regularly spaced ridges of roughly equal width are defined as washboards; wide platform-like ridges or complex multi-ridge dunes are described as tables; and wide swaths of open sand or poorly developed dunes are identified as pans. The inclusion of overwash, in competition with the other processes, further allows the creation of infilled swales, or baffled structures, as well as inter-ridge and backbarrier fans/flats. Model outcomes are validated via comparison to observations from barriers in Virginia, Maryland, and New Jersey. In particular, historical (post-1850) mapping of the evolution of the Fishing Point spit (Assateague Island) reveals the ability of the model to approximate the growth of structures seen in the field. We then apply the model to the development of a prehistoric progradational system on Parramore Island, VA, using field stratigraphic/chronologic data to supply input parameters and begin predictively quantifying past changes in longshore transport and accommodation. Our investigations suggest that modeling patterns of ridge and swale development preserved on modern coasts could result in novel approaches to employ barriers as archives of past environmental/climate forcing.

  2. Beach Ridge Evidence for Regional Tilting and Drainage Reorganization in Central Florida

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; Jaeger, J. M.; Woo, H. B.; Panning, M. P.

    2016-12-01

    Beach ridge sets can be constructed by a variety of processes (e.g. swash-built, eolian dune-built), but in all cases their presence represents a sediment supply rate that outpaces the rate of generation of accommodation space, resulting in progradation of the shoreline. The Merritt Island-Cape Canaveral sedimentary complex (MICCSC) consists of a series of adjacent, yet non-conformable, beach ridge sets that suggest a multi-phase constructional history. Previous U/Th, radiocarbon and OSL dating indicates that deposition of the beach ridge sets began at least 40 ka. We show that the duration of time required to accumulate this sedimentary mass, assuming longshore sediment transport (LST) alone, is within the appropriate time frame supplied by the age dates reported, but there is no clear mechanism that explains why LST would be interrupted to cause sedimentary accumulation at this particular location. An alternate explanation for the presence of the MICCSC is that the sedimentary body represents an abandoned paleodelta, whose source provided a sediment supply sufficient for coastal progradation. Although no such source is active today, the St. Johns River is a low-gradient fluvial system that currently empties to the Atlantic Ocean near Jacksonville, Florida, and has a drainage basin area of nearly 23,000 km2, which could satisfy the sediment supply rate required to build a delta the size of the MICCSC. Among several plausible drainage rearrangement mechanisms, we demonstrate that karst-driven, flexural isostatic uplift originating from carbonate dissolution within the central portion of the Florida peninsula has driven northward down-tilting of the landscape, forcing the St. Johns to seek a new coastal exit point, abandoning the MICCSC.

  3. Revisiting Frazier's subdeltas: enhancing datasets with dimensionality, better to understand geologic systems

    USGS Publications Warehouse

    Flocks, James

    2006-01-01

    Scientific knowledge from the past century is commonly represented by two-dimensional figures and graphs, as presented in manuscripts and maps. Using today's computer technology, this information can be extracted and projected into three- and four-dimensional perspectives. Computer models can be applied to datasets to provide additional insight into complex spatial and temporal systems. This process can be demonstrated by applying digitizing and modeling techniques to valuable information within widely used publications. The seminal paper by D. Frazier, published in 1967, identified 16 separate delta lobes formed by the Mississippi River during the past 6,000 yrs. The paper includes stratigraphic descriptions through geologic cross-sections, and provides distribution and chronologies of the delta lobes. The data from Frazier's publication are extensively referenced in the literature. Additional information can be extracted from the data through computer modeling. Digitizing and geo-rectifying Frazier's geologic cross-sections produce a three-dimensional perspective of the delta lobes. Adding the chronological data included in the report provides the fourth-dimension of the delta cycles, which can be visualized through computer-generated animation. Supplemental information can be added to the model, such as post-abandonment subsidence of the delta-lobe surface. Analyzing the regional, net surface-elevation balance between delta progradations and land subsidence is computationally intensive. By visualizing this process during the past 4,500 yrs through multi-dimensional animation, the importance of sediment compaction in influencing both the shape and direction of subsequent delta progradations becomes apparent. Visualization enhances a classic dataset, and can be further refined using additional data, as well as provide a guide for identifying future areas of study.

  4. Rotation state of 495 Eulalia and its implication

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, D.; Ďurech, J.; Pravec, P.; Oey, J.; Vraštil, J.; Hornoch, K.; Kušnirák, P.; Groom, R.; Warner, B. D.; Bottke, W. F.

    2016-01-01

    Context. The low-albedo part of the Nysa-Polana-Hertha asteroid complex has recently been found to consist of at least two families. The larger of them has been associated with asteroid 495 Eulalia, hereafter named the Eulalia family. The unstable location of this body very close to Jupiter's 3:1 mean motion resonance (J3/1 resonance) at the periphery of the associated family in the space of proper orbital elements makes this case peculiar. Aims: We consider the possibility that 495 Eulalia was originally positioned farther from the J3/1 resonance when the family formed via a catastrophic impact than it is today. It was then transported to its current orbit by the Yarkovsky thermal forces over hundreds of millions of years. This requires that 495 Eulalia had a prograde rotation state. Methods: We use photometric observations and lightcurve inversion methods to determine the rotation pole of 495 Eulalia. Numerical simulation accounting for perturbations from the Yarkovsky effect then reveals the possible pathways of Eulalia orbital evolution. Results: We find that both of the possible pole solutions are prograde, in accordance with our initial hypothesis. In studying the long-term evolution of Eulalia's spin state, we show that the obliquity can oscillate over a large interval of values yet always remain <90°. We estimate that Eulalia could have migrated by as much as ~0.007 au toward the J3/1 resonance within the past 1 Gyr. Our numerical runs show that it could have originated in the orbital zone well aligned with other family members in proper eccentricity, whichafter it gained its current orbit by chaotic evolution along the J3/1 resonance.

  5. Metamorphic reprocessing of a serpentinized carbonate-bearing peridotite after detachment from the mantle wedge: A P-T path constrained from textures and phase diagrams in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Baziotis, I.; Proyer, A.

    2010-08-01

    In the central Rhodope mountains of Greece a carbonate-bearing metaperidotite lens ˜ 200 × 500 m in size crops out as part of the high- to ultrahigh-pressure metamorphic Upper Sidironero Complex ˜ 500 m SE of the Gorgona Village, north of Xanthi town. It is composed primarily of coarse grained (3-20 mm in size) olivine and orthopyroxene, medium grained clinohumite and medium to fine grained tremolite, chlorite, dolomite, magnesite, talc, antigorite and various spinel phases. Whole-rock chemistry, mineral textures and compositions, and phase diagram calculations show that the metaperidotite was subjected to a prograde HP metamorphism, isofacial with the surrounding migmatitic gneisses, metapelites and amphibolites. The prograde character of metamorphism is demonstrated by inclusions of talc, antigorite, chlorite, dolomite, magnesite and Ti-clinohumite in ferrit-chromite, olivine, and orthopyroxene, as well as of olivine in orthopyroxene, and by the typical change in composition of zoned spinel minerals from ferrit-chromite in the core to chromian spinel at the rim. The prograde path is characterized by successive growth of amphibole, Ti-clinohumite, olivine and orthopyroxene, followed by the breakdown of Ti-clinohumite to olivine + Mg-ilmenite and of chlorite to olivine + spinel, probably during exhumation. The construction of a partial petrogenetic P- T grid in the system CaO-MgO-Al 2O 3-SiO 2-CO 2-H 2O (CMASCH) for Ca-poor ultramafic bulk compositions has proven highly useful for the reconstruction of the metamorphic evolution and a P- T path, indicating that the use of univariant reactions in mixed volatile systems is highly warranted. The P- T path is clearly constrained to pressures below 1.5-1.7 GPa by the absence of clinopyroxene. These pressures are slightly lower than those recorded in the closely associated Jurassic eclogites and much lower than those recorded in the diamond-bearing gneisses 5 km to the south in the same tectonic unit. The carbonate-bearing metaperidotite from Gorgona probably represents a fragment of the hydrated mantle wedge. This is indicated by the REE compositions which differ from those of ophiolitic peridotites and resemble those of spinel or garnet peridotites of sub-continental origin. The ultramafic slice was incorporated tectonically into the subduction channel, most likely by tectonic erosion in the Early Jurassic, but did not experience ultrahigh-pressure metamorphism like the nearby metapelites that exhumed along the same subduction channel.

  6. Depositional environments of some Pleistocene coastal terrace deposits, southwestern Oregon - case history of progradational beach and dune sequence.

    USGS Publications Warehouse

    Hunter, R.E.

    1980-01-01

    These deposits comprise a basal gravelly unit and 3 overlying sandy units, each with mud beds, a paleosol, or the modern soil in its uppermost part. The gravelly unit is interpreted as a progradational deposit. The main parts of the sandy units are made up of 1) a crossbedded sand facies, the dominant structure in which is medium-scale crossbedding (interpreted as the product of small eolian dunes), and 2) an irregularly bedded sand facies, which is locally pebbly and is dominated by scour-and-fill structures, interpreted as deposits of interdune ephemeral streams, ephemeral ponds, and wet to dry subaerial flats. The mud beds and paleosols represent times of temporary stabilization of the dune field.- from Author

  7. A Quick Test on Rotation Period Clustering for the Small Members of the Koronis Family

    NASA Astrophysics Data System (ADS)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen

    2016-01-01

    Rotation period clustering in prograde/retrograde rotators might be the preliminary indication of the Slivan state in the Koronis family as a result of the Yarkovsky-O’Keefe-Radzievskii-Paddack effect. We follow the general scenario of dispersion in the semimajor axis of the asteroid family members to separate prograde and retrograde rotators in the Koronis family. From the available rotation periods obtained from PTF/iPTF, we were unable to find the rotation period clustering of objects with H ≳ 12 mag in the Koronis family. This could be the result of the intermittent collisional process of small asteroids (D ≲ 20 km) which leads to astray Yarkovsky drifting. Measurement of the pole orientations of our sample will verify our preliminary result and validate our method.

  8. Tectonic control on coarse-grained foreland-basin sequences: An example from the Cordilleran foreland basin, Utah

    NASA Astrophysics Data System (ADS)

    Horton, Brian K.; Constenius, Kurt N.; Decelles, Peter G.

    2004-07-01

    Newly released reflection seismic and borehole data, combined with sedimentological, provenance, and biostratigraphic data from Upper Cretaceous Paleocene strata in the proximal part of the Cordilleran foreland-basin system in Utah, establish the nature of tectonic controls on stratigraphic sequences in the proximal to distal foreland basin. During Campanian time, coarse-grained sand and gravel were derived from the internally shortening Charleston-Nebo salient of the Sevier thrust belt. A rapid, regional Campanian progradational event in the distal foreland basin (>200 km from the thrust belt in <8 m.y.) can be tied directly to active thrust-generated growth structures and an influx of quartzose detritus derived from the Charleston-Nebo salient. Eustatic sea-level variation exerted a minimal role in sequence progradation.

  9. The Offlap Break Position Vs Sea Level: A Discussion

    NASA Astrophysics Data System (ADS)

    Tropeano, M.; Pieri, P.; Pomar, L.; Sabato, L.

    Sedimentary lithosomes with subhorizontal topsets, basinward prograding foresets and subhorizontal bottomsets are common in the geologic record, and most of them display similar bedding architectures and/or seismic reflection patterns (i.e. Gylbert- type deltas and shelf wedges). Nevertheless, in shallow marine settings these bodies may form in distinct sedimentary environments and they result from different sed- imentary processes. The offlap break (topset edge) occurs in relation to the posi- tion of baselevel and two main groups of lithosomes can be differentiated with re- spect to the position of the offlap break within the shelf profile. The baselevel of the first group is the sea level (or lake level); the topsets are mainly composed by continental- or very-shallow-water sedimentary facies and the offlap break practi- cally corresponds to the shoreline. Exemples of these lithosomes are high-constructive deltas (river-dominated deltas) and prograding beaches. For the second group, base- level corresponds to the base of wave/tide traction, and their topsets are mostly composed by shoreface/nearshore deposits. Examples of these lithosomes are high- destructive deltas (wave/tide-dominated deltas) and infralittoral prograding wedges (i.e Hernandez-Molina et al., 2000). The offlap break corresponds to the shelf edge (shoreface edge), which is located at the transition between nearshore and offshore set- tings, where a terrace prodelta- or transition-slope may develop (Pomar &Tropeano, 2001). Two main problems derive from these alternative interpretations of shallow- marine seaward prograding lithosomes: 1) both in ancient sedimentary shallow-marine successios (showing seaward prograding foresets) and in high resolution seismic pro- files (showing shelf wedges), the offlap break is commonly considered to correspond to the sea-level (shoreline) and used to inferr paleo sea-level positions and to construct sea-level curves. Without a good facies control, this use of the offlap break might cause a misinterpretation of the ancient sea-level positions and the inferred relative sea-level changes. 2) both baselevels, the sea level and the wave/tide base, govern sedimentary accumulation in wave/tide dominated shelves and, consequently, two offlap breaks may coexist (beach edge and shoreface edge) in shallow-marine depositional profiles (Carter et al., 1991). In this setting, two seaward-clinobedded lithosomes, separated by an unconformity, may develop during relative still-stand or falls of the sea-level (Hill et al., 1998). In this case, the two stacked lithosomes could be misinterpreted as two different systems tracts, or sequences, and it could led to the construction of an 1 uncorrect curve of sea-level changes. Carter R.M., Abbott S.T., Fulthorpe C.S., Haywick D.W. and Henderson R.A. (1991): Application of global sea-level and sequence-stratigraphic models in Southern Hemi- sphere Neogene strata from New Zealand. Sp. Publ. IAS, 12, 41-65. Hernández- Molina F.J., Fernández-Salas L.M., Lobo F., Somoza L., Diaz-del-Rio V. and Alver- inho Dias J.M. (2000): The infralittoral prograding wedge: a new large-scale prograda- tional sedimentary body in shallow marine environments. Geo-Marine Letters, 20, 109-117. Hill P.R., Longuépée H. and Roberge M. (1998). Live from Canada: forced regression in action; deltaic shoreface sandbodies being formed. Abstracts, 15th Int. Cong. IAS, Alicante (Spain), 427-428. Pomar L. and Tropeano M. (2001). The Cal- carenite di Gravina Formation in Matera (southern Italy): new insights for coarse- grained, large-scale, cross-bedded bodies encased in offshore deposits. AAPG Bull., 85, 661-689. 2

  10. Ins and outs of a complex subduction zone: C cycling along the Sunda margin, Indonesia

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.

    2016-12-01

    Subduction of C in marine sediments and altered oceanic crust is the main mechanism for reintroducing C into the deep earth and removing it from communication with the ocean and atmosphere. However, detailed studies of individual margins - which are necessary to understanding global C cycling - are sparse. The thick, C-rich sediment column along the Sunda margin, Indonesia makes understanding this margin crucial for constructing global C cycling budgets. Furthermore it is an ideal location to compare cycling of organic and carbonate C due to the abrupt transition from carbonate-dominated sediments in the SE to sediments rich in organic C from the Nicobar Fan in the NW. To quantify and characterize C available for subduction, we analyzed samples from DSDP 211, 260, 261, and ODP 765, all outboard of the trench, as well as piston and gravity cores of locally-sourced terrigenous trench fill. We created a 3-D model of overall sediment thickness and the thicknesses of geochemically distinct sedimentary units using archived and published seismic profiles to infer unit thicknesses at and along the 2500 km trench. This model vastly improves estimates of the C available for subduction and also reveals that the Christmas Island Seamount Province serves as a barrier to turbidite flow, dividing the regions of the trench dominated by organic and inorganic C input. Incorporating best estimates for the depth of the decollement indicates that the terrigenous trench fill, with up to 1.5 wt % organic C, is entirely accreted as is the thick section of carbonate-rich turbidites that dominate the southeastern portion of the margin (DSDP 261/ODP 765). Organic C accounts for most of the C bypassing the accretionary complex NW of the Christmas Island Seamount Province, and C inputs to the trench are lower there than to the SE where carbonate units near the base of the sediment column are the dominant C source. Release of C from altered oceanic crust - a C reservoir up to 10 times greater than sediments - can resolve the apparent conflict between the carbonate signal in volcanic emissions and scarcity of carbonate in subducting sediments along the NW of the arc. This study lays the foundation for refined methods of comparing subduction inputs and arc outputs of C at convergent margins.

  11. Energy transfer in the Congo deep-sea fan: From terrestrially-derived organic matter to chemosynthetic food webs

    NASA Astrophysics Data System (ADS)

    Pruski, A. M.; Decker, C.; Stetten, E.; Vétion, G.; Martinez, P.; Charlier, K.; Senyarich, C.; Olu, K.

    2017-08-01

    Large amounts of recent terrestrial organic matter (OM) from the African continent are delivered to the abyssal plain by turbidity currents and accumulate in the Congo deep-sea fan. In the recent lobe complex, large clusters of vesicomyid bivalves are found all along the active channel in areas of reduced sediment. These soft-sediment communities resemble those fuelled by chemoautotrophy in cold-seep settings. The aim of this study was to elucidate feeding strategies in these macrofaunal assemblages as part of a greater effort to understand the link between the inputs of terrestrially-derived OM and the chemosynthetic habitats. The biochemical composition of the sedimentary OM was first analysed in order to evaluate how nutritious the available particulate OM is for the benthic macrofauna. The terrestrial OM is already degraded when it reaches the final depositional area. However, high biopolymeric carbon contents (proteins, carbohydrates and lipids) are found in the channel of the recent lobe complex. In addition, about one to two thirds of the nitrogen can be assigned to peptide-like material. Even if this soil-derived OM is poorly digestible, turbiditic deposits contain such high amounts of organic carbon that there is enough biopolymeric carbon and proteacinous nitrogen to support dense benthic communities that contrast with the usual depauperate abyssal plains. Stable carbon and nitrogen isotopes and fatty acid biomarkers were then used to shed light on the feeding strategies allowing the energy transfer from the terrestrial OM brought by the turbidity currents to the abyssal food web. In the non-reduced sediment, surface detritivorous holothurians and suspension-feeding poriferans rely on detritic OM, thereby depending directly on the turbiditic deposits. The sulphur-oxidising symbiont bearing vesicomyids closely depend on the reprocessing of OM with methane and sulphide as final products. Their carbon and nitrogen isotopic signatures vary greatly among sites and could reflect the intensity of the anaerobic oxidation of methane (AOM) in the sediments. Within the vesicomyid habitats, the heterotrophic fauna exhibits a distinctively light carbon isotopic signature in comparison to the background sediments, clearly indicating the utilisation of chemosynthetically-derived OM. Fatty acid biomarkers further confirm that dorvilleid polychaetes consume aggregates that perform AOM. Terrestrial OM reprocessing by microbial consortium thus ensures its transfer to the benthic food web in the Congo deep-sea fan.

  12. The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon:Evidence for small caldera evolution

    USGS Publications Warehouse

    Nelson, C. Hans; Bacon, Charles R.; Robinson, Stephen W.; Adam, David P.; Bradbury, J. Platt; Barber, John H.; Schwartz, Deborah; Vagenas, Ginger

    1994-01-01

    Apparent phreatic explosion craters, caldera-floor volcanic cones, and geothermal features outline a ring fracture zone along which Mount Mazama collapsed to form the Crater Lake caldera during its climactic eruption about 6,850 yr B.P. Within a few years, subaerial deposits infilled the phreatic craters and then formed a thick wedge (10-20 m) of mass flow deposits shed from caldera walls. Intense volcanic activity (phreatic explosions, subaerial flows, and hydrothermal venting) occurred during this early postcaldera stage, and a central platform of subaerial andesite flows and scoria formed on the caldera floor.Radiocarbon ages suggest that deposition of Iacustrine hemipelagic sediment began on the central platform about 150 yr after the caldera collapse. This is the minimum time to fill the lake halfway with water and cover the platform assuming present hydrologic conditions of precipitation and evaporation but with negligible leakage of lake water. Wizard Island formed during the final part of the 300-yr lake-filling period as shown by its (1) upper subaerial lava flows from 0 to -70 m below present water level and lower subaqueous lava flows from -70 to -500 m and by (2) lacustrine turbidite sand derived from Wizard Island that was deposited on the central platform about 350 yr after the caldera collapse. Pollen stratigraphy indicates that the warm and dry climate of middle Holocene time correlates with the early lake deposits. Diatom stratigraphy also suggests a more thermally stratified and phosphate-rich environment associated respectively with this climate and greater hydrothermal activity during the early lake history.Apparent coarse-grained and thick-bedded turbidites of the early lake beds were deposited throughout northwest, southwest, and eastern basins during the time that volcanic and seismic activity formed the subaqueous Wizard Island, Merriam Cone, and rhyodacite dome. The last known postcaldera volcanic activity produced a subaqueous rhyodacite ash bed and dome about 4,240 yr B.P. The late lake beds with base-of-slope aprons and thin, fine-grained basin-plain turbidites were deposited during the volcanically quiescent period of the past 4,000 yr.Deposits in Crater Lake and on similar caldera floors suggest that four stages characterize the postcaldera evolution of smaller (≤10 km in diameter) terrestrial caldera lake floors: (1) initial-stage caldera collapse forms the ring fracture zone that controls location of the main volcanic eruptive centers and sedimentary basin depocenters on the caldera floor; (2) early-stage subaerial sedimentation rapidly fills ring-fracture depressions and constructs basin-floor debris fans from calderawall landslides; (3) first-stage subaqueous sedimentation deposits thick flat-lying lake turbidites throughout basins, while a thin blanket of hemipelagic sediment covers volcanic edifices that continue to form concurrently with lake sedimentation; and (4) second-stage subaqueous sedimentation after the waning of major volcanic activity and the earlier periods of most rapid sedimentation develops small sili-ciclastic basin base-of-slope turbidite aprons and central basin plains. Renewed volcanic activity or lake destruction could cause part or all of the cycle to repeat.

  13. What are the implications of rapid global warming for landslide-triggered turbidity current activity?

    NASA Astrophysics Data System (ADS)

    Clare, Michael; Peter, Talling; James, Hunt

    2014-05-01

    A geologically short-lived (~170kyr) episode of global warming occurred at ~55Ma, termed the Initial Eocene Thermal Maximum (IETM). Global temperatures rose by up to 8oC over only ~10kyr and a massive perturbation of the global carbon cycle occurred; creating a negative carbon isotopic (~-4% δ13C) excursion in sedimentary records. This interval has relevance to study of future climate change and its influence on geohazards including submarine landslides and turbidity currents. We analyse the recurrence frequency of turbidity currents, potentially initiated from large-volume slope failures. The study focuses on two sedimentary intervals that straddle the IETM and we discuss implications for turbidity current triggering. We present the results of statistical analyses (regression, generalised linear model, and proportional hazards model) for extensive turbidite records from an outcrop at Zumaia in NE Spain (N=285; 54.0 to 56.5 Ma) and based on ODP site 1068 on the Iberian Margin (N=1571; 48.2 to 67.6 Ma). The sedimentary sequences provide clear differentiation between hemipelagic and turbiditic mud with only negligible evidence of erosion. We infer dates for turbidites by converting hemipelagic bed thicknesses to time using interval-averaged accumulation rates. Multi-proxy dating techniques provide good age constraint. The background trend for the Zumaia record shows a near-exponential distribution of turbidite recurrence intervals, while the Iberian Margin shows a log-normal response. This is interpreted to be related to regional time-independence (exponential) and the effects of additive processes (log-normal). We discuss how a log-normal response may actually be generated over geological timescales from multiple shorter periods of random turbidite recurrence. The IETM interval shows a dramatic departure from both these background trends, however. This is marked by prolonged hiatuses (0.1 and 0.6 Myr duration) in turbidity current activity in contrast to the arithmetic mean recurrence, λ, for the full records (λ=0.007 and 0.0125 Myr). This period of inactivity is coincident with a dramatic carbon isotopic excursion (i.e. warmest part of the IETM) and heavily skews statistical analyses for both records. Dramatic global warming appears to exert a strong control on inhibiting turbidity current activity; whereas the effects of sea level change are not shown to be statistically significant. Rapid global warming is often implicated as a potential landslide trigger, due to dissociation of gas hydrates in response to elevated ocean temperatures. Other studies have suggested that intense global warming may actually be attributed to the atmospheric release of gas hydrates following catastrophic failure of large parts of a continental slope. Either way, a greater intensity of landslide and resultant turbidity current activity would be expected during the IETM; however, our findings are to the contrary. We offer some explanations in relation to potential triggers. Our work suggests that previous rapid global warming at the IETM did not trigger more frequent turbidity currents. This has direct relevance to future assessments relating to landslide-triggered tsunami hazard, and breakage of subsea cables by turbidity currents.

  14. EVALUATING TREATMENT PLANTS FOR PARTICULATE CONTAMINANT REMOVAL

    EPA Science Inventory

    The article is intended to serve as a guide for those who evaluate water treatment plants with the objective of lowering the turbidity of finished water produced from filtration plants in which chemical coagulation is part of the treatment process. Ineffective removal of turbidit...

  15. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the progressive change in location of depocenters and amount of sediment supply, but Pleistocene climatic change and deforestation alone can be observed to double river sediment discharge. The latter observation helps explain the anomalously high deposition rates in Pleistocene turbidite systems compared with older systems that may be controlled more by tectonic and sea-level changes alone. During the past 2000 years, in contrast, man has controlled deposition in the Ebro margin system, first by deforestation that more than doubled river sediment discharge and shelf deposition rates to equal those of Pleistocene time; and second by dam contruction that reduced sediment discharge to less than 5% of the normal Holocene discharge. Similar recent discharge reductions from the Nile and Rhone Rivers suggest that loss of the majority of the river sediment supply in the Mediterranean Sea may result in significant erosion of biologically and agriculturally important lobate delta areas. ?? 1990.

  16. Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), northern Apennines, Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, E.F.; Picard, M.D.

    Trichichnus, a thread-like burrow possibly the work of sipunculan worms, is widespread in Bouma E (turbidite claystone) and H (hemipelagic claystone) layers and some thin turbidite sandstone beds in basin-plain and outer fan-lobe deposits of the Marnoso-arenacea Formation. Trichichnus closely resembles that described elsewhere in chalk and marlstone, although the burrows are smaller (mean diameter=0.13 mm) and burrow curvature is tighter. Trichichnus fills are darker than the host claystone because of high organic content and disseminated pyrite. Any distinctive internal structure of the burrow wall or fill was destroyed by pyrite growth. Trichichnus is most abundant in Bouma E layers,more » where burrow spacing ranges from 0.4 to 50 cm and burrows extend to depths of 160 cm. The Trichichnus maker commonly burrowed vertically down through E and D layers (clay and silt) and then horizontally on top of C layers (sand). The burrows also vertically penetrate Bouma C sandstone layers up to 6 cm thick, but they are rare in beds thicker than 3 cm. They are less abundant or not well displayed in H layers where Chondrites predominates. Trichichnus overprints Chondrites. Following deposition of the Contessa megaturbidite, which exceeds 9 m in thickness, the sediment surface was repopulated chiefly by Trichichnus and Chondrites producers. Trichichnus extends 160 cm below the top of the Contessa, whereas Chondrites extend only to 64 cm. This suggests a greater tolerance of Trichichnus makers to low in situ oxygen levels. The near absence of laminations in the E division of the Contessa megabed may be the result of Trichichnus burrows that were not pyritized and which lack textural identity.« less

  17. True Volumes of Slope Failure Estimated From a Quaternary Mass-Transport Deposit in the Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Qiliang; Alves, Tiago M.; Lu, Xiangyang; Chen, Chuanxu; Xie, Xinong

    2018-03-01

    Submarine slope failure can mobilize large amounts of seafloor sediment, as shown in varied offshore locations around the world. Submarine landslide volumes are usually estimated by mapping their tops and bases on seismic data. However, two essential components of the total volume of failed sediments are overlooked in most estimates: (a) the volume of subseismic turbidites generated during slope failure and (b) the volume of shear compaction occurring during the emplacement of failed sediment. In this study, the true volume of a large submarine landslide in the northern South China Sea is estimated using seismic, multibeam bathymetry and Ocean Drilling Program/Integrated Ocean Drilling Program well data. The submarine landslide was evacuated on the continental slope and deposited in an ocean basin connected to the slope through a narrow moat. This particular character of the sea floor provides an opportunity to estimate the amount of strata remobilized by slope instability. The imaged volume of the studied landslide is 1035 ± 64 km3, 406 ± 28 km3 on the slope and 629 ± 36 km3 in the ocean basin. The volume of subseismic turbidites is 86 km3 (median value), and the volume of shear compaction is 100 km3, which are 8.6% and 9.7% of the landslide volume imaged on seismic data, respectively. This study highlights that the original volume of the failed sediments is significantly larger than that estimated using seismic and bathymetric data. Volume loss related to the generation of landslide-related turbidites and shear compaction must be considered when estimating the total volume of failed strata in the submarine realm.

  18. The cosmic native iron in Upper Jurassic to Miocene deep-sea deposits of the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Murdmaa, Ivar; Pechersky, Diamar; Nurgaliev, Danis; Gilmanova, Di; Sloistov, Sergey

    2014-05-01

    Thermomagnetic analysis of 335 rock samples from DSDP sites 386, 387 (Leg 43) and 391 A, C (Leg 44) drilled in the western North Atlantic revealed distribution patterns of native Fe particles in Upper Jurassic to Miocene deep-sea deposits. Native iron occurs in deep-sea rocks as individual particles from tens of nm to 100 µm in size. The native Fe is identified throughout the sections recovered. Its concentration ranges from nx10-6% to 5x10-3%, but zero values persist to occur in each lithostratigraphic unit studied. The bimodal distribution of the native iron concentration with a zero mode is typical for the cosmic dust in sedimentary rocks, because of its slow flux to the Earth surface, as compared to sedimentation fluxes. Ni admixture in native Fe also demonstrates bimodal distribution with the zero mode (pure Fe) and a mode 5 - 6% that corresponds to average Ni content in the cosmic dust and meteorites. Concentration of native Fe does not depend on rock types and geological age. Relatively high mean native Fe concentrations (less zero values) occur in Lower Cretaceous laminated limestones (sites 387, 391) interpreted as contourites and in Oligocene volcaniclastic turbidites of the Bermuda Rise foot (Site 386), whereas minimum values are measured in Miocene mass flow deposits (Site 391). We suggest that concentration of native Fe increases in deposits of pulsating sedimentation (turbidites, laminated contourites) due to numerous short hiatuses and slow sedimentation events in between instantaneous turbidite or contourite deposition pulses. Extreme values possibly indicate cosmic dust flux anomalies. The study was partially supported by RFBR, research project No. 14-05-00744a.

  19. The geology of the Penal/Barrackpore field, onshore Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, B.L.

    1991-03-01

    The Penal/Barrackpore field was discovered in 1938 and is located in the southern subbasin of onshore Trinidad. It is one of a series of northeast-southwest trending en echelon middle Miocene anticlinal structures that was later accentuated by late Pliocene transpressional folding. The middle Miocene Herrera and Karamat turbiditic sandstones are the primary reservoir rock in the subsurface anticline of the Penal/Barrackpore field. These turbidites were sourced from the north and deposited within the marls and clays of the Cipero Formation. The Karamat sandstones are followed in vertical stratigraphic succession by the shales and boulder beds of the Lengua formation, themore » turbidites and deltaics of the lower and middle Cruse, and the deltaics of the upper Cruse, the Forest, and the Morne L'Enfer formations. Relative movement of the South American and Caribbean plates climaxed in the middle Miocene compressive tectonic event and produced an imbricate pattern of southward-facing basement-involved thrusts. The Pliocene deltaics were sourced by erosion of Miocene highs to the north and the South American landmass to the south. These deltaics exhibit onlap onto the preexisting Miocene highs. The late Pliocene transpression also coincides with the onset of oil migration along faults, diapirs, and unconformities from the Cretaceous Naparima Hill source. The Lengua Formation and the upper Forest clays are considered effect seals. Hydrocarbon trapping is structurally and stratigraphically controlled, with structure being the dominant trapping mechanism. Ultimate recoverable reserves for the Penal/Barrackpore field are estimated at 127.9 MMBO and 628.8 bcf. The field is presently owned and operated by the Trinidad and Tobago Oil Company Limited (TRINTOC).« less

  20. Oroclines and paleomagnetism in Borneo and South-East Asia

    NASA Astrophysics Data System (ADS)

    Hutchison, Charles S.

    2010-12-01

    Oroclinal bending of Borneo is interpreted to result from indentation and collision by the continental promontory of the Miri Zone-Central Luconia Province of northern Sundaland into southern Sundaland. The collision caused strong compression and uplift of the intervening Sibu Zone Upper Cretaceous-Eocene Rajang-Embaluh Group turbidite basin that was floored by oceanic crust of the Proto South China Sea. Timing of the collision is indicated by uplift of turbidite formations to be overlain by Upper Eocene-Lower Oligocene carbonates and intrusion of tin-mineralised granites into the turbidites at the south-east maximum inflexion of the orocline, a region complicated by juxtaposition of both shallow and deep water formations. The oroclinal model, requiring clockwise rotation of the north-west limb, is given no support from the paleomagnetic data that instead demonstrate about 50° of Cenozoic anti-clockwise rotation. Unfortunately not a single outcrop of the strongly oroclinally bent Sibu Zone rocks was measured for paleomagnetism in the north-west limb. Limited support was given for the required anti-clockwise rotation in the north-east limb. Previous syntheses emphasised anti-clockwise rotation, or stable non-rotation of the greater Borneo region as a coherent entity, without any internal deformation. Such models have ignored the oroclinal shape defined by the areal geology of the island, known since early Dutch publications. The northern Thailand-Myanmar north-south-trending geology fabric results from indentation by a promontory of continental India at the Assam-Yunnan oroclinal syntaxis, resulting in paleomagnetically-determined clockwise rotation. The bend of Peninsular Malaysia and Sumatra, from north-south changing to west-east towards Borneo in the south, remains difficult to model because of widespread remagnetisation.

  1. Facies remolding in allochthonous chalk packages, Ekofisk and Albuskjell fields, North Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, S.J.; Ekdale, A.A.

    1990-05-01

    The Ekofish and Albuskjell fields in the Central Graben of the North Sea produce hydrocarbons from resedimented chalk reservoirs. Although the allochthonous nature of chalk in these fields has been recognized, the correlations of, and association between, allochthonous units has not been described. Core analysis of the Tor Formation (Maastrichtian) and the Ekofish Formation (Danian) reveals that slump deposits have been remolded into debris flows, ooze flows, and turbidites. Packages of allochthonous sediment were deposited in slope and base-of-slope environments. Two kinds of allochthonous packages occur. One package, 1-3-m thick, consists of a basal debris flow overlain by an oozemore » flow. The other package, 10-20-m thick, contains three units: a basal debris flow, an intermediate slump, and an overlying turbidite. Deposition of each type of package probably resulted from a single triggering event. Lateral changes in facies (increased convolution and decreased clastic content) and in type of deposit (slump or debris flow to ooze flow) within the packages resulted from differing degrees of deformation as the packages moved downslope. An increase in occurrence and angularity of chalk intraclasts, and in thickness of slump units from the Albuskjell field eastward to the Ekofisk field, suggest that the graben-bounding Hidra fault zone (about 30 km away) is the source of the allochthonous deposits. Vertical changes in the type of allochthonous package (from debris and ooze flows upward to slumps and turbidites) reflect decreasing topographic relief along the fault escarpment as the graben filled. This model of vertical (basin shallowing) and lateral (downslope) facies changes allows correlation of allochthonous chalk units, which are excellent hydrocarbon reservoirs.« less

  2. Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system

    NASA Astrophysics Data System (ADS)

    Picard, Michel; Schneider, Jean-Luc; Boudon, Georges

    2006-12-01

    Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.

  3. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, J.M.

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea levelmore » fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.« less

  4. Apparent overconsolidation of mudstones in the Kumano Basin of southwest Japan: Implications for fluid pressure and fluid flow within a forearc setting

    NASA Astrophysics Data System (ADS)

    Guo, Junhua; Underwood, Michael B.; Likos, William J.; Saffer, Demian M.

    2013-04-01

    The Kumano Basin is located in the Nankai Trough subduction zone of southwest Japan. During the past 1.6 million years, approximately 800 meters of sandy turbidites and hemipelagic mud were deposited near the distal edge of the forearc basin, at Site C0002 of the Integrated Ocean Drilling Program. Constant-rate-of-strain consolidation tests yield estimates of in situ permeability that range from 2.6 × 10-17 m2 to 2.5 × 10-18 m2; overconsolidation ratios range from 1.7 to 2.6, and values of the compression index range from 0.39 to 0.78. Several processes contributed to the apparent overconsolidation. Strata dip toward land, and pore fluids probably migrate up-dip and vent along a bathymetric notch near the seaward edge of the basin. Efficient lateral drainage through sandy turbidites has kept pore pressures within interbeds of mudstone at (or close to) hydrostatic. In addition, alteration of dispersed volcanic glass, precipitation of authigenic clay minerals, and collapse of random grain fabric has probably strengthened the bonding among grains. Cementation is particularly likely within the lower basin (unit III), where values of porosity remain anomalously high. If fluid overpressures (and underconsolidation) exist anywhere within the basin, the most likely loci are where sandy turbidites terminate against impermeable mudstones along landward-dipping on-lap surfaces. Those types of on-lap geometries, in addition to structural closures, might provide promising targets for oil/gas accumulation in other forearc basins, particularly where petroleum source rocks have been buried to the optimal depths of catagenesis.

  5. Geochemical evidence of past earthquakes in sediments of the Reloncaví fjord (Chilean Patagonia) during the last ˜ 1000 years

    NASA Astrophysics Data System (ADS)

    Rebolledo, Lorena; Lange, Carina; Muñoz, Práxedes; Salamanca, Marco

    2014-05-01

    The Chilean fjords are excellent archives of paleoearthquakes, tsunamis and landslides (St-Onge et al., 2012 in Sedimentary Geology 243-244: 89-107). Here we report on new sedimentological and geochemical evidence of past earthquakes in sediments of the Reloncavi fjord, Northern Patagonia (41° S, 72° W), during the last ~1000 years. We recovered four sediment cores from the Reloncaví fjord (RH-5B, RH-5C, RH-6B, RH7B, water depth range = 90-260 m; core length range = 45-75 cm). Age models were based on 210Pb, AMS-14C and the first appearance of the diatom Rhizosolenia setigera cf. pungens in the fossil record as statigraphic marker. The cores span the last ~122 to 800 years of sedimentation with sedimentation rates ranging between 0.1 and 0.24 cm yr-1. The cores revealed evidence of turbidites associated with the historical earthquakes of 1960, 1837, 1737 and 1575 AD, and an earlier period for which there is no historical information, 1200-1400 AD. The turbidites exhibit a grading-up pattern with sand layers, and are characterized by a decrease in organic carbon and biogenic opal, an increase in the C/N molar ratio, negative values of δ13Corg(average -27),and an increase in the relative abundance of Paralia sulcata, a diatom associated with sandy environments, being the turbite layers mainly freshwater in origen. We suggest that these turbidite layers were triggered by past earthquakes that produced movement of land from the cliff areas that surround the Reloncaví fjord. Funding: Project FONDECYT # 11110103 and COPAS Sur-Austral project PFB-31.

  6. Lake deposits record evidence of large post-1505 AD earthquakes in western Nepal

    NASA Astrophysics Data System (ADS)

    Ghazoui, Z.; Bertrand, S.; Vanneste, K.; Yokoyama, Y.; Van Der Beek, P.; Nomade, J.; Gajurel, A.

    2016-12-01

    According to historical records, the last large earthquake that ruptured the Main Frontal Thrust (MFT) in western Nepal occurred in 1505 AD. Since then, no evidence of other large earthquakes has been found in historical records or geological archives. In view of the catastrophic consequences to millions of inhabitants of Nepal and northern India, intense efforts currently focus on improving our understanding of past earthquake activity and complement the historical data on Himalayan earthquakes. Here we report a new record, based on earthquake-triggered turbidites in lakes. We use lake sediment records from Lake Rara, western Nepal, to reconstruct the occurrence of seismic events. The sediment cores were studied using a multi-proxy approach combining radiocarbon and 210Pb chronologies, physical properties (X-ray computerized axial tomography scan, Geotek multi-sensor core logger), high-resolution grain size, inorganic geochemistry (major elements by ITRAX XRF core scanning) and bulk organic geochemistry (C, N concentrations and stable isotopes). We identified several sequences of dense and layered fine sand mainly composed of mica, which we interpret as earthquake-triggered turbidites. Our results suggest the presence of a synchronous event between the two lake sites correlated with the well-known 1505 AD earthquake. In addition, our sediment records reveal five earthquake-triggered turbidites younger than the 1505 AD event. By comparison with historical archives, we relate one of those to the 1833 AD MFT rupture. The others may reflect successive ruptures of the Western Nepal Fault System. Our study sheds light on events that have not been recorded in historical chronicles. Those five MMI>7 earthquakes permit addressing the problem of missing slip on the MFT in western Nepal and reevaluating the risk of a large earthquake affecting western Nepal and North India.

  7. Sediment composition and texture of Pleistocene deep-sea turbidites in the eastern Nankai Trough gas hydrate field

    NASA Astrophysics Data System (ADS)

    Egawa, K.; Nishimura, O.; Izumi, S.; Ito, T.; Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    In the 2012 JOGMEC/JAPEX pressure coring operation, we collected a totally 60-m-long core sample from the interval of gas hydrate concentration zone at the planned site of the world's first offshore production test of natural gas hydrates in the eastern Nankai Trough area. In this contribution, the cored sediments were sedimentologically, mineralogically, and paleontologically analyzed to know sediment composition and texture of reservoir formation, which are known to provide useful geological information to discuss sedimentation, diagenesis, and permeability. The targeted interval belongs to a Middle Pleistocene deep-sea turbidite sequence distributed around the Daini Atsumi Knoll, east of the Kumano forearc basin, and consists of the lower (thick sand-dominant), middle (thin-bedded sand-and-mud alteration), and upper (mud-dominant) formations in ascending order. X-ray powder diffraction analysis and scanning electron microscopic observation revealed that pore space in turbidite sands is commonly filled with clay fractions (mostly phyllosilicates) in the lower formation. Such a pore filling of clay fractions is reflected in particle size distribution showing high standard deviation and clay content, and thus is expected to have an impact on permeability. There is the older Pliocene to Early Pleistocene fossil coccolith record in the middle formation, indicating sediment reworking probably induced by submarine landslide. The coexistence of authigenic siderite and framboidal pyrite in the middle formation strongly suggests anoxic microbial activity under methane oxidation and sulfide reduction conditions at least before the hydrate cementation. This contribution was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).

  8. Autoregressive harmonic analysis of the earth's polar motion using homogeneous International Latitude Service data

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1983-01-01

    The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.

  9. Autoregressive harmonic analysis of the earth's polar motion using homogeneous International Latitude Service data

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    1983-12-01

    The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.

  10. Formation of an Archean tectonic mélange in the Schreiber-Hemlo greenstone belt, Superior Province, Canada: Implications for Archean subduction-accretion process

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Kerrich, Robert

    1999-10-01

    The late Archean (circa 2750-2670 Ma) Schreiber-Hemlo greenstone belt, Superior Province, Canada, is composed of tectonically juxtaposed fragments of oceanic plateaus (circa 2750-2700 Ma), oceanic island arcs (circa 2720-2695 Ma), and siliciclastic trench turbidites (circa 2705-2697 Ma). Following juxtaposition, these lithotectonic assemblages were collectively intruded by synkinematic tonalite-trondhjemite-granodiorite (TTG) plutons (circa 2720-2690 Ma) and ultramafic to felsic dikes and sills (circa 2690-2680 Ma), with subduction zone geochemical signatures. Overprinting relations between different sequences of structures suggest that the belt underwent at least three phases of deformation. During D1 (circa 2695-2685 Ma), oceanic plateau basalts and associated komatiites, arc-derived trench turbidites, and oceanic island arc sequences were all tectonically juxtaposed as they were incorporated into an accretionary complex. Fragmentation of these sequences resulted in broken formations and a tectonic mélange in the Schreiber assemblage of the belt. D2 (circa 2685-2680 Ma) is consistent with an intra-arc, right-lateral transpressional deformation. Fragmentation and mixing of D2 synkinematic dikes and sills suggest that mélange formation continued during D2. The D1 to D2 transition is interpreted in terms of a trenchward migration of the magmatic arc axis due to continued accretion and underplating. The D2 intra-arc strike-slip faults may have provided conduits for uprising melts from the descending slab, and they may have induced decompressional partial melting in the subarc mantle wedge, to yield synkinematic ultramafic to felsic intrusions. A similar close relationship between orogen-parallel strike-slip faulting and magmatism has recently been recognized in several Phanerozoic transpressional orogenic belts, suggesting that as in Phanerozoic counterparts, orogen-parallel strike-slip faulting in the Schreiber-Hemlo greenstone belt played an important role in magma emplacement.

  11. Slope and basinal deposits adjacent to isolated carbonate platforms in the Indian Ocean: Sedimentology, geomorphology, and a new 1.2 Ma record of highstand shedding

    NASA Astrophysics Data System (ADS)

    Counts, J. W.; Jorry, S.; Jouet, G.

    2017-12-01

    Newly analyzed bathymetric, seismic, and core data from carbonate-topped seamounts in the Mozambique Channel reveals a variety of depositional processes and products operating on platform slopes and adjacent basins. Mass transport complexes (including turbidites and debrites), leveed channel systems with basin-floor fans, and contourites are imaged in high resolution in both seafloor maps and cross-section, and show both differences and similarities compared with platform slopes in the Bahamas and elsewhere. In some, though not all, platforms, increased sedimentation can be observed on the leeward margins, and slope rugosity may be asymmetric with respect to prevailing wind direction. Deposition is also controlled by glacial-interglacial cycles; cores taken from the lower slopes (3000+ m water depth) of carbonate platforms reveal a causative relationship between sea level and aragonite export to the deep ocean. δ18O isotopes from planktonic and benthic foraminifera of two 27-meter cores, reveal a high-resolution, continuous depositional record of carbonate sediment dating back to 1.2 Ma. Sea level rise, as determined by correlation with the LR04 benthic stack, is coincident with increased aragonite flux from platform tops. Gravity flow deposits are also affected by platform flooding—the frequency of turbidite/debrite deposits on pinnacle slopes increases during highstand, although such deposits are also present during glacial episodes. The results reported here are the first record of highstand shedding in the southern Indian Ocean, and provide the longest Quaternary sediment record to date in the region, including the Mid-Brunhes transition (MIS 11) that serves as an analog for the current climate conditions. In addition, this is the first study to describe sedimentation on the slopes of these platforms, providing an important point of comparison that has the potential to influence source-to-sink carbonate facies models.

  12. Bathymetry of the Levant basin: interaction of salt-tectonics and surficial mass movements

    NASA Astrophysics Data System (ADS)

    Gvirtzman, Zohar; Reshef, Moshe; Buch-Leviatan, Orna; Groves-Gidney, Gavrielle; Karcz, Zvi; Makovsky, Yizhaq; Ben-Avraham, Zvi

    2015-04-01

    A new high resolution bathymetric map of the Levant Basin between Israel and the Eratosthenes Seamount reveals previously undetected folds, faults and channels. The map facilitates a regional map-view analysis of structures that were previously examined only in cross section. The systematic mapping of morpho-structural elements in the entire basin is followed by a kinematic interpretation that distinguished between two main processes sculpting the seabed from bottom and top: salt tectonics and sediment transport. We show that the contractional domain related to salt tectonics is far more complex than previously thought. Ridges, previously interpreted as contractional folds are, in fact, surficial undulations of the seabed reminiscent of sediment waves. Moreover, other folds previously interpreted as downdip contraction of the westward gliding Plio-Quaternary section are, in some parts of the basin, caused by updip climbing of this section eastwards as a result of the regional pattern of salt flow away from the Nile Cone. In the context of sediment transport, we show that the northern Sinai continental slope is covered by a dense net of turbidite channels, whereas the Levant slope has no channels at all. Particularly interesting is the Levant Turbidite Channel, described and named here for the first time. This feature begins at the southeastern corner of the Mediterranean at water depths of ~1100 m, continues along the valley between the Sinai and Levant slopes, and reaches the deepest part of the basin, in water depths of ~2500 m, northeast of the Eratosthenes seamount. However, this prominent feature cannot be explained by the current drainage, consisting of two minor rivers that enter the basin at that point, and thus most likely reflects periods of wetter climate and/or lower sea-level, when these rivers were more active and possibly connected to the submarine channel system.

  13. Historical sediment budget and present-day catchment-shoreline coupling at Twofold Bay, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Oliver, T.; Hudson, J.; Woodroffe, C. D.

    2017-12-01

    Considering projected impacts of sea-level rise in the 21st century on sandy shorelines, an understanding of long-term sediment budget for individual beaches or coastal compartments supports assessments of shoreline stability. We examined a low-lying coastal beach-ridge barrier in Twofold Bay using optically stimulated luminescence (OSL) dating , airborne LiDAR, sedimentological analysis and seismic data to assess changes in rates of sediment supply to this shoreline through time. Calculations of barrier volume, Twofold Bay bay-floor sediment volume and estimates of sediment delivery from a proximal river system provide a broad-scale assessment of past-sediment budget. Between ca. 7500 years ago and 1500 years ago, sources of sediment for shoreline progradation at Boydtown were bay-floor sediments either inherited or moved into the embayment during late-stage transgression. Progradation rate between ca. 7500-1500 years ago was 0.16 m/yr with subaerial barrier volume accumulating at 0.46 m3/m/yr. Between ca. 1500 years and present day, the Towamba River to the south has delivered additional sediment to the Boydtown shoreline more than doubling shoreline progradation rate to 0.65 m/yr and subaerial barrier accumulation has risen to 1.83 m3/m/yr. The delivery of fluvial sediment from the Towamba River was restricted to the past ca. 1500 years as prior to this, estuary infilling prevented floods delivering sediments to the bay. This recent historical coupling of river sand supply and shoreline progradation rate implies that anthropogenic modifications to the Towamba River catchment such as river damming, or climatic changes reducing rainfall or runoff, would negatively impact the Boydtown Beach shoreline. Conversely increased rainfall or deforestation may increase sediment discharge due to upstream erosion. The Boydtown shoreline within Twofold Bay may be able to maintain its current position in the coming century if fluvial sediment delivery continues. The fact that other shorelines within Twofold Bay are seemingly unaffected by the Towamba River, and most shorelines in southeast Australia receive minimal fluvial sediment input, further emphasises the need to consider nearshore sediment reserves in order to accurately determine sea-level rise impacts on sandy shorelines.

  14. Spin Vector Distribution in the Koronis Family for a Sample Complete to IAU H=10.88

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Hosek, Matt; Sokol, Alyssa; Maynard, Sarah; Payne, Anna; Radford, Arden; Springmann, Alessondra; Mailhot, Emily; Midkiff, Alan; Russell, April; Stephens, Robert D.

    2016-10-01

    Because they share the same formation age, asteroid family members have experienced similar evolution for similar lengths of time, offering valuable information to help understand spin evolution processes. Clustered distributions of spin vectors determined from observations of ten of the largest Koronis family members (Slivan 2002) revealed evidence of spin modification by YORP thermal radiation torques (Vokrouhlický et al. 2003). The currently known spin vector sample in the Koronis family (Slivan et al., 2003; Slivan et al., 2009, Hanuš et al., 2011; Hanuš et al., 2013; Durech et al., 2016) clearly shows the two spin groupings observed among the large members: (1) the larger group with low-obliquity retrograde spin and periods between about 3 h and 30 h, and (2) a smaller group with prograde spin obliquity near 45° and periods near 8 h, characteristic of trapping in the s6 spin-orbit resonance (Vokrouhlický et al. 2003). There's also one "stray" longer-period prograde object with smaller obliquity, perhaps trapped in some other resonance.A limitation of the existing spin vector sample, which (using IAU H as a proxy for size) includes 16 of the brightest 27 members of the family, is that selection biases render it complete only to the brightest 12 members. Slivan et al. (2008) began a lightcurve observing program to increase the sample of Koronis family spin vectors down to about 20 km diameter.We report pole solutions that were determined for fourteen survey objects using lightcurves recorded from 2005-2016, which complete the Koronis spin vector sample to the brightest 22 members, now including 24 of the brightest 27 members. The larger sample adds several objects to the existing group of low-obliquity retrograde rotators, increasing the period range upward to almost 60 h, and also identifies two companions for the stray longer-period prograde spin object, strengthening the case for the presence of a second cluster of objects trapped in a spin-orbit resonance. The more complete distribution also reveals two new "strays" of its own - one lone fast prograde rotator, and one spin vector of atypical high obliquity, close to the ecliptic plane.

  15. Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf

    USGS Publications Warehouse

    Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.

    1990-01-01

    Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.

  16. Sedimentary evolution of the Pliocene and Pleistocene Ebro margin, northeastern Spain

    USGS Publications Warehouse

    Alonso, B.; Field, M.E.; Gardner, J.V.; Maldonado, A.

    1990-01-01

    The Pliocene and Pleistocene deposits of the Spanish Ebro margin overlie a regional unconformity and contain a major disconformity. These unconformities, named Reflector M and Reflector G, mark the bases of two seismic sequences. Except for close to the upper boundary where a few small channel deposits are recognized, the lower sequence lacks channels. The upper sequence contains nine channel-levee complexes as well as base-of-slope aprons that represent the proximal part of the Valencia turbidite system. Diverse geometries and variations in seismic units distinguish shelf, slope, base-of-slope and basin-floor facies. Four events characterize the late Miocene to Pleistocene evolution of the Ebro margin: (a) formation of a paleodrainage system and an extensive erosion-to-depositional surface during the latest Miocene (Messinian), (b) deposition of hemipelagic units during the early Pliocene, (c) development of canyons during the late Pliocene to early Pleistocene, and (d) deposition of slope wedges, channel-levee complexes, and base-of-slope aprons alternating with hemipelagic deposition during the Pleistocene. Sea-level fluctuations influenced the evolution of the sedimentary sequences of the Ebro margin, but the major control was the sediment supply from the Ebro River. ?? 1990.

  17. Dehydration-driven topotaxy in subduction zones

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Tommasi, Andréa; Garrido, Carlos J.

    2014-05-01

    Mineral replacement reactions play a fundamental role in the chemistry and the strength of the lithosphere. When externally or internally derived fluids are present, interface-coupled dissolution-precipitation is the driving mechanism for such reactions [1]. One of the microstructural features of this process is a 3D arrangement of crystallographic axes across internal interfaces (topotaxy) between reactant and product phases. Dehydration reactions are a special case of mineral replacement reaction that generates a transient fluid-filled porosity. Among others, the dehydration serpentinite is of special relevance in subduction zones because of the amount of fluids involved (potentially up to 13 wt.%). Two topotatic relationships between olivine and antigorite (the serpentine mineral stable at high temperature and pressure) have been reported in partially hydrated mantle wedge xenoliths [2]. Therefore, if precursor antigorite serpentine has a strong crystallographic preferred orientation (CPO) its dehydration might result in prograde peridotite with a strong inherited CPO. However for predicting the importance of topotactic reactions for seismic anisotropy of subduction zones we also need to consider the crystallization orthopyroxene + chlorite in the prograde reaction and, more importantly, the fact that this dehydration reaction produces a transient porosity of ca. 20 % vol. that results in local fluctuations of strain during compaction and fluid migration. We address this issue by a microstructural comparison between the CPO developed in olivine, orthopyroxene and chlorite during high-pressure antigorite dehydration in piston cylinder experiments (at 750ºC and 20 kbar and 1000ºC and 30 kbar, 168 h) and that recorded in natural samples (Cerro del Almirez, Betic Cordillera, Spain). Experimentally developed CPOs are strong. Prograde minerals show a significant inheritance of the former antigorite foliation. Topotactic relations are dominated by (001)atg//(100)ol// (100)opx//(001)chl. The relation [010]atg// [001]ol //[001]opx can also be inferred but it is weaker. Similar topotactic relations are observed in the Cerro del Almirez samples, but the CPOs are weaker and more complex. The complexity arises from constant interfacial angles and systematic low-index interfacial contacts between orthopyroxene-olivine-chlorite (e.g. (001)chl // (100)opx). As a consequence the inheritance from the antigorite serpentinite is partially obliterated. Compaction-related microstructural features are also present including: (1) smooth bending of the former foliation and diffuse olivine veinlets perpendicular to it, (2) gradual crystallographic misorientation (up to 15º) of prismatic enstatite due to buckling, (3) localized orthoenstatite(Pbca)/low clinoenstatite (P21/c) inversion, and (4) brittle fracturing of prismatic enstatite wrapped by plastically deformed chlorite. These observations suggest that topotactic crystrallographic relations are dominant in undrained systems, but that the mechanisms allowing for compaction and fluid draining significantly affect the final texture in drained systems. Because the second case prevails in subduction zones, compaction mechanisms need to be better understood for modelling the development of CPOs after foliated protoliths in the slab and the mantle wedge. [1] Putnis, A., 2009. Reviews in Mineralogy and Geochemistry 70, 87-124. [2] Boudier, F., et al. 2010 J. Petrology 51, 495-512.

  18. Prodigious submarine landslides during the inception and early growth of volcanic islands.

    PubMed

    Hunt, James E; Jarvis, Ian

    2017-12-12

    Volcanic island inception applies large stresses as the ocean crust domes in response to magma ascension and is loaded by eruption of lavas. There is currently limited information on when volcanic islands are initiated on the seafloor, and no information regarding the seafloor instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43 million year history of turbidites among which many originate from mass movements in the Canary Islands. Here, we investigate the composition and timing of a distinctive group of turbidites that we suggest represent a new unique record of large-volume submarine landslides triggered during the inception, submarine shield growth, and final subaerial emergence of the Canary Islands. These slides are predominantly multi-stage and yet represent among the largest mass movements on the Earth's surface up to three or more-times larger than subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable information on ocean island geodynamics they also represent a significant, and as yet unaccounted, marine geohazard.

  19. Buldir Depression - A Late Tertiary graben on the Aleutian Ridge, Alaska

    USGS Publications Warehouse

    Marlow, M. S.; Scholl, D. W.; Buffington, E.C.; Boyce, R.E.; Alpha, T.R.; Smith, P.J.; Shipek, C.J.

    1970-01-01

    Buldir Depression is a large, rectilinear basin that lies on the northern edge of the Aleutian Ridge and is aligned with the arcuate chain of active volcanoes on the ridge crest. The depression appears to be a volcanic-tectonic feature, which began to form in Late Tertiary time and which is still forming. It is a graben formed by extensional rifting and accompanied by contemporaneous volcanism on the Aleutian Ridge. Subsidence rates for the depression are estimated at 20-70 cm/1,000 years. Sediments in the depression are 300 m thick and are probably pelagic and turbidite deposits of Pleistocene age. The turbidites were apparently derived from the plateau area of the Aleutian Ridge surrounding the depression. Older sediments on the northern slope of the Aleutian Ridge have a maximum thickness of 550 m and are deformed and slumped toward the Bering Sea. These sediments are postulated to overlie a mid-flank terrace on the northern Aleutian Ridge that titled to the north during the formation of Buldir Depression. ?? 1970.

  20. East Louisiana continental shelf sediments: a product of delta reworking

    USGS Publications Warehouse

    Brooks, Gregg R.; Kingdinger, Jack L.; Penland, Shea; Williams, S. Jeffress

    1995-01-01

    Data from 77 vibracores were integrated with 6,700 line-km of high- resolution seismic reflection profiles collected off the eastern Louisiana coast in the region of the St. Bernard Delta, the first of the Holocene highstand deltas of the Mississippi River. Seismic fades and sediment facies were integrated in order to establish the stratigraphic details within this relict delta. Results provide a regional geologic framework from which comparisons can be made with other areas. Holocene deposits in the study area overlie a heavily dissected surface interpreted to represent a lowstand erosional surface. Resting on this surface is a thin unit of relatively clean, quartz sand interpreted to have been deposited during early transgression. This unit is overlain by sediments of the St. Bernard Delta, a seaward-prograding, coarsening-upward wedge of sands and muds that contain vertically-stacked units of deltaic succession. Two or more prograding units separated by an unconformity, delineated from regional seismic profiles, may represent laterally shifting subdelta lobes. Surficial sediments consist of a thin unit of sands and muds derived from and reflecting the individual subenvirons of the underlying delta. Holocene inner-shelf development off eastern Louisiana has been controlled by relative sea-level rise and sediment supply. Sediment supply and deposition are a product of delta progradation and delta-lobe switching. The modern shelf configuration and surficial sediment distribution patterns reflect reworking of underlying deltaic deposits. The lack of modern sediment input helps to maintain the imprint of this ancient delta on the modern shelf surface.

  1. Balancing Aggradation and Progradation on a Vegetated Delta: The Importance of Fluctuating Discharge in Depositional Systems

    NASA Astrophysics Data System (ADS)

    Piliouras, Anastasia; Kim, Wonsuck; Carlson, Brandee

    2017-10-01

    Vegetation is an important component of constructional landscapes, as plants enhance deposition and provide organic sediment that can increase aggradation rates to combat land loss. We conducted two sets of laboratory experiments using alfalfa (Medicago sativa) to determine the effects of plants on channel organization and large-scale delta dynamics. In the first set, we found that rapid vegetation colonization enhanced deposition but inhibited channelization via increased form drag that reduced the shear stress available for sediment entrainment and transport. A second set of experiments used discharge fluctuations between flood and base flow (or interflood). Interfloods were critical for reworking the topset via channel incision and lateral migration to create channel relief and prevent rapid plant colonization. These low-flow periods also greatly reduced the topset slope in the absence of vegetation by removing topset sediment and delivering it to the shoreline. Floods decreased relief by filling channels with sediment, resulting in periods of rapid progradation and enhanced aggradation over the topset surface, which was amplified by vegetation. The combination of discharge fluctuations and vegetation thus provided a balance of vertical aggradation and lateral progradation. We conclude that plants can inhibit channelization in depositional systems and that discharge fluctuations encourage channel network organization to naturally balance against aggradation. Thus, variations in discharge are an important aspect of understanding the ecomorphodynamics of aggrading surfaces and modeling vegetated deltaic systems, and the combined influences of plants and discharge variations can act to balance vertical and lateral delta growth.

  2. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less

  3. The slight spin of the old stellar halo

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Belokurov, Vasily; Koposov, Sergey E.; Gómez, Facundo A.; Grand, Robert J.; Marinacci, Federico; Pakmor, Rüdiger

    2017-09-01

    We combine Gaia data release 1 astrometry with Sloan Digital Sky Survey (SDSS) images taken some ˜10-15 years earlier, to measure proper motions of stars in the halo of our Galaxy. The SDSS-Gaia proper motions have typical statistical errors of 2 mas yr-1 down to r ˜ 20 mag, and are robust to variations with magnitude and colour. Armed with this exquisite set of halo proper motions, we identify RR Lyrae, blue horizontal branch (BHB), and K giant stars in the halo, and measure their net rotation with respect to the Galactic disc. We find evidence for a gently rotating prograde signal (〈Vϕ〉 ˜ 5-25 km s-1) in the halo stars, which shows little variation with Galactocentric radius out to 50 kpc. The average rotation signal for the three populations is 〈Vϕ〉 = 14 ± 2 ± 10 (syst.) km s-1. There is also tentative evidence for a kinematic correlation with metallicity, whereby the metal richer BHB and K giant stars have slightly stronger prograde rotation than the metal poorer stars. Using the Auriga simulation suite, we find that the old (T >10 Gyr) stars in the simulated haloes exhibit mild prograde rotation, with little dependence on radius or metallicity, in general agreement with the observations. The weak halo rotation suggests that the Milky Way has a minor in situ halo component, and has undergone a relatively quiet accretion history.

  4. The effects of sea level and palaeotopography on lithofacies distribution and geometries in heterozoan carbonates, south-eastern Spain

    USGS Publications Warehouse

    Johnson, C.L.; Franseen, E.K.; Goldstein, R.H.

    2005-01-01

    This study utilized three-dimensional exposures to evaluate how sea-level position and palaeotopography control the facies and geometries of heterozoan carbonates. Heterozoan carbonates were deposited on top of a Neogene volcanic substrate characterized by palaeotopographic highs, palaeovalleys, and straits that were formed by subaerial erosion, possibly original volcanic topography, and faults prior to carbonate deposition. The depositional sequence that is the focus of this study (DS1B) consists of 7-10 fining upward cycles that developed in response to relative sea-level fluctuations. A complete cycle has a basal erosion surface overlain by deposits of debrisflows and high-density turbidity currents, which formed during relative sea-level fall. Overlying tractive deposits most likely formed during the lowest relative position of sea level. Overlying these are debrites grading upward to high-density turbidites and low-density turbidites that formed during relative sea-level rise. The tops of the cycles consist of hemipelagic deposits that formed during the highest relative position of sea level. The cycles fine upward because upslope carbonate production decreased as relative sea level rose due to less surface area available for shallow-water carbonate production and partial drowning of substrates. The cycles are dominated by two end-member types of facies associations and stratal geometries that formed in response to fluctuating sea-level position over variable substrate palaeotopography. One end-member is termed 'flank flow cycle' because this type of cycle indicates dominant sediment transport down the flanks of palaeovalleys. Those cycles drape the substrate, have more debrites, high-density turbidites and erosion on palaeovalley flanks, and in general, the lithofacies fine down the palaeovalley flanks into the palaeovalley axes. The second end-member is termed 'axial flow cycle' because it indicates a dominance of sediment transport down the axes of palaeovalleys. Those cycles are characterized by debrites and high-density turbidites in palaeovalley axes, and lap out of strata against the flanks of palaeovalleys. Where and when an axial flow cycle or flank flow cycle developed appears to be related to the intersection of sea level with areas of gentle or steep substrate slopes, during an overall relative rise in sea level. Results from this study provide a model for similar systems that must combine carbonate principles for sediment production, palaeotopographic controls, and physical principles of sediment remobilization into deep water. ?? 2005 International Association of Sedimentologists.

  5. Resolving the deep electrical resistivity structure at Central Pontides, Northern Turkey by three-dimensional magnetotelluric modeling

    NASA Astrophysics Data System (ADS)

    Özaydın, Sinan; Bülent Tank, Sabri; Karaş, Mustafa; Sandvol, Eric

    2017-04-01

    Wide-band magnetotelluric (MT) (360 Hz - 1860 sec) data were acquired at 25 sites along a north - south aligned profile cutting across the Central Pontides, which are made up of highly metamorphosed formations and their tectonic boundaries including: a Lower Cretaceous-aged turbidite sequence, Central Pontides Metamorphic Supercomplex (CPMS), North Anatolian Fault Zone (NAFZ) and Izmir-Ankara-Erzincan Suture Zone (IAESZ). Dimensionality analyses over all observation points demonstrated high electrical anisotropy, which indicates complex geological and tectonic structures. This dimensional complexity and presence of the electrically conductive Black Sea augmented the requirement for a three-dimensional analysis. Inverse modeling routines, ModEM (Egbert and Kelbert, 2012) and WSINV3DMT (Siripunvaraporn et al., 2005) were utilized to reveal the geo-electrical implications over this unusually complicated region. Interpretations of the resultant models are summarized as follows: (i) Çangaldaǧ and Domuzdaǧ complexes appear as highly resistive bodies bounded by north dipping faults. (ii) Highly conductive Tosya Basin sediments overlain the ophiolitic materials as a thin cover located at the south of the NAFZ. (iii) North Anatolian Fault and some auxiliary faults within the system exhibit conductive-resistive interfaces that reach to lower crustal levels. (iv) IAESZ is a clear feature marked by the resistivity contrast between NAFZ-related sedimentary basins and Neo-Tethyan ophiolites.

  6. Detrital zircon ages in Korean mid-Paleozoic meta-sandstones (Imjingang Belt and Taean Formation): Constraints on tectonic and depositional setting, source regions and possible affinity with Chinese terranes

    NASA Astrophysics Data System (ADS)

    Han, Seokyoung; de Jong, Koen; Yi, Keewook

    2017-08-01

    Sensitive High-Resolution Ion Microprobe (SHRIMP) U-Th-Pb isotopic data of detrital zircons from mature, quartz-rich meta-sandstones are used to constrain possible tectonic affinities and source regions of the rhythmically layered and graded-bedded series in the Yeoncheon Complex (Imjingang Belt) and the correlative Taean Formation. These metamorphic marine turbidite sequences presently occur along the Paleoproterozoic (1.93-1.83 Ga) Gyeonggi Massif, central Korea's main high-grade metamorphic gneiss terrane. Yet, detrital zircons yielded highly similar multimodal age spectra with peaks that do not match the age repartition in these basement rocks, as late (1.9-1.8 Ga) and earliest (∼ 2.5 Ga) Paleoproterozoic detrital modes are subordinate but, in contrast, Paleozoic (440-425 Ma) and Neoproterozoic (980-920 Ma) spikes are prominent, yet the basement essentially lacks lithologies with such ages. The youngest concordant zircon ages in each sample are: 378, 394 and 423 Ma. The maturity of the meta-sandstones and the general roundness of zircons of magmatic signature, irrespective of their age, suggest that sediments underwent considerable transport from source to sink, and possibly important weathering and recycling, which may have filtered out irradiation-weakened metamorphic zircon grains. In combination with these isotopic data, presence of a low-angle ductile fault contact between the Yeoncheon Complex and the Taean Formation and the underlying mylonitized Precambrian basement implies that they are in tectonic contact and do not have a stratigraphic relationship, as often assumed. Consequently, in all likelihood, both meta-sedimentary formations: (1) are at least of early Late Devonian age, (2) received much of their detritus from distant (reworked) Silurian-Devonian and Early Neoproterozoic magmatic sources, not present in the Gyeonggi Massif, (3) and not from Paleoproterozoic crystalline rocks of this massif, or other Korean Precambrian basement terranes, and (4) should be viewed as independent tectonic units that had sources not exposed in Korea. A thorough literature review reveals that the Yeoncheon Complex and the Taean Formation were potentially sourced from the Liuling, Nanwan and Foziling groups in the Qinling-Dabie Belt, which all show very similar detrital zircon age spectra. These immature middle-late Devonian sandstones were deposited in a pro-foreland basin formed as a result of the aborted subduction of the South Qinling Terrane below the North Qinling Terrane, which was uplifted and eroded during post-collision isostatic rebound. The submarine fans where the mature distal turbiditic Yeoncheon and Taean sandstones were deposited may have constituted the eastern terminal part of a routing system originating in the uplifted and eroded middle Paleozoic Qinling Belt and adjacent part of the foreland basin.

  7. Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; Hemming, S. R.; Taylor, S. R.; Eriksson, K. A.

    1995-03-01

    Early Proterozoic (1.8-1.7 Ga) metasedimentary rocks in northern New Mexico and southern Colorado, USA, can be divided into turbidite successions (commonly volcanogenic) associated with mafic/felsic metavolcanic successions (e.g., Irving Fm.) and stable shelf quartzite-pelite successions of shallow marine origin (e.g., Hondo Gp.). Metapelites from the turbidite successions reported here have low K2O/Na2O, low Th/U (<3.0), low to moderate Th/Sc (0.1-0.6), and slight negative Eu-anomalies, although regionally, negative Eu-anomalies in such rocks are common. At the time of sedimentation (ca. 1.7-1.8 Ga), ɛNd values were in the range +3 to +7, indistinguishable from associated metavolcanic and plutonic rocks. Similarly, lead isotopic data scatter about a 1.7 Ga reference isochron. Low κ (232Th/238U) values for the Irving Formation are consistent with derivation from crustal sources similar to the southern Colorado/northern New Mexico lead isotope crustal province. These data are further consistent with a volcanic arc related origin. In contrast, stable shelf metapelites have high K2O/Na2O, variable but commonly high Th/U (2.0-7.0), moderate to high Th/Sc (0.5-1.4), and substantial negative Eu-anomalies. Although compositions are rather variable, they are typical of post-Archean shales. Neodymium isotopes are surprisingly radiogenic with ɛNd(1.7 Ga) in the range -0.2 to +4. Lead isotopic data for the least radiogenic samples also are consistent with a dominantly juvenile source and on a 207Pb/204Pb vs. 206Pb/204Pb diagram, data scatter slightly above the 1.7 Ga reference isochron, suggesting minor components of significantly older material. Lead isotopic systematics suggest that a major component of the provenance was derived from the immediately associated metavolcanic-plutonic terranes, consistent with suggestions of a first-cycle origin, but with an Archean component. Isotopic data restrict the Archean component to about 10%, on average, and no more than 25% in any sample. This older crustal component may be derived either by direct erosion of Archean rocks, such as the Wyoming Province, or indirectly through assimilation into Early Proterozoic igneous rocks. Although the stable shelf sedimentary rocks are derived from a provenance with similar ages as the volcanogenic turbidites, the geochemical characteristics of the provenance are significantly different. Accordingly, these data are consistent with especially rapid and widespread crustal growth and evolution in southwestern North America during the period 1.9-1.7 Ga. Several samples from the Hondo Group and Uncompahgre Formation have REE patterns that are rotated to LREE depletion and perhaps HREE enrichment. The change in REEs correlate with Mo, U, and V abundances and Pb isotopic characteristics suggesting sedimentary processes similar to those operating in black shales affected these REE patterns. REE patterns and Th/U ratios of Early Proterozoic volcanogenic turbidites examined in this and other studies differ on average from turbidites found in Archean greenstone belts. Negative Eu-anomalies are common, HREE-depletion is seen but comparatively rare, and Th/U ratios are commonly below 3.0. Accordingly, these data are consistent with models suggesting that the upper crust had a different composition in the Archean.

  8. Raman counting of heavy minerals in turbidites: Indus Fan, IODP Expedition 355

    NASA Astrophysics Data System (ADS)

    Andò, Sergio

    2017-04-01

    Raman spectroscopy is an innovative tool with tremendous potential. Thorny long-standing problems that cannot be solved confidently with a polarizing microscope alone, such as the determination of opaque heavy minerals or of detrital grains as small as a few microns, can finally be addressed. Heavy-mineral species commonly found in sediments convey specific information on the genesis of their source rocks and are therefore crucial in provenance diagnoses and palaeotectonic reconstructions. A high-resolution mineralogical study of Indus Fan turbiditic sediments cored during IODP Expedition 355 (Arabian Sea Monsoon) in the Laxmi Basin was carried out to investigate and quantify the different compositional signatures of sand and silt fractions. Silt and sand in turbidite deposits recovered at IODP Sites U1456 and U1457 were chosen as the best natural archive for this source-to-sink study. An integrated mineralogical dataset was obtained by coupling traditional and innovative single-grain heavy-mineral analyses. Reliable quantitative results even in the medium to fine silt classes, which represent the dominant sediment sizes encountered in the recovered cores, were obtained by point-counting of single grains under the microscope assisted by Micro-Raman spectroscopy. Preliminary data from the studied turbidites document rich and diverse heavy-mineral assemblages in both sand and silty-sand fractions. Multiple varietal studies of amphibole, epidote and garnet varieties, representing the dominant heavy-mineral trial in orogenic detritus derived from collided ranges such as the Himalaya, were performed to highlight the wide unexplored potential of Raman spectroscopy when applied to provenance studies. Discriminating within the isomorphous series of garnets is possible, and diverse pyralspite and ugrandite garnets are distinguished by the position of characteristic peaks found at high frequencies and caused by Si-O stretching modes (873-880 cm-1 in ugrandites, 907-926 cm-1 in pyralspites; Bersani et al., 2009; Andò et al., 2009). Raman discrimination of amphibole varieties is also possible and the diagnostic position and shape of the more intense OH stretching bands (frequencies between 3600 and 3700 cm-1) are particularly helpful (Vezzoli et al., 2016). Raman discrimination of epidote-group minerals was tackled by using a new data set of the characteristic vibrational modes in the high-frequency region to facilitate distinction from other silicates and distinguish different varieties. A protocol to separate heavy minerals from the silt fraction, starting from a few grams of sediments only, was developed at the Laboratory for Provenance Studies of Milano-Bicocca. An appropriate data base of Raman spectra of detrital minerals is essential to apply this method routinely in future provenance studies of deep-sea turbidites. Such a new methodological approach plays a potentially key role to differentiate among the diverse Himalayan versus Indian Peninsular sources of detritus and opens up a new frontier for future studies of the largely unexplored deep-marine sedimentary record. Cited references S. Andò, D. Bersani, P. Vignola, E. Garzanti, 2009. Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochimica Acta Part A 73, 3, 450-455. D. Bersani, S. Andò, P. Vignola, G. Moltifiori, I.G. Marino, P.P. Lottici, V. Diella, 2009. Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochimica Acta Part A 73, 3, 484-491. G. Vezzoli, E. Garzanti, M. Limonta, S. Andò, S. Yang, 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology 261, 177-192.

  9. Depositional architecture and evolution of the Late Miocene slope channel-fan-system in the northeastern shelf-margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Lin, Changsong; Zhang, Zhongtao; Tian, Hongxun; Tao, Ze; Liu, Hanyao

    2016-04-01

    The Upper Miocene in the Pearl River Mouth Basin of northwestern shelf-margin of South China Sea Basin contains a series of slope channel - fan systems. Their depositional architecture and evolution are documented in this investigation based on an integrated analysis of cores, logs, and seismic data. Four depositional-palaeogeomorphological elements have been identified in the slope channel-fan systems as follows: broad, shallow and unconfined or partly confined outer-shelf to shelf-break channels; deeply incised and confined unidirectionally migrating slope channels; broad or U-shaped, unconfined erosional-depositional channels; frontal splays-lobes and nonchannelized sheets. The slope channels are mostly oriented NW-SE, which migrated unidirectionally northeastwards and intensively eroded almost the whole shelf-slope zone. The channel infillings are mainly mudstones, interbedded with siltstones. They might be formed by gravity flow erosion as bypassing channels. They were filled with limited gravity flow sediments at the base and mostly filled with lateral accretionary packages of bottom current deposits. At the end of the channels, a series of small-scale slope fans developed and coalesced into fan aprons along the base of the slope. The unconfined erosional-depositional channels at the upper parts of the fan-apron-systems display compound infill patterns, and commonly have concave erosional bases and convex tops. The frontal splays-lobes representing middle to distal deposits of fan-apron-systems have flat-mounded or gull-wing geometries, and the internal architectures include bidirectional downlap, progradation, and chaotic infillings. The distal nonchannelized turbidite sheets are characterized by thin-bedded, parallel to sub-parallel sheet-like geometries. Three major unconformities or obvious erosional surfaces in the channel-fan systems of the Upper Miocene are recognized, and indicate the falling of sea-level. The depositional architecture of sequences varies from the upper slope to the slope base transitional to basin plain. The basal erosion and the unidirectionally migrating characters of the slope channels were supposed to be the result of the interaction of bottom currents and gravity flows. The intensive development of the channel-fan systems over the shelf slope might be related to the Dongsha Tectonic uplift which may resulted in stepped slope and concomitantly intensified gravity flow in the study area in Late Miocene.

  10. High-resolution seismic sequence stratigraphy and history of relative sea level changes since the Late Miocene, northern continental margin, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhong, G.; Wang, L.

    2013-12-01

    The northern South China Sea (SCS) margin is suggested as one of the ideal sites for documenting the late Cenozoic sea level changes for its characteristics of rapid sedimentation and relatively stable structural subsidence since the Late Miocene. In this study, high-resolution seismic profiles acquired by the Guangzhou Marine Geological Survey, calibrated by well control from the ODP sites 1146 and 1148, were utilized to construct a time-significant sequence stratigraphic framework, from which the history of relative sea level changes since the Late Miocene on the northern SCS margin was derived. Our study area is situated in the middle segment of the margin, between the Hainan Island to the west and the Dongsha Islands to the east. This region is to a certain degree far away from the active structural zones and is suggested as the most stable region in the margin. Totally 4000 km seismic profiles were used, which controls an area of about 6×104 km2. The seismic data have a vertical resolution of 5 to 15 m for the Upper Miocene to Quaternary interval. Three regional seismic sequence boundaries were identified. They subdivide the Late Miocene to Quaternary into three mega-sequences, which correspond to the Quaternary, Pliocene and Late Miocene, respectively by tying to well control. The Late Miocene mega-sequence, including 13 component sequences, is characterized with a basal incised canyon-developed interval overlain by three sets of progradational sequences formed in deep-water slope environments. The Pliocene mega-sequence consists of four sets of progradational sequences. Each sequence set contains one to three component sequences. At least 7 component sequences can be identified. The Quaternary mega-sequence consists of five sets of progradational sequences, in which the lower two constitute a retrogressive sequence set and the upper three a progradational sequence set. At least 9 component sequences can be recognized. Most of the component sequences within the Pliocene and Quaternary mega-sequences occur adjacent to modern shelf margin, and therefore were interpreted as shelf-marginal progradational deltaic sequences. A relative sea level curve since the Late Miocene was compiled by integrating the shift trajectory of onlap points, the stacking pattern of component sequences, and the chronostratigraphic diagrams. The curve contains about 29 cycles of relative sea level changes, showing a much higher resolution than the previous results in the region. These cycles constitute three large relative sea level rise and fall cycles. General trend of sea level variations is rising since the Late Miocene, which is opposite to the global sea level changes and is in accordance with the previous regional researches. This deviation is ascribed to the combined effects of very rapid regional subsidence and relative deficiency of sediment supply. This research was funded by the National Natural Science Foundation of China (Grant Nos. 91028003 and 41076020).

  11. Silurian deltaic progradation, Tassili n'Ajjer plateau, south-eastern Algeria: Sedimentology, ichnology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Djouder, Hocine; Lüning, Sebastian; Da Silva, Anne-Christine; Abdallah, Hussein; Boulvain, Frédéric

    2018-06-01

    The economic potential for unconventional shale oil and gas production in the Silurian of the Berkine - Ghadames and Illizi basins (BGI) in south-eastern Algeria has been recently confirmed through exploration drilling. The aim of the present paper attempts a better understanding of the Intra-Tassilian depression within the entire Silurian of the Tassili n'Ajjer plateau. The continuous deposits of the Silurian are exposed at the southern margin of the prolific BGI basins, in the Tassili n'Ajjer plateau, offering the chance to understand the sedimentology, ichnology, and to present a detailed sequence stratigraphy framework for the region. The 410 m-thick clastic Silurian sedimentary strata are subdivided into three formations in the context of sequence stratigraphy, namely: (i) the Oued Imihrou Fm. (Llandoverian) overlain by (ii) the Atafaïtafa Fm. (late Llandoverian to Wenlockian), and (iii) the Oued Tifernine Fm. (late Wenlockian to Pridolian). These can be also distinguished across the entire investigated area and laterally traceable over kilometers. Clear cyclic stacking patterns are identified within the four studied sections showing progressively a general trend of thickening- and coarsening-upward, over a complete 2nd-order megasequence (SIL-1 MS). This transgressive-regressive succession suggests deltaic progradation, shallowing and basin infilling as evidenced by numerous diagnostic sedimentary features and trace fossils, largely from eastern-to western-Tassili plateau. Indeed, the wealth of outcrop data in the Silurian siliciclastic succession enables us to distinct thirteen facies (facies A-M), ranging from shallow-to marginal-marine facies, and in turn, grouped into six facies associations (FA1-FA6). The lowermost part of the succession, which is the most prolific sources of hydrocarbons in North Africa, consists of thick organic-rich graptolite-yielding black 'hot' shales and 'lean' shales with sparse bioturbation with small Thalassinoides belonging to the distal Cruziana ichnofacies. In contrast, the uppermost part of the Silurian deposits becomes progressively coarser and fluvial in response to the progradation of the North African Akakus deltaic system, during regional sea level fall and uplifting of the region. These progradational deposits exhibit well-preserved trace fossils with moderate to high degree of bioturbation, such as Skolithos or the so-called "Tigillites" pipe-rock, Cruziana isp., Rusophycus isp., Monocraterion isp., and Syringomorpha. The SIL-1 MS is bounded by a post-glacial latest Hirnantian unconformity on the basal (SB1), as confirmed by the moderately diverse early Silurian graptolite faunas, and by the Caledonian unconformity on the top (SB7). Each of the three formations of SIL-1 MS reveals two major 3rd-order progradational sequences, commonly delineated by discontinuity surfaces (in ascending order, SB1 to SB7), and in turn, these six sequences (i.e. Si-1 to Si-6) are subdivided into at least ten shorter-term cycles. The regional extent of each unconformity is directly linked to significant facies changes and to inflection points on the global sea level curve.

  12. Natural and Human Impacts on Recent Development of Asian Large Rivers and Deltas

    NASA Astrophysics Data System (ADS)

    Liu, P.; Lu, C.

    2014-12-01

    Most recent data analysis indicates sediment loads in most of Asian large rivers (like, Yellow, Yangtze, Pearl, Chao Phraya, Indus, Krishna, Godavari, etc) have decreased up to 80-90% in the past 60 years. Correspondingly, most of Asian large river deltas are facing severe sediment starving; delta shoreline comparisons indicate that some are under strong coastal erosion. For examples, the Yellow River Delta has been retreating since 1990s when its annual sediment load has kept below 300 million tons. The Yangtze River delta kept growing before Three Gorges Dams was operating, and began to be eroded from the year 2003 to 2009, and then prograded locally due to the Deep Water Navigation Project. The Mekong Delta shoreline has also been dynamically changing with the sediment flux variation, eroding from 1989 to 1996 and prograding from 1996 to 2002. More information is available at http://www.meas.ncsu.edu/sealevel

  13. Comet nongravitational forces and meteoritic impacts

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitman, Patrick G.; Whitmire, Daniel P.

    1992-01-01

    We have considered those comets whose original orbits have been determined to be hyperbolic when only planetary perturbations are accounted for. It is found that formally unbound incident trajectories correlate most confidently with orbits that have small perihelion distances and move in a retrograde sense relative to planetary motion. Arguments are presented that these results are not due to measurement error or to selection effects. We conclude that the phenomenon is attributable to enhanced volatility leading to abnormally large nongravitational forces. Since the effect is absent in the prograde small-perihelia population, increased insolation is not the sole explanation. It is suggested that the significance of the retrograde correlation is connected with a larger energy of relative motion between retrograde comets and a population of prograde ecliptic meteoroids which impact the comet mantle exposing the underlying volatiles. The subsequent enhanced outgassing is the cause of the larger nongravitational forces.

  14. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    NASA Astrophysics Data System (ADS)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-04-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.

  15. Depositional history of Louisiana-Mississippi outer continental shelf

    USGS Publications Warehouse

    Kindinger, J.L.; Miller, R.J.; Stelting, C.E.

    1982-01-01

    A geological study was undertaken in 1981 in the Louisiana-Mississippi outer continental shelf for the Bureau of Land Management. The study included a high-resolution seismic reflection survey, surficial sediment sampling and surface current drifter sampling. Approximately 7100 sq km of the Louisiana-Mississippi shelf and upper slope were surveyed. The sea floor of the entire area is relatively smooth except for occasional areas of uplift produced by diapiric intrusion along the upper slope. Characteristics of the topography and subsurface shelf sediments are the result of depositional sequences due to delta outbuilding over transgressive sediments with intervening periods of erosion during low sea level stands. Little evidence of structural deformation such as faults, diapirs, and shallow gas is present on the shelf and only a few minor faults and scarps are found on the slope. Minisparker seismic records in combination with air gun (40 and 5 cu in) and 3.5-kHz subbottom profile records reveal that seven major stages of shelf development have occurred since the middle Pleistocene. The shelf development has been controlled by the rise and fall of sea level. These stages are defined by four major unconformities, several depositions of transgressive sediments, sequences of river channeling and progradational delta deposits. Surficial sediment sample and seismic records indicate tat the last major depositional event was the progradation of the St. Bernard Delta lobe. This delta lobe covered the northwestern and central regions. Surficial sediments in most of the study area are the product of the reworking of the San Bernard Delta lobe and previous progradations.

  16. Balancing aggradation and progradation on a vegetated delta: The importance of fluctuating discharge in depositional systems

    DOE PAGES

    Piliouras, Anastasia; Kim, Wonsuck; Carlson, Brandee

    2017-10-04

    Vegetation is an important component of constructional landscapes, as plants enhance deposition and provide organic sediment that can increase aggradation rates to combat land loss. We conducted two sets of laboratory experiments using alfalfa ( Medicago sativa) to determine the effects of plants on channel organization and large-scale delta dynamics. In the first set, we found that rapid vegetation colonization enhanced deposition but inhibited channelization via increased form drag that reduced the shear stress available for sediment entrainment and transport. A second set of experiments used discharge fluctuations between flood and base flow (or interflood). Interfloods were critical for reworkingmore » the topset via channel incision and lateral migration to create channel relief and prevent rapid plant colonization. These low flow periods also greatly reduced the topset slope in the absence of vegetation by removing topset sediment and delivering it to the shoreline. Floods decreased relief by filling channels with sediment, resulting in periods of rapid progradation and enhanced aggradation over the topset surface, which was amplified by vegetation. The combination of discharge fluctuations and vegetation thus provided a balance of vertical aggradation and lateral progradation. We conclude that plants can inhibit channelization in depositional systems, and that discharge fluctuations encourage channel network organization to naturally balance against aggradation. Furthermore, variations in discharge are an important aspect of understanding the ecomorphodynamics of aggrading surfaces and modeling vegetated deltaic systems, and the combined influences of plants and discharge variations can act to balance vertical and lateral delta growth.« less

  17. Balancing aggradation and progradation on a vegetated delta: The importance of fluctuating discharge in depositional systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piliouras, Anastasia; Kim, Wonsuck; Carlson, Brandee

    Vegetation is an important component of constructional landscapes, as plants enhance deposition and provide organic sediment that can increase aggradation rates to combat land loss. We conducted two sets of laboratory experiments using alfalfa ( Medicago sativa) to determine the effects of plants on channel organization and large-scale delta dynamics. In the first set, we found that rapid vegetation colonization enhanced deposition but inhibited channelization via increased form drag that reduced the shear stress available for sediment entrainment and transport. A second set of experiments used discharge fluctuations between flood and base flow (or interflood). Interfloods were critical for reworkingmore » the topset via channel incision and lateral migration to create channel relief and prevent rapid plant colonization. These low flow periods also greatly reduced the topset slope in the absence of vegetation by removing topset sediment and delivering it to the shoreline. Floods decreased relief by filling channels with sediment, resulting in periods of rapid progradation and enhanced aggradation over the topset surface, which was amplified by vegetation. The combination of discharge fluctuations and vegetation thus provided a balance of vertical aggradation and lateral progradation. We conclude that plants can inhibit channelization in depositional systems, and that discharge fluctuations encourage channel network organization to naturally balance against aggradation. Furthermore, variations in discharge are an important aspect of understanding the ecomorphodynamics of aggrading surfaces and modeling vegetated deltaic systems, and the combined influences of plants and discharge variations can act to balance vertical and lateral delta growth.« less

  18. Early-to-middle Holocene sea-level fluctuations, coastal progradation and the Neolithic occupations in Yaojiang valley of southern Hangzhou bay, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sun, Q.; Fan, D.; Chen, Z.

    2017-12-01

    The formation of Holocene coast in eastern China provided material base for the development of Neolithic civilizations. The coastal Yaojiang valley of south Hangzhou bay was one of the examples where the well-known Neolithic Hemudu Culture (HC) of Eastern China initiated. Here, we studied the early-to-middle Holocene environment changes in relation to sea-level fluctuations on the basis of a serial of sediment cores based on a set of new Accelerator Mass Spectrometry radiocarbon (AMS 14C) chronology. The result indicated that relative sea-level rose rapidly in the Yaojiang valley at the early Holocene, reaching its maximum at ca. 8000-7800 cal yr BP and then decelerated at ca. 7800-7500 cal yr BP. The alluvial plain in Yaojiang valley began to form at the foothills first and then grew towards the valley center accompanying with the sea-level stabilization after ca. 7500 cal yr BP. This progressive progradation of alluvial plain would attract the early arrivals of foragers to dwell at the foothills to engaging in rice farming after ca.7000 cal yr BP and starting the epic Hemudu Culture. The HC people then move down to the valley center as more land became available thanks to sediment aggregation and progradation. The rise and development of HC were closely associated with the sea-level induced landscape changes in Yaojiang valley at the early-middle Holocene, and the unstable hydraulic condition in the valley after 5000 cal yr BP could be accountable for the cultural termination.

  19. The Milky Way Halo in Action Space

    NASA Astrophysics Data System (ADS)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Sanders, J. L.; Koposov, S. E.

    2018-04-01

    We analyze the structure of the local stellar halo of the Milky Way using ∼60000 stars with full phase space coordinates extracted from the SDSS–Gaia catalog. We display stars in action space as a function of metallicity in a realistic axisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended toward high radial action J R as compared to azimuthal or vertical action, J ϕ or J z . It has a mild prograde rotation (< {v}φ > ≈ 25 {km} {{{s}}}-1), is radially anisotropic and highly flattened, with axis ratio q ≈ 0.6–0.7. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation (< {v}φ > ≈ 50 {km} {{{s}}}-1), a mild radial anisotropy, and a roundish morphology (q ≈ 0.9). We identify two further components of the halo in action space. There is a high-energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, ωCentauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] ≈ ‑3. It has a net outward radial velocity < {v}R> ≈ 12 {km} {{{s}}}-1 within the solar circle at | z| < 3.5 {kpc}. The existence of resonant stars at such extremely low metallicities has not been seen before.

  20. River capture and sediment redistribution in northern Tunisia: The doom of Utica

    NASA Astrophysics Data System (ADS)

    Booth-Rea, Guillermo; Camafort, Miquel; Pérez-Peña, J. Vicente; Melki, Fetheddine; Ranero, César; Azañón, José Miguel; Gracia, Eulalia; Ouadday, Mohamed

    2016-04-01

    Utica was a flourishing port city in northern Tunisia since the Phoenician times, 12-9th century B.C., until the 4th century A.D.. However, at present it is located 10 km from the coastline after very fast late Holocene progradation of the Mejerda River delta into the bay of Utica. This fast delta progradation occurred after Mejerda River captured Tine River increasing 140 % the river catchment area. Charcoal fragments present in the youngest Tine river terrace at the wind gap give a conventional radiocarbon age of 3240 +/- 30yr BP, indicating that the capture occurred after this date. Quaternary fluvial terraces located in the Tine River paleovalley have been folded and uplifted above a fold related to the active El Alia Tebousouk reverse fault (ETF). Continued uplift of the Tine River valley above the ETF favoured headward erosion of the Medjerda river tributaries creating a transverse drainage that captured Tine River. This capture produced an important change in sediment discharge along the northern Tunisia coast driving sediments to the Gulf of Tunis instead of feeding the Tyrrhenian Sea through the Ichkeul and Bizerte lakes. Although anthropogenic derived degradation of northern Tunisia land for agricultural purposes probably influenced the increase in sediment into the Utica bay, the main cause of rapid progradation of the Medjerda River delta during the late Holocene is related to its increase in drainage area after capturing the Tine River. This process was mostly driven by local contractive tectonics linked to the seismogenic Alia Tebousouk reverse fault.

  1. Asymmetric Effects of Subaerial and Subaqueous Basement Slopes on Self-Similar Morphology of Prograding Deltas

    NASA Astrophysics Data System (ADS)

    Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun

    2017-12-01

    Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.

  2. Shelf-geometry response to changes in relative sea level on a mixed carbonate siliciclastic shelf in the Guyana Basin

    NASA Astrophysics Data System (ADS)

    Campbell, A. Ewan

    2005-04-01

    Differences in the shelf-margin geometry for various depositional regimes show how siliciclastic and carbonate margins respond differently to changes in accommodation space. During the Cenozoic, sequences of carbonate and siliciclastic sediment were deposited in the Guyana Basin on the passive continental margin of NE South America. Study of the sequence geometries reveal significantly different geometric responses to changes in relative sea level of intervals dominated by carbonates to intervals dominated by siliciclastics. Using the geometrical shelf break as a reference point, aggradation and progradation rates for the carbonate and siliciclastic depositional systems were measured. In siliciclastics, the lateral position of the margin remains roughly stationary with relative sea-level rises in the order of 30 m/My. At higher rates the margin retreats at lower rates it progrades. Carbonate margins remain stationary or slightly progradational even with relative sea-level rises of up to 100 m/My, the fastest rates observed in this study. This illustrates the strong tendency of carbonate platforms to stack their margins and keep up with relative rises in sea level, rather than gradually retreat landward as do siliciclastics. This observation may explain why carbonate platforms preferentially try to defend a margin prior to ultimate backstepping. The high aggradation potential of carbonate margins also gives onlap and downlap termination patterns on seismic profiles where carbonate platforms develop on sloping siliciclastic shelves. The resulting unconformities are a result of differences in sediment dispersal between the two systems and not necessarily from changes of relative sea level.

  3. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    NASA Astrophysics Data System (ADS)

    Scholz, C. A.; Hutchinson, D. R.

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian-American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100m deep, and the base of the cores is only 670ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past 2-3Ma.

  4. Sediment dispersal in modern and mid-Holocene basins: implications for shoreline progradation and sediment bypassing, Poverty Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; Harris, C. K.; McNinch, J.

    2006-12-01

    Poverty Bay is a small embayment located on the eastern shore of New Zealand's North Island. The modern Waipaoa River, a small mountainous river that drains highly erodible mudstone and siltstone, discharges ~15 million tons of sediment per year to Poverty Bay. Rates of bay infilling from fluvial sediment have varied since the maximum shoreline transgression, ~7000 kya. The evolving geometry of Poverty Bay has likely impacted sediment dispersal over these timescales, and thereby influenced the stratigraphic architecture, rates of shoreline progradation, and sediment supply to the continental shelf. This modeling study investigates sediment transport within both modern and paleo, ~7000 kya, Poverty Bays. The Regional Ocean Modeling System was used to examine sediment transport within modern and ~7000 kya Poverty Bay basin geometries. The numerical model includes hydrodynamics driven by winds and buoyancy, and sediment resuspension from energetic waves and currents. Strong winds and waves from the southeast were used, along with high Waipaoa freshwater and sediment discharge, consistent with storm conditions. Besides shedding light on short term transport mechanisms, these results are being incorporated into a stratigraphic model by Wolinsky and Swenson. The paleo basin geometry narrowed at the head of the bay, causing currents to converge and promoting near- field sediment deposition. Buoyancy and wind driven across-shelf currents in the modern bay transport sediment away from the river mouth. Sediment was deposited closer to the river mouth in the paleo than the modern bay, and the modern bay exported much more sediment to the continental shelf than predicted for the middle Holocene bay. Net across-shelf fluxes decreased from a maximum at the head of the bay to nearly zero at the mouth during the paleo run. The modern run, however, had net across-shelf fluxes still half the maximum at the bay mouth. Results from short term model runs indicated that, with similar river discharges, the 7000 kya Poverty Bay shoreline should have prograded rapidly as sediment was deposited near the river mouth at the head of the bay, an area of little accommodation space. The trapping of sediment within the bay would have lead to a relatively sediment starved continental shelf. As the river mouth progressed towards the wider section of the bay, progradation should have been reduced as both proximal accommodation space and sediment export to the continental shelf increased.

  5. Facies-related fracturing in turbidites: insights from the Marnoso-Arenacea Fm. (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Bedogni, Enrico; Tinterri, Roberto; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael

    2016-04-01

    Natural fractures deeply influence subsurface fluid flow, exerting a primary control on resources like aquifers, hydrocarbons and geothermal reservoirs, and on environmental issues like CO2 storage and nuclear waste disposal. In layered sedimentary rocks, depositional processes-imprinted rock rheology favours the development of both mechanical anisotropy and heterogeneity on a wide range of scales, and are thus expected to strongly influence location and frequency of fractures. To better constrain the contribution of stratigraphic, sedimentological and petrophysical attributes, we performed a high-resolution, multidisciplinary study on a selected stratigraphic interval of jointed foredeep turbidites in the Miocene Marnoso-arenacea Formation (Northern Apennines, Italy), which are characterised by a great lateral and vertical variability of grain-size and depositional structures. Statistical relationships among field and laboratory data significantly improve when the single facies scale is considered, and, for similar facies recording different evolutionary stages of the parent turbidity currents, we observed a direct correlation between the three-dimensional anisotropies of rock hardness tensors and the normalized fracture frequencies, testifying for the primary sedimentary flow-related control on fracture distributions.

  6. Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea

    USGS Publications Warehouse

    Bahk, J.-J.; Kim, G.-Y.; Chun, J.-H.; Kim, J.-H.; Lee, J.Y.; Ryu, B.-J.; Lee, J.-H.; Son, B.-K.; Collett, Timothy S.

    2013-01-01

    Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that “gas hydrate occurrence zones” (GHOZ) are present about 68–155 mbsf at Site UBGH2-2_2 and 110–155 mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as “pore-filling” type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

  7. Mineralogy of Nicobar Fan turbidites (IODP Leg 362): Himalayan provenance and diagenetic control.

    NASA Astrophysics Data System (ADS)

    Limonta, M.; Garzanti, E.; Ando, S.; Carter, A.; Milliken, K. L.; Pickering, K. T.

    2017-12-01

    In this study we use quantitative petrographic and heavy-mineral data on silt-sized and sand-sized sediments from the Nicobar Fan turbiditic depositional system to unravel their provenance and discriminate between pre-depositional and post-depositional processes controlling sediment mineralogy. Eighteen samples from the two drill sites U1480 e U1481, collected down to a depth of 1400 m during International Ocean Discovery Expedition 362, were selected for analysis. A complete section of the sedimentary section overlying oceanic basaltic basement was recovered at the U1480 drill site, whereas the U1481 drill site, located 35 km to the southeast, focused on the deeper interval of the sedimentary section overlying oceanic basement. Here we illustrate the compositional trends observed throughout the recovered succession, and compare heavy-mineral suites characterizing sediments drilled at the two U1480 and U1481 sites to check for potential differences in sediment provenance over a relatively short distance in trench settings. Diagenetic control with increasing burial depth was also specifically investigated. In Pleistocene sediments at depths of a few tens of meters only, rich heavy-mineral assemblages include mainly hornblende, epidote, and garnet, associated with apatite, clinopyroxene, tourmaline, sillimanite, kyanite, zircon, titanite, and rare staurolite and rutile, testifying to long-distance provenance from the Himalayan range via the Ganga-Brahmaputra fluvio-deltaic-turbiditic system. Heavy-mineral concentration shows a progressive decrease with burial depth, pointing to selective diagenetic dissolution of less durable detrital minerals. Clinopyroxene becomes rare below 400 m depth and was not recorded below 500 m depth, where amphibole decreases notably in relative abundance. More durable heavy minerals, including zircon, tourmaline, apatite, garnet and epidote, consequently tend to be relatively enriched with increasing age and burial depth. Petrographic and heavy-mineral data, combined with biostratigraphic, paleomagnetic, and geochemical evidence, allow us to unravel the sedimentary history of the Nicobar Fan as related to Himalayan uplift, erosion, and monsoon development during the last 10 Ma.

  8. Facies and Depositional History of Arc-Related, Deep-Marine Volcaniclastic Rocks in Core Recovered on International Ocean Discovery Program Expedition 351, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.; Waldman, R.; Marsaglia, K. M.

    2016-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) volcanic arcs and associated basins partly filled with volcanic sediment. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR), in the Amami-Sankaku Basin (ASB) during International Ocean Discovery Program (IODP) Expedition 351, contains an incredibly well-preserved record of backarc sedimentation resulting from changing tectonic regimes during arc development and decline. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. A database of stratigraphic columns, 539 section and 147 core summaries, was created to display grain size trends, sedimentary structures, bedding characteristics, and facies changes. Individual depositional events were classified using existing and slightly modified classification schemes for muddy, sandy, and gravel-rich gravity flow deposits, as well as muddy deposits and tuffs. Downhole trends show repeating coarsening-upward intervals that grade from fine-grained turbidites to coarser turbidites and debrites. These trends indicate how the active depositional systems evolved upsection as the arc matured. Following arc initiation, facies deposited were primarily mud-rich; these coarsened-upward into 12 stacked sequences of submarine lobe and channel facies with sediment from one or more volcanic sources. These are interpreted to represent the building of the arc edifice that began 41 Ma. Four distinct periods of coarse lobe accumulation created a thick submarine fan over a period of nearly 13 million years. An abrupt shift to muddy turbidites at 30 Ma represents the onset of rifting of the paleo-IBM arc as backarc spreading in the Shikoku Basin was initiated and volcaniclastic supply to the ASB waned with formation of the KPR remnant arc.

  9. Sediment Pathways Across Trench Slopes: Results From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.

    2015-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  10. Using U-Pb Detrital Zircon to Identify Evolution of Sediment Drainage in the South Central Pyrenean Foreland Basin, Spain

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Stockli, D. F.; McKay, M. P.; Thomson, K.; Puigdefabregas, C.; Castelltort, S.; Dykstra, M.; Fildani, A.

    2014-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  11. Deformation Analyses and Lithologic Characterization in Overpressured Basins Based on Logging While Drilling and Wireline Results from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Iturrino, G. J.; Pirmez, C.; Moore, J. C.; Reichow, M. K.; Dugan, B. E.; Sawyer, D. E.; Flemings, P. B.; Shipboard Scientific Party, I.

    2005-12-01

    IODP Expedition 308 drilled transects along the Brazos-Trinity IV and Ursa Basins in the western and eastern Gulf of Mexico, respectively, for examining how sedimentation, overpressure, fluid flow, and deformation are coupled in passive margin settings. A total of eight holes were logged using either logging while drilling (LWD) or wireline techniques to evaluate the controls on slope stability, understand the timing of sedimentation and slumping, establish the petrophysical properties of shallow sediments, and provide a better understanding of turbidite systems. Overall, the log responses vary for the different lithostratigraphic units and associated regional seismic reflectors. The data acquired also make bed-to-bed correlation between sites possible, which is valuable for the study of sandy turbidites and studies of regional deformation. The thick sedimentary successions drilled at these basins show records of the evolution of channel-levee systems composed of low relief channels that were incapable of confining the turbidity currents causing an overspill of sand and silt. In addition, mass transport deposits at shallow depths, and transitions between interbedded silt, sand, and mud units are common features identified in many of the downhole logging data. In the Ursa Basin sediments, resistivity-at-the-bit images show significant deformation of the overlying hemipelagic drape and distal turbidites that were drilled in these areas. Numerous dipping beds throughout these intervals with dips ranging from 5 to 55 degrees confirm core observations. Steeply deformed beds, with dips as high as 65 degrees, and folded and faulted beds suggest down slope remobilization as mass-transport deposits. Resistivity images also show evidence of these mass-transport deposits where steep dips and folds suggest the presence of overturned beds within a series of cyclic intervals that we interpret as a succession of sand-silt-mud lamina. Preliminary structural analyses suggest that many of the deformation features trend in an E-W direction with the majority dipping to the north.

  12. Magnetomineralogical Characterization of Heinrich Events Preserved on Turbiditic Sediments From the Galicia Bank (NW Iberian Margin)

    NASA Astrophysics Data System (ADS)

    Coimbra, R.; Rey, D.; Mohamed, K.; Vilas, F.; Frederichs, T.

    2007-12-01

    Abyssal marine environments combine the ideal conditions for recording the climatic instability occurred during the last glacial period. However, on a more dynamic zone, such as the Galicia Bank slope, the turbiditic activity may compromise the fidelity of a given record. In this context, we will show how very detailed magnetic measurements make possible the detection and characterization of distinct climatic events in these environments, such as the Heinrich events H1 to H3 described in this paper. The study area is located on the south-western flank of the Galicia Bank, at depths ranging from 3363 to 4171 meters. It is influenced by the Lower North Atlantic Deep Water (LNADW) and Antarctica Bottom Water (AABW) deep currents that flow northwards as a result of thermohaline equilibrium. Three gravity cores of around 3 m long and representative of the main sedimentary environments in the area (fault scarp; turbidite lobe and interlobe depression) were selected for detail magnetic analysis. Measurements at room (magnetic susceptibility, ARM, hysteresis) and low temperature (susceptibility and SIRM) revealed the occurrence of magnetic-enriched laminae within the magnitude range documented for Heinrich events recorded in sediment of the abyssal plain bordering the Iberian continental margin. The formation of loops in the ARM-100 vs. susceptibility plots highlighted the typical increase in magnetic grain size that characterizes Heinrich sediments at latitudes inside the Rudimann Belt. Recognition of IRD layers in very detrital-diluted horizons was possible after the evaluation of magnetic domain state. Low temperature measurements were also useful to clarify on the mineralogy and grain size of this ice rafted particles, which proved to be stoichiometric magnetite. This was supported by the occurrence of a clear Verwey transition at 120K. The significant loss of total remanence after a complete SIRM-300K cycle in these horizons indicated the presence of larger grain sizes, when compared to other samples studied along the cores.

  13. Delineation of the North Anatolian Fault Within the Sapanca Lake and Correlation of Seismo-Turbidites With Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Gulen, L.; Demirbağ, E.; Cagatay, M. N.; Yıldırım, E.; Yalamaz, B.

    2015-12-01

    Seismic reflection studies have been carried out in the Sapanca Lake to delineate the geometry of the North Anatolian Fault. A total of 28 N-S and 2 E-W trending seismic profiles were obtained. The interpretation of seismic reflection profiles have revealed that the North Anatolian Fault Zone exhibits a pull-apart fault geometry within the Sapanca Lake and the active fault segments have been mapped. A bathymetry map of the Sapanca Lake is also generated and the maximum depth is determined to be 54 m. A systematic study of the sedimentological, physical and geochemical properties of three up to 75.7 cm long water-sediment interface cores located along depth transects ranging from 43 to 5.1.5 m water depth. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Organic (TOC) and Total Inorganic carbon (TIC) analysis and Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The Sapanca Lake earthquake records are characterized by seismo-turbidites consisting of grey or dark grey coarse to fine sand and silty mud with a sharp basal and transitional upper boundaries. The units commonly show normal size grading with their basal parts showing high density and magnetic susceptibility and enrichment in one or more of elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the seismo-turbidites are correlated with the 1999 İzmit and Düzce (Mw=7.4 and 7.2), 1967 Mudurnu (Mw= 6.8), and 1957 Abant (Mw= 7.1) Earthquakes. Additionally a prominent Cs137 peak was found in the Sapanca Lake sediment cores at a depth of 12 cm. indicating that a radioactive fallout occurred in the region as a result of the 1986 Chernobyl Nuclear Power Plant accident in Ukraine.

  14. Selective transport of palynomorphs in marine turbiditic deposits: An example from the Ascension-Monterey Canyon system offshore central California

    USGS Publications Warehouse

    McGann, Mary

    2017-01-01

    The pollen assemblage of a deep-sea core (15G) collected at lower bathyal depths (3491 m) on a levee of Monterey Canyon off central California was investigated to gain insights into the delivery processes of terrigenous material to submarine fans and the effect this transport has on the palynological record. Thirty-two samples were obtained down the length of the core, 19 from hemipelagic and mixed mud deposits considered to be the background record, and 13 others from displaced flow deposits. The pollen record obtained from the background samples documents variations in the terrestrial flora as it adapted to changing climatic conditions over the last 19,000 cal yrs BP. A Q-mode cluster analysis defined three pollen zones: a Glacial Pollen Zone (ca. 20,000–17,000 cal yr BP), an overlying Transitional Pollen Zone (ca. 17,000–11,500 cal yr BP), and an Interglacial Pollen Zone (ca. 11,500 cal yr BP to present). Another Q-mode cluster analysis, of both the background mud and flow deposits, also defined these three pollen zones, but four of the 13 turbiditic deposits were assigned to pollen zones older than expected by their stratigraphic position. This was due to these samples containing statistically significant fewer palynomorphs than the background muds as well as being enriched (∼10–35% in some cases) in hydraulically-efficient Pinus pollen. A selective bias in the pollen assemblage, such as demonstrated here, may result in incorrect interpretations (e.g., climatic shifts or environmental perturbations) based on the floral record, indicating turbiditic deposits should be avoided in marine palynological studies. Particularly in the case of fine-grained flow deposits that may not be visually distinct, granulometry and grain size frequency distribution curves may not be enough to identify these biased deposits. Determining the relative abundance and source of displaced shallow-water benthic foraminifera entrained in these sediments serves as an excellent additional tool to do so.

  15. Variability in form and growth of sediment waves on turbidite channel levees

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Posamentier, H.; Pirmez, C.; Migeon, S.

    2002-01-01

    Fine-grained sediment waves have been observed in many modern turbidite systems, generally restricted to the overbank depositional element. Sediment waves developed on six submarine fan systems are compared using high-resolution seismic-reflection profiles, sediment core samples (including ODP drilling), multibeam bathymetry, 3D seismic-reflection imaging (including examples of burried features), and direct measurements of turbidity currents that overflow their channels. These submarine fan examples extend over more than three orders of magnitude in physical scale. The presence or absence of sediment waves is not simply a matter of either the size of the turbidite channel-levee systems or the dominant initiation process for the turbidity currents that overflow the channels to form the wave fields. Both sediment-core data and seismic-reflection profiles document the upslope migration of the wave forms, with thicker and coarser beds deposited on the up-current flank of the waves. Some wave fields are orthogonal to channel trend and were initiated by large flows whose direction was controlled by upflow morphology, whereas fields subparallel to channel levees resulted from local spillover. In highly meandering systems, sediment waves may mimic meander planform. Larger sediment waves form on channel-levee systems with thicker overflow of turbidity currents, but available data indicate that sediment waves can be maintaned during conditions of relatively thin overflow. Coarser-grained units in sediment waves are typically laminated and thin-bedded sand as much as several centimetres thick, but sand beds as thick as several tens of centimetres have been documented from both modern and buried systems. Current production of hydrocarbons from sediment-wave deposits suggests that it is important to develop criteria for recognising this overbank element in outcrop exposures and borehole data, where the wavelength of typical waves (several kilometres) generally exceeds outcrop scales and wave heights, which are reduced as a result of consolidation during burial, may be too subtle to recognise. Crown Copyright ?? 2002 Published by Elsevier Science B.V. All rights reserved.

  16. Tufts submarine fan: turbidity-current gateway to Escanaba Trough

    USGS Publications Warehouse

    Reid, Jane A.; Normark, William R.

    2003-01-01

    Turbidity-current overflow from Cascadia Channel near its western exit from the Blanco Fracture Zone has formed the Tufts submarine fan, which extends more than 350 km south on the Pacific Plate to the Mendocino Fracture Zone. For this study, available 3.5-kHz high-resolution and airgun seismic-reflection data, long-range side-scan sonar images, and sediment core data are used to define the growth pattern of the fan. Tufts fan deposits have smoothed and filled in the linear ridge-and-valley relief over an area exceeding 23,000 km2 on the west flank of the Gorda Ridge. The southernmost part of the fan is represented by a thick (as much as 500 m) sequence of turbidite deposits ponded along more than 100 km of the northern flank of the Mendocino Fracture Zone. Growth of the Tufts fan now permits turbidity-current overflow from Cascadia Channel to reach the Escanaba Trough, a deep rift valley along the southern axis of the Gorda Ridge. Scientific drilling during both the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) provided evidence that the 500-m-thick sediment fill of Escanaba Trough is dominantly sandy turbidites. Radiocarbon dating of the sediment at ODP Site 1037 showed that deposition of most of the upper 120 m of fill was coincident with Lake Missoula floods and that the provenance of the fill is from the eastern Columbia River drainage basin. The Lake Missoula flood discharge with its entrained sediment continued flowing downslope upon reaching the ocean as hyperpycnally generated turbidity currents. These huge turbidity currents followed the Cascadia Channel to reach the Pacific Plate, where overbank flow provided a significant volume of sediment on Tufts fan and in Escanaba Trough. Tufts fan and Tufts Abyssal Plain to the west probably received turbidite sediment from the Cascadia margin during much of the Pleistocene.

  17. Alaska: A twenty-first-century petroleum province

    USGS Publications Warehouse

    Bird, K.J.

    2001-01-01

    Alaska, the least explored of all United States regions, is estimated to contain approximately 40% of total U.S. undiscovered, technically recoverable oil and natural-gas resources, based on the most recent U.S. Department of the Interior (U.S. Geological Survey and Minerals Management Service) estimates. Northern Alaska, including the North Slope and adjacent Beaufort and Chukchi continental shelves, holds the lion's share of the total Alaskan endowment of more than 30 billion barrels (4.8 billion m3) of oil and natural-gas liquids plus nearly 200 trillion cubic feet (5.7 trillion m3) of natural gas. This geologically complex region includes prospective strata within passive-margin, rift, and foreland-basin sequences. Multiple source-rock zones have charged several regionally extensive petroleum systems. Extensional and compressional structures provide ample structural objectives. In addition, recent emphasis on stratigraphic traps has demonstrated significant resource potential in shelf and turbidite systems in Jurassic to Tertiary strata. Despite robust potential, northern Alaska remains a risky exploration frontier - a nexus of geologic complexity, harsh economic conditions, and volatile policy issues. Its role as a major petroleum province in this century will depend on continued technological innovations, not only in exploration and drilling operations, but also in development of huge, currently unmarketable natural-gas resources. Ultimately, policy decisions will determine whether exploration of arctic Alaska will proceed.

  18. Facies mosaic in a fiord: Carboniferous-Permian Talchir Formation, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, P.K.; Mukhopadhyay, G.; Bhattacharya, H.N.

    1988-01-01

    Facies analysis of the basal 37m of the Carboniferous-Permian Talchir Formation is a glacier-fed bedrock trough in Dudhi nala, Bihar, India, provides insight into the pattern of sedimentation of course gravels in a fiord. Rapid transitions between 11 recognized facies, together with their complex organization, random variability in bed thickness, and differences in clast, shape, size, and composition indicate coalescence of fans developed from numerous point sources bordering the elongated trough. Converging slide masses and lodgment tillites on the slopes flanking the trough give way to sediment gravity flow deposits composed of an array of conglomerates (matrix and clast supportedmore » with normal, inverse of absence of grading), attendant turbidite sands, and prodelta mud. The rheology of the in-trough flows ranged from plastic laminar to fluidal turbulent in response to flow from slope to floor of the trough. Rapid calving of icebergs during the onset of deglaciation established a wave regime at the mouth of the trough and deposited cross-stratified sandstone replete with dripstones. The impact of large dripstones landing triggered turbidity currents. Continued rise in water level led to eventual preservation of the fan complex under onlapping wave-built shoal facies that grade into a sequence of upward-thinning hummocky cross-stratified sandstone beds virtually devoid of dripstones.« less

  19. Superquakes and Supercycles

    NASA Astrophysics Data System (ADS)

    Goldfinger, C.; Ikeda, Y.; Yeats, R. S.

    2011-12-01

    The recent Mw=9 superquake off Tohoku Japan, and the 2004 Sumatra-Andaman superquake have humbled many in earthquake research. Neither region was thought capable of earthquakes of magnitudes exceeding Mw~8.4 based on historical records and theories based on short instrumental records. In NE Japan, horizontal shortening is ~5-7 mm/yr. based on faulting and regional uplift data. On the Pacific coast, high rates of subsidence from tide gauges, and geodetic observations revealed E-W contraction at several tens of mm/yr. Only a fraction (< 10%) of plate convergence is inelastic. The elastic rate is ~ an order of magnitude greater than the geologic rate, and is comparable to convergence at the Trench. These data strongly suggested that the strain must be released periodically in earthquakes stronger than those in the historical record (Ikeda, 2003). The Jogan tsunami of 869 is a likely equivalent to the 2011 earthquake, and had two predecessors at ~ 1000 year intervals (Minoura et al., 2001; Shishikura et al., 2007). A related example is the Haiyuan fault, China, the source of an earthquake in 1920 with a rupture length of 237 km. Paleoseismic trenching divided the 1920 rupture into three segments and dated surface-rupturing earthquakes in the past 6000 yrs. Some earthquakes ruptured one segment, some ruptured two, but only one (6100-6200 yrs BP) ruptured all three segments and was a likely duplicate of 1920 (Ran et al. 1997). Prior to trenching, there was a tendency to regard the 1920 earthquake as the characteristic earthquake, when the majority of the paleoseismic examples were much smaller. The two largest events had much greater net slip (5.6 and 7.0 m respectively for ~6150 BP and AD 1920) than the intervening events which averaged 1.5-2 m. In Cascadia, a 10ka paleoseismic record includes evidence of segmented ruptures, clustering, and several outsized events. Goldfinger et al. (2011) compared the mass of correlated turbidite deposits along strike, and found strong correlation between disparate sites. They conclude the earthquake magnitude and turbidite mass are related for many of the Cascadia events. The two outsized events, dated at ~ 5960 and 8810 yrs. BP, consistently have two to five times the average turbidite mass for Holocene events at many sites. To examine long term cycling of kinetic energy, we scale turbidite mass (energy release) to balance plate convergence (energy gain) to generate a 10ka energy time series for Cascadia. A robust pattern is observed, and includes long term increases and declines in stored "energy state" which we term "supercycles". If Cascadia is representative, this suggests that recurrence models may be neither time nor slip predictable and cannot be based on short instrumental records.

  20. The Usumacinta-Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation

    NASA Astrophysics Data System (ADS)

    Nooren, Kees; Hoek, Wim Z.; Winkels, Tim; Huizinga, Annika; Van der Plicht, Hans; Van Dam, Remke L.; Van Heteren, Sytze; Van Bergen, Manfred J.; Prins, Maarten A.; Reimann, Tony; Wallinga, Jakob; Cohen, Kim M.; Minderhoud, Philip; Middelkoop, Hans

    2017-09-01

    The beach-ridge sequence of the Usumacinta-Grijalva delta borders a 300 km long section of the southern Gulf of Mexico coast. With around 500 beach ridges formed in the last 6500 years, the sequence is unsurpassed in the world in terms of numbers of individual ridges preserved, continuity of the record, and temporal resolution. We mapped and dated the most extensively accreted part of the sequence, linking six phases of accretion to river mouth reconfigurations and constraining their ages with 14C and OSL dating. The geomorphological and sedimentological reconstruction relied on lidar data, coring transects, GPR measurements, grain-size analyses, and chemical fingerprinting of volcanic glass and pumice encountered within the beach and dune deposits. We demonstrate that the beach-ridge complex was formed under ample long-term fluvial sediment supply and shorter-term wave- and aeolian-modulated sediment reworking. The abundance of fluvially supplied sand is explained by the presence of easily weatherable Los Chocoyos ignimbrites from the ca. 84 ka eruption of the Atitlán volcano (Guatemala) in the catchment of the Usumacinta River. Autocyclic processes seem responsible for the formation of ridge-swale couplets. Fluctuations in their periodicity (ranging from 6-19 years) are governed by progradation rate, and are therefore not indicative of sea level fluctuations or variability in storm activity. The fine sandy beach ridges are mainly swash built. Ridge elevation, however, is strongly influenced by aeolian accretion during the time the ridge is located next to the beach. Beach-ridge elevation is negatively correlated with progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment. In the southern Mexican delta plain, the coastal beach ridges therefore appear to be excellent recorders of hinterland precipitation.

  1. Late quaternary evolution of the Orinoco Delta, Venezuela

    USGS Publications Warehouse

    Warne, A.G.; Guevara, E.H.; Aslan, A.

    2002-01-01

    The modern Orinoco Delta is the latest of a series of stacked deltas that have infilled the Eastern Venezuelan Basin (EVB) since the Oligocene. During the late Pleistocene sea-level lowstand (20,000 to 16,000 yrs BP), bedrock control points at the position of the present delta apex prevented the river channel from incising as deeply as many other major river systems. Shallow seismic data indicate that the late Pleistocene Orinoco incised into the present continental shelf, where it formed a braided-river complex that transported sediment to a series of shelf-edge deltas. As sea level rose from 16,000 to 9,500 yrs BP, the Orinoco shoreline shifted rapidly landward, causing shallow-marine waves and currents to form a widespread transgressive sand unit. Decelerating sea-level rise and a warmer, wetter climate during the early Holocene (9,500 to 6,000 yrs BP) induced delta development within the relatively quiet-water environment of the EVB embayment. Sea level approached its present stand in the middle Holocene (6,000 to 3,000 yrs BP), and the Orinoco coast prograded, broadening the delta plain and infilling the EVB embayment. Significant quantities of Amazon sediment began to be transported to the Orinoco coast by littoral currents. Continued progradation in the late Holocene caused the constriction at Boca de Serpientes to alter nearshore and shelf hydrodynamics and subdivide the submarine delta into two distinct areas: the Atlantic shelf and the Gulf of Paria. The increased influence of littoral currents along the coast promoted mudcape development. Because most of the water and sediment were transported across the delta plain through the Rio Grande distributary in the southern delta, much of the central and northwestern delta plain became sediment starved, promoting widespread accumulation of peat deposits. Human impacts on the delta are mostly associated with the Volca??n Dam on Can??o Manamo. However, human activities have had relatively little effect on the delta processes and environments.

  2. An a priori model for the reduction of nutation observations: KSV(1994.3) nutation series

    NASA Technical Reports Server (NTRS)

    Herring, T. A.

    1995-01-01

    We discuss the formulation of a new nutation series to be used in the reduction of modern space geodetic data. The motivation for developing such a series is to develop a nutation series that has smaller short period errors than the IAU 1980 nutation series and to provide a series that can be used with techniques such as the Global Positioning System (GPS) that have sensitivity to nutations but can directly separate the effects of nutations from errors in the dynamical force models that effect the satellite orbits. A modern nutation series should allow the errors in the force models for GPS to be better understood. The series is constructed by convolving the Kinoshita and Souchay rigid Earth nutation series with an Earth response function whose parameters are partly based on geophysical models of the Earth and partly estimated from a long series (1979-1993) of very long baseline interferometry (VLBI) estimates of nutation angles. Secular rates of change of the nutation angles to represent corrections to the precession constant and a secular change of the obliquity of the ecliptic are included in the theory. Time dependent amplitudes of the Free Core Nutation (FCN) that is most likely excited by variations in atmospheric pressure are included when the geophysical parameters are estimated. The complex components of the prograde annual nutation are estimated simultaneously with the geophysical parameters because of the large contribution to the nutation from the S(sub 1) atmospheric tide. The weighted root mean square (WRMS) scatter of the nutation angle estimates about this new model are 0.32 mas and the largest correction to the series when the amplitudes of the ten largest nutations are estimated is 0.18 +/- 0.03 mas for the in phase component of the prograde 18. 6 year nutation.

  3. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    NASA Astrophysics Data System (ADS)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.

  4. Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites

    NASA Astrophysics Data System (ADS)

    Owona, Sebastien; Schulz, Bernhard; Ratschbacher, Lothar; Mvondo Ondoa, Joseph; Ekodeck, Georges E.; Tchoua, Félix M.; Affaton, Pascal

    2011-01-01

    Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D 1-D 2, D 3 and D 4. The garnet-bearing assemblages crystallized in course of the deformation stage D 1-D 2 which led to the formation of the regional main foliation S 2. In XCa- XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P- T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P- T trends. The P- T evolution started at ˜450 °C/7 kbar, passed high-pressure conditions at 11-12 kbar at variable temperatures (600-700 °C) and involved a marked decompression toward 6-7 kbar at high temperatures (700-750 °C). Th-U-Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature-intermediate pressure stage at the end of the prograde P- T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P- T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.

  5. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-12-01

    Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related to hydraulic jumps, passing upwards and downflow into deposits of antidunes and (humpback) dunes. The recurrent facies architecture of the lobe elements and their prograding and retrograding stacking pattern are interpreted as related to autogenic flow morphodynamics.

  6. Surface-geophysical characterization of ground-water systems of the Caloosahatchee River basin, southern Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Locker, Stanley D.; Hine, Albert C.; Bukry, David; Barron, John A.; Guertin, Laura A.

    2001-01-01

    The Caloosahatchee River Basin, located in southwestern Florida, includes about 1,200 square miles of land. The Caloosahatchee River receives water from Lake Okeechobee, runoff from the watershed, and seepage from the underlying ground-water systems; the river loses water through drainage to the Gulf of Mexico and withdrawals for public-water supply and agricultural and natural needs. Water-use demands in the Caloosahatchee River Basin have increased dramatically, and the Caloosahatchee could be further stressed if river water is used to accommodate restoration of the Everglades. Water managers and planners need to know how much water will be used within the river basin and how much water is contributed by Lake Okeechobee, runoff, and ground water. In this study, marine seismic-reflection and ground-penetrating radar techniques were used as a means to evaluate the potential for flow between the river and ground-water systems. Seven test coreholes were drilled to calibrate lithostratigraphic units, their stratal geometries, and estimated hydraulic conductivities to surface-geophysical profiles. A continuous marine seismic-reflection survey was conducted over the entire length of the Caloosahatchee River and extending into San Carlos Bay. Lithostratigraphic units that intersect the river bottom and their characteristic stratal geometries were identified. Results show that subhorizontal reflections assigned to the Tamiami Formation intersect the river bottom between Moore Haven and about 9 miles westward. Oblique and sigmoidal progradational reflections assigned to the upper Peace River Formation probably crop out at the floor of the river in the Ortona area between the western side of Lake Hicpochee and La Belle. These reflections image a regional-scale progradational deltaic depositional system containing quartz sands with low to moderate estimated hydraulic conductivities. In an approximate 6-mile length of the river between La Belle and Franklin Lock, deeper karstic collapse structures are postulated. These structures influence the geometries of parallel reflections that intersect the river channel. Here, reflections assigned to the Buckingham Limestone Member of the Tamiami Formation (a confining unit) and reflections assigned to the clastic zone of the sandstone aquifer likely crop out at the river bottom. Beneath these shallow reflections, relatively higher amplitude parallel reflections of the carbonate zone of the sandstone aquifer are well displayed in the seismic-reflection profiles. In San Carlos Bay, oblique progradational reflections assigned to the upper Peace River Formation are shown beneath the bay. Almost everywhere beneath the river, a diffuse ground-water flow system is in contact with the channel bottom. Ground-penetrating radar profiles of an area about 2 miles north of the depositional axis of the deltaic depositional system in the Ortona area show that progradational clinoforms imaged on seismic reflection profiles in the Caloosahatchee River are present within about 17 feet of the ground surface. Ground-penetrating radar profiles show southward dipping, oblique progradational reflections assigned to the upper Peace River Formation that are terminated at their tops by a toplapping or erosional discontinuity. These clinoformal reflections image clean quartz sand that is probably characterized by moderate hydraulic conductivity. This sand could be mapped using ground-penetrating radar methods.

  7. Field, petrologic and detrital zircon study of the Kings sequence and Calaveras complex, Southern Lake Kaweah Roof Pendant, Tulare County, California

    NASA Astrophysics Data System (ADS)

    Buchen, Christopher T.

    U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.

  8. Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes)

    NASA Astrophysics Data System (ADS)

    Bourgois, Jacques; Toussaint, Jean-François; Gonzalez, Humberto; Azema, Jacques; Calle, Bernardo; Desmet, Alain; Murcia, Luis A.; Acevedo, Alvaro P.; Parra, Eduardo; Tournon, Jean

    1987-12-01

    The Western Cordillera of Colombia was formed by intense alpine-type nappe-forming folding and thrusting. The Cretaceous (80-120 Ma B.P.) tholeiitic material of the Western Cordilleran nappes has been obducted onto the Paleozoic and Precambrian polymetamorphic micaschists and gneiss of the Central Cordillera. Near Yarumal, the Antioquia batholith (60-80 Ma B.P.) intrudes both obducted Cretaceous oceanic material and the polymetamorphic basement rock of the Central Cordillera. Therefore, nappe emplacement and obduction onto the Central Cordillera occurred during Late Senonian to Early Paleocene. The nappes travelled from northwest to southeast so that the highest unit, the Rio Calima nappe therefore has the most northwestern source, whereas the lowest units originated from a more southeastward direction. Sedimentological analysis of the volcanoclastic and sandy turbidite material from each unit suggests a marginal marine environment. During Cretaceous times the opening of this marginal sea, from now on called the "Colombia marginal basin", probably originated by detachment of a block from the South American continent related to the Farallon-South America plate convergence. In the Popayan area (southern Colombia), the Central Cordilleran basement exhibits glaucophane schist facies metamorphism. This high pressure low temperature metamorphism is of Early Cretaceous (125 Ma B.P.) age and is related to an undated metaophiolitic complex. The ophiolitic material originating from the Western Cordilleran is thrust over both the blueschist belt and the metaophiolitic complex. These data suggest that the "Occidente Colombiano" suffered at least two phases of ophiolitic obduction during Mesozoic time.

  9. Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Alta; Repetski, John E.

    2014-01-01

    Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and associated calcareous metaturbidites of Ordovician age as well as shallow-water Silurian dolostones. Scattered metacarbonate rocks are chiefly Cambrian, Ordovician, Silurian, and Devonian dolostones that formed in shallow, warm-water settings with locally restricted circulation and marbles of less constrained Paleozoic age. Carbonate metaturbidites occur on the northeast and southeast coasts and yield mainly Silurian and lesser Ordovician and Devonian conodonts; the northern succession also includes debris flows with meter-scale clasts and an argillite interval with Late Ordovician graptolites and lenses of radiolarian chert. Mafic igneous rocks at least partly of Early Devonian age are common in the southern succession. Carbonate rocks on Seward Peninsula experienced a range of deformational and thermal histories equivalent to those documented in the Brooks Range. Conodont color alteration indices (CAIs) from Seward Peninsula, like those from the Brooks Range, define distinct thermal provinces that likely reflect structural burial. Penetratively deformed high-pressure metamorphic rocks of the Nome Complex (CAIs ≥5) correspond to rocks of the Schist belt in the southern Brooks Range; both record subduction during early stages of the Jurassic–Cretaceous Brooks Range orogeny. Weakly metamorphosed to unmetamorphosed strata of the York terrane (CAIs mainly 2–5), like Brooks Range rocks in the Central belt and structural allochthons to the north, experienced moderate to shallow burial during the main phase of the Brooks Range orogeny. The nature of the contact between the York terrane and the Nome Complex is uncertain; it may be a thrust fault, an extensional surface, or a thrust fault later reactivated as an extensional fault. Lithofacies and biofacies data indicate that, in spite of their divergent Mesozoic histories, rocks of the York terrane and protoliths of the Nome Complex formed as part of the same lower Paleozoic carbonate platform. Stratigraphies in both

  10. Sedimentary architecture and depositional controls of a Pliocene river-dominated delta in the semi-isolated Dacian Basin, Black Sea

    NASA Astrophysics Data System (ADS)

    Jorissen, Elisabeth L.; de Leeuw, Arjan; van Baak, Christiaan G. C.; Mandic, Oleg; Stoica, Marius; Abels, Hemmo A.; Krijgsman, Wout

    2018-06-01

    Sedimentological facies models for (semi-)isolated basins are less well developed than those for marine environments, but are critical for our understanding of both present-day and ancient deltaic sediment records in restricted depositional environments. This study considers an 835 m thick sedimentary succession of mid-Pliocene age, which accumulated in the Dacian Basin, a former embayment of the Black Sea. Detailed sedimentological and palaeontological analyses reveal a regression from distal prodelta deposits with brackish water faunas to delta-top deposits with freshwater faunas. Sediments contain frequent hyperpycnal plumes and an enrichment in terrestrial organic material, ichnofossils and in situ brackish and freshwater faunas. Deltaic progradation created thin, sharply-based sand bodies formed by multiple terminal distributary channels, covering a wide depositional area. The system experienced frequent delta-lobe switching, resulting in numerous thin parasequences. Parasequences are overlain by erosive reddish oxidized sand beds, enriched in broken, abraded brackish and freshwater shells. These beds were formed after sediment starvation, on top of abandoned delta lobes during each flooding event. A robust magnetostratigraphic time frame allowed for comparison between the observed sedimentary cyclicity and the amplitude and frequency of astronomical forcing cycles. Our results indicate that parasequence frequencies are significantly higher than the number of time equivalent astronomical cycles. This suggests that delta-lobe switching was due to autogenic processes. We consider the observed facies architecture typical for a delta prograding on a low-gradient slope into a shallow, brackish, protected, semi-isolated basin. Furthermore, in the absence of significant wave and tidal influence, sediment progradation in such a protected depositional setting shaped a delta, strongly river-dominated.

  11. Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data

    NASA Astrophysics Data System (ADS)

    Obu, Jaroslav; Lantuit, Hugues; Grosse, Guido; Günther, Frank; Sachs, Torsten; Helm, Veit; Fritz, Michael

    2017-09-01

    Erosion of permafrost coasts has received increasing scientific attention since 1990s because of rapid land loss and the mobilisation potential of old organic carbon. The majority of permafrost coastal erosion studies are limited to time periods from a few years to decades. Most of these studies emphasize the spatial variability of coastal erosion, but the intensity of inter-annual variations, including intermediate coastal aggradation, remains poorly documented. We used repeat airborne Light Detection And Ranging (LiDAR) elevation data from 2012 and 2013 with 1 m horizontal resolution to study coastal erosion and accompanying mass-wasting processes in the hinterland. Study sites were selected to include different morphologies along the coast of the Yukon Coastal Plain and on Herschel Island. We studied elevation and volume changes and coastline movement and compared the results between geomorphic units. Results showed simple uniform coastal erosion from low coasts (up to 10 m height) and a highly diverse erosion pattern along coasts with higher backshore elevation. This variability was particularly pronounced in the case of active retrogressive thaw slumps, which can decrease coastal erosion or even cause temporary progradation by sediment release. Most of the extremes were recorded in study sites with active slumping (e.g. 22 m of coastline retreat and 42 m of coastline progradation). Coastline progradation also resulted from the accumulation of slope collapse material. These occasional events can significantly affect the coastline position on a specific date and can affect coastal retreat rates as estimated in long term by coastline digitalisation from air photos and satellite imagery. These deficiencies can be overcome by short-term airborne LiDAR measurements, which provide detailed and high-resolution information about quickly changing elevations in coastal areas.

  12. Early to Middle Holocene sea level fluctuation, coastal progradation and the Neolithic occupation in the Yaojiang Valley of southern Hangzhou Bay, Eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Qianli; Fan, Daidu; Dai, Bin; Ma, Fuwei; Xu, Lichen; Chen, Jing; Chen, Zhongyuan

    2018-06-01

    The Yaojiang Valley (YJV) of southern Hangzhou Bay was the birthplace of the well-known Hemudu Culture (HC), one of the representatives of Neolithic civilization in eastern China. To explore the magnitude of natural environmental effects on the HC trajectory, the palaeo-embayment setting of the YJV was studied in detail for the first time in terms of 3D Holocene strata supported by a series of new radiocarbon-dated cores. The results indicated that the local relative sea level rose rapidly during the Early Holocene in the YJV, reached its maximum flooding surface ca. 7900 cal yr BP, and then remained stable ca. 7900-7600 cal yr BP. Thereupon, an estuary stretching inland was first formed by marine transgression, and then, it was transformed to an alluvial-coastal plain by regressive progradation. The alluvial plain was initiated in the foothills and then spread towards the valley centre after sea level stabilization ca. 7600 cal yr BP. Accompanying these natural environmental changes, the earliest arrivals of foragers in the valley occurred no later than ca. 7000 cal yr BP. They engaged in rice farming and fostered the HC for approximately two millennia from ca. 7000-5000 cal yr BP as more lands developed from coastal progradation. The rise and development of the HC are closely associated with the sea level-induced landscape changes in the YJV in the Early-Middle Holocene, but the enigmatic exodus of the HC people after ca. 5000 cal yr BP is still contentious and possibly linked with the rapid waterlogging and deterioration of this setting in such a low-lying coastal plain as well as with associated social reasons.

  13. Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa

    NASA Astrophysics Data System (ADS)

    Gulliford, Alice R.; Flint, Stephen S.; Hodgson, David M.

    2017-08-01

    Up to 12% of the mud-prone, ephemeral distributive fluvial system stratigraphy in the Permo-Triassic lower Beaufort Group, South Africa, comprises tabular fine-grained sandstone to coarse-grained siltstone bodies, which are interpreted as proximal to distal crevasse splay deposits. Crevasse splay sandstones predominantly exhibit ripple to climbing ripple cross-lamination, with some structureless and planar laminated beds. A hierarchical architectural scheme is adopted, in which 1 m thick crevasse splay elements extend for tens to several hundreds of meters laterally, and stack with other splay elements to form crevasse splay sets up to 4 m thick and several kilometers in width and length. Paleosols and nodular horizons developed during periods, or in areas, of reduced overbank flooding are used to subdivide the stratigraphy, separating crevasse splay sets. Deposits from crevasse splays differ from frontal splays as their proximal deposits are much thinner and narrower, with paleocurrents oblique to the main paleochannel. In order for crevasse splay sets to develop, the parent channel belt and the location where crevasse splays form must stay relatively fixed during a period of multiple flood events. Beaufort Group splays have similar geometries to those of contemporary perennial rivers but exhibit more lateral variability in facies, which is interpreted to be the result of more extreme fluctuations in discharge regime. Sharp-based crevasse splay packages are associated with channel avulsion, but most are characterized by a gradual coarsening upward, interpreted to represent progradation. The dominance of progradational splays beneath channel belt deposits may be more characteristic of progradational stratigraphy in a distributive fluvial system rather than dominated by avulsion processes in a trunk river system. This stratigraphic motif may therefore be an additional criterion for recognition of distributive fluvial systems in the ancient record.

  14. Timing and duration of Variscan high-pressure metamorphism in the French Massif Central: A multimethod geochronological study from the Najac Massif

    NASA Astrophysics Data System (ADS)

    Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Anczkiewicz, Robert; Van Den Driessche, Jean

    2018-05-01

    Accurate dating of eclogite-facies metamorphism is of paramount importance in order to understand the tectonic evolution of an orogen. An eclogite sample from the Najac Massif (French Massif Central, Variscan belt) displays a zircon-bearing garnet-omphacite-amphibole-rutile-quartz peak assemblage. Pseudosection modeling suggests peak pressure conditions of 15-20 kbar, 560-630 °C. Eclogite-facies garnet displays Lu-enriched cores and Sm-rich rims and yields a Lu-Hf age of 382.8 ± 1.0 Ma and a Sm-Nd age of 376.7 ± 3.3 Ma. The ages are interpreted as marking the beginning of the prograde garnet growth during the initial stages of the eclogite-facies metamorphism, and the high-pressure (and temperature) peak reached by the rock, respectively. Zircon grains display chondrite-normalized REE spectra with variably negative, positive or no Eu anomalies and are characterized by either enriched or flat HREE patterns. However, they yield a well constrained in situ LA-ICP-MS U-Pb age of 385.5 ± 2.3 Ma, despite this REE pattern variability. Zr zonation in garnet, Y content in zircon and the diversity of zircon HREE spectra may suggest that zircon crystallized prior to and during incipient garnet growth on the prograde P-T path, recording the initial stages of the eclogite-facies conditions. Consequently, the zircon age of 385.5 ± 2.3 Ma, comparable within error with the Lu-Hf age obtained on garnet, is interpreted as dating the beginning of the eclogite-facies metamorphism. Accordingly, the duration of the prograde part of the eclogite-facies event is estimated at 6.1 ± 4.3 Myr. Subsequent exhumation is constrained by an apatite U-Pb age at 369 ± 13 Ma.

  15. Judith River Formation beneath Fort Peck Indian Reservation - proven high plains gas frontier in northeastern Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monson, L.M.

    1988-07-01

    As one of the progradational sequences in the Late Cretaceous, the Claggett-Judith River cycle created potential reservoirs for shallow biogenic gas. From west to east across the Fort Peck Reservation in northeastern Montana, in a distance of 75 mi (121 km), the Judith River Formation changes from a 350-ft (107-m) accumulation of fine-grained nonmarine clastics, to a 130-ft (39-m) deposit of fine-grained sandstone. Three units are present in the subsurface of the central part of the reservation. A continuous basal sandstone, 30-130 ft (9-39 m) thick, formed in a coastal environment. This unit thickens in the direction of progradation, whichmore » may indicate the addition of sand bodies in a shelf environment. The middle unit is a 20 to 50-ft (6 to 15-m) sequence of shale and siltstone. Capping the Judith River is a sandstone 20-50 ft (6-15 m) thick, which formed either as a shore facies in the regressive cycle or as a shelf sandstone prior to the final Cretaceous transgression that deposited the overlying Bearpaw Shale. Stratigraphic traps exist in the upper and lower sandstone units due to variation in grain size and clay content associated with the progradational facies changes. In addition, Laramide structures associated with the Poplar dome and Wolf Creek nose have created local trapping mechanisms. Judith River gas has been produced for operational use since 1952 in the East Poplar field. Shows have been reported in central reservation wells, although high mud weights and deeper exploration targets have prevented adequate evaluation of the Judith River gas frontier.« less

  16. Stratigraphy and depositional history of the West Franklin Limestone (Pennsylvanian) in the southernmost part of the Illinois Basin, western Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, N.R.

    1994-04-01

    The West Franklin Limestone in the subsurface of Webster and Union Counties, Kentucky includes 7.5--18m of strata deposited during portions of four depositional cycles in the latest Desmoinesian and earliest Missourian (Pennsylvanian). These cycles began with marine flooding and deposition of limestone, followed by progradation of siliciclastics in three of the four cycles, and ended with emergence. The basal West Franklin is micritic limestone (0.5--3m) that rests on rooted mudstone. Overlying the limestone are siliciclastics (1.5--7m) dominated by red and green claystone that is rooted at the top. Next is a middle limestone zone that includes either a paleokarsted micriticmore » limestone, or a thin bioclastic micritic limestone bed associated with phosphatic shale and locally a second bioclastic micritic limestone. Above that is another siliciclastic interval (4--9m) capped by rooted mudstone and locally a thin coal. The overlying micritic limestone (1.5--2.5m) marks the top of the West Franklin. Depositional events included: (1) marine flooding of an emergent shelf producing the basal limestone; (2) progradation of siliciclastics followed by emergence and paleosol development; (3) marine flooding producing a second limestone; (4) emergence and karstification of erosional remnants of the second limestone; (5) renewed marine flooding depositing shell hash'' limestones and phosphatic shale; (6) progradation of siliciclastics culminating in emergency; and (7) marine flooding producing the upper limestone. Thus, two flooding-emergence cycles are represented by the middle limestone zone. The second, locally-developed shell-hash'' limestone in the middle zone was deposited during the regressive phase of a depositional cycle. All of the other limestones were deposited during transgression.« less

  17. Sedimentology and stratigraphy of the middle Eocene Guara carbonate platform near Arguis, South-West Pyrenean foreland: Implications for basin physiography

    NASA Astrophysics Data System (ADS)

    Huyghe, D.; Castelltort, S.; Serra-Kiel, J.; Filleaudeau, P.-Y.; Emmanuel, L.; Mouthereau, F.; Renard, M.

    2009-04-01

    The Pyrenees results from the collision between Spain and Europe and developed between the upper Cretaceous (Santonian) and the Miocene. Its foreland basins are characterised by a thick fill of detrital and carbonate sediments. The diversity of Eocene deposits in the southern Pyrenean foreland basin is of particular use in facies sedimentology due to their exceptional outcropping quality and well established stratigraphic framework and has been taken as type examples of many different sedimentary environments. Most studies have concerned facies sedimentology of detrital series in turbiditic environments, meandering and braided rivers, alluvial fans, and deltas. In contrast, the Eocene carbonate series have attracted less attention. The marine Guara limestones are a formation of lower to middle Eocene age deposited on the southern border of the western Pyrenean foreland basin (Jaca basin). They were deposited as a retrogradational carbonate platform dominated by large benthic foraminifers near or at the flexural forebulge of the foreland basin as the Pyrenean orogen developed. This formation represents the last episode of carbonate platform in the Pyrenees and remains poorly studied. In the present work our aim is to provide a detailed facies analysis and physiographic reconstructions of the Guara carbonate platform. This is crucial to unravel the respective influences of tectonics, climate and rheology of the lithosphere on the foreland basin tectonic and stratigraphic development, and it brings new constraints on the paleoenvironments and paleogeography during the Lutetian, i.e. at the beginning of the major phase of activity of the Pyrenean orogenesis. Two outcrops were studied in the Sierras Marginales at the localities of Arguis and Lusera. The Lusera section once restored in its initial position is located to the North of the Arguis section in a basinward direction such that comparing time-equivalent facies between these two sections helps us reconstructing the paleobathymetric gradient on this side of the foreland basin. The sedimentological and paleontological content show that the Guara formation was deposited in shallow water environments (less than 80 m) and can be classified as a carbonate ramp. The evolution of paleobathymetries with time on these two sections allows us to identify three complete progradational - retrogradational cycles. Those cycles do not match global eustatic variations, perhaps indicating the dominating influence of tectonics in this area. The precise study of foraminifera allowed us to date our sections with respect to the SBZ time scale of Serra-Kiel et al. (1). The bottom of the Guara formation, in the Arguis section is dated from the lower Lutetian (SBZ 13) and the top corresponds to the upper Lutetian (SBZ 16). An important hiatus is recorded between the base of the carbonates and the lower Paleocene subjacent continental deposits. Moreover, the base of the formation is older at Lusera i.e. to the centre of the basin. This hiatus could thus represent the foreland flexural forebulge unconformity (2). By restoring the relative position of the two sections during the Lutetian, we have calculated the possible slope of the Guara ramp during this period for each MFS, with values always lower than 0.5°. Extrapolating this slope to the centre of the basin allows us to estimate the paleodepth of the coeval Eocene turbidites and address the important issue of the depth of deposition of submarine fan systems in foreland settings. Within the limits of our approach we propose that these clastic fan systems have been deposited under water depths of 400 to 200 metres. This is partly in agreement with the upper bound of other estimations based on foraminiferal assemblages and trace fossils, and thus favours a relatively "shallow" view of the Middle Eocene Ainsa-Jaca deep marine basin. 1. J. Serra-Kiel et al., Bulletin De La Societe Geologique De France 169, 281 (March 1, 1998, 1998). 2. S. L. Crampton, P. A. Allen, Aapg Bulletin 79, 1495 (October 1, 1995, 1995).

  18. Lacustrine Paleoseismology Reveals Earthquake Segmentation of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Howarth, J. D.; Fitzsimons, S.; Norris, R.; Langridge, R. M.

    2013-12-01

    Transform plate boundary faults accommodate high rates of strain and are capable of producing large (Mw>7.0) to great (Mw>8.0) earthquakes that pose significant seismic hazard. The Alpine Fault in New Zealand is one of the longest, straightest and fastest slipping plate boundary transform faults on Earth and produces earthquakes at quasi-periodic intervals. Theoretically, the fault's linearity, isolation from other faults and quasi-periodicity should promote the generation of earthquakes that have similar magnitudes over multiple seismic cycles. We test the hypothesis that the Alpine Fault produces quasi-regular earthquakes that contiguously rupture the southern and central fault segments, using a novel lacustrine paleoseismic proxy to reconstruct spatial and temporal patterns of fault rupture over the last 2000 years. In three lakes located close to the Alpine Fault the last nine earthquakes are recorded as megaturbidites formed by co-seismic subaqueous slope failures, which occur when shaking exceeds Modified Mercalli (MM) VII. When the fault ruptures adjacent to a lake the co-seismic megaturbidites are overlain by stacks of turbidites produced by enhanced fluvial sediment fluxes from earthquake-induced landslides. The turbidite stacks record shaking intensities of MM>IX in the lake catchments and can be used to map the spatial location of fault rupture. The lake records can be dated precisely, facilitating meaningful along strike correlations, and the continuous records allow earthquakes closely spaced in time on adjacent fault segments to be distinguished. The results show that while multi-segment ruptures of the Alpine Fault occurred during most seismic cycles, sequential earthquakes on adjacent segments and single segment ruptures have also occurred. The complexity of the fault rupture pattern suggests that the subtle variations in fault geometry, sense of motion and slip rate that have been used to distinguish the central and southern segments of the Alpine Fault can inhibit rupture propagation, producing a soft earthquake segment boundary. The study demonstrates the utility of lakes as paleoseismometers that can be used to reconstruct the spatial and temporal patterns of earthquakes on a fault.

  19. Archean greenstone belt magmatism and the continental growth-mantle evolution connection: constraints from Th-U-Nb-LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Kerrich, Robert

    2000-01-01

    An extensive database, including Th-;U-Nb-REE systematics, for diverse magmatic and sedimentary lithologies of 2.7 Ga Wawa greenstone belts provide new constraints on the mechanism of crustal growth in the southern Superior Province, and controls on its composition. The greenstone belts are characterized by collages of oceanic plateaus, oceanic island arcs, and trench turbidites; these lithotectonic fragments were tectonically assembled in a large subduction-accretion complex. Following juxtaposition, these diverse lithologies were collectively intruded by syn-kinematic TTG (tonalite-trondhjemite-granodiorite) plutons and ultramafic to felsic dykes and sills, with subduction zone geochemical signatures. Intra-oceanic basalts are characterized by near-flat REE patterns, and Nb/U and Nb/Th ratios generally greater than primitive mantle values, consistent with positive ɛNd values. They are associated with komatiites, the association being interpreted as an ocean plateau sequence erupted from a mantle plume. Bimodal arc volcanic sequences, trench turbidites, and contemporaneous TTG suites are characterized by fractionated REE, with Nb/U and Nb/Th ratios less than primitive mantle values. Mixing hyperbolae between oceanic plateau and magmatic arc sequences pass through the estimated composition of bulk continental crust, suggesting that crustal growth in the late Archean was by tectonic, sedimentary, and chemical mixing of oceanic plateau and arc sequences at convergent plate boundaries. Mixing calculations suggest that oceanic plateau and subduction zone components in the Wawa continental crust are represented by 6-12% and 88-94%, respectively. High Nb/U and Nb/Th ratios of plateau tholeiitic basalts are interpreted as a complementary reservoir to arc magmatism (low Nb/U and Nb/Th), hundreds of millions of years prior to recycling of oceanic lithosphere through a subduction zone (high Nb/U, Nb/Th), and its incorporation into a mantle plume from which 2.7 Ga plateau tholeiites erupted. The variably high Nb/U ratios of the plateau basalts are consistent with early extraction of large quantities of the protoliths (magmatic precursor) of continental crust from the southern Superior Province asthenospheric mantle.

  20. The great Lisbon earthquake and tsunami of 1755: lessons from the recent Sumatra earthquakes and possible link to Plato's Atlantis

    NASA Astrophysics Data System (ADS)

    Gutscher, M.-A.

    2006-05-01

    Great earthquakes and tsunami can have a tremendous societal impact. The Lisbon earthquake and tsunami of 1755 caused tens of thousands of deaths in Portugal, Spain and NW Morocco. Felt as far as Hamburg and the Azores islands, its magnitude is estimated to be 8.5 9. However, because of the complex tectonics in Southern Iberia, the fault that produced the earthquake has not yet been clearly identified. Recently acquired data from the Gulf of Cadiz area (tomography, seismic profiles, high-resolution bathymetry, sampled active mud volcanoes) provide strong evidence for an active east dipping subduction zone beneath Gibraltar. Eleven out of 12 of the strongest earthquakes (M>8.5) of the past 100 years occurred along subduction zone megathrusts (including the December 2004 and March 2005 Sumatra earthquakes). Thus, it appears likely that the 1755 earthquake and tsunami were generated in a similar fashion, along the shallow east-dipping subduction fault plane. This implies that the Cadiz subduction zone is locked (like the Cascadia and Nankai/Japan subduction zones), with great earthquakes occurring over long return periods. Indeed, the regional paleoseismic record (contained in deep-water turbidites and shallow lagoon deposits) suggests great earthquakes off South West Iberia every 1500 2000 years. Tsunami deposits indicate an earlier great earthquake struck SW Iberia around 200 BC, as noted by Roman records from Cadiz. A written record of even older events may also exist. According to Plato's dialogues The Critias and The Timaeus, Atlantis was destroyed by ‘strong earthquakes and floods … in a single day and night’ at a date given as 11,600 BP. A 1 m thick turbidite deposit, containing coarse grained sediments from underwater avalanches, has been dated at 12,000 BP and may correspond to the destructive earthquake and tsunami described by Plato. The effects on a paleo-island (Spartel) in the straits of Gibraltar would have been devastating, if inhabited, and may have formed the basis for the Atlantis legend.

  1. Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand

    NASA Astrophysics Data System (ADS)

    Koiwa, Naoto; Takahashi, Mio; Sugisawa, Shuhei; Ito, Akifumi; Matsumoto, Hide-aki; Tanavud, Charlchai; Goto, Kazuhisa

    2018-04-01

    The 2004 Indian Ocean tsunami had notable impacts on coastal landforms. Temporal change in topography by coastal erosion and subsequent formation of a new barrier spit on the nearshore of Pakrang Cape, southeastern Thailand, had been monitored for 10 years since 2005 based on field measurement using satellite images, high-resolution differential GPS, and/or handy GPS. Monitored topography data show that a barrier island was formed offshore from the cape several months after the tsunami event through progradation of multiple elongated gravelly beach ridges and washover fan composed of coral gravels. Subsequently, the barrier spit expanded to the open sea. The progradation and expansion were supported by supply of a large amount of coral debris produced by the tsunami waves. These observations provide useful data to elucidate processes of change in coastal landforms after a tsunami event. The 2004 Indian Ocean tsunami played an important role in barrier spit evolution over a period of at least a decade.

  2. Geology of the offshore Southeast Georgia Embayment, U.S. Atlantic continental margin, based on multichannel seismic reflection profiles

    USGS Publications Warehouse

    Buffler, Richard T.; Watkins, Joel S.; Dillon, William P.

    1979-01-01

    The sedimentary section is divided into three major seismic intervals. The intervals are separated by unconformities and can be mapped regionally. The oldest interval ranges in age from Early Cretaceous through middle Late Cretaceous, although it may contain Jurassic rocks where it thickens beneath the Blake Plateau. It probably consists of continental to nearshore clastic rocks where it onlaps basement and grades seaward to a restricted carbonate platform facies (dolomite-evaporite). The middle interval (Upper Cretaceous) is characterized by prograding clinoforms interpreted as open marine slope deposits. This interval represents a Late Cretaceous shift of the carbonate shelf margin from the Blake Escarpment shoreward to about its present location, probably due to a combination of co tinued subsidence, an overall Late Cretaceous rise in sea level, and strong currents across the Blake Plateau. The youngest (Cenozoic) interval represents a continued seaward progradation of the continental shelf and slope. Cenozoic sedimentation on the Blake Plateau was much abbreviated owing mainly to strong currents.

  3. Ecology of dark matter haloes - II. Effects of interactions on the alignment of halo pairs

    NASA Astrophysics Data System (ADS)

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2017-04-01

    We use the Horizon Run 4 cosmological N-body simulation to study the effects of distant and close interactions on the alignments of the shapes, spins and orbits of targets haloes with their neighbours, and their dependence on the local density environment and neighbour separation. Interacting targets have a significantly lower spin and higher sphericity and oblateness than all targets. Interacting pairs initially have antiparallel spins, but the spins develop parallel alignment as time goes on. Neighbours tend to evolve in the plane of rotation of the target, and in the direction of the major axis of prolate haloes. Moreover, interactions are preferentially radial, while pairs with non-radial orbits are preferentially prograde. The alignment signals are stronger at high mass and for close separations, and independent of the large-scale density. Positive alignment signals are found at redshifts up to 4, and increase with decreasing redshifts. Moreover, the orbits tend to become prograde at low redshift, while no alignment is found at high redshift (z = 4).

  4. Building up the spin - orbit alignment of interacting galaxy pairs

    NASA Astrophysics Data System (ADS)

    Moon, Jun-Sung; Yoon, Suk-Jin

    2018-01-01

    Galaxies are not just randomly distributed throughout space. Instead, they are in alignment over a wide range of scales from the cosmic web down to a pair of galaxies. Motivated by recent findings that the spin and the orbital angular momentum vectors of galaxy pairs tend to be parallel, we here investigate the spin - orbit orientation in close pairs using the Illustris cosmological simulation. We find that since z ~ 1, the parallel alignment has become progressively stronger with time through repetitive encounters. The pair Interactions are preferentially in prograde at z = 0 (over 5 sigma significance). The prograde fraction at z = 0 is larger for the pairs influenced more heavily by each other during their evolution. We find no correlation between the spin - orbit orientation and the surrounding large-scale structure. Our results favor the scenario in which the alignment in close pairs is caused by tidal interactions later on, rather than the primordial torquing by the large-scale structures.

  5. Sedimentology and tectonics of the collision complex in the east arm of Sulawesi Indonesia

    NASA Astrophysics Data System (ADS)

    Simandjuntak, Tohap Oculair

    An imbricated Mesozoic to Palaeogene continental margin sequence is juxtaposed with ophiolitic rocks in the East Arm of Sulawesi, Indonesia. The two tectonic terranes are bounded by the Batui Thrust and Balantak Fault System, which are considered to be the surface expression of the collision zone between the Banggai-Sula Platform and the Eastern Sulawesi Ophiolite Belt. The collision complex contains three distinctive sedimentary sequences : 1) Triassic-Palaeogene continental margin sediments, ii) Cretaceous pelagic sediments and iii) Neogene coarse clastic sediments and volcanogenic turbidites. (i) Late Triassic Lemo Beds consisting largely of carbonate-slope deposits and subsidiary clastics including quartz-rich lithic sandstones and lensoidal pebbly mudstone and conglomeratic breccia. The hemipelagic limestones are rich in micro-fossils. Some beds of the limestone contain bivalves and ammonites, including Misolia, which typifies the Triassic-Jurassic sequence of eastern Indonesia. The Jurassic Kapali Beds are dominated by quartzose arenites containing significant amounts of plant remains and lumps of coal. The Late Jurassic sediments consist of neritic carbonate deposits (Nambo Beds and Sinsidik Beds) containing ammonites and belemnites, including Belemnopsis uhligi Stevens, of Late Jurassic age. The Jurassic sediments are overlain unconformably by Late Cretaceous Luok Beds which are predominantly calcilutite with chert nodules rich in microfossils. The Luok Beds are unconformably overlain by the Palaeogene Salodik Limestones which consist of carbonate platform sediments rich in both benthic and planktonic foraminifera of Eocene to Early Miocene age. These sediments were deposited on the continental margin of the Banggai-Sula Platform. (ii) Deep-sea sediments (Boba Beds) consist largely of chert and subsidiary calcilutite rich in radiolaria of Cretaceous age. These rocks are part of an ophiolite suite. (iii) Coarse clastic sediments (Kolo Beds and Biak Conglomerates) are typical post-orogenic clastic rocks deposited on top of the collision complex. They are composed of material derived from both the continental margin sequence and ophiolite suite. Volcanogenic Lonsuit Turbidites occur in the northern part of the East Arm in Poh Head and unconformably overlie the ophiolite suite. Late Miocene to Pliocene planktonic foraminifera occur in the intercalated marlstone and marly sandstone beds within these rocks. The collision zone is marked by the occurrence of Kolokolo Melange, which contain exotic fragments detached from both the ophiolite suite and the continental margin sequence and a matrix of calcareous mudstone and marlstone rich in planktonic foraminifera of late Middle Miocene to Pliocene age. The melange is believed to have been formed during and after the collision of the Banggai-Sula Platform with the Eastern Sulawesi Ophiolite Belt. Hence, the collision event took place in Middle Miocene time. The occurrence of at least three terraces of Quaternary coraline reefs on the south coast of the East Arm of Sulawesi testifies to the rapid uplift of the region. Seismic data suggest that the collision might still be in progress at the present time.

  6. Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Lefebvre, Nathalie; Kurszlaukis, Stephan

    2008-06-01

    The Cretaceous Fort à la Corne (FALC) kimberlite field was active over a time span of ~ 20 Ma with contemporaneous terrestrial (Mannville Group) to marine (Lower Colorado Group) background sedimentation. Steep-sided pipes, craters and positive landform volcanoes such as scoria or tuff cones are thought to have formed during that period. The 147 Kimberlite is located in the SE section of the field's main cluster and is part of the large (~ 377.5 ha) Orion North volcanic complex. Based on logging of 25 drill cores, the morphology of the country rock/kimberlite interface suggests excavation of a complex crater field down to the upper portion of the Mannville Group sedimentary deposits. At least two types of volcaniclastic deposits are identified: a main kimberlite unit that is typically characterized by crustal xenolith-poor (1-2%), normal graded beds possibly deposited as turbidites in a subaqueous environment, originating from the nearby 148 tephra cone and infilling the adjacent 147 crater, and a second unit, located on the NE margin of the 147 Kimberlite, that represents a thick (~ 60 m) sequence of large (up to 22 m) sedimentary country rock blocks located at least 60 m above their original stratigraphic position. We suggest the following time sequence of events: Crater excavation as a consequence of a shallow magma fragmentation level within the uppermost country rock sequences, together with several closely spaced eruptive centres initially formed the complex, intercalated crater field. Subsequently, ongoing eruptions with a fragmentation level above the country rock produced the lithic fragment poor main infill of the 148 Kimberlite. Resedimentation from the outer flanks of the 148 tephra cone resulted in the deposition of turbidites in the 147 area. A consolidation phase solidified the lowermost portion of the main infill in 147. A subsequent explosion(s) occurred within the Mannville Group in the 147 area, ejecting large blocks of sedimentary country rocks and fracturing the overlying volcaniclastic main infill. Finally, blocks of the main infill tilted and possibly slumped into the subsidence structure developed above the emptied explosion chamber of 147. The different volcanic deposits reflect a change in eruption style and fragmentation level from highly explosive to spatter activity with little fragmentation potential. Cap rocks to build up the volatile overpressure necessary to blast the craters were not present at the time of emplacement. No diatremes were observed in the study area. Assuming that the magma properties remained constant over time, the change in eruption style has to be attributed to external factors, such as water access to the rising magma. The volcanic behaviour of the kimberlite magma appears to be comparable to that of other magmatic systems, both in eruptive style and production rate. No evidence was found for a high, possibly Plinian production rate or dispersion.

  7. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are recorded by monazite growth at 447 ?? 4, 411 ?? 3, and 398 ?? 3 Ma. ?? 2006 Geological Society of America.

  8. Oolitic sandbody depositional models and geometries, Mississippian of southwest Britain: implications for petroleum exploration in carbonate ramp settings

    NASA Astrophysics Data System (ADS)

    Burchette, Trevor P.; Paul Wright, V.; Faulkner, Tom J.

    1990-07-01

    A 1000 m thick early Mississippian carbonate supersequence, the "Carboniferous Limestone" of southwest Britain, consists of three third-order depositional sequences. These comprise parasequences in various configurations, and the whole forms a carbonate ramp stack. Within this framework five major oolitic carbonate sandbodies developed: (a) Castell Coch Limestone, (b) Stowe Oolite, (c) Brofiscin Oolite, (d) Gully Oolite, and (e) High Tor Limestone. The depositional regime was storm- and wave-dominated throughout and the major sandbodies represent a range of progradational carbonate beaches, barriers and detached subtidal shoals. Analysis of the three-dimensional shapes and distribution of these five examples shows that they evolved to produce three major carbonate sandbody geometries: (a) strings, (b) sheets, and (c) wedges. These geometries are characterised using the five field examples and offered as a template which may assist in the exploration and reservoir modelling of petroleum-rich high-energy ramp systems. Progradation, for up to 40 km, of barrier islands (Stowe Oolite) and beach-ridge plains (Gully Oolite Formation) generated strings, and "thick" sheets individually up to 10-20 m thick. "Thin" shoreface-retreat carbonate packstone/grainstone sheets up to 5 m thick (High Tor limestone) developed during transgressions as veneers across flooding surfaces. These are comparable with sheet sands developed in siliciclastic shelf depositional systems. Progradation, for up to 30 km, and vertical aggradation of shoreline-detached oolite shoals (Castell Coch limestone, Brofiscin Oolite), generated basinwards-expanding or thinning wedges up to 30 m thick. Tectonically controlled stacking of strandplain sheets produced a composite carbonate sandbody up to 80 m thick (Gully Oolite). The intrinsic (sedimentary) and extrinsic (eustacy, tectonism, climate) factors which controlled these sandbody geometries are addressed. Establishing the positions of the sandbodies accurately within depositional sequences allows them to be located within inferred seismic sequence geometries and provides one possible solution to the difficult problem of predicting carbonate facies distribution in subtle stratigraphic plays. In this ramp system, the most homogeneous sandbodies (up to 30 m grainstones), with greatest reservoir facies potential, are represented by shoal-belt wedges. Potential grainstone reservoir facies in the prograding shorelines are limited to the upper parts of individual shoreface sequences (max. 10 m grainstones). For shoreline carbonate sandbodies, the greatest reservoir and stratigraphic trapping potential exists in the earliest ramp parasequences where enveloping offshore sediments are siliciclastic mudstones. In later stages, potential seals are likely to be less reliable, low-porosity outer ramp carbonates.

  9. A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center ( Guaymas Basin).

    USGS Publications Warehouse

    Lonsdale, P.F.; Bischoff, J.L.; Burns, V.M.; Kastner, M.; Sweeney, R.E.

    1980-01-01

    A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. S and O isotopes indicate precipitation around a hydrothermal vent, at about 2800C. - Authors

  10. Publications - PIR 2008-1A | Alaska Division of Geological & Geophysical

    Science.gov Websites

    of recent geologic field investigations in the Brooks Range Foothills and North Slope, Alaska: Alaska Surveys Skip to content State of Alaska myAlaska My Government Resident Business in Alaska ; Tectonics; Thermal History; Thrust; Toolik River; Torok Formation; Turbidites; Turonian; Valanginian Top of

  11. Jurassic-Cretaceous history of Cuba: implications for the evolution of the southern margin of the North American plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barros, J.A.; Rosencrantz, E.

    The oldest Cuban sedimentary rocks, clastics of the Bajocian San Cayetano Fm. provide the earliest record of North American-Gondwana rifting as seen in Cuba. A similar clastic sequence is seen below the carbonates of the Bahamas platform. In the Pinar del Rio area, the San Cayetano is succeeded by Oxfordian limestones, the shallow water Jagua Fm. to the south and deeper water Francisco Fm. to the north. Both contain basaltic pillow lavas, related either to rifting or to leaky transform motion parallel to the margin. The Oxfordian units are overlain by Kimmeridgian to Tithonian pelagic limestones, the Guasasa and Artemisamore » Fms. The later interfingers with northerly derived calci-turbidites. North of the Escambray, silici-clastic fragments in late Jurassic pelagic limestones suggests that a basement high existed south of the platform until the Berriasian. The carbonate platform continues to shed debris along its southern edge throughout the Cretaceous. To the south an Aptian-Albian episode of turbidite deposition suggests that South America-Africa rifting caused tectonic disturbances in the Caribbean. Southerly derived volcanoclastics deposited during the Maastrichtian marks the start of the Cuban orogeny.« less

  12. Lithostratigraphy, provenance and facies distribution of Archaean cratonic successions in western Kenya

    NASA Astrophysics Data System (ADS)

    Ngecu, Wilson M.; Gaciri, Steve J.

    1995-10-01

    The greenstone belt of the Tanzanian shield in Western Kenya is composed of two supracrustal successions, which form the Nyanzian and Kavirondian Groups. The Nyanzian Group at the base is composed of mafic tholeiitic basalts, calc-alkaline dacites and rhyolites. The group is unconformably overlain by the Kavirondian Group. During recent field mapping, the Kavirondian Group was divided into three formations. The Shivakala Formation consists of thickly bedded basal conglomerates, which are interbedded with thin sandstone beds. The Igukhu Formation conformably overlies the Shivakala Formation and is composed of thickly and locally thinly bedded greywacke. The uppermost Mudaa Formation is composed of blocky mudstones and thinly laminated shales. A high proportion of volcanic, granitic and chert pebbles in the conglomerates, along with abundant quartz, feldspars and mudstone fragments in the greywacke, indicates a mixed provenance of volcanic, granitic and recycled sedimentary rocks. Primary sedimentary structures and lithofacies associations indicate that the conglomerates were deposited in an alluvial fan/fan-delta setting. The greywackes represent proximal turbidites while the mudstone and shales were deposited mainly as distal turbidites. In the study area there is no evidence of transitional nearshore or shallow marine facies transitional to the continental and deep marine facies.

  13. Petroleum systems of the Malay Basin Province, Malaysia

    USGS Publications Warehouse

    Bishop, Michele G.

    2002-01-01

    The offshore Malay Basin province is a Tertiary oil and gas province composed of a complex of half grabens that were filled by lacustrine shales and continental clastics.These deposits were overlain by clastics of a large delta system that covered the basin.Delta progradation was interupted by transgressions of the South China Sea to the southeast, which finally flooded the basin to form the Gulf of Thailand.Oil and gas from the Oligocene to Miocene lacustrine shales and Miocene deltaic coals is trapped primarily in anticlines formed by inversion of the half grabens during the late Miocene.Hydrocarbon reserves that have been discovered amount to 12 billion barrels of oil equivalent.The U.S. Geological Survey assessment of the estimated quantities of conventional oil, gas and condensate that have the potential to be added to reserves by the year 2025 for this province is 6.3 billion barrels of oil equivalent (BBOE) (U. S. Geological Survey World Energy Assessment Team, 2000).

  14. Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments

    NASA Astrophysics Data System (ADS)

    Shields, Michael R.; Bianchi, Thomas S.; Gélinas, Yves; Allison, Mead A.; Twilley, Robert R.

    2016-02-01

    We examined the role of reactive iron (FeR) in preserving organic carbon (OC) across a subaerial chronosequence of the Wax Lake Delta, a prograding delta within the Mississippi River Delta complex. We found that ~15.0% of the OC was bound to FeR, and the dominant binding mechanisms varied from adsorption in the youngest subaerial region to coprecipitation at the older, vegetated sites. The δ13C of the iron-associated OC was more negative than the total OC (mean = -2.6‰), indicating greater preference for terrestrial material and/or compounds with more negative δ13C values. However, only the adsorbed OC displayed preferential binding of lignin phenols. We estimate that ~8% of the OC initially deposited in deltaic systems is bound to FeR (equivalent to 6 × 1012 gC yr-1), and this percentage increases postdepositionally, as coprecipitation of FeR and OC allows for an even greater amount of OC to be bound to FeR.

  15. Middle Holocene coastal environment and the rise of the Liangzhu City complex on the Yangtze delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Sun, Qianli; Thomas, Ian; Zhang, Li; Finlayson, Brian; Zhang, Weiguo; Chen, Jing; Chen, Zhongyuan

    2015-11-01

    The large prehistoric city of Liangzhu and its associated earthen dike emerged on the Yangtze delta-coast after two millennia of occupation in this area by scattered communities. Details of its development have been widely discussed in the literature. Our results reveal that the city was selectively built at the head of an embayment backed by hills, with close access to food, freshwater and timber, and with protection from coastal hazards. Radiocarbon and optically stimulated luminescence (OSL) dating shows that it was built around 4.8-4.5 ka, and the earthen dike was constructed a little later at 4.1 ka. During this time, saltwater wetlands were changing to freshwater in response to rapid coastal progradation as the postglacial sea-level rise stabilized. This facilitated rice farming and furthered the development of the city with elaborate city planning. The younger large-scale earthen dike and artificial ponds possibly suggest increasing demand for flood mitigation and irrigation.

  16. Stratigraphic and structural evolution of the Selenga Delta Accommodation Zone, Lake Baikal Rift, Siberia

    USGS Publications Warehouse

    Scholz, C.A.; Hutchinson, D.R.

    2000-01-01

    Seismic reflection profiles from the Lake Baikal Rift reveal extensive details about the sediment thickness, structural geometry and history of extensional deformation and syn-rift sedimentation in this classic continental rift. The Selenga River is the largest single source of terrigenous input into Lake Baikal, and its large delta sits astride the major accommodation zone between the Central and South basins of the lake. Incorporating one of the world's largest lacustrine deltas, this depositional system is a classic example of the influence of rift basin structural segmentation on a major continental drainage. More than 3700 km of deep basin-scale multi-channel seismic reflection (MCS) data were acquired during the 1989 Russian and the 1992 Russian–American field programs. The seismic data image most of the sedimentary section, including pre-rift basement in several localities. The MCS data reveal that the broad bathymetric saddle between these two major half-graben basins is underlain by a complex of severely deformed basement blocks, and is not simply a consequence of long-term deltaic deposition. Maximum sediment thickness is estimated to be more than 9 km in some areas around the Selenga Delta. Detailed stratigraphic analyses of the Selenga area MCS data suggest that modes of deposition have shifted markedly during the history of the delta. The present mode of gravity- and mass-flow sedimentation that dominates the northern and southern parts of the modern delta, as well as the pronounced bathymetric relief in the area, are relatively recent developments in the history of the Lake Baikal Rift. Several episodes of major delta progradation, each extending far across the modern rift, can be documented in the MCS data. The stratigraphic framework defined by these prograding deltaic sequences can be used to constrain the structural as well as depositional evolution of this part of the Baikal Rift. An age model has been established for this stratigraphy, by tying the delta sequences to the site of the Baikal Drilling Project 1993 Drill Hole. Although the drill hole is only 100 m deep, and the base of the cores is only ∼670 ka in age, ages were extrapolated to deeper stratigraphic intervals using the Reflection-Seismic-Radiocarbon method of Cohen et al. (1993). The deep prograding delta sequences now observed in the MCS data probably formed in response to major fluctuations in sediment supply, rather than in response to shifts in lake level. This stratigraphic framework and age model suggest that the deep delta packages developed at intervals of approximately 400 ka and may have formed as a consequence of climate changes affiliated with the northern hemisphere glaciations. The stratigraphic analysis also suggests that the Selenga Basin and Syncline developed as a distinct depocentre only during the past ∼2–3 Ma.

  17. Danube Delta Coastline Dynamics in the Last 160 Years

    NASA Astrophysics Data System (ADS)

    Tătui, Florin; Vespremeanu-Stroe, Alfred; Constantinescu, Ştefan; Zăinescu, Florin

    2017-04-01

    Wave-dominated deltaic coasts depend on the balance between wave climate and sediment supply, which controls the medium and long-term shoreline evolution. Interestingly, the common plan shapes of the wave-dominated lobes impose different wave exposures and longshore sediment transport magnitudes on the lobe flanks, characterized by ever changing aspects which make these sandy coasts some of the most mobile world coastlines. The Danube Delta coast consists of approximately 220 km (both Romanian and Ukrainian sectors) of tideless, medium-energy low-lying sandy beaches interrupted by multiple river mouths and, sometimes, by engineering structures (Sulina jetties and Midia harbour). The objective of this study is to examine and explain the factors which have driven the Danube Delta coastline dynamics at multi-annual to multi-decadal and centennial time-scales. Our analysis is based on multiple shorelines extracted from historical and modern maps (since mid-19th century), recent medium to high resolution satellite images (since 1984), aerial photos (since 1969), GPS surveys (available after 1990) and LIDAR data (2011), which were comparatively analysed by means of GIS techniques. Nowadays, more than half ( 55%) of the Romanian Danube Delta shoreline (disposed in five littoral cells) is affected by erosion. The present coastline configuration is the result of the long-term evolution of this deltaic coast. Depending on the temporal and spatial scales taken into consideration, different driving forces changed the leading role in the dynamics of Danube Delta shoreline in the last 160 years. At centennial time-scale, the threefold decrease of Danube sediment discharge in the last century (especially after 1950, as a result of dams` construction in the Danube watershed) explains the significantly higher shoreline migration rates and area changes between 1856 and 1961/1979 in comparison with the subsequent period, especially along the accumulative sectors. For the Chilia prograding lobe, this resulted in the decrease with more than 75% of the progradation rates and with approximately 90% of the corresponding area change rates, marking its transition, since mid-20th century, from fluvial-dominated morphology to wave-influenced aspect and behaviour. Also, since the beginning of the 20th century, the asymmetric Sf. Gheorghe lobe (the other active lobe of the Danube), experienced dramatic changes of its millennial prograding pattern expressed by the complete cessation of the updrift coastal progradation and the prevalence of erosion in front of the river mouth, whose sediments are feeding far-positioned downdrift depocentres. These changes are reflected by the recent (1930s-present) river mouth dynamics, characterized by cessation of its long-term seaward expansion in favour of downdrift migration, indicating the transition of the Sf. Gheorghe mouth from an asymmetric to a deflected wave-influenced delta morphology. At multi-decadal scale, different modes of climate variability (e.g. North Atlantic Oscillation) control the storminess variations along the Danube Delta coast. Hence, active storminess during 1961-1979 time interval determined very high shoreline dynamics, with two-three times higher shoreline migration rates than afterwards, when a decrease in storminess favoured less dynamic coastlines (on both prograding and erosive sectors). At inter-annual scale, waterline mobility is influenced by storm regime and river floods. Our findings should support the sustainable coastal management and planning, providing a better understanding of past and present coastal processes along the Danube Delta coast.

  18. Chronology and tectonic controls of late tertiary deposition in the southwestern Tian Shan foreland, NW China

    USGS Publications Warehouse

    Heermance, R.V.; Chen, J.; Burbank, D.W.; Wang, C.

    2007-01-01

    Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ???13 km of basin strata provide a two- and three-dimensional record of continuous deposition since ???18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5??0.5 Ma at the northernmost part of the foreland, to 8.6??0.1 Ma in the central (medial) part of the foreland and to 1.9??0.2, ???1.04 and 0.7??0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time-transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9??3.3 Ma. Southward progradation occurred at an average rate of ???3 mm year -1 between 15.5 and 2 Ma, before accelerating to ???10 mm year-1. Abrupt changes in sediment-accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ???4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4??0.1 and 1.4??0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross-section through the foreland produces total shortening of 13-21 km and migration of the deformation front at 2.1-3.4 mm year-1 between 19 and 13.5 Ma, 1.4-1.6mm year-1 between 13.5 and 4.0 Ma and 10 mm year-1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin-capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5-6 Ma, increased sediment-accumulation (???0.8 mm year-1) and gravel progradation (???10 mm year-1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (???10 mm year-1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland. ?? 2007 Blackwell Publishing Ltd.

  19. A Seismo-Tectonic Signal From Offshore Sedimentation: The 2010 Haiti Earthquake and Prior Events

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Seeber, L.; Cormier, M.; Hornbach, M.; Momplaisir, R.; Waldhauser, F.; Sorlien, C. C.; Steckler, M. S.; Gulick, S.

    2011-12-01

    The Mw 7.0 January 2010 earthquake in Haiti was one of the deadliest in history. It involved multiple faults along or near the main Enriquillo-Plantain Garden Fault (EPGF). This left-lateral transform is a branch of the northern Caribbean plate boundary across southern Hispaniola. The main rupture was strike-slip but almost all aftershocks had thrust mechanisms, and surface deformation may have been concentrated on anticline forelimbs driven by blind thrust faults. Earthquake generated mass-wasting and turbidity currents were sampled from the Canal du Sud slope (~1000 m water depth), a basin at 1500 m, and the deepest part of the strait at 1700 m. The turbidites were strongly correlated by 234Th with a half-life of 24 days. In the deepest area, a turbidite-homogenite unit (T-H) extends over 50 km2 and is composed of basal sand beds 5 cm thick and 50 cm of mud above. The sedimentary structures in the sand were linked to oscillatory motions by internal seiches. The T-H units recovered from the slope and deep basin are similar in composition. The Leogane Delta, upslope from the sampling sites, is rich in this lithology that has been linked to oceanic basement rocks exposed on the southern Haitian peninsula. In contrast, the T-H unit recovered from the basin at 1500 m is perched behind a thrust anticline and has a greater concentration of Ca derived from Ca rich sources such as the Tapion Ridge on the southern peninsula. The Tapion Ridge is a compressional structure associated with a restraining bend along the EPGF. The T-H unit beneath the 2010 deposit has a 14C age of 2400 cal yrs BP, and interpreted as an earthquake triggered deposit. It is nearly identical in thickness, composition and fine structures to the 2010 T-H. Notably absent from the record are younger turbidites that could have been linked to the historic 1770 AD and other similar earthquakes expected from GPS rates across the EPGF. Two hypotheses are being considered for this long gap in T-H sedimentation. One proposes that during relative high stands of sea level fringing reefs are trapping sediment on the shelf and that a critical accumulation is needed to generate failure. Many large local earthquakes could have occurred before reaching this critical thickness. Low sedimentation rates (6 cm/1000 yrs) support this possibility. Our preferred hypothesis, alternatively, links T-Hs to earthquakes with a large thrust component such as the 2010 event in order to generate failure. This latter hypothesis accounts for some earthquakes producing no turbidites while others, such as the 2010 event, do. It also accounts for the fracturing sampled along 8 km of the perched basin. We propose that thrust earthquakes along the Tapion Ridge segment of the EPGF reoccur at ~2000-year intervals and this sedimentary signal is preserved in Canal du Sud.

  20. Stratigraphic architecture and depositional history of lower Miocene, Planulina Zone, Southern Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, B.C.; Galloway, W.E.

    1988-01-01

    The Planulina zone is a wedge of clastic sediment positioned between the Anahuac shale below and the Oakville sandstone interval above. Planulna sediments were deposited on an erosional surface, during a general rise in the sea level, and formed a retrogradational wedge. Within the study area, the Planulina zone consists of two large depositional complexes: the Mud Lake complex in west Cameron Parish, Louisiana, and the East Cameron complex in east Cameron Parish. The lowermost depositional sequence in the East Cameron complex is preserved in a network of submarine canyons that were eroded into the upper slope. Framework sands weremore » deposited in channel systems confined to the axis of the canyons, and the sands are encased in marine shale containing benthonic foraminifera indicative of an upper to middle slope paleoenvironment. Two younger depositional sequences overlie the submarine canyon facies and were deposited by deltaic systems that prograded basinward. A zone of expansion extends east to west through the Planulina interval and is named the ''Planulina flexure.'' The flexure is a large fault located at the relict shelf edge and soles out downdip inn the Anahuac shale. Several thousand feet of sediment downthrown on the flexure is equivalent to several hundred feet upthrown, and the flexure represented the boundary dividing updip deltaic processes from downdip slope processes during the beginning of Planulina deposition. The Planulina depositional history and stratigraphic architecture are directly related to the displacement along the flexure and the structural deformation of the underlying Anahuac shale.« less

  1. Middle Ordovician subduction of continental crust in the Scandinavian Caledonides: an example from Tjeliken, Seve Nappe Complex, Sweden

    NASA Astrophysics Data System (ADS)

    Fassmer, Kathrin; Klonowska, Iwona; Walczak, Katarzyna; Andersson, Barbro; Froitzheim, Nikolaus; Majka, Jarosław; Fonseca, Raúl O. C.; Münker, Carsten; Janák, Marian; Whitehouse, Martin

    2017-12-01

    The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430-400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between 505 and 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet-phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25-27 kbar/680-760 °C for the garnet-phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25-26 kbar/650-700 °C). Metamorphic rims of zircons from the garnet-phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu-Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm-Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction-exhumation cycle.

  2. Timing of terrane accretion in eastern and east-central Maine

    NASA Astrophysics Data System (ADS)

    Ludman, Allan

    1986-05-01

    The Norumbega fault zone is often cited as a post-Acadian suture between exotic blocks, even though stratigraphic, structural, and metamorphic data indicate that there is little offset of the Silurian-Devonian strata that the zone cuts in eastern Maine. Similarly, the Kingman fault zone has been shown by gravity and geochemical studies to separate distinct crustal blocks, whereas mapping shows that it lies entirely within a Silurian turbidite package. These conflicts are resolved if the two fault zones represent boundaries between Ordovician or older crustal blocks that had accreted to form a composite terrane prior to deposition of the cover sequences. The faults now mapped within these younger rocks formed by reactivation of the pre-Silurian boundaries during late Acadian time; movement continued until the late Carboniferous. Most of the accretionary history of Maine had thus ended before the Silurian. A complex composite terrane may have formed during Cambrian-Ordovician time that (1) interacted with cratonic North America during the Taconian orogeny and (2) became the “basement” upon which the Silurian and Lower Devonian strata of eastern Maine were deposited.

  3. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents.

    PubMed

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-05-27

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria's coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.

  4. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.H.; Watkins, J.S.

    1996-12-31

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less

  5. Sequence stratigraphy and hydrocarbon potential of the Phu Khanh Basin offshore central Vietnam, South China Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, G.H.; Watkins, J.S.

    1996-01-01

    The Phu Khanh Basin offshore central Vietnam is one of the few untested basins on the Vietnam margin of the South China Sea. Analysis of over 1,600 km of multi-channel seismic reflection data indicates that the Phu Khanh Basin follows a typical rift-margin order: faulted basement, synrift sedimentation, a breakup unconformity, and postrift sedimentation. Postrift sedimentation consists of a transgressive phase characterized by ramp-like depositional geometries followed by a regressive phase characterized by prograding sequences. An early middle Miocene unconformity separates these two phases. During the transgressive phase rising sea level provided favorable conditions for carbonate buildup development. The regressivemore » interval contains a number of third-order depositional sequences composed of seismically resolvable lowstand, highstand, and rarely, transgressive systems tracts. Lacustrine sediments deposited in graben and half-graben lakes during the rifting stage are probably the principal source rocks. Fractured and/or weathered basement, carbonate complexes, basinfloor fans, and shallows water sands may have good reservoir quality. Potential traps include basement hills, carbonate complexes, fault taps, and stratigraphic traps within lowstand systems tracts. Hydrocarbon indicators such as flat spots, bright spots, gas chimneys with gas mounds on the seafloor occur at a number of locations.« less

  6. Evidence for spreading in the lower Kam Group of the Yellowknife greenstone belt: Implications for Archaean basin evolution in the Slave Province

    NASA Technical Reports Server (NTRS)

    Helmstaedt, H.; Padgham, W. A.

    1986-01-01

    The Yellowknife greenstone belt is the western margin of an Archean turbidite-filled basin bordered on the east by the Cameron River and Beaulieu River volcanic belts (Henderson, 1981; Lambert, 1982). This model implies that rifting was entirely ensialic and did not proceed beyond the graben stage. Volcanism is assumed to have been restricted to the boundary faults, and the basin was floored by a downfaulted granitic basement. On the other hand, the enormous thickness of submarine volcanic rocks and the presence of a spreading complex at the base of the Kam Group suggest that volcanic rocks were much more widespread than indicated by their present distribution. Rather than resembling volcanic sequences in intracratonic graben structures, the Kam Group and its tectonic setting within the Yellowknife greenstone belt have greater affinities to the Rocas Verdes of southern Chile, Mesozoic ophiolites, that were formed in an arc-related marginal basin setting. The similarities of these ophiolites with some Archean volcanic sequences was previously recognized, and served as basis for their marginal-basin model of greenstone belts. The discovery of a multiple and sheeted dike complex in the Kam Group confirms that features typical of Phanerozoic ophiolites are indeed preserved in some greenstone belts and provides further field evidence in support of such a model.

  7. The Geology of Haiti: An Annotated Bibliography of Haiti’s Geology, Geography and Earth Science

    DTIC Science & Technology

    2010-07-01

    Yucatan Peninsula. Abstract: The stratigraphy and age of breccia containing Chicxulub impact glass spherules is documented in late Maastrichtian-early...Tertiary; tsunamis; turbidite; turbidity current structures; Upper Cretaceous; West Indies; Yucatan Peninsula. Notes: SP: USGSOP, Non-USGS...Chichancanab, and Coba, Yucatan Peninsula, Bibliography of Haitian Earth Science Army Geospatial Center June 2010 70 Mexico; Lake Peten-Itza, Peten

  8. Paleocene Turbidite Deposition in the Central American Seaway (NW Costa Rica): Geochemical Analysis and Provenance of Detrital Spinel and Clinopyroxene

    NASA Astrophysics Data System (ADS)

    Giblin, A. C.

    2015-12-01

    The Central American Land Bridge is the crucial connection between North and South America, and the Miocene closure of the Panama seaway led to a change in global oceanic circulation patterns. Modern Costa Rica is part of the island arc that formed over the western Caribbean subduction zone, and the Santa Elena peninsula is on the northwest coast of Costa Rica next to the Sandino forearc basin. This study focuses on the origin and provenance of the Paleocene deep-water Rivas and Descartes turbidites that crop out on the northern part of the Santa Elena peninsula in northwestern Costa Rica. Understanding the sedimentary fill of the Sandino Basin that contributed to the closing of the seaway may lead to a better understanding of the Late Cretaceous-Paleogene arcs. Provenance studies of the Santa Elena Peninsula turbidite sandstone bodies constrain the history of the paleogeography and tectonics of the region. Petrographic analyses of rock thin sections constrain source areas; geochemical analysis of individual detrital heavy minerals from rock samples give indications of sediment sources and tectonic setting during deposition. This study is a provenance analysis based on (i) semi-quantitative energy-dispersive spectrometry analysis of heavy minerals, (ii) quantitative wavelength-dispersive spectrometry for major elements of detrital clinopyroxene and spinel grains, (iii) trace element analysis through laser ablation of single detrital clinopyroxene grains, and (iv) comparative analysis of the different potential source rocks to clearly identify the most likely sediment sources. The detrital spinel and clinopyroxene are possibly sourced from: mantle ophiolites, mid-ocean ridge gabbros, or volcanic arc tholeiitic basalts or calc-alkaline andesites. Spinel and clinopyroxne geochemistry suggests a possible peridotitic source, linked to mantle rocks that are now covered by Tertiary volcanics or have completely eroded. The character of the crustal minerals indicates sources from mid-ocean ridge gabbros, and island arc tholeiites and andesites. This suggests that during the early history of the gateway uplift and seaway closure, sediment sources were dominated first by older ophiolites and gabbroic sources, then by volcanic inputs from the arc.

  9. Quantitative characterization and modeling of lithologic heterogeneity

    NASA Astrophysics Data System (ADS)

    Deshpande, Anil

    The fundamental goal of this thesis is to gain a better understanding of the vertical and lateral stratigraphic heterogeneities in sedimentary deposits. Two approaches are taken: Statistical characterization of lithologic variation recorded by geophysical data such as reflection seismic and wireline logs, and stochastic forward modeling of sediment accumulation in basins. Analysis of reflection seismic and wireline log data from Pleistocene fluvial and deltaic deposits in the Eugene Island 330 field, offshore Gulf of Mexico reveal scale-invariant statistics and strong anisotropy in rock properties. Systematic quantification of lateral lithologic heterogeneity within a stratigraphic framework, using reflection seismic data, indicates that fluvial and deltaic depositional systems exhibit statistical behavior related to stratigraphic fabric. Well log and seismic data profiles show a decay in power spectra with wavenumber, k, according to ksp{-beta} with beta between 1 and 2.3. The question of how surface processes are recorded in bed thickness distributions as a function of basin accommodation space is addressed with stochastic sedimentation model. In zones of high accommodation, random, uncorrelated, driving events produce a range of spatially correlated lithology fields. In zones of low accommodation, bed thickness distributions deviate from the random forcing imposed (an exponential thickness distribution). Model results are similar to that of a shallowing upward parasequence recorded in 15 meters of offshore Gulf of Mexico Pleistocene core. These data record a deviation from exponentially distributed bed thicknesses from the deeper water part of the cycle to the shallow part of the cycle where bed amalgamation dominates. Finally, a stochastic basin-fill model is used to explore the primary controls on stratigraphic architecture of turbidite channel-fill in the South Timbalier 295 field, offshore Louisiana Gulf Coast. Spatial and temporal changes in topography and subsidence rate are shown to be the main controls on turbidite channel stacking pattern within this basin. The model predicts the deposition of thick, amalgamated turbidite channel sands in the basin during a period of high initial subsidence followed by deposition of thinner, less connected sands when basin subsidence rate and accommodation space are low.

  10. The CASEIS project: toward a better understanding of the seismic cycle and paleoseismology of the Lesser Antilles megathrust

    NASA Astrophysics Data System (ADS)

    Nathalie, F.; Seibert, C.; Morena, P.; Bieber, A.; Beck, C.; Carlut, J. H.; Caron, B.; Cattaneo, A.; Ducassou, E.; Goldfinger, C.; Klingelhoefer, F.; Le Friant, A.; Moreno, E.; Mulder, T.; Ratzov, G.; St-Onge, G.

    2017-12-01

    The Lesser Antilles arc results from the subduction of the Caribbean and North American plates at rate of 2cm/yr. Although this area is the site of multiple natural hazards, the seismic potential of this subduction zone remains poorly constrained. The historical catalog of earthquakes is short, and any very large earthquakes that may have occurred, were prior to modern times. Consequently this subduction system has often been assumed to be aseismic. Since the occurrence of three M9-class earthquakes in the recent years, many questions have arisen concerning the behavior and seismic history of megathrusts. We cannot exclude any subduction zone from producing such large events, and it becomes urgent to re-evaluate the seismic potential of the Lesser Antilles subduction zone. To this goal, we conducted the CASEIS cruise (doi 10.17600/16001800) aboard the French R/V Pourquoi Pas ? between May 27 and July 5 2016. We collected 42 giant piston cores up to 30 m-long in isolated slope basins, slope canyons, at the subduction trench, in turbidite channels and levee systems, above the plate interface, to address long-term earthquake recurrence by using the turbidite paleoseismology method. Petrophysical data including gamma density, P-wave velocity, magnetic susceptibility, resistivity, color reflectivity, and color imagery were systematically acquired aboard on the 500 m of sediment cores we collected. Later analysis included XRF profiles, CT-scanning, laser microgranulometry, anisotropy of magnetic susceptibility, isotopic stratigraphy, and 14C dating on several cores. We documented and established the chronology of several sedimentary facies including turbidites and homogenites interbedded with hemipelagites and tephra in numerous cores. Analysis of chirp data shows that some events can be correlated between multiple core sites over a large distance and may have been triggered by large earthquakes on the plate interface. Several cores offshore Guadeloupe, in the area struck by the 1843 earthquakes show four alternations of several meters-thick turbitites (Tu) and/or homogenites (Hm) and hemipelagites. Such Hm or Tu deposits have been documented elsewhere and may have emplaced during megathrust events and tsunamis repeating at intervals of several tens of millennia.

  11. Lower Paleozoic deep-water facies of the Medfra area, central Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1997

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.; Repetski, John E.

    1999-01-01

    Deep-water facies, chiefly hemipelagic deposits and turbidites, of Cambrian through Devonian age are widely exposed in the Medfra and Mt. McKinley quadrangles. These strata include the upper part of the Telsitna Formation (Middle-Upper Ordovician) and the Paradise Fork Formation (Lower Silurian-Lower Devonian) in the Nixon Fork terrane, the East Fork Hills Formation (Upper Cambrian-Lower Devonian) in the East Fork subterrane of the Minchumina terrane, and the chert and argillite unit (Ordovician) and the argillite and quartzite unit (Silurian- Devonian? and possibly older) in the Telida subterrane of the Minchumina terrane.In the western part of the study area (Medfra quadrangle), both hemipelagic deposits and turbidites are largely calcareous and were derived from the Nixon Fork carbonate platform. East- ern exposures (Mt. McKinley quadrangle; eastern part of the Telida subterrane) contain much less carbonate; hemipelagic strata are mostly chert, and turbidites contain abundant rounded quartz and lesser plagioclase and potassium feldspar. Deep-water facies in the Medfra quadrangle correlate well with rocks of the Dillinger terrane exposed to the south (McGrath quadrangle), but coeval strata in the Mt. McKinley quadrangle are compositionally similar to rocks to the northeast (Livengood quadrangle). Petrographic data thus suggest that the Telida subterranes presently defined is an artificial construct made up of two distinct sequences of disparate provenance.Restoration of 90 and 150 km of dextral strike-slip on the Iditarod and Farewell faults, respectively, aligns the deep-water strata of the Minchumina and Dillinger terranes in a position east of the Nixon Fork carbonate platform. This restoration supports the interpretation that lower Paleozoic rocks in the Nixon Fork and Dillinger terranes, and in the western part of the Minchumina terrane (East Fork subterrane and western part of the Telida subterrane), formed along a single continental margin. Rocks in the eastern part of the Telida subterrane are compositionally distinct from those to the west and may have had a different origin and history.

  12. Significance of the model considering mixed grain-size for inverse analysis of turbidites

    NASA Astrophysics Data System (ADS)

    Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.

    2016-12-01

    A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The uniform grain-size model often reaches to local optimum condition that is significantly different from true solution. In conclusion, we propose a method of optimization based on the model considering mixed grain-size particles, and show its application to examples of turbidites in the Kiyosumi Formation, Boso Peninsula, Japan.

  13. Integrated biostratigraphy of foraminifers, radiolarians and conodonts in shallow and deep water Middle Permian (Capitanian) deposits of the "Rader slide", Guadalupe Mountains, West Texas

    USGS Publications Warehouse

    Nestell, M.K.; Nestell, G.P.; Wardlaw, B.R.; Sweatt, M.J.

    2006-01-01

    A diverse assemblage of microfossils is present in a 6m thick sequence of three debris flow deposits interbedded with thin turbidite limestone beds and fine grained siliciclastics exposed above the megaconglomerate in a section (known as the "Rader Slide" in numerous guidebook stops) of the Rader Limestone Member of the Bell Canyon Formation of Capitanian age (Middle Permian) in the Guadalupe Mountains of West Texas. Each debris flow, derived from nearby Capitan Reef shelf-margin and slope deposits, contains a distinct microfossil assemblage. Small foraminifers and fusulinaceans, conodonts, radiolarians, sponge spicules, fish dermal plates and teeth, and other fragmental fossils are present in this sequence. Conodonts are relatively scarce in the first (or lowest) debris flow, except in its upper part, but they are common to abundant in the other two debris flows, and very abundant in several of the thin turbidite limestone beds. All of the conodonts present appear to be morphotypes of one population of the species Jinogondolella postserrata, except for one new conodont species, and the Jinogondolella postserrata Zone is clearly documented in this sequence. The debris flows contain the fusulinaceans Rauserella, rare Codonofusiella, Polydiexodina, Leella? and various species of the small foraminifers Globivalvulina, Hemigordius, Baisalina, Abadehella, Deckerella, Neoendothyranella, Vachardella, Geinitzina, and Polarisella. Some of the thin turbidite limestone beds contain a foraminiferal assemblage similar to that found in the debris flows, but with lower diversity. Many small foraminiferal species appear to be endemic, although a few are closely related to species known in Permian age strata in Italy, Greenland, the Russian Far East, northeastern part of Russia (Omolon massif), and the Zechstein of Germany and the Baltic area. Two thin limestone beds above the second debris flow contain primarily radiolarian species known from the Follicucullus japonicus Zone of Japan. Nine new species of small foraminifers (Bisphaera? improvisa, Vissariotaxis? nativus, Multidiscus raderensis, Baisalina miscella, Agathammina minuscula, Polarisella globosa, Geinitzina jucunda, Robustopachyphloia texana and Spireitlina capitanensis) and one new conodont species Jinogondolella gladirobusta are described.

  14. Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones

    NASA Astrophysics Data System (ADS)

    Debret, Baptiste; Koga, Kenneth T.; Cattani, Fanny; Nicollet, Christian; Van den Bleeken, Greg; Schwartz, Stephane

    2016-02-01

    Amphiboles are ubiquitous minerals in the altered oceanic crust. During subduction, their breakdown is governed by continuous reactions up to eclogitic facies conditions. Amphiboles thus contribute to slab-derived fluid throughout prograde metamorphism and continuously record information about volatile exchanges occurring between the slab and the mantle wedge. However, the fate of volatile elements and especially halogens, such as F and Cl, in amphibole during subduction is poorly constrained. We studied metagabbros from three different localities in the Western Alps: the Chenaillet ophiolite, the Queyras Schistes Lustrés and the Monviso meta-ophiolitic complexes. These samples record different metamorphic conditions, from greenschist to eclogite facies, and have interacted with different lithologies (e.g. sedimentary rocks, serpentinites) from their formation at mid-oceanic ridge, up to their devolatilization during subduction. In the oceanic crust, the initial halogen budget is mostly stored in magmatic amphibole (F = 300-7000 ppm; Cl = 20-1200 ppm) or in amphibole corona (F = 100-7000 ppm; Cl = 80-2000 ppm) and titanite (F = 200-1500 ppm; Cl < 200 ppm) formed during hydrothermal seafloor alteration. It is thus the fate of these phases that govern the halogen fluxes between the crust and the overlying mantle and/or the plate interface in subduction zones. Li and B are poorly stored in the oceanic crust (< 5 ppm). In subduction zones, prograde metamorphism of metagabbros is first marked by the crystallization of glaucophane at the expense of magmatic and amphibole coronas. This episode is accompanied with a decrease of halogen concentrations in amphiboles (< 200 ppm of F and Cl) suggesting that these elements can be transferred to the mantle wedge by fluids. In the Queyras Schistes Lustrés complex, the intense deformation and the abundant devolatilization of metasedimentary rocks produce large fluid flows that promote rock chemical hybridization (metasomatic mixing with hybrid composition between metasedimentary rock and metagabbro) at the metasedimentary rock/metagabbro contacts. Such fluid/rock interactions result in a strong addition of Li in glaucophane (up to 600 ppm) whereas halogen concentrations are unaffected. At eclogite facies conditions, metagabbros display low halogens concentrations (< 20 ppm of F and < 100 ppm of Cl) relative to altered oceanic crust (F = 40-650 ppm; Cl = 40-1400 ppm) suggesting that these elements are continuously released by fluids during the first 30-80 km of subduction whatever the tectonic environment (e.g. slab, plate interface) and the considered fluid/rock interactions.

  15. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  16. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less

  17. The Nicobar Fan and sediment provenance: preliminary results from IODP Expedition 362, NE Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pickering, K. T.; Pouderoux, H.; Milliken, K. L.; Carter, A.; Chemale, F., Jr.; Kutterolf, S.; Mukoyoshi, H.; Backman, J.; McNeill, L. C.; Dugan, B.; Expedition 362 Scientists, I.

    2017-12-01

    IODP Expedition 362 (6 Aug-6 Oct 2016) was designed to drill the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction system and to understand the origin of the Mw 9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004 linked to unexpectedly shallow seismogenic slip and a distinctive forearc prism structure (1,2,3). Two sites, U1480 and U1481 on the Indian oceanic plate 250 km SW of the subduction zone on the eastern flank of the Ninetyeast Ridge, were drilled, cored, and logged to a maximum depth of 1500 m below seafloor. The input materials of the north Sumatran subduction zone are a thick (up to 4-5 km) succession mainly of Bengal-Nicobar Fan siliciclastic sediments overlying a mainly pelagic/hemipelagic succession, with igneous and volcaniclastic material above oceanic basement. At Sites U1480 and U1481, above the igneous basement ( 60-70 Ma), the sedimentary succession comprises deep-marine tuffaceous deposits with igneous intrusions, overlain by pelagic deposits, including chalk, and a thick Nicobar Fan succession of sediment gravity-flow (SGF) deposits, mainly turbidites and muddy debrites. The Nicobar Fan deposits (estimated total volume of 9.2 x 106 km3: 3) represent >90% of the input section at the drill sites and many of the beds are rich in plant material. These beds are intercalated with calcareous clays. Sediment accumulation rates reached 10-40 cm/kyr in the late Miocene to Pliocene, but were much reduced since 1.6 Ma. The onset of Nicobar Fan deposition at the drill sites ( 9.5 Ma; 2) is much younger than was anticipated precruise ( 30-40 Ma), based on previous regional analyses of Bengal-Nicobar Fan history and presumptions of gradual fan progradation. Our preliminary results suggest that the Nicobar Fan was active between 1.6 and 9.5 Ma, and possibly since 30 Ma (3). The observed mineralogical assemblage of the SGF deposits and zircon age dating are consistent with a provenance from a northerly Himalayan and Indo-Burmese source area. 1. Dugan, McNeill, Petronotis, and the Expedition 362 Scientists, 2017. https://doi.org/10.14379/iodp.pr.362.2017. 2. Hüpers, and the Expedition 362 Scientists. Science, 356, 841-844. 3. McNeill, and the Expedition 362 Scientists 2017. Earth and Planetary Science Letters, in press.

  18. The Columbia River Basalt Group: from the gorge to the sea

    USGS Publications Warehouse

    Wells, Ray E.; Niem, Alan R.; Evarts, Russell C.; Hagstrum, Jonathan T.

    2009-01-01

    Miocene flood basalts of the Columbia River Basalt Group inundated eastern Washington, Oregon, and adjacent Idaho between 17 and 6 Ma. Some of the more voluminous flows followed the ancestral Columbia River across the Cascade arc, Puget-Willamette trough, and the Coast Range to the Pacific Ocean. We have used field mapping, chemistry, and paleomagnetic directions to trace individual flows and flow packages from the Columbia River Gorge westward into the Astoria Basin, where they form pillow palagonite complexes and mega-invasive bodies into older marine sedimentary rocks. Flows of the Grande Ronde, Wanapum, and Saddle Mountains Basalts all made it to the ocean; at least 33 flows are recognized in the western Columbia River Gorge, 50 in the Willamette Valley, 16 in the lower Columbia River Valley, and at least 12 on the Oregon side of the Astoria Basin. In the Astoria Basin, the basalt flows loaded and invaded the wet marine sediments, producing peperite breccias, soft sediment deformation, and complex invasive relations. Mega-invasive sills up to 500 m thick were emplaced into strata as old as Eocene, and invasive dikes up to 90 m thick can be traced continuously for 25 km near the basin margin. Mega-pillow complexes up to a kilometer thick are interpreted as the remains of lava deltas that prograded onto the shelf and a filled submarine canyon southeast of Astoria, possibly providing the hydraulic head for injection of invasive sills and dikes at depth.

  19. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.

  20. The internal structure of eclogite-facies ophiolite complexes: Implications from the Austroalpine outliers within the Zermatt-Saas Zone, Western Alps

    NASA Astrophysics Data System (ADS)

    Weber, Sebastian; Martinez, Raul

    2016-04-01

    The Western Alpine Penninic domain is a classical accretionary prism that formed after the closure of the Penninic oceans in the Paleogene. Continental and oceanic nappes were telescoped into the Western Alpine stack associated with continent-continent collision. Within the Western Alpine geologic framework, the ophiolite nappes of the Zermatt-Saas Zone and the Tsate Unit are the remnants of the southern branch of the Piemonte-Liguria ocean basin. In addition, a series of continental basement slices reported as lower Austroalpine outliers have preserved an eclogitic high-pressure imprint, and are tectonically sandwiched between these oceanic nappes. Since the outliers occur at an unusual intra-ophiolitic setting and show a polymetamorphic character, this group of continental slices is of special importance for understanding the tectono-metamorphic evolution of Western Alps. Recently, more geochronological data from the Austroalpine outliers have become available that make it possible to establish a more complete picture of their complex geological history. The Lu-Hf garnet-whole rock ages for prograde growth of garnet fall into the time interval of 52 to 62 Ma (Weber et al., 2015, Fassmer et al. 2015), but are consistently higher than the Lu-Hf garnet-whole rock ages from several other locations throughout the Zermatt-Saas zone that range from 52 to 38 Ma (Skora et al., 2015). This discrepancy suggests that the Austroalpine outliers may have been subducted earlier than the ophiolites of the Zermatt-Saas Zone and therefore have been tectonically emplaced into their present intra-ophiolite position. This points to the possibility that the Zermatt-Saas Zone consists of tectonic subunits, which reached their respective pressure peaks over a prolonged time period, approximately 10-20 Ma. The pressure-temperature estimates from several members of the Austroalpine outliers indicate a complex distribution of metamorphic peak conditions, without ultrahigh-pressure indications. By contrast, the peak conditions derived from the ophiolites of the Zermatt-Saas Zone are uniform, and close to or inside the coesite stability field. These results further underline that the oceanic lithosphere, which experienced its geodynamic evolution as a relatively coherent unit, may contain slices of continental rocks, which in turn show differences in the metamorphic evolution compared to the surrounding ophiolites. Faßmer, K., Obermüller, G., Nagel, T.J., Kirst, F., Froitzheim, N., Sandmann, S., Miladinova, I., Fonseca, R.O.C., Münker, C. (2015): Coherent vs. non-coherent subduction of ophiolite complexes - new insights from the Zermatt-Saas Zone in the Western Alps. GeoBerlin 2015, Berlin, Germany. Skora, S., Mahlen, N. J., Johnson, C. M., Baumgartner, L. P., Lapen, T. J., Beard, B. L., Szilvagyi, E. T., 2015. Evidence for protracted prograde metamorphism followed by rapid exhumation of the Zermatt-Saas Fee ophiolite. Journal of Metamorphic Geology, 33, 711-734. Weber, S., Sandmann, S., Fonseca, R. O. C., Froitzheim, N., Mu¨ nker, C., Bucher, K., 2015. Dating the beginning of Piemonte-Liguria Ocean subduction: Lu-Hf garnet chronometry of eclogites from the Theodul Glacier Unit (Zermatt-Saas Zone, Switzerland). Swiss Journal of Geosciences, 108, 183-199.

Top