Sample records for program applies chemistry

  1. Applied Biology and Chemistry. Course Materials: Chemistry 111, 112, 113, 114. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for four courses in Applied Biology/Chemistry in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity…

  2. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  3. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  4. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  5. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  6. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  7. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  8. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  9. 40 CFR 158.1410 - Residue chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Residue chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Residue Chemistry § 158.1410 Residue chemistry data... the residue chemistry data requirements for a particular pesticide product. Notes that apply to an...

  10. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  11. 40 CFR 158.310 - Product chemistry data requirements table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Product chemistry data requirements...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.310 Product chemistry data... the product chemistry data requirements for a particular pesticide product. Notes that apply to an...

  12. Chemistry 20-30: Program of Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    Presented in English and French, Chemistry 20-30 is an academic program that helps students in Alberta, Canada, better understand and apply fundamental concepts and skills. The major goals of the program are: (1) to develop in students an understanding of the interconnecting ideas and principles that transcend and unify the natural science…

  13. Introductory Linear Regression Programs in Undergraduate Chemistry.

    ERIC Educational Resources Information Center

    Gale, Robert J.

    1982-01-01

    Presented are simple programs in BASIC and FORTRAN to apply the method of least squares. They calculate gradients and intercepts and express errors as standard deviations. An introduction of undergraduate students to such programs in a chemistry class is reviewed, and issues instructors should be aware of are noted. (MP)

  14. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  15. Strategies for Fostering Synergy between Neuroscience Programs and Chemistry Departments

    PubMed Central

    Ulness, Darin J.; Mach, Julie R.

    2011-01-01

    The successful model of the Neuroscience Program at Concordia College is used as a source of illustrative examples in a presentation of strategies to foster synergy between neuroscience programs and chemistry departments. Chemistry is an increasing voice in the dialog of modern neuroscience. To be well-prepared to engage in this dialog, students must have strong chemistry training and be comfortable applying it to situations in neuroscience. The strategies presented here are designed to stimulate thought and discussion in the undergraduate neuroscience education community. Hopefully this will lead to greater interaction between chemistry and neuroscience at the undergraduate level in other institutions. PMID:23626488

  16. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...

  17. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    NASA Technical Reports Server (NTRS)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  18. Problem-based learning on quantitative analytical chemistry course

    NASA Astrophysics Data System (ADS)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  19. The Use of Molecular Modeling Programs in Medicinal Chemistry Instruction.

    ERIC Educational Resources Information Center

    Harrold, Marc W.

    1992-01-01

    This paper describes and evaluates the use of a molecular modeling computer program (Alchemy II) in a pharmaceutical education program. Provided are the hardware requirements and basic program features as well as several examples of how this program and its features have been applied in the classroom. (GLR)

  20. Provocative Opinion: Let's Master Our Graduate Programs, Not Doctor Them Up

    ERIC Educational Resources Information Center

    Pilar, Frank

    1974-01-01

    Criticizes recent Ph.D. programs carried out in many universities after World War II. Suggests university departments re-institute high quality two-year master's programs designed to train those who plan to make careers in chemistry at an applied level. (CC)

  1. Critical influence of finite rate chemistry and unmixedness on ignition and combustion of supersonic H2-air streams

    NASA Technical Reports Server (NTRS)

    Evans, J. S.; Schexnayder, C. J., Jr.

    1979-01-01

    Good agreement has been obtained between published profiles of composition and pitot pressure and the calculated results from a computer program in which finite rate chemistry was used. Significant differences are noted between results calculated using 7 species and 8 reactions and those calculated using 12 species and 25 reactions. Differences are also found between results in which the effect of unmixedness on reaction in turbulent flow is applied or is not applied.

  2. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  3. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  4. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  5. 34 CFR 645.6 - What definitions apply to the Upward Bound Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., chemistry, and physics. (iv) Three years of social studies. (v) One year of a language other than English... by the individual's State. Rigorous secondary school program of study means a program of study that... recognized as a rigorous secondary school program of study by the Secretary through the process described in...

  6. Science 20-30: Program of Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    Presented in both English and French, Science 20-30 is an integrated academic program in Alberta, Canada that helps students better understand and apply fundamental concepts and skills common to biology, chemistry, physics, and the Earth sciences. The major goals of the program are: (1) to develop in students an understanding of the…

  7. Computer Programs in Marine Science: Key to Oceanographic Records Documentation No. 5.

    ERIC Educational Resources Information Center

    Firestone, Mary A.

    Presented are abstracts of 700 computer programs in marine science. The programs listed are categorized under a wide range of headings which include physical oceanography, chemistry, coastal and estuarine processes, biology, pollution, air-sea interaction and heat budget, navigation and charting, curve fitting, and applied mathematics. The…

  8. Barber/Cosmetologist Curriculum. Program Information.

    ERIC Educational Resources Information Center

    Moraine Park Technical Coll., Fond du Lac, WI.

    This guide provides the instructor with materials for a barber/cosmetologist program. Seventeen study guides are provided: anatomy and physiology; applied chemistry; chemical straightening/relaxing; chemical waving; electricity and light therapy; facial services; hair coloring and lightening (bleach); hair cutting; hair, skin, and nail disorders;…

  9. Livestock Nutrition and Feeding. Student Manual. Second Edition.

    ERIC Educational Resources Information Center

    Ridenour, Harlan E.

    This manual is designed to help agricultural education students and teachers to apply scientific facts and principles to problem-solving procedures in determining nutritious and economical livestock feeding programs. The manual provides applied scientific activities in biological science and chemistry, mathematics, and communication skills. It…

  10. An Overview of Atmospheric Chemistry and Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2017-01-01

    This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.

  11. Syllabus for an Associate Degree Program in Applied Marine Biology and Oceanography.

    ERIC Educational Resources Information Center

    Banerjee, Tapan

    Included is a detailed outline of the content of each course required or offered as an elective in the associate degree program. With an 18 or 19 unit load each semester the program requires two years, and includes 64 hours at sea every semester. In addition to chemistry, physics, biology, and oceanography courses, there is a required course in…

  12. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  13. Parallel Performance of a Combustion Chemistry Simulation

    DOE PAGES

    Skinner, Gregg; Eigenmann, Rudolf

    1995-01-01

    We used a description of a combustion simulation's mathematical and computational methods to develop a version for parallel execution. The result was a reasonable performance improvement on small numbers of processors. We applied several important programming techniques, which we describe, in optimizing the application. This work has implications for programming languages, compiler design, and software engineering.

  14. Hanford Laboratories monthly activities report, March 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  15. The Beginning Lecture and the Improvement of “Experiments in Innovative Chemistry” as an Entry Subjects at the Department of Biochemistry and Applied Chemistry in National College of Technology

    NASA Astrophysics Data System (ADS)

    Tsuda, Yusuke; Nakashima, Hiroyuki; Tsuji, Yutaka; Watanabe, Katsuhiro; Ooka, Hisako

    The beginning lecture and the improvement of “Experiments in Innovative Chemistry” as an entry subjects in the Department of Biochemistry and Applied Chemistry at Kurume National College of Technology has been performed for recent three years. Every experiment was selected to sustain the young student's interest. The questionnaires were performed after first two year's programs were finished, and some of projects were improved. This subject has a good reputation for students and teachers, and seems to be very effective for the first year students of national college of technology.

  16. Hanford Laboratories monthly activities report, February 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  17. Environmental Chemistry Division annual report, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, L.

    1990-01-01

    The research activities making up the programs in the Environmental Chemistry Division of the Department of Applied Science are presented. Some of the more significant accomplishments during 1989 are described and plans for 1990 are discussed briefly. Publications for the period are listed and abstracts are provided. Research objectives and principal investigators are given for each of the active programs. A list of personnel and collaborators during the past year is presented. The support distribution of FY 1989 is approximately 85% from the Department of Energy (65% Office of Health and Environmental Research), and 15% other agencies (principally from themore » Electric Power Research Institute).« less

  18. Communication, and Team-Working Skills in Second-Year Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Mc Goldrick, Niamh B.; Marzec, Bartosz; Scully, P. Noelle; Draper, Sylvia M.

    2013-01-01

    Since 2002, a multidisciplinary program has been used to encourage science students to build on their chemical knowledge and to appreciate how it applies to the world around them. The program is interactive and instills a new set of core learning skills that are often underrepresented in undergraduate curricula, namely, cooperative learning,…

  19. Introducing Proper Chemical Hygiene and Safety in the General Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Miller, Gordon J.; Heideman, Stephen A.; Greenbowe, Thomas J.

    2000-09-01

    Chemical safety is an important component of science education for everyone, not just for chemistry majors. Developing a responsible and knowledgeable attitude towards chemical safety best starts at the early stages of a student's career. In many colleges and universities, safety education in undergraduate chemistry has been relegated primarily to a few regulatory documents at the beginning of a laboratory course, or an occasional warning in the description of a specific experiment in a prelaboratory lecture. Safety issues are seldom raised in general chemistry or organic chemistry lecture-based chemistry courses. At Iowa State University we have begun to implement a program, Chemical Hygiene and Safety in the Laboratory, into the undergraduate chemistry curriculum. This program is designed to increase the awareness and knowledge of proper chemical hygiene and laboratory safety issues among all students taking general chemistry and organic chemistry courses. Laboratory protocol, use of safety equipment, familiarity with MSD sheets, basics of first aid, some specific terminology surrounding chemical hygiene, EPA and OSHA requirements, and the use of the World Wide Web to search and locate chemical safety information are topics that are applied throughout the chemistry curriculum. The novelty of this approach is to incorporate MSD sheets and safety information that can be located on the World Wide Web in a series of safety problems and assignments, all related to the chemistry experiments students are about to perform. The fundamental idea of our approach is not only to teach students what is required for appropriate safety measures, but also to involve them in the enforcement of basic prudent practices.

  20. EPAS TOXCAST PROGRAM FOR PREDICTING HAZARD AND PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS(S).

    EPA Science Inventory

    EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.

  1. Analytical Chemistry Laboratory. Progress report for FY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients --more » Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.« less

  2. ANNUAL REPORT, JULY 1, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-10-31

    Research facilities, general construction progress, research activities, and administration are discussed and a financial statement is given. Fairly detailed accounts are given of research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (M.C.G.)

  3. Systemic Changes in the Undergraduate Chemistry Curriculum Program Awards

    NASA Astrophysics Data System (ADS)

    1995-07-01

    The National Science Foundation has awarded over 10 million in awards to four coalitions in the first round of full awards in the Systemic Changes in the Undergraduate Chemistry Curriculum program. Overall, more than 50 institutions, ranging from large universities to four-year and community colleges, are formally involved in these projects. Each of the projects will involve five years of curricular development and evaluation and dissemination of the results by the participating institutions, as described in the abstracts below. We encourage faculty who are interested in becoming involved in any of these projects to contact the appropriate coalition. In addition, we expect to begin offering an emphasis in 1997 under the Course and Curriculum Development program in which faculty can request funds to assist them in adapting and adopting at their own institutions curricular innovations that have been developed by these coalitions. Another round of proposals for full awards was accepted in June of 1995, and we expect to make one more award in the program during FY1996. We do not expect to accept proposals for either planning or full grants in this program in June of 1996. However, the regular Course and Curriculum Development program will continue to accept and fund proposals requesting support for smaller-scale changes in the chemistry curriculum. ChemLinks Coalition: Making Chemical Connections Brock Spencer Beloit College, Beloit, WI 53511 DUE 9455918: FY1995, 705,000; FY 1996, 655,000; FY1997, 655,000; FY1998, 350,00; FY1999, 350,000 The ChemLinks Coalition is undertaking a five-year project to change the way students learn chemistry, increase scientific literacy for all students taking chemistry, and promote the process of educational reform. In collaboration with the ModularChem Consortium, faculty are developing, testing, and disseminating modular course materials that use active and collaborative approaches to learning. These materials, focused on the first two years of the chemistry curriculum, start with interdisciplinary questions important to students and to society (the molecular basis of life, the environment, technology), and in answering them develop an appreciation of how science is actually done. This approach is designed to reach a broader student audience more effectively than do traditional courses, an audience that includes students who are members of groups traditionally underrepresented in science, nonscience majors, and those taking chemistry as a supporting course, as well as chemistry majors. By providing a model for students preparing for careers in teaching, this approach has an impact on Teacher Preparation Programs. Collaboration among faculty from different disciplines and a number of institutions supports and reinforces those who want to make changes. These leading liberal arts colleges (Beloit, Carleton, Colorado, Grinnell, Hope, Kalamazoo, Knox, Lawrence, Macalester, Rhodes, Spelman, St. Olaf, Wooster) and research universities (Chicago, Washington - St. Louis) already have experience working together on chemistry curricular reform. An alliance with the Advanced Technology Environmental Education Center's coalition of 2-year institutions assures an impact on Advanced Technology Education Programs. By using the extensive Project Kaleidoscope network to promote reform, the ChemLinks Coalition involves a much larger and more diverse group of institutions in making systemic and sustainable changes in undergraduate chemistry education. A Workshop Chemistry Curriculum David K. Gosser CUNY City College, New York, NY 10031 DUE 9455920: FY1995, 425,000; FY1996, 400,000; FY1997, 400,000; FY1998, 150,000; FY1999, 150,000 The City College Consortium, which includes ten senior and community colleges at the City University of New York, and the Universities of Pittsburgh, Pennsylvania, and Rochester, is developing and applying widely a new model of teaching. This model, called Workshop Chemistry, introduces participation and mentorship by recent completers of the course. Small group, student-led workshops are integral to the course structure. Every week two workshops, each an hour long, complement the lecture and laboratory components. The workshop model provides a collaborative learning experience that increases student involvement and provides a new role for students as mentors. In Workshop Chemistry, students learn the problem solving, communication, and teamwork skills crucial for success in the workplace while learning chemistry more effectively. Working together with the faculty, students become an active part of the community of the department. A prototype workshop model has been developed at City College in a general chemistry course for science and engineering majors and is being expanded and refined for a broad range of courses including preparatory chemistry, chemistry for allied health sciences, organic chemistry, instrumental, and analytical chemistry. The experience of students as workshop leaders provides a natural introduction to teaching that is being formalized through a Teacher Preparation component of the project. The workshop method is also being exploited and applied in curricula for technician education, an initiative relevant to Advanced Technology Education. The project evaluates Workshop Chemistry and disseminates it beyond the bounds of the consortium. Student Workshop Manuals that include the problem solving, model building, and simulation activities of the workshops are being produced for each course. New project partners will be invited to view workshops, to participate in faculty developments, and to implement pilot workshop courses at their own institutions. Sweeping Change in Manageable Units: A Modular Approach for Chemistry Curriculum Reform C. Bradley Moore University of California-Berkeley, Berkeley, CA 94720 DUE 9455924: FY1995, 755,000; FY1996, 705,000; FY1997, 705,000; FY1998, 350,000; FY1999, 350,000 The purpose of this program is to develop new curricula, materials and methods that will enhance the appreciation and learning of science, especially chemistry, for every undergraduate student such that all college graduates will command the knowledge and skills necessary to permit continued learning, lead productive lives, and make informed decisions. To accomplish this mission, a modular approach to teaching chemistry in the first two years of the undergraduate curriculum is being developed and evaluated. Modules of 1-4 weeks present fundamental chemistry to students in the context of a real-world problem or application and emphasize the links between chemistry and other disciplines. In collaboration with the ChemLinks Coalition, modules are being developed, tested and refined at the two- and four-year colleges and research universities comprising the two consortia. Curriculum materials, including text, lab, and multimedia components suitable for students from diverse cultural and ethnic backgrounds and usable at a wide variety of undergraduate institutions are being produced and distributed by an established publisher. Teaching methods that utilize current understanding of learning processes and emphasize active learning and the full spectrum of modern technologies are being supported, tested, and promulgated. A model support infrastructure for development and assessment of new materials and methods is being provided. A framework for continuous improvement of curricula should result from the work and be institutionalized within the consortium. Faculty workshops and sessions at national and regional meetings will be conducted to guarantee dissemination. Our consortium institutions now participate significantly in pre-service teacher training and education of advanced science or engineering technicians and are developing new programs in these areas. Thus, our program will strongly impact the Advanced Technological Education and Teacher Preparation Programs by developing modular materials appropriate to the task of educating future teachers and technicians. Establishing New Traditions: Revitalizing the Curriculum John W. Moore University of Wisconsin-Madison, Madison, WI 53706 DUE 9455928: FY1995, 949,968; FY1996, 899,999; FY1997, 899,941; FY1998, 499,941; FY1999, $499,742 This project establishes new traditions in the chemistry curriculum that optimize opportunities for all students to learn chemical facts and concepts, develop and pursue interests in chemistry and chemistry-related disciplines, and appreciate how an understanding of chemistry is important to life and living. We are changing fundamentally the ways students, faculty, and administrators view their roles, creating a student-centered, active-learning emphasis. We have a broad range of reforms, each of which is developed, tested, modified, thoroughly evaluated, and widely disseminated. We address five main areas that apply to all levels of the curriculum: student-focused active learning; inquiry-based/open-ended laboratories; interdisciplinary course clusters to create learning communities; a topic-oriented curriculum; and information technology/computer tools. Each development in each area is carefully evaluated, and only the best survive. Evaluation provides important information about the process of transfer of innovations among institutions of different types. To insure that our reforms are useful for all students, our consortium includes industry, public and private four-year institutions, minority institutions, and two-year colleges. The project gives special emphasis to students who choose teaching as a career option by main-streaming these students in courses that benefit them in both content and pedagogy. Students, including those in Science Education, are fully integrated into the development and implementation of the project, working on both research topics and evaluation. The project also gives special emphasis to community college students in Advanced Technological Education programs to ensure that they share in using the newly developed curriculum. The students in the ATE program will clearly benefit by being provided the five main areas of thrust that this coalition is developing. All the students emerge with greater comprehension and better retention of chemical knowledge, improved ability to apply chemical concepts to new problems, enhanced appreciation of the relation between chemistry and other disciplines, and skills that enable them to work effectively in multidisciplinary teams.

  4. Science on Wheels

    ERIC Educational Resources Information Center

    Savitz, Maxine L.

    1973-01-01

    A science program was developed which is based on a mobile laboratory containing scientific experiments in biology, chemistry, physics, applied science, and mathematics. Discussion and experiments differ from the normal classroom setting as they utilize small groups and center around the relationship of modern science and technology of the urban…

  5. ANNUAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-01

    The national laboratory concept, laboratory objectives, the staff, research facilities. research activities, and administration are discussed in general terms and a financial statement is given. Fairly detailed accounts are given for the research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (W.D.M.)

  6. Medical biochemistry in Macedonia: a profession for physicians and natural scientists.

    PubMed

    Traikovska, S; Dzhekova-Stojkova, S

    2001-06-01

    Medical biochemistry or clinical chemistry in its roots is an interdisciplinary science between natural sciences and medicine. The largest part of medical biochemistry is natural science (chemistry, biochemistry, biology, physics, mathematics), which is very well integrated in deduction of medical problems. Medical biochemistry throughout the world, including Macedonia, should be a professional field open to both physicians and natural scientists, according to its historical development, theoretical characteristics and applied practice. Physicians and natural scientists follow the same route in clinical chemistry during the postgraduate training of specialization in medical biochemistry/clinical chemistry. However, in Macedonia the specialization in medical biochemistry/clinical chemistry is today regulated by law only for physicians and pharmacists. The study of clinical chemistry in Europe has shown its interdisciplinary character. In most European countries different professions, such as physicians, chemists/biochemists, pharmacists, biologists and others could specialize in clinical chemistry. The question for the next generation of specialists in Macedonia is whether to accept the present conditions or to attempt to change the law to include chemists/biochemists and biologists as well. The latter used to be a practice in Macedonia 20 years ago, and still is in many European countries. Such change in law would also result in changes in the postgraduate educational program in medical biochemistry in Macedonia. The new postgraduate program has to follow the European Syllabus, recommended by EC4. To obtain sufficient knowledge in clinical chemistry, the duration of vocational training (undergraduate and postgraduate) for all trainees (physicians, pharmaceutics, chemists/biochemists and biologists) should be 8 years.

  7. Wilberforce Power Technology in Education Program

    NASA Technical Reports Server (NTRS)

    Gordon, Edward M.; Buffinger, D. R.; Hehemann, D. G.; Breen, M. L.; Raffaelle, R. P.

    1999-01-01

    The Wilberforce Power Technology in Education Program is a multipart program. Three key parts of this program will be described. They are: (1) WISE-The Wilberforce Summer Intensive Experience. This annual offering is an educational program which is designed to provide both background reinforcement and a focus on study skills to give the participants a boost in their academic performance throughout their academic careers. It is offered to entering Wilberforce students. Those students who take advantage of WISE learn to improve important skills which enable them to work at higher levels in mathematics, science and engineering courses throughout their college careers, but most notably in the first year of college study. (2) Apply technology to reaming. This is being done in several ways including creating an electronic chemistry text with hypertext links to a glossary to help the students deal with the large new vocabulary required to describe and understand chemistry. It is also being done by converting lecture materials for the Biochemistry class to PowerPoint format. Technology is also being applied to learning by exploring simulation software of scientific instrumentation. (3) Wilberforce participation in collaborative research with NASA's John H. Glenn Research Center at Lewis Field. This research has focused on two areas in the past year. The first of these is the deposition of solar cell materials. A second area involves the development of polymeric materials for incorporation into thin film batteries.

  8. Science 10: Course of Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    Presented in both English and French, Science 10 is an integrated academic course that helps students in Alberta, Canada better understand and apply fundamental concepts and skills common to biology, chemistry, physics, and the Earth sciences. The major goals of the program are: (1) to develop in students an understanding of the interconnecting…

  9. Tighten water-chemistry control after boiler layup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brestel, L.

    1994-01-01

    The potential for internal deposition and corrosion can affect boiler reliability by reducing thermal efficiency, tube integrity, and the time between chemical cleanings. While chemical control specifications for normal operation have been developed by consensus of manufacturers and industry, their impact on shutdowns, layups, and startups is not always appreciated. The discussion of chemical-control options applies to boiler systems operating in the medium- and high-pressure ranges. Identification and correction of root causes underlying the chemistry problems encountered and application of the principles involved should result in shorter startup times, improved control over phosphate hideout, and reduced need for chemical cleaning.more » Each of these has a significant cost impact; together, they are the true measure of a successful chemistry-control program.« less

  10. Two-Year College Chemistry Conference Proceedings: Southern Regional Conference, (2nd, Little Rock, December 9, 1967); Eastern Regional Conference (1st, Philadelphia, February 2-3, 1968); and Annual Conference (8th, San Francisco, March 29-30, 1968).

    ERIC Educational Resources Information Center

    Chapman, Kenneth, Ed.

    This report on three junior college chemistry conferences includes: (1) new and developing programs in 2-year college chemistry; (2) beginning chemistry offerings--repair of poor backgrounds in chemistry and math; (3) non-science major--chemistry program for non-science students; (4) first-year chemistry course: (a) programmed audio-tutorial…

  11. Hirsch's index: a case study conducted atthe Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo.

    PubMed

    Torro-Alves, N; Herculano, R D; Terçariol, C A S; Kinouchi Filho, O; Graeff, C F O

    2007-11-01

    An analysis of scientific bibliographic productivity using the Hirsch h-index, information from the Institute of Scientific Information database and the Curriculum Lattes (CNPq, Brazil) was performed at the Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (FFCLRP-USP) that has four departments in natural, biological and social sciences. Bibliometric evaluations of undergraduate programs showed a better performance of the departments of Chemistry (P < 0.001) and Biology (P < 0.001) when compared to the departments of Physics and Mathematics and Psychology and Education. We also analyzed the scientific output of the six graduate programs of FFCLRP: Psychology, Psychobiology, Chemistry, Physics Applied to Medicine and Biology, Comparative Biology, and Entomology. The graduate program in Psychology presented a lower h-index (P < 0.001) and had fewer papers indexed by the ISI web of science (P < 0.001) when compared to the other graduate programs. The poorer performance of the Psychology program may be associated with the limited coverage by the Thompson Institute of Scientific Information database.

  12. Luigi Osmieri | NREL

    Science.gov Websites

    , characterizing, and testing innovative non-precious-metal electrocatalysts (mainly based on Fe-N-C and Co-N-C . Student to Universidad Autónoma de Madrid (Madrid, Spain), Department of Applied Physical-Chemistry, Sept Union Mobility Program scholarship (LLP - ERASMUS) at Universitat Politècnica de Catalunya (Barcelona

  13. Program on the combustion chemistry of low- and intermediate-Btu gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-30

    Low and intermediate Btu (LBTU and IBTU) gas mixtures are essentially mixtures of CO, H/sub 2/ and CH/sub 4/ diluted with nitrogen and CO/sub 2/. Although the combustion properties of these three fuels have been extensively investigated and their individual combustion kinetics are reasonably well established, prediction techniques for applying these gas mixtures remain for the most part empirical. This program has aimed to bring together and apply some of the fundamental combustion parameters to the CO-H/sub 2/-CH/sub 4/ flame system with the hope of reducing some of this empiricism. Four topical reports have resulted from this program. This finalmore » report summarizes these reports and other activities undertaken in this program. This program was initiated June 22, 1976 under ERDA Contract No. E(49-18)-2406 and was later continued under DOE/PETC and DOE Contract No. DE-AC22-76ET10653.« less

  14. Graduate Education in Chemistry. The ACS Committee on Professional Training: Surveys of Programs and Participants.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This document reports on graduate education in chemistry concerning the nature of graduate programs. Contents include: (1) "Graduate Education in Chemistry in the United States: A Snapshot from the Late Twentieth Century"; (2) "A Survey of Ph.D. Programs in Chemistry"; (4) "The Master's Degree in Chemistry"; (5) "A Survey of Ph.D. Recipients in…

  15. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    ERIC Educational Resources Information Center

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  16. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  17. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  18. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  19. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  20. 42 CFR 493.931 - Routine chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Routine chemistry. 493.931 Section 493.931 Public... Proficiency Testing Programs by Specialty and Subspecialty § 493.931 Routine chemistry. (a) Program content and frequency of challenge. To be approved for proficiency testing for routine chemistry, a program...

  1. Chemistry 200, 300 Interim Guide.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide, developed for the chemistry 200, 300 program in Manitoba, is designed to articulate with previous science courses, provide concepts, processes, and skills which will enable students to continue in chemistry-related areas, and relate chemistry to practical applications in everyday life. It includes a program overview (with program goals…

  2. Paint Analysis Using Visible Reflectance Spectroscopy: An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Hoffman, Erin M.; Beussman, Douglas J.

    2007-01-01

    The study of forensic science is found throughout undergraduate programs in growing numbers, both as stand-alone courses as well as specific examples within existing courses. Part of the driving force for this trend is the ability to apply common chemistry techniques to everyday situations, all couched in the context of a mystery that must be…

  3. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  4. Diphenylbutadienes Syntheses by Means of the Wittig Reaction: Experimental Introduction to the Use of Phase Transfer Catalysis.

    ERIC Educational Resources Information Center

    Gillois, J.; And Others

    1980-01-01

    The synthesis of 1,4-diphenylbutadiene by means of the Wittig reaction is presented as suitable for organic chemistry students at the end of a basic laboratory program to apply laboratory skills and display understanding of the use of phase transfer catalysis and its application in syntheses. (CS)

  5. Organic Chemistry in Action! What Is the Reaction?

    ERIC Educational Resources Information Center

    O'Dwyer, Anne; Childs, Peter

    2015-01-01

    The "Organic Chemistry in Action!" ("OCIA!") program is a set of teaching resources designed to facilitate the teaching and learning of introductory level organic chemistry. The "OCIA!" program was developed in collaboration with practicing and experienced chemistry teachers, using findings from Chemistry Education…

  6. Summer Course Promotes Polymer Chemistry for Small Colleges.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1989-01-01

    Describes a three-week summer program teaching selected chemistry faculty how to incorporate polymer chemistry into chemistry courses. In addition to lectures, the program conducted many experiments and provided a trip to industry laboratories. (YP)

  7. CHEMISTRY FOR THE SAFETY MAN. SAFETY IN INDUSTRY--ENVIRONMENTAL AND CHEMICAL HAZARDS SERVICES.

    ERIC Educational Resources Information Center

    CESTRONE, PATRICK F.

    THIS BULLETIN, ONE OF A SERIES ON SAFETY IN INDUSTRY, IS INTENDED TO PROVIDE THE BACKGROUND WHICH WILL ENABLE THE SAFETY MAN TO UNDERSTAND SOME OF THE PRINCIPLES APPLIED IN CONTROLLING CHEMICAL HAZARDS. IT WAS PREPARED IN THE OFFICE OF OCCUPATIONAL SAFETY, DIVISION OF PROGRAMING AND RESEARCH, BUREAU OF LABOR STANDARDS. TOPICS INCLUDE (1) WHAT IS…

  8. From Folklore to Molecular Pharmacophores: Cultivating STEM Students among Young, First-Generation Female Mexican-Americans

    ERIC Educational Resources Information Center

    Gardea, Jessica; Rios, Laura; Pal, Rituraj; Gardea-Torresdey, Jorge L.; Narayan, Mahesh

    2011-01-01

    The Research and Engineering Apprenticeship Program of the Academy of Applied Science has funded several high school student summer internships to work within the Department of Chemistry at the University of Texas at El Paso. Over the last nine years, young Mexican-American scholars have been recruited into STEM-specific (science, technology,…

  9. ACS-Hach Programs: Supporting Excellence in High School Chemistry Teaching

    NASA Astrophysics Data System (ADS)

    Taylor, Terri

    2009-05-01

    In January 2009, the ACS received a gift of approximately $33 million from the Hach Scientific Foundation, the largest gift in the society's 133-year history. The foundation's programs will be continued by the ACS and will complement pre-existing ACS resources that support high school chemistry teaching. Three activities serve as the pillars of the ACS-Hach programs—the High School Chemistry Grant Program, the Second Career Teacher Scholarship Program, and the Land Grant University Scholars Program. Collectively, the ACS-Hach programs support high school chemistry teaching and learning by responding to the needs of both in-service and pre-service secondary teachers. The goals of each of the ACS-Hach programs align well with the ACS Mission—to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people.

  10. Software Applications on the Peregrine System | High-Performance Computing

    Science.gov Websites

    programming and optimization. Gaussian Chemistry Program for calculating molecular electronic structure and Materials Science Open-source classical molecular dynamics program designed for massively parallel systems framework Q-Chem Chemistry ab initio quantum chemistry package for predictin molecular structures

  11. Making Connections: Learning and Teaching Chemistry in Context

    ERIC Educational Resources Information Center

    King, Donna; Bellocchi, Alberto; Ritchie, Stephen M.

    2008-01-01

    Even though several studies have reported positive attitudinal outcomes from context-based chemistry programs, methodological obstacles have prevented researchers from comparing satisfactorily the chemistry-learning outcomes between students who experience a context-based program with those who experience a content-driven program. In this…

  12. A Comparison of Secondary Chemistry Courses and Chemistry Teacher Preparation Programs in Iowa and Saint Petersburg, Russia

    NASA Astrophysics Data System (ADS)

    Sanger, Michael J.; Brincks, Erik L.; Phelps, Amy J.; Pak, Maria S.; Lyovkin, Antony N.

    2001-09-01

    This paper, which is a result of the collaboration between the University of Northern Iowa (UNI) in Cedar Falls, Iowa, and Herzen State Pedagogical University of Russia in Saint Petersburg, compares the 7-12 chemistry courses in Iowa and Saint Petersburg and the chemistry teacher preparation programs at UNI and Herzen. Differences in the 7-12 chemistry courses include curriculum design (spiral versus layer cake), students' extracurricular activities, and access to technology in the classroom. Differences in the chemistry teacher preparation programs include the number of methods and chemistry content courses required, the number of chemistry teaching majors, the proportion of teaching majors enrolled in the different natural science programs, and the typical minors and endorsements received by these majors. Although we noted many differences in chemistry instruction between Iowa and Saint Petersburg, the secondary and college instructors still face many similar issues, which include overcoming student chemophobia, improving students' algorithmic and problem-solving skills, improving students' conceptual understanding at the particulate level, and dealing with shortages in qualified secondary science teachers.

  13. American Chemical Society. 23rd Great Lakes Regional Meeting. Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The technical program includes some 250 papers in 38 sessions, featuring 16 symposia with 99 invited speakers. Program highlights include a plenary lecture, The Origin and Consequences of Scientific Illiteracy, by Jon D. Miller. Sessions for general technical papers are scheduled in the following categories: analytical chemistry; biochemistry; inorganic chemistry; organic chemistry; and physical chemistry. Papers have been processed for inclusion on the data base.

  14. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  15. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  16. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  17. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  18. 42 CFR 493.929 - Chemistry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  19. Research in bioanalysis and separations at the University of Nebraska - Lincoln.

    PubMed

    Hage, David S; Dodds, Eric D; Du, Liangcheng; Powers, Robert

    2011-05-01

    The Chemistry Department at the University of Nebraska - Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC-MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.

  20. Robotics Laboratory to Enhance the STEM Research Experience

    DTIC Science & Technology

    2015-04-30

    the Chemistry Program has a student working on the design and development of a Stirling Engine , which the student is planning to construct using...scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering : The number of... engineering or technology fields: Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting

  1. NRC Grants for Federal Research

    NASA Astrophysics Data System (ADS)

    The National Research Council is accepting applications for the 1989 Resident, Cooperative, and Postdoctoral Research Associateship Programs in science and engineering. NRC administers the awards for 30 federal agencies and research institutions, which have 115 participating laboratories in the U.S.About 450 new full-time Associateships will be given for research in biological, health, behaviorial sciences and biotechnology; chemistry; Earth and atmospheric sciences; engineering and applied sciences; mathematics; physics; and space and planetary sciences. Most of the programs are open to recent Ph.D.s and senior investigators and to citizens of the U.S. and other countries. More than 5500 scientists have received Associateships since the programs began in 1954.

  2. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  3. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  4. Teacher's Guide to SERAPHIM Software I. Chemistry: Experimental Foundations.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the first in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: Experimental Foundations." Program suggestions are…

  5. European TV Brings Chemistry into the Home

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1975-01-01

    Describes television programs broadcast in the Netherlands and West Germany which explain what chemistry is all about. Both programs, planned under the direction of trained chemists, comprise 13 half-hour presentations and include segments on energy, polymers, chemical processes, the chemistry of life, atomic and molecular chemistry, and chemistry…

  6. 75 FR 3942 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance..., Proposal Review Panel for Chemistry, 1191. Dates & Times: February 23, 2010; 8:30 a.m.-4:30 p.m. February... Brittain, Program Director, Chemistry Centers Program, Division of Materials Research, Room 1055, National...

  7. Development and outcomes of an online-onsite hybrid dental admissions enhancement pilot program.

    PubMed

    Hanson, Carrie L; Van Ness, Chris; Gadbury-Amyot, Cynthia C; Crain, Geralyn

    2014-10-01

    The University of Missouri-Kansas City (UMKC) School of Dentistry has piloted two years of an Admissions Enhancement Program (AEP) with students from underrepresented minority groups and/or economically disadvantaged areas of Missouri interested in applying to dental school. The AEP utilizes an innovative online-onsite hybrid format to elevate students' foundational knowledge in biology, chemistry, organic chemistry, and quantitative reasoning. The online component includes interaction with UMKC instructors using tablet technology and Wimba virtual classroom sessions. The onsite component engages students in academic and professional development, enrichment activities targeting skills training, experience in dental labs and clinics, and mentoring in preparing the dental school application, essay writing, and interviewing. Results to date indicate overall program satisfaction among AEP participants and a dental school acceptance rate of 73.7 percent (14/19 students). Participants reported the mock interviews and essay-writing portions contributed to their becoming competitive candidates for the admission process, and the online material enhanced their preparation for the Dental Admission Test (DAT). Pre- and post-AEP data show participant DAT Academic Average scores increased by two points. The school will continue to monitor program participants in subsequent years.

  8. Teacher's Guide to SERAPHIM Software III. Modern Chemistry.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the third in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Modern Chemistry." Program suggestions are arranged in the same…

  9. Teacher's Guide to SERAPHIM Software IV Chemistry: A Modern Course.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the fourth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: A Modern Course." Program suggestions are arranged…

  10. Teacher's Guide to SERAPHIM Software VI. Chemistry: The Study of Matter.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the sixth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: The Study of Matter." Program suggestions are…

  11. Independent Study in High School Chemistry: A Progress Report.

    ERIC Educational Resources Information Center

    DeRose, James V.

    This is a progress report of an independent study program in chemistry at a senior high school. Currently in its fourth year of operation, the program is designed to provide students with individualized, self-paced instruction in college-preparatory chemistry. The author discusses the rationale for the program, the initial phases, the problems…

  12. A Transition Program for Underprepared Students in General Chemistry: Diagnosis, Implementation, and Evaluation

    ERIC Educational Resources Information Center

    Shields, Shawn P.; Hogrebe, Mark C.; Spees, William M.; Handlin, Larry B.; Noelken, Greg P.; Riley, Julie M.; Frey, Regina F.

    2012-01-01

    We developed an online exam to diagnose students who are underprepared for college-level general chemistry and implemented a program to support them during the general chemistry sequence. This transition program consists of extended-length recitations, peer-led team-learning (PLTL) study groups, and peer-mentoring groups. We evaluated this…

  13. Teacher's Guide to SERAPHIM Software V. Chemistry: The Central Science.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the fifth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: The Central Science." Program suggestions are…

  14. Using NASA and the Space Program to Help High School and College Students Learn Chemistry.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; And Others

    1987-01-01

    Discusses some of the chemical concepts that the United States Space Program illustrates. Describes ways to use the space program to motivate students to learn chemistry and its relationship to the world. Provides examples of classroom applications to environmental chemistry and biochemistry in studying the operation of the space shuttle. (TW)

  15. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Belford, M.; Cohen, A.

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  16. JACOB: an enterprise framework for computational chemistry.

    PubMed

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.

  17. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  18. Investigating the Viability of a Competency-Based, Qualitative Laboratory Assessment Model in First-Year Undergraduate Chemistry

    ERIC Educational Resources Information Center

    Pullen, Reyne; Thickett, Stuart C.; Bissember, Alex C.

    2018-01-01

    In chemistry curricula, both the role of the laboratory program and the method of assessment used are subject to scrutiny and debate. The ability to identify clearly defined competencies for the chemistry laboratory program is crucial, given the numerous other disciplines that rely on foundation-level chemistry knowledge and practical skills. In…

  19. Using materials research results in new regulations -- The Swedish approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gott, K.

    1995-12-31

    Swedish regulations are normally divided into two sections: the first part is the compulsory text and the second part explains very briefly the ideas behind the regulations and section consists of an interpretive text. This second part explains very briefly the ideas behind the regulations and gives advice as to how to apply the regulations, acceptable testing and analysis methods, and references to other standards and relevant documents. In the new regulations, which were approved by the Board of SKI in September 1994 and are effective from 1st January 1995, a number of innovations have been included concerning chemistry andmore » environmental degradation of the primary pressure boundary in Light Water Reactors. With regard to chemistry SKI will no longer approve the various parameters in the technical specifications (such as conductivity and impurity concentrations) but will require that the utilities have a chemistry control program in place which ensures the integrity of the primary pressure boundary and does not expose it to environments (such as impurities and decontamination chemicals) for which it was not designed. SKI can at any time control that such a program exists and assess its compatibility with these goals, either during routine inspections or as part of special theme inspections. Crack growth rates have been specified for different materials stainless steels, and the nickel base alloy types 600 and 182. Different environments have also been specified: water chemistry within and outside plant specifications as well as normal and hydrogen water chemistry conditions. Stress corrosion cracking in pressurized water reactor systems is also treated separately in the regulations, but not discussed specifically here.« less

  20. Monthly Progress Report No. 60 for April 1948

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Various

    This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.

  1. Programs for Fundamentals of Chemistry.

    ERIC Educational Resources Information Center

    Gallardo, Julio; Delgado, Steven

    This document provides computer programs, written in BASIC PLUS, for presenting fundamental or remedial college chemistry students with chemical problems in a computer assisted instructional program. Programs include instructions, a sample run, and 14 separate practice sessions covering: mathematical operations, using decimals, solving…

  2. “Towards building better linkages between aqueous phase ...

    EPA Pesticide Factsheets

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and employing a bisection method to calculate H+ concentrations. With potentially hundreds of reactions that may be important in cloud water and only seven reactions in the current model, expansion of the existing mechanism is an important area of investigation. However, with the current mechanism hardwired into the solver code, the module is difficult to expand with additional chemistry. It also ignores the impacts of mass transfer limitations on cloud chemistry which may be significant. Here, the Kinetic PreProcessor has been applied to generate a Rosenbrock solver for the CMAQ v5.0.1 aqueous phase chemistry mechanism. The module has been updated to simultaneously solve kinetic mass transfer between the phases, dissociation/association, chemical kinetics, Aitken scavenging, and wet deposition. This will allow for easier expansion of the chemical mechanism in the future and a better link between aqueous phase chemistry and droplet microphysics. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating pre

  3. The Student-to-Student Chemistry Initiative: Training High School Students To Perform Chemistry Demonstration Programs for Elementary School Students

    NASA Astrophysics Data System (ADS)

    Voegel, Phillip D.; Quashnock, Kathryn A.; Heil, Katrina M.

    2004-05-01

    The Student-to-Student Chemistry Initiative is an outreach program started in the fall of 2001 at Midwestern State University (MSU). The oncampus program trains high school science students to perform a series of chemistry demonstrations and subsequently provides kits containing necessary supplies and reagents for the high school students to perform demonstration programs at elementary schools. The program focuses on improving student perception of science. The program's impact on high school student perception is evaluated through statistical analysis of paired preparticipation and postparticipation surveys. The surveys focus on four areas of student perception: general attitude toward science, interest in careers in science, science awareness, and interest in attending MSU for postsecondary education. Increased scores were observed in all evaluation areas including a statistically significant increase in science awareness following participation.

  4. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  5. Caring for the Environment while Teaching Organic Chemistry

    ERIC Educational Resources Information Center

    Santos, Elvira Santos; Gavilan Garcia, Irma Cruz; Lejarazo Gomez, Eva Florencia

    2004-01-01

    A comprehensive program in the field of green chemistry, which concentrates on processing and managing of wastes produced during laboratory experiments, is presented. The primary aim of the program is to instill a sense of responsibility and a concern for the environment through organic chemistry education.

  6. Cookbook Versus Creative Chemistry

    ERIC Educational Resources Information Center

    Venkatachelam, Chaya; Rudolph, R. W.

    1974-01-01

    A new approach to a research-oriented general chemistry laboratory is described. Objectives for the laboratory program are specified, details are provided concerning the program design, and the results of an experiment to evaluate the program are reported. (DT)

  7. 75 FR 48698 - Medicare, Medicaid and CLIA Programs; COLA (Formerly the Commission on Office Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ..., including Syphilis Serology, General Immunology. Chemistry, including Routine Chemistry, Urinalysis.... Chemistry, including Routine Chemistry, Urinalysis, Endocrinology, Toxicology. Hematology. Immunohematology...

  8. Inorganic Chemistry at the Undergraduate Level: Are We All on the Same Page?

    ERIC Educational Resources Information Center

    Pesterfield, Les L.; Henrickson, Charles H.

    2001-01-01

    Summarizes and presents results of a national survey on undergraduate inorganic chemistry which asked faculty to describe the general layout of their undergraduate program and course content. Reveals both similarities in the structure of undergraduate inorganic chemistry programs across the country and diversity in content. (ASK)

  9. The Chemistry Teaching Fellowship Program: Developing Curricula and Graduate Student Professionalism

    ERIC Educational Resources Information Center

    Kim, Kris S.; Rackus, Darius G.; Mabury, Scott A.; Morra, Barbora; Dicks, Andrew P.

    2017-01-01

    The Chemistry Teaching Fellowship Program (CTFP) is offered to graduate students and postdoctoral researchers at the University of Toronto as an opportunity to undertake curriculum development and chemistry education research. Projects are run with faculty supervision and focus on designing new laboratory activities, lectures, tutorials,…

  10. Chemistry 20-30: Background, Exemplars and Resources.

    ERIC Educational Resources Information Center

    Hackman, Desiree; And Others

    This document is designed to provide practical information for teaching the Chemistry 20-30 Program of Studies. The first section provides an overview of Chemistry 20, explaining the program philosophy and the relationships among science, technology, and society. The use of concept connections and teaching a course around major science themes is…

  11. The Chemistry Teaching Program for Developing the Senior High School Students' Entrepreneurial Attitudes

    ERIC Educational Resources Information Center

    Susianna, Nancy

    2011-01-01

    The objectives of this research were to identify the characteristics and effectiveness of chemistry teaching programs that increase students' entrepreneurial attitudes, chemistry concepts understanding and creativity. The research design application refers to the R & D (Research and Development) Design. Seventy-three senior high school students…

  12. General Chemistry Collection for Students (CD-ROM), Abstract of Special Issue 16, 4th Edition

    NASA Astrophysics Data System (ADS)

    2000-07-01

    The General Chemistry Collection contains both new and previously published JCE Software programs that are intended for use by introductory-level chemistry students. These peer-reviewed programs for Macintosh and for Windows are available on a single CD-ROM for convenient distribution to and access by students, and the CD may be adopted for students to purchase as they would a textbook. General Chemistry Collection covers a broad range of topics providing students with interesting information, tutorials, and simulations that will be useful to them as they study chemistry for the first time. There are 22 programs included in the General Chemistry Collection 4th Edition. Their titles and the general chemistry topics they cover are listed in Table 1. Features in This Edition General Chemistry Collection, 4th edition includes:

    • Lessons for Introductory Chemistry and INQUAL-S, two new programs not previously published by JCE Software (abstracts appear below)
    • Writing Electron Dot Structures (1) and Viscosity Measurement: A Virtual Experiment for Windows (2), two programs published individually by JCE Software
    • Periodic Table Live! LE, a limited edition of Periodic Table Live!, 2nd Edition (3) (this replaces Chemistry Navigator (4) and Illustrated Periodic Table (5))
    • Many of the programs from previous editions (6)1
    Hardware and Software Requirements System requirements are given in Table 2. Some programs have additional requirements. See the individual program abstracts at JCE Online, or documentation included on the CD-ROM for more specific information. Licensing and Discounts for Adoptions The General Chemistry Collection is intended for use by individual students. Institutions and faculty members may adopt General Chemistry Collection 4th Edition as they would a textbook. We can arrange for CDs to be packaged with laboratory manuals or other course materials or to be sold for direct distribution to students through the campus bookstore. The cost per CD can be quite low when large numbers are ordered (as little as $3 each), making this a cost-effective method of allowing students access to the software they need whenever and wherever they desire. Other JCE Software CDs can also be adopted. Network licenses to distribute the software to your students via your local campus network can also be arranged. Contact us for details on purchasing multiple user licenses. Price and Ordering An order form is inserted in this issue that provides prices and other ordering information. If this card is not available or if you need additional information, contact: JCE Software, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1396; phone; 608/262-5153 or 800/991-5534; fax: 608/265-8094; email: jcesoft@chem.wisc.edu. Table 1. Contents of the General Chemistry Collection, 4th Edition

  13. Exploring hypothetical learning progressions for the chemistry of nitrogen and nuclear processes

    NASA Astrophysics Data System (ADS)

    Henry, Deborah McKern

    Chemistry is a bridge that connects a number of scientific disciplines. High school students should be able to determine whether scientific information is accurate, how chemistry applies to daily life, and the mechanism by which systems operate (NRC, 2012). This research focuses on describing hypothetical learning progressions for student understanding of the chemical reactions of nitrogen and nuclear processes and examines whether there is consistency in scientific reasoning between these two distinct conceptual areas. The constant comparative method was used to analyze the written products of students including homework, formative and summative tests, laboratory notebooks, reflective journals, written presentations, and discussion board contributions via Edmodo (an online program). The ten participants were 15 and 16 year old students enrolled in a general high school chemistry course. Instruction took place over a ten week period. The learning progression levels ranged from 0 to 4 and were described as missing, novice, intermediate, proficient, and expert. The results were compared to the standards set by the NRC with a lower anchor (expectations for grade 8) and upper anchor (expectations for grade 12). The results indicate that, on average, students were able to reach an intermediate level of understanding for these concepts.

  14. Influence of the washing program on the blood processing performance of a continuous autotransfusion device.

    PubMed

    Yoon, Chiyul; Noh, Seungwoo; Lee, Jung Chan; Ko, Sung Ho; Ahn, Wonsik; Kim, Hee Chan

    2014-03-01

    The continuous autotransfusion system has been widely used in surgical operations. It is known that if oil is added to blood, and this mixture is then processed by an autotransfusion device, the added oil is removed and reinfusion of fat is prevented by the device. However, there is no detailed report on the influence of the particular washing program selected on the levels of blood components including blood fat after continuous autotransfusion using such a system. Fresh bovine blood samples were processed by a commercial continuous autotransfusion device using the "emergency," "quality," and "high-quality" programs, applied in random order. Complete blood count (CBC) and serum chemistry were analyzed to determine how the blood processing performance of the device changes with the washing program applied. There was no significant difference in the CBC results obtained with the three washing programs. Although all of the blood lipids in the processed blood were decreased compared to those in the blood before processing, the levels of triglyceride, phospholipid, and total cholesterol after processing via the emergency program were significantly higher than those present after processing via the quality and high-quality programs. Although the continuous autotransfusion device provided consistent hematocrit quality, the levels of some blood lipid components showed significant differences among the washing programs.

  15. Perception of the Relevance of Organic Chemistry in a German Pharmacy Students’ Course

    PubMed Central

    Wehle, Sarah

    2016-01-01

    Objective. To investigate German pharmacy students’ attitudes toward the relevance of organic chemistry training in Julius Maximilian University (JMU) of Würzburg with regard to subsequent courses in the curricula and in later prospective career options. Methods. Surveys were conducted in the second-year organic chemistry course (50 participants) as well as during the third-year and fourth-year lecture cycle on medicinal and pharmaceutical chemistry (66 participants) in 2014. Results. Students’ attitudes were surprisingly consistent throughout the progress of the degree course. Students considered organic chemistry very relevant to the pharmacy study program (95% junior and 97% senior students), and of importance for their future pharmacy program (88% junior and 94% senior students). With regard to prospective career options, the perceived relevance was considerably lower and attitudes were less homogenous. Conclusions. German pharmacy students at JMU Würzburg consider organic chemistry of high relevance for medicinal chemistry and other courses in JMU’s pharmacy program. PMID:27170811

  16. Perception of the Relevance of Organic Chemistry in a German Pharmacy Students' Course.

    PubMed

    Wehle, Sarah; Decker, Michael

    2016-04-25

    Objective. To investigate German pharmacy students' attitudes toward the relevance of organic chemistry training in Julius Maximilian University (JMU) of Würzburg with regard to subsequent courses in the curricula and in later prospective career options. Methods. Surveys were conducted in the second-year organic chemistry course (50 participants) as well as during the third-year and fourth-year lecture cycle on medicinal and pharmaceutical chemistry (66 participants) in 2014. Results. Students' attitudes were surprisingly consistent throughout the progress of the degree course. Students considered organic chemistry very relevant to the pharmacy study program (95% junior and 97% senior students), and of importance for their future pharmacy program (88% junior and 94% senior students). With regard to prospective career options, the perceived relevance was considerably lower and attitudes were less homogenous. Conclusions. German pharmacy students at JMU Würzburg consider organic chemistry of high relevance for medicinal chemistry and other courses in JMU's pharmacy program.

  17. The Professional Development of High School Chemistry Coordinators

    NASA Astrophysics Data System (ADS)

    Hofstein, Avi; Carmeli, Miriam; Shore, Relly

    2004-02-01

    The implementation of new content and pedagogical standards in science education necessitates intensive, long-term professional development of science teachers. In this paper, we describe the rationale and structure of a comprehensive and intensive professional development program of school-based leaders, namely school chemistry coordinators. The year-long program was designed so that the chemistry teachers who enrolled in the program were able to develop in three interrelated aspects: content knowledge, pedagogical content knowledge, and leadership ability. Several strategies for the development of these aspects were adopted from Loucks-Horsley, Hewson, Love, & Stiles (1998). The evaluation of the program focused on the changes that participating teachers underwent regarding their personal beliefs and their functioning as school chemistry coordinators in their schools.

  18. Impact of Chemistry Teachers' Knowledge and Practices on Student Achievement

    NASA Astrophysics Data System (ADS)

    Scantlebury, Kathryn

    2008-10-01

    Professional development programs promoting inquiry-based teaching are challenged with providing teachers content knowledge and using pedagogical approaches that model standards based instruction. Inquiry practices are also important for undergraduate students. This paper focuses on the evaluation of an extensive professional development program for chemistry teachers that included chemistry content tests for students and the teachers and the impact of undergraduate research experiences on college students' attitudes towards chemistry. Baseline results for the students showed that there were no gender differences on the achievement test but white students scored significantly higher than non-white students. However, parent/adult involvement with chemistry homework and projects, was a significant negative predictor of 11th grade students' test chemistry achievement score. This paper will focus on students' achievement and attitude results for teachers who are mid-way through the program providing evidence that on-going, sustained professional development in content and pedagogy is critical for improving students' science achievement.

  19. Can We Teach Reasoning? Should We?

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1997-04-01

    A reader's reaction to what I wrote here in December led me to a very interesting article in Science, where Nisbett et al. report psychological studies that suggest that "even brief formal training in inferential rules may enhance their use for reasoning about everyday life events" (1). But the authors also quote data that imply that chemistry graduate programs are not very effective in helping students develop their abilities to apply statistical reasoning and logical reasoning to unfamiliar problems.

  20. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Cohen, A.; Greenberg, D.

    1991-12-31

    This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  1. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Cohen, A.; Greenberg, D.

    1991-01-01

    This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  2. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    ERIC Educational Resources Information Center

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  3. Turn on Chemistry Program with a Focus on Community Values.

    ERIC Educational Resources Information Center

    Kalra, R. M.

    The program is a terminal course in chemistry for 9-12 grade students who are non-science majors, low achievers, and/or American Indians. Its objectives include to provide a systematic and practical overview of the discipline of chemistry; to change student behavior through this knowledge; to develop social responsibility, scientific attitude, and…

  4. Reactivity of Household Oxygen Bleaches: A Stepwise Laboratory Exercise in High School Chemistry Course

    ERIC Educational Resources Information Center

    Nakano, Masayoshi; Ogasawara, Haruka; Wada, Takeshi; Koga, Nobuyoshi

    2016-01-01

    This paper reports on a learning program designed for high school chemistry classes that involves laboratory exercises using household oxygen bleaches. In this program, students are taught the chemistry of oxygen bleaches through a stepwise inquiry using laboratory exercises organized with different pedagogical intents. Through comparative…

  5. Organic Chemistry for the Gifted.

    ERIC Educational Resources Information Center

    deBeer, W. H. J.

    In response to a serious shortage of chemists in South Africa, gifted secondary school students are enrolled in an enrichment program in organic chemistry and encouraged to consider chemistry or one of its related fields as a career. The introductory portion of the program involves approximately 90 hours over a 3-year period while the advanced…

  6. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Orlando

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centersmore » and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.« less

  7. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.

    PubMed

    Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R

    2016-09-20

    Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by cytochrome P450 enzymes (CYPs)-for toxicology studies-the program Impacts was derived from Fitted and helped us to reveal a complex metabolism with unforeseen stereocenter isomerizations. These efforts, combined with those of other docking software developers, have strengthened our understanding of the complex drug-protein binding process while providing the medicinal chemistry community with useful tools that have led to drug discoveries. In this Account, we describe our contributions over the past 15 years-within their historical context-to the design of drug candidates, including BACE-1 inhibitors, POP covalent inhibitors, G-quadruplex binders, and aminoglycosides binding to nucleic acids. We also remark the necessary developments of docking programs, specifically Fitted, that enabled structure-based design to flourish and yielded multiple fruitful, rational medicinal chemistry campaigns.

  8. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  9. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  10. An Intensive Training Program for Effective Teaching Assistants in Chemistry

    ERIC Educational Resources Information Center

    Dragisich, Vera; Keller, Valerie; Zhao, Meishan

    2016-01-01

    We report an intensive graduate teaching assistant (GTA) training program developed at The University of Chicago. The program has been assessed and has been successful in preparing GTAs for effective discussion and laboratory teaching for both general and organic chemistry. We believe that this training program can provide insightful information…

  11. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less

  12. Semiempirical and ab initio Calculations of Charged Species Used in the Physical Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Gilliom, Richard D.

    1989-01-01

    Concentrates on the semiempirical methods MINDO/3, MNDO, and AMI available in the program AMPAC from the Quantum Chemistry Program Exchange at Indiana University. Uses charged ions in the teaching of computational chemistry. Finds that semiempirical methods are accurate enough for the general use of the bench chemist. (MVL)

  13. Piquing Student Interest with Pharmacology: An Interdisciplinary Program Helps High School Students Learn Biology and Chemistry Principles

    ERIC Educational Resources Information Center

    Halpin, Myra J.; Hoeffler, Leanne; Schwartz-Bloom, Rochelle D.

    2005-01-01

    To help students learn science concepts, Pharmacology Education Partnership (PEP)--a science education program that incorporates relevant topics related to drugs and drug abuse into standard biology and chemistry curricula was developed. The interdisciplinary PEP curriculum provides six modules to teach biology and chemistry principles within the…

  14. 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar

  15. 40 CFR 158.2290 - Residue chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Residue chemistry. 158.2290 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2290 Residue chemistry. (a) General... determine the residue chemistry data requirements for antimicrobial pesticide products. Notes that apply to...

  16. 40 CFR 158.2290 - Residue chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Residue chemistry. 158.2290 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2290 Residue chemistry. (a) General... determine the residue chemistry data requirements for antimicrobial pesticide products. Notes that apply to...

  17. Atmospheric Science Program. Summaries of research in FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded bymore » a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.« less

  18. Health, Safety, and Environment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less

  19. 76 FR 24922 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... announces the following meeting: Name: Proposal Review Panel for Chemistry 1191. Date and Time: May 17, 2011...: Katharine Covert, Acting Deputy Division Director, Chemistry Centers Program, Division of Chemistry, Room...

  20. 40 CFR 158.2210 - Product chemistry.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Product chemistry. 158.2210 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2210 Product chemistry. The product chemistry data requirements of subpart D of this part apply to antimicrobial products covered by this...

  1. 40 CFR 158.2210 - Product chemistry.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Product chemistry. 158.2210 Section... REQUIREMENTS FOR PESTICIDES Antimicrobial Pesticide Data Requirements § 158.2210 Product chemistry. The product chemistry data requirements of subpart D of this part apply to antimicrobial products covered by this...

  2. Using Touch-Screen Technology, Apps, and Blogs to Engage and Sustain High School Students' Interest in Chemistry Topics

    ERIC Educational Resources Information Center

    Kim, Heejoo; Chacko, Priya; Zhao, Jinhui; Montclare, Jin Kim

    2014-01-01

    As part of an outreach program, we integrated chemistry apps with blogging to enhance the learning experience of students in and outside the classroom. Our outreach program involved college mentors who participated in the development and implementation of chemistry lessons alongside the classroom teacher. Three technology-rich modules that focused…

  3. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    ERIC Educational Resources Information Center

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  4. 76 FR 12996 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Awardees by NSF Division of Chemistry (CHE), 1191. Dates and Times: March 31, 2011; 8 a.m.-5:30 p.m. April... Director, Chemistry Centers Program, Division of Chemistry, Room 1055, National Science Foundation, 4201...

  5. 76 FR 6499 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... Awardees by NSF Division of Chemistry (1191). Dates and Times: February 17, 2011; 8 a.m.-6 p.m. February 18... Director, Chemistry Centers Program, Division of Chemistry, Room 1055, National Science Foundation, 4201...

  6. CPT Special Report: Survey of Ph.D. Programs in Chemistry.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1997

    1997-01-01

    Presents preliminary results from a survey taken by the American Chemical Society (ACS) Committee on Professional Training (CPT) to determine the current practices among 155 Ph.D. programs in chemistry. (DKM)

  7. Focus Groups and Exit Interviews Are Components of Chemistry Department Program Assessment

    NASA Astrophysics Data System (ADS)

    Dreisbach, Joseph H.; Hogan, Thomas P.; Stamford, Anne Marie; Greggo, John W.

    1998-10-01

    The Chemistry Department, in conjunction with the Assessment and Institutional Research Office (AIRO) and the Department of Counseling and Human Services developed an assessment plan which incorporates use of focus groups and exit interviews. As part of the five-year departmental review, a number of student focus groups were facilitated to evaluate (a) the freshman and sophomore organic chemistry programs which also service other departments and (b) the upper division lecture and laboratory program for majors. Use of direct conversation in program assessment yields less ambiguous results compared with other methods because responses can be clarified with careful follow up questions. Success of this project gave rise to use of annual exit interviews with graduating seniors from the chemistry department. The approach described can easily be modified to meet the needs of any academic setting.

  8. ENVIRONMENTAL CHEMISTRY

    EPA Science Inventory

    Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...

  9. A Field Study Program in Analytical Chemistry for College Seniors.

    ERIC Educational Resources Information Center

    Langhus, D. L.; Flinchbaugh, D. A.

    1986-01-01

    Describes an elective field study program at Moravian College (Pennsylvania) in which seniors in analytical chemistry obtain first-hand experience at Bethlehem Steel Corporation. Discusses the program's planning phase, some method development projects done by students, experiences received in laboratory operations, and the evaluation of student…

  10. Employing Popular Children's Literature to Teach Elementary School Chemistry: An Engaging Outreach Program

    ERIC Educational Resources Information Center

    Wally, Laura M.; Levinger, Nancy E.; Grainger, David W.

    2005-01-01

    A chemistry outreach program to enthuse students of elementary school levels through employing popular children's literature Harry Potter is presented. The outreach activity performance found the students discovering new skills, learning more about science, and participating enthusiastically in the program without any added incentive from their…

  11. Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.

    ERIC Educational Resources Information Center

    Yager, Robert E., Ed.

    The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…

  12. Preparing Physics and Chemistry Teachers at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Novodvorsky, Ingrid

    2006-04-01

    Beginning in 2000, science majors at the University of Arizona who wish to teach in middle or high schools have enrolled in the College of Science Teacher Preparation Program (CoS TPP). Students in the program take General Education courses, content courses, and science pedagogy courses that make them eligible for teacher certification. Students can remain in their science degree programs, and take the required science pedagogy courses, or they can enroll in a BS in Science Education degree that includes the pedagogy courses, with concentrations available in Biology, Chemistry, Earth Science, and Physics. Science educators from six different departments, two permanent Adjunct Instructors, and two Teachers in Residence teach the program's courses. (One of the Teachers in Residence is supported by the PhysTEC project.) Most of the pedagogy courses include field experiences in area science classrooms; the program works with some 115 mentor teachers from throughout the Tucson area, who host preservice teachers in their field experiences. In the first six years of the program, 14 program graduates have been chemistry and physics teachers. This compares to a total of six chemistry and physics teachers produced by the College of Education program in the four years preceding the creation of the CoS TPP. In this presentation, I will describe the unique features of the courses that prospective chemistry and physics teachers take and the field experiences in which they participate. In addition, I will describe how PhysTEC-supplied resources have been used to improve the program, and the ways in which we are assessing the program's success.

  13. PRN 98-1: Self-Certification of Product Chemistry Data with Attachments

    EPA Pesticide Factsheets

    The Office of Pesticide Programs has established a self-certification program for certain product chemistry data of manufacturing-use products and end-use products produced by a non-integrated formulation system.

  14. Rural Outreach Chemistry for Kids (R.O.C.K.): The Program and Its Evaluation

    ERIC Educational Resources Information Center

    Lynch, Mark; Zovinka, Edward P.; Zhang, Lening; Hruska, Jenna L.; Lee, Angela

    2005-01-01

    The Rural Outreach Chemistry for Kids (R.O.C.K.) program was designed as a service-learning project for students at Saint Francis University to serve the local communities by organizing chemistry activities in high schools. It was initiated in 1995 and has involved a large number of Saint Francis University students and local high school students.…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 2000 (October 1999 through September 2000). This annual progress report, which is the seventeenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The ACL operates within the ANL system as a full-cost-recovery service center, but it has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support tomore » solve research problems of our clients--Argonne National Laboratory, the Department of Energy, and others--and will conduct world-class research and development in analytical chemistry and its applications. The ACL handles a wide range of analytical problems that reflects the diversity of research and development (R&D) work at ANL. Some routine or standard analyses are done, but the ACL operates more typically in a problem-solving mode in which development of methods is required or adaptation of techniques is needed to obtain useful analytical data. The ACL works with clients and commercial laboratories if a large number of routine analyses are required. Much of the support work done by the ACL is very similar to applied analytical chemistry research work.« less

  16. Possible Role of Green Chemistry in Addressing Environmenal Plastic Debris: Scientific, Economic and Policy Issues

    NASA Astrophysics Data System (ADS)

    Bayha, K. M.

    2016-02-01

    Plastics have revolutionized modern life, replacing other raw materials in a vast array of products, due to their ease in molding and shaping, as well as superior recalcitrance to wearing and aging. However, this functional benefit makes plastic one of the most problematic pollutants, since they accumulate as environmental debris for decades and possibly for centuries. Rightfully so, programs addressing plastic debris typically involve efforts to reduce consumption, reuse plastic products and recycle them when usefulness is complete. However, some of these options can be problematic for certain applications, as well as in countries that lack efficient municipal solid waste or recycling facilities. The principles of Green Chemistry were developed to help scientists design chemical products that reduce or eliminate the use or generation of hazardous substances. These principles have also been applied to developing sustainable or greener polymers for use in consumer plastics. For instance, the EPA's Green Chemistry Program awards the Presidential Green Chemistry Challenge Awards each year, with a large percentage of awards having gone to developments in greener polymers. Many of these advancements involve the development of sustainable bio-based, more degradable or more recyclable polymers that deliver significant environmental benefits. This presentation is meant to address what role the development of truly greener polymers might have in addressing environmental plastic debris in parallel with efforts to reduce, reuse and recycle. The intention is to evaluate the issues posed by traditional polymer types, address the ultimate goals of alternative polymer development and evaluate research on current alternative polymer technologies, in order to objectively assess their usefulness in addressing environmental plastic debris accumulation. In addition, the scientific, policy and market issues that may be impeding accurate development, evaluation and implementation of alternative polymers will be discussed.

  17. Actinides-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  18. Forensic Science Research and Development at the National Institute of Justice: Opportunities in Applied Physics

    NASA Astrophysics Data System (ADS)

    Dutton, Gregory

    Forensic science is a collection of applied disciplines that draws from all branches of science. A key question in forensic analysis is: to what degree do a piece of evidence and a known reference sample share characteristics? Quantification of similarity, estimation of uncertainty, and determination of relevant population statistics are of current concern. A 2016 PCAST report questioned the foundational validity and the validity in practice of several forensic disciplines, including latent fingerprints, firearms comparisons and DNA mixture interpretation. One recommendation was the advancement of objective, automated comparison methods based on image analysis and machine learning. These concerns parallel the National Institute of Justice's ongoing R&D investments in applied chemistry, biology and physics. NIJ maintains a funding program spanning fundamental research with potential for forensic application to the validation of novel instruments and methods. Since 2009, NIJ has funded over 179M in external research to support the advancement of accuracy, validity and efficiency in the forensic sciences. An overview of NIJ's programs will be presented, with examples of relevant projects from fluid dynamics, 3D imaging, acoustics, and materials science.

  19. Attitudes and Beliefs of Pathology Residents Regarding the Subspecialty of Clinical Chemistry: Results of a Survey.

    PubMed

    Haidari, Mehran; Yared, Marwan; Olano, Juan P; Alexander, C Bruce; Powell, Suzanne Z

    2017-02-01

    -Previous studies suggest that training in pathology residency programs does not adequately prepare pathology residents to become competent in clinical chemistry. -To define the beliefs of pathology residents in the United States regarding their preparation for practicing clinical chemistry in their career, their attitude toward the discipline, and the attractiveness of clinical chemistry as a career. -The residents of all pathology residency programs in the United States were given the opportunity to participate in an online survey. -Three hundred thirty-six pathology residents responded to the survey. Analysis of the survey results indicates that pathology residents are more likely to believe that their income may be lower if they select a career that has a clinical chemistry focus and that their faculty do not value clinical chemistry as much as the anatomic pathology part of the residency. Residents also report that clinical chemistry is not as enjoyable as anatomic pathology rotations during residency or preferable as a sole career path. A large proportion of residents also believe that they will be slightly prepared or not prepared to practice clinical chemistry by the end of their residency and that they do not have enough background and/or time to learn clinical chemistry during their residency programs to be able to practice this specialty effectively post graduation. -Our survey results suggest that many pathology residents do not have a positive attitude toward clinical chemistry and do not experience a supportive learning environment with an expectation that they will become competent in clinical chemistry with a residency alone.

  20. Building "My First NMRviewer": A Project Incorporating Coding and Programming Tasks in the Undergraduate Chemistry Curricula

    ERIC Educational Resources Information Center

    Arrabal-Campos, Francisco M.; Cortés-Villena, Alejandro; Fernández, Ignacio

    2017-01-01

    This paper presents a programming project named NMRviewer that allows students to visualize transformed and processed 1 H NMR data in an accessible, interactive format while allowing instructors to incorporate programming content into the chemistry curricula. Using the MATLAB graphical user interface development environment (GUIDE), students can…

  1. An Exemplary Program in Higher Education for Chemists, Engineers, and Chemistry Teachers.

    ERIC Educational Resources Information Center

    Ayers, Jerry B.; And Others

    This paper presents the rationale, structure, and specifications for a model program for the preparation of chemists, chemical engineers, and high school chemistry teachers. The model (an application of systems technology to program development in higher education) is based on the structure provided by the Georgia Educational Model Specifications…

  2. A Three-Year Chemistry Seminar Program Focusing on Career Development Skills

    ERIC Educational Resources Information Center

    Tucci, Valerie K.; O'Connor, Abby R.; Bradley, Lynn M.

    2014-01-01

    An innovative, three-year seminar program was developed for undergraduates at The College of New Jersey (TCNJ) that supplements the core chemistry curriculum by teaching the auxiliary skills necessary for life as a professional chemist. Advising, good laboratory practice, and information literacy are the strategic components of this program that…

  3. Physiology undergraduate degree requirements in the U.S.

    PubMed

    VanRyn, Valerie S; Poteracki, James M; Wehrwein, Erica A

    2017-12-01

    Course-level learning objectives and core concepts for undergraduate physiology teaching exist. The next step is to consider how these resources fit into generalizable program-level guidelines for Bachelor of Science (BS) degrees in Physiology. In the absence of program-level guidelines for Physiology degree programs, we compiled a selective internal report to review degree requirements from 18 peer BS programs entitled "Physiology" in the United States (U.S.). There was a range of zero to three required semesters of math, physics, physics laboratory, general biology, biology laboratory, general chemistry, chemistry laboratory, organic chemistry, organic chemistry laboratory, biochemistry, biochemistry laboratory, anatomy, anatomy laboratory, core systems physiology, and physiology laboratory. Required upper division credits ranged from 11 to 31 and included system-specific, exercise and environmental, clinically relevant, pathology/disease-related, and basic science options. We hope that this information will be useful for all programs that consider themselves to be physiology, regardless of name. Reports such as this can serve as a starting point for collaboration among BS programs to improve physiology undergraduate education and best serve our students. Copyright © 2017 the American Physiological Society.

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  5. Chemistry for the Life Sciences. An Instructor Resource Guide. Appendix to a Final Report on the Paraprofessional Rurally Oriented Family Home Health Training Program.

    ERIC Educational Resources Information Center

    Odom, H. Clyde; Myer, Donna Foster

    This instructor's resource guide, one in a series of products from a project to develop an associate degree program for paraprofessional rural family health promoters, deals with teaching chemistry for the life sciences. Covered in the first section of the volume are the role of chemistry in rural health promotional training, general objectives…

  6. Applied Computational Chemistry for the Blind and Visually Impaired

    ERIC Educational Resources Information Center

    Wedler, Henry B.; Cohen, Sarah R.; Davis, Rebecca L.; Harrison, Jason G.; Siebert, Matthew R.; Willenbring, Dan; Hamann, Christian S.; Shaw, Jared T.; Tantillo, Dean J.

    2012-01-01

    We describe accommodations that we have made to our applied computational-theoretical chemistry laboratory to provide access for blind and visually impaired students interested in independent investigation of structure-function relationships. Our approach utilizes tactile drawings, molecular model kits, existing software, Bash and Perl scripts…

  7. Research and Teaching: Computational Methods in General Chemistry--Perceptions of Programming, Prior Experience, and Student Outcomes

    ERIC Educational Resources Information Center

    Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.

    2016-01-01

    This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.

  8. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  9. 77 FR 42341 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance... announces the following meeting: Name: ChemMatCARS Site Visit, 2011 Awardees by NSF Division of Chemistry.... Carlos Murillo, Program Director, Division of Chemistry, Room 1055, National Science Foundation, 4201...

  10. What Teaching Teaches: Mentoring and the Performance Gains of Mentors

    NASA Astrophysics Data System (ADS)

    Amaral, Katie E.; Vala, Martin

    2009-05-01

    A peer mentoring program was added to an introductory chemistry course at a large university. The introductory chemistry course prepares students with little or no previous chemistry background to enter the mainstream general chemistry sequence and is part lecture and part small-group problem-solving. Faculty instructors are responsible for the lecture while peer mentors handle the group problem-solving portion. Peer mentors, recruited from previous introductory chemistry course, are chosen for their knowledge of the material and their helpfulness in group activities. While a number of studies on peer mentoring have reported the benefits to the mentored students, the present study looks at the benefits to the mentors. Grade enhancement in the main-stream general chemistry sequence, withdrawal rates, and number of additional chemistry courses taken by the mentors have been compared to under-prepared students who took the introductory chemistry course but did not serve as mentors and well-prepared students who did not need the introductory chemistry course. Our results show that mentors earned higher grades, withdrew from chemistry courses at a lower rate, and took more courses in chemistry than their counterparts. The enhanced achievement and retention of the mentors in chemistry suggests that programs that encourage under-prepared students to mentor are worthwhile endeavors.

  11. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  12. A Model for Program-Wide Assessment of the Effectiveness of Writing Instruction in Science Laboratory Courses

    ERIC Educational Resources Information Center

    Saitta, Erin K.; Zemliansky, Pavel; Turner, Anna

    2015-01-01

    The authors present a model for program-wide assessment of the effectiveness of writing instruction in a chemistry laboratory course. This model, which involves collaboration between faculty from chemistry, the Writing Across the Curriculum (WAC) program, and the Faculty Center for Teaching and Learning, is based on several theories and…

  13. A Continuing Education Program for the Mature Woman Trained in a Science: I. The Program.

    ERIC Educational Resources Information Center

    Lee, C. O.; And Others

    This document describes how mature scientists who received their master's or bachelor's degrees between two and fifteen years ago, and who are unemployed, underemployed, or need refresher work, are taking tuition-free courses. The year-long program includes courses in chemical concepts, physical chemistry, food and flavor chemistry, environmental…

  14. Film/chemistry selection for the earth resources technology satellite /ERTS/ ground data handling system

    NASA Technical Reports Server (NTRS)

    Shaffer, R. M.

    1973-01-01

    A detailed description is given of the methods of choose the duplication film and chemistry currently used in the NASA-ERTS Ground Data Handling System. The major ERTS photographic duplication goals are given as background information to justify the specifications for the desirable film/chemistry combination. Once these specifications were defined, a quantitative evaluation program was designed and implemented to determine if any recommended combinations could meet the ERTS laboratory specifications. The specifications include tone reproduction, granularity, MTF and cosmetic effects. A complete description of the techniques used to measure the test response variables is given. It is anticipated that similar quantitative techniques could be used on other programs to determine the optimum film/chemistry consistent with the engineering goals of the program.

  15. Chemistry by Computer.

    ERIC Educational Resources Information Center

    Garmon, Linda

    1981-01-01

    Describes the features of various computer chemistry programs. Utilization of computer graphics, color, digital imaging, and other innovations are discussed in programs including those which aid in the identification of unknowns, predict whether chemical reactions are feasible, and predict the biological activity of xenobiotic compounds. (CS)

  16. The Omics Revolution in Agricultural Research.

    PubMed

    Van Emon, Jeanette M

    2016-01-13

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10-14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research.

  17. The Omics Revolution in Agricultural Research

    PubMed Central

    2015-01-01

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10–14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research. PMID:26468989

  18. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  19. UTChem - A Program for Ab Initio Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Nakano, Haruyuki; Nakajima, Takahito

    2003-06-18

    UTChem is a quantum chemistry software developed by Hirao's group at the University of Tokyo. UTChem is a research product of our work to develop new and better theoretical methods in quantum chemistry.

  20. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.

    PubMed

    Krska, Shane W; DiRocco, Daniel A; Dreher, Spencer D; Shevlin, Michael

    2017-12-19

    The structural complexity of pharmaceuticals presents a significant challenge to modern catalysis. Many published methods that work well on simple substrates often fail when attempts are made to apply them to complex drug intermediates. The use of high-throughput experimentation (HTE) techniques offers a means to overcome this fundamental challenge by facilitating the rational exploration of large arrays of catalysts and reaction conditions in a time- and material-efficient manner. Initial forays into the use of HTE in our laboratories for solving chemistry problems centered around screening of chiral precious-metal catalysts for homogeneous asymmetric hydrogenation. The success of these early efforts in developing efficient catalytic steps for late-stage development programs motivated the desire to increase the scope of this approach to encompass other high-value catalytic chemistries. Doing so, however, required significant advances in reactor and workflow design and automation to enable the effective assembly and agitation of arrays of heterogeneous reaction mixtures and retention of volatile solvents under a wide range of temperatures. Associated innovations in high-throughput analytical chemistry techniques greatly increased the efficiency and reliability of these methods. These evolved HTE techniques have been utilized extensively to develop highly innovative catalysis solutions to the most challenging problems in large-scale pharmaceutical synthesis. Starting with Pd- and Cu-catalyzed cross-coupling chemistry, subsequent efforts expanded to other valuable modern synthetic transformations such as chiral phase-transfer catalysis, photoredox catalysis, and C-H functionalization. As our experience and confidence in HTE techniques matured, we envisioned their application beyond problems in process chemistry to address the needs of medicinal chemists. Here the problem of reaction generality is felt most acutely, and HTE approaches should prove broadly enabling. However, the quantities of both time and starting materials available for chemistry troubleshooting in this space generally are severely limited. Adapting to these needs led us to invest in smaller predefined arrays of transformation-specific screening "kits" and push the boundaries of miniaturization in chemistry screening, culminating in the development of "nanoscale" reaction screening carried out in 1536-well plates. Grappling with the problem of generality also inspired the exploration of cheminformatics-driven HTE approaches such as the Chemistry Informer Libraries. These next-generation HTE methods promise to empower chemists to run orders of magnitude more experiments and enable "big data" informatics approaches to reaction design and troubleshooting. With these advances, HTE is poised to revolutionize how chemists across both industry and academia discover new synthetic methods, develop them into tools of broad utility, and apply them to problems of practical significance.

  1. The Status of Chemistry in Two-Year Colleges: Results from a Survey of Chemistry Departments.

    ERIC Educational Resources Information Center

    Ryan, Mary Ann; Wesemann, Jodi L.; Boese, Janet M.; Neuschatz, Michael

    In the fall of 2001, the American Chemical Society (ACS) conducted a survey of two-year college chemistry departments to obtain basic data on chemistry faculty and chemistry courses taught at college. A questionnaire sent to appropriate representatives (department chairs, program heads, or deans) from 1195 campuses generated a 77% response rate.…

  2. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    ERIC Educational Resources Information Center

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  3. Physical Chemistry in Practice: Evaluation of DVD Modules

    ERIC Educational Resources Information Center

    Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.

    2007-01-01

    The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…

  4. Undergraduate Professional Education in Chemistry: Guidelines and Evaluation Procedures.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Provided are guidelines for evaluating undergraduate professional education in chemistry. The guidelines summarize an approved program as including: 400 hours of classroom work; 500 hours of laboratory work; a core curriculum covering principles of analytical, inorganic, organic, and physical chemistry; 1 year of advanced work in chemistry or…

  5. Nuffield A-Level Chemistry: A Personal View

    ERIC Educational Resources Information Center

    Bailey, Roy

    1972-01-01

    Maintains that there are topics of thermodynamics and organic chemistry in Nuffield A-level chemistry program which should be reviewed critically for their content organization. The Nuffield course is considered better than the traditional courses in its educational value, yet highly biased for preparing students for college chemistry courses. (PS)

  6. CDAC Student Report: Summary of LLNL Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herriman, Jane E.

    Multiple objectives motivated me to apply for an internship at LLNL: I wanted to experience the work environment at a national lab, to learn about research and job opportunities at LLNL in particular, and to gain greater experience with code development, particularly within the realm of high performance computing (HPC). This summer I was selected to participate in LLNL's Computational Chemistry and Material Science Summer Institute (CCMS). CCMS is a 10 week program hosted by the Quantum Simulations group leader, Dr. Eric Schwegler. CCMS connects graduate students to mentors at LLNL involved in similar re- search and provides weekly seminarsmore » on a broad array of topics from within chemistry and materials science. Dr. Xavier Andrade and Dr. Erik Draeger served as my co-mentors over the summer, and Dr. Andrade continues to mentor me now that CCMS has concluded. Dr. Andrade is a member of the Quantum Simulations group within the Physical and Life Sciences at LLNL, and Dr. Draeger leads the HPC group within the Center for Applied Scientific Computing (CASC). The two have worked together to develop Qb@ll, an open-source first principles molecular dynamics code that was the platform for my summer research project.« less

  7. Determination of the Formula of a Hydrate: A Greener Alternative

    ERIC Educational Resources Information Center

    Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O.

    2008-01-01

    We are currently in the process of incorporating green chemistry throughout the chemistry curriculum. In this article we describe how we applied the principles of green chemistry in one of our first-semester general chemistry courses, specifically in relation to the determination of the formula of a hydrate. We utilize a copper hydrate salt that…

  8. Understanding Photography as Applied Chemistry: Using Talbot's Calotype Process to Introduce Chemistry to Design Students

    ERIC Educational Resources Information Center

    Ro¨sch, Esther S.; Helmerdig, Silke

    2017-01-01

    Early photography processes were predestined to combine chemistry and art. William Henry Fox Talbot is one of the early photography pioneers. In 2-3 day workshops, design students without a major background in chemistry are able to define a reproducible protocol for Talbot's gallic acid containing calotype process. With the experimental concept…

  9. Supplemental instruction in chemistry

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  10. Preparation of refractory cermet structures for lithium compatibility testing

    NASA Technical Reports Server (NTRS)

    Heestand, R. L.; Jones, R. A.; Wright, T. R.; Kizer, D. E.

    1973-01-01

    High-purity nitride and carbide cermets were synthesized for compatability testing in liquid lithium. A process was developed for the preparation of high-purity hafnium nitride powder, which was subsequently blended with tungsten powder or tantalum nitride and tungsten powders and fabricated into 3 in diameter billets by uniaxial hot pressing. Specimens were then cut from the billets for compatability testing. Similar processing techniques were applied to produce hafnium carbide and zirconium carbide cermets for use in the testing program. All billets produced were characterized with respect to chemistry, structure, density, and strength properties.

  11. In Memoriam - Marvin L. Wesely.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, J. S.; Environmental Research

    2003-06-01

    Marvin L. Wesely, senior meteorologist at Argonne National Laboratory, died January 20, 2003, from a rare form of heart cancer. He was an internationally know and highly respected leader in the scientific measurement and modeling of atmospheric boundary layer turbulence and dry deposition of air pollutants. His fundamental contributions in the development of methodologies for fomulating dry deposition processes are used in atmospheric and biospheric models applied on all scales, worldwide. His extensive research aimed at finding solutions to such environmental problems as air pollution and global warming resulted in more than 150 published articles. Dr. Wesley was also anmore » editor for the Journal of Applied Meteorology and chief scientist of the atmospheric chemistry program in Washington, DC.« less

  12. From Freshman Student to Upper-Secondary School Teacher in Chemistry: A New Approach with Projects and Group Work.

    ERIC Educational Resources Information Center

    Josephsen, Jens

    1985-01-01

    A special five and one-half year program for training upper secondary school chemistry teachers has been developed and tested over the past decade at Roskilde University near Copenhagen. The program (which emphasizes project work) and a student project on epoxy glue are described. Program graduates are generally problem-oriented and…

  13. Peer Mentor Program for the General Chemistry Laboratory Designed to Improve Undergraduate STEM Retention

    ERIC Educational Resources Information Center

    Damkaci, Fehmi; Braun, Timothy F.; Gublo, Kristin

    2017-01-01

    We describe the design and implementation of an undergraduate peer mentor program that can overlay an existing general chemistry laboratory and is designed to improve STEM student retention. For the first four freshman cohorts going through the program, year-to-year retention improved by a four-year average of 20% for students in peer-mentored…

  14. Evaluating the Impact of the "Teaching as a Chemistry Laboratory Graduate Teaching Assistant" Program on Cognitive and Psychomotor Verbal Interactions in the Laboratory

    ERIC Educational Resources Information Center

    Flaherty, A.; O'Dwyer, A.; Mannix-McNamara, P.; Leahy, J. J.

    2017-01-01

    Designing and evaluating teacher development programs for graduate teaching assistants (GTAs) who teach in the laboratory is a prominent feature of chemistry education research. However, few studies have investigated the impact of a GTA teacher development program on the verbal interactions between participating GTAs and students in the…

  15. Computer Based Instructional Techniques in Undergraduate Introductory Organic Chemistry: Rationale, Developmental Techniques, Programming Strategies and Evaluation.

    ERIC Educational Resources Information Center

    Culp, G. H.; And Others

    Over 100 interactive computer programs for use in general and organic chemistry at the University of Texas at Austin have been prepared. The rationale for the programs is based upon the belief that computer-assisted instruction (CAI) can improve education by, among other things, freeing teachers from routine tasks, measuring entry skills,…

  16. How to Recognize Success and Failure: Practical Assessment of an Evolving, First-Semester Laboratory Program Using Simple, Outcome-Based Tools

    ERIC Educational Resources Information Center

    Gron, Liz U.; Bradley, Shelly B.; McKenzie, Jennifer R.; Shinn, Sara E.; Teague, M. Warfield

    2013-01-01

    This paper presents the use of simple, outcome-based assessment tools to design and evaluate the first semester of a new introductory laboratory program created to teach green analytical chemistry using environmental samples. This general chemistry laboratory program, like many introductory courses, has a wide array of stakeholders within and…

  17. Programs as Polypeptides.

    PubMed

    Williams, Lance R

    2016-01-01

    Object-oriented combinator chemistry (OOCC) is an artificial chemistry with composition devices borrowed from object-oriented and functional programming languages. Actors in OOCC are embedded in space and subject to diffusion; since they are neither created nor destroyed, their mass is conserved. Actors use programs constructed from combinators to asynchronously update their own states and the states of other actors in their neighborhoods. The fact that programs and combinators are themselves reified as actors makes it possible to build programs that build programs from combinators of a few primitive types using asynchronous spatial processes that resemble chemistry as much as computation. To demonstrate this, OOCC is used to define a parallel, asynchronous, spatially distributed self-replicating system modeled in part on the living cell. Since interactions among its parts result in the construction of more of these same parts, the system is strongly constructive. The system's high normalized complexity is contrasted with that of a simple composome.

  18. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    PubMed

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  19. Science, Engineering, and Mathematics (SEM) at the Timbuktu Academy

    DTIC Science & Technology

    2005-07-31

    School @ CalTech (PhD Chemistry Program) Millican , Jasmine F Su02 ONR 20 Fall `02- Grad . School @ LSU for Ph .D. in Chemistry, Baton Rouge, LA Thomas...n 22 . Joshua McKinsey Stennis Space Center - Stennis Space Center, M S 23 . Jasmine Millican Louisiana State University (LAMP Program) - Baton Rouge...OH 26. Rachel Mckinsey Fr ./Physics MIT- Boston, M A 27. Jasmine Millican Jr ./Chemistry University of Illinois - Chicago, I L 28. Symoane Mizell So

  20. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  1. Chemistry That Applies. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Chemistry That Applies" is an instructional unit designed to help students in grades 8-10 understand the law of conservation of matter. It consists of 24 lessons organized in four clusters. Working in groups, students explore four chemical reactions: burning, rusting, the decomposition of water, and the reaction of baking soda and…

  2. A master of arts in chemistry for in-service teachers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, G.A.; Crosby, J.L.

    Because many teachers of high school chemistry do not have degrees in that subject, there is a growing need for professional development programs to improve the capacity of practicing teachers to teach modem chemistry competently, safely, and in a manner that engages the interest of the student. Because teachers are place bound (except during the summer) it is difficult to devise programs that meet their needs. At Washington State University we are using a combination of summer laboratory programs and technology during the academic year to deliver instruction to high school teachers. The delivery methods include VCR instruction during themore » academic year via U.S. post, two-way interactive television instruction to cohorts of teachers employed as chemists during summers, and an Electronic Bulletin Board to facilitate information exchange. An outline of the program with emphasis on the problems and benefits, and the degree of acceptance of instructional delivery by technology will be presented. Within three years the teachers earn a Master of Arts in Chemistry.« less

  3. ANNUAL REPORT, JULY 1, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-02-01

    This annual report of Brookhaven National Laboratory describes its program and activities for the fiscal year 1958. The progress and trends of the research program are presented along with a description of the operational, service, and administrative activities of the Laboratory. The scientific and technical details of the many research and development activities are covered more fully in scientific and technical periodicals and in the quarterly scientific progress reports and other scientiflc reports of the Laboratory. A list of all publications for July 1, 1957 to June 30, 1958, is given. Status and progress are given in fields of physics,more » accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medical research. (For preceding period see BNL-462.) (W.D.M.)« less

  4. Atmospheric chemistry: Description of the area of performance and a working plan

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Volker W. J. H.

    1986-11-01

    INPE's program in Atmospheric Chemistry Research is described. Research in this area is concerned with atmospheric gases and their chemical reactions, production and loss rates, and their interactions with the biosphere. Atmospheric chemistry includes concepts in Physics, Chemistry, Meteorology, and Biology, which gives it a strong interdisciplinary character. The interaction of some of the atmospheric gases with the biosphere, such as ozone, is very strong and direct. Studying atmospheric chemistry is, therefore, of direct interest to man and the quality of life. Details are described to define the objectives of study, in particular those of our research program at INPE. A working plan is proposed in order to reach the defined goals. Owing to the large anthropogenic interference in the balance of the natural atmosphere it is anticipated that a better understanding of Atmospheric Chemistry will be the great scientific challenge of the next decade.

  5. The Maryland power plant research program internet resource for precipitation chemistry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corio, L.A.; Jones, W.B.; Sherwell, J.

    1999-07-01

    The Maryland Department of Natural Resources Power Plant Research Program (PPRP) initiated a project in 1998 to make available on the World Wide Web (WWW), precipitation chemistry data from monitoring sites located in the Chesapeake Bay watershed. To that end, PPRP obtained, from various organizations, background information on atmospheric deposition monitoring programs (some of which are still on-going), as well as special studies. For those programs and studies with available precipitation chemistry data of known quality (data were not available for all programs and studies), PPRP obtained, processed, and uploaded the data to its WWW site (www.versar.com/pprp/features/aciddep/aciddep.htm). These data canmore » either be viewed on the web site or downloaded as a zipped file in either comma-delimited or Excel spreadsheet format. PPRP also provides descriptions of the monitoring programs/studies, including information on measurement methods and quality assurance procedures, where available. For the few monitoring programs (e.g., NADP) with existing web sites that allow on-line access to data, PPRP provides links to these sites. PPRP currently is working with the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) in a cooperative effort to make more precipitation chemistry data easily available to the scientific community.« less

  6. What Teaching Teaches: Mentoring and the Performance Gains of Mentors

    ERIC Educational Resources Information Center

    Amaral, Katie E.; Vala, Martin

    2009-01-01

    A peer mentoring program was added to an introductory chemistry course at a large university. The introductory chemistry course prepares students with little or no previous chemistry background to enter the mainstream general chemistry sequence and is part lecture and part small-group problem-solving. Faculty instructors are responsible for the…

  7. REACTS 1971, Regional Educators Annual Chemistry Teaching Symposium.

    ERIC Educational Resources Information Center

    Maryland Univ., College Park. Dept. of Chemistry.

    These proceedings of a second annual symposium hosted by the Chemistry Department of the University of Maryland contain the tests of addresses given to approximately 300 chemistry teachers. A brief description of the University of Maryland Teaching Associate Program is given. Included are papers on the uses of chemistry during the Civil War,…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routinemore » standard analyses to unique problems that require significant development of methods and techniques.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standardmore » analyses to unique problems that require significant development of methods and techniques.« less

  10. Water, energy, and biogeochemical budgets investigation at Panola Mountain research watershed, Stockbridge, Georgia; a research plan

    USGS Publications Warehouse

    Huntington, T.G.; Hooper, R.P.; Peters, N.E.; Bullen, T.D.; Kendall, Carol

    1993-01-01

    The Panola Mountain Research Watershed (PMRW), located in the Panola Mountain State Conservation Park near Stockbridge, Georgia has been selected as a core research watershed under the Water, Energy and Biogeochemical Budgets (WEBB) research initiative of the U.S. Geological Survey (USGS) Global Climate Change Program. This research plan describes ongoing and planned research activities at PMRW from 1984 to 1994. Since 1984, PMRW has been studied as a geochemical process research site under the U.S. Acid Precipitation Thrust Program. Research conducted under this Thrust Program focused on the estimation of dry atmospheric deposition, short-term temporal variability of streamwater chemistry, sulfate adsorption characteristics of the soils, groundwater chemistry, throughfall chemistry, and streamwater quality. The Acid Precipitation Thrust Program continues (1993) to support data collection and a water-quality laboratory. Proposed research to be supported by the WEBB program is organized in 3 interrelated categories: streamflow generation and water-quality evolution, weathering and geochemical evolution, and regulation of soil-water chemistry. Proposed research on streamflow generation and water-quality evolution will focus on subsurface water movement, its influence in streamflow generation, and the associated chemical changes of the water that take place along its flowpath. Proposed research on weathering and geochemical evolution will identify the sources of cations observed in the streamwater at Panola Mountain and quantify the changes in cation source during storms. Proposed research on regulation of soil-water chemistry will focus on the poorly understood processes that regulate soil-water and groundwater chemistry. (USGS)

  11. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  12. U.S. EPA’s Computational Toxicology Program: Innovation Powered by Chemistry (Dalton State College presentation)

    EPA Science Inventory

    Invited presentation at Dalton College, Dalton, GA to the Alliance for Innovation & Sustainability, April 20, 2017. U.S. EPA’s Computational Toxicology Program: Innovation Powered by Chemistry It is estimated that tens of thousands of commercial and industrial chemicals are ...

  13. Using NASA and the Space Program to Help High School and College Students Learn Chemistry.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; And Others

    1987-01-01

    Discusses the current state of space-related research and manufacturing techniques. Focuses on the areas of spectroscopy, materials processing, electrochemistry, and analysis. Provides examples and classroom application for using these aspects of the space program to teach chemistry. (TW)

  14. Chemistry - Part III, An Introduction to Organic Chemistry: Teacher's Curriculum Guide for the Thirteen-College Curriculum Program.

    ERIC Educational Resources Information Center

    Booker, Edward; And Others

    This booklet is a teacher's manual in a series of booklets that make up the core of a Physical Science course designed for the freshman year of college and used by teachers in the Thirteen College Curriculum Program. This program is a curriculum revision project in support of 13 predominantly Negro colleges and reflects educational research in the…

  15. Chemistry - Part III, An Introduction to Organic Chemistry: Student Workbook for the Thirteen-College Curriculum Program.

    ERIC Educational Resources Information Center

    Booker, Edward; And Others

    This booklet is a student manual in a series of booklets that make up the core of a Physical Science course designed for the freshman year of college and used by teachers in the 27 colleges participating in the Thirteen College curriculum Program. This program is a curriculum revision project in support of 13 predominantly Negro colleges and…

  16. Bridging gaps in discovery and development: chemical and biological sciences for affordable health, wellness and sustainability.

    PubMed

    Chauhan, Prem Man Singh

    2011-05-01

    To commemorate 2011 as the International Year of Chemistry, the Indian Society of Chemists and Biologists organized its 15th International Conference on 'Bridging Gaps in Discovery and Development: Chemical and Biological Sciences for Affordable Health, Wellness and Sustainability' at Hotel Grand Bhagwati, in association with Saurashtra University, Rajkot, India. Anamik Shah, President of the Indian Society of Chemists and Biologists, was organizing secretary of the conference. Nicole Moreau, President of the International Union of Pure and Applied Chemistry and Secretary General of the Comité National de la Chimie, National Centre for Scientific Research France, was chief guest of the function. The four-day scientific program included 52 plenary lectures, 24 invited lectures by eminent scientists in the field and 12 oral presentations. A total of 317 posters were presented by young scientists and PhD students in three different poster sessions. Approximately 750 delegates from India, the USA, UK, France, Switzerland, Germany, Austria, Belgium, Sweden, Japan and other countries attended the conference. The majority of the speakers gave presentations related to their current projects and areas of interest and many of the talks covered synthesis, structure-activity relationships, current trends in medicinal chemistry and drug research.

  17. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    PubMed Central

    Ghouma, Imen; Limousy, Lionel; Bennici, Simona

    2018-01-01

    The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2. PMID:29670008

  18. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  19. Water. Shopware[R] Applied Biology/Chemistry. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM is part of a multimedia software and video collection for high school and vocational schools. Applied Biology/Chemistry is one of many series providing resources for science education. There are six individual titles in this series which include: (1) Natural Resources; (2) Air and Other Gases; (3) Nutrition; (4) Continuity of Life; (5)…

  20. OCRA, a Mobile Learning Prototype for Understanding Chemistry Concepts

    ERIC Educational Resources Information Center

    Shariman, Tenku Putri Norishah; Talib, Othman

    2017-01-01

    This research studies the effects of an interactive multimedia mobile learning application on students' understanding of chemistry concepts. The Organic Chemistry Reaction Application (OCRA), a mobile learning prototype with touch screen commands, was applied in this research. Through interactive multimedia techniques, students can create and…

  1. A Course in Chemistry of Silicates for Beginning Undergraduate Students: An Interdisciplinary Study

    ERIC Educational Resources Information Center

    Dunstone, John

    1973-01-01

    The course was designed: (1) to broaden the base for chemistry majors to build their courses; (2) to illustrate how some chemistry principles are applied to real situations; and (3) to serve as an introduction to geochemistry for geology majors. (DF)

  2. Part 7: Environmental Chemistry, Revised.

    ERIC Educational Resources Information Center

    Douville, Judith A.

    2003-01-01

    Discusses resources on applied/interdisciplinary areas of chemistry available as books and electronic materials that mostly target graduate students, faculty, and chemists in the industry. (Author/YDS)

  3. Programmed Lab Experiments for Biochemical Investigation of Quorum-Sensing Signal Molecules in Rhizospheric Soil Bacteria

    ERIC Educational Resources Information Center

    Nievas, Fiorela L.; Bogino, Pablo C.; Giordano, Walter

    2016-01-01

    Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences…

  4. The Safety "Use Case": Co-Developing Chemical Information Management and Laboratory Safety Skills

    ERIC Educational Resources Information Center

    Stuart, Ralph B.; McEwen, Leah R.

    2016-01-01

    The 2015 edition of the American Chemical Society's "Guidelines and Evaluation Procedures for Bachelor's Degree Programs" identifies six skill sets that undergraduate chemistry programs should instill in their students. In our roles as support staff for chemistry departments at two different institutions (one a Primarily Undergraduate…

  5. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  6. An Interactive Analytical Chemistry Summer Camp for Middle School Girls

    ERIC Educational Resources Information Center

    Robbins, Mary E.; Schoenfisch, Mark H.

    2005-01-01

    A summer outreach program, which was implemented for the first time in the summer of 2004, that provided middle school girls with an opportunity to conduct college-level analytical chemistry experiments under the guidance of female graduate students is explained. The program proved beneficial to participants at each level.

  7. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    ERIC Educational Resources Information Center

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  8. Chemistry Curriculum Guide. Bulletin 1660.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a chemistry course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…

  9. Chemistry. Focus on Excellence, Volume 3, Number 2.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Krajcik, Joseph, Ed.

    Eight examples of innovative and outstanding chemistry programs are described. These programs were selected using state criteria and at least four independent reviewers. While Project Synthesis offered a desired state, these examples of excellence provided views of what is already a reality. Included are the goals of an exemplary science program…

  10. What People Eat--A Chemistry Program Based on Nutrition

    ERIC Educational Resources Information Center

    Raw, Isaias; And Others

    1975-01-01

    Describes a chemistry curriculum for college freshmen that uses laboratory study of the chemical composition of meals eaten by students as the central activity from which theoretical and practical learning are derived. Presents a meal analysis flow diagram and a table of concepts included in the program. (GS)

  11. High Structure Active Learning Pedagogy for the Teaching of Organic Chemistry: Assessing the Impact on Academic Outcomes

    ERIC Educational Resources Information Center

    Crimmins, Michael T.; Midkiff, Brooke

    2017-01-01

    Organic Chemistry is a required course for programs in chemistry, biology, and many health science careers. It has historically been considered a highly challenging course with significant failure rates. As with many science disciplines, the teaching of Organic Chemistry has traditionally focused on unstructured exposition-centered delivery of…

  12. Conflicts in Chemistry: The Case of Plastics, a Role-Playing Game for High School Chemistry Students

    ERIC Educational Resources Information Center

    Cook, Deborah H.

    2014-01-01

    Conflicts in Chemistry: The Case of Plastics, an innovative role-playing activity for high school students, was developed by the Chemical Heritage Foundation to promote increased public understanding of chemistry. The pilot program included three high school teachers and their students at three different schools and documented implementation and…

  13. ChemTechLinks: Alliances for Chemical Technician Education

    NASA Astrophysics Data System (ADS)

    Nameroff, Tamara

    2003-09-01

    ChemTechLinks (CTL) is a project of the American Chemical Society (ACS) Educational and International Activities Division and funded by the National Science Foundation to support and advance chemistry-based technician education. The project aims to help improve technician education programs, foster academic-industry alliances, provide professional development opportunities for faculty, and increase student recruitment into chemical technology. The CTL Web site serves as an information clearinghouse and link to other ACS resources and programs, including a Web-based, Voluntary Industry Standards (VIS) database, the Chemistry Technician Program Approval Service, the College Chemistry Consultants Service, summer workshops for high school teachers and two-year college faculty that emphasize a technology-oriented curriculum, scholarships for two-year college faculty to attend ACS Short Courses, a self-study instructional guide for faculty to use in preparing for classroom instruction, and information and free recruitment materials about career opportunities in chemistry technology.

  14. [Methods Used for Monitoring Cure Reactions in Real-time in an Autoclave

    NASA Technical Reports Server (NTRS)

    Cooper, John B.; Wise, Kent L.; Jensen, Brian J. (Technical Monitor)

    2000-01-01

    The goal of the research was to investigate methods for monitoring cure reactions in real-time in an autoclave. This is of particular importance to NASA Langley Research Center because polyimides were proposed for use in the High Speed Civil Transport (HSCT) program. Understanding the cure chemistry behind the polyimides would allow for intelligent processing of the composites made from their use. This work has led to two publications in peer-reviewed journals and a patent. The journal articles are listed as Appendix A which is on the instrument design of the research and Appendix B which is on the cure chemistry. Also, a patent has been awarded for the instrumental design developed under this grant which is given as Appendix C. There has been a significant amount of research directed at developing methods for monitoring cure reactions in real-time within the autoclave. The various research efforts can be categorized as methods providing either direct chemical bonding information or methods that provide indirect chemical bonding information. Methods falling into the latter category are fluorescence, dielectric loss, ultrasonic and similar type methods. Correlation of such measurements with the underlying chemistry is often quite difficult since these techniques do not allow monitoring of the curing chemistry which is ultimately responsible for material properties. Direct methods such as vibrational spectroscopy, however, can often be easily correlated with the underlying chemistry of a reaction. Such methods include Raman spectroscopy, mid-IR absorbance, and near-IR absorbance. With the recent advances in fiber-optics, these spectroscopic techniques can be applied to remote on-line monitoring.

  15. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  16. Jordanian Chemistry Teachers' Views on Teaching Practices and Educational Reform

    ERIC Educational Resources Information Center

    Al-Amoush, Siham A.; Markic, Silvija; Eilks, Ingo

    2012-01-01

    This study evaluates experienced teachers' views of chemistry teaching and learning and educational reform in Jordan. The main focus is an investigation of applied teaching practices in chemistry education, including educators' perception of the intentions and effects of ongoing educational reforms. The study is based on semi-structured interviews…

  17. Plasma chemistry and its applications

    NASA Technical Reports Server (NTRS)

    Hozumi, K.

    1980-01-01

    The relationship between discharge phenomena and plasma chemistry, as well as the equipment and mechanisms of plasma chemical reactions are described. Various areas in which plasma chemistry is applied are surveyed, such as: manufacturing of semiconductor integrated circuits; synthetic fibers; high polymer materials for medical uses; optical lenses; and membrane filters (reverse penetration films).

  18. Concept-Oriented Task Design: Making Purposeful Case Comparisons in Organic Chemistry

    ERIC Educational Resources Information Center

    Graulich, Nicole; Schween, Michael

    2018-01-01

    Acquiring conceptual understanding seems to be one of the main challenges students face when studying organic chemistry. Traditionally, organic chemistry presents an extensive variety of chemical transformations, which often lead students to recall an organic transformation rather than apply conceptual knowledge. Strong surface level focus and…

  19. A COURSE OF STUDY IN CHEMISTRY.

    ERIC Educational Resources Information Center

    HELWIG, G. ALFRED; AND OTHERS

    AN ELECTIVE CHEMISTRY COURSE IS DESIGNED TO BE EQUALLY VALUABLE TO BOTH FUTURE SCIENTISTS AND NONSCIENTISTS. THE EMPHASIS IS PLACED ON FUNDAMENTAL CONCEPTS AND RELATIONSHIPS RATHER THAN ON DESCRIPTIVE AND APPLIED CHEMISTRY. MAJOR OBJECTIVES ARE--TO SURVEY THE PRESENT STATE OF CHEMICAL KNOWLEDGE, TO EXAMINE IN SOME DEPTH CENTRAL CHEMICAL CONCEPTS…

  20. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    ERIC Educational Resources Information Center

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  1. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  2. Modified SEAGULL

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Kuehn, M. S.

    1994-01-01

    Original version of program incorporated into program SRGULL (LEW-15093) for use on National Aero-Space Plane project, its duty being to model forebody, inlet, and nozzle portions of vehicle. However, real-gas chemistry effects in hypersonic flow fields limited accuracy of that version, because it assumed perfect-gas properties. As a result, SEAGULL modified according to real-gas equilibrium-chemistry methodology. This program analyzes two-dimensional, hypersonic flows of real gases. Modified version of SEAGULL maintains as much of original program as possible, and retains ability to execute original perfect-gas version.

  3. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data.

    PubMed

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S; Windus, Theresa L; Dick-Perez, Marilu

    2017-03-27

    A newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides, important for metal extraction chemistry, are parametrized using ParFit. ParFit is in an open source program available for free on GitHub ( https://github.com/fzahari/ParFit ).

  4. Shaping the future: ten years of the occupational health internship program.

    PubMed

    Delp, Linda; Riley, Kevin; Jacobs, Sarah; Bush, Diane; Kirkland, Katherine; Denis, Ingrid; London, Matt; Harrison, Robert

    2013-01-01

    The Occupational Health Internship Program (OHIP) was initiated in 2003 to recruit a new, diverse generation of occupational safety and health (OSH) professionals and to advance OSH within union and community-based initiatives. It retains the principles of the original OCAW/Montefiore internship program while adapting to the changed landscape of the 21st-century workplace. Case studies of OHIP projects illustrate how students have contributed to key OSH policies-to regulate silica exposure among construction workers, apply principles of green chemistry with Vietnamese nail salon workers, and integrate OSH into "green" jobs in the recycling industry. They have supported innovative campaigns with immigrant workers in contingent jobs-from taxi drivers to warehouse workers. The students, in turn, have been inspired to enter the OSH arena as professionals and worker advocates with the potential to contribute new energy to an OSH movement.

  5. Evaluation of the Chemistry Collection of a Four-Year College Library by Means of Textbook Citation Analysis.

    ERIC Educational Resources Information Center

    Powell, Diana L.

    The purpose of this study was to evaluate the chemistry collection of the College of Wooster's Chemistry Library. In particular, the extent to which the library supports the curriculum of the chemistry and biochemistry program by providing additional sources to supplement course textbooks was evaluated. Focus was on materials present in the…

  6. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    NASA Technical Reports Server (NTRS)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  7. Use of combinatorial chemistry to speed drug discovery.

    PubMed

    Rádl, S

    1998-10-01

    IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.

  8. A Hands-on Research Experience in Chemistry for Undergraduates in the Southwest.

    ERIC Educational Resources Information Center

    Hogg, John L.

    1988-01-01

    Describes a program in chemistry which was designed to encourage undergraduate minority students to enroll in graduate study. States that students attended meetings with their advisors and met as a group for a research lecture. The program included graduate students, staff, and professors who gave lectures and tours. (RT)

  9. Framing a Program Designed to Train New Chemistry/Physics Teachers for California Outlying Regions

    ERIC Educational Resources Information Center

    Bodily, Gerald P., Jr.

    2010-01-01

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching…

  10. Direction Discovery: A Science Enrichment Program for High School Students

    ERIC Educational Resources Information Center

    Sikes, Suzanne S.; Schwartz-Bloom, Rochelle D.

    2009-01-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to…

  11. "SimChemistry" as an Active Learning Tool in Chemical Education

    ERIC Educational Resources Information Center

    Bolton, Kim; Saalman, Elisabeth; Christie, Michael; Ingerman, Ake; Linder, Cedric

    2008-01-01

    The publicly available free computer program, "SimChemistry," was used as an active learning tool in the chemical engineering curriculum at the University College of Boras, Sweden. The activity involved students writing their own simulation programs on topics in the area of molecular structure and interactions. Evaluation of the learning…

  12. More than a Conversation: Using Cogenerative Dialogues in the Professional Development of High School Chemistry Teachers

    ERIC Educational Resources Information Center

    Martin, Sonya N.; Scantlebury, Kathryn

    2009-01-01

    This paper focuses on content-based and pedagogical instructors' use of cogenerative dialogues to improve instructional practice and to evaluate program effectiveness in a professional development program for high school chemistry teachers. We share our research findings from using cogenerative dialogues as an evaluative tool for general…

  13. Introducing Ethics to Chemistry Students in a "Research Experiences for Undergraduates" (REU) Program

    ERIC Educational Resources Information Center

    Hanson, Mark J.

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…

  14. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances.

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-01-01

    Describes a freshman laboratory program designed to interface between the substances that surround students in their ordinary lives and abstract principles presented in chemistry classrooms. Course organization is based on the nature of the materials themselves, which include household chemicals such as hydrogen peroxide, food and beverages, pills…

  15. Chemistry Division annual progress report for period ending April 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  16. Industrial Chemistry: A Series of New Courses at the Undergraduate Level.

    ERIC Educational Resources Information Center

    Jasinski, Jerry P.; Miller, Robert E.

    1985-01-01

    Describes four courses in the undergraduate bachelor of science program in industrial chemistry at Keene State College (NH). They are (1) introduction to industrial chemistry; (2) polymers--synthesis and separation techniques; (3) inorganic industrial processes; and (4) organic industrial processes. (JN)

  17. 78 FR 31978 - Proposal Review Panel for Chemistry; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Chemistry; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation..., Centers for Chemical Innovation Program, Division of Chemistry, Room 1055, National Science Foundation...

  18. Reduction of Hazardous Waste from High School Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Wahl, George H., Jr., Ed.

    This document provides teachers with sources of useful information and new ideas about the high school chemistry laboratory program. Chapters included are: (1) "Introduction" describing the philosophy and specific objectives of this project; (2) "Importance of Laboratory Work"; (3) "Chemistry Lab Outline" listing…

  19. Practical application of computer programs for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Groves, F. R., Jr.

    1972-01-01

    Experimental data were interpreted using two supersonic combustion computer programs. The P1 program is based on a conventional boundary layer treatment of the mixing of concentric gas streams and complete combustion chemistry. The H1 program is based on a modified boundary layer approach which accounts for radial pressure gradients in the flow and also incorporates a finite rate chemistry calculation. The objective of the investigation was to compare the experimental data with theoretical predictions of the two programs with special emphasis on the prediction of radial pressure gradients by the H1 program. A test of the H1 program was also desired through comparison with the experimental data and with the P1 program.

  20. Assessment of an undergraduate university chemistry course for science and engineering majors

    NASA Astrophysics Data System (ADS)

    Taggart, Austin Dale, II

    An assessment of the introductory chemistry program for science and engineering majors at the University of Houston has been carried out. The goal of the study was to assess the program in light of its history and from the viewpoints of both the introductory chemistry students and their faculty members. Archival data for the program were reviewed over the time period 1998--2003. Included were the ethnographic data, the academic performance data of students as measured by their class grades, and the student satisfaction data as measured by their end-of-class student survey responses. Over 10,000 archival student records were reviewed. The existing end of class survey was expanded to cover a wider range of categories, including curriculum, instruction, student academic background, learning style, attitude, motivation, evaluation, and levels of effort. A survey pilot study and two research surveys were carried out; about one thousand students were surveyed in 2007--2008. By correlating the survey item responses given by students to their predicted student grades, student identified success factors were identified. Benchmarking insights from other successful programs and significant trends were provided to further benefit the program. Long interviews with four of the introductory chemistry instructors served to assess the nature of the program from the perspective of the teaching faculty. A set of 15 interview questions were posed to each faculty member, and the views of faculty embers were captured and summarized. The unintended consequences of maintaining high academic standards of success with evaluation based upon on-line problem solving for a student body with a great diversity of backgrounds in large lecture classes were high rates of failure and attrition. About half of the introductory chemistry students failed to complete their first semester course with a passing grade. Employing lecture styles that support greater student engagement, counseling underprepared students, enforcement of prerequisites, and ensuring that students in introductory chemistry are keeping up with assignments may also serve to improve attendance and achievement.

  1. Creating a Sustainable Future: Some Philosophical and Educational Considerations for Chemistry Teaching

    ERIC Educational Resources Information Center

    Vilches, Amparo; Gil-Pérez, Daniel

    2013-01-01

    The International Union of Pure and Applied Chemistry (IUPAC) and UNESCO have proposed that the International Year of Chemistry, 2011, should make a strong educational contribution to the goals of the UN Decade of Education for Sustainable Development. This emphasis is absolutely necessary because education for sustainability remains practically…

  2. Dialysis, Albumin Binding, and Competitive Binding: A Laboratory Lesson Relating Three Chemical Concepts to Healthcare

    ERIC Educational Resources Information Center

    Domingo, Jennifer P.; Abualia, Mohammed; Barragan, Diana; Schroeder, Lianne; Wink, Donald J.; King, Maripat; Clark, Ginevra A.

    2017-01-01

    Introductory Chemistry laboratories must go beyond "cookbook" methods to illustrate how chemistry concepts apply to complex, real-world problems. In our case, we are preparing students to use their chemistry knowledge in the healthcare profession. The experiment described here explicitly models three important chemical concepts: dialysis…

  3. Understanding and Using the New Guided-Inquiry AP Chemistry Laboratory Manual

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.

    2014-01-01

    To support teaching and learning in the advanced placement (AP) chemistry laboratory, the College Board published a laboratory manual, "AP Chemistry Guided-Inquiry Experiments: Applying the Science Practices," in 2013 as part of the redesigned course. This article provides a discussion of the rationale for the existence of the manual as…

  4. Applying the Multilevel Framework of Discourse Comprehension to Evaluate the Text Characteristics of General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Pyburn, Daniel T.; Pazicni, Samuel

    2014-01-01

    Prior chemistry education research has demonstrated a relationship between student reading skill and general chemistry course performance. In addition to student characteristics, however, the qualities of the learning materials with which students interact also impact student learning. For example, low-knowledge students benefit from texts that…

  5. Chemistry Journal Articles: An Interdisciplinary Approach to Move Analysis with Pedagogical Aims

    ERIC Educational Resources Information Center

    Stoller, Fredricka L.; Robinson, Marin S.

    2013-01-01

    This article highlights aspects of an interdisciplinary (chemistry-applied linguistics) English for Specific Purposes (ESP) course- and materials-development project. The project was aimed at raising genre awareness among chemistry students and faculty, in addition to improving students' disciplinary reading and writing. As part of the project,…

  6. Assessment of Techniques for Measuring Tropospheric H Sub x O Sub y

    NASA Technical Reports Server (NTRS)

    Hoell, J. M. (Editor)

    1984-01-01

    In its continuing efforts to direct its applications programs towards relevant national needs, NASA is conducting the Tropospheric Chemistry Program, the long-range objective of which is to apply NASA's space technology to assess and predict human impact on the troposphere, particularly on the regional to global scale. One area of required research is instrumentation development, which is aimed at improving the capability to measure important trace gases and aerosols which are key species in the major atmospheric biogeochemical cycles. To focus on specific needs, the Instrumentation Worksphop for H(x)O(y) Tropospheric Species was conducted in August 1982. The workshop discussed current measurement needs and instrument capabilities for H(x)O(y) species, including OH, HO2, and H2O2. The workshop activities and conclusions are documented.

  7. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE PAGES

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.; ...

    2017-02-23

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  8. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahariev, Federico; De Silva, Nuwan; Gordon, Mark S.

    Here, a newly created object-oriented program for automating the process of fitting molecular-mechanics parameters to ab initio data, termed ParFit, is presented. ParFit uses a hybrid of deterministic and stochastic genetic algorithms. ParFit can simultaneously handle several molecular-mechanics parameters in multiple molecules and can also apply symmetric and antisymmetric constraints on the optimized parameters. The simultaneous handling of several molecules enhances the transferability of the fitted parameters. ParFit is written in Python, uses a rich set of standard and nonstandard Python libraries, and can be run in parallel on multicore computer systems. As an example, a series of phosphine oxides,more » important for metal extraction chemistry, are parametrized using ParFit.« less

  9. Beginning Chemistry Can Be Relevant

    ERIC Educational Resources Information Center

    Corwin, James F.

    1971-01-01

    Reviews ways of applying laboratory work in general and analytical chemistry to supermarket products. Describes ways water and air pollution analysis can illustrate acid-base reactions, redox reactions, precipitimetry, and colorimetry. (PR)

  10. Presidential Green Chemistry Challenge: 2006 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2006 award winner, Merck, discovered the asymmetric catalytic hydrogenation of unprotected enamines to make beta-amino acids. Merck applied this to synthesize sitagliptin (Januvia).

  11. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  12. New Guidelines for Undergraduate Chemistry Curricula Examined.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1989-01-01

    Reviews current biochemistry, education, and polymer course options found in chemistry programs. Proposes a new core curriculum with 28 semester hours with courses in inorganic, chemical, and instrumental analysis, organic, bioorganic, and physical chemistry. Notes that the new curriculum would better prepare students for the existing employment…

  13. The Second Year Course in Inorganic Chemistry at the Free University of Amsterdam.

    ERIC Educational Resources Information Center

    de Bolster, M. W. G.

    1979-01-01

    An inorganic chemistry course at the Free University of Amsterdam is part of an integrated program involving practical work and theoretical study for chemistry students. Twelve experiments are required and 11 are performed by students in groups of fours. (Author/SA)

  14. Green Chemistry: Innovations for a Cleaner World. [Videotape].

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    This video was developed through a cooperative agreement between the American Chemical Society (ACS)'s Education and International Activities Division and the U.S. Environmental Protection Agency's Green Chemistry Program, Office of Pollution Prevention and Toxics. "Green Chemistry" focuses on chemical products and processes that reduce or…

  15. Web-Based Job Submission Interface for the GAMESS Computational Chemistry Program

    ERIC Educational Resources Information Center

    Perri, M. J.; Weber, S. H.

    2014-01-01

    A Web site is described that facilitates use of the free computational chemistry software: General Atomic and Molecular Electronic Structure System (GAMESS). Its goal is to provide an opportunity for undergraduate students to perform computational chemistry experiments without the need to purchase expensive software.

  16. Automated scanning probe lithography with n-alkanethiol self assembled monolayers on Au(111): Application for teaching undergraduate laboratories

    PubMed Central

    Brown, Treva T.; LeJeune, Zorabel M.; Liu, Kai; Hardin, Sean; Li, Jie-Ren; Rupnik, Kresimir; Garno, Jayne C.

    2010-01-01

    Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. PMID:21483651

  17. Reviews.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1989

    1989-01-01

    Reviews three chemistry software programs at the high school and college general chemistry level for the Apple II family. Includes "Chemical Nomenclature and Balancing Equations,""Principles of Stoichiometry," and "Solubility." (MVL)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handlesmore » a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.« less

  19. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  20. For Liability Purposes, Is a Student Worker an Employee?

    ERIC Educational Resources Information Center

    Franke, Ann H.

    2008-01-01

    Brian Lindsay, a chemistry major, participated in a summer research program at St. Olaf College. The 10-week program required him to work in a laboratory under the direction of a chemistry professor. Lindsay received a $3,500 stipend and free housing. On July 11, 2002, he was performing a procedure to clean, or "quench," a flask. The…

  1. CHEMEX; Understanding and Solving Problems in Chemistry. A Computer-Assisted Instruction Program for General Chemistry.

    ERIC Educational Resources Information Center

    Lower, Stephen K.

    A brief overview of CHEMEX--a problem-solving, tutorial style computer-assisted instructional course--is provided and sample problems are offered. In CHEMEX, students receive problems in advance and attempt to solve them before moving through the computer program, which assists them in overcoming difficulties and serves as a review mechanism.…

  2. Evaluation of a Secondary School Science Program Inversion: Moving from a Traditional to a Modifified-PCB Sequence

    ERIC Educational Resources Information Center

    Gaubatz, Julie

    2013-01-01

    Studies of high-school science course sequences have been limited primarily to a small number of site-specific investigations comparing traditional science sequences (e.g., Biology-Chemistry-Physics: BCP) to various Physics First-influenced sequences (Physics-Chemistry-Biology: PCB). The present study summarizes a five-year program evaluation…

  3. Evaluation of a Voluntary Tutoring Program in Chemistry, Physics and Mathematics for First-Year Undergraduates at Universidad Andres Bello, Chile

    ERIC Educational Resources Information Center

    Jiménez, Verónica A.; Acuña, Fabiola C.; Quiero, Felipe J.; López, Margarita; Zahn, Carmen I.

    2015-01-01

    This work describes the preliminary results of a tutoring program that provides personalized academic assistance to first-year undergraduates enrolled in introductory chemistry, physics and mathematics courses at Universidad Andres Bello (UNAB), in Concepción, Chile. Intervened courses have historically large enrolments, diverse student population…

  4. Testing and Extending VSEPR with WebMO and MOPAC or GAMESS

    ERIC Educational Resources Information Center

    McNaught, Ian J.

    2011-01-01

    VSEPR is a topic that is commonly taught in undergraduate chemistry courses. The readily available Web-based program WebMO, in conjunction with the computational chemistry programs MOPAC and GAMESS, is used to quantitatively test a wide range of predictions of VSEPR. These predictions refer to the point group of the molecule, including the…

  5. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    ERIC Educational Resources Information Center

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  6. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2002-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in star-forming molecular cloud cores, while the laboratory work is focused on the complex species that characterize the prebiotic chemistry of carbon. We outline below our results over the past two years acquired, in part, with Exobiology support.

  7. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  8. Symposium on PhD Education in Chemistry: A Four-Year Model for the PhD Degree Program in Chemistry.

    ERIC Educational Resources Information Center

    Burke, James D.

    1988-01-01

    Proposes an educational model for chemistry PhD education that emphasizes productivity and centrality of research. Supports greater development of communication skills and suggests a four-year timeline. Listed is a curriculum usable for most sciences. (ML)

  9. Understanding Academic Performance in Organic Chemistry

    ERIC Educational Resources Information Center

    Szu, Evan; Nandagopal, Kiruthiga; Shavelson, Richard J.; Lopez, Enrique J.; Penn, John H.; Scharberg, Maureen; Hill, Geannine W.

    2011-01-01

    Successful completion of organic chemistry is a prerequisite for many graduate and professional programs in science, technology, engineering, and mathematics, yet the failure rate for this sequence of courses is notoriously high. To date, few studies have examined why some students succeed while others have difficulty in organic chemistry. This…

  10. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  11. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  12. Comptox Chemistry Dashboard: Web-Based Data Integration Hub for Environmental Chemistry and Toxicology Data (ACS Fall meeting 4 of 12)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrate advances in biology, chemistry, exposure and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and da...

  13. Theoretical research program to study chemical reactions in AOTV bow shock tubes

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.

    1993-01-01

    The main focus was the development, implementation, and calibration of methods for performing molecular electronic structure calculations to high accuracy. These various methods were then applied to a number of chemical reactions and species of interest to NASA, notably in the area of combustion chemistry. Among the development work undertaken was a collaborative effort to develop a program to efficiently predict molecular structures and vibrational frequencies using energy derivatives. Another major development effort involved the design of new atomic basis sets for use in chemical studies: these sets were considerably more accurate than those previously in use. Much effort was also devoted to calibrating methods for computing accurate molecular wave functions, including the first reliable calibrations for realistic molecules using full CI results. A wide variety of application calculations were undertaken. One area of interest was the spectroscopy and thermochemistry of small molecules, including establishing small molecule binding energies to an accuracy rivaling, or even on occasion surpassing, the experiment. Such binding energies are essential input to modeling chemical reaction processes, such as combustion. Studies of large molecules and processes important in both hydrogen and hydrocarbon combustion chemistry were also carried out. Finally, some effort was devoted to the structure and spectroscopy of small metal clusters, with applications to materials science problems.

  14. Loch Vale Watershed Long-Term Ecological Research and Monitoring Program: Quality Assurance Report, 2003-09

    USGS Publications Warehouse

    Richer, Eric E.; Baron, Jill S.

    2011-01-01

    The Loch Vale watershed project is a long-term research and monitoring program located in Rocky Mountain National Park that addresses watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality are made within the watershed and elsewhere in Rocky Mountain National Park. As data collected for the program are used by resource managers, scientists, policy makers, and students, it is important that all data collected in Loch Vale watershed meet high standards of quality. In this report, data quality was evaluated for precipitation, discharge, and surface-water chemistry measurements collected during 2003-09. Equipment upgrades were made at the Loch Vale National Atmospheric Deposition Program monitoring site to improve precipitation measurements and evaluate variability in precipitation depth and chemistry. Additional solar panels and batteries have been installed to improve the power supply, and data completeness, at the NADP site. As a result of equipment malfunction, discharge data for the Loch Outlet were estimated from October 18, 2005, to August 17, 2006. Quality-assurance results indicate that more than 98 percent of all surface-water chemistry measurements were accurate and precise. Records that did not meet quality criteria were removed from the database. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality were all sufficiently complete and consistent to support project data needs.

  15. Global Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  16. AASC Recommendations for the Education of an Applied Climatologist

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.; Stooksbury, D.; Akyuz, A.; Dupigny-Giroux, L.; Hubbard, K. G.; Timofeyeva, M. M.

    2011-12-01

    The American Association of State Climatologists (AASC) has developed curricular recommendations for the education of future applied and service climatologists. The AASC was founded in 1976. Membership of the AASC includes state climatologists and others who work in state climate offices; climate researchers in academia and educators; applied climatologists in NOAA and other federal agencies; and the private sector. The AASC is the only professional organization dedicated solely to the growth and development of applied and service climatology. The purpose of the recommendations is to offer a framework for existing and developing academic climatology programs. These recommendations are intended to serve as a road map and to help distinguish the educational needs for future applied climatologists from those of operational meteorologists or other scientists and practitioners. While the home department of climatology students may differ from one program to the next, the most essential factor is that students can demonstrate a breadth and depth of understanding in the knowledge and tools needed to be an applied climatologist. Because the training of an applied climatologist requires significant depth and breadth, the Masters degree is recommended as the minimum level of education needed. This presentation will highlight the AASC recommendations. These include a strong foundation in: - climatology (instrumentation and data collection, climate dynamics, physical climatology, synoptic and regional climatology, applied climatology, climate models, etc.) - basic natural sciences and mathematics including calculus, physics, chemistry, and biology/ecology - fundamental atmospheric sciences (atmospheric dynamics, atmospheric thermodynamics, atmospheric radiation, and weather analysis/synoptic meteorology) and - data analysis and spatial analysis (descriptive statistics, statistical methods, multivariate statistics, geostatistics, GIS, etc.). The recommendations also include a secondary area of concentration (agriculture, economics, geography, hydrology, marine sciences, natural resources, policy, etc.) and a major applied climate research component.

  17. Cognitive Strategy in Learning Chemistry: How Chunking and Learning Get Together

    ERIC Educational Resources Information Center

    Lah, Norma Che; Saat, Rohaida Mohd; Hassan, Ruhaya

    2014-01-01

    The study explores chunking strategies applied in Short Term Memory (STM) by upper secondary students of mixed chemistry learning abilities. The aim of the study is to observe variations in chunking strategies utilized by these students when learning the Periodic Table of Elements in the Form Four Chemistry syllabus. Findings show that students…

  18. Introducing a Culture of Modeling to Enhance Conceptual Understanding in High School Chemistry Courses

    ERIC Educational Resources Information Center

    Edwards, Amanda D.; Head, Michelle

    2016-01-01

    Both the Next Generation Science Standards (NGSS) and the new AP Chemistry curriculum focus on a deeper understanding of content, as well as application of concepts within science classes. A well accepted research-based method for improving student understanding and the ability to apply many of the abstract concepts presented in chemistry is…

  19. The Effects of Instructors' Autonomy Support and Students' Autonomous Motivation on Learning Organic Chemistry: A Self-Determination Theory Perspective.

    ERIC Educational Resources Information Center

    Black, Aaron E.; Deci, Edward L.

    2000-01-01

    Applies self-determination theory to investigate the effects of students' course-specific self-regulation and their perceptions of their instructors' autonomous support on adjustment and academic performance in a college-level organic chemistry course. Hypothesizes that students taking the organic chemistry course for relatively autonomous reasons…

  20. Locally Produced Laboratory Equipment for Chemical Education. Proceedings of the Workshop (Copenhagen, August 11-17, 1983).

    ERIC Educational Resources Information Center

    Thulstrup, E. W., Ed.; Waddington, D., Ed.

    The International Union of Pure and Applied Chemistry (IUPAC) of Unesco promotes cooperation and the furtherance of chemistry worldwide. The workshop was structured so that contributions representing a wide range of interests in chemistry and chemical education could be presented. The papers include: (1) descriptions of some simple equipment that…

  1. Bend It, Stretch It, Hammer It, Break It: Materials Chemistry Applied

    ERIC Educational Resources Information Center

    Neff, Grace A.; Retsek, Jennifer; Berber-Jimenez, Lola; Barber, Nicole; Coles, Monica; Fintikakis, Christina; Huigens, Brent

    2010-01-01

    Making chemistry both accessible and interesting to middle and high school students can be difficult. Convincing middle and high school teachers that they will learn something new and applicable from a professional development workshop in chemistry can be equally challenging. This paper describes the use of material science as a means to enhance…

  2. Presidential Green Chemistry Challenge: 2000 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2000 award winner, Dow AgroSciences, developed Sentricon to eliminate termites with bait applied only where termites are active; it replaces widespread applications of pesticide to soil.

  3. Writing and Computing across the USM Chemistry Curriculum

    NASA Astrophysics Data System (ADS)

    Gordon, Nancy R.; Newton, Thomas A.; Rhodes, Gale; Ricci, John S.; Stebbins, Richard G.; Tracy, Henry J.

    2001-01-01

    The faculty of the University of Southern Maine believes the ability to communicate effectively is one of the most important skills required of successful chemists. To help students achieve that goal, the faculty has developed a Writing and Computer Program consisting of writing and computer assignments of gradually increasing sophistication for all our laboratory courses. The assignments build in complexity until, at the junior level, students are writing full journal-quality laboratory reports. Computer assignments also increase in difficulty as students attack more complicated subjects. We have found the program easy to initiate and our part-time faculty concurs as well. The Writing and Computing across the Curriculum Program also serves to unite the entire chemistry curriculum. We believe the program is helping to reverse what the USM chemistry faculty and other educators have found to be a steady deterioration in the writing skills of many of today's students.

  4. Workshop on Excellence Empowered by a Diverse Academic Workforce: Achieving Racial & Ethnic Equity in Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Hassan B.

    2008-02-13

    The purpose of the Workshop 'Excellence Empowered by a Diverse Academic Workforce: Achieving Racial & Ethnic Equity in Chemistry' was to promote the development of a cadre of academic leaders who create, implement and promote programs and strategies for increasing the number of racial and ethnic minorities to equitable proportions on the faculties of departments throughout the academic chemistry community. An important objective of the workshop was to assist in creating an informed and committed community of chemistry leaders who will create, implement and promote programs and strategies to advance racial and ethnic equity in both the faculty and themore » student body with the goal of increasing the number of U.S. citizen underrepresented minorities (URM) participating in academic chemistry at all levels, with particular focus on the pipeline to chemistry faculty. This objective was met by (1) presentations of detailed data describing current levels of racial and ethnic minorities on the faculties of chemistry departments; (2) frank discussion of the obstacles to and benefits of racial/ethnic diversity in the chemistry professoriate; (3) summary of possible effective interventions and actions; and (4) promotion of the dissemination and adoption of initiatives designed to achieve racial/ethnic equity. Federal programs over the past thirty years have been instrumental in delivering to our universities URM students intending to major in the physical sciences such as chemistry. However, the near absence of URM faculty means that there is also an absence of URM as role models for aspiring students. For example, citing 2003 as a representative year, some statistics reveal the severity of the pipeline shrinkage for U. S. citizen URM starting from chemistry B.S. degrees awarded to the appointment to chemistry faculty. Compared to the URM population of approximately 30% for that year, 67% of the B.S. degrees in chemistry were awarded to white citizens and 17% were awarded to URM citizens. Proceeding along the pipeline, 83% of the Ph.D. degrees in chemistry were awarded to white citizens, and 6.4% were awarded to URM citizens. The number of white citizens occupying tenure faculty lines in chemistry departments at major research universities is estimated to be 86%, while the corresponding lines for URM was estimated to be only 3.7% in 2003. In raw numbers, the number of white chemistry faculty is estimated to be 1459 and the number of URM faculty was estimated to be just 62. Thus, starting with 16.6% for URM students awarded B.S. degrees in chemistry, the number decreases to 6.4% for URM students awarded Ph.D degrees in chemistry and then dwindles to only 3.6% URM faculty in major research universities, compared to a population of approximately 30% URM citizens. Similar statistics for URM representation in chemistry is found for the last two decades. Clearly there is a serious lack of URM mentors and role models among tenure faculty in our chemistry departments. The impact of this deficiency is captured in the statement that 'A university's lack of minority faculty sends a message to its students that minorities have no place in academia' thereby perpetuating a cycle of marginalization and discrimination. The lack of mentors and role models in academia deprive URM students who pass through the undergraduate programs of an education that is enriched by the intellectual and cognitive diversity that is inherent in a faculty of diverse backgrounds and cultures. Furthermore, URM are projected to constitute almost 32% of the U.S. population by 2020, so that URM will outnumber White males [who are projected to constitute 30% of the population (U.S. Census data)]. It is clearly time for this to change and proactive programs are needed immediately in order to insure that there will be an optimal inclusion of the future 'majority' of the U. S. domestic population throughout all levels of academia. The workshop was organized with the intention of triggering such a change by working with key representatives of chemistry in academia, namely the chemistry department chairs, to generate such programs, strategies and plans of action. This workshop called together the chairs of several of the top 50 Ph.D. granting chemistry departments in the country to design and develop new and comprehensive strategies to solve the problem of chronic URM under representation in chemistry and to commit to the goal of increasing the number of URM faculty in their departments. These chairs are well positioned to promote changes because they exist in environments that produce the majority of our chemistry faculty. With these leaders in the chemistry field taking responsibility for designing, developing, and implementing workable solutions, the community will have its best chance to create an excellent and diverse academic workforce in which the excellence of the URM component is appropriately represented.« less

  5. Report: NSF Instrumentation and Laboratory Improvement Grants in Chemistry

    NASA Astrophysics Data System (ADS)

    1997-01-01

    The 1996 awards in chemistry under the Instrumentation and Laboratory Improvement Program (ILI) of the Division of Undergraduate Education (DUE) have been announced and are listed below. The ILI program provides matching funds in the range of 5,000 to 100,000 for purchasing equipment for laboratory improvement. Since the recipient institution must provide matching funds equaling or exceeding the NSF award, the supported projects range in cost from 10,000 to over 200,000. The 311 chemistry proposals requesting 13 million constituted 21% of the total number of proposals submitted to the ILI program. A total of 3.9 million was awarded in support of 110 projects in chemistry. The instruments requested most frequently were high field NMRs, GC/MS instruments, computers for data analysis, and FT-IRs; next most commonly requested were UV-vis spectrophotometers, followed by HPLCs, lasers, computers for molecular modeling, AAs, and GCs. In addition, one award was made this year in chemistry within the Leadership in Laboratory Development category. The next deadline for submission of ILI proposals is November 14, 1997. Guidelines for the preparation of proposals are found in the DUE Program Announcement (NSF 96-10), which may be obtained by calling (703) 306-1666 or by e-mail: undergrad@nsf.gov. Other information about DUE programs and activities and abstracts of the funded proposals can be found on the DUE Home Page at http://www.ehr.nsf.gov/EHR/DUE/start.htm. We thank Sandra D. Nelson, Science Education Analyst in DUE, for assistance in data gathering.

  6. Metabolomics-based chemotaxonomy of root endophytic fungi for natural products discovery.

    PubMed

    Maciá-Vicente, Jose G; Shi, Yan-Ni; Cheikh-Ali, Zakaria; Grün, Peter; Glynou, Kyriaki; Kia, Sevda Haghi; Piepenbring, Meike; Bode, Helge B

    2018-03-01

    Fungi are prolific producers of natural products routinely screened for biotechnological applications, and those living endophytically within plants attract particular attention because of their purported chemical diversity. However, the harnessing of their biosynthetic potential is hampered by a large and often cryptic phylogenetic and ecological diversity, coupled with a lack of large-scale natural products' dereplication studies. To guide efforts to discover new chemistries among root-endophytic fungi, we analyzed the natural products produced by 822 strains using an untargeted UPLC-ESI-MS/MS-based approach and linked the patterns of chemical features to fungal lineages. We detected 17 809 compounds of which 7951 were classified in 1992 molecular families, whereas the remaining were considered unique chemistries. Our approach allowed to annotate 1191 compounds with different degrees of accuracy, many of which had known fungal origins. Approximately 61% of the compounds were specific of a fungal order, and differences were observed across lineages in the diversity and characteristics of their chemistries. Chemical profiles also showed variable chemosystematic values across lineages, ranging from relative homogeneity to high heterogeneity among related fungi. Our results provide an extensive resource to dereplicate fungal natural products and may assist future discovery programs by providing a guide for the selection of target fungi. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Innovation leading the way: application of lean manufacturing to sample management.

    PubMed

    Allen, M; Wigglesworth, M J

    2009-06-01

    Historically, sample management successfully focused on providing compound quality and tracking distribution within a diverse geographic. However, if a competitive advantage is to be delivered in a changing environment of outsourcing, efficiency and customer service must now improve or face reconstruction. The authors have used discrete event simulation to model the compound process from chemistry to assay and applied lean manufacturing techniques to analyze and improve these processes. In doing so, they identified a value-adding process time of just 11 min within a procedure that took days. Modeling also allowed the analysis of equipment and human resources necessary to complete the expected demand in an acceptable cycle time. Layout and location of sample management and screening departments are key in allowing process integration, creating rapid flow of work, and delivering these efficiencies. Following this analysis and minor process changes, the authors have demonstrated for 2 programs that solid compounds can be converted to assay-ready plates in less than 4 h. In addition, it is now possible to deliver assay data from these compounds within the same working day, allowing chemistry teams more flexibility and more time to execute the next chemistry round. Additional application of lean manufacturing principles has the potential to further decrease cycle times while using fewer resources.

  8. Implementing a Computer Program that Captures Students' Work on Customizable, Periodic-System Data Assignments

    ERIC Educational Resources Information Center

    Wiediger, Susan D.

    2009-01-01

    The periodic table and the periodic system are central to chemistry and thus to many introductory chemistry courses. A number of existing activities use various data sets to model the development process for the periodic table. This paper describes an image arrangement computer program developed to mimic a paper-based card sorting periodic table…

  9. A Competency-Based Clinical Chemistry Course for the Associate Degree Medical Laboratory Technician Graduate in a Medical Technology Baccalaureate Program.

    ERIC Educational Resources Information Center

    Buccelli, Pamela

    Presented is a project that developed a competency-based clinical chemistry course for associate degree medical laboratory technicians (MLT) in a medical technology (MT) baccalaureate program. Content of the course was based upon competencies expected of medical technologists at career-entry as defined in the statements adopted in 1976 by the…

  10. Energy and Environment as Related to Chemistry Teaching. Proceeding of the UNESCO International Workshop/Symposium (Berkeley, California, December 1-8, 1989).

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Board of Regents.

    The proceedings of a program on teaching chemistry through energy and the environment that included plenary lectures, country and commission reports, introductions to new programs and materials, and an experimental approach to curriculum development across national boundaries via the production of an instruction unit are provided. The workshop…

  11. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less

  12. Correlation of preadmission organic chemistry courses and academic performance in biochemistry at a midwest chiropractic doctoral program.

    PubMed

    McRae, Marc P

    2010-01-01

    Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p < .001) and 60.9% and 79.4% for organic chemistry 2 (p < .001). This study shows that organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodie, K B; Mailhiot, C; Eaglesham, D

    Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted themore » assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.« less

  14. A Laboratory Program for Bioinorganic Chemistry

    ERIC Educational Resources Information Center

    Ochiai, Ei-ichiro

    1973-01-01

    Outlines a laboratory course entitled Inorganic Chemistry for Biological Sciences'' which is designed primarily for juniors in biochemistry, physiology, and soil sciences. Inclusion of relevant environmental topics is indicated. (CC)

  15. Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)

    2002-01-01

    Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.

  16. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  17. A New Vision for Chemistry Education Students: Environmental Education

    ERIC Educational Resources Information Center

    Teksoz, Gaye; Sahin, Elvan; Ertepinar, Hamide

    2010-01-01

    The present study aimed to determine level of pre-service chemistry teachers' environmental literacy and their perceptions on environmental education. This study was realized during the fall semester of 2006-2007 academic year with the participation of 60 students enrolled in five-year chemistry teacher education program. The data collected by…

  18. Crocodile Chemistry. [CD-ROM].

    ERIC Educational Resources Information Center

    1999

    This high school chemistry resource is an on-screen chemistry lab. In the program, students can experiment with a huge range of chemicals, choosing the form, quantity and concentrations. Dangerous or difficult experiments can be investigated safely and easily. A vast range of equipment can be set up, and complex simulations can be put together and…

  19. Another Look at the Chimera of Cookbook Chemistry

    ERIC Educational Resources Information Center

    Feifer, Nathan

    1969-01-01

    Argues that the traditional chemistry laboratory manual is not inherently a cookbook and the modern course manual does not automatically eliminate the cookbook approach. Suggests that it is the nature of the teacher guidance that students receive before, after, and during the laboratory work that makes a chemistry program meaningful and effective.…

  20. What Do Data Mean for Pre-Service Chemistry Teachers?

    ERIC Educational Resources Information Center

    Gültepe, Nejla

    2016-01-01

    This phenomologic study was carried out in order to determine how 63 pre-service chemistry teachers graduated from Chemistry Branch of Science Faculty in the pedagogical training program during 2013-2015 academic years defined the concepts of density and melting and boiling points and how they interpreted the data in micro levels. A diagnostic…

  1. Chemistry. Teacher's Guide. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This teaching guide is designed for use with the 19 chemistry investigations found in the student manual. These investigations focus on concepts related to:…

  2. Chemistry. Student Investigations and Readings. Investigations in Natural Science.

    ERIC Educational Resources Information Center

    Renner, John W.; And Others

    Investigations in Natural Science is a program in secondary school biology, chemistry, and physics based upon the description of science as a quest for knowledge, not the knowledge itself. This student manual contains the 19 chemistry investigations. These investigations focus on concepts related to: interactions with water; salt and calcium;…

  3. Art and Chemistry: Designing a Study-Abroad Course

    ERIC Educational Resources Information Center

    Smieja, Joanne A.; D'Ambruoso, Gemma D.; Richman, Robert M.

    2010-01-01

    Three related courses examining the connection between chemistry and art have been developed for study-abroad programs in Florence, Italy, by faculty members at Gonzaga University and Mount Saint Mary's University. These courses are described with the intent of providing a general framework for the development of chemistry and art courses in other…

  4. Strengthening STEM performance and persistence: Influence of undergraduate teaching assistants on entry-level STEM students

    NASA Astrophysics Data System (ADS)

    Philipp, Stephanie B.

    Increasing retention of students in science, technology, engineering, or mathematics (STEM) programs of study is a priority for many colleges and universities. This study examines an undergraduate teaching assistant (UTA) program implemented in a general chemistry course for STEM majors to provide peer learning assistance to entrylevel students. This study measured the content knowledge growth of UTAs compared to traditional graduate teaching assistants (GTAs) over the semester, and described the development of peer learning assistance skills of the UTAs as an outcome of semesterlong training and support from both science education and STEM faculty. Impact of the UTA program on final exam grades, persistence of students to enroll in the next chemistry course required by their intended major, and STEM identity of students were estimated. The study sample comprised 284 students in 14 general chemistry recitation sections led by six UTAs and 310 students in 15 general chemistry recitation sections led by three traditional GTAs for comparison. Results suggested that both UTAs and GTAs made significant learning gains in general chemistry content knowledge, and there was no significant difference in content knowledge between UTA and GTA groups. Student evaluations, researcher observations, and chemistry faculty comments confirm UTAs were using the learning strategies discussed in the semester-long training program. UTA-led students rated their TAs significantly higher in teaching quality and student care and encouragement, which correlated with stronger STEM recognition by those students. The results of hierarchical linear model (HLM) analysis showed little variance in final exam grades explained by section-level variables; most variance was explained by student-level variables: mathematics ACT score, college GPA, and intention to enroll in the next general chemistry course. Students having higher college GPAs were helped more by having a UTA. Results from logistic regression of persistence outcome variable showed that students are three times more likely to persist to CHEM 202 if they had a UTA in CHEM 201. Other positive predictors of retention included having strong college grades, and having strong ACT math scores. Coupled with HLM analysis result that UTAs were more effective at helping students with higher college GPAs achieve higher grades, the stronger persistence of UTA-led students showed that the UTA program is an effective program for retention of introductory-level students in STEM majors.

  5. Spectroscopic Studies of Pre-Biotic Carbon Chemistry

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2003-01-01

    As described in the original proposal and in our progress reports, research in the Blake group supported by the Exobiology program seeks to understand the pre-biotic chemistry of carbon along with that of other first- and second-row elements from the earliest stages of star formation through the development of planetary systems. The major tool used is spectroscopy, and the program has observational, laboratory, and theoretical components. The observational and theoretical programs are concerned primarily with a quantitative assessment of the chemical budgets of the biogenic elements in the circumstellar environment of forming stars and planetary systems, while the laboratory work is focused on the complex species that characterize the pre-biotic chemistry of carbon. We outline below our results over the past year acquired, in part, with Exobiology support.

  6. One Country, Two Cultures--A Multi-Perspective View on Israeli Chemistry Teachers' Beliefs about Teaching and Learning

    ERIC Educational Resources Information Center

    Markic, Silvija; Eilks, Ingo; Mamlok-Naaman, Rachel; Hugerat, Muhamad; Kortam, Naji; Dkeidek, Iyad; Hofstein, Avi

    2016-01-01

    This paper presents a study focusing on differences in Israeli Jewish and Arab chemistry teachers' beliefs regarding teaching and learning of chemistry in the upper secondary schools. Israel is a country experiencing the problems of diverse cultural orientation of its inhabitants but applying the same educational system to its diverse cultural…

  7. The ACS Exams Institute Undergraduate Chemistry Anchoring Concepts Content Map I: General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas; Murphy, Kristen

    2012-01-01

    To provide tools for programmatic assessment related to the use of ACS Exams in undergraduate chemistry courses, the ACS Exams Institute has built a content map that applies to the entire undergraduate curriculum. At the top two levels, the grain size of the content classification is large and spans the entire undergraduate curriculum. At the…

  8. Continuing Education Instrumentation Training in Clinical Chemistry.

    ERIC Educational Resources Information Center

    LeBlanc, Jacqueline; Frankel, Saundra

    1980-01-01

    Describes the continuing education program for clinical chemistry instrumentation training established at The College of Staten Island, New York. A course consisting of 14 sessions is outlined and discussed. (CS)

  9. Installation Restoration Program. Phase 2. Confirmation/Quantification Stage 1. US Air Force Plant Number 42, Palmdale, California. Volume 1

    DTIC Science & Technology

    1987-02-20

    Bacteriology; 8 years professional experience; served as Project Health and Safety Officer. 1-37 o Duane R. Boline - Ph.D. in Analytical Chemistry ; M.S. in... Chemistry ; B.S.E. in Physical Science; 18 years professional experience; served as Project Quality Assurance Officer. Complete biographical data...University, 1962 M.S., Chemistry , Einporia State University 1965 Ph.D., Analytical Chemistry , Kansas State University, 1975

  10. University of Maryland MRSEC - Site Map

    Science.gov Websites

    ; National Labs International Educational Education Pre-College Programs Homeschool Programs Undergraduate Education Outreach: Pre-college Programs Project Lead the Way Chemistry Programs Student Science Conference

  11. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  12. Surveys of research in the Chemistry Division, Argonne National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  13. Serenity: A subsystem quantum chemistry program.

    PubMed

    Unsleber, Jan P; Dresselhaus, Thomas; Klahr, Kevin; Schnieders, David; Böckers, Michael; Barton, Dennis; Neugebauer, Johannes

    2018-05-15

    We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Updated operational protocols for the U.S. Geological Survey Precipitation Chemistry Quality Assurance Project in support of the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2017-02-06

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.

  15. Water Resources Research October 1, 1979 - September 30, 1980: Summary statements of research activities by the Water Resources Division

    USGS Publications Warehouse

    ,

    1981-01-01

    Research in the WRD had its beginnings in the late 1950's when the "core research" line item was added to the Congressional budget. Since this time the Federal program has grown from a "basic sciences" program to one that includes a broad spectrum of basic and applied scientific investigations. Water resources research in WRD includes the study of water in all its phases and uses the basic sciences of mathematics, chemistry, physics, biology, geology and engineering to gain a fundamental understanding of the processes that affect the movement of water and its chemical constituents through hydrologic systems. The basic knowledge and methodologies derived from water resources research are applicable not only to the solution of current problems associated with the Nation's water resources, but also to anticipated hydrologic issues.

  16. The Right Chemistry. Lawn Care Project Brings Science down to Earth.

    ERIC Educational Resources Information Center

    Dollar, David

    1992-01-01

    At Southwest High School in Fort Worth, Texas, an applied learning project enables chemistry students to determine the most effective, economical, and environmentally safe fertilizer for the lawns of schools in the district. (SK)

  17. Opportunities for Funding at NSF

    NASA Astrophysics Data System (ADS)

    Kafafi, Zakya H.

    2009-03-01

    Materials science, inter- and multi-disciplinary in nature, provides the bridge to many areas of fundamental and applied sciences such as biology, chemistry, physics, mathematics, computer sciences, and engineering. Strong links that may exist between materials science and other disciplines, such as biology or chemistry or physics, very often lead to novel applications and enable technologies of great benefit to our society. The Division of Materials Research (DMR) invested 274.0 M in FY 2008 and is estimated to invest 324.6 M in FY 2009 funding research and education as well as enabling tools & instrumentation for individual investigators, groups, centers, and national facilities. DMR programs cover a wide spectrum of materials research and education ranging from condensed matter and materials physics, solid-state and materials chemistry, multifunctional, hybrid, electronic, photonic, metallic, ceramic, polymeric, bio-materials, composites and nanostructures to list a few. New modes of funding, research opportunities and directions, such as the recent SOLAR solicitation, will be described. This Solar Energy Initiative launched jointly by three divisions, namely Chemistry, Materials Research and Mathematical Science is aimed at supporting truly interdisciplinary efforts that address the scientific challenges of highly efficient harvesting, conversion, and storage of solar energy. The goal of this new program is to create a new modality of linking the mathematical with the chemical and materials sciences to develop transformative paradigms based on the integrated expertise and synergy from three disciplinary communities. DMR is also seeking new ways to transform materials science and education, and make it more attractive as a career for bright, young women & men. A description will be given of several workshops held this year and planned for next year with this purpose in mind. Outreach programs that emphasize how the innovations resulting from materials research lead to a better quality of life and improved economic development for people all over the world will also be given. As science is becoming increasingly global, DMR is particularly interested in preparing students to be agile thinkers in this universal environment and in forging collaborations and cooperation among scientists and engineers around the world. Free movement of knowledge without any obstacles can only be achieved through a more coordinated approach for international collaboration. Following the presentation there will be a question-and-answer period. For additional information, visit the DMR Web page at www.nsf.gov/materials

  18. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  19. Conference on the Doctor of Arts Degree Program in Chemistry. Proceedings. (Atlanta University, April 23-24, 1976).

    ERIC Educational Resources Information Center

    Atlanta Univ., GA.

    As part of its first-year activities, the Atlanta University Department of Chemistry, which started as Doctor of Arts degree program in September 1975, sponsored a conference on April 23-24, 1976 to which were invited 20 two- and four-year college faculty and administrators. The main objectives were to discuss the need and credibility of the…

  20. A Comparison of the Usage of Tablet PC, Lecture Capture, and Online Homework in an Introductory Chemistry Course

    ERIC Educational Resources Information Center

    Revell, Kevin D.

    2014-01-01

    Three emerging technologies were used in a large introductory chemistry class: a tablet PC, a lecture capture and replay software program, and an online homework program. At the end of the semester, student usage of the lecture replay and online homework systems was compared to course performance as measured by course grade and by a standardized…

  1. Removing inorganics: Common methods have limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorg, T.J.

    1991-06-01

    When EPA sets a regulation (a maximum contaminant level) for a contaminant, it must also specify the best available technology (BAT) that can be used to remove the contaminant. Because the regulations apply to community water systems, the technologies selected are ones that are commonly used to treat community size water systems. Thus, EPA R and D program has focused its efforts on evaluating primarily community applied technologies such as conventional coagulation-filtration, lime softening, ion exchange, adsorption, and membrane process. When BAT is identified for a specific contaminant, frequently the BAT will be listed with its limitations because the processmore » is often not effective under all water quality conditions. The same limitations would also apply to POU/POE treatment. The paper discusses EPA's regulations on inorganic contaminants, the best available technologies cited by EPA, and the limitations of the processes. Using arsenic as an example, the impact of the contaminant chemistry and water quality on removals is presented.« less

  2. Introduction of Digital Computer Technology Into the Undergraduate Chemistry Laboratory. Final Technical Report.

    ERIC Educational Resources Information Center

    Perone, Sam P.

    The objective of this project has been the development of a successful approach for the incorporation of on-line computer technology into the undergraduate chemistry laboratory. This approach assumes no prior programing, electronics or instrumental analysis experience on the part of the student; it does not displace the chemistry content with…

  3. Learners' Perspectives on Pure Science Content in Vocational Degree Programs: Chemistry for Pharmacists

    ERIC Educational Resources Information Center

    Smith, James R.; Chungh, Melleisha K.; Sadouq, Sara; Kandiah, Asarthan

    2017-01-01

    The objective of this study was to enquire how the chemistry experience of pharmacy students can be enhanced and how the virtual learning environment (VLE) for chemistry-related pharmacy modules might be improved. All Master of Pharmacy students at the University of Portsmouth United Kingdom were asked to complete a project-designed online…

  4. Using Wiki to Create a Learning Community for Chemistry Teacher Leaders

    ERIC Educational Resources Information Center

    Shwartz, Y.; Katchevitch, D.

    2013-01-01

    This study focuses on using wikis as a learning environment, as part of a professional development program for chemistry teacher leaders. The study was performed in Israel and involved 20 chemistry teachers. One goal was to investigate how using wiki may promote effective science teacher professional development. Various aspects of the teachers'…

  5. Summer Professional Development in Chemistry for Inservice Teachers Using OWL Quick Prep

    ERIC Educational Resources Information Center

    Powell, Cynthia B.; Pamplin, Kim L.; Blake, Robert E.; Mason, Diana S.

    2010-01-01

    Secondary teachers participating in summer professional development chemistry workshops in Texas used an online chemistry tutoring program, OWL Quick Prep (Day et al. in OWL: Online Web-based Learning, Brooks-Cole Cengage Learning, Florence, KY, 1997) as a part of the inservice training. Self-reported demographic data were used to identify factors…

  6. Exploring the Information Literacy Needs and Values of High School Chemistry Teachers

    ERIC Educational Resources Information Center

    Zane, Marci; Tucci, Valerie Karvey

    2016-01-01

    To meet the information literacy (IL) needs of chemistry students, The College of New Jersey's (TCNJ) Library and Chemistry Departments have created a three-year seminar with a strong IL component. The program focuses on IL skills necessary for success in industry and graduate or professional education, but may lack features specific to those…

  7. 77 FR 64100 - Glycine from the People's Republic of China: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... Mantong Fine Chemistry Co. Ltd. (Baoding Mantong), for the final results. \\1\\ See Glycine From the People... and the Preliminary Margin-Calculation Program for Baoding Mantong Fine Chemistry Co., Ltd.'' (Revised...) Baoding Mantong Fine Chemistry Co., Ltd 453.79 Assessment Rates Consistent with these final results, and...

  8. A Six-Year Study of the Effects of a Remedial Course in the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Bentley, Andrea B.; Gellene, Gregory I.

    2005-01-01

    The Chemistry and Biochemistry Department at Texas Tech University (TTU) administered an in-house written chemistry placement examination (CPE) to determine whether students were prepared for Chem 1307, or whether a remedial course, Chem 1301, was required. The results indicate that the placement remediation program as implemented at TTU is…

  9. Development of an Advanced Training Course for Teachers and Researchers in Chemistry

    ERIC Educational Resources Information Center

    Dragisich, Vera; Keller, Valerie; Black, Rebecca; Heaps, Charles W.; Kamm, Judith M.; Olechnowicz, Frank; Raybin, Jonathan; Rombola, Michael; Zhao, Meishan

    2016-01-01

    Based on our long-standing Intensive Training Program for Effective Teaching Assistants in Chemistry, we have developed an Advanced Training Course for Teachers and Researchers in Chemistry at The University of Chicago. The topics in this course are designed to train graduate teaching assistants (GTAs) to become effective teachers and well-rounded…

  10. Effect of Turbulent Fluctuations on Infrared Radiation from a Tactical Missile Plume

    DTIC Science & Technology

    1982-02-01

    Reacting Flows ...... 21 Reacting Flow Calculations ..................................... 21 Turbulence- Chemistry Interaction...a two-equation, turbulence kinetic energy model. The code is capable of handling multi-species, multi-step chemistry . However, it does not calculate...that are expected to be important in turbulence- chemistry and turbulence-radiation interactions. The program calculates only two turbulence guantities

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analyticalmore » chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.« less

  12. Understanding the many-body expansion for large systems. I. Precision considerations

    NASA Astrophysics Data System (ADS)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M.

    2014-07-01

    Electronic structure methods based on low-order "n-body" expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H_2O)_{47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.

  13. Understanding the many-body expansion for large systems. I. Precision considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Ryan M.; Lao, Ka Un; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu

    2014-07-07

    Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H{sub 2}O){sub 47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program,more » we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.« less

  14. Energy Partitioning in the Dissociation of Cyanogen at 193nm,

    DTIC Science & Technology

    1981-11-19

    r AD-AlA? 773 HOWARD UNIV WASHINGTON DC LASER CHEMISTRY DIV FIG 7/5 ENERGY PARTITIONING IN THE DISSOCIATION OF CYANOGEN AT 193NM. CU) NOV 81 W M...DRFSS 10. PROGRAM ELEMENT. PROJECT, TASK Laser Chemistry Division . AREA & WORK UNIT tUMaeRS Department of Chemistry Howard University Washington, D. C... Chemistry . 19. KEY OOROS (Continue on reverse aide If necessary and Identify by block number) Photodissociation, laser photodissociation, cyanogen C’ m 20

  15. Measurements of HO2 chemical kinetics with a new detection method

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Manzanares, E. R.

    1985-01-01

    In this research program, HO2 was detected by the OH(A-X) photofragment from dissociative excitation of HO2 at 147 nm. This detection method was applied to measure the reaction rate constant of HO2 + O3. This reaction rate constant is needed for the understanding of stratospheric chemistry. Since C12 was used in the flow system, photoexcitation of C12 may produce fluorescence to interfere with the measurements. Thus, the photoexcitation process of C12 in the vacuum ultraviolet region was also examined in this research period using synchrotron radiation as a light source. The research results are summarized.

  16. Announcements

    NASA Astrophysics Data System (ADS)

    1997-10-01

    NSF-Course and Curriculum Development Program Call for Award Nominations Gordon Conference- Innocations in College Chemistry Teaching Summer Opportunity for Students High School Chemistry Day ACS Satellite TV Seminars Wanted - Newletter Editor ACS Abstract Deadline Call for Award Nominations

  17. Reviews.

    ERIC Educational Resources Information Center

    Radcliffe, George; And Others

    1988-01-01

    Reviews three software packages: 1) a package containing 68 programs covering general topics in chemistry; 2) a package dealing with acid-base titration curves and allows for variables to be changed; 3) a chemistry tutorial and drill package. (MVL)

  18. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  19. Formative Assessment by First-Year Chemistry Students as Predictor of Success in Summative Assessment at a South African University

    ERIC Educational Resources Information Center

    Siweya, Hlengani J.; Letsoalo, Peter

    2014-01-01

    This study investigated whether formative assessment is a predictor of summative assessment in a university first-year chemistry class. The sample comprised a total of 1687 first-year chemistry students chosen from the 2011 and 2012 cohorts. Both simple and multiple linear regression (SLR and MLR) techniques were applied to perform the primary aim…

  20. Undergraduate Program: New Orleans

    NASA Astrophysics Data System (ADS)

    Betsock, Lori

    2008-03-01

    Undergraduate chemical science students—join us in New Orleans on April 6-7, 2008 for an educational program designed specifically for you. Attend symposia on chemistry in sports and health and learn how it impacts your life everyday; meet with graduate school recruiters. Focus on your professional future in chemistry by learning more about careers in public health and how to communicate and work effectively with cross-functional teams. Hear eminent scientist Richard B. Silverman (John Evans Professor of Chemistry, Northwestern University and author of The Organic Chemistry of Drug Design and Drug Action 2004) speak about "Drug Discovery: Ingenuity or Serendipity?" All events will take place at the Hilton Riverside Hotel in New Orleans, except the Undergraduate Research Poster Sessions and Sci-Mix, both of which will be held in Hall A of the Ernest N. Morial Convention Center.

  1. Correlation of Preadmission Organic Chemistry Courses and Academic Performance in Biochemistry at a Midwest Chiropractic Doctoral Program*

    PubMed Central

    McRae, Marc P.

    2010-01-01

    Purpose: Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Methods: Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. Results: For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p < .001) and 60.9% and 79.4% for organic chemistry 2 (p < .001). Conclusion: This study shows that organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry PMID:20480012

  2. Advanced Chemistry Collection, 2nd Edition

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Software requirements are given in Table 3. Some programs have additional special requirements. Please see the individual program abstracts at JCE Online or the documentation included on the CD-ROM for more specific information. Table 3. General software requirements for the Advanced Chemistry Collection.

    ComputerSystemOther Software(Required by one or more programs)
    Mac OS compatibleSystem 7.6.1 or higherAcrobat Reader (included)Mathcad; Mathematica;MacMolecule2; QuickTime 4; HyperCard Player
    Windows CompatibleWindows 2000, 98, 95, NT 4Acrobat Reader (included)Mathcad; Mathematica;PCMolecule2; QuickTime 4;HyperChem; Excel

    Literature Cited

    1. General Chemistry Collection, 5th ed.; J. Chem. Educ. Software, 2001, SP16.
    2. Advanced Chemistry Collection; J. Chem. Educ. Software, 2001, SP28.

  3. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  4. Inter-Institutional Partnerships Propel A Successful Collaborative Undergraduate Degree Program In Chemistry

    PubMed Central

    Wang, Qiquan

    2013-01-01

    Small private liberal arts colleges are increasingly tuition-dependent and mainly attract students by creating student-centered learning communities. On the other hand, larger universities tend to be trendsetters where its faculty tend to seek intellectual independence and are involved in career focused cutting-edge research. The Institutional Development Awards (IDeA) and Experimental Program to Stimulate Competitive Research (EPSCoR) are federal-state-university partnerships that builds basic research infrastructure and coax the state-wide higher education institutions to collaborate with each other in order to enhance their competitiveness. As a result in Delaware, Wesley College instituted curricular and operational changes to launch an undergraduate program in biological chemistry where its students take three upper division chemistry courses and can choose to participate in annual summer undergraduate internships at nearby Delaware State University. PMID:24273464

  5. The relationship between recollection, knowledge transfer, and student attitudes towards chemistry

    NASA Astrophysics Data System (ADS)

    Odeleye, Oluwatobi Omobonike

    Certain foundational concepts, including acid-base theory, chemical bonding and intermolecular forces (IMFs), appear throughout the undergraduate chemistry curriculum. The level of understanding of these foundational concepts influences the ability of students to recognize the relationships between sub-disciplines in chemistry. The purpose of this study was to investigate the relationship between student attitudes towards chemistry and their abilities to recollect and transfer knowledge of IMFs, a foundational concept, to their daily lives as well as to other classes. Data were collected using surveys, interviews and classroom observations, and analyzed using qualitative methods. The data show that while most students were able to function at lower levels of thinking by providing a definition of IMFs, majority were unable to function at higher levels of thinking as evidenced by their inability to apply their knowledge of IMFs to their daily lives and other classes. The results of this study suggest a positive relationship between students' abilities to recollect knowledge and their abilities to transfer that knowledge. The results also suggest positive relationships between recollection abilities of students and their attitudes towards chemistry as well as their transfer abilities and attitudes towards chemistry. Recommendations from this study include modifications of pedagogical techniques in ways that facilitate higher-level thinking and emphasize how chemistry applies not only to daily life, but also to other courses.

  6. A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science

    PubMed Central

    Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389

  7. Reaching Out

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1999-11-01

    In the United States, National Chemistry Week is November 7-13. (For more NCW information, go to http://www.acs.org/ncw/.) NCW's theme, celebrating polymers, is echoed in this issue (pages 1497-1501, 1512-1513, 1521-1540). Almost certainly there will be chemists in your area spending a great deal of their time on outreach activities for children and the general public during NCW. Chances are good that many Journal readers like you will be among them. And there are probably many more outreach programs that you or your acquaintances lead during the rest of the year. This month of NCW seems an appropriate time to reflect on the tremendous benefits that outreach programs provide. Early examples of outreach involved books, public lectures, and chemical demonstrations. In 1800 Count Rumford collaborated with influential Londoners to establish the Royal Institution as a means of providing lectures on science and technology to help working people to improve their lot. Humphry Davy, Michael Faraday, and many others continued the tradition. Faraday's own interest in science was sparked in part by Jane Marcet's book Conversations in Chemistry, whose friendly style made its contents accessible and fascinating to the young, highly intelligent bookbinder's apprentice. In the United States, Benjamin Silliman, first professor of chemistry at Yale, became widely known for his textbooks on geology and chemistry and for his ability as a popular lecturer. Silliman's lecture tours took him as far from New Haven as St. Louis and New Orleans. By the mid-1800s societies for the advancement of science and of chemistry were being set up in Europe. In 1876 American chemists who gathered at Priestley's grave in Northumberland, Pennsylvania, to commemorate the centennial of the discovery of oxygen saw the need for a permanent organization and founded the American Chemical Society. By the beginning of the 20th century these societies were supporting education and public awareness of science. The first issue of this Journal described an outreach effort to place portraits of great American chemists in schools throughout the country, and a 1925 article dealt with "Educating the Public in the Use of the Metric System". A search of the JCE Online Index reveals many articles about chemistry and the public, with the number per year increasing steadily. During the last decade, for example, there have been 16 articles whose titles include "outreach" and many more that describe programs and resources for the general public. Current outreach efforts include a much broader range of activities and media. Hands-on science has become very popular, but so has virtual science on the World Wide Web. A combination of the two, which is aimed at K-8 children, can be found at the ACS Education Division's WonderNet site (http://www.acs.org/wondernet/). For older children there is Your Virtual Chemistry Club (http://www.acs.org/vc2/). Many more ACS outreach materials are described at their Web site. Outreach activities described in this Journal include programs in which high school, college, or graduate students visit schools and work with children and teachers, events in which participants compete to carry out chemical tasks, programs aimed at women and minorities, van programs in which chemicals and instruments are transported throughout broad geographical areas to support teachers and students, chemistry summer camps, and many others. The International Chemistry Olympiad (see report on page 1480) involves large numbers of students and ACS local sectionsand more than 50 countries. Outreach to outreach leaders is provided by the Institute for Chemical Education, which distributes booklets that explain how to organize and carry out programs (http://ice.chem.wisc.edu/ice/). The concept that the public is interested in science and can benefit from learning about science has expanded far beyond what Count Rumford could have imagined. Today we have books, magazines, videos, television programs, museums, theme parks, Web sites, and many other venues that include science. However, I always have a twinge of disappointment when I look at the shelves in our local bookstore and find that there are far more titles in other sciences than in chemistry. Are other sciences inherently more interestingor their practitioners inherently more literate? I think not. Popularizing chemistry is more dependent on human interaction than is popularizing many other sciences. People deal with devices that approximate Newtonian physics every day. The stars, moon, and planets are there every night, and their vast number and regular motions inspire awe. Living systems are familiar to everyone, and we can observe their behavior and classify them. But chemistry is often hidden or complicated. Cooking food changes the food chemically, but both initial and final versions, like most other substances we encounter daily, are complicated mixtures. Chemists' atomic-scale models are not accessible to our senses. In order for chemistry not to be magic, someone needs to select simple, interesting, relevant examples, demonstrate them or help the average person work with them, and then relate those examples to everyday life. Participating in and supporting National Chemistry Week and other outreach programs is crucial to the health of our discipline. Without chemists who donate their time and expertise to helping people understand and become familiar with chemistry, our fascinating subject is likely to seem dullor even scary. During National Chemistry Week, and during every other week of the year, we should extend hearty thanks to the myriad chemists and teachers whose time, energy, and expertise contribute to helping the public recognize how important and interesting chemistry is.

  8. Substituent Effects In a Series of 1,7-C60(RF)2 Compounds (RF = CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, s-C4F9, n-C8F17): Electron Affinities, Reduction Potentials, and E(LUMO) Values Are Not Always Correlated

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuvychko, Igor V.; Whitaker, James B.; Larson, Bryon W.

    Substituent effects are of paramount importance in virtually all fields of fundamental and applied chemistry. Classical and modern examples can be found in organic chemistry (Hammett parameters and Charton steric parameters), inorganic chemistry (trans effect and trans influence), organometallic chemistry (phosphine cone angles), physical chemistry (linear free energy relationships and DFT), biochemistry (protein tertiary structure), medicinal chemistry (SAR maps and BioMAP analysis), polymer chemistry (nonlinear optical and permeation properties and glass transition temperatures), and materials chemistry (stability and luminescent properties of electroluminescent devices and light-to-power conversion efficiencies of fullerene-derivative-based OPV devices).

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  10. Chemistry and Detective Fiction.

    ERIC Educational Resources Information Center

    Labianca, Dominick A.; Reeves, William J.

    1981-01-01

    Describes an interdisciplinary program consisting of two courses. The first course deals with the chemistry of drugs and poisons; the second course focuses on fictional works in which these drugs and poisons are central to the plots. (SK)

  11. Deaf Students, Teachers, and Interpreters in the Chemistry Lab.

    ERIC Educational Resources Information Center

    Seal, Brenda C.; Wynne, Dorothy; MacDonald, Gina

    2002-01-01

    Describes a summer research program at James Madison University targeting deaf and hard-of-hearing students and teachers participating in and collaborating on chemistry research with hearing students and teachers. (Contains 18 references.) (YDS)

  12. Opportunities in Government for Students of Green Chemistry

    EPA Science Inventory

    The presentation focuses on opportunities for students in green chemistry to apply their skills and knowledge in a government setting. Several examples of on-going work as well as opportunities for employment in local, state and federal positions will be discussed.

  13. Teaching Applied Chemistry in a Pollution Control Context.

    ERIC Educational Resources Information Center

    Sell, Nancy J.

    1982-01-01

    Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)

  14. Quality assurance for health and environmental chemistry: 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.

    1991-10-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1990.

  15. Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology

    PubMed Central

    Ojima, Iwao

    2013-01-01

    Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876

  16. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2007-02-01

    Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

  17. Lessons in Effective Practical Chemistry at Tertiary Level: Case Studies from a Chemistry Outreach Program

    ERIC Educational Resources Information Center

    Shallcross, D. E.; Harrison, T. G.; Shaw, A. J.; Shallcross, K. L.; Croker, S. J.; Norman, N. C.

    2013-01-01

    Two summer schools focused on practical chemistry, one involving secondary school students and one involving visually impaired adults (i.e., not involving undergraduates) have produced students that appeared to be on the way to achieving the basic criteria set out by Buckley and Kempa (1971) in terms of practical skills. These criteria being that…

  18. US Air Force 1989 Research Initiation Program. Volume 4.

    DTIC Science & Technology

    1992-06-25

    Kentucky University Specialty: Mechanical Engineering Svecialty: Analytical Chemistry 760-7MG-079 and 210-IOMG-095 Dr. Thomas Lalk Texas A&M University...Base) Dr. Peter Armendarez Mr. William Newbold (GSRP) Brescia College University of Florida Secialty: Physical Chemistry Specialty: Aerospace...Research Dr. Roger Bunting Dr. Steven Trogdon Illinois State University University of Minnesota-Duluth Specialty: Inorganic Chemistry Specialty

  19. Modeling Collaboration and Partnership in a Program Integrating NMR across the Chemistry Curriculum at a University and a Community and Technical College

    ERIC Educational Resources Information Center

    Webb, Cathleen; Dahl, Darwin; Pesterfield, Lester; Lovell, Donielle; Zhang, Rui; Ballard, Sue; Kellie, Shawn

    2013-01-01

    In this NSF-supported project, two Anasazi FT-NMRs are being integrated simultaneously across the chemistry curriculum at Western Kentucky University (WKU) and Elizabethtown Community and Technical College (ECTC). The collaborative project adds to a new curriculum initiative by integrating NMR throughout the chemistry curriculum to enhance both…

  20. Description and Preliminary Evaluation of a Program for Improving Chemistry Learning in High School Students

    ERIC Educational Resources Information Center

    Armbrecht, Jose´ Pen~aranda; Arago´n-Muriel, Alberto; Micolta, Germania

    2014-01-01

    High school students have had some difficulties in understanding chemistry due to traditional ways of teaching this specific science. It is important to improve teaching methods that increase student motivation, not only to enhance their capacity for understanding, but also to generate a greater level of interest in the study of chemistry for…

  1. Can You Tube It? Providing Chemistry Teachers with Technological Tools and Enhancing Their Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Blonder, Ron; Jonatan, Moshe; Bar-Dov, Ziva; Benny, Naama; Rap, Shelley; Sakhnini, Sohair

    2013-01-01

    The goal of this research was to examine the change in the skills, Technological Pedagogical Content Knowledge (TPACK) and self-efficacy beliefs of chemistry teachers regarding video editing and using YouTube videos in high-school chemistry lessons, as a result of a professional development program that focused on editing YouTube videos and the…

  2. E-Learning in Chemistry Education: Self-Regulated Learning in a Virtual Classroom

    ERIC Educational Resources Information Center

    Eidelman, Rachel Rosanne; Shwartz, Yael

    2016-01-01

    The virtual Chemistry classroom is a learning environment for students that are willing to study Chemistry, but have no opportunity to do so at school. The program launched in 2015, and currently, there are 22 students in the 11th grade and 80 students in the 10th grade. This study investigates and characterizes the virtual learning environment,…

  3. Using PARSEL Modules to Contextualizing the States-of-Matter Approach (SOMA) to Introductory Chemistry

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2008-01-01

    SOMA (States-Of-Matter Approach) is an introductory chemistry program for all students in the tenth or eleventh grade (age 16-17), which introduces chemistry through the separate study of the three states of matter. SOMA is basically a formalistic approach. In this paper, we discuss the use of PARSEL modules in providing a teaching approach to…

  4. Integrating pharmacology topics in high school biology and chemistry classes improves performance

    NASA Astrophysics Data System (ADS)

    Schwartz-Bloom, Rochelle D.; Halpin, Myra J.

    2003-11-01

    Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.

  5. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  6. Calcination/dissolution chemistry development Fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, C.H.

    1995-09-01

    The task {open_quotes}IPC Liaison and Chemistry of Thermal Reconstitution{close_quotes} is a $300,000 program that was conducted in Fiscal Year (FY) 1995 with U.S. Department of Energy (DOE) Office of Research and Development (EM-53) Efficient Separations and Processing Crosscutting Program supported under technical task plan (TTP) RL4-3-20-04. The principal investigator was Cal Delegard of the Westinghouse Hanford Company (WHC). The task encompassed the following two subtasks related to the chemistry of alkaline Hanford Site tank waste: (1) Technical Liaison with the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) and its research into the chemistry of transuranic elementsmore » (TRU) and technetium (Tc) in alkaline media. (2) Laboratory investigation of the chemistry of calcination/dissolution (C/D) (or thermal reconstitution) as an alternative to the present reference Hanford Site tank waste pretreatment flowsheet, Enhanced Sludge Washing (ESW). This report fulfills the milestone for the C/D subtask to {open_quotes}Provide End-of-Year Report on C/D Laboratory Test Results{close_quotes} due 30 September 1995. A companion report, fulfilling the milestone to provide an end-of-year report on the IPC/RAS liaison, also has been prepared.« less

  7. Ecological Forecasting in the Applied Sciences Program and Input to the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Skiles, Joseph

    2015-01-01

    Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecosystems will change in the future in response to environmental factors. Further, Ecological Forecasting employs observations and models to predict the effects of environmental change on ecosystems. In doing so, it applies information from the physical, biological, and social sciences and promotes a scientific synthesis across the domains of physics, geology, chemistry, biology, and psychology. The goal is reliable forecasts that allow decision makers access to science-based tools in order to project changes in living systems. The next decadal survey will direct the development Earth Observation sensors and satellites for the next ten years. It is important that these new sensors and satellites address the requirements for ecosystem models, imagery, and other data for resource management. This presentation will give examples of these model inputs and some resources needed for NASA to continue effective Ecological Forecasting.

  8. The Bologna Agreement and its impact on the Master in Advanced Nursing Practice Program at Rotterdam University of Applied Science: incorporating mandatory internationalization in the curriculum.

    PubMed

    Maas-Garcia, L; Ter Maten-Speksnijder, A

    2009-09-01

    The aim of this paper is to discuss the impact on nursing education in the Netherlands since the implementation of the Bologna Agreement. In 1999, the Bologna Agreement was constructed to establish a comparable and transferable degree system in universities within the European Union for nine subject areas (chemistry, physics, mathematics, geology, history, business, education science, nursing and European studies). The target date for implementation of the undergraduate and graduate degrees is 2010. Since 2004, Rotterdam University of Applied Science has offered a Master in Advance Nursing Practice degree. This graduate study offers nursing students the opportunity to continue career and academic mobility within the nursing profession. This paper reports on the need for internationalization within nursing curriculum to meet the demands of the increasingly mobile nursing workforce.

  9. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  10. 40 CFR 161.20 - Overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... product chemistry, residue chemistry, environmental fate, toxicology, reentry protection, aerial drift... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Overview. 161.20 Section 161.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS...

  11. Safer Choice Partner of the Year Awards Application Form

    EPA Pesticide Factsheets

    EPA's Design for the Environment program developed the Safer Product Labeling Program Partner of the Year Award program to recognize DfE stakeholders that have furthered the safer chemistry goals of the program

  12. Assessment of the benefits of a summer undergraduate research program for physics and chemistry majors

    NASA Astrophysics Data System (ADS)

    Hughes, Chris; MacDonald, Gina

    2006-11-01

    Presently at James Madison University, there are slightly more than 100 physics majors and 150 chemistry majors. Each summer, a significant fraction of these students participate in either the chemistry or interdisciplinary materials science Research Experiences for Undergraduates (REU) program on campus. This provides a large pool of students from which to draw data comparing the influence of undergraduate research on both classroom performance and attitudes toward science as a profession. By analyzing the grade point averages of chemistry and physics majors, we have shown slightly larger increases from spring semester to fall semester for students who participated in the REU than those who did not. We have also measured changes in attitudes using surveys of the students both at the beginning and at the end of the summer experience. An analysis of these surveys will be presented.

  13. The Omics Revolution in Agricultural Research

    EPA Science Inventory

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10–14...

  14. Analysis of Gold Ores by Fire Assay

    ERIC Educational Resources Information Center

    Blyth, Kristy M.; Phillips, David N.; van Bronswijk, Wilhelm

    2004-01-01

    Students of an Applied Chemistry degree course carried out a fire-assay exercise. The analysis showed that the technique was a worthwhile quantitative analytical technique and covered interesting theory including acid-base and redox chemistry and other concepts such as inquarting and cupelling.

  15. Greener and Sustainable Approaches to the Synthesis of Pharmaceutically Active Heterocycles

    EPA Science Inventory

    Green chemistry is a rapidly developing field providing a proactive avenue for the sustainable development of future science and technology. Green chemistry can be applied to the design of highly efficient, environmentally benign synthetic protocols to deliver life-saving medicin...

  16. The Impact of a Teaching-Learning Program Based on a Brain-Based Learning on the Achievement of the Female Students of 9th Grade in Chemistry

    ERIC Educational Resources Information Center

    Shabatat, Kawthar; Al-Tarawneh, Mohammed

    2016-01-01

    This study aimed at recognizing the impact of teaching-learning program based on a brain-based learning on the achievement of female students of 9th grade in chemistry, to accomplish the goal of this study the researchers designed instruments of: instructional plans, pre achievement and past achievement exams to use them for the study-validity and…

  17. Clinical biochemistry education in Spain.

    PubMed

    Queraltó, J M

    1994-12-31

    Clinical biochemistry in Spain was first established in 1978 as an independent specialty. It is one of several clinical laboratory sciences specialties, together with haematology, microbiology, immunology and general laboratory (Clinical analysis, análisis clinicos). Graduates in Medicine, Pharmacy, Chemistry and Biological Sciences can enter post-graduate training in Clinical Chemistry after a nation-wide examination. Training in an accredited Clinical Chemistry department is 4 years. A national committee for medical and pharmacist specialties advises the government on the number of trainees, program and educational units accreditation criteria. Technical staff includes nurses and specifically trained technologists. Accreditation of laboratories is developed at different regional levels. The Spanish Society for Clinical Biochemistry and Molecular Pathology (SECQ), the national representative in the IFCC, has 1600 members, currently publishes a scientific journal (Química Clinica) and a newsletter. It organizes a continuous education program, a quality control program and an annual Congress.

  18. An assessment of inservice training on the applications in biology/chemistry curriculum from the Center of Occupational Research and Development

    NASA Astrophysics Data System (ADS)

    Jobe, Robert Dale

    Scope and method of study. The scope of the study consisted of respondents to a survey sent to all the participants of the inservice workshops for the Applied Biology/Chemistry curriculum from CORD. One hundred and six surveys were sent to teachers trained for Applied Biology/Chemistry classes for high school credit as a laboratory science requirement. Sixty-two people returned the questionnaire who were present or past teachers of Applied Biology/Chemistry classes for high school credit. The study assessed the participants' expectations and satisfaction with inservice training provided for certification in Oklahoma over the past five years. A common set of objectives that participants rated for importance to philosophy and strategies needed to successfully teach Applications in Biology/Chemistry using the curriculum written by the Center for Occupational Research and Development was evaluated for significance. Findings and conclusions. The analysis of the data revealed that the respondents' expectations and satisfaction were both above average for the workshop they attended. Therefore, it was concluded that the first seventeen objectives of this study should be the mainstay of any workshop used to train future teachers of Applications of Biology/Chemistry for high school credit. Eleven of the first seventeen questions (objectives) were found to be statistically significant at the alpha =.05 level. Therefore it was concluded that an increased emphasis on instruction in the guideline (objectives) areas that were statistically significant should be provided in future workshops. The respondents' answers to the survey questions provided insight on the time line configuration and structure of future workshops for teachers of Application in Biology/Chemistry for high school credit. Therefore it was concluded that workshops should be ten days in length, 6-8 hours a day of instruction, with follow-up sessions offered, college credit given and a stipend awarded. The days, months and structure of meetings should be arranged to facilitate attendance by participants.

  19. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  20. ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept

    NASA Technical Reports Server (NTRS)

    Voecks, G. E.

    1983-01-01

    Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.

  1. Suggestions for Modifications in the Teaching of General Chemistry to Accommodate Learning Disabled Students: Alternative Techniques for Teaching General Chemistry to Learning Disabled Students in the University.

    ERIC Educational Resources Information Center

    Habib, H. S.

    A professor involved with the HELDS project (Higher Education for Learning Disabled Students) describes modifications in a general chemistry course. A syllabus lists program objectives for eight text chapters, evaluation components, and course rules. Two units are described in detail, with information presented on modifications made for LD…

  2. Designing and Implementing a Constructivist Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Blakely, Alan

    2000-01-01

    Describes a constructivist chemistry laboratory approach based on students' personal experiences where students had the opportunity to develop their own experimental processes. Points out both the fruitfulness and difficulties of using a graduate student as a teaching assistant. (YDS)

  3. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1989-01-01

    Describes two chemistry computer programs: (1) "Eureka: A Chemistry Problem Solver" (problem files may be written by the instructor, MS-DOS 2.0, IBM with 384K); and (2) "PC-File+" (database management, IBM with 416K and two floppy drives). (MVL)

  4. A model of CO-CH4 global transport/chemistry. I - Chemistry model

    NASA Technical Reports Server (NTRS)

    Peters, L. K.; Kitada, T.

    1980-01-01

    A simplified chemistry model was developed to incorporate the CO-CH4 chemistry into the global transport model of these compounds. CO is important because of its effects on atmospheric chemistry and is partly responsible for controlling the hydroxyl radical (OH) concentration in the troposphere. The model includes the photodissociation rate coefficients expressed as functions of solar zenith angle and altitude, and it was applied to determine the sensitivity of the OH concentration to trace gaseous species, such as NOx, O3, and H2O. Also, the concentrations and diurnal variations of OH and HO2, and the contribution of individual reactions to OH generation and consumption were calculated.

  5. Teaching Electrochemistry in the General Chemistry Laboratory through Corrosion Exercises

    ERIC Educational Resources Information Center

    Sanders, Richard W.; Crettol, Gregory L.; Brown, Joseph D.; Plummer, Patrick T.; Schendorf, Tara M.; Oliphant, Alex; Swithenbank, Susan B.; Ferrante, Robert F.; Gray, Joshua P.

    2018-01-01

    Electrochemistry is primarily taught in first-year undergraduate courses through batteries; this lab focuses instead on corrosion to apply electrochemical concepts of electrolytes, standard reduction potentials, galvanic cells, and other chemistry concepts including Le Chatelier's Principle and Henry's Law. Students investigate galvanic corrosion…

  6. Learning Stoichiometry: A Comparison of Text and Multimedia Formats

    ERIC Educational Resources Information Center

    Evans, Karen L.; Yaron, David; Leinhardt, Gaea

    2008-01-01

    Even after repeated instruction, first year college chemistry students are often unable to apply stoichiometry knowledge to equilibrium and acid-base chemistry problems. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes more meaningful learning. This study compares a…

  7. Chemistry of the atmosphere: Its impact on global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birks, J.W.; Calvert, J.G.; Sievers, R.E.

    1993-12-31

    This book is a summary of the plenary lectures of the CHEMRAWN VII Conference held in Baltimore, Maryland, 2-7 December 1991. The book draws together some interesting perspectives relating to global change from the atmospheric chemistry community from more of a chemist`s point of view than a meteorologist`s. In fact, Chemical Research Applied to World Needs (CHEMRAWN) illustrates how the international atmospheric chemistry community (the meeting was cosponsored by the International Union of Pure and Applied Chemistry and the American Chemical Society) has traditionally put forth a considerable effort to understand the global environmental impact of dumping chemicals into themore » atmosphere. The primary benefit of this book is the concise summary of the research issues confronting the atmospheric science community regarding global change. Being a summary of plenary lectures, the technical depth of the papers is not great. Therefore the book offers a good presentation of material to the nonspecialist who seeks to understand the issues around which the global change research community has focused.« less

  8. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madronich, Sasha

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  9. Loch Vale Watershed Project quality assurance report, 1995-1998

    USGS Publications Warehouse

    Allstott, E.J.; Bashkin, Michael A.; Baron, Jill S.

    1999-01-01

    The Loch Vale Watershed (LVWS) project was initiated in 1980 by the National Park Service with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Initial research objectives were to understand the processes that would either mitigate or accelerate the effects of pollution on soil and surface water chemistry, and to build a record in which long-term trends could be identified and examined.It is important for all data collected in Loch Vale to meet the high standards of quality set forth in previous LVWS QA/QC reports and LVWS Methods Manuals. Given the ever-widening usage of data collected in Loch Vale, it is equally important to provide users of that data with a report assuring that all data are sound. Parameters covered in this report are the quality of meteorological measurements, hydrological measurements, surface water chemistry, and similarities in catch efficiency of two raingage types in Loch Vale for the period of 1995-1998.Routine sampling of weather conditions, precipitation chemistry, and stream/lake water chemistry began in 1982. Since then, all samples and data have been analyzed according to widely accepted and published methods. Weather data have been collected, analyzed, and stored by LVWS project personnel. Methods for the handling of meteorological data are well documented (Denning 1988, Edwards 1991, Newkirk 1995,and Allstott 1995). Precipitation chemistry has always been collected according to National Atmospheric Deposition Program protocol (Bigelow 1988), and analyzed at the Central Analytical Laboratory of the Illinois State Water Survey in Champaign, IL. QA/QC procedures of the National Atmospheric Deposition Program are well documented (Aubertin 1990). Protocols for sampling surface waters are also well documented (Newkirk 1995). Analysis of surface water chemistry has been performed using standard EPA protocol at the US Forest Service's Rocky Mt. Station Biogeochemistry Laboratory since 1993.

  10. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  11. Chemical calculations on Cray computers

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1989-01-01

    The influence of recent developments in supercomputing on computational chemistry is discussed with particular reference to Cray computers and their pipelined vector/limited parallel architectures. After reviewing Cray hardware and software the performance of different elementary program structures are examined, and effective methods for improving program performance are outlined. The computational strategies appropriate for obtaining optimum performance in applications to quantum chemistry and dynamics are discussed. Finally, some discussion is given of new developments and future hardware and software improvements.

  12. National resource for computation in chemistry, phase I: evaluation and recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    The National Resource for Computation in Chemistry (NRCC) was inaugurated at the Lawrence Berkeley Laboratory (LBL) in October 1977, with joint funding by the Department of Energy (DOE) and the National Science Foundation (NSF). The chief activities of the NRCC include: assembling a staff of eight postdoctoral computational chemists, establishing an office complex at LBL, purchasing a midi-computer and graphics display system, administering grants of computer time, conducting nine workshops in selected areas of computational chemistry, compiling a library of computer programs with adaptations and improvements, initiating a software distribution system, providing user assistance and consultation on request. This reportmore » presents assessments and recommendations of an Ad Hoc Review Committee appointed by the DOE and NSF in January 1980. The recommendations are that NRCC should: (1) not fund grants for computing time or research but leave that to the relevant agencies, (2) continue the Workshop Program in a mode similar to Phase I, (3) abandon in-house program development and establish instead a competitive external postdoctoral program in chemistry software development administered by the Policy Board and Director, and (4) not attempt a software distribution system (leaving that function to the QCPE). Furthermore, (5) DOE should continue to make its computational facilities available to outside users (at normal cost rates) and should find some way to allow the chemical community to gain occasional access to a CRAY-level computer.« less

  13. The WRF-CMAQ Integrated On-Line Modeling System: Development, Testing, and Initial Applications

    EPA Science Inventory

    Traditionally, atmospheric chemistry-transport and meteorology models have been applied in an off-line paradigm, in which archived output on the dynamical state of the atmosphere simulated using the meteorology model is used to drive transport and chemistry calculations of atmos...

  14. Chemistry Students' Erroneous Conceptions of Limiting Reagent.

    ERIC Educational Resources Information Center

    Mammen, K. J.

    1996-01-01

    Describes a study of 32 University of Transkei (South Africa) freshmen's conceptualization of "limiting reagent," a basic concept in chemistry, based on student responses to two written test questions and clinical interviews. Results indicated that a high percentage of students had misconceptions and could not apply the concept…

  15. Elaborated Metaphors Support Viable Inferences about Difficult Science Concepts

    ERIC Educational Resources Information Center

    Diehl, Virginia; Reese, Debbie Denise

    2010-01-01

    Instructional metaphors scaffold learning better when accompanied by an elaboration. Applying structure mapping theory, we developed and used an elaborated instructional metaphor (text and illustrations) for introductory chemistry concepts. In two studies (N[subscript 1] = 44, N[subscript 2] = 57), college students with little chemistry background…

  16. Identifying Relevant Acid-Base Topics in the Context of a Prenursing Chemistry Course to Better Align Health-Related Instruction and Assessment

    ERIC Educational Resources Information Center

    Brown, Corina E.; Henry, Melissa L. M.; Hyslop, Richard M.

    2018-01-01

    This study explores the acid-base topic in the context of a chemistry course taken as a prerequisite for a baccalaureate nursing program. Core findings were derived from semistructured interviews with experts in the areas of chemistry and nursing, and a multiple university survey of experts' opinions. The acid-base topic was reviewed and evaluated…

  17. "First generation" automated DNA sequencing technology.

    PubMed

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  18. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  19. PR^2EPS: Preparation, Recruitment, Retention and Excellence in the Physical Sciences.

    NASA Astrophysics Data System (ADS)

    Labroo, Sunil; Schaumloffel, John; Gallagher, Hugh; Bischoff, Paul; Bachman, Nancy

    2007-03-01

    The PR^2EPS program is a multidisciplinary effort to increase the number of majors attending (and graduating) from SUNY Oneonta with degrees in chemistry, physics, biochemistry, astronomy, secondary chemistry or physics education and related areas. Components of the program include a walk-in tutoring center, a free, weeklong summer science camp, scholarship opportunities and an equipment loan program for regional secondary science teachers. 2006 was the third year of this NSF-DUE funded program. Evaluation of our progress to date shows that the program is effective at steering students (or at least reinforcing their desire) to studying the sciences in college. A summary of our goals, challenges and accomplishments, including tutoring center operation and efficacy, activities and operational details for the summer camp and other facets of the program will be presented.

  20. PR^2EPS: Preparation, recruitment, retention and excellence in the physical sciences

    NASA Astrophysics Data System (ADS)

    Gallagher, Hugh; Labroo, Sunil; Schaumloffel, John; Bischoff, Paul; Bachman, Nancy

    2007-04-01

    The PR^2EPS program is a multidisciplinary effort to increase the number of majors attending (and graduating) from SUNY Oneonta with degrees in physics, chemistry, secondary physics or chemistry education and related areas. Components of the program include a walk-in tutoring center, a free, weeklong summer science camp, scholarship opportunities, professional conference experiences, and an equipment loan program for regional secondary science teachers. 2006 was the third year of this NSF-DUE funded program. Evaluation of our progress to date shows that the program is effective at steering students (or at least reinforcing their desire) to studying the sciences in college and retaining them in their science programs. A summary of our goals, challenges and accomplishments, including tutoring center operation and efficacy, activities and operational details for the summer camp, and the overall impact on science programs at a medium sized college will be presented.

  1. Analytical Chemistry Laboratory Progress Report for FY 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program inmore » analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.« less

  2. User's Guide to Handlens - A Computer Program that Calculates the Chemistry of Minerals in Mixtures

    USGS Publications Warehouse

    Eberl, D.D.

    2008-01-01

    HandLens is a computer program, written in Excel macro language, that calculates the chemistry of minerals in mineral mixtures (for example, in rocks, soils and sediments) for related samples from inputs of quantitative mineralogy and chemistry. For best results, the related samples should contain minerals having the same chemical compositions; that is, the samples should differ only in the proportions of minerals present. This manual describes how to use the program, discusses the theory behind its operation, and presents test results of the program's accuracy. Required input for HandLens includes quantitative mineralogical data, obtained, for example, by RockJock analysis of X-ray diffraction (XRD) patterns, and quantitative chemical data, obtained, for example, by X-ray florescence (XRF) analysis of the same samples. Other quantitative data, such as sample depth, temperature, surface area, also can be entered. The minerals present in the samples are selected from a list, and the program is started. The results of the calculation include: (1) a table of linear coefficients of determination (r2's) which relate pairs of input data (for example, Si versus quartz weight percents); (2) a utility for plotting all input data, either as pairs of variables, or as sums of up to eight variables; (3) a table that presents the calculated chemical formulae for minerals in the samples; (4) a table that lists the calculated concentrations of major, minor, and trace elements in the various minerals; and (5) a table that presents chemical formulae for the minerals that have been corrected for possible systematic errors in the mineralogical and/or chemical analyses. In addition, the program contains a method for testing the assumption of constant chemistry of the minerals within a sample set.

  3. A functionalized poly(ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits non-specific protein, bacterial, and mammalian cell adhesion

    PubMed Central

    Harbers, Gregory M.; Emoto, Kazunori; Greef, Charles; Metzger, Steven W.; Woodward, Heather N.; Mascali, James J.; Grainger, David W.; Lochhead, Michael J.

    2008-01-01

    This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications. PMID:18815622

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) atmore » Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.« less

  5. chemf: A purely functional chemistry toolkit.

    PubMed

    Höck, Stefan; Riedl, Rainer

    2012-12-20

    Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code as well as the productivity of the programmers involved in this project.

  6. chemf: A purely functional chemistry toolkit

    PubMed Central

    2012-01-01

    Background Although programming in a type-safe and referentially transparent style offers several advantages over working with mutable data structures and side effects, this style of programming has not seen much use in chemistry-related software. Since functional programming languages were designed with referential transparency in mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile programming language. Results We present our initial results with functional programming in chemistry by first describing an immutable data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the end we also analyze and improve our algorithms and data structures in terms of performance and compare it to existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm programming language with a strong support for functional programming and a highly sophisticated type system. Conclusions We have successfully made the first important steps towards a purely functional chemistry toolkit. The data structures and algorithms presented in this article perform well while at the same time they can be safely used in parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the reliability of our code as well as the productivity of the programmers involved in this project. PMID:23253942

  7. Report to the International Global Atmospheric Chemistry Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisdorf, Jill; Wiedinmyer, Christine

    IGAC’s mission is to facilitate atmospheric chemistry research towards a sustainable world. This is achieved through IGAC’s three focal activities: fostering community, building capacity, and providing leadership. A key component to achieving IGAC’s mission is its developing early career program. These scientists join an international network early in their career that puts the cogs in motion to further facilitate atmospheric chemistry research at an international level for years to come. IGAC’s Science Conference is a primary mechanism for IGAC to build cooperation and disseminate scientific information across its international community. The first IGAC Science Conference was held in 1993 in Eilat,more » Israel. Since then, IGAC has successfully held fourteen science conferences, consistently becoming a biennial conference starting in 2002. The biennial IGAC Science Conference is regarded as THE international conference on atmospheric chemistry and participation in the conference is typically in the range of 350-650 participants. Since 2004, IGAC has included an Early Career Scientists Program as part of the conference to foster the next generation of scientists. IGAC believes, and has seen, that by allowing scientists to form an international network of colleagues early in their career that future international collaborations in atmospheric chemistry are enhanced. The 2016 IGAC Science Conference Early Career Program consisted of numerous events throughout the week giving these scientists the opportunity to not only create a community amongst themselves, but to also engage and build relationships with senior scientists. In order to support the Early Career Scientists Program, IGAC sought funding from international, regional and local organizations to provide Travel Grants to the conference based on an assessment of both need and merit. This conference summary reports on outcomes of the 2016 IGAC Science Conference and the Early Career Program, which included early career travel grants funded by this DOE grant.« less

  8. Idealization in Chemistry: Pure Substance and Laboratory Product

    ERIC Educational Resources Information Center

    Fernández-González, Manuel

    2013-01-01

    This article analyzes the concept of idealization in chemistry and the role played by pure substance and laboratory product. This topic has evident repercussions in the educational contexts that are applied to the science classroom, which are highlighted throughout the text. A common structure for knowledge construction is proposed for both…

  9. PHYSICS AND CHEMISTRY FOR THE AUTOMOTIVE TRADES.

    ERIC Educational Resources Information Center

    WORTHING, ROBERT

    DESIGNED FOR STUDENT USE, THIS MANUAL PRESENTS RELATED INFORMATION AND LABORATORY EXPERIMENTS FOR A 1-YEAR COURSE IN APPLIED PHYSICS AND CHEMISTRY. IT WAS DEVELOPED BY ESSEX COUNTY AUTOMOTIVE TEACHERS. CONTENT HEADINGS ARE -- (1) MATTER AND ITS PROPERTIES (15 EXPERIMENTS), (2) MECHANICS (4 EXPERIMENTS), (3) HEAT (3 EXPERIMENTS), (4) ELECTRICITY (8…

  10. A Cognitive Framework for the Analysis of Online Chemistry Courses

    ERIC Educational Resources Information Center

    Evans, Karen L.; Leinhardt, Gaea

    2008-01-01

    Many students now are receiving instruction in online environments created by universities, museums, corporations, and even students. What features of a given online course contribute to its effectiveness? This paper addresses that query by proposing and applying an analytic framework to five online introductory chemistry courses. Introductory…

  11. Chemistry in the Time of the Pharaohs

    ERIC Educational Resources Information Center

    Loyson, Peter

    2011-01-01

    The Egyptians were known in the ancient world as experts in many applied chemistry fields such as metallurgy, wine and beer making, glass making, paper manufacture, paint pigments, dyes, cosmetics, perfumes, and pharmaceuticals. They made significant developments in the extraction of metals from their ores, especially copper and gold. The…

  12. Characterization and remediation of Soil Contaminated with Explosives: Development of Practical Technologies

    DTIC Science & Technology

    2001-07-06

    Chemistry Agnes Renoux, Ph.D. Ecotoxicology Bernard Lachance, Ph. D. Ecotoxicology Ping Gong, Ph. D. Ecotoxicology Pierre-Yves Robidoux, Ph.D... Ecotoxicology Tamara Sheremata, Ph. D. Env. Engineering Diane Fournier, Ph.D. Microbiology Annamaria Halasz, M.Sc. Chemistry Louise Paquet, B.Sc...12 Chapter 4: Applied Ecotoxicology

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, Jim

    The International Union of Pure and Applied Chemistry (IUPAC) Inorganic Chemistry Division has published a Provisional Recommendation for the names and symbols of the recently discovered superheavy elements 113, 115, 117, and 118. Tennessine (Ts) is proposed for element 117, recognizing the contribution of Tennessee research centers ORNL, Vanderbilt and the University of Tennessee to superheavy element research.

  14. PRECIPITATION CHEMISTRY OF MAGNESIUM SULFITE HYDRATES IN MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    The report gives results of laboratory studies defining the precipitation chemistry of MgSO3 hydrates. The results apply to the design of Mg-based scrubbing processes for SO2 removal from combustion flue gas. In Mg-based scrubbing processes, MgSO3 precipitates as either trihydrat...

  15. Structurally Based Therapeutic Evaluation: A Therapeutic and Practical Approach to Teaching Medicinal Chemistry.

    ERIC Educational Resources Information Center

    Alsharif, Naser Z.; And Others

    1997-01-01

    Explains structurally based therapeutic evaluation of drugs, which uses seven therapeutic criteria in translating chemical and structural knowledge into therapeutic decision making in pharmaceutical care. In a Creighton University (Nebraska) medicinal chemistry course, students apply the approach to solve patient-related therapeutic problems in…

  16. Overview on the history of organofluorine chemistry from the viewpoint of material industry

    PubMed Central

    Okazoe, Takashi

    2009-01-01

    Fluorine (from “le fluor”, meaning “to flow”) is a second row element of Group 17 in the periodic table. When bound to carbon it forms the strongest bond in organic chemistry to give organofluorine compounds. The scientific field treating them, organofluorine chemistry, started before elemental fluorine itself was isolated. Applying the fruits in academia, industrial organofluorine chemistry has developed over 80 years via dramatic changes during World War II. Nowadays, it provides various materials essential for our society. Recently, it utilizes elemental fluorine itself as a reagent for the introduction of fluorine atoms to organic molecules in leading-edge industries. This paper overviews the historical development of organofluorine chemistry especially from the viewpoint of material industry. PMID:19838009

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.B.; Fernandez, I.J.; Goltz, S.M.

    To provide information needed to assess the current and future status of spruce-fir forests in Maine, the Howland Integrated Forest Study (HIFS) was initiated in 1987 as part of the USDA Forest Service Forest Response Program, in conjunction with the establishment of a Mountain Cloud Chemistry Program (MCCP) monitoring site. Through this project, bulk and wet-only precipitation, dry deposition, throughfall and soil solution chemistry has been determined. This paper will focus on soil solution collected between May, 1988 and bulk precipitation collected from June through November, 1988.

  18. The National Science Foundation and the philosophy of chemistry.

    PubMed

    Seely, Bruce E

    2003-05-01

    Since its founding in 1950, the National Science Foundation has provided support for a variety of studies in history, philosophy, and social studies of science. The fact that a relatively small number of projects dealing with the philosophy of chemistry have received NSF support is due to the small number of such proposals that have been submitted. The NSF Science and Technology Studies Program (STS) welcomes proposals dealing with philosophy of chemistry.

  19. Organic Chemistry in Two Dimensions: Surface-Functionalized Polymers and Self-Assembled Monolayer Films

    DTIC Science & Technology

    1988-09-01

    surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular

  20. 42 CFR 121.9 - Designated transplant program requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... RESOURCES DEVELOPMENT ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK § 121.9 Designated transplant program...) Has immediate access to microbiology, clinical chemistry, histocompatibility testing, radiology, and...

  1. 42 CFR 121.9 - Designated transplant program requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RESOURCES DEVELOPMENT ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK § 121.9 Designated transplant program...) Has immediate access to microbiology, clinical chemistry, histocompatibility testing, radiology, and...

  2. 42 CFR 121.9 - Designated transplant program requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RESOURCES DEVELOPMENT ORGAN PROCUREMENT AND TRANSPLANTATION NETWORK § 121.9 Designated transplant program...) Has immediate access to microbiology, clinical chemistry, histocompatibility testing, radiology, and...

  3. A Solid State Chemistry Experiment: Dislocations in Etched Calcite by Polaroid Photomicrography

    ERIC Educational Resources Information Center

    Agnew, N. H.

    1972-01-01

    Suggests that adequate attention should be given to lattice imperfections in teaching solid state chemistry. Some concepts to be included in such a program are explained. An experiment to be performed by undergraduates on photomicrography is described in detail. (PS)

  4. The EPA CompTox Chemistry Dashboard - an online resource for environmental chemists (ACS Spring Meeting)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  5. The EPA Comptox Chemistry Dashboard: A Web-Based Data Integration Hub for Toxicology Data (SOT)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data drive...

  6. Social and Environmental Justice in the Chemistry Classroom

    ERIC Educational Resources Information Center

    Lasker, Grace A.; Mellor, Karolina E.; Mullins, Melissa L.; Nesmith, Suzanne M.; Simcox, Nancy J.

    2017-01-01

    Despite advances in active learning pedagogy and other methods designed to increase student engagement in the chemistry classroom, retention and engagement issues still persist, particularly with respect to women and minorities underrepresented in STEM (science, technology, engineering, and mathematics) programs. Relevancy also remains elusive in…

  7. Preparing, Characterizing, and Investigating Luminescent Properties of a Series of Long-Lasting Phosphors in a SrO-Al[subscript 2]O[subscript 3] System: An Integrated and Inquiry-Based Experiment in Solid State Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ma, Yan-Zi; Jia, Li; Ma, Kai-Guo; Wang, Hai-Hong; Jing, Xi-Ping

    2017-01-01

    An integrated and inquiry-based experiment on solid state chemistry is applied to an inorganic chemistry lab course to provide insight into the characteristics of the solid phase reaction. In this experiment, students have the opportunity to synthesize long-lasting phosphors with formula xSrO·yAl[subscript 2]O[subscript 3]:Eu[superscript 2+],…

  8. Aquatic Sciences and Its Appeal for Expeditionary Research Science Education

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    Our multi-program team studies aim to develop specific "hard" and "soft" STEM skills that integrate, literally, both disciplinary and socio-economic aspects of students lives to include peer mentoring, advisement, enabling, and professional mentorship, as well as honestly productive, career-developing hands-on research. Specifically, we use Interdependent, multidisciplinary research experiences; Development and honing of specific disciplinary skill (you have to have something TO network); Use of skill in a team to produce big picture product; Interaction with varied, often outside professionals; in order to Finish with self-confidence and a marketable skill. In a given year our umbrella projects involve linked aquatic science disciplines: Analytical Chemistry; Geology; Geochemistry; Microbiology; Engineering (Remotely Operated Vehicles); and recently Policy (scientist-public engagement). We especially use expeditionary research activities aboard our research vessel in Lake Michigan, during which (a dozen at a time, from multiple programs) students: Experience ocean-scale research cruise activities; Apply a learned skill in real time to characterize a large lake; Participate in interdisciplinary teamwork; Learn interactions among biology, chemistry, geology, optics, physics for diverse aquatic habitats; and, importantly, Experience leadership as "Chief Scientist-for-a-station". These team efforts achieve beneficial outcomes: Develop self-confidence in application of skills; Enable expression of leadership capabilities; Provide opportunity to assess "love of big water"; Produce invaluable long-term dataset for the studied region (our benefit); and they are Often voted as a top influence for career decisions. These collectively have led to some positive outcomes for "historical" undergraduate participants - more than half in STEM graduate programs, only a few not still involved in a STEM career at some level, or involved as for example a lawyer in environmental policy.

  9. Complex amine-based reagents

    NASA Astrophysics Data System (ADS)

    Suslov, S. Yu.; Kirilina, A. V.; Sergeev, I. A.; Zezyulya, T. V.; Sokolova, E. A.; Eremina, E. V.; Timofeev, N. V.

    2017-03-01

    Amines for a long time have been applied to maintaining water chemistry conditions (WCC) at power plants. However, making use of complex reagents that are the mixture of neutralizing and the filmforming amines, which may also contain other organic components, causes many disputes. This is mainly due to lack of reliable information about these components. The protective properties of any amine with regard to metal surfaces depend on several factors, which are considered in this article. The results of applying complex reagents to the protection of heating surfaces in industrial conditions and estimated behavior forecasts for various reagents under maintaining WCC on heat-recovery boilers with different thermal circuits are presented. The case of a two-drum heat-recovery boiler with in-line drums was used as an example, for which we present the calculated pH values for various brands of reagents under the same conditions. Work with different reagent brands and its analysis enabled us to derive a composition best suitable for the conditions of their practical applications in heat-recovery boilers at different pressures. Testing the new amine reagent performed at a CCPP power unit shows that this reagent is an adequate base for further development of reagents based on amine compounds. An example of testing a complex reagent is shown created with the participation of the authors within the framework the program of import substitution and its possible use is demonstrated for maintaining WCC of power-generating units of combined-cycle power plants (CCPP) and TPP. The compliance of the employed reagents with the standards of water chemistry conditions and protection of heating surfaces were assessed. The application of amine-containing reagents at power-generating units of TPP makes it possible to solve complex problems aimed at ensuring the sparing cleaning of heating surfaces from deposits and the implementation of conservation and management of water chemistry condition on the TPP equipment.

  10. Environmental research program. 1995 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore themore » nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.« less

  11. Lamont-Doherty's Secondary School Field Research Program: Using Goal-Oriented Applied Research as a Means of Building Comprehensive and Integrated Scientific Understanding

    NASA Astrophysics Data System (ADS)

    Bostick, B. C.; Newton, R.; Vincent, S.; Peteet, D. M.; Sambrotto, R.; Schlosser, P.; Corbett, E.

    2015-12-01

    Conventional instruction in science often proceeds from the general to the specific and from text to action. Fundamental terminologies, concepts, and ideas that are often abstract are taught first and only after such introductory processes can a student engage in research. Many students struggle to find relevance when presented information without context specific to their own experiences. This challenge is exacerbated for students whose social circles do not include adults who can validate scientific learning from their own experiences. Lamont-Doherty's Secondary School Field Research Program inverts the standard paradigm and places small groups of students in research projects where they begin by performing manageable tasks on complex applied research projects. These tasks are supplemented with informal mentoring and relevant articles (~1 per week). Quantitative metrics suggest the approach is highly successful—most participants report a dramatic increase in their enthusiasm for science, 100% attend college, and approximately 50% declare majors in science or technology. We use one project, the construction of a microbial battery, to illustrate this novel model of science learning and argue that it should be considered a best practice for project-based science education. The goal of this project was to build a rechargeable battery for a mobile phone based on a geochemical cycle, to generate and store electricity. The students, mostly from ethnic groups under-represented in the STEM fields, combined concepts and laboratory methods from biology, chemistry and physics to isolate photosynthetic bacteria from a natural salt marsh, and made an in situ device capable of powering a light bulb. The younger participants had been exposed to neither high school chemistry nor physics at the start of the project, yet they were able to use the project as a platform to deepen their science knowledge and their desire for increased participation in formal science education.

  12. Increasing the Use of Earth Science Data and Models in Air Quality Management.

    PubMed

    Milford, Jana B; Knight, Daniel

    2017-04-01

    In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of satellite data, including assistance in retrieving and interpreting data from future geostationary platforms meant to provide more frequent coverage for air quality and other applications.

  13. Using Popular Nonfiction in Organic Chemistry: Teaching More than Content

    ERIC Educational Resources Information Center

    Amaral, Katie E.; Shibley, Ivan A., Jr.

    2010-01-01

    Assigning a popular nonfiction book as a supplemental text in organic chemistry can help students learn valuable skills. An analysis of student feedback on assignments related to a nonfiction book in two different organic courses revealed that students applied the information from the book, improved their communication skills, and were more…

  14. Modeling ecohydrologic processes at Hubbard Brook: Initial results for Watershed 6 stream discharge and chemistry

    EPA Science Inventory

    The Hubbard Brook Long Term Ecological Research site has produced some of the most extensive and long-running databases on the hydrology, biology and chemistry of forest ecosystem responses to climate and forest harvest. We used these long-term databases to calibrate and apply G...

  15. Box-and-Whisker Plots Applied to Food Chemistry

    ERIC Educational Resources Information Center

    Ferreira, Joao E. V.; Miranda, Ricardo M.; Figueiredo, Antonio F.; Barbosa, Jardel P.; Brasil, Edykarlos M.

    2016-01-01

    Box-and-whisker plots or simply boxplots are powerful graphical representations that give an overview of a data set. In this work five different examples illustrate the applications of boxplots in food chemistry. The examples involve relative sweetness of sugars and sugar alcohols with respect to sucrose, the potassium content of fruits and…

  16. A Wiki-Based Group Project in an Inorganic Chemistry Foundation Course

    ERIC Educational Resources Information Center

    Kristian, Kathleen E.

    2015-01-01

    A semester-long group project that utilizes wiki sites to enhance collaboration was developed for a foundation course in inorganic chemistry. Through structured assignments, student groups use metal-based or metal-combating therapeutic agents as a model for applying and understanding course concepts; they also gain proficiency with scientific- and…

  17. Assessing College Students' Understanding of Acid Base Chemistry Concepts

    ERIC Educational Resources Information Center

    Wan, Yanjun Jean

    2014-01-01

    Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…

  18. Applying Modeling Instruction to High School Chemistry to Improve Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Dukerich, Larry

    2015-01-01

    With the release of the Next Generation Science Standards, high school chemistry teachers are now pondering the implications of their recommendations for their teaching. They may agree that traditional instruction, as the Framework points out, "emphasizes discrete facts with a focus on breadth over depth, and does not provide students with…

  19. Fighting Tuberculosis in an Undergraduate Laboratory: Synthesizing, Evaluating and Analyzing Inhibitors

    ERIC Educational Resources Information Center

    Daniels, David; Berkes, Charlotte; Nekoie, Arjan; Franco, Jimmy

    2015-01-01

    A drug discovery project has been successfully implemented in a first-year general, organic, and biochemistry (GOB) health science course and second-year organic undergraduate chemistry course. This project allows students to apply the fundamental principles of chemistry and biology to a problem of medical significance, practice basic laboratory…

  20. 77 FR 26318 - Duke Energy Carolinas, LLC., Oconee Nuclear Station, Units 1, 2, and 3 Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... the Transition Range,'' and American Society of Mechanical Engineers (ASME), Boiler and Pressure... heat numbers; (2) applied chemistry factors greater than 167 [deg]F (the weld wire heat- specific chemical composition, via the methodology of RG 1.99, Revision 2, indicated that higher chemistry factors...

  1. Inquiry Practices in Malaysian Secondary Classroom and Model of Inquiry Teaching Based on Verbal Interaction

    ERIC Educational Resources Information Center

    Li, Winnie Sim Siew; Arshad, Mohammad Yusof

    2015-01-01

    Purpose: Inquiry teaching has been suggested as one of the important approaches in teaching chemistry. This study investigates the inquiry practices among chemistry teachers. Method: A combination of quantitative and qualitative study was applied in this study to provide detailed information about inquiry teaching practices. Questionnaires,…

  2. Unifying Approach to Analytical Chemistry and Chemical Analysis: Problem-Oriented Role of Chemical Analysis.

    ERIC Educational Resources Information Center

    Pardue, Harry L.; Woo, Jannie

    1984-01-01

    Proposes an approach to teaching analytical chemistry and chemical analysis in which a problem to be resolved is the focus of a course. Indicates that this problem-oriented approach is intended to complement detailed discussions of fundamental and applied aspects of chemical determinations and not replace such discussions. (JN)

  3. Filtrates & Residues. Acid Pickling with Amines: An Experiment in Applied Chemistry for High School or Freshman Chemistry.

    ERIC Educational Resources Information Center

    Spears, Steven G.; And Others

    1988-01-01

    This article gives a brief description of the process of the removal of corrosion and millscale from the surfaces of ferrous metals by acid pickling. It suggests an experiment to illustrate this process including the procedure and a discussion of the results. (CW)

  4. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  5. Mathematics in Chemistry: Indeterminate Forms and Their Meaning

    ERIC Educational Resources Information Center

    Segurado, Manuel A. P.; Silva, Margarida F. B.; Castro, Rita

    2011-01-01

    The mathematical language and its tools are complementary to the formalism in chemistry, in particular at an advanced level. It is thus crucial, for its understanding, that students acquire a solid knowledge in Calculus and that they know how to apply it. The frequent occurrence of indeterminate forms in multiple areas, particularly in Physical…

  6. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  7. Synthesis and Characterization of Copper Complexes with a Tridentate Nitrogen-Donor Ligand: An Integrated Research Experiment for Undergraduate Students

    ERIC Educational Resources Information Center

    Bussey, Katherine A.; Cavalier, Annie R.; Connell, Jennifer R.; Mraz, Margaret E.; Holderread, Ashley S.; Oshin, Kayode D.; Pintauer, Tomislav

    2015-01-01

    An integrated laboratory experiment applying concepts and techniques developed in organic chemistry, inorganic chemistry, and instrumental analysis is presented for use by students interested in undergraduate research. The experiment incorporates some advanced laboratory practices such as multistep organic synthesis and purification, detailed…

  8. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  9. The Application of Chemistry to Conserve Cultural Heritage

    ERIC Educational Resources Information Center

    MacLeod, Ian D.

    2015-01-01

    During the past 50 years the amount of chemistry applied to the preservation of all sorts of materials, from wood, to ceramics, glass and metallic objects has increased dramatically as materials conservation laboratories became established around the world. In Australia, the finding of a series of historic shipwrecks of ships from the Dutch…

  10. Advanced Chemistry for Operators. Training Module 1.321.3.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with inorganic and general organic chemistry as applied to water and wastewater treatment. Included are objectives, instructor guides, and student handouts. The module contains material related to chemical reactions in water solutions,…

  11. Reviews.

    ERIC Educational Resources Information Center

    Newland, Robert J.; And Others

    1988-01-01

    Reviews four organic chemistry computer programs and three books. Software includes: (1) NMR Simulator 7--for IBM or Macintosh, (2) Nucleic Acid Structure and Synthesis--for IBM, (3) Molecular Design Editor--for Apple II, and (4) Synthetic Adventure--for Apple II and IBM. Book topics include physical chemistry, polymer pioneers, and the basics of…

  12. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  13. The Professional Development of High School Chemistry Coordinators

    ERIC Educational Resources Information Center

    Hofstein, Avi; Carmeli, Miriam; Shore, Relly

    2004-01-01

    The implementation of new content and pedagogical standards in science education necessitates intensive, long-term professional development of science teachers. In this paper, we describe the rationale and structure of a comprehensive and intensive professional development program of school-based leaders, namely school chemistry coordinators. The…

  14. Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons.

    PubMed

    Bazaka, Kateryna; Jacob, Mohan V; Ostrikov, Kostya Ken

    2016-01-13

    Sustainable societal and economic development relies on novel nanotechnologies that offer maximum efficiency at minimal environmental cost. Yet, it is very challenging to apply green chemistry approaches across the entire life cycle of nanotech products, from design and nanomaterial synthesis to utilization and disposal. Recently, novel, efficient methods based on nonequilibrium reactive plasma chemistries that minimize the process steps and dramatically reduce the use of expensive and hazardous reagents have been applied to low-cost natural and waste sources to produce value-added nanomaterials with a wide range of applications. This review discusses the distinctive effects of nonequilibrium reactive chemistries and how these effects can aid and advance the integration of sustainable chemistry into each stage of nanotech product life. Examples of the use of enabling plasma-based technologies in sustainable production and degradation of nanotech products are discussed-from selection of precursors derived from natural resources and their conversion into functional building units, to methods for green synthesis of useful naturally degradable carbon-based nanomaterials, to device operation and eventual disintegration into naturally degradable yet potentially reusable byproducts.

  15. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    NASA Astrophysics Data System (ADS)

    Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  16. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces.

    PubMed

    Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  17. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.

    2014-01-15

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry tomore » study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.« less

  18. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the interaction of 1) prior experiences, 2) training, 3) beliefs about the nature of knowledge, 4) beliefs about the nature of laboratory work, and 5) involvement in the laboratory setting. Further GTAs' self-images are malleable and susceptible to change through their laboratory teaching experiences. Overall, this dissertation contributes to chemistry education by providing a model useful for exploring GTAs' development of a self-image in laboratory teaching. This work may assist laboratory instructors and coordinators in reconsidering, when applicable, GTA training and support. This work also holds considerable implications for how teaching experiences are conceptualized as part of the chemistry graduate education experience. Findings suggest that appropriate teaching experiences may contribute towards better preparing graduate students for their journey in becoming scientists.

  19. Creating a Context for Chemistry

    NASA Astrophysics Data System (ADS)

    Truman Schwartz, A.

    Until relatively recently, the teaching of chemistry at the college and university level in the United States has been quite traditional and oriented primarily toward the preparation of chemists. Students not concentrating in the sciences have often been poorly served by existing courses. Chemistry in Context: Applying Chemistry to Society, a textbook for nonscience majors developed under the sponsorship of the American Chemical Society, is an effort to address the needs and interests of this audience. The book introduces the phenomena and principles of chemistry within the context of socially significant issues such as global warming, ozone depletion, alternate energy sources, nutrition, and genetic engineering. The chemistry is presented as needed to inform an understanding of the central topics, and the text features student-centered activities designed to promote critical thinking and risk-benefit analysis as well as an understanding of chemical principles. This paper summarizes the origin, development, content, pedagogy, evaluation, and influence of Chemistry in Context and considers its potential implications for other disciplines and the instruction of science majors.

  20. Enhancement of Laboratory and Field Instruction in Environmental Science, Biology, and Chemistry Degree Programs at University of the Incarnate Word

    DTIC Science & Technology

    1999-10-12

    The project provided state-of-the-art training to students on the use of modern field and laboratory equipment in Environmental Science , Chemistry...laboratory instruction in Environmental Science , Chemistry, and Biology during the past 1998-99 academic year at the University of the Incarnate Word...development of maps at selected study sites. Dr. William F. Thomann, Environmental Science provided instruction on field and laboratory studies of water

  1. Click chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Hapuarachchige, Sudath; Artemov, Dmitri

    2016-01-01

    Click chemistry provides fast, convenient, versatile and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving MRI performance. PMID:27748712

  2. EnviroLand: A Simple Computer Program for Quantitative Stream Assessment.

    ERIC Educational Resources Information Center

    Dunnivant, Frank; Danowski, Dan; Timmens-Haroldson, Alice; Newman, Meredith

    2002-01-01

    Introduces the Enviroland computer program which features lab simulations of theoretical calculations for quantitative analysis and environmental chemistry, and fate and transport models. Uses the program to demonstrate the nature of linear and nonlinear equations. (Author/YDS)

  3. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  4. Classroom Aids

    ERIC Educational Resources Information Center

    Science Activities: Classroom Projects and Curriculum Ideas, 2007

    2007-01-01

    This article describes 6 aids for science instruction, including (1) the use of fudge to represent lava; (2) the "Living by Chemistry" program, designed to make high school chemistry more accessible to a diverse pool of students without sacrificing content; (3) NOAA and NSTA's online coral reef teaching tool, a new web-based "science toolbox" for…

  5. 75 FR 18784 - FY 2010 NIST Center for Neutron Research (NCNR) Comprehensive Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... extensive publications and invited lectures in condensed matter physics, chemistry, material science... science, particularly in the areas of macromolecular science, condensed matter physics, and chemistry (20... these topics must be in compliance with any statutory requirements imposed upon the Department of Health...

  6. SEASONAL AND LONG-TERM TEMPORAL PATTERNS IN THE CHEMISTRY OF ADIRONDACK LAKES

    EPA Science Inventory

    There is considerable interest in the recovery of surface waters from acidification by acidic deposition. he Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. he objectives of this paper are to: 1) ...

  7. Interview: Bryce Hach--High School Chemistry Teaching Gets a Boost

    ERIC Educational Resources Information Center

    Carr, Kate

    2009-01-01

    Science education reached the headlines of the local newspaper: "Foundation donates $33M! American Chemical Society gets support for chemistry teaching." This windfall came from the Hach Scientific Foundation in Fort Collins, Colorado. The $33 million will go to continue three programs initiated by the Hach Scientific Foundation. One…

  8. Chemistry for Kids. Ester, What's in My Food?

    ERIC Educational Resources Information Center

    Clarke, Michele; And Others

    1986-01-01

    Describes three teaching activities used in the Chemistry for Kids program which focus on how esters are chemicals partially responsible for the flavor of foods. Includes a discussion of a demonstration involving role-playing, a set of taste tests, and an activity using chewing gum to investigate odors in food. (TW)

  9. New Technology, New Questions: Using an Internet Database in Chemistry.

    ERIC Educational Resources Information Center

    Hayward, Roger

    1996-01-01

    Describes chemistry software that is part of a balanced educational program. Provides several applications including graphs of various relationships among the elements. Includes a brief historical treatment of the periodic table and compares the traditional historical approach with perspectives gained by manipulating an electronic database. (DDR)

  10. Students' Satisfaction toward the Services of the Chemical Laboratory

    ERIC Educational Resources Information Center

    Lukum, Astin; Paramata, Yoseph

    2015-01-01

    Chemistry Laboratory serves all of the students that were programmed chemistry laboratory works. The satisfaction of the students was studied that involving 50 students. The study was conducted to measure the students' satisfaction towards the services offered by the laboratory. Measurement of the students' satisfaction was conducted using…

  11. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

  12. The Computer Revolution and Physical Chemistry.

    ERIC Educational Resources Information Center

    O'Brien, James F.

    1989-01-01

    Describes laboratory-oriented software programs that are short, time-saving, eliminate computational errors, and not found in public domain courseware. Program availability for IBM and Apple microcomputers is included. (RT)

  13. Experimental and theoretical studies on the gas/solid/gas transformation cycle in extraterrestrial environments

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Gazeau, Marie-Claire; Chaquin, Patrick; Raulin, François; Bénilan, Yves

    2001-12-01

    The ubiquity of molecular material in the universe, from hydrogen to complex organic matter, is the result of intermixed physicochemical processes that have occurred throughout history. In particular, the gas/solid/gas phase transformation cycle plays a key role in chemical evolution of organic matter from the interstellar medium to planetary systems. This paper focuses on two examples that are representative of the diversity of environments where such transformations occur in the Solar System: (1) the photolytic evolution from gaseous to solid material in methane containing planetary atmospheres and (2) the degradation of high molecular weight compounds into gas phase molecules in comets. We are currently developing two programs which couple experimental and theoretical studies. The aim of this research is to provide data necessary to build models in order to better understand (1) the photochemical evolution of Titan's atmosphere, through a laboratory program to determine quantitative spectroscopic data on long carbon chain molecules (polyynes) obtained in the SCOOP program (French acronym for Spectroscopy of Organic Compounds Oriented for Planetology), and (2) the extended sources in comets, through a laboratory program of quantitative studies of photochemical and thermal degradation processes on relevant polymers (e.g., Polyoxymethylene) by the SEMAPhOrE Cometaire program (French acronym for Experimental Simulation and Modeling Applied to Organic Chemistry in Cometary Environment).

  14. Marine biosurfaces research program

    NASA Astrophysics Data System (ADS)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  15. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  16. Applying green chemistry to the photochemical route to artemisinin

    NASA Astrophysics Data System (ADS)

    Amara, Zacharias; Bellamy, Jessica F. B.; Horvath, Raphael; Miller, Samuel J.; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W.

    2015-06-01

    Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else—solvents, photocatalyst and aqueous acid—can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.

  17. Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, R.T.

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnologymore » Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.« less

  18. Applying green chemistry to the photochemical route to artemisinin.

    PubMed

    Amara, Zacharias; Bellamy, Jessica F B; Horvath, Raphael; Miller, Samuel J; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W

    2015-06-01

    Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else-solvents, photocatalyst and aqueous acid-can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.

  19. Prospectus 2000

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.; Gettys, Nancy S.

    2000-01-01

    We begin 2000 with a message about our plans for JCE Software and what you will be seeing in this column as the year progresses. Floppy Disk --> CD-ROM Most software today is distributed on CD-ROM or by downloading from the Internet. Several new computers no longer include a floppy disk drive as "standard equipment". Today's software no longer fits on one or two floppies (the installation software alone can require two disks) and the cost of reproducing and distributing several disks is prohibitive. In short, distribution of software on floppy disks is no longer practical. Therefore, JCE Software will distribute all new software publications on CD-ROM rather than on disks. Regular Issues --> Collections Distribution of all our software on CD-ROM allows us to extend our concept of software collections that we started with the General Chemistry Collection. Such collections will contain all the previously published software that is still "in print" (i.e., is compatible with current operating systems and hardware) and any new programs that fall under the topic of the collection. Proposed topics in addition to General Chemistry currently include Advanced Chemistry, Instrument and Laboratory Simulations, and Spectroscopy. Eventually, all regular issues will be replaced by these collections, which will be updated annually or semiannually with new programs and updates to existing programs. Abstracts for all new programs will continue to appear in this column when a collection or its update is ready for publication. We will continue to offer special issues of single larger programs (e.g. Periodic Table Live!, Chemistry Comes Alive! volumes) on CD-ROM and video on videotape. Connect with Your Students outside Class JCE Software has always offered network licenses to allow instructors to make our software available to students in computer labs, but that model no longer fits the way many instructors and students work with computers. Many students (or their families) own a personal computer allowing them much more flexibility than a campus computer lab. Many instructors utilize the World Wide Web, creating HTML pages for students to use. JCE Software has options available to take advantage of both of these developments. Software Adoption To provide students who own computers access to JCE Software programs, consider adopting one or more of our CD-ROMs as you would a textbook. The General Chemistry Collection has been adopted by several general chemistry courses. We can arrange to bundle CDs with laboratory manuals or to be sold separately to students through the campus bookstore. The cost per CD can be quite low (as little as $5) when large numbers are ordered, making this a cost-effective method of allowing students access to the software they need whenever and wherever they desire. Web-Ready Publications Several JCE Software programs use HTML to present the material. Viewed with the ubiquitous Internet Browser, HTML is compatible with both Mac OS and Windows (as well most other current operating systems) and provides a flexible hypermedia interface that is familiar to an increasing number of instructors and students. HTML-based publications are also ready for use on local intranets, with appropriate licensing, and can be readily incorporated into other HTML-based materials. Already published in this format are: Chemistry Comes Alive!, Volumes 1 and 2 (Special Issues 18 and 21), Flying over Atoms (Special Issue 19), and Periodic Table Live! Second Edition (Special Issue 17). Solid State Resources Second Edition (Special Issue 12) and Chemistry Comes Alive!, Volume 3 (Special Issue 23) will be available soon. Other submissions being developed in HTML format include ChemPages Laboratory and Multimedia General Chemistry Problems. Contact the JCE Software office to learn about licensing alternatives that take advantage of the World Wide Web. Periodic Table Live! 2nd ed. is one of JCE Software's "Web-ready" publications. Publication Plans for 2000 We have several exciting new issues planned for publication in the coming year. Chemistry Comes Alive! The Chemistry Comes Alive! (CCA!) series continues with additional CD-ROMs for Mac OS and Windows. Each volume in this series contains video and animations of chemical reactions that can be easily incorporated into your own computer-based presentations. Our digital video now uses state-of-the-art compression that yields higher quality video with smaller file sizes and data rates more suited for WWW delivery. Video for Periodic Table Live! 2nd edition, Chemistry Comes Alive! Volumes 3, ChemPages Laboratory, and Multimedia General Chemistry Problems use this new format. We will be releasing updates of CCA! Volumes 1 and 2 to take advantage of this new technology. We are very pleased with the results and think you will be also. The reaction of aluminum with chlorine is included in Chemistry Comes Alive! Volume 3. ChemPages Laboratory ChemPages Laboratory, developed by the New Traditions Curriculum Project at the University of Wisconsin-Madison, is an HTML-based CD-ROM for Mac OS and Windows that contains lessons and tutorials to prepare introductory chemistry students to work in the laboratory. It includes text, photographs, computer graphics, animations, digital video, and voice narration to introduce students to the laboratory equipment and procedures. ChemPages Laboratory teaches introductory chemistry students about laboratory instruments, equipment, and procedures. Versatile Video Video demonstrating the "drinking bird" is included in the Chemistry Comes Alive! video collection. Video from this collection can be incorporated into many other projects. As an example, David Whisnant has used the drinking bird in his Multimedia General Chemistry Problems, where students view the video and are asked to explain why the bird bobs up and down. JCE Software anticipates publication of Multimedia General Chemistry Problems on CD-ROM for Mac OS and Windows in 2000. It will be "Web-ready". General Chemistry Collection, 4th Edition The General Chemistry Collection will be revised early in the summer and CDs will be shipped in time for fall adoptions. The 4th edition will include JCE Software publications for general chemistry published in 1999, as well as any programs for general chemistry accepted in 2000. Regular Issues We have had many recent submissions and submissions of work in progress. In 2000 we will work with the authors and our peer-reviewers to complete and publish these submissions individually or as part of a software collection on CD-ROM. An Invitation In collaboration with JCE Online we plan to make available in 2000 more support files for JCE Software. These will include not only troubleshooting tips and technical support notes, but also supporting information submitted by users such as lessons, specific assignments, and activities using JCE Software publications. All JCE Software users are invited to contribute to this area. Get in touch with JCE Software and let us know how you are using our materials so that we can share your ideas with others! Although the word software is in our name, many of our publications are not traditional software. We also publish video on videotape, videodisc, and CD-ROM and electronic documents (Mathcad and Mathematica, spreadsheet files and macros, HTML documents, and PowerPoint presentations). Most chemistry instructors who use a computer in their teaching have created or considered creating one or more of these for their classes. If you have an original computer presentation, electronic document, animation, video, or any other item that is not printed text it is probably an appropriate submission for JCE Software. By publishing your work in any branch of the Journal of Chemical Education, you will share your efforts with chemistry instructors and students all over the world and get professional recognition for your achievements. All JCE Software publications are Y2K compliant.

  20. Comparison of MX-857 versus MX-641 chemistries for type 2485 film

    NASA Technical Reports Server (NTRS)

    Bourque, P. F.

    1972-01-01

    Tests were conducted to evaluate Kodak MX-857 and MX-641 chemistry systems for use with film Type 2485 to be used in the dim light experiments on Apollo 16. The test program objectives were to: (1) retain a minimum ASA speed of at least 4000; (2) maintain a base-plus-fog level of 0.21 density units or less; and (3) minimize the granularity but do not exceed the granularity level of the Apollo 15 imagery. Test results on the Versamat processor indicate that the use of MX-857 chemistry is preferred over MX-641 chemistry in satisfying the stated test objectives.

Top