Ball bearing heat analysis program (BABHAP)
NASA Technical Reports Server (NTRS)
1978-01-01
The Ball Bearing Heat Analysis Program (BABHAP) is an attempt to assemble a series of equations, some of which are non-linear algebraic systems, in a logical order, which when solved, provide a complex analysis of load distribution among the balls, ball velocities, heat generation resulting from friction, applied load, and ball spinning, minimum lubricant film thickness, and many additional characteristics of ball bearing systems. Although initial design requirements for BABHAP were dictated by the core limitations of the PDP 11/45 computer, (approximately 8K of real words with limited number of instructions) the program dimensions can easily be expanded for large core computers such as the UNIVAC 1108. The PDP version of BABHAP is also operational on the UNIVAC system with the exception that the PDP uses 029 punch and the UNIVAC uses 026. A conversion program was written to allow transfer between machines.
Modeling of rolling element bearing mechanics. Computer program user's manual
NASA Technical Reports Server (NTRS)
Greenhill, Lyn M.; Merchant, David H.
1994-01-01
This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Fatigue life of high-speed ball bearings with silicon nitride balls
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1974-01-01
Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. The five-ball fatigue tester was used to test 12.7-mm- diameter silicon nitride balls at maximum Hertz stresses ranging from 4.27 x 10 to the 9th power n/sq m to 6.21 x 10 to the 9th power n/sq m at a race temperature of 328K. The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.
Reinold, Michael M; Macrina, Leonard C; Fleisig, Glenn S; Aune, Kyle; Andrews, James R
Emphasis on enhancing baseball pitch velocity has become popular, especially through weighted-ball throwing. However, little is known about the physical effects or safety of these programs. The purpose of this study was to examine the effects of training with weighted baseballs on pitch velocity, passive range of motion (PROM), muscle strength, elbow torque, and injury rates. A 6-week weighted ball training program would result in a change in pitching biomechanical and physical characteristics. Randomized controlled trial. Level 1. During the baseball offseason, 38 healthy baseball pitchers were randomized into a control group and an experimental group. Pitch velocity, shoulder and elbow PROM, shoulder strength, elbow varus torque, and shoulder internal rotation velocity were measured in both groups. The experimental group then performed a 6-week weighted ball throwing program 3 times per week using balls ranging from 2 to 32 ounces while the control group only used a 5-ounce regulation baseball. Both groups performed a strength training program. Measurements were then repeated after the 6-week period. Injuries were tracked over the 6-week training program and the subsequent baseball season. The effect of training with a weighted ball program was assessed using 2-way repeated-measures analysis of variance at an a priori significance level of P < 0.05. Mean age, height, mass, and pretesting throwing velocity were 15.3 ± 1.2 years (range, 13-18 years), 1.73 ± 0.28 m, 68.3 ± 11 kg, and 30.3 ± 0.7 m/s, respectively. Pitch velocity showed a statistically significant increase (3.3%) in the experimental group ( P < 0.001). There was a statistically significant increase of 4.3° of shoulder external rotation in the experimental group. The overall injury rate was 24% in the experimental group. Four participants in the experimental group suffered elbow injuries, 2 during the training program and 2 in the season after training. No pitchers in the control group were injured at any time during the study. Performing a 6-week weighted ball throwing program increased pitch velocity. However, the program resulted in increased shoulder external rotation PROM and increased injury rate. Although weighted-ball training may increase pitch velocity, caution is warranted because of the notable increase in injuries and physical changes observed in this cohort.
Development of new materials for turbopump bearings
NASA Technical Reports Server (NTRS)
Maurer, R. E.; Pallini, R. A.
1985-01-01
The life requirement for the angular contact ball bearings in the Space Shuttle Main Engine (SSME) high pressure oxygen turbopump (HPOTP) is 7.5 hours. In actual operation, significantly shorter service life was experienced. The objective is to identify bearing materials and/or materials processing techniques offering signficant potential for extending HPOTP bearing performance life. Interactive thermomechanical analysis of the HPOTP bearing-shaft system was performed with the SHABERTH computer program. Bearing fatigue life, ball-race contact stress, heat generation rate, bulk ring temperatures and circumferential stress in the inner rings were quantified as functions of radial load, thrust load and ball-race contact friction. Criteria established from the output of this analysis are being used for material candidate selection.
Having a Ball with Fitness Balls
ERIC Educational Resources Information Center
McNulty, Betty
2011-01-01
Fitness programs can be greatly enhanced with the addition of fitness balls. They are a fun, challenging, economical, and safe way to incorporate a cardiovascular, strength, and stretching program for all fitness levels in a physical education setting. The use of these balls has become more popular during the last decade, and their benefits and…
NASA Technical Reports Server (NTRS)
1998-01-01
The Ultra 500 Series golf balls, introduced in 1995 by Wilson Sporting Goods Company, has 500 dimples arranged in a pattern of 60 spherical triangles. The design employs NASA's aerodynamics technology analysis of air loads of the tank and Shuttle orbiter that was performed under the Space Shuttle External Tank program. According to Wilson, this technology provides 'the most symmetrical ball surface available, sustaining initial velocity longer and producing the most stable ball flight for unmatched accuracy and distance.' The dimples are in three sizes, shapes and depths mathematically positioned for the best effect. The selection of dimples and their placement optimizes the interaction of opposing forces of lift and drag. Large dimples reduce air drag, enhance lift, and maintain spin for distance. Small dimples prevent excessive lift that destabilizes the ball flight and the medium size dimples blend the other two.
NASA Technical Reports Server (NTRS)
Hadden, G. B.; Kleckner, R. J.; Ragen, M. A.; Sheynin, L.
1981-01-01
The SHABERTH program is capable of simulating the thermomechanical performance of a load support system consisting of a flexible shaft supported by up to five rolling element bearings. Any combination of ball, cylindrical, and tapered roller bearings can be used to support the shaft. The user can select models in calculating lubricant film thickness and traction forces. The formulation of the cage pocket/rolling element interaction model was revised to improve solution numerical convergence characteristics.
ERIC Educational Resources Information Center
Harris, Jacqueline; Ho, Taiping; Markle, Larry; Wessel, Roger
2011-01-01
Concern over the transition to postsecondary education for students with disabilities led Ball State University personnel to create the Faculty Mentorship Program (FMP ) in the summer of 2006. The program is a model for collaboration between the disability services office, the faculty members of Ball State, and the Learning Center. The purpose of…
Hybrid hydrostatic/ball bearings in high-speed turbomachinery
NASA Technical Reports Server (NTRS)
Nielson, C. E.
1983-01-01
A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.
Hypervelocity Impact Initiation of Explosive Transfer Lines
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Christiansen, Eric L.
2012-01-01
The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an aluminum ball onto a Whipple shield covering SMDC is problematic due to the hydrocode fracture models. Regardless, two simulations were performed resulting in a 5 mm ball initiating the SMDC and a 4 mm ball failing to initiate the SMDC.
1998-01-01
The Ultra 500 Series golf balls, introduced in 1995 by Wilson Sporting Goods Company, has 500 dimples arranged in a pattern of 60 spherical triangles. The design employs NASA's aerodynamics technology analysis of air loads of the tank and Shuttle orbiter that was performed under the Space Shuttle External Tank program. According to Wilson, this technology provides "the most symmetrical ball surface available, sustaining initial velocity longer and producing the most stable ball flight for unmatched accuracy and distance." The dimples are in three sizes, shapes and depths mathematically positioned for the best effect. The selection of dimples and their placement optimizes the interaction of opposing forces of lift and drag. Large dimples reduce air drag, enhance lift, and maintain spin for distance. Small dimples prevent excessive lift that destabilizes the ball flight and the medium size dimples blend the other two.
Medicine Ball for All: A Novel Program that Enhances Physical Fitness in School-Age Youths
ERIC Educational Resources Information Center
Faigenbaum, Avery; Mediate, Patrick
2006-01-01
This article provides an overview of medicine ball training. Specifically, it describes "Medicine Ball for All," a physical activity program designed to provide children and teenagers with a meaningful learning experience that is consistent with their developmental needs. The article focuses on developing a safe, successful, and inexpensive…
Loop-the-Loop: An Easy Experiment, A Challenging Explanation
NASA Astrophysics Data System (ADS)
Asavapibhop, B.; Suwonjandee, N.
2010-07-01
A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.
Biomechanical Analysis of Weighted-Ball Exercises for Baseball Pitchers.
Fleisig, Glenn S; Diffendaffer, Alek Z; Aune, Kyle T; Ivey, Brett; Laughlin, Walter A
Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound). Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls. Controlled laboratory study. Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data. Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds. While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing. As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.
Promoting ball skills in preschool-age girls.
Veldman, Sanne L C; Palmer, Kara K; Okely, Anthony D; Robinson, Leah E
2017-01-01
Evidence supports that girls are less proficient than boys at performing ball skills. This study examined the immediate and long-term effects of a ball skill intervention on preschool-age girls' ball skill performance. Randomized controlled trial. Girls (M age =47.24±7.38 months) were randomly assigned to a high autonomy, mastery-based 9-week motor skill intervention (the Children's Health Activity Motor Program; CHAMP, 540min; n=38) or a control group (free-play; n=16). Ball skill proficiency was assessed at pretest, posttest, and retention test (after 9 weeks) using the object control subscale of the Test of Gross Motor Development - 2nd Edition. Treatment efficacy was examined using linear mixed models. Two models were fit: one for short-term changes (pretest to posttest) and one for long-term changes (pretest to retention). Linear mixed models revealed a significantly time*treatment interaction for both models. Post hoc analysis confirmed that girls in CHAMP experienced significant gains in ball skills from pretest to posttest (p<.001) and pretest to retention (p<.001). Moreover, girls in CHAMP were no different from the control group at pretest (p>.05) but had significantly higher ball skills scores at both posttest (p<.001) and retention (p<.001). This study demonstrates the positive effects of a ball skill intervention (i.e., CHAMP) on improving girls' ball skills both short- and long-term. Findings suggest that early childhood interventions that focus on the development of ball skills in young girls might be an avenue to improve girls' ball skill performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry
NASA Astrophysics Data System (ADS)
Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.
2012-12-01
A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.
Design and fabrication of prototype system for early warning of impending bearing failure
NASA Technical Reports Server (NTRS)
Meacher, J.; Chen, H. M.
1974-01-01
A test program was conducted with the objective of developing a method and equipment for on-line monitoring of installed ball bearings to detect deterioration or impending failure of the bearings. The program was directed at the spin-axis bearings of a control moment gyro. The bearings were tested at speeds of 6000 and 8000 rpm, thrust loads from 50 to 1000 pounds, with a wide range of lubrication conditions, with and without a simulated fatigue spall implanted in the inner race ball track. It was concluded that a bearing monitor system based on detection and analysis of modulations of a fault indicating bearing resonance frequency can provide a low threshold of sensitivity.
Bringing the Community to Campus: An Oral History of Women's Week at Ball State University
ERIC Educational Resources Information Center
Jarrett, Courtney
2012-01-01
This dissertation examined the annual Women's Week events hosted by Ball State's Women's and Gender Studies Program. It served to paint a historical picture of how the local Muncie community has been linked with the academic community at Ball State through events about women's issues. The program began when a group of people wanting to broaden the…
Science of Ball Lightning (Fire Ball)
NASA Astrophysics Data System (ADS)
Ohtsuki, Yoshi-Hiko
1989-08-01
The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants
A Ball Skills Intervention in Preschoolers: The CHAMP Randomized Controlled Trial.
Robinson, Leah E; Veldman, Sanne L C; Palmer, Kara K; Okely, Anthony D
2017-11-01
Fundamental motor skills (FMS) contribute to positive health trajectories. A high level of competence in ball skills (a subset of FMS) is a predictor for time spent in moderate- to vigorous-intensity physical activity during adolescence. This study examined the effects of a ball skills intervention on ball skill competence among preschool-aged boys and girls. This is a two-armed randomized controlled trial. A total of 124 preschoolers (Mage ± SD = 48.14 ± 6.62 months) were randomly assigned to one of two groups, the Children's Health Activity Motor Program (CHAMP; n = 81) or control (n = 43). FMS were measured before, after (9 wk), and at retention (18 wk) using the object control subscale of the Test of Gross Motor Development, Second Edition. Changes in ball skill scores were calculated (pretest-posttest, pretest-retention, posttest-retention) and were compared using one-way ANOVAs with post hoc Scheffe analysis. Findings support that groups demonstrated significantly different rates of change from pretest to posttest (F3,117 = 179.45, P < 0.001), pretest to retention (F3,113 = 95.8, P < 0.001), and posttest to retention (F3,113 = 189.89, P < 0.001). Compared with their control group peers, CHAMP boys and girls had greater positive rates of change from pretest to posttest and pretest to retention as well as greater negative rates of change from posttest to retention. CHAMP was effective in improving and maintaining ball skills in preschool-age boys and girls. Findings support that providing a high-quality motor skill program in early childhood settings could potentially be a sustainable public health approach to promoting FMS and positive developmental trajectories for health.
Video Analysis of Granular Gases in a Low-Gravity Environment
NASA Astrophysics Data System (ADS)
Lewallen, Erin
2004-10-01
Granular Agglomeration in Non-Gravitating Systems is a research project undertaken by the University of Tulsa Granular Dynamics Group. The project investigates the effects of weightlessness on granular systems by studying the dynamics of a "gas" of 1-mm diameter brass ball bearings driven at various amplitudes and frequencies in low-gravity. Models predict that particles in systems subjected to these conditions should exhibit clustering behavior due to energy loss through multiple inelastic collisions. Observation and study of clustering in our experiment could shed light on this phenomenon as a possible mechanism by which particles in space coalesce to form stable objects such as planetesimals and planetary ring systems. Our experiment has flown on NASA's KC-135 low gravity aircraft. Data analysis techniques for video data collected during these flights include modification of images using Adobe Photoshop and development of ball identification and tracking programs written in Interactive Data Language. By tracking individual balls, we aim to establish speed distributions for granular gases and thereby obtain values for granular temperature.
Analysis of Black Bearing Balls from a Space Shuttle Body Flap Actuator
NASA Technical Reports Server (NTRS)
Sovinski, Marjorie F.; Street, Kenneth W.
2005-01-01
A significantly deteriorated ball bearing mechanism from a body flap actuator on Space Shuttle OV-103 was disassembled and the balls submitted for analysis in conjunction with Return to Flight activities. The OV-103 balls, referred to as the "black balls", were subjected to X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and Raman micro spectroscopy, surface profilometry, and optical and electron microscopy. The spectroscopic results in combination with microscopy analysis allowed a determination of the lubricant degradation pathway. The chemical attack mechanism does not adequately explain the unique visual appearance of the black balls. Numerous efforts have unsuccessfully focused on duplication of the phenomena causing this unique surface structure and appearance of the black balls. Further detail will be presented supporting these conclusions along with plausible explanations of the unique black appearance to the balls.
Hermassi, Souhail; van den Tillaar, Roland; Khlifa, Riadh; Chelly, Mohamed Souhaiel; Chamari, Karim
2015-08-01
The purpose of this study was to compare the effect of a specific resistance training program (throwing movement with a medicine ball) with that of regular training (throwing with regular balls) on ball velocity, anthropometry, maximal upper-body strength, and power. Thirty-four elite male team handball players (age: 18 ± 0.5 years, body mass: 80.6 ± 5.5 kg, height: 1.80 ± 5.1 m, body fat: 13.4 ± 0.6%) were randomly assigned to 1 of the 3 groups: control (n = 10), resistance training group (n = 12), or regular throwing training group (n = 12). Over the 8-week in season, the athletes performed 3 times per week according to an assigned training program alongside their normal team handball training. One repetition maximum (1RM) bench press and 1RM pullover scores assessed maximal arm strength. Anthropometry was assessed by body mass, fat percentage, and muscle volumes of upper body. Handball throwing velocity was measured by a standing throw, a throw with run, and a jump throw. Power was measured by measuring total distance thrown by a 3-kg medicine ball overhead throw. Throwing ball velocity, maximal strength, power, and muscle volume increases for the specific resistance training group after the 8 weeks of training, whereas only maximal strength, muscle volume and power and in the jump throw increases were found for the regular throwing training group. No significant changes for the control group were found. The current findings suggest that elite male handball players can improve ball velocity, anthropometrics, maximal upper-body strength, and power during the competition season by implementing a medicine ball throwing program.
CFD Analysis of Swing of Cricket Ball and Trajectory Prediction
NASA Astrophysics Data System (ADS)
G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay
2013-11-01
This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.
Relationship between performance variables and baseball ability in youth baseball players.
Nakata, Hiroki; Nagami, Tomoyuki; Higuchi, Takatoshi; Sakamoto, Kiwako; Kanosue, Kazuyuki
2013-10-01
The present study investigated the relationship of performance variables and anthropometric measurements on baseball ability in 164 youth baseball players (age: 6.4-15.7 years). To evaluate their baseball performance, ball speeds in pitching and batting were recorded and kinetic energies of the pitched and hit balls were calculated. To record anthropometric and physical fitness characteristics, height and weight were measured and a battery of physical fitness tests covering standing long jump, side steps, sit-ups, 10-m sprint, trunk flexion, back strength, and grip strengths of both hands were conducted. The results of a multiple regression analysis revealed several significant predictors: age, body mass index (BMI), standing long jump, 10-m sprint, and grip strength for pitched ball kinetic energy and age, BMI, standing long jump, and back strength for hit ball kinetic energy. This study provides scientific evidence that relates certain specific physical performance tests and body characteristics with high achievement in the actual performance of pitching and batting. Youth players, their parents, coaches, and trainers would benefit by addressing these characteristics when planning training programs to improve the baseball performance of youth players.
The study on dynamic properties of monolithic ball end mills with various slenderness
NASA Astrophysics Data System (ADS)
Wojciechowski, Szymon; Tabaszewski, Maciej; Krolczyk, Grzegorz M.; Maruda, Radosław W.
2017-10-01
The reliable determination of modal mass, damping and stiffness coefficient (modal parameters) for the particular machine-toolholder-tool system is essential for the accurate estimation of vibrations, stability and thus the machined surface finish formed during the milling process. Therefore, this paper focuses on the analysis of ball end mill's dynamical properties. The tools investigated during this study are monolithic ball end mills with different slenderness values, made of coated cemented carbide. These kinds of tools are very often applied during the precise milling of curvilinear surfaces. The research program included the impulse test carried out for the investigated tools clamped in the hydraulic toolholder. The obtained modal parameters were further applied in the developed tool's instantaneous deflection model, in order to estimate the tool's working part vibrations during precise milling. The application of the proposed dynamics model involved also the determination of instantaneous cutting forces on the basis of the mechanistic approach. The research revealed that ball end mill's slenderness can be considered as an important milling dynamics and machined surface quality indicator.
Lubricity of well-characterized jet and broad-cut fuels by ball-on-cylinder machine
NASA Technical Reports Server (NTRS)
Prok, G. M.; Kim, W. S.
1984-01-01
A ball-on-cylinder machine (BOCM) was used to measure the lubricity of fuels. The fuels tested were well-characterized fuels available from other programs at the NASA Lewis Research Center plus some in-house mildly hydroprocessed shale fuels from other programs included Jet-A, ERBS fuel, ERBS blends, and blend stock. The BOCM tests were made before and after clay treatment of some of these fuels with both humidified air and dry nitrogen as the preconditioning and cover gas. As expected, clay treatment always reduced fuel lubricity. Using nitrogen preconditioning and cover gas always resulted in a smaller wear scar diameter than when humidified air was used. Also observed was an indication of lower lubricity with lower boiling range fuels and lower aromatic fuels. Gas chromatographic analysis indicted changes in BOCM-stressed fuels.
Fraser, Melissa A; Grooms, Dustin R; Guskiewicz, Kevin M; Kerr, Zachary Y
2017-07-01
Surveillance data regarding injuries caused by ball contact in collegiate athletes have not been well examined and are mostly limited to discussions of concussions and catastrophic injuries. To describe the epidemiology of ball-contact injuries in 11 National Collegiate Athletic Association (NCAA) sports during the 2009-2010 through 2014-2015 academic years. Descriptive epidemiology study. Convenience sample of NCAA programs in 11 sports (men's football, women's field hockey, women's volleyball, men's baseball, women's softball, men's and women's basketball, men's and women's lacrosse, and men's and women's soccer) during the 2009-2010 through 2014-2015 academic years. Collegiate student-athletes participating in 11 sports. Ball-contact-injury rates, proportions, rate ratios, and proportion ratios with 95% confidence intervals were based on data from the NCAA Injury Surveillance Program during the 2009-2010 through 2014-2015 academic years. During the 2009-2010 through 2014-2015 academic years, 1123 ball-contact injuries were reported, for an overall rate of 3.54/10 000 AEs. The sports with the highest rates were women's softball (8.82/10 000 AEs), women's field hockey (7.71/10 000 AEs), and men's baseball (7.20/10 000 AEs). Most ball-contact injuries were to the hand/wrist (32.7%) and head/face (27.0%) and were diagnosed as contusions (30.5%), sprains (23.1%), and concussions (16.1%). Among sex-comparable sports (ie, baseball/softball, basketball, and soccer), women had a larger proportion of ball-contact injuries diagnosed as concussions than men (injury proportion ratio = 2.33; 95% confidence interval = 1.63, 3.33). More than half (51.0%) of ball-contact injuries were non-time loss (ie, participation-restriction time <24 hours), and 6.6% were severe (ie, participation-restriction time ≥21 days). The most common severe ball-contact injuries were concussions (n = 18) and finger fractures (n = 10). Ball-contact-injury rates were the highest in women's softball, women's field hockey, and men's baseball. Although more than half were non-time-loss injuries, severe injuries such as concussions and fractures were reported.
Individual ball possession in soccer
Hoernig, Martin
2017-01-01
This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC), Individual Ball Action (IBA), Individual Ball Control (IBC), Team Ball Possession (TBP), Team Ball Control (TBC) und Team Playmaking (TPM) according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min) and the longest for goalkeepers (1:38 ± 0:58 min), central defenders (1:38 ± 1:09 min) and central midfielders (1:27 ± 1:08 min). The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession. PMID:28692649
Acting Administrator Lightfoot Visits Ball Aerospace
2017-04-06
Leanne Presley, Operational Land Imager-2 (OLI-2) program manager at Ball Aerospace, left, speaks with acting NASA Deputy Administrator Lesa Roe, center, and acting NASA Administrator Robert Lightfoot in front of a thermal vacuum chamber used to test satellite optics, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. The Operation Land Imager-2 (OLI-2) is being build for Landsat 9, a collaboration between NASA and the U.S. Geological Survey that will continue the Landsat Program's 40-year data record of monitoring the Earth's landscapes from space. Photo Credit: (NASA/Joel Kowsky)
The Shock and Vibration Digest. Volume 15, Number 3
1983-03-01
High Temperature Gas-Cooled Reactor Core with Block-type Fuel (2nd Report: An Analytical Method of Two-dmentmnal Vibration of Interacting CohunM) T...Computer-aided techniquei, Detign techniquei A wite of computer programs hat been developed which allow« advanced fatigue analyiit procedures to be...valuei with those developed by bearing analysis computer programs were used to formulate an understanding of the mechanisms that induce ball skidding
Acting Administrator Lightfoot Visits Ball Aerospace
2017-04-06
Michael Dean, senior project engineer for the Joint Polar Satellite System (JPSS) program at Ball Aerospace, right, speaks with acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, center, about the 20ft. by 24 ft. vertical thermal vacuum chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)
ERIC Educational Resources Information Center
Jernigan, S. R.; Fahmy, Y.; Buckner, G. D.
2009-01-01
This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…
Assessing methods of enhancing older driver performance.
DOT National Transportation Integrated Search
2013-05-01
Research has demonstrated improvements in neuropsychological measuresfollowing participation in : cognitive training programs in normal aging individuals (Ball, et al., 2002; Ball, Edwards, & Ross, 2007; : Willis, et al., 2006; Wolinsky, et al., 2006...
Fluorine lubricated bearing technology
NASA Technical Reports Server (NTRS)
Mallaire, F. R.
1973-01-01
An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.
Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head
NASA Astrophysics Data System (ADS)
Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun
2018-03-01
Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.
Metallurgical Analysis of Ball Bearing Seized During Operation
NASA Astrophysics Data System (ADS)
Jha, Abhay K.; Swathi Kiranmayee, M.; Ramesh Narayanan, P.; Sreekumar, K.; Sinha, P. P.
2012-06-01
440C stainless steel of martensitic grade is being extensively used for bearing application because of its high wear and corrosion resistance. This alloy steel with 1 wt.% C along with 17 wt.% Cr, 1 wt.% Mn and up to 0.75 wt.% Mo has a number of primary carbides, which provide high hardness and good wear resistance. Owing to its unique performance characteristic, this steel finds a number of applications in space program. One such application is bearing used in booster pump assembly of propulsion system. During one of the ground tests of propulsion system, booster pump bearing seized operation after performing its partial intended function. The bearing was removed from the assembly and cut open. The ball and outer caging were analyzed using metallographic techniques and compared with another bearing taken from the fresh stock. Study indicated that ball as well as outer caging experienced exposure to high temperature and resulted in phase transformation. This article highlights the details of investigations carried out.
Evaluation of rotating, incompressibly lubricated, pressurized thrust bearings
NASA Technical Reports Server (NTRS)
Fleming, D. P.
1971-01-01
Program evaluates a series hybrid, fluid film ball bearing consisting of an orifice compensated pressurized thrust bearing in conjunction with a self-acting journal bearing. Oil viscosities corresponding to experimentally measured ball bearing outer-race temperatures were used.
Effect of Hoop Stress on Ball Bearing Life Prediction
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; August, Richard; Coe, Harold H.
1995-01-01
A finite-element analysis (FEA) of a generic, dimensionally normalized inner race of an angular-contact ball bearing was performed under varying conditions of speed and the press (or interference) fit of the inner-race bore on a journal. The FEA results at the ball-race contact were used to derive an equation from which was obtained the radius of an equivalent cylindrical bearing race with the same or similar hoop stress. The radius of the equivalent cylinder was used to obtain a generalized closed-form approximation of the hoop stresses at the ball-inner-race contact in an angular-contact ball bearing. A life analysis was performed on both a 45- and a 120-mm-bore, angular-contact ball bearing. The predicted lives with and without hoop stress were compared with experimental endurance results obtained at 12000 and 25000 rpm with the 120-mm-bore ball bearing. A life factor equation based on hoop stress is presented.
An overview of Ball Aerospace cryogen storage and delivery systems
NASA Astrophysics Data System (ADS)
Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.
2015-12-01
Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.
Ball Powder Production Wastewater Biodegradation Support Studies - With Nitroglycerine
1989-02-01
in the wastewater. Characterization of the ball powder wastewater stream showed an actual average NG inlet concentration of 192 mg/L. Pilot test...the first phase of pilot testing, the recommendation was made to conduct an additional pilot test phase to determine the effect of nitroglycerin (NG...NG by aerobic bacteria, a pilot program was undertaken with the following objectives: 1) to determine the concentration of NG in the ball powder
Evaluation of a series hybird thrust bearing at DN values to three million. 1: Analysis and design
NASA Technical Reports Server (NTRS)
Gu, A.; Eusepi, M.; Winn, L. W.
1974-01-01
The analysis and design are presented of a hybrid bearing consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and an inner radius of 71 mm (2.8 in.). The bearing analysis, combined with available torque data on ball bearings, indicates that an effective speed split between the ball and fluid-film bearings of 50 percent may be expected during operation at 20,000 rpm and under an axial load of 17,800 newtons (4000 lbs.). This speed split can result in a ten-fold increase in the life of the ball bearing when compared to a simple ball bearing system operating under similar conditions.
The Impact of Planned Organizational Change on an Academic Library: An MRAP Case Study.
ERIC Educational Resources Information Center
Kuo, Ming-ming Shen
This paper examines the impact of organizational change on a university library. The change process started in 1980 at Ball State University Libraries, Muncie, Indiana, with the initiation of a self-study, the Management Review and Analysis Program (MRAP). With certain key recommendations implemented, the University Libraries has been transformed…
Analysis of a spacecraft instrument ball bearing assembly lubricated by a perfluoroalkylether
NASA Technical Reports Server (NTRS)
Morales, W.; Jones, W. R., Jr.; Buckley, D. H.
1986-01-01
An analysis of a spacecraft instrument ball bearing assembly, subjected to a scanning life test, was performed to determine the possible case of rotational problems involving these units aboard several satellites. The analysis indicated an ineffective transfer of a fluorinated liquid lubricant from a phenolic retainer to the bearing balls. Part of the analysis led to a novel HPLC separation method employing a fluorinated mobile phase in conjunction with silica based size exclusion columns.
Tests of 38 Ball-Bearing Greases
NASA Technical Reports Server (NTRS)
Mcmurtrey, E. L.
1982-01-01
Report presents interim results in program of long-term tests of ball-bearing greases in vacuum, oxidizing, and otherwise hostile environment. Program is motivated by need for mechanisms that will operate for long periods in spacecraft or space stations. Class of lubricants based on perfluoroalkylpolyether (PFPE) with fluorotelomer thickeners has given best results in vacuum tests completed thus far. Test methods and performances of various lubricants could be of interest in automotive and industrial communities.
2010-11-29
Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica , pages 139–148, 1979. 6.3 T. Ball, R. Majumdar, T. Millstein, and S. Rajamani...Press, January 1999. ISBN 0262032708. 3, 3.1, 3.3 323 B Bibliography M. Clint and C.A.R. Hoare. Program proving: Jumps and functions. Acta Informatica ...Goto statements: Semantics and deduction systems. Acta Informatica , pages 385–424, 1981. 6.3 324 B Bibliography Alain Deutsch. Interprocedural may
Experimental evaluation of stresses in spherically hollow balls
NASA Technical Reports Server (NTRS)
Nypan, L. J.
1974-01-01
An analysis was undertaken to evaluate stresses within spherically hollow ball bearings proportioned for 40, 50, and 60% mass reductions. Strain gage rosettes were used to determine principal strains and stresses in the steel ball models statically loaded in various orientations. Dimensionless results are reported for the balls under flate plate contact loads. Similitude considerations permit these results to be applied to calculate stresses in hollow ball bearings proportioned to these mass reductions.
Effect of soccer shoe upper on ball behaviour in curve kicks
Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo
2014-01-01
New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour. PMID:25266788
Effect of soccer shoe upper on ball behaviour in curve kicks
NASA Astrophysics Data System (ADS)
Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo
2014-08-01
New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour.
Processing of high-precision ceramic balls with a spiral V-groove plate
NASA Astrophysics Data System (ADS)
Feng, Ming; Wu, Yongbo; Yuan, Julong; Ping, Zhao
2017-03-01
As the demand for high-performance bearings gradually increases, ceramic balls with excellent properties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for highperformance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral Vgroove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-level accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.
Technical Risk Identification at Program Inception Product Overview
2014-05-08
hans.koenigsmann@spacex.com SpaceX James Koory james.koory@rocket.com Rocket Brian Kosinski Kosinski.Brian@ssd.loral.com SSL John Kowalchik john.j.kowalchik...Marvin VanderWeg marvin.vanderwag@spacex.com SpaceX Gerrit VanOmmering gerrit.vanommering@sslmda.com SSL Michael Verzuh mverzuh@ball.com Ball John Vilja
Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils
NASA Technical Reports Server (NTRS)
Chapman, R. S.
1977-01-01
Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.
2017-10-25
NASA Kennedy Space Center's Sam Ball, third from left, speaks during the Energy Action Day employee event held in NASA Kennedy Space Center's Space Station Processing Facility. Part of Energy Awareness Month, the event featured subject matter experts in the area of solar energy, its connections to the space program and options for residential solar power. From left to right are Nick Murdock, energy and water program manager at Kennedy; Chuck Tatro of NASA's Launch Services Program; Ball; Anuj Chokshi of FPL; Bill McMullen of Southern Power; John Sherwin of the Florida Solar Energy Center in Cocoa; and Lorraine Koss of the Brevard County Solar Co-op.
Effects of special composite stretching on the swing of amateur golf players
Lee, Joong-chul; Lee, Sung-wan; Yeo, Yun-ghi; Park, Gi Duck
2015-01-01
[Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed. PMID:25995553
Effects of special composite stretching on the swing of amateur golf players.
Lee, Joong-Chul; Lee, Sung-Wan; Yeo, Yun-Ghi; Park, Gi Duck
2015-04-01
[Purpose] The study investigated stretching for safer a golf swing compared to present stretching methods for proper swings in order to examine the effects of stretching exercises on golf swings. [Subjects] The subjects were 20 amateur golf club members who were divided into two groups: an experimental group which performed stretching, and a control group which did not. The subjects had no bone deformity, muscle weakness, muscle soreness, or neurological problems. [Methods] A swing analyzer and a ROM measuring instrument were used as the measuring tools. The swing analyzer was a GS400-golf hit ball analyzer (Korea) and the ROM measuring instrument was a goniometer (Korea). [Results] The experimental group showed a statistically significant improvement in driving distance. After the special stretching training for golf, a statistically significant difference in hit-ball direction deviation after swings were found between the groups. The experimental group showed statistically significant decreases in hit ball direction deviation. After the special stretching training for golf, statistically significant differences in hit-ball speed were found between the groups. The experimental group showed significant increases in hit-ball speed. [Conclusion] To examine the effects of a special stretching program for golf on golf swing-related factors, 20 male amateur golf club members performed a 12-week stretching training program. After the golf stretching training, statistically significant differences were found between the groups in hit-ball driving distance, direction deviation, deflection distance, and speed.
Kipke, Michele D.; Kubicek, Katrina; Supan, Jocelyn; Weiss, George; Schrager, Sheree
2012-01-01
African American young men who have sex with men (AAYMSM) represent the largest proportion of new HIV infections among MSM. While evidence-based interventions are lacking, all too often HIV interventions are implemented in a community without thoroughly understanding its needs, risks and assets. AAYMSM are not homogenous; subgroups exist that may require different approaches to be effective. The House and Ball communities represent one such subgroup. A community-engaged, mixed-methods approach was used. Participant observations, qualitative interviews (N=26), and a survey at House/Ball events (N=252) were completed. Survey data broadly describe the community. For example: 69% of survey respondents identify as gay; 25% as bisexual; 13% reported recent use of ecstasy and 11% recently participated in sex exchange. The depth of qualitative data is key for intervention development. For example, while the survey provides broad descriptions of respondents’ involvement in the House and Ball communities, leaders provided in-depth descriptions of the structure of the House and Ball scene –something vital to the development of HIV prevention programs within these communities. This kind of rigorous study is recommended prior to implementing an intervention. Findings are discussed in relation to leveraging the communities’ supportive aspects to design culturally relevant HIV prevention programs. PMID:22699855
Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals
NASA Technical Reports Server (NTRS)
Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)
1999-01-01
Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.
Unified picture of Q-balls and boson stars via catastrophe theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, Takashi; Sakai, Nobuyuki; Department of Education, Yamagata University, Yamagata 990-8560
2010-06-15
We make an analysis of Q-balls and boson stars using catastrophe theory, as an extension of the previous work on Q-balls in flat spacetime. We adopt the potential V{sub 3}({phi})=(m{sup 2}/2){phi}{sup 2}-{mu}{phi}{sup 3}+{lambda}{phi}{sup 4} for Q-balls and that with {mu}=0 for boson stars. For solutions with |g{sup rr}-1|{approx}1 at its peak, stability of Q-balls has been lost regardless of the potential parameters. As a result, phase relations, such as a Q-ball charge versus a total Hamiltonian energy, approach those of boson stars, which gives us a unified picture of Q-balls and boson stars.
Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System
NASA Astrophysics Data System (ADS)
Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei
2018-01-01
Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.
Balloon-borne 3-meter telescope for far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Fazio, G. G.
1986-01-01
The gimbal design was studied and revised to eliminate the alignment and limited rotation problems inherent in the flex-pivot design. A new design using ball-bearings to replace the flex-pivot was defined and its performance analyzed. An error analysis for the entire gondola pointing system was also prepared. Mirror development and the test program using mirror test blanks from Dornier were continued.
Ball motion and sliding friction in an arched outer-race ball bearing
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1974-01-01
The motion of the ball and sliding friction in an arched outer-race ball bearing under thrust load is analyzed. Fatigue life evaluations were made. The analysis is applied to a 150-millimeter-bore ball bearing. The results indicated that for high-speed light-load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be optimal. Also, for an arched bearing a considerable amount of spinning occurs at the outer-race contacts.
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong; Hsiung, Pao-Ann; Wan, Chieh-Hao; Koong, Chorng-Shiuh; Liu, Tang-Kun; Yang, Yuanfan; Lin, Chu-Hsing; Chu, William Cheng-Chung
2009-02-01
A billiard ball tracking system is designed to combine with a visual guide interface to instruct users for a reliable strike. The integrated system runs on a PC platform. The system makes use of a vision system for cue ball, object ball and cue stick tracking. A least-squares error calibration process correlates the real-world and the virtual-world pool ball coordinates for a precise guidance line calculation. Users are able to adjust the cue stick on the pool table according to a visual guidance line instruction displayed on a PC monitor. The ideal visual guidance line extended from the cue ball is calculated based on a collision motion analysis. In addition to calculating the ideal visual guide, the factors influencing selection of the best shot among different object balls and pockets are explored. It is found that a tolerance angle around the ideal line for the object ball to roll into a pocket determines the difficulty of a strike. This angle depends in turn on the distance from the pocket to the object, the distance from the object to the cue ball, and the angle between these two vectors. Simulation results for tolerance angles as a function of these quantities are given. A selected object ball was tested extensively with respect to various geometrical parameters with and without using our integrated system. Players with different proficiency levels were selected for the experiment. The results indicate that all players benefit from our proposed visual guidance system in enhancing their skills, while low-skill players show the maximum enhancement in skill with the help of our system. All exhibit enhanced maximum and average hit-in rates. Experimental results on hit-in rates have shown a pattern consistent with that of the analysis. The hit-in rate is thus tightly connected with the analyzed tolerance angles for sinking object balls into a target pocket. These results prove the efficiency of our system, and the analysis results can be used to attain an efficient game-playing strategy.
Trunk muscle activity during bridging exercises on and off a Swissball
Lehman, Gregory J; Hoda, Wajid; Oliver, Steven
2005-01-01
Background A Swiss ball is often incorporated into trunk strengthening programs for injury rehabilitation and performance conditioning. It is often assumed that the use of a Swiss ball increases trunk muscle activity. The aim of this study was to determine whether the addition of a Swiss ball to trunk bridging exercises influences trunk muscle activity. Methods Surface electrodes recorded the myoelectric activity of trunk muscles during bridging exercises. Bridging exercises were performed on the floor as well as on a labile surface (Swiss ball). Results and Discussion During the prone bridge the addition of an exercise ball resulted in increased myoelectric activity in the rectus abdominis and external oblique. The internal oblique and erector spinae were not influenced. The addition of a swiss ball during supine bridging did not influence trunk muscle activity for any muscles studied. Conclusion The addition of a Swiss ball is capable of influencing trunk muscle activity in the rectus abdominis and external oblique musculature during prone bridge exercises. Modifying common bridging exercises can influence the amount of trunk muscle activity, suggesting that exercise routines can be designed to maximize or minimize trunk muscle exertion depending on the needs of the exercise population. PMID:16053529
Finite element analysis of the axial stiffness of a ball screw
NASA Astrophysics Data System (ADS)
Zhou, L.-X.; Li, P.-Y.
2018-06-01
The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.
Suneel, V; Vethamony, P; Zakaria, M P; Naik, B G; Prasad, K V S R
2013-05-15
Deposition of tar balls along the coast of Goa, India is a common phenomenon during the southwest monsoon. Representative tar ball samples collected from various beaches of Goa and one Bombay High (BH) crude oil sample were subjected to fingerprint analysis based on diagnostic ratios of n-alkane, biomarkers of pentacyclic tri-terpanes and compound specific stable carbon isotope (δ¹³C) analysis to confirm the source. The results were compared with the published data of Middle East Crude Oil (MECO) and South East Asian Crude Oil (SEACO). The results revealed that the tar balls were from tanker-wash derived spills. The study also confirmed that the source is not the BH, but SEACO. The present study suggests that the biomarkers of alkanes and hopanes coupled with stable carbon isotope analysis act as a powerful tool for tracing the source of tar balls, particularly when the source specific biomarkers fail to distinguish the source. Copyright © 2013 Elsevier Ltd. All rights reserved.
Micro structrual characterization and analysis of ball milled silicon carbide
NASA Astrophysics Data System (ADS)
Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.
2018-04-01
Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.
Optic variables used to judge future ball arrival position in expert and novice soccer players.
Craig, Cathy M; Goulon, Cédric; Berton, Eric; Rao, Guillaume; Fernandez, Laure; Bootsma, Reinoud J
2009-04-01
Although many studies have looked at the perceptual-cognitive strategies used to make anticipatory judgments in sport, few have examined the informational invariants that our visual system may be attuned to. Using immersive interactive virtual reality to simulate the aerodynamics of the trajectory of a ball with and without sidespin, the present study examined the ability of expert and novice soccer players to make judgments about the ball's future arrival position. An analysis of their judgment responses showed how participants were strongly influenced by the ball's trajectory. The changes in trajectory caused by sidespin led to erroneous predictions about the ball's future arrival position. An analysis of potential informational variables that could explain these results points to the use of a first-order compound variable combining optical expansion and optical displacement.
Effect of birth ball on labor pain relief: A systematic review and meta-analysis.
Makvandi, Somayeh; Latifnejad Roudsari, Robab; Sadeghi, Ramin; Karimi, Leila
2015-11-01
To critically evaluate the available evidence related to the impact of using a birth ball on labor pain relief. The Cochrane library, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE/PubMed and Scopus were searched from their inception to January 2015 using keywords: (Birth* OR Swiss OR Swedish OR balance OR fitness OR gym* OR Pezzi OR sport* OR stability) AND (ball*) AND (labor OR labour OR Obstetric). All available randomized controlled trials involving women using a birth ball for pain relief during labor were considered. The search resulted in 341 titles and abstracts, which were narrowed down to eight potentially relevant articles. Of these, four studies met the inclusion criteria. Pain intensity on a 10 cm visual analogue scale was used as the main outcome measure. Risk of bias was assessed using the Cochrane Risk of Bias tool. Comprehensive Meta-Analysis Version 2 was used for statistical analysis. Four RCTs involving 220 women were included in the systematic review. One study was excluded from the meta-analysis because of heterogeneous interventions and a lack of mean and standard deviation results of labor pain score. The meta-analysis showed that birth ball exercises provided statistically significant improvements to labor pain (pooled mean difference -0.921; 95% confidence interval -1.28, -0.56; P = 0.0000005; I(2) = 33.7%). The clinical implementation of a birth ball exercise could be an effective tool for parturient women to reduce labor pain. However, rigorous RCTs are needed to evaluate the effect of the birth ball on labor pain relief. © 2015 Japan Society of Obstetrics and Gynecology.
Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.
Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin
2018-04-25
Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.
Reexamination of Ball-Race Conformity Effects on Ball Bearing Life
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.
2007-01-01
The analysis in this report considers the life of the ball set as well as the respective lives of the races to reassess the effect of ball-race conformity on ball bearing life. The related changes in ball bearing life are incorporated in life factors that can be used to modify the bearing predicted life using the Lundberg-Palmgren equations and the ANSI/ABMA and ISO Standards. Two simple algebraic relationships were established to calculate life factors LF(sub c) to determine the effect of inner- and outer-race conformity combinations on bearing L(sub 10) life for deepgroove and angular-contact ball bearings, respectively. Depending on the bearing type and series as well as conformity combinations, the calculated life for deep-groove ball bearings can be over 40 percent less than that calculated by the Lundberg-Palmgren equations. For angular-contact ball bearings, the life can vary between +16 and -39 percent from that calculated by the Lundberg-Palmgren equations. Comparing the two ball bearing types, the life factors LF(sub c) for the deep-groove bearings can be as much as 40 percent lower than that for angular-contact ball bearings.
Analysis of an arched outer-race ball bearing considering centrifugal forces.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1972-01-01
Thrust-load analysis of a 150-mm angular contact ball bearing, taking into account centrifugal forces but omitting gyroscopics, elastohydrodynamics, and thermal effects. A Newton-Raphson method of iteration is used to evaluate the radial and axial projection of the distance between the ball center and the outer raceway groove curvature center. Fatigue life of the bearing is evaluated. Results for life, contact loads, and angles are given for a conventional bearing and two arched bearings.
Ball motion and sliding friction in an arched outer race ball bearing
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1973-01-01
The motion of the ball and sliding friction in an arched outer race ball bearing under thrust loads is determined. Fatigue life evaluations were made. The analysis is applied to a 150 millimeter bore ball bearing. The results indicated that for high speed-light load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be an optimal. For an arched bearing it was also found that a considerable amount of spinning occurs at the outer race contacts.
Ball motion and sliding friction in an arched outer race ball bearing
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1974-01-01
The motion of the ball and sliding friction in an arched outer-race ball bearing under thrust load is determined. Fatigue life evaluations were made. The analysis is applied to a 150 millimeter bore ball bearing. The results indicated that for high speed-light load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be an optimal. For an arched bearing it was also found that a considerable amount of spinning occurs at the outer race contacts.
ERIC Educational Resources Information Center
Nelson, Ingrid Ann; Gastic, Billie
2009-01-01
Adolescents spend only a fraction of their waking hours in school and what they do with the rest of their time varies dramatically. Despite this, research on out-of-school time has largely focused on structured programming. The authors analyzed data from the Educational Longitudinal Study of 2002 (ELS:2002) to examine the out-of-school time…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... our analysis of the comments received, we have corrected programming and other errors in the weighted... Italia S.r.l./ WPB Water Pump Bearing GmbH & Co. KG/Schaeffler Italia SpA/The Schaeffler Group and SKF... S.A.R.L 0.00 Perkins Engines Company Limited 0.00 SNECMA 0.00 NTN-SNR 0.00 Volkswagen AG 0.00...
Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud
2016-10-15
In 2012, a significant number of tar balls occurred along the Southwest coasts of the Caspian Sea (Iran). Several oil fields of Turkmenistan, Azerbaijan and Iran might be sources of oil spills and lead to the formation of these tar balls. For source identification, 6 tar ball samples were collected from the Southwest beaches of the Caspian Sea and subjected to fingerprint analysis based on the distribution of the source-specific biomarkers of pentacyclic tri-terpanes and steranes. Comparing the diagenic ratios revealed that the tar balls were chemically similar and originated from the same source. Results of double ratio plots (e.g., C29/C30 versus ∑C31-C35/C30 and C28 αββ/(C27 αββ+C29 αββ) versus C29 αββ/(C27 αββ+C28 αββ)) in the tar balls and oils from Iran, Turkmenistan and Azerbaijan indicated that the tar balls might be the result of spills from Turkmenistan oil. Moreover, principle component analysis (PCA) using biomarker ratios on the tar balls and 20 crude oil samples from different wells of Azerbaijan, Iran and Turkmenistan oils showed that the tar balls collected at the Southwest beaches are highly similar to the Turkmenistan oil but one of the Azerbaijan oils (from Bahar field oils) was found to be also slightly close to the tar balls. The weathering characterizations based on the presence of UCM (unresolved complex mixture) and low/high molecular weight ratios (L/H) of alkanes and PAHs indicated the tar ball samples have been significantly influenced by natural weathering processes such as evaporation, photo-degradation and biodegradation. This is the first study of its kind in Iran to use fingerprinting for source identification of tar balls. Copyright © 2016 Elsevier B.V. All rights reserved.
A new approach for remediation of As-contaminated soil: ball mill-based technique.
Shin, Yeon-Jun; Park, Sang-Min; Yoo, Jong-Chan; Jeon, Chil-Sung; Lee, Seung-Woo; Baek, Kitae
2016-02-01
In this study, a physical ball mill process instead of chemical extraction using toxic chemical agents was applied to remove arsenic (As) from contaminated soil. A statistical analysis was carried out to establish the optimal conditions for ball mill processing. As a result of the statistical analysis, approximately 70% of As was removed from the soil at the following conditions: 5 min, 1.0 cm, 10 rpm, and 5% of operating time, media size, rotational velocity, and soil loading conditions, respectively. A significant amount of As remained in the grinded fine soil after ball mill processing while more than 90% of soil has the original properties to be reused or recycled. As a result, the ball mill process could remove the metals bound strongly to the surface of soil by the surface grinding, which could be applied as a pretreatment before application of chemical extraction to reduce the load.
A Rolling Element Tribometer for the Study of Liquid Lubricants in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.; Ebihara, Ben T.; Kingsbury, Edward
1996-01-01
A tribometer for the evaluation of liquid lubricants in vacuum is described. This tribometer is essentially a thrust bearing with three balls and flat races having contact stresses and ball motions similar to those in an angular contact ball bearing operating in the boundary lubrication regime. The friction coefficient, lubrication lifetime, and species evolved from the liquid lubricant by tribodegradation can be determined. A complete analysis of the contact stresses and energy dissipation together with experimental evidence supporting the analysis are presented.
Soccer Ball Lift Coefficients via Trajectory Analysis
ERIC Educational Resources Information Center
Goff, John Eric; Carre, Matt J.
2010-01-01
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…
The goalkeeper influence on ball possession effectiveness in futsal
Lago-Peñas, Carlos
2016-01-01
Abstract The aim of this study was to identify which variables were the best predictors of success in futsal ball possession when controlling for space and task related indicators, situational variables and the participation of the goalkeeper as a regular field player or not (5 vs. 4 or 4 vs. 4). The sample consisted of 326 situations of ball possession corresponding to 31 matches played by a team from the Spanish Futsal League during the 2010–2011, 2011–2012 and 2012–2013 seasons. Multidimensional qualitative data obtained from 10 ordered categorical variables were used. Data were analysed using chi-square analysis and multiple logistic regression analysis. Overall, the highest ball possession effectiveness was achieved when the goalkeeper participated as a regular field player (p<0.01), the duration of the ball possession was less than 10 s (p<0.01), the ball possession ended in the penalty area (p<0.01) and the defensive pressure was low (p<0.01). The information obtained on the relative effectiveness of offensive playing tactics can be used to improve team’s goal-scoring and goal preventing abilities. PMID:28149385
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2008-01-01
Stereo Imaging Velocimetry (SIV) is a NASA Glenn Research Center (GRC) developed fluid physics technique for measuring threedimensional (3-D) velocities in any optically transparent fluid that can be seeded with tracer particles. SIV provides a means to measure 3-D fluid velocities quantitatively and qualitatively at many points. This technique provides full-field 3-D analysis of any optically clear fluid or gas experiment using standard off-the-shelf CCD cameras to provide accurate and reproducible 3-D velocity profiles for experiments that require 3-D analysis. A flame ball is a steady flame in a premixed combustible atmosphere which, due to the transport properties (low Lewis-number) of the mixture, does not propagate but is instead supplied by diffusive transport of the reactants, forming a premixed flame. This flame geometry presents a unique environment for testing combustion theory. We present our analysis of flame ball phenomena utilizing SIV technology in order to accurately calculate the 3-D position of a flame ball(s) during an experiment, which can be used as a direct comparison of numerical simulations.
McGinnis, Ryan S.; Perkins, Noel C.
2012-01-01
Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.
NASA Astrophysics Data System (ADS)
Wadhwa, Ajay
2013-05-01
We studied the motion of a bouncing ball by representing it through an equivalent mass-spring system executing damped harmonic oscillations. We represented the elasticity of the system through the spring constant ‘k’ and the viscous damping effect, causing loss of energy, through damping constant ‘c’. By including these two factors we formed a differential equation for the equivalent mass-spring system of the bouncing ball. This equation was then solved to study the elastic and dynamic properties of its motion by expressing them in terms of experimentally measurable physical quantities such as contact time, coefficient of restitution, etc. We used our analysis for different types of ball material: rubber (lawn-tennis ball, super ball, soccer ball and squash ball) and plastic (table-tennis ball) at room temperature. Since the effect of temperature on the bounce of a squash ball is significant, we studied the temperature dependence of its elastic properties. The experiments were performed using audio and surface-temperature sensors interfaced with a computer through a USB port. The work presented here is suitable for undergraduate laboratories. It particularly emphasizes the use of computer interfacing for conducting conventional physics experiments.
Ceramic ball grid array package stress analysis
NASA Astrophysics Data System (ADS)
Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.
2017-09-01
The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.
Computing Operating Characteristics Of Bearing/Shaft Systems
NASA Technical Reports Server (NTRS)
Moore, James D.
1996-01-01
SHABERTH computer program predicts operating characteristics of bearings in multibearing load-support system. Lubricated and nonlubricated bearings modeled. Calculates loads, torques, temperatures, and fatigue lives of ball and/or roller bearings on single shaft. Provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable in design and analysis of shaft/bearing systems. Two versions of SHABERTH available. Cray version (LEW-14860), "Computing Thermal Performances Of Shafts and Bearings". IBM PC version (MFS-28818), written for IBM PC-series and compatible computers running MS-DOS.
Collision of a Ball with a Barbell and Related Impulse Problems
ERIC Educational Resources Information Center
Mungan, Carl E.
2007-01-01
The collision of a ball with the end of a barbell illustrates the combined conservation laws of linear and angular momentum. This paper considers the instructive but unfamiliar case where the ball's incident direction of travel makes an acute angle with the barbell's connecting rod. The analysis uses the coefficient of restitution generalized to…
Durability Tests of Ball Valve Prototype with Flowmeter Operation
NASA Astrophysics Data System (ADS)
Rogula, J.; Romanik, G.
2018-02-01
The results of the investigation of the prototypical ball valve are presented in this article. The innovation of the tested valve is a ball with a built-in measuring orifice. The valve has been subjected to durability tests. Leakage under three temperatures: ambient, -30°C and +100°C was analyzed. Sealing elements of the valve were tested for roughness and deviation of shape before and after the cycles of operation. Ball valve operation means cycles of open/close. It was planned to perform 1000 cycles at each temperature condition accordingly. Tests of the valve were performed under gas pressure equal to 10 MPa. The research was carried out under the Operational Program "Intelligent Development" (POIR 01.01.01-00-0013 / 15 "Development of devices for measurement of media flow on industrial trunk-lines".
Spatial and temporal adaptations that accompany increasing catching performance during learning.
Mazyn, Liesbeth I N; Lenoir, Matthieu; Montagne, Gilles; Savelsbergh, Geert J P
2007-11-01
The authors studied changes in performance and kinematics during the acquisition of a 1-handed catch. Participants were 8 women who took an intensive 2-week training program during which they evolved from poor catchers to subexpert catchers. An increased temporal consistency, shift in spatial location of ball-hand contact away from the body, and higher peak velocity of the transport of the hand toward the ball accompanied their improvement in catching performance. Moreover, novice catchers first adjusted spatial characteristics of the catch to the task constraints and fine-tuned temporal features only later during learning. A principal components analysis on a large set of kinematic variables indicated that a successful catch depends on (a) forward displacement of the hand and (b) the dynamics of the hand closure, thereby providing a kinematic underpinning for the traditional transport-manipulation dissociation in the grasping and catching literature.
Biomass Burning Research Using DOE ARM Single-Particle Soot Photometer (SP2) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onasch, Timothy B; Sedlacek, Arthur J; Lewis, Ernie
The focus of this laboratory study was to investigate the chemical and optical properties, and the detection efficiencies, of tar balls generated in the laboratory using the same instruments deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study, during which tar balls were observed in wildland biomass burning particulate emissions. Key goals of this laboratory study were: (a) measuring the chemical composition of tar balls to provide insights into the atmospheric processes that form (evaporation/oxidation) and modify them in biomass burningmore » plumes, (b) identifying whether tar balls contain refractory black carbon, (c) determining the collection efficiencies of tar balls impacting on the 600oC heated tungsten vaporizer in the Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) (i.e., given the observed low volatilities, AMS measurements might underestimate organic biomass burning plume loadings), and (d) measuring the wavelength-dependent, mass-specific absorption cross-sections of brown carbon components of tar balls. This project was funded primarily by the DOE Atmospheric System Research (ASR) program, and the ARM Facility made their single-particle soot photometer (SP2) available for September 1-September 31, 2016 in the Aerodyne laboratories. The ARM mentor (Dr. Sedlacek) requested no funds for mentorship or data reduction. All ARM SP2 data collected as part of this project are archived in the ARM Data Archive in accordance with established protocols. The main objectives of the ARM Biomass Burning Observation Period (BBOP, July-October, 2013) field campaign were to (1) assess the impact of wildland fires in the Pacific Northwest on climate, through near-field and regional intensive measurement campaigns, and (2) investigate agricultural burns to determine how those biomass burn plumes differ from those from wildland fires. During BBOP, tar balls, small solid particles of organic substances, were observed downwind from wildland fires (at plume ages of 0-3 hours), but not agricultural burns. Observations of the tar balls on transmission electron microscope (TEM) grids suggest that they formed during atmospheric transport, likely due to the same atmospheric processes that increased the oxidation levels of the organic aerosol. Preliminary analyses suggest that tar balls may account for almost 50% of the total particle number, and 30% of the total organic particle mass, of the aerosol emitted from the burning events. These BBOP observations are described in detail in a manuscript in preparation (Sedlacek et al., 2017). The current laboratory study lasted four weeks and was conducted in the aerosol laboratories located at Aerodyne Research, Inc. in Billerica, Massachusetts. Tar balls were generated from several different biomass fuels, including samples from BBOP-related field sites, following literature procedures (Hoffer, Tóth, Nyirö-Kósa, Pósfai, and Gelencsér, 2016; Tóth, Hoffer, Nyirö-Kósa, Pósfai, and Gelencsér, 2014), and they were characterized using the same equipment used during the 2013 BBOP study, specifically the SP-AMS, SP2 and TEM. This study determined that laboratory-generated tar balls (1) are refractory with respect to TEM analysis in a similar manner to those collected during BBOP from wildland fires, (2) are composed of organic material with some refractory carbon components, (3) can be measured quantitatively by the SP-AMS, strengthening observations during BBOP, (4) absorb visible light, and (4) are dominated by unsaturated hydrocarbons that may be responsible for their light-absorbing properties. The results from this project are already being incorporated into our analysis of the formation processes and emission rates of tar balls as a function of fuel and combustion conditions from wildland fires.« less
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
Performance Analysis of the United States Marine Corps War Reserve Materiel Program Process Flow
2016-12-01
or Less)............41 Figure 21. Tornado Diagram of Expected Delays Using 2016 Inputs ........................42 x Figure 22. Fishbone Diagram of...variability. Using Crystal Ball we produced a Tornado Diagram (similar to a Pareto Chart) in order to tell us where to focus our efforts. The results of...the Tornado Diagram are shown in Figure 21. Figure 21. Tornado Diagram of Expected Delays Using 2016 Inputs Using the results shown in the Tornado
ERIC Educational Resources Information Center
Amrani, D.
2010-01-01
This pedagogical activity is aimed at students using a computer-learning environment with advanced tools for data analysis. It investigates the relationship between the coefficient of restitution and the way the heights of different bouncing balls decrease in a number of bounces with time. The time between successive ball bounces, or…
Analysis of Human Swing Movement and Transferring into Robot
NASA Astrophysics Data System (ADS)
Shimodaira, Jun; Amaoka, Yuki; Hamatani, Shinsuke; Takeuchi, Masahiro; Hirai, Hiroaki; Miyazaki, Fumio
Based on Generalized Motor Program, we analyzed the skill of human's table-tennis movement We hypothesized that it can be divided into arm swing and translational movements by upper and lower body movements, respectively. We expressed 3D position of the racket by only one parameter resulted from the analysis using Principal Component Analysis. Body trunk position measurement attested the lower body plays the role of keeping fixed relative-position between the ball and the body trunk at any hitting time. By applying human skills in upper and lower body movements, we could make the robot properly play table-tennis with a human.
Kinematic Analysis of Line-Out Throwing in Elite International Rugby Union
Sayers, Mark G.L.
2011-01-01
The rugby union line-out is a key aspect of game play and involves players from both teams contesting for the ball after it has been thrown in from the side line. Successful lines-out throws require the ball to be delivered accurately to the hands of a jumping and/or lifted team mate (approximately 3-3.5 m off the ground) over distances of between 5- 18 m. Previous research has suggested considerable inter and intra-individual differences in the throwing techniques of international level players. Accordingly, this project investigated the interrelationships between accuracy and the line-out throwing characteristics of three elite international rugby players, and then analyzed whether these changed for throws over increasing length. Three-dimensional (3D) data were developed from video footage (50 Hz) of three elite international subjects for 30 throws over three distances (6 m, 10 m, and 15 m). Results showed notable differences between subjects in many variables at each of the key throw phases. However, several variables such as the degree of trunk flexion at the end of the backswing and at ball release, coupled with elbow flexion angle at ball release remained constant as throw length increased. All subjects exhibited high levels of consistency in movement patterns across all throw lengths. Findings indicated that these high performance line-out throwers shared several common characteristics that will provide useful guides in the development of training programs. Key points A key aspect of this research was the assessment of throwing accuracy using a functional throwing task that mimicked normal performance. Although individual differences in throwing technique occurred, several technical aspects of the throw were common to each of these elite international players. Subjects tended to be extremely consistent in the way they positioned the ball at the end of the backswing, and had very consistent elbow (flexion) and shoulder (flexion and abduction) angles at both the end of the backswing and at ball release. In addition, throwers kept the trunk close to upright during the throw with minimal trunk flexion or extension regardless of throw distance. To throw for longer distances participants tended to increase the involvement of the legs. PMID:24150632
Control design and robustness analysis of a ball and plate system by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Balthazar, José M.; Reis, Célia A. dos
2014-12-10
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinearmore » closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.« less
Control design and robustness analysis of a ball and plate system by using polynomial chaos
NASA Astrophysics Data System (ADS)
Colón, Diego; Balthazar, José M.; dos Reis, Célia A.; Bueno, Átila M.; Diniz, Ivando S.; de S. R. F. Rosa, Suelia
2014-12-01
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.
Tossing on a Rotating Space Station
NASA Astrophysics Data System (ADS)
Paetkau, Mark
2004-10-01
The following analysis was inspired by a question posed by a listener of a radio science show. The listener asked the question: "If an astronaut in a space station that was rotating to simulate gravity threw a ball up, where would the ball go?" The physicist answered, "The ball would travel straight across the space station (assuming an open structure). "The main point is that to an outside observer the ball would not "fall" back down as on Earth. As I pondered this it occurred to me that while the answer is correct, it is a special case with a more general solution. Below is an analysis of the motions a thrown object can undergo on a rotating space station. The first part of the discussion is aimed at lower-level undergraduates who have a basic understanding of vectors and circular motion, and the motion is described from the point of view of an external reference frame. Further analysis of the motion by an observer on the space station is appropriate for upper-level students.
How Magnus Bends the Flying Ball - Experimenting and Modeling
NASA Astrophysics Data System (ADS)
Timková, V.; Ješková, Z.
2017-02-01
Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students' attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.
The National Shipbuilding Research Program: Solid Waste Segregation and Recycling
1998-03-01
Shields , Recycling Coordinator D.C. Department of Public Works 65 K Street, NE Washington, DC 20002 202-727-5887 Task Three, Tab Three Page 42 George...SHEAR X FRONT END LOADERS = CONVEYORS X FORKLIFTS O WEIGHT SCALES X PROCESSING DROP-BALL BREAKAGE X CUTTING TORCHES GAS = PLASMA = POWDER = WATER-JET...Loaders Conveyors Forklifts Weight Scales Processing Drop-ball Breakage Cutting Torches Gas Plasma Powder Laser Water-jet Abrasive disk Shears Ferrous
1990-08-30
Monterey, CA 93943 v TABLE OF CONTENTS DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS R.E. Ball NPS Survivability Support 5 DJ. Collins Control System Design ...Quality R. Evered Design and Evaluation of Management System for 26 J.G. San Miguel Naval Industrial Improvement B. Frew Data Communication Support 26 W.R...Research 28 M. Zviran Designs for Casual Interference viii W.J. Hagan Cognitive Passwords 29 M. Zviran J.D. Husley D.R. Henderson An Economic Analysis of
Escamilla, Rafael F; Fleisig, Glenn S; Groeschner, Dave; Akizuki, Ken
2017-12-01
In professional baseball pitchers, pitching biomechanics have not been examined for the slider, and the only known study for the curveball and changeup examined limited kinetics. Moreover, no known studies have investigated pitching biomechanics between strikes and balls. Purpose/Hypothesis: The purpose was to compare pitching biomechanics in professional baseball pitchers among the fastball, slider, curveball, and changeup and between balls and strikes. It was hypothesized that pitching kinematics and kinetics would be similar among the slider, fastball, and curveball; shoulder and elbow forces and torques would be significantly lower in the changeup; and pitching biomechanics would be similar between balls and strikes. Controlled laboratory study. Among 18 professional baseball pitchers, 38 reflective markers were positioned on the body and each player threw 32 to 40 maximum effort pitches-consisting of the fastball, curveball, slider, and changeup pitch types-from a regulation mound to a catcher. The markers were tracked by 18 high-speed 180-Hz cameras, and data were processed and run through a computer program to calculate 25 kinematic parameters, 7 kinetic parameters, and 4 temporal parameters for each pitch type and for both strikes and balls. A 2-way repeated-measures analysis of variance ( P < .01) was used to assess pitching biomechanical differences among pitch type and pitch result (balls vs strikes). During arm cocking, elbow varus torque was 8% to 9% greater in the fastball and slider compared with the changeup, shoulder horizontal adduction torque was 17% to 20% greater in the slider and curveball compared with the changeup, and shoulder anterior force was 13% greater in the curveball compared with the changeup. During arm deceleration, elbow flexor torque was 9% to 14% greater in the fastball compared with the curveball and changeup, and elbow and shoulder proximal forces were 10% to 14% greater in the fastball, slider, and curveball compared with the changeup. At ball release, forward trunk tilt was 16% to 19% greater in the fastball and curveball compared with the changeup, contralateral trunk tilt was 26% to 41% greater in the curveball compared with the slider and changeup, knee flexion was 18% greater in the changeup compared with the fastball, and the knee extended 7° more from lead foot contact to ball release in the fastball compared with the changeup. During arm cocking, pelvis angular velocity was 7% to 8% greater in the fastball compared with the curveball and changeup, and upper trunk angular velocity was 5% greater in the fastball compared with the changeup. During arm acceleration, shoulder internal rotation angular velocity was 6% to 7% greater in the fastball, slider, and curveball compared with the changeup, and ball velocity at ball release was 11% to 18% greater in the fastball compared with the slider, changeup, and curveball and 6% greater in the slider compared with the curveball. For all the kinematic, kinetic, and temporal parameters, analysis showed no significant differences between balls and strikes and no significant interactions between pitch type and pitch result. Nearly all kinetic differences among pitch types occurred between the changeup and the remaining 3 pitch types. Shoulder and elbow forces and torques and injury risk were greater among the fastball, slider, and curveball compared with the changeup but were similar among the fastball, slider, and curveball. Body segment and joint positions were similar among all pitch types at lead foot contact and at maximum shoulder external rotation; however, at ball release, throwing a fastball and curveball resulted in greater knee extension and more forward and contralateral trunk tilt compared with throwing a changeup and slider. Movement speeds for the pelvis, upper trunk, and shoulder were greatest in the fastball and least in the changeup and were generally similar among the fastball, slider, and curveball. The timing of when pelvis, upper trunk, elbow, and shoulder velocities occurred among the fastball, slider, curveball, and changeup was similar, and no kinematic or kinetic differences were noted between throwing balls and strikes. The results from the current study will help clinicians understand differences in pitching biomechanics in professional baseball pitchers among the fastball, slider, curveball, and changeup; the study provides limited insight into shoulder and elbow injury risk associated with different types of pitches.
Motion analysis of throwing Boccia balls in children with cerebral palsy.
Huang, Po-Chang; Pan, Po-Jung; Ou, Yu-Chih; Yu, Yi-Chen; Tsai, Yung-Shen
2014-02-01
Boccia is a sport suitable for children with cerebral palsy (CP). Throwing Boccia balls requires upper extremity and torso coordination. This study investigated the differences between children with CP and normally developed children regarding throwing patterns of Boccia balls. Thirteen children with bilateral spastic CP and 20 normally developed children participated in this study. The tests in this study were a pediatric reach test and throwing of Boccia balls. A 3D electromagnetic motion tracking system and a force plate were synchronized to record and analyze biomechanical parameters of throwing Boccia balls. The results of the pediatric reach test for participants with CP were significantly worse than those for normally developed participants. The 2 groups of participants did not significantly differ regarding the distance between a thrown Boccia ball and a target ball (jack). Participants with CP demonstrated significantly longer movement duration, smaller amplitude of elbow movement, greater amplitudes of shoulder abduction and flexion, slower maximal velocity of torso flexion and the linear velocity of moving the wrist joint forward, faster maximal velocity of head flexion, and smaller sway ratio compared with normally developed participants when throwing Boccia balls. Participants with CP seemed to mainly use head and shoulder movements to bring the Boccia balls forward with limited torso movement. Normally developed participants brought the Boccia ball forward with faster torso and greater elbow movement while stabilizing head and shoulder movements. Nevertheless, participants with CP did not demonstrate significantly worse performance in the throwing accuracy of Boccia balls. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of solid-lubricated ball-screws for use in space
NASA Technical Reports Server (NTRS)
Chiba, Masatoshi; Gyougi, Toru; Nishimura, Makoto; Seki, Katsumi
1991-01-01
Ball-screws lubricated by solid lubricant films containing molybdenum disulphide are developed. The ball-screws (shaft diameter: phi 25 mm, length: 667 mm) were operated under a load of 40 to 120 N at a speed of 1.5 to 200 rpm at 10(exp -5) Pa. First, ball-screws made of stainless steel SUS 440C were studied using test equipment originally designed for this study. To reduce weight, the next step taken was to develop a ball-screw made of 6Al-4V-titanium. Long wear-life of more than 1 x 10(exp 7) revolutions was achieved with solid lubricated ball-screws made of SUS 440C and 6Al-4V-titanium in a hard vacuum. According to the surface profile of the shaft measured after 1 x 10(exp 7) revolutions, more solid lubricant remained on the surface of 6Al-4V-titanium than that of stainless steel. Auger and EPMA analysis confirmed lubrication was maintained by solid lubricant on nuts and screws after the lubricant films on the balls were worn off.
Sinclair, Jonathan; Fewtrell, David; Taylor, Paul John; Bottoms, Lindsay; Atkins, Stephen; Hobbs, Sarah Jane
2014-01-01
Achieving a high ball velocity is important during soccer shooting, as it gives the goalkeeper less time to react, thus improving a player's chance of scoring. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity using regression analyses. Maximal instep kicks were obtained from 22 academy-level soccer players using a 10-camera motion capture system sampling at 500 Hz. Three-dimensional kinematics of the lower extremity segments were obtained. Regression analysis was used to identify the kinematic parameters associated with the development of ball velocity. A single biomechanical parameter; knee extension velocity of the kicking limb at ball contact Adjusted R(2) = 0.39, p ≤ 0.01 was obtained as a significant predictor of ball-velocity. This study suggests that sagittal plane knee extension velocity is the strongest contributor to ball velocity and potentially overall kicking performance. It is conceivable therefore that players may benefit from exposure to coaching and strength techniques geared towards the improvement of knee extension angular velocity as highlighted in this study.
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1974-01-01
The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.
Modeling a ball screw/ball nut in substructuring
NASA Technical Reports Server (NTRS)
Butler, Thomas G.
1991-01-01
In the particular NASTRAN application discussed here, a nut was attached to a stationary structure. The object of the analysis was to determine the vibration characteristics of the whole structure for various configurations; i.e., the evaluation of the mode shapes and frequencies when parts were moved to different mating positions. Details of the analysis are given.
NASA Astrophysics Data System (ADS)
Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran
2016-10-01
Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.
Research on defects inspection of solder balls based on eddy current pulsed thermography.
Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe
2015-10-13
In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.
Correlation of Shoulder and Elbow Kinetics With Ball Velocity in Collegiate Baseball Pitchers.
Post, Eric G; Laudner, Kevin G; McLoda, Todd A; Wong, Regan; Meister, Keith
2015-06-01
Throwing a baseball is a dynamic and violent act that places large magnitudes of stress on the shoulder and elbow. Specific injuries at the elbow and glenohumeral joints have been linked to several kinetic variables throughout the throwing motion. However, very little research has directly examined the relationship between these kinetic variables and ball velocity. To examine the correlation of peak ball velocity with elbow-valgus torque, shoulder external-rotation torque, and shoulder-distraction force in a group of collegiate baseball pitchers. Cross-sectional study. Motion-analysis laboratory. Sixty-seven asymptomatic National Collegiate Athletic Association Division I baseball pitchers (age = 19.5 ± 1.2 years, height = 186.2 ± 5.7 cm, mass = 86.7 ± 7.0 kg; 48 right handed, 19 left handed). We measured peak ball velocity using a radar gun and shoulder and elbow kinetics of the throwing arm using 8 electronically synchronized, high-speed digital cameras. We placed 26 reflective markers on anatomical landmarks of each participant to track 3-dimensional coordinate data. The average data from the 3 highest-velocity fastballs thrown for strikes were used for data analysis. We calculated a Pearson correlation coefficient to determine the associations between ball velocity and peak elbow-valgus torque, shoulder-distraction force, and shoulder external-rotation torque (P < .05). A weak positive correlation was found between ball velocity and shoulder-distraction force (r = 0.257; 95% confidence interval [CI] = 0.02, 0.47; r(2) = 0.066; P = .018). However, no significant correlations were noted between ball velocity and elbow-valgus torque (r = 0.199; 95% CI = -0.043, 0.419; r(2) = 0.040; P = .053) or shoulder external-rotation torque (r = 0.097; 95% CI = -0.147, 0.329; r(2) = 0.009; P = .217). Although a weak positive correlation was present between ball velocity and shoulder-distraction force, no significant association was seen between ball velocity and elbow-valgus torque or shoulder external-rotation torque. Therefore, other factors, such as improper pitching mechanics, may contribute more to increases in joint kinetics than peak ball velocity.
Correlation of Shoulder and Elbow Kinetics With Ball Velocity in Collegiate Baseball Pitchers
Post, Eric G.; Laudner, Kevin G.; McLoda, Todd A.; Wong, Regan; Meister, Keith
2015-01-01
Context Throwing a baseball is a dynamic and violent act that places large magnitudes of stress on the shoulder and elbow. Specific injuries at the elbow and glenohumeral joints have been linked to several kinetic variables throughout the throwing motion. However, very little research has directly examined the relationship between these kinetic variables and ball velocity. Objective To examine the correlation of peak ball velocity with elbow-valgus torque, shoulder external-rotation torque, and shoulder-distraction force in a group of collegiate baseball pitchers. Design Cross-sectional study. Setting Motion-analysis laboratory. Patients or Other Participants Sixty-seven asymptomatic National Collegiate Athletic Association Division I baseball pitchers (age = 19.5 ± 1.2 years, height = 186.2 ± 5.7 cm, mass = 86.7 ± 7.0 kg; 48 right handed, 19 left handed). Main Outcome Measure(s) We measured peak ball velocity using a radar gun and shoulder and elbow kinetics of the throwing arm using 8 electronically synchronized, high-speed digital cameras. We placed 26 reflective markers on anatomical landmarks of each participant to track 3-dimensional coordinate data. The average data from the 3 highest-velocity fastballs thrown for strikes were used for data analysis. We calculated a Pearson correlation coefficient to determine the associations between ball velocity and peak elbow-valgus torque, shoulder-distraction force, and shoulder external-rotation torque (P < .05). Results A weak positive correlation was found between ball velocity and shoulder-distraction force (r = 0.257; 95% confidence interval [CI] = 0.02, 0.47; r2 = 0.066; P = .018). However, no significant correlations were noted between ball velocity and elbow-valgus torque (r = 0.199; 95% CI = −0.043, 0.419; r2 = 0.040; P = .053) or shoulder external-rotation torque (r = 0.097; 95% CI = −0.147, 0.329; r2 = 0.009; P = .217). Conclusions Although a weak positive correlation was present between ball velocity and shoulder-distraction force, no significant association was seen between ball velocity and elbow-valgus torque or shoulder external-rotation torque. Therefore, other factors, such as improper pitching mechanics, may contribute more to increases in joint kinetics than peak ball velocity. PMID:25756790
English Camp: A Language Immersion Program in Thailand
ERIC Educational Resources Information Center
Rugasken, Kris; Harris, Jacqueline A.
2009-01-01
A summer English camp language immersion program, which began in 2003, provided instruction by native English speakers to Thai college students via collaboration between Prince of Songkla University in Thailand and Ball State University in Indiana, USA. During this program, Thai students were exposed to English formally through classroom…
NASA Technical Reports Server (NTRS)
Bruegman, Otto; Thakore, Kamal; Loewenthal, Stu; Cymerman, John
2016-01-01
The Advanced Technology Microwave Sounder (ATMS) instrument scan system on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft has experienced several randomly occurring increased torque 'events' since its on-orbit activation in November 2011. Based on a review of on-orbit telemetry data and data gathered from scan mechanism bearing life testing on the ground, the conclusion was drawn that some degradation of Teflon toroid ball retainers was occurring in the instrument Scan Drive Mechanism. A life extension program was developed and executed on-orbit with very good results to date. The life extension program consisted of reversing the mechanism for a limited number of consecutive scans every day.
The OLI Radiometric Scale Realization Round Robin Measurement Campaign
NASA Technical Reports Server (NTRS)
Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart
2011-01-01
A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.
Spratford, Wayne; Whiteside, David; Elliott, Bruce; Portus, Marc; Brown, Nicholas; Alderson, Jacqueline
2018-03-01
Spin bowling plays a fundamental role within the game of cricket yet little is known about the initial ball kinematics in elite and pathway spin bowlers or their relationship to performance. Therefore, the purpose of this study was to record three-dimensional ball kinematics in a large and truly high level cohort of elite and pathway finger-spin (FS) and wrist-spin (WS) bowlers, identifying potential performance measures that can be subsequently used in future research. A 22-camera Vicon motion analysis system captured retro-reflective markers placed on the seam (static) and ball (dynamic) to quantify ball kinematics in 36 FS (12 elite and 24 pathway) and 20 WS (eight elite and 12 pathway) bowlers. Results indicated that FS bowlers delivered the ball with an increased axis of rotation elevation, while wrist-spin bowlers placed greater amounts of revolutions on the ball. It also highlighted that ball release (BR) velocity, revolutions and velocity/revolution index scores for both groups and seam stability for FS bowlers, and seam azimuth angle and spin axis elevation angle for WS bowlers, were discriminators of playing level. As such these variables could be used as indicators of performance (i.e. performance measures) in future research.
ERIC Educational Resources Information Center
Rimbey, Kimberly
2008-01-01
Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Play Ball! Explorations in Data Analysis & Statistics," which teachers can use to…
Lunar sample analysis. [X-ray photoemission and Auger spectroscopy of lunar glass
NASA Technical Reports Server (NTRS)
Housley, R. M.; Grant, R. W.; Cirlin, E. H.
1979-01-01
The surface composition of two samples from the highly shocked, glass-coated lunar basalt (12054) and from four glass-coated fragments from the 1-2 mm (14161) fines were examined by X-ray photoemission spectroscopy to determine whether the agglutination process itself is responsible for the difference between their surface and bulk compositions. Auger electron spectroscopy of glass balls from the 15425 and 74001 fines were analyzed to understand the nature, extent, and behavior of volatile phases associated with lunar volcanism. Initial results indicate that (1) volatiles, in the outer few atomic layers sampled, vary considerably from ball to ball; (2) variability over the surface of individual balls is smaller; (3) the dominant volatiles on the balls are S and Zn; and (4) other volatiles commonly observed are P, Cl, and K.
An aerodynamic analysis of recent FIFA world cup balls
NASA Astrophysics Data System (ADS)
Kiratidis, Adrian L.; Leinweber, Derek B.
2018-05-01
Drag and lift coefficients of recent FIFA world cup balls are examined. We fit a novel functional form to drag coefficient curves and in the absence of empirical data provide estimates of lift coefficient behaviour via a consideration of the physics of the boundary layer. Differences in both these coefficients for recent balls, which result from surface texture modification, can significantly alter trajectories. Numerical simulations are used to quantify the effect these changes have on the flight paths of various balls. Altitude and temperature variations at recent world cup events are also discussed. We conclude by quantifying the influence these variations have on the three most recent world cup balls, the Brazuca, the Jabulani and the Teamgeist. While our paper presents findings of interest to the professional sports scientist, it remains accessible to students at the undergraduate level.
NASA Astrophysics Data System (ADS)
Ishkhanyan, M. V.; Karapetyan, A. V.
2010-04-01
We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.
2011-09-13
included physical training (PT), combatives, Frisbee/ultimate Frisbee, rugby , dodge ball, wrestling, aerobics/cross fit, bowling, hiking/walking, and...Frisbee, rugby , dodge ball, wrestling, and bowling. Injury Prevention Report No. 12-HF-0DPT-08 42 Percent Percent Percent...responses included combatives, Frisbee, rugby , dodge ball, wrestling, and bowling. Injury Prevention Report No. 12-HF-0DPT-08 44
ERIC Educational Resources Information Center
Alter, Joel; Patterson, John
2006-01-01
Typically, program evaluation agencies in the legislative branch of state government examine programs that have already been implemented. These evaluations often consider whether a program achieved the legislature's original goals or complied with statutory requirements. Program evaluations frequently determine whether executive branch agencies…
Tenforde, Adam Sebastian; Sainani, Kristin Lynn; Carter Sayres, Lauren; Milgrom, Charles; Fredericson, Michael
2015-02-01
Sports participation has many benefits for the young athlete, including improved bone health. However, a subset of athletes may attain suboptimal bone health and be at increased risk for stress fractures. This risk is greater for female than for male athletes. In healthy children, high-impact physical activity has been shown to improve bone health during growth and development. We offer our perspective on the importance of promoting high-impact, multidirectional loading activities, including ball sports, as a method of enhancing bone quality and fracture prevention based on collective research. Ball sports have been associated with greater bone mineral density and enhanced bone geometric properties compared with participation in repetitive, low-impact sports such as distance running or nonimpact sports such as swimming. Runners and infantry who participated in ball sports during childhood were at decreased risk of future stress fractures. Gender-specific differences, including the coexistence of female athlete triad, may negate the benefits of previous ball sports on fracture prevention. Ball sports involve multidirectional loading with high ground reaction forces that may result in stiffer and more fracture-resistant bones. Encouraging young athletes to participate in ball sports may optimize bone health in the setting of adequate nutrition and in female athletes, eumenorrhea. Future research to determine timing, frequency, and type of loading activity could result in a primary prevention program for stress fracture injuries and improved life-long bone health. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
A Teachable Moment Uncovered by Video Analysis
NASA Astrophysics Data System (ADS)
Gates, Joshua
2011-05-01
Early in their study of one-dimensional kinematics, my students build an algebraic model that describes the effects of a rolling ball's (perpendicular) collision with a wall. The goal is for the model to predict the ball's velocity when it returns to a fixed point approximately 50-100 cm from the wall as a function of its velocity as it passes this point initially. They are told to assume that the ball's velocity does not change while it rolls to or from the wall—that the velocity change all happens very quickly and only at the wall. In order to evaluate this assumption following the data collection, I have the students analyze one such collision using video analysis. The results uncover an excellent teachable moment about assumptions and their impact on models and error analysis.
Prospective versus predictive control in timing of hitting a falling ball.
Katsumata, Hiromu; Russell, Daniel M
2012-02-01
Debate exists as to whether humans use prospective or predictive control to intercept an object falling under gravity (Baurès et al. in Vis Res 47:2982-2991, 2007; Zago et al. in Vis Res 48:1532-1538, 2008). Prospective control involves using continuous information to regulate action. τ, the ratio of the size of the gap to the rate of gap closure, has been proposed as the information used in guiding interceptive actions prospectively (Lee in Ecol Psychol 10:221-250, 1998). This form of control is expected to generate movement modulation, where variability decreases over the course of an action based upon more accurate timing information. In contrast, predictive control assumes that a pre-programmed movement is triggered at an appropriate criterion timing variable. For a falling object it is commonly argued that an internal model of gravitational acceleration is used to predict the motion of the object and determine movement initiation. This form of control predicts fixed duration movements initiated at consistent time-to-contact (TTC), either across conditions (constant criterion operational timing) or within conditions (variable criterion operational timing). The current study sought to test predictive and prospective control hypotheses by disrupting continuous visual information of a falling ball and examining consistency in movement initiation and duration, and evidence for movement modulation. Participants (n = 12) batted a ball dropped from three different heights (1, 1.3 and 1.5 m), under both full-vision and partial occlusion conditions. In the occlusion condition, only the initial ball drop and the final 200 ms of ball flight to the interception point could be observed. The initiation of the swing did not occur at a consistent TTC, τ, or any other timing variable across drop heights, in contrast with previous research. However, movement onset was not impacted by occluding the ball flight for 280-380 ms. This finding indicates that humans did not need to be continuously coupled to vision of the ball to initiate the swing accurately, but instead could use predictive control based on acceleration timing information (TTC2). However, other results provide evidence for movement modulation, a characteristic of prospective control. Strong correlations between movement initiation and duration and reduced timing variability from swing onset to arrival at the interception point, both support compensatory variability. An analysis of modulation within the swing revealed that early in the swing, the movement acceleration was strongly correlated to the required mean velocity at swing onset and that later in the swing, the movement acceleration was again strongly correlated with the current required mean velocity. Rather than a consistent movement initiated at the same time, these findings show that the swing was variable but modulated for meeting the demands of each trial. A prospective model of coupling τ (bat-ball) with τ (ball-target) was found to provide a very strong linear fit for an average of 69% of the movement duration. These findings provide evidence for predictive control based on TTC2 information in initiating the swing and prospective control based on τ in guiding the bat to intercept the ball.
Sáez de Villarreal, Eduardo; Suarez-Arrones, Luis; Requena, Bernardo; Haff, Gregory G; Ferrete, Carlos
2015-07-01
To determine the influence of a short-term combined plyometric and sprint training (9 weeks) within regular soccer practice on explosive and technical actions of pubertal soccer players during the in-season. Twenty-six players were randomly assigned to 2 groups: control group (CG) (soccer training only) and combined group (CombG) (plyometric + acceleration + dribbling + shooting). All players trained soccer 4 times per week and the experimental groups supplemented the soccer training with a proposed plyometric-sprint training program for 40 minutes (2 days per weeks). Ten-meter sprint, 10-m agility with and without ball, CMJ and Abalakov vertical jump, ball-shooting speed, and Yo-Yo intermittent endurance test were measured before and after training. The experimental group followed a 9-week plyometric and sprint program (i.e., jumping, hurdling, bouncing, skipping, and footwork) implemented before the soccer training. Baseline-training results showed no significant differences between the groups in any of the variables tested. No improvement was found in the CG; however, meaningful improvement was found in all variables in the experimental group: CMJ (effect size [ES] = 0.9), Abalakov vertical jump (ES = 1.3), 10-m sprint (ES = 0.7-0.9), 10-m agility (ES = 0.8-1.2), and ball-shooting speed (ES = 0.7-0.8). A specific combined plyometric and sprint training within regular soccer practice improved explosive actions compared with conventional soccer training only. Therefore, the short-term combined program had a beneficial impact on explosive actions, such as sprinting, change of direction, jumping, and ball-shooting speed which are important determinants of match-winning actions in soccer performance. Therefore, we propose modifications to current training methodology for pubertal soccer players to include combined plyometric and speed training for athlete preparation in this sport.
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes.
Tomoyasu, Chihiro; Imamura, Toshihiko; Tomii, Toshihiro; Yano, Mio; Asai, Daisuke; Goto, Hiroaki; Shimada, Akira; Sanada, Masashi; Iwamoto, Shotaro; Takita, Junko; Minegishi, Masayoshi; Inukai, Takeshi; Sugita, Kanji; Hosoi, Hajime
2018-05-21
In this study, we performed genetic analysis of 83 B cell precursor acute lymphoblastic leukemia (B-ALL) cell lines. First, we performed multiplex ligation-dependent probe amplification analysis to identify copy number abnormalities (CNAs) in eight genes associated with B-ALL according to genetic subtype. In Ph + B-ALL cell lines, the frequencies of IKZF1, CDKN2A/2B, BTG1, and PAX5 deletion were significantly higher than those in Ph - B-ALL cell lines. The frequency of CDKN2A/2B deletion in KMT2A rearranged cell lines was significantly lower than that in non-KMT2A rearranged cell lines. These findings suggest that CNAs are correlated with genetic subtype in B-ALL cell lines. In addition, we determined that three B-other ALL cell lines had IKZF1 deletions (YCUB-5, KOPN49, and KOPN75); we therefore performed comprehensive genetic analysis of these cell lines. YCUB-5, KOPN49, and KOPN75 had P2RY8-CRLF2, IgH-CRLF2, and PAX5-ETV6 fusions, respectively. Moreover, targeted capture sequencing revealed that YCUB-5 had JAK2 R683I and KRAS G12D, and KOPN49 had JAK2 R683G and KRAS G13D mutations. These data may contribute to progress in the field of leukemia research.
Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.
Macaulay, Charles A J; Katz, Larry; Stergiou, Pro; Stefanyshyn, Darren; Tomaghelli, Luciano
2017-12-01
Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents' net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (P < 0.001) and underhand (P < 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (P = 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olofinjana, Bolutife; Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta
In this study, friction and wear behavior of 304L stainless steel sliding against different ball counterface under dry contact was investigated. Tests were conducted using a ball-on-flat contact configuration in reciprocating sliding with 440C stainless steel, Al alloy (2017) and bronze ball counterfaces under different loads. Detailed surface analysis was also done using 3-D profilometry technique and optical microscopy in order to determine wear mechanism and dimension. All the pairs exhibited initial rapid increase in coefficient of friction after which a variety of friction behavior, depending on the ball counterface, was observed. The flat and the ball counterface in 304Lmore » stainless steel-440C stainless steel pair showed wear that was proportional to applied load. In both 304L stainless steel-Al alloy (2017) and 304L stainless steel-bronze pairs, ball samples showed severe wear that was proportional to the applied load while material transfer from the different balls occurred in the flat. The study concluded that friction and wear were not material properties but a kind of responses that characterize a pair of surfaces in contact undergoing relative motion.« less
Kinematics of the field hockey penalty corner push-in.
Kerr, Rebecca; Ness, Kevin
2006-01-01
The aims of the study were to determine those variables that significantly affect push-in execution and thereby formulate coaching recommendations specific to the push-in. Two 50 Hz video cameras recorded transverse and longitudinal views of push-in trials performed by eight experienced and nine inexperienced male push-in performers. Video footage was digitized for data analysis of ball speed, stance width, drag distance, drag time, drag speed, centre of massy displacement and segment and stick displacements and velocities. Experienced push-in performers demonstrated a significantly greater (p < 0.05) stance width, a significantly greater distance between the ball and the front foot at the start of the push-in and a significantly faster ball speed than inexperienced performers. In addition, the experienced performers showed a significant positive correlation between ball speed and playing experience and tended to adopt a combination of simultaneous and sequential segment rotation to achieve accuracy and fast ball speed. The study yielded the following coaching recommendations for enhanced push-in performance: maximize drag distance by maximizing front foot-ball distance at the start of the push-in; use a combination of simultaneous and sequential segment rotations to optimise both accuracy and ball speed and maximize drag speed.
Intelligence Reform and Implications for North Korea’s Weapons of Mass Destruction Program
2005-09-01
August 2005). 36 Desmond Ball, “Signals Intelligence in North Korea,” Jane’s Intelligence Review 8, Issue 1 (January 1996 ), 1. 26...Ball, “Signals Intelligence in North Korea,” Jane’s Intelligence Review 8, Issue 1 (January 1996 ), 10. 38 Jeremy Kirk, “Intel Experts: N. Korea a...www.wmd.gov/report/index.html (accessed August 2005). Hereafter referred to as WMD Commission Report. 47 Michael Warner and J. Kenneth McDonald, “U.S
Test results and flight experience of ball bearing momentum and reaction wheels
NASA Technical Reports Server (NTRS)
Auer, W.
1990-01-01
The required satellite mission durations and levels of reliability have been considerably increased: While in the beginning of the 70's 3 to 5 year missions were planned, the standard is now 10 years with an expansion to 15 years and more for such programs as INTELSAT VII. Based on a 20 year test and flight experience with basically the same design, ball bearing momentum and reaction wheels with the required 15 year mission capability can be provided.
Prediction of ball and roller bearing thermal and kinematic performance by computer analysis
NASA Technical Reports Server (NTRS)
Pirvics, J.; Kleckner, R. J.
1983-01-01
Characteristics of good computerized analysis software are suggested. These general remarks and an overview of representative software precede a more detailed discussion of load support system analysis program structure. Particular attention is directed at a recent cylindrical roller bearing analysis as an example of the available design tools. Selected software modules are then examined to reveal the detail inherent in contemporary analysis. This leads to a brief section on current design computation which seeks to suggest when and why computerized analysis is warranted. An example concludes the argument offered for such design methodology. Finally, remarks are made concerning needs for model development to address effects which are now considered to be secondary but are anticipated to emerge to primary status in the near future.
Inflaton fragmentation in E models of cosmological α -attractors
NASA Astrophysics Data System (ADS)
Hasegawa, Fuminori; Hong, Jeong-Pyong
2018-04-01
Cosmological α -attractors are observationally favored due to the asymptotic flatness of the potential. Since its flatness induces the negative pressure, the coherent oscillation of the inflaton field could fragment into quasistable localized objects called I-balls (or "oscillons"). We investigated the possibility of I-ball formation in E models of α -attractors. Using the linear analysis and the lattice simulations, we found that the instability sufficiently grows against the cosmic expansion and the inflaton actually fragments into the I-balls for α ≲10-3 .
NASA Technical Reports Server (NTRS)
Coe, H. H.; Lynch, J. E.
1973-01-01
Three-dimensional stress distributions were calculated for both a regular drilled ball with a stiffening web. The balls were 20.6 mm (0.8125 in.) in diameter and had a 12.6 mm (0.496 in.) diameter concentric hole. The stiffening web was 1.5 mm (0.06 in.) thick. The calculations showed that a large reversing tangential stress at the hole bore was reduced by one-half by the addition of the web.
ERIC Educational Resources Information Center
Dewdney, A. K.
1988-01-01
Describes the creation of the computer program "BOUNCE," designed to simulate a weighted piston coming into equilibrium with a cloud of bouncing balls. The model follows the ideal gas law. Utilizes the critical event technique to create the model. Discusses another program, "BOOM," which simulates a chain reaction. (CW)
Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al
NASA Astrophysics Data System (ADS)
Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori
2013-06-01
Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
The purpose of a ball bearing is to provide a relative positioning and rotational freedom while transmitting a load between two structures, usually a shaft and a housing. For high rotational speeds (e.g., in gyroscope ball bearings) the purpose can be expanded to include rotational freedom with practically no wear in the bearing. This condition can be achieved by separating the bearing parts with a coherent film of fluid known as an elastohydrodynamic film. This film can be maintained not only when the bearing carries the load on a shaft, but also when the bearing is preloaded to position the shaft to within micro- or nano-inch accuracy and stability. Background information on ball bearings is provided, different types of ball bearings and their geometry and kinematics are defined, bearing materials, manufacturing processes, and separators are discussed. It is assumed, for the purposes of analysis, that the bearing carries no load.
SHABERTH - ANALYSIS OF A SHAFT BEARING SYSTEM (CRAY VERSION)
NASA Technical Reports Server (NTRS)
Coe, H. H.
1994-01-01
The SHABERTH computer program was developed to predict operating characteristics of bearings in a multibearing load support system. Lubricated and non-lubricated bearings can be modeled. SHABERTH calculates the loads, torques, temperatures, and fatigue life for ball and/or roller bearings on a single shaft. The program also allows for an analysis of the system reaction to the termination of lubricant supply to the bearings and other lubricated mechanical elements. SHABERTH has proven to be a valuable tool in the design and analysis of shaft bearing systems. The SHABERTH program is structured with four nested calculation schemes. The thermal scheme performs steady state and transient temperature calculations which predict system temperatures for a given operating state. The bearing dimensional equilibrium scheme uses the bearing temperatures, predicted by the temperature mapping subprograms, and the rolling element raceway load distribution, predicted by the bearing subprogram, to calculate bearing diametral clearance for a given operating state. The shaft-bearing system load equilibrium scheme calculates bearing inner ring positions relative to the respective outer rings such that the external loading applied to the shaft is brought into equilibrium by the rolling element loads which develop at each bearing inner ring for a given operating state. The bearing rolling element and cage load equilibrium scheme calculates the rolling element and cage equilibrium positions and rotational speeds based on the relative inner-outer ring positions, inertia effects, and friction conditions. The ball bearing subprograms in the current SHABERTH program have several model enhancements over similar programs. These enhancements include an elastohydrodynamic (EHD) film thickness model that accounts for thermal heating in the contact area and lubricant film starvation; a new model for traction combined with an asperity load sharing model; a model for the hydrodynamic rolling and shear forces in the inlet zone of lubricated contacts, which accounts for the degree of lubricant film starvation; modeling normal and friction forces between a ball and a cage pocket, which account for the transition between the hydrodynamic and elastohydrodynamic regimes of lubrication; and a model of the effect on fatigue life of the ratio of the EHD plateau film thickness to the composite surface roughness. SHABERTH is intended to be as general as possible. The models in SHABERTH allow for the complete mathematical simulation of real physical systems. Systems are limited to a maximum of five bearings supporting the shaft, a maximum of thirty rolling elements per bearing, and a maximum of one hundred temperature nodes. The SHABERTH program structure is modular and has been designed to permit refinement and replacement of various component models as the need and opportunities develop. A preprocessor is included in the IBM PC version of SHABERTH to provide a user friendly means of developing SHABERTH models and executing the resulting code. The preprocessor allows the user to create and modify data files with minimal effort and a reduced chance for errors. Data is utilized as it is entered; the preprocessor then decides what additional data is required to complete the model. Only this required information is requested. The preprocessor can accommodate data input for any SHABERTH compatible shaft bearing system model. The system may include ball bearings, roller bearings, and/or tapered roller bearings. SHABERTH is written in FORTRAN 77, and two machine versions are available from COSMIC. The CRAY version (LEW-14860) has a RAM requirement of 176K of 64 bit words. The IBM PC version (MFS-28818) is written for IBM PC series and compatible computers running MS-DOS, and includes a sample MS-DOS executable. For execution, the PC version requires at least 1Mb of RAM and an 80386 or 486 processor machine with an 80x87 math co-processor. The standard distribution medium for the IBM PC version is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diske
Finite element analysis of thrust angle contact ball slewing bearing
NASA Astrophysics Data System (ADS)
Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin
2017-12-01
In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.
Biomotor structures in elite female handball players.
Katić, Ratko; Cavala, Marijana; Srhoj, Vatromir
2007-09-01
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.
Suneel, V; Vethamony, P; Naik, B G; Krishna, M S; Jadhav, Lakshmikant
2015-09-15
Deposition of oil residues, also known as tar balls, is a seasonal phenomenon, and it occurs only in the southwest monsoon season along the west coast of India. This has become a serious environmental issue, as Goa is a global tourist destination. The present work aims at identifying the source oil of the tar balls that consistently depositing along the Goa coast using multi-marker fingerprint technique. In this context, the tar ball samples collected in May 2013 from 9 beaches of Goa coast and crude oils from different oil fields and grounded ship were subject to multi-marker analyses such as n-alkanes, pentacyclic terpanes, regular steranes, compound specific isotope analysis (CSIA) and principle component analysis (PCA). The n-alkane weathering index shows that samples have been weathered to various degrees, and the status of weathering is moderate. Since the international tanker route passes closer to the west coast of India (WCI), it is generally presumed that tanker wash is the source of the tar balls. We found that 2010/2011 tar balls are as tanker wash, but the present study demonstrates that the Bombay High (BH) oil fields can also contribute to oil contamination (tar balls) along ≈ 650 km stretch of the WCI, running from Gujarat in the north to Goa in the south. The simulated trajectories show that all the particles released in April traveled in the southeast direction, and by May, they reached the Goa coast with the influence of circulation of Indian monsoon system. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of small-size solder ball defects through heat conduction analysis
NASA Astrophysics Data System (ADS)
Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan
2018-02-01
Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.
Wear Debris Analysis of Grease Lubricated Ball Bearings.
1982-04-12
Ferrography method was performed by the Naval Air Engineering Center (NAVAIRENGCEN), Lakehurst, New Jersey. A total of three sets of two 6309 deep-groove ball... Ferrography technique. The analysis of the grease-retained wear debris necessitated the development of a technique to reduce the grease samples to a...condition where they were compatible with the Ferrography technique. A major achievement was the successful application of dissolving the grease
A vision framework for the localization of soccer players and ball on the pitch using Handycams
NASA Astrophysics Data System (ADS)
Vilas, Tiago; Rodrigues, J. M. F.; Cardoso, P. J. S.; Silva, Bruno
2015-03-01
The current performance requirements in soccer make imperative the use of new technologies for game observation and analysis, such that detailed information about the teams' actions is provided. This paper summarizes a framework to collect the soccer players and ball positions using one or more Full HD Handycams, placed no more than 20cm apart in the stands, as well as how this framework connects to the FootData project. The system was based on four main modules: the detection and delimitation of the soccer pitch, the ball and the players detection and assignment to their teams, the tracking of players and ball and finally the computation of their localization (in meters) in the pitch.
Tribometer for Lubrication Studies in Vacuum
NASA Technical Reports Server (NTRS)
Pepper, Stephen V.
1998-01-01
The NASA Lewis Research Center has developed a new way to evaluate the liquid lubricants used in ball bearings in space mechanisms. For this evaluation, a liquid lubricant is exercised in the rolling contact vacuum tribometer shown in the photo. This tribometer, which is essentially a thrust bearing with three balls and flat races, has contact stresses similar to those in a typical preloaded, angular contact ball bearing. The rotating top plate drives the balls in an outward-winding spiral orbit instead of a circular path. Upon contact with the "guide plate," the balls are forced back to their initial smaller orbit radius; they then repeat this spiral orbit thousands of times. The orbit rate of the balls is low enough, 2 to 5 rpm, to allow the system to operate in the boundary lubrication regime that is most stressful to the liquid lubricant. This system can determine the friction coefficient, lubricant lifetime, and species evolved from the liquid lubricant by tribodegradation. The lifetime of the lubricant charge is only few micrograms, which is "used up" by degradation during rolling. The friction increases when the lubricant is exhausted. The species evolved by the degrading lubricant are determined by a quadrupole residual gas analyzer that directly views the rotating elements. The flat races (plates) and 0.5-in.-diameter balls are of a configuration and size that permit easy post-test examination by optical and electron microscopy and the full suite of modern surface and thin-film chemical analytical techniques, including infrared and Raman microspectroscopy and x-ray photoelectron spectroscopy. In addition, the simple sphere-on-a-flat-plate geometry allows an easy analysis of the contact stresses at all parts of the ball orbit and an understanding of the frictional energy losses to the lubricant. The analysis showed that when the ball contacts the guide plate, gross sliding occurs between the ball and rotating upper plate as the ball forced back to a smaller orbit radius. The friction force due to gross sliding is sensed by the piezoelectric force transducer behind the guide plate and furnishes the coefficient of friction for the system. This tribometer has been used to determine the relative lifetimes of Fomblin Z-25, a lubricant often used in space mechanisms, as a function of the material of the plates against which it was run. The balls were 440C steel in all cases; the plate materials were aluminum, chromium (Cr), 440C steel (17 wt % Cr), and 4150 steel (1 wt % Cr). As shown in the bar graph, the lifetime is greatest for the plate material with least chromium, thus implicating chromium as a tribochemically active element attacking Fomblin Z-25.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi
2009-05-15
A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. Thismore » kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.« less
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn
2017-02-01
This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by "dimple error" was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performance.
The analysis of ball's motion in the torus-shaped autoequalizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strautmanis, Guntis, E-mail: Guntis@df.rtu.lv; Jurjev, Vadims, E-mail: vadimsjurjevs@gmail.com; Grinevich, Ivans, E-mail: ivansgrinevics@inbox.lv
2013-12-16
The reduction of vibrations in rotary systems is necessary condition for the development of constructions with high quality requirements. Among the devices that are able to reduce rotor's vibrations are automatic balancers with balls, liquid, etc. Autoequalizers with torus-shaped body contain one ball-shaped adjustment mass that can freely roll both in the ring direction and in the cross section. This enables reducing to the minimum the force of resistance at the ball's moving, but simultaneously decreases the chance of launching the autoequalizer in the autobalancing regime. It has been stated that the ball in the working state is influenced bymore » forces that are aimed at moving it in the body of the autoequalizer towards the side opposite to the imbalance. The design of an autoequalizer that ensures working state in which at rotation the ball stops relative to the autoequalizer's body opposite to the imbalance has been experimentally worked out. The autoequalizer is made up of the mathematical model with two differential equations. In the result of the calculations it has been proved that the ball of an equalizer with the torus-shaped body has at least two movement conditions one of which is a working state, and another one is a spare state.« less
Quinn, Samantha-Lynn; Olivier, Benita; Wood, Wendy-Ann
2016-11-01
This study aimed to compare the effect of myofascial trigger point therapy (MTPT) and stretching, MTPT and medicine ball exercises, and no intervention, on hip flexor length (HFL), golf swing biomechanics and performance in elite, male golfers. Single blind, randomised controlled trial with two experimental groups (stretch group: MTPT and stretching; and the ball group: MTPT, a single stretch and medicine ball exercises) and one control group (no intervention). Professional golf academy. One hundred, elite, male golfers aged 16-25 years. HFL, 3D biomechanical analysis of the golf swing, club head speed (CHS), smash ratio, accuracy and distance at baseline and after the interventions. Backswing hip turn (BSHT) improved in the ball group relative to the control group (p = 0.0248). Accuracy in the ball group and the stretch group improved relative to the control group (Fisher's exact = 0.016). Other performance parameters such as: smash ratio, distance and CHS were not compromised by either intervention. This study advocates the use of MTPT combined with medicine ball exercises over MTPT combined with stretching in the treatment of golfers with shortened hip flexors - even immediately preceding a tournament. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of tea polyphenols on microbiological and biochemical quality of Collichthys fish ball.
Yi, Shumin; Li, Jianrong; Zhu, Junli; Lin, Yi; Fu, Linglin; Chen, Wei; Li, Xuepeng
2011-07-01
Tea polyphenols (TP), as the most active constituents of tea, are considered natural food additives. This study examined the preservative properties of TP for Collichthys fish ball in well storage. Vacuum-packed Collichthys fish balls were treated with 0, 0.1, 0.15, 0.20, 0.25, and 0.30 g kg(-1) TP and stored at 0 °C for 17 days. Microbiological results were obtained using a biochemical test, API system kit, and 16S rDNA sequence analysis. Results confirmed that the dominant bacteria in Collichthys fish balls are the genera Serratia and Pseudomonas. Total viable counts dropped two orders of magnitude in Collichthys fish balls with 0.25 g kg(-1) TP compared with the control. The advantages of total volatile basic nitrogen value, 2-thiobarbituric acid value and texture value were clearly observed, whereas pH and whiteness value exhibited no significant decrease for the group treated with 0.25 g kg(-1) TP. More than 0.25 g kg(-1) TP added could retain excellent fish ball characteristics in terms of sensory assessment after 17 days. The shelf life of Collichthys fish balls supplemented with tea polyphenols can be prolonged for an additional 6 days in good condition at 0 °C storage. Copyright © 2011 Society of Chemical Industry.
Wormgoor, Shohn; Harden, Lois; Mckinon, Warrick
2010-07-01
Fast bowling is fundamental to all forms of cricket. The purpose of this study was to identify parameters that contribute to high ball release speeds in cricket fast bowlers. We assessed anthropometric dimensions, concentric and eccentric isokinetic strength of selected knee and shoulder muscle groups, and specific aspects of technique from a single delivery in 28 high-performance fast bowlers (age 22.0 +/- 3.0 years, ball release speed 34.0 +/- 1.3 m s(-1)). Six 50-Hz cameras and the Ariel Performance Analysis System software were used to analyse the fast and accurate deliveries. Using Pearson's correlation, parameters that showed significant associations with ball release speed were identified. The findings suggest that greater front leg knee extension at ball release (r=0.52), shoulder alignment in the transverse plane rotated further away from the batsman at front foot strike (r=0.47), greater ankle height during the delivery stride (r=0.44), and greater shoulder extension strength (r=0.39) contribute significantly to higher ball release speeds. Predictor variables failed to allow their incorporation into a multivariate model, which is known to exist in less accomplished bowlers, suggesting that factors that determine ball release speed found in other groups may not apply to high-performance fast bowlers.
Detection of micro solder balls using active thermography and probabilistic neural network
NASA Astrophysics Data System (ADS)
He, Zhenzhi; Wei, Li; Shao, Minghui; Lu, Xingning
2017-03-01
Micro solder ball/bump has been widely used in electronic packaging. It has been challenging to inspect these structures as the solder balls/bumps are often embedded between the component and substrates, especially in flip-chip packaging. In this paper, a detection method for micro solder ball/bump based on the active thermography and the probabilistic neural network is investigated. A VH680 infrared imager is used to capture the thermal image of the test vehicle, SFA10 packages. The temperature curves are processed using moving average technique to remove the peak noise. And the principal component analysis (PCA) is adopted to reconstruct the thermal images. The missed solder balls can be recognized explicitly in the second principal component image. Probabilistic neural network (PNN) is then established to identify the defective bump intelligently. The hot spots corresponding to the solder balls are segmented from the PCA reconstructed image, and statistic parameters are calculated. To characterize the thermal properties of solder bump quantitatively, three representative features are selected and used as the input vector in PNN clustering. The results show that the actual outputs and the expected outputs are consistent in identification of the missed solder balls, and all the bumps were recognized accurately, which demonstrates the viability of the PNN in effective defect inspection in high-density microelectronic packaging.
Lyons, P.C.; Thompson, C.L.; Hatcher, P.G.; Brown, F.W.; Millay, M.A.; Szeverenyi, N.; Maciel, G.E.
1984-01-01
An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal. The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal. A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1-2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays. ?? 1984.
Goodpaster, Aaron M; Ramadas, Eshwar H; Kennedy, Michael A
2011-02-01
Nuclear magnetic resonance (NMR) and liquid chromatography/mass spectrometry (LC/MS) based metabonomics screening of urine has great potential for discovery of biomarkers for diseases that afflict newborn and preterm infants. However, urine collection from newborn infants presents a potential confounding problem due to the possibility that contaminants might leach from materials used for urine collection and influence statistical analysis of metabonomics data. In this manuscript, we have analyzed diaper and cotton ball contamination using synthetic urine to assess its potential to influence the outcome of NMR- and LC/MS-based metabonomics studies of human infant urine. Eight diaper brands were examined using the "diaper plus cotton ball" technique. Data were analyzed using conventional principal components analysis, as well as a statistical significance algorithm developed for, and applied to, NMR data. Results showed most diaper brands had distinct contaminant profiles that could potentially influence NMR- and LC/MS-based metabonomics studies. On the basis of this study, it is recommended that diaper and cotton ball brands be characterized using metabonomics methodologies prior to initiating a metabonomics study to ensure that contaminant profiles are minimal or manageable and that the same diaper and cotton ball brands be used throughout a study to minimize variation.
Throwing velocity and kinematics in elite male water polo players.
Melchiorri, G; Padua, E; Padulo, J; D'Ottavio, S; Campagna, S; Bonifazi, M
2011-12-01
Fifty-three members of the Italian Men Water Polo Team were filmed using two synchronized cameras, while they were shooting a goal. Considering the differences in body mass, height, training strategies and the technical-tactical features of the players, the aims of this study were to employ video-analysis techniques in order to investigate selected kinematic parameters in water polo throwing, and to provide comprehensive quantitative information on the throwing movement in relation to the different team player positions. Video analysis was used to estimate the elbow angle at release, the shoulder angle at follow through, the back and head height at ball release, trunk rotation angle and ball velocity at release. Ball release velocities ranged from 21.0 to 29.8 m/s (average value 25.3±1.4 m/s), for field players. Goal keepers show the lowest team values (average 21.7±0.3 m/s). Similar to previous study results, ball release was typically reached just prior to the elbow approaching full extension (151.6±3.6°), and the follow through shoulder angle was 143±5.9°. No significant statistical difference was recorded between injured and non-injured athletes. No positive association was demonstrated between physical characteristics (body mass and height) and ball velocity.
A Small Business Management Entrepreneurship Curriculum: A Dual Progression Experience.
ERIC Educational Resources Information Center
Kuratko, Donald; LaFollette, William R.
1986-01-01
Describes Ball State University's "dual progression" curriculum for the small business management program. The program seeks to combine the best elements of entrepreneurial theory with the difficult facets of practical experience. The five major component courses (small business ventures, entrepreneurship, management information systems,…
ERIC Educational Resources Information Center
Minton, Roland; Pennings, Timothy J.
2007-01-01
When a dog (in this case, Tim Pennings' dog Elvis) is in the water and a ball is thrown downshore, it must choose to swim directly to the ball or first swim to shore. The mathematical analysis of this problem leads to the computation of bifurcation points at which the optimal strategy changes.
2012-10-10
functions) that you define as important outputs of the model. Think of the Monte Carlo simulation approach as picking golf balls out of a large...the large model as a very large basket, wherein many baby baskets reside. Each baby basket has its own set of colored golf balls that are bouncing...around. Sometimes these baby baskets are linked with each other (if there is a correlation between the variables), forcing the golf balls to bounce in
Ahn, Jeoung-Ah; Kim, Joong-Hwi; Bendik, Anthony L; Shin, Ju-Yong
2015-04-01
[Purpose] This study compared the effects on neck-shoulder pain and mobility of strengthening exercises for the neck flexors and scapular retractors performed on a Swiss ball and a mat. [Subjects] Twenty student volunteers were the subjects. [Methods] The students were randomly assigned to two groups: Mat group (n=10), and Swiss ball group (n=10). At pre-test, post-test, and 1-week follow-up pain was assessed using the visual analogue scale (VAS), the pain pressure threshold (PPT) of the shoulder was measured with an algometer, and neck mobility was measured with a Zebris. [Results] The data analysis revealed that there was a significant decrease in pain and significant increase in neck flexion in both groups, and the Swiss ball group showed better results. [Conclusion] Strengthening the neck flexors and scapular retractors for stabilization of the neck using exercises on a Swiss ball was more effective at reducing the pain and stabilizing the neck than mat exercises.
Dynamics of a grain-filled ball on a vibrating plate.
Pacheco-Vázquez, F; Ludewig, F; Dorbolo, S
2014-09-12
We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.
Dynamics of a Grain-Filled Ball on a Vibrating Plate
NASA Astrophysics Data System (ADS)
Pacheco-Vázquez, F.; Ludewig, F.; Dorbolo, S.
2014-09-01
We study experimentally how the bouncing dynamics of a hollow ball on a vibrating plate is modified when it is partially filled with liquid or grains. Whereas empty and liquid-filled balls display a dominant chaotic dynamics, a ball with grains exhibits a rich variety of stationary states, determined by the grain size and filling volume. In the collisional regime, i.e., when the energy injected to the system is mainly dissipated by interparticle collisions, an unexpected period-1 orbit appears independently of the vibration conditions, over a wide range. This is a self-regulated state driven by the formation and collapse of a granular gas within the ball during one cycle. In the frictional regime (dissipation dominated by friction), the grains move collectively and generate different patterns and steady modes: oscillons, waves, period doubling, etc. From a phase diagram and a geometrical analysis, we deduce that these modes are the result of a coupling (synchronization) between the vibrating plate frequency and the trajectory followed by the particles inside the cavity.
Hurricane Balls: A rigid-body-motion project for undergraduates
NASA Astrophysics Data System (ADS)
Jackson, David P.; Mertens, David; Pearson, Brett J.
2015-11-01
We discuss a project on rigid-body motion that is appropriate for students in an upper-division course in classical mechanics. We analyze the motion of Hurricane Balls, two spheres that are welded (or glued) together so they act as a single object that can be spun like a top. The steady-state motion consists of purely rotational motion about the center of mass, such that only one ball is in contact with the table as it rolls without slipping. We give a qualitative explanation for why one ball rises into the air, and we theoretically analyze the system using multiple approaches. We also perform a high-speed video analysis to obtain experimental data on how the orientation depends on the spin rate, and find agreement within a few percent of the theory.
Ball Aerospace Long Life, Low Temperature Space Cryocoolers
NASA Astrophysics Data System (ADS)
Glaister, D. S.; Gully, W.; Marquardt, E.; Stack, R.
2004-06-01
This paper describes the development, qualification, characterization testing and performance at Ball Aerospace of long life, low temperature (from 4 to 35 K) space cryocoolers. For over a decade, Ball has built long life (>10 year), multi-stage Stirling and Joule-Thomson (J-T) cryocoolers for space applications, with specific performance and design features for low temperature operation. As infrared space missions have continually pushed for operation at longer wavelengths, the applications for these low temperature cryocoolers have increased. The Ball cryocooler technologies have culminated in the flight qualified SB235 Cryocooler and the in-development 6 K NASA/JPL ACTDP (Advanced Cryocooler Technology Development Program) Cryocooler. The SB235 and its model derivative SB235E are 2-stage coolers designed to provide simultaneous cooling at 35 K (typically, for Mercury Cadmium Telluride or MCT detectors) and 100 K (typically, for the optics) and were baselined for the Raytheon SBIRS Low Track Sensor. The Ball ACTDP cooler is a hybrid Stirling/J-T cooler that has completed its preliminary design with an Engineering Model to be tested in 2005. The ACTDP cooler provides simultaneous cooling at 6 K (typically, for either doped Si detectors or as a sub-Kelvin precooler) and 18 K (typically, for optics or shielding). The ACTDP cooler is under development for the NASA JWST (James Webb Space Telescope), TPF (Terrestrial Planet Finder), and Con-X (Constellation X-Ray) missions. Both the SB235 and ACTDP Coolers are highly leveraged off previous Ball space coolers including multiple life test and flight units.
RadBall Technology Testing and MCNP Modeling of the Tungsten Collimator.
Farfán, Eduardo B; Foley, Trevor Q; Coleman, J Rusty; Jannik, G Timothy; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J
2010-01-01
The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.
On improving the efficiency of tensor voting.
Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim
2011-11-01
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.
Characterization and Modeling of Fine-Pitch Copper Ball Bonding on a Cu/Low- k Chip
NASA Astrophysics Data System (ADS)
Che, F. X.; Wai, L. C.; Zhang, Xiaowu; Chai, T. C.
2015-02-01
Cu ball bonding faces more challenges than Au ball bonding, for example, excessive deformation of the bond pad and damage of Cu/low- k structures, because of the much greater hardness of Cu free air balls. In this study, dynamic finite-element analysis (FEA) modeling with displacement control was developed to simulate the ball-bonding process. The three-dimensional (3D) FEA simulation results were confirmed by use of stress-measurement data, obtained by use of stress sensors built into the test chip. Stress comparison between two-dimensional (2D) and 3D FEA models showed the 2D plain strain model to be a reasonable and effective model for simulation of the ball-bonding process without loss of accuracy; it also saves computing resources. The 2D FEA model developed was then used in studies of a Cu/low- k chip to find ways of reducing Al bond pad deformation and stresses of low- k structures. The variables studied included Al pad properties, capillary geometry, bond pad design (Al pad thickness, Al pad coated with Ni layer), and the effect of ultrasonic bonding power.
Integration program, developing inverse modeling algorithms to calibrate building energy models, and is part related equipment. This work included developing an engineering grade operator training simulator for an
NASA Technical Reports Server (NTRS)
Mcdonald, Gary H.
1988-01-01
The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.
Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy
Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki
2016-01-01
The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat’s long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat’s short axis direction than in the bat’s long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat’s short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay. PMID:26848742
Zakaria, M P; Okuda, T; Takada, H
2001-12-01
Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.
Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy.
Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki
2016-01-01
The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat's long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat's short axis direction than in the bat's long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat's short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay.
Comets, Asteroids and Rubble Piles: not just debris
NASA Astrophysics Data System (ADS)
Harold, J. B.; Dusenbery, P.
2010-12-01
The National Center for Interactive Learning at the Space Science Institute (NCIL @ SSI) is developing a variety of asteroids related education activities as part of several E/PO projects, including Finding NEO (funded through NSF and NASA SMD); Great Balls of Fire! (funded through NSF); and a partnership with the WISE (Wide-field Infrared Survey Explorer) mission. These activities range from a web site to traveling exhibits in three different sizes. The Killer Asteroids web site (www.killerasteroids.org) includes background information on comets and asteroids as well as a number of interactive activities and games. These include a game that compares the risk of death from an asteroid impact to other hazards; a game and video vignettes on the role of backyard astronomers in light curve research; a physics-based asteroid deflection game; and a Google Earth -based "drop a rock on your house" activity. In addition, the project is developing a small, portable exhibit suitable for use in libraries or visitors centers. Great Balls of Fire! includes two separate traveling exhibitions: a 3000 square foot exhibition for science centers, and a 500 square foot version for smaller venues. Both will begin national tours in the summer of 2011. The Great Balls of Fire! exhibit program includes a free Education Program for docents and educators, and an Outreach Program to amateur astronomers around the country through the Astronomical Society of the Pacific’s (ASP) Astronomy from the Ground Up program. The project will facilitate partnerships between host venues and local astronomy clubs that can interact with the public using a toolkit of activities developed by ASP. Great Balls of Fire! Represents a collaboration between scientists, educators, exhibit designers, graphic artists, evaluators, education researchers, and three teams of middle school students who acted as advisors. The project’s exhibit design firm is Jeff Kennedy Associates Inc. We will present a summary of the different components of these projects and how different audiences can take advantage of them, from science centers and libraries that can host the exhibits, to home and classroom use through the web site.
NASA Astrophysics Data System (ADS)
Khakhalev, P. A.; Bogdanov, VS; Kovshechenko, V. M.
2018-03-01
The article presents analysis of the experiments in the ball mill of 0.5x0.3 m with four different liner types based on DEM modeling. The numerical experiment always complements laboratory research and allow obtaining high accuracy output data. An important property of the numerical experiment is the possibility of visualization of the results. The EDEM software allows calculating trajectory of the grinding bodies and kinetic parameters of each ball for the relative mill speed and the different types of mill’s liners.
Mental files and belief: A cognitive theory of how children represent belief and its intensionality.
Perner, Josef; Huemer, Michael; Leahy, Brian
2015-12-01
We provide a cognitive analysis of how children represent belief using mental files. We explain why children who pass the false belief test are not aware of the intensionality of belief. Fifty-one 3½- to 7-year old children were familiarized with a dual object, e.g., a ball that rattles and is described as a rattle. They observed how a puppet agent witnessed the ball being put into box 1. In the agent's absence the ball was taken from box 1, the child was reminded of it being a rattle, and emphasising its being a rattle it was put back into box 1. Then the agent returned, the object was hidden in the experimenter's hands and removed from box 1, described as a "rattle," and transferred to box 2. Children who passed false belief had no problem saying where the puppet would look for the ball. However, in a different condition in which the agent was also shown that the ball was a rattle they erroneously said that the agent would look for the ball in box 1, ignoring the agent's knowledge of the identity of rattle and ball. Their problems cease with their mastery of second-order beliefs (she thinks she knows). Problems also vanish when the ball is described not as a rattle but as a thing that rattles. We describe how our theory can account for these data as well as all other relevant data in the literature. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Directing visual attention during action observation modulates corticospinal excitability
Wood, Greg; Franklin, Zoe C.; Marshall, Ben; Riach, Martin; Holmes, Paul S.
2018-01-01
Transcranial magnetic stimulation (TMS) research has shown that corticospinal excitability is facilitated during the observation of human movement. However, the relationship between corticospinal excitability and participants’ visual attention during action observation is rarely considered. Nineteen participants took part in four conditions: (i) a static hand condition, involving observation of a right hand holding a ball between the thumb and index finger; (ii) a free observation condition, involving observation of the ball being pinched between thumb and index finger; and (iii and iv) finger-focused and ball-focused conditions, involving observation of the same ball pinch action with instructions to focus visual attention on either the index finger or the ball. Single-pulse TMS was delivered to the left motor cortex and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi muscles of the right hand. Eye movements were recorded simultaneously throughout each condition. The ball-focused condition produced MEPs of significantly larger amplitude in the FDI muscle, compared to the free observation or static hand conditions. Furthermore, regression analysis indicated that the number of fixations on the ball was a significant predictor of MEP amplitude in the ball-focused condition. These results have important implications for the design and delivery of action observation interventions in motor (re)learning settings. Specifically, providing viewing instructions that direct participants to focus visual attention on task-relevant objects affected by the observed movement promotes activity in the motor system in a more optimal manner than free observation or no instructions. PMID:29304044
Holloway, Ian W; Traube, Dorian E; Kubicek, Katrina; Supan, Jocelyn; Weiss, George; Kipke, Michele D
2012-10-01
African-American young men who have sex with men and transgender persons are at elevated risk for HIV infection. House and Ball communities, networks of mostly African-American gay, bisexual, and transgender individuals who compete in modeling and dance, represent a prime venue for HIV prevention with these difficult-to-reach populations; however, little research exists on effective approaches to HIV prevention within these communities. Using a mixed-methods approach, the present study sought to document participation in HIV prevention activities of a sample from the Los Angeles House and Ball communities (n = 263) in order to inform future service development. While 80% of participants were tested for HIV within the past 6 months, only 26% report HIV prevention program attendance. House leaders recommend a holistic approach to HIV prevention, one that incorporates attention to social problems beyond HIV, including poverty, housing difficulties, and lack of job training.
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Takeda, Yukihiro; Nakagawa, Masamichi
While some tennis racket strings have more grip than others do, this does not guarantee that they will impart more spin to a tennis ball. Experiments with hand-held rackets are required to determine the longstanding question of how players can discern that different strings behave differently when laboratory tests indicate that they should play the same. In a previous study, we clarified the top-spin mechanism of a tennis racket by using high-speed video analysis on a tennis court for the first time. Furthermore, we improved it by using lubricated notched nylon strings. These experiments revealed that the more the main strings stretch and bend laterally, the more spin is imparted to the ball. This is due to the restoring force being parallel to the string face when the main strings spring back and the ball is released from the strings. Notched strings reduce the spin rate, but this can be effectively counteracted by employing lubricants. Furthermore, we found that imparting more spin reduces shock vibrations on the wrist during impact. The present study revealed that a ball has a 40% lower spin rate when hit with a racket with notched strings than with one with unnotched strings in the case of nylon (it had to be determined whether new strings or lubricated used strings give more spin). The experiments also showed that 30% more spin is imparted to a ball when the string intersections are lubricated by oil than when notched used nylon strings are used. Furthermore, we found that used natural gut notched strings reduced the spin rate by 70% compared to when new natural gut unnotched strings are used. We also investigated different top-spin behaviors obtained when professional and amateur tennis players hit a ball.
NASA Astrophysics Data System (ADS)
Sanwani, Edy; Ikhwanto, Muhammad
2017-01-01
The objective of this paper is to investigate the effect of ball filling and ratio of feed to grinding balls on the kinetic of grinding of ferronickel slag in a laboratory scale ball mill. The experiments were started by crushing the ferronickel slag samples using a roll crusher to produce -3 mesh (-6.7 mm) product. This product, after sampling and sample dividing processes, was then used as feed for grinding process. The grinding was performed with variations of ball filling and ratio of feed to grinding balls for 150 minutes. At every certain time interval, particle size analysis was carried out on the grinding product. The results of the experiments were also used to develop linear regression model of the effect of grinding variables on the P80 of the product. Based on this study, it was shown that P80 values of the grinding products declined sharply until 70 minutes of grinding time due to the dominant mechanism of impact breakage and then decreased slowly after 70 minutes until 150 minutes of grinding time due to dominant mechanism of attrition breakage. Kinetics study of the grinding process on variations of grinding ball filling showed that the optimum rate of formation of fine particles for 20%, 30%, 40% and 50% mill volume was achieved at a particle size of 400 µm in which the best initial rate of formation occurred at 50% volume of mill. At the variations of ratio of feed to grinding balls it was shown that the optimum rate of grinding for the ratio of 1:10, 1: 8 and 1: 6 was achieved at a particle size of 400 µm and for the ratio of 1: 4 was at 841 µm in which the best initial rate of formation occurred at a 1:10 ratio. In this study, it was also produced two regression models that can predict the P80 value of the grinding product as a function of the variables of grinding time, ball filling and the ratio of the feed to grinding balls.
Problems Resulting from the Implementation of a Pilot Program in Accountability.
ERIC Educational Resources Information Center
Field, David A.
The concept of accountability has become very important recently to both teachers and administrators. Despite this, very few experimental projects dealing with accountability have been attempted--especially in the field of physical education. A program of accountability was conducted at Ball State University, Muncie, Indiana, in the Department of…
NASA Astrophysics Data System (ADS)
Raymond, Anne
2016-04-01
Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes and experience significant evaporation. Paleotropical coals with coal balls are under- and overlain by siliciclastic sediments, and, if fresh, would have required ever-wet climatic conditions for peat to accumulate. Pervasive freshwater diagenesis, with low magnesium calcite enveloping individual grains of high-magnesium calcite, results in most coal-ball carbonates having a freshwater or mixed isotopic signature. In some coal balls, cell walls in the root cortex (a soft tissue) separate carbonate of differing magnesium content, resulting in cells filled with low-magnesium (freshwater) calcite adjacent to cells filled with high-magnesium (marine) calcite, suggesting that these cements formed in recently dead or dying roots. The juxtaposition of high-magnesium (marine) calcite and low-magnesium (freshwater) calcite in coal balls suggests that they formed at the marine/freshwater interface in mires that contained salt-tolerant plants. This model of coal-ball formation suggests that coals bearing coal balls accumulated early in marine transgression as glaciers melted and sea level rose. In modern coastal mires, tidal incursion of salt water can maintain high freshwater tables, enabling domed freshwater peat to form in climates that normally would be too dry for tropical freshwater peat accumulation. Peat accumulation in these mires may be due to marine transgression rather than the ever-wet paleoclimates.
Powder properties of hydrogenated ball-milled graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y., E-mail: y.zhang062012@gmail.com; Wedderburn, J.; Harris, R.
2014-12-15
Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen for various times (0–40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and laser diffraction particle size analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up tomore » 10 h, the BET surface area increased while particle size decreased; however, there is no apparent correlation between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite.« less
SP.ACE: taking secondary school students' hearts and minds "up, up and away"
NASA Astrophysics Data System (ADS)
de Schrijver, Erik
2005-08-01
Secondary school students were given the opportunity to build and fly "pongsats" (small experiments weighing under 100 grams each, and packed inside a ping pong ball) on high-altitude balloons bound for 100000 feet, or 30 km: the edge of space. The need to acquire the knowledge and know-how to build successful experiments gave birth to the SP.ACE project. Over their last 3 years of secondary education, students are now learning about flight vehicles, the physical conditions in space, microcontrollers, sensors, programming, data logging, flight path analysis, and much more.
EMC (Electromagnetic Compatibility) System Test and Analysis Interface.
1983-05-01
D- R136 64 EMC (ELECTROARGNETIC COMPATIBILITY) SYSTEM TEST AND V ANALYSIS INTE FACE(J) BOEING CO SEATTLE WA E F BALL ET AL MAY 93 RRDC-TR-83-121...RADC-TR-83- 121 Final Tedical Report May 1963 EMC SYSTEM TEST AND ANAL YSIS INTERFACE_ The Boeing Company E. F. Ball, L. Knutson and B. L...Carlson *. . APPROVE FOR PUBLIC REESEk DIS TRIBUTION ULMTED D IS -ELECTE ,... DEC 20 1983 >- D" c: ROME AIR DEVELOPMENT CENTER * Air Force Systems Command
Failure Simulation Testing of the Z-1 Spacesuit Titanium Bearing Assemblies
NASA Technical Reports Server (NTRS)
de Baca, Richard C.; Juarez, Alfredo; Peralta, Stephen; Tylka, Jonathan; Rhodes, Richard
2016-01-01
The Z-2 is a candidate for NASA's next generation spacesuit, designed for a range of possible missions with enhanced mobility for spacewalks both on planetary surfaces and in microgravity. Increased mobility was accomplished through innovations in shoulder and hip joints, using a number of new bearings to allow spacesuit wearers to dip, walk, and bend with ease; all important tasks for a planetary explorer collecting samples or traveling over rough terrain. The Advanced Spacesuit Development Team of NASA Johnson Space Center requested that the NASA White Sands Test Facility (WSTF) perform a series failure simulation tests on three titanium bearing assemblies, an elemental part of the joint construction used in new spacesuit designs. This testing simulated two undetected failures within the bearings and as a result the objective of this test program was to evaluate whether a failed or failing bearing could result in ignition of the titanium race material due to friction. The first failure was an inner seal leak sufficient to pressurize the race with +99 percent oxygen. The second failure was an improperly installed or mismatched ball port that created a protrusion in the ball bearing race, partially obstructing the nominal rolling path of each ball bearing. When the spacesuit bearings are assembled, bearing balls are loaded into the assembly via a ball port. The ball port is specific and unique to each bearing assembly (matched pair). The simulated mismatched ball port is a significant source of friction, which would be caused by an assembly error. To evaluate this risk, the bearings were cycled in a simulated worst-case scenario environment, with operational loads, and potential flaw conditions. During test the amount of actuation torque required and heat generated through continuous operation were measured and the bearings were observed for sparks or burning events. This paper provides detailed descriptions of the test hardware, methodology, and results.
Novel device for male infertility screening with single-ball lens microscope and smartphone.
Kobori, Yoshitomo; Pfanner, Peter; Prins, Gail S; Niederberger, Craig
2016-09-01
To investigate the usefulness of a novel semen analysis device consisting of a single-ball lens microscope paired with a state-of-the-art smartphone equipped with a camera. Laboratory investigation. University research laboratory. A total of 50 semen samples obtained from volunteers were analyzed for count, concentration, and motility with an 0.8-mm ball lens and three types of smartphone. Comparisons were made with results obtained with a laboratory-based computer-assisted sperm analysis (CASA) system. None. Sperm concentration; sperm motility. Sperm concentration counted with a ball lens and each smartphone showed a very strong correlation with the CASA results. Likewise, sperm motility calculated with our device showed significant correlations to CASA. If eight spermatozoa or fewer were found on the field of view of an iPhone 6s, the semen specimens were considered to be below the lower reference limit for sperm concentration of World Health Organization 2010 guidelines (15 × 10(6) spermatozoa/mL). The sensitivity was 87.5%, and specificity was 90.9%. Smartphones have great potential to analyze semen because they are portable, contain excellent digital cameras, and can be easily attached to a microscope. A single-ball lens microscope is inexpensive and easy to use for acquiring digital microscopic movies. Given its small size and weight, the device can support testing for male fertility at home or in the field, making it much more convenient and economical than current practice. This single-ball lens microscope provides an easy solution for global users to rapidly screen for male infertility. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Development of Motor Bearings for a New SADA (BepiColombo)
NASA Astrophysics Data System (ADS)
Kreuser, J.; Bachman, R.; Bergrath, B.; Heinrich, B.; Zemann, J.
2013-09-01
The special requirements of the new MPO Solar Array Drive Assembly (SADA) developed for the BepiColombo program demanded also new ball bearing designs. In addition to typical requirements for other bearings in space mechanisms, the BepiColombo mission is characterized by a non-operating time of six years at extreme environmental conditions. In cooperation with RUAG Space CEROBEAR has developed different types of ball bearings for this SADA including motor bearings for the drive, a customized stepper motor.The purpose of this paper is to present and summarize the results of the development of the motor bearings of the SADA.
The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes
DOLEZAL, SAMANTHA M.; FRESE, DEREK L.; LLEWELLYN, TAMRA L.
2016-01-01
The purpose of this study was to determine if combining velocity-based training with eccentric focus (VEB) and velocity-based training (VBT) results in power and strength gains. Nineteen men and women collegiate track and field athletes participated in this study. The subjects completed a 12-week intervention with either a VEB program or a VBT program. To determine the effectiveness of each program, the subjects completed four exercise tests before and after the training period: vertical jump, medicine ball put test, 1RM projected bench press and 1RM projected squat. There were no significant differences between the VBT results and the VEB results. However, there were significant improvements between the pre-test and post-test measures for each group. There were increases in 1RM projected squat for VEB men, VBT men, and VBT women. There were also significant improvements in the VEB male vertical jump and medicine ball put test pre- to post-intervention. For track and field athletes, both programs may result in strength and power gains, however, the results cannot be used to conclude that one resistance training program is superior. PMID:27990226
The Effects of Eccentric, Velocity-Based Training on Strength and Power in Collegiate Athletes.
Dolezal, Samantha M; Frese, Derek L; Llewellyn, Tamra L
2016-01-01
The purpose of this study was to determine if combining velocity-based training with eccentric focus (VEB) and velocity-based training (VBT) results in power and strength gains. Nineteen men and women collegiate track and field athletes participated in this study. The subjects completed a 12-week intervention with either a VEB program or a VBT program. To determine the effectiveness of each program, the subjects completed four exercise tests before and after the training period: vertical jump, medicine ball put test, 1RM projected bench press and 1RM projected squat. There were no significant differences between the VBT results and the VEB results. However, there were significant improvements between the pre-test and post-test measures for each group. There were increases in 1RM projected squat for VEB men, VBT men, and VBT women. There were also significant improvements in the VEB male vertical jump and medicine ball put test pre- to post-intervention. For track and field athletes, both programs may result in strength and power gains, however, the results cannot be used to conclude that one resistance training program is superior.
Ball Screw Actuator Including a Compliant Ball Screw Stop
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)
2015-01-01
An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.
Ball Screw Actuator Including a Compliant Ball Screw Stop
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)
2017-01-01
An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.
Effect of simultaneous model observation and self-modeling of volleyball skill acquisition.
Barzouka, Karolina; Bergeles, Nikolaos; Hatziharistos, Dimitris
2007-02-01
This study examined the effect of feedback with simultaneous skilled model observation and self-modeling on volleyball skill acquisition. 53 pupils 12 to 15 years old formed two experimental groups and one control group who followed an intervention program with 12 practice sessions for acquisition and retention of how to receive a ball. Groups received different types of feedback before and in the middle of each practice session. Reception performance outcome (score) and technique in every group were assessed before and at the end of the intervention program and during the retention phase. A 3 (Group) x 3 (Measurement Period) multivariate analysis of variance with repeated measures was applied to investigate differences. Results showed equivalent improvement in all three groups at the end of the intervention program. In conclusion, types of augmented feedback from the physical education teacher are effective in acquisition and retention of the skill for reception in volleyball.
Wang, Ching-Yi; Hwang, Wen-Juh; Fang, Jing-Jing; Sheu, Ching-Fan; Leong, Iat-Fai; Ma, Hui-Ing
2011-08-01
To compare the performance of reaching for stationary and moving targets in virtual reality (VR) and physical reality in persons with Parkinson's disease (PD). A repeated-measures design in which all participants reached in physical reality and VR under 5 conditions: 1 stationary ball condition and 4 conditions with the ball moving at different speeds. University research laboratory. Persons with idiopathic PD (n=29) and age-matched controls (n=25). Not applicable. Success rates and kinematics of arm movement (movement time, amplitude of peak velocity, and percentage of movement time for acceleration phase). In both VR and physical reality, the PD group had longer movement time (P<.001) and lower peak velocity (P<.001) than the controls when reaching for stationary balls. When moving targets were provided, the PD group improved more than the controls did in movement time (P<.001) and peak velocity (P<.001), and reached a performance level similar to that of the controls. Except for the fastest moving ball condition (0.5-s target viewing time), which elicited worse performance in VR than in physical reality, most cueing conditions in VR elicited performance generally similar to those in physical reality. Although slower than the controls when reaching for stationary balls, persons with PD increased movement speed in response to fast moving balls in both VR and physical reality. This suggests that with an appropriate choice of cueing speed, VR is a promising tool for providing visual motion stimuli to improve movement speed in persons with PD. More research on the long-term effect of this type of VR training program is needed. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1978-01-01
Lubrication technology originally developed for a series of NASA satellites has produced a commercial product for protecting the sound fidelity of phonograph records. Called Sound Guard, the preservative is a spray-on fluid that deposits a microscopically thin protective coating which reduces friction and prevents the hard diamond stylus from wearing away the softer vinyl material of the disc. It is marketed by the Consumer Products Division of Ball Corporation, Muncie, Indiana. The lubricant technology on which Sound Guard is based originated with NASA's Orbiting Solar Observatory (OSO), an Earth-orbiting satellite designed and built by Ball Brothers Research Corporation, Boulder, Colorado, also a division of Ball Corporation. Ball Brothers engineers found a problem early in the OSO program: known lubricants were unsuitable for use on satellite moving parts that would be exposed to the vacuum of space for several months. So the company conducted research on the properties of materials needed for long life in space and developed new lubricants. They worked successfully on seven OSO flights and attracted considerable attention among other aerospace contractors. Ball Brothers now supplies its "Vac Kote" lubricants and coatings to both aerospace and non-aerospace industries and the company has produced several hundred variations of the original technology. Ball Corporation expanded its product line to include consumer products, of which Sound Guard is one of the most recent. In addition to protecting record grooves, Sound Guard's anti-static quality also retards particle accumulation on the stylus. During comparison study by a leading U.S. electronic laboratory, a record not treated by Sound Guard had to be cleaned after 50 plays and the stylus had collected a considerable number of small vinyl particles. The Sound Guard-treated disc was still clean after 100 plays, as was its stylus.
Arched-outer-race ball-bearing analysis considering centrifugal forces
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1972-01-01
A first-order thrust load analysis that considers centrifugal forces but which neglects gyroscopics, elastohydrodynamics, and thermal effects was performed. The analysis was applied to a 150-mm-bore angular-contact ball bearing. Fatigue life, contact loads, and contact angles are shown for conventional and arched bearings. The results indicate that an arched bearing is highly desirable for high-speed applications. In particular, at an applied load of 4448 n (1000 lb) and a DN value of 3 million (20,000 rpm) the arched bearing shows an improvement in life of 306 percent over that of a conventional bearing.
Effect of ball milling materials and methods on powder processing of Bi2223 superconductors
NASA Astrophysics Data System (ADS)
Yavuz, M.; Maeda, H.; Vance, L.; Liu, H. K.; Dou, S. X.
1998-10-01
Various milling systems consisting of agate and polypropylene grinding containers, agate and YSZ balls, and dry and wet milling were used in planetary ball-milling and YSZ balls and YSZ container were used in wet and dry attrition milling. The differently milled powders were then evaluated by measurements of particle size, surface area, porosity, size distribution and chemical analysis of the Si, Zr and C contents. The results show that dry milling is much more efficient for particle size reduction in planetary milling than wet milling, whereas wet milling and dry milling gave quite similar results in attrition milling. Meanwhile 0953-2048/11/10/056/img6 contamination was found in powder milled with an agate container with agate balls. Some C contamination from the polypropylene container was detected after milling, but negligible Zr from YSZ balls and C from the grinding carrier (hexane). It was found that after 1 h milling in the planetary mill fracture mechanisms transform from the elastic to the plastic region. Therefore, further milling is not very effective. It was also shown that the Bi2212 phase decomposes into several non-superconducting oxides such as 0953-2048/11/10/056/img7, CuO and a main amorphous phase after extensive dry milling.
Gan, C L; Hashim, U
2013-06-01
Wearout reliability and high temperature storage life (HTSL) activation energy of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the influence of wire type on the wearout reliability performance of Au and PdCu wire used in fine pitch BGA package after HTSL stress at various aging temperatures. Failure analysis has been conducted to identify the failure mechanism after HTSL wearout conditions for Au and PdCu ball bonds. Apparent activation energies (Eaa) of both wire types are investigated after HTSL test at 150 °C, 175 °C and 200 °C aging temperatures. Arrhenius plot has been plotted for each ball bond types and the calculated Eaa of PdCu ball bond is 0.85 eV and 1.10 eV for Au ball bond in 110 nm semiconductor device. Obviously Au ball bond is identified with faster IMC formation rate with IMC Kirkendall voiding while PdCu wire exhibits equivalent wearout and or better wearout reliability margin compare to conventional Au wirebond. Lognormal plots have been established and its mean to failure (t 50 ) have been discussed in this paper.
NASA Technical Reports Server (NTRS)
Fleming, David P.; Poplawski, J. V.
2002-01-01
Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.
Ball milling: An experimental support to the energy transfer evaluated by the collision model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magini, M.; Iasonna, A.; Padella, F.
1996-01-01
In recent years several attempts have been made in order to understand the fundamentals of the ball milling process. The aim of these approaches is to establish predictive capabilities for this process, i.e. the possibility of obtaining a given product by suitable choosing the proper milling conditions. Maurice and Courtney have modeled ball milling in a planetary and in a vibratory mill including parameters like impact times, areas of the colliding surfaces (derived from hertzian collision theory), powder strain rates and pressure peak during collision. Burgio et al derived the kinematic equations of a ball moving on a planetary millmore » and the consequent ball-to-powder energy transfer occurring in a single collision event. The fraction of input energy transferred to the powder was subsequently estimated by an analysis of the collision event. Finally an energy map was constructed which was the basis for a model with predictive capabilities. The aim of the present article is to show that the arguments used to construct the model of the milling process has substantial experimental support.« less
Marshall, Paul W M; Desai, Imtiaz
2010-06-01
Although there is now some evidence examining the use of a Swiss ball during core stability and resistance exercises, this has commonly been performed using basic or isometric exercises. There is currently no evidence examining more advanced Swiss ball exercises. The purpose of this study was to determine whether or not muscle activity measured during advanced Swiss ball exercises was at an approximate intensity recommended for strength or endurance training in advanced, or novice individuals. After a familiarization session, 14 recreationally active subjects performed 6 different "advanced" Swiss ball exercises in a randomized order. The primary dependent variables in this study were the activity levels collected from anterior deltoid, pectoralis major, rectus abdominis (RA), external obliques, lumbar erector spinae, vastus lateralis (VL), and biceps femoris using surface electromyography. All signals were normalized to maximal voluntary isometric contractions performed before testing for each muscle. The results of this study showed that the Swiss ball roll elicited muscle activity in triceps brachii (72.5+/-32.4%) and VL (83.6+/-44.2%) commensurate with the intensity recommended for strength exercises in advanced trainers. Rectus abdominis activity was greatest during the bridge exercise (61.3+/-28.5%, p
Pitts-Singer, Theresa L; James, Rosalind R
2008-06-01
Cavity-nesting alfalfa leafcutting bees, Megachile rotundata (F.) (Hymenoptera: Megachilidae), are excellent pollinators of alfalfa, Medicago savita L., for seed production. In commercial settings, artificial cavities are placed in field domiciles for nesting and, thereby, bee populations are sustained for future use. For this study, cells from leafcutting bee nests were collected in late summer from commercial seed fields. Over 3 yr (2003-2005), 39 samples in total of approximately equal to 1,000 cells each were taken from several northwestern U.S. states and from Manitoba, Canada. X-radiography of 500 cells from each sample was used to identify "pollen balls" (i.e., cells in which the pollen-nectar provision remained, but the egg or larva, if present, was not detectable on an x-radiograph). Most U.S. samples seemed to have higher proportions of pollen ball cells than Manitoba samples. Pollen ball cells were dissected to determine the moisture condition of the mass provision and true contents of each cell. Most pollen ball cells from Manitoba samples contained fungus, the frequency of which was positively correlated with cool, wet weather. In the United States, most pollen ball cells had moist provisions, and many of them lacked young brood. Correlation analysis revealed that pollen ball cells occurred in greater proportions in fields with more hot days (above 38 degrees C). Broodless pollen ball cells occurred in greater proportions under cool conditions, but dead small larvae (second-third instars) seemed to occur in greater proportions under hot conditions. Pollen ball cells with unhatched eggs and first instars (in the chorion) occurred in lesser proportions under hot conditions.
Linear momentum, angular momentum and energy in the linear collision between two balls
NASA Astrophysics Data System (ADS)
Hanisch, C.; Hofmann, F.; Ziese, M.
2018-01-01
In an experiment of the basic physics laboratory, kinematical motion processes were analysed. The motion was recorded with a standard video camera having frame rates from 30 to 240 fps the videos were processed using video analysis software. Video detection was used to analyse the symmetric one-dimensional collision between two balls. Conservation of linear and angular momentum lead to a crossover from rolling to sliding directly after the collision. By variation of the rolling radius the system could be tuned from a regime in which the balls move away from each other after the collision to a situation in which they re-collide.
ERIC Educational Resources Information Center
Lingard, Bob; Sellar, Sam
2013-01-01
This paper traces developments across Stephen J. Ball's policy sociology in education "oeuvre" and considers their implications for doing research on education policy today. It begins with an account of his policy sociology trilogy from the 1990s, which outlined his conception of the policy cycle consisting of the contexts of influence,…
Parameters affecting the frequency of a fluid oscillator
NASA Astrophysics Data System (ADS)
Cheng, R. M. H.; Kwok, C. K.; Lee, R. S.
1983-06-01
A new type of liquid-operated low-frequency oscillator is introduced. The oscillator consists of a cone-shaped housing with a fluid inlet and two outlet discharging tubes. The fluid discharge is controlled by a ball which blocks one of the outlet tubes. A strong vacuum develops due to the inertial effect of the column of liquid moving downward in the blocked tube. When the initial energy and velocity of the liquid slug are reduced to zero, it starts to return toward the ball. Eventually the combined force of the pressure inside the housing and the momentum of the upcoming slug is large enough to displace the ball to the other outlet tube, and the same procedure is then repeated. The main part of the paper consists of an analysis of the time required for the forward and reverse motion of the slug and for the ball to move from one discharge hole to the other.
NASA Astrophysics Data System (ADS)
Anggrayni, S.; Mubarok, H.; Putri, N. P.; Suprapto, N.; Kholiq, A.
2018-03-01
The viscosity is defined by dimension of a fluid that resists the force tending to motive the fluid to flow. The aim of viscosity experiment is to determine the fluid viscosity coefficient value. By using graphical analysis, the result of oil viscosity coefficient value which performed by laboratory assistant showed: (1) 0.20 Pa.s using solid ball with accuracy 99.64% and (2) 0.21 Pa.s using smaller solid ball with accuracy 99.17%. Meanwhile, the result of oil viscosity coefficient value which performed by freshmen showed: (1) 0.44 Pa.s using solid ball with accuracy 87.85% and (2) 0.32 Pa.s using smaller solid ball with accuracy 89.84%. The differences result of the freshmen and assistant laboratory viscosity experiment are caused by the freshmen calculated the coefficient viscosity value without velocity correction factor and they used small range fluid so the times are not identified well.
Spherical gearing with intermediate ball elements: parameter ranges with a high contact ratio
NASA Astrophysics Data System (ADS)
Gorbenko, M. V.; Gorbenko, T. I.
2017-02-01
The paper presents analytical research of the geometry and kinematical parameters of spherical gearing with ball intermediate elements. The main attention is paid to the influence of the offset coefficient on the tooth geometry generation, the contact ratio and the motion transmission angle. Intermediate ball element racetracks on the gear are trochoidal curves on a spherical surface. Two areas for the offset coefficient values providing a high value of the contact ratio - basic trochoid (without offset) and prolate trochoid with abutting racetracks of adjacent ball elements ― were revealed. Analysis of the investigated parameters showed that for power transmission, it is preferable to use spherical gearing without an offset, and for kinematic transmission, it is possible to use profiles with a large offset. The present study allows making a rational choice of geometrical parameters depending on the transmission predestination.
NASA Astrophysics Data System (ADS)
Mazzoleni, C.; China, S.; Gorkowski, K.; Flowers, B. A.; Aiken, A. C.; Dubey, M. K.
2012-12-01
Carbonaceous aerosol emitted from biomass burning contributes significantly to atmospheric aerosol loadings regionally and globally. The net direct radiative forcing of biomass burning aerosol can be positive and/or negative and this depends on its composition, morphology and mixing state. Biomass burning aerosols can also change the cloud properties as they can act as cloud condensation nuclei. In this study we investigated biomass burning particles emitted from the Las Conchas wildfire in northern New Mexico that started on June 26, 2011 and burned an area of 245 square miles. Aerosol samples were collected on nucleopore filters at the Los Alamos National Laboratory during the third week of the wildfire event. Individual particles (~4000) were investigated using field-emission scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS) to distinguish different carbonaceous particles and their shape, size, elemental composition and mixing state. A thermo-denuder was used to remove compounds that are volatile at temperatures up to 200 C, leaving behind the black carbon and any compounds that did not volatize completely. Smoke particles consisted of a) tar balls, which are amorphous spherical carbonaceous organic aerosols; b) organic particles with inorganic inclusions, c) soot particles and (d) soot with various inclusions. Two distinct kinds of tar balls, "electronically" dark and bright, were found using the field-emission scanning electron microscopy and were characterized for ambient and denuded conditions to understand coating effects and aging. It was found that dark tar balls are generally larger in size than the bright ones. Additionally, the difference between the size of ambient-bright and the size of denuded-bright tar balls was larger than the difference between the size of ambient-dark and the size of denuded-dark tar balls. EDS analysis showed that 70% of the dark tar balls had higher (~60%) relative oxygen content than in the bright tar balls. We conclude that there are two distinct kinds of biomass burning tar balls and that dark tar balls are less volatile than bright tar balls. The morphology of soot particles was also investigated by evaluating their fractal dimension for both ambient (coated with organic and inorganic material) and denuded samples at two different times of the day. The fractal dimension for ambient soot was found to be higher than for denuded soot due to the coating on the ambient soot particles. Finally, the monomer diameter decreased by up to 25% after denuding the particles. This study provides insights on the link between electron microscopy images of single particles and the mixing state, morphology, and evolution of different biomass burning aerosol at the beginning of their lifecycle.
Training strategy of explosive strength in young female volleyball players.
Pereira, Ana; Costa, Aldo M; Santos, Patricia; Figueiredo, Teresa; João, Paulo Vicente
2015-01-01
The aim of this study was to examine the effect of an 8-week combined jump and ball throwing training program in the performance of upper and lower extremities among young female volleyball players of the high school. A total of 20 young female volleyball players playing at Scholar Sport in High School at the district level were divided in two groups: the experimental group (n=10; 14.0±0.0 years; 1.6±0.1 m; 52.0±7.0 kg and 20.7±2.4% body mass) and the control group (n=10; 13.8±0.4 years, 1.6±0.1 m; 53.5±4.7 kg and 20.3±1.7% body mass). The experimental group received additional plyometric and ball throwing exercises besides their normal volleyball practice. The control group underwent only their regular session of training. Strength performance in the experimental group significantly improved (medicine ball and volleyball ball throwing: P=0.00; and counter movement jump: P=0.05), with the improvement ranging from 5.3% to 20.1%. No significant changes in strength performance were observed in the control group (P>0.05). The 8-week combined jump and ball throwing training can significantly improve muscular performance in young female volleyball players. These findings may be useful for all physical education teachers and volleyball coaches. Copyright © 2015 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Geng, Huimin; Brennan, Sarah; Milne, Thomas A.; Chen, Wei-Yi; Li, Yushan; Hurtz, Christian; Kweon, Soo-Mi; Zickl, Lynette; Shojaee, Seyedmehdi; Neuberg, Donna; Huang, Chuanxin; Biswas, Debabrata; Xin, Yuan; Racevskis, Janis; Ketterling, Rhett P.; Luger, Selina M.; Lazarus, Hillard; Tallman, Martin S.; Rowe, Jacob M.; Litzow, Mark R.; Guzman, Monica L.; Allis, C. David; Roeder, Robert G.; Müschen, Markus; Paietta, Elisabeth; Elemento, Olivier; Melnick, Ari M.
2012-01-01
Genetic lesions such as BCR-ABL1, E2A-PBX1 and MLL rearrangements (MLLr) are associated with unfavorable outcomes in adult B-acute lymphoblastic leukemia (B-ALL). Leukemia oncoproteins may directly or indirectly disrupt cytosine methylation patterning to mediate the malignant phenotype. We postulated that DNA methylation signatures in these aggressive B-ALLs would point towards disease mechanisms and useful biomarkers and therapeutic targets. We therefore performed DNA methylation and gene expression profiling on a cohort of 215 adult B-ALL patients enrolled in a single phase III clinical trial (ECOG E2993) and normal control B-cells. In BCR-ABL1-positive B-ALL, aberrant cytosine methylation patterning centered around a cytokine network defined by hypomethylation and overexpression of IL2RA(CD25). The E2993 trial clinical data showed that CD25 expression was strongly associated with a poor outcome in ALL patients regardless of BCR-ABL1 status, suggesting CD25 as a novel prognostic biomarker for risk stratification in B-ALL. In E2A-PBX1-positive B-ALL, aberrant DNA methylation patterning was strongly associated with direct fusion protein binding as shown by the E2A-PBX1 ChIP sequencing (ChIP-seq), suggesting that E2A-PBX1 fusion protein directly remodels the epigenome to impose an aggressive B-ALL phenotype. MLLr B-ALL featured prominent cytosine hypomethylation, which was linked with MLL fusion protein binding, H3K79 dimethylation and transcriptional upregulation, affecting a set of known and newly identified MLL fusion direct targets with oncogenic activity such as FLT3 and BCL6. Notably, BCL6 blockade or loss of function suppressed proliferation and survival of MLLr leukemia cells, suggesting BCL6 targeted therapy as a new therapeutic strategy for MLLr B-ALL. PMID:23107779
Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction
NASA Astrophysics Data System (ADS)
Gayathri, N.; Mukherjee, Paramita
2018-04-01
The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.
Emission Spectroscopy of Atmospheric-Pressure Ball Plasmoids: Higher Energy Reveals a Rich Chemistry
NASA Astrophysics Data System (ADS)
Dubowsky, Scott E.; Rose, Amber Nicole; Glumac, Nick; McCall, Benjamin J.
2017-06-01
Ball plasmoids (self-sustaining spherical plasmas) are a particularly unique example of a non-equilibrium air plasma. These plasmoids have lifetimes on the order of hundreds of milliseconds without an external power source, however, current models dictate that a ball plasmoid should recombine in a millisecond or less. Ball plasmoids are considered to be a laboratory analogue of natural ball lightning, a phenomenon that has eluded scientific explanation for centuries. We are searching for the underlying physicochemical mechanism(s) by which ball plasmoids and (by extension) ball lightning are stabilized using a variety of diagnostic techniques. This presentation will focus on optical emission spectroscopy (OES) of ball plasmoid discharges between 190-850 nm. The previous generation of OES measurements of this system showed emission from only a few atomic and molecular species, however, the energy available for the discharges in these experiments was limited by the size of the capacitor banks and voltages to which the capacitor banks were charged. We are capable of generating plasmoids at much higher energies, and as a result we are the first to report a very rich chemistry previously not observed in ball plasmoids. We have identified signals from species including NO A^{2}Σ^{+}→X^{2}Π, OH A^{2}Σ^{+}→X^{2}Π, NH A^{3}Π→X^{3}Σ^{-}, AlO A^{2}Π→X^{2}Σ^{+}, NH^{+} B^{2}Δ→X^{2}Π, W I, Al I, Cu I, and H_{α}, all of which have not yet been reported for this system. Analysis of the emission spectra and fitting procedures will be discussed, rotational temperatures of constituent species will be reported, and theories of ball plasmoid stabilization based upon these new results will be presented. Versteegh, A.; Behringer, K.; Fantz, U.; Fussman, G.; Jüttner, B.; Noack, S. Plas. Sour. Sci. Technol. 2008, 17(2), 024014 Stephan, K. D.; Dumas, S.; Komala-Noor, L.; McMinn, J. Plas. Sour. Sci. Technol. 2013, 22(2), 025018
Ball Screw Actuator Including a Stop with an Integral Guide
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)
2015-01-01
An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.
Public evaluation of open space in Illinois: citizen support for natural area acquisition.
Backlund, Erik A; Stewart, William P; McDonald, Cary; Miller, Craig
2004-11-01
Numerous studies have indicated a broad-based support for open space preservation and protection. Research also has characterized the public values and rationale that underlie the widespread support for open space. In recognition of the widespread public support for open space, various levels of government have implemented programs to provide public access to open space. There are many different types of open space, ranging from golf courses, ball parks, wildlife areas, and prairies, to name a few. This paper addresses questions related to the types of open space that should be prioritized by planners and natural resource managers. The results of this study are based on a stratified random sample of 5000 households in Illinois that were sent a questionnaire related to their support for various types of open space. Through a comparatively simple action grid analysis, the open space types that should be prioritized for public access include forest areas, stream corridors, wildlife habitat, and lakes/ponds. These were the open space types rated of the highest importance, yet were also the open space types rated the lowest in respondent satisfaction. This kind of analysis does not require the technical expertise of other options for land-use prioritizations (e.g., conjoint analysis, contingent valuation), yet provides important policy directives for planners. Although open space funds often allow for purchase of developed sites such as golf courses, ball parks, and community parks, this study indicates that undeveloped (or nature-based) open space lands are most needed in Illinois.
Studying 3D collisions with smartphones
NASA Astrophysics Data System (ADS)
Pereira, Vanda; Martín-Ramos, Pablo; da Silva, Pedro Pereira; Silva, Manuela Ramos
2017-05-01
This paper describes a conservation of momentum experiment using just smartphones and two beach balls, thus making the experimental study of this movement available to any classroom. For a more thorough analysis of the data, a computer can also be used. Experiments making use of smartphone sensors have been described before, contributing to an improved teaching of classical mechanics. In this experiment, we have made use of two smartphone cameras together with the VidAnalysis free app to track the position of two balls colliding in air during a projectile motion (Fig. 1).
Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Parker, R. J.
1977-01-01
Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.
Spur-Gear-System Efficiency at Part and Full Load
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1980-01-01
A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.
Test results of heat exchanger cleaning in support of ocean thermal energy conversion
NASA Astrophysics Data System (ADS)
Lott, D. F.
1980-12-01
This report documents tests conducted at the Naval Coastal Systems Center (NCSC) in support of the Department of Energy's Ocean Thermal Energy Conversion (OTEC) Program. These tests covered the period September 1978 to May 1980 and evaluated flow-driven brushes, recirculating sponge rubber balls, chlorination, and mechanical system/chlorination combinations for in-situ cleaning of two potential heat exchanger materials: titanium and aluminum alloy 5052. Tests were successful when fouling resistance was 0.0003 sq. ft. hr-F/Btu. Results indicated systems and cleaning techniques using brushes, soft sponge balls, and various concentrations of chlorine had some potential for maintaining heat transfer efficiency.
The role of upper torso and pelvis rotation in driving performance during the golf swing.
Myers, Joseph; Lephart, Scott; Tsai, Yung-Shen; Sell, Timothy; Smoliga, James; Jolly, John
2008-01-15
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.
Physical characteristics that predict involvement with the ball in recreational youth soccer.
Ré, Alessandro H Nicolai; Cattuzzo, Maria Teresa; Henrique, Rafael Dos Santos; Stodden, David F
2016-09-01
This study examined the relative contribution of age, stage of puberty, anthropometric characteristics, health-related fitness, soccer-specific tests and match-related technical performance to variance in involvements with the ball during recreational 5-a-side small-sided (32 × 15 m) soccer matches. Using a cross-sectional design, 80 healthy male students (14.6 ± 0.5 years of age; range 13.6-15.4) who played soccer recreationally were randomly divided into 10 teams and played against each other. Measurements included height, body mass, pubertal status, health-related fitness (12-min walk/run test, standing long jump, 15-m sprint and sit-ups in 30 s), soccer-specific tests (kicking for speed, passing for accuracy and agility run with and without a ball), match-related technical performance (kicks, passes and dribbles) and involvements with the ball during matches. Forward multiple regression analysis revealed that cardiorespiratory fitness (12-min walk/run test) accounted for 36% of the variance in involvements with the ball. When agility with the ball (zigzag running) and power (standing long jump) were included among the predictors, the total explained variance increased to 62%. In conclusion, recreational adolescent players, regardless of their soccer-specific skills, may increase participation in soccer matches most through physical activities that promote improvement in cardiorespiratory fitness, muscle power and agility.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... programming and other errors in the margin calculations. Therefore, the final results are different from the... certain companies. We have corrected programming and other errors in the margins we included in the... Technologies GmbH; Italy--Schaeffler Italia S.r.l./WPB Water Pump Bearing GmbH & Co. KG/The Schaeffler Group...
Measurements of drag and lift on smooth balls in flight
NASA Astrophysics Data System (ADS)
Cross, Rod; Lindsey, Crawford
2017-07-01
Measurements are presented on the drag and lift coefficients for three relatively smooth balls launched in air and tracked with two cameras separated horizontally by 6.4 m. The ball spin was varied in order to investigate whether the Magnus force would increase or decrease when the ball spin was increased. For one ball, the Magnus force increased. For another ball, the Magnus force decreased almost to zero after reaching a maximum. For the third ball, the Magnus force was negative at low ball spins and positive at high ball spins. For one of the balls, the ball spin increased with time as it travelled through the air.
Write On with Continuous Stroke Point.
ERIC Educational Resources Information Center
Thurber, Donald N.
1983-01-01
The continuous stroke print program is intended to lead up to cursive writing by teaching printing using a consistent letter slant and a flowing rhythm absent in the traditional ball-stick method. This approach is also helpful in reading. (CL)
Holloway, Ian W.; Traube, Dorian E.; Kubicek, Katrina; Supan, Jocelyn; Weiss, George; Kipke, Michele D.
2012-01-01
African American young men who have sex with men and transgender persons are at elevated risk for HIV infection. House and Ball communities, networks of mostly African American gay, bisexual and transgender individuals who compete in modeling and dance, represent a prime venue for HIV prevention with these difficult-to-reach populations; however, little research exists on effective approaches to HIV prevention within these communities. Using a mixed-methods approach, the present study sought to document participation in HIV prevention activities of a sample from the Los Angeles House and Ball communities (N=263) in order to inform future service development. While 80% of participants were tested for HIV within the past 6 months, only 26% report HIV prevention program attendance. House leaders recommend a holistic approach to HIV prevention, one that incorporates attention to social problems beyond HIV, including poverty, housing difficulties, and lack of job training. PMID:23016504
Simulations of a Molecular Cloud experiment using CRASH
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.
Jones, Margaret T
2014-09-01
The purpose was to examine the effects of progressive-overload, whole-body vibration (WBV) training on strength and power as part of a 15-week periodized, strength training (ST) program. Eighteen collegiate women athletes with ≥1 year of ST and no prior WBV training participated in the crossover design. Random assignment to 1 of the 2 groups followed pretests of seated medicine ball throw (SMBT), single-leg hop for distance (LSLH, RSLH), countermovement jump (CMJ), 3 repetition maximum (3RM) front squat (FS), pull-up (PU), and 3RM bench press (BP). Whole-body vibration was two 3-week phases of dynamic and static hold body weight exercises administered 2 d·wk in ST sessions throughout the 15-week off-season program. Total WBV exposure was 6 minutes broken into 30-second bouts with 60-second rest (1:2 work-to-relief ratio). Exercises, frequency, and amplitude progressed in intensity from the first 3-week WBV training to the second 3-week phase. Repeated-measures analysis of variances were used to analyze the SMBT, CMJ, LSLH, RSLH, FS, PU, and BP tests. Alpha level was p ≤ 0.05. Front squat, LSLH, and RSLH increased (p = 0.001) from pre- to posttest; FS increased from mid- to posttest. Pull-up increased (p = 0.008) from pre- to posttest. Seated medicine ball throw and BP showed a trend of increased performance from pre- to posttest (p = 0.11). Two 3-week phases of periodized, progressive-overload WBV + ST training elicited gains in strength and power during a 15-week off-season program. Greatest improvements in performance tests occurred in the initial WBV phase. Implementing WBV in conjunction with ST appears to be more effective in the early phases of training.
Jo, Wan-Kuen; Lee, Jong-Hyo; Lim, Ho-Jin; Jeong, Woo-Sik
2008-01-01
The present study investigated the emissions of naphthalene and other compounds from several different moth repellents (MRs) and one toilet deodorant block (TDB) currently sold in Korea, using a headspace analysis. The emission factors and emission rates of naphthalene were studied using a small-scale environmental chamber. Paper-type products emitted a higher concentration of the total volatile organic compounds (VOCs) (normalized to the weight of test piece) than ball-type products, which in turn emitted higher concentration than a gel-type product. In contrast, naphthalene was either the most or the second highest abundant compound for the four ball products, whereas for paper and gel products it was not detected or was detected at much lower levels. The abundance of naphthalene ranged between 18.4% and 37.3% for ball products. The results showed that the lower the air changes per hour (ACH) level was, the higher the naphthalene concentrations became. In general, a low ACH level suggests a low ventilation rate. The emission factor for naphthalene was nearly 100 times higher for a ball MR than for a gel or a paper MR. For the ball MR, the lower ACH level resulted in higher emission rate.
Contamination risk of stable isotope samples during milling.
Isaac-Renton, M; Schneider, L; Treydte, K
2016-07-15
Isotope analysis of wood is an important tool in dendrochronology and ecophysiology. Prior to mass spectrometry analysis, wood must be homogenized, and a convenient method involves a ball mill capable of milling samples directly in sample tubes. However, sample-tube plastic can contaminate wood during milling, which could lead to biological misinterpretations. We tested possible contamination of whole wood and cellulose samples during ball-mill homogenization for carbon and oxygen isotope measurements. We used a multi-factorial design with two/three steel milling balls, two sample amounts (10 mg, 40 mg), and two milling times (5 min, 10 min). We further analyzed abrasion by milling empty tubes, and measured the isotope ratios of pure contaminants. A strong risk exists for carbon isotope bias through plastic contamination: the δ(13) C value of polypropylene deviated from the control by -6.77‰. Small fibers from PTFE filter bags used during cellulose extraction also present a risk as the δ(13) C value of this plastic deviated by -5.02‰. Low sample amounts (10 mg) showed highest contamination due to increased abrasion during milling (-1.34‰), which is further concentrated by cellulose extraction (-3.38‰). Oxygen isotope measurements were unaffected. A ball mill can be used to homogenize samples within test tubes prior to oxygen isotope analysis, but not prior to carbon or radiocarbon isotope analysis. There is still a need for a fast, simple and contamination-free sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Whisker Formation on SAC305 Soldered Assemblies
NASA Astrophysics Data System (ADS)
Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.
2014-11-01
This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.
Muscle strength and golf performance: a critical review.
Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J
2011-01-01
Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More studies with elite participants, either professional or amateur, would be especially desirable. Key pointsPOSITIVE CORRELATIONS EXIST BETWEEN: 1) handicap and swing performance variables; 2) muscle strength and skill (handicap and/or golf score); and 3) driving dis-tance, swing speed, ball speed and muscle strength.Leg-hip, trunk power and grip strength seem espe-cially relevant for golf performance improvement.Further research should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict assessment pro-tocols which adequately relate to specific golf mo-tion, age and skill level.
Muscle Strength And Golf Performance: A Critical Review
Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J.
2011-01-01
Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More studies with elite participants, either professional or amateur, would be especially desirable. Key points Positive correlations exist between: 1) handicap and swing performance variables; 2) muscle strength and skill (handicap and/or golf score); and 3) driving dis-tance, swing speed, ball speed and muscle strength. Leg-hip, trunk power and grip strength seem espe-cially relevant for golf performance improvement. Further research should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict assessment pro-tocols which adequately relate to specific golf mo-tion, age and skill level. PMID:24149290
Effects of a Summer Treatment Program on Functional Sports Outcomes in Young Children with ADHD
Fabiano, Gregory A.; Waschbusch, Daniel A.; Belin, Peter J.; Gnagy, Elizabeth M.; Pelham, William E.; Greiner, Andrew R.; Roemmich, James N.
2015-01-01
Participation in youth sports can be very beneficial, but children with Attention Deficit Hyperactivity Disorder (ADHD) may participate less often and less successfully. The current study evaluated functional sports outcomes for children with ADHD who attended an intensive behavioral treatment program that included a sports training component, and it compared outcomes to children with ADHD who did not attend the program. Results suggest that treatment resulted in significant improvements in many aspects of children’s sports functioning, including knowledge of game rules, in vivo game performance, and fundamental skill tasks (motor proficiency, ability to trap a soccer ball appropriately, reduced handball penalties in soccer, and improved ability to catch a baseball). Parents also reported improved sports skills and good sportsmanship in the treatment group. No differences between groups were evident on additional skill tasks evaluating accurately kicking a soccer ball, throwing a baseball, or hitting a baseball off a tee. These results suggest intensive behavioral intervention that includes sports training can significantly improve functional sports outcomes for young children with ADHD. PMID:24362766
Biswas, Sondip K; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X; Lo, Woo-Kuen
2010-11-09
Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5-20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens.
Biswas, Sondip K.; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X.
2010-01-01
Purpose Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Methods Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5–20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. Results SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Conclusions Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens. PMID:21139982
Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard
2014-11-01
Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).
Improved Method Being Developed for Surface Enhancement of Metallic Materials
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.
2001-01-01
Surface enhancement methods induce a layer of beneficial residual compressive stress to improve the impact (FOD) resistance and fatigue life of metallic materials. A traditional method of surface enhancement often used is shot peening, in which small steel spheres are repeatedly impinged on metallic surfaces. Shot peening is inexpensive and widely used, but the plastic deformation of 20 to 40 percent imparted by the impacts can be harmful. This plastic deformation can damage the microstructure, severely limiting the ductility and durability of the material near the surface. It has also been shown to promote accelerated relaxation of the beneficial compressive residual stresses at elevated temperatures. Low-plasticity burnishing (LPB) is being developed as an improved method for the surface enhancement of metallic materials. LPB is being investigated as a rapid, inexpensive surface enhancement method under NASA Small Business Innovation Research contracts NAS3-98034 and NAS3-99116, with supporting characterization work at NASA. Previously, roller burnishing had been employed to refine surface finish. This concept was adopted and then optimized as a means of producing a layer of compressive stress of high magnitude and depth, with minimal plastic deformation (ref. 1). A simplified diagram of the developed process is given in the following figure. A single pass of a smooth, free-rolling spherical ball under a normal force deforms the surface of the material in tension, creating a compressive layer of residual stress. The ball is supported in a fluid with sufficient pressure to lift the ball off the surface of the retaining spherical socket. The ball is only in mechanical contact with the surface of the material being burnished and is free to roll on the surface. This apparatus is designed to be mounted in the conventional lathes and vertical mills currently used to machine parts. The process has been successfully applied to nickel-base superalloys by a team from the NASA Glenn Research Center, Lambda Research, and METCUT Research, as supported by the NASA Small Business Innovation Research Phase I and II programs, the Ultra Safe program, and the Ultra- Efficient Engine Technology (UEET) Program.
2013-09-01
75 Figure 25: Swing Weight Analysis....................................................................................76 Figure 26...AN/SPY-1D radar “can track golf ball-sized targets at ranges in excess of 165 kilometers” (Robinson, 2004). Given the radar cross section (RCS) of a... golf ball (calculated as a simple metallic sphere), it was determined that this would correspond to a maximum detection range beyond the Launch
Evaluation of possible head injuries ensuing a cricket ball impact.
Mohotti, Damith; Fernando, P L N; Zaghloul, Amir
2018-05-01
The aim of this research is to study the behaviour of a human head during the event of an impact of a cricket ball. While many recent incidents were reported in relation to head injuries caused by the impact of cricket balls, there is no clear information available in the published literature about the possible threat levels and the protection level of the current protective equipment. This research investigates the effects of an impact of a cricket ball on a human head and the level of protection offered by the existing standard cricket helmet. An experimental program was carried out to measure the localised pressure caused by the impact of standard cricket balls. The balls were directed at a speed of 110 km/h on a 3D printed head model, with and without a standard cricket helmet. Numerical simulations were carried out using advanced finite element package LS-DYNA to validate the experimental results. The experimental and numerical results showed approximately a 60% reduction in the pressure on the head model when the helmet was used. Both frontal and side impact resulted in head acceleration values in the range of 225-250 g at a ball speed of 110 km/h. There was a 36% reduction observed in the peak acceleration of the brain when wearing a helmet. Furthermore, numerical simulations showed a 67% reduction in the force on the skull and a 95% reduction in the skull internal energy when introducing the helmet. (1) Upon impact, high localised pressure could cause concussion for a player without helmet. (2) When a helmet was used, the acceleration of the brain observed in the numerical results was at non-critical levels according to existing standards. (3) A significant increase in the threat levels was observed for a player without helmet, based on force, pressure, acceleration and energy criteria, which resulted in recommending the compulsory use of the cricket helmet. (4) Numerical results showed a good correlation with experimental results and hence, the numerical technique used in this study can be recommended for future applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Where Are You Throwing the Ball? I Better Watch Your Body, Not Just Your Arm!
Maselli, Antonella; Dhawan, Aishwar; Cesqui, Benedetta; Russo, Marta; Lacquaniti, Francesco; d'Avella, Andrea
2017-01-01
The ability to intercept or avoid a moving object, whether to catch a ball, snatch one's prey, or avoid the path of a predator, is a skill that has been acquired throughout evolution by many species in the animal kingdom. This requires processing early visual cues in order to program anticipatory motor responses tuned to the forthcoming event. Here, we explore the nature of the early kinematics cues that could inform an observer about the future direction of a ball projected with an unconstrained overarm throw. Our goal was to pinpoint the body segments that, throughout the temporal course of the throwing action, could provide key cues for accurately predicting the side of the outgoing ball. We recorded whole-body kinematics from twenty non-expert participants performing unconstrained overarm throws at four different targets placed on a vertical plane at 6 m distance. In order to characterize the spatiotemporal structure of the information embedded in the kinematics of the throwing action about the outgoing ball direction, we introduced a novel combination of dimensionality reduction and machine learning techniques. The recorded kinematics clearly shows that throwing styles differed considerably across individuals, with corresponding inter-individual differences in the spatio-temporal structure of the thrower predictability. We found that for most participants it is possible to predict the region where the ball hit the target plane, with an accuracy above 80%, as early as 400-500 ms before ball release. Interestingly, the body parts that provided the most informative cues about the action outcome varied with the throwing style and during the time course of the throwing action. Not surprisingly, at the very end of the action, the throwing arm is the most informative body segment. However, cues allowing for predictions to be made earlier than 200 ms before release are typically associated to other body parts, such as the lower limbs and the contralateral arm. These findings are discussed in the context of the sport-science literature on throwing and catching interactive tasks, as well as from the wider perspective of the role of sensorimotor coupling in interpersonal social interactions.
Novel mathematical model to estimate ball impact force in soccer.
Iga, Takahito; Nunome, Hiroyuki; Sano, Shinya; Sato, Nahoko; Ikegami, Yasuo
2017-11-22
To assess ball impact force during soccer kicking is important to quantify from both performance and chronic injury prevention perspectives. We aimed to verify the appropriateness of previous models used to estimate ball impact force and to propose an improved model to better capture the time history of ball impact force. A soccer ball was fired directly onto a force platform (10 kHz) at five realistic kicking ball velocities and ball behaviour was captured by a high-speed camera (5,000 Hz). The time history of ball impact force was estimated using three existing models and two new models. A new mathematical model that took into account a rapid change in ball surface area and heterogeneous ball deformation showed a distinctive advantage to estimate the peak forces and its occurrence times and to reproduce time history of ball impact forces more precisely, thereby reinforcing the possible mechanics of 'footballer's ankle'. Ball impact time was also systematically shortened when ball velocity increases in contrast to practical understanding for producing faster ball velocity, however, the aspect of ball contact time must be considered carefully from practical point of view.
Surface Integrity of Inconel 718 by Ball Burnishing
NASA Astrophysics Data System (ADS)
Sequera, A.; Fu, C. H.; Guo, Y. B.; Wei, X. T.
2014-09-01
Inconel 718 has wide applications in manufacturing mechanical components such as turbine blades, turbocharger rotors, and nuclear reactors. Since these components are subject to harsh environments such as high temperature, pressure, and corrosion, it is critical to improve the functionality to prevent catastrophic failure due to fatigue or corrosion. Ball burnishing as a low plastic deformation process is a promising technique to enhance surface integrity for increasing component fatigue and corrosion resistance in service. This study focuses on the experimental study on surface integrity of burnished Inconel 718. The effects of burnishing ball size and pressure on surface integrity factors such as surface topography, roughness, and hardness are investigated. The burnished surfaces are smoother than the as-machined ones. Surface hardness after burnishing is higher than the as-machined surfaces, but become stable over a certain burnishing pressure. There exists an optimal process space of ball sized and burnishing pressure for surface finish. In addition, surface hardness after burnishing is higher than the as-machined surfaces, which is confirmed by statistical analysis.
Analysis of Retainer Induced Disturbances of Reaction Wheel
NASA Astrophysics Data System (ADS)
Taniwaki, Shigemune; Kudo, Masahito; Sato, Makoto; Ohkami, Yoshiaki
A ball bearing reaction wheel (RW) is a key attitude control actuator of spacecrafts, but it is also a major source of inner disturbances. Future space mission requires high attitude stability, and disturbance property of the RW must be improved. There are some disturbance sources inside the RW, and abnormal motion of a retainer is one of the most significant ones. The retainer is one of mechanical parts of a ball bearing supporting a rotor spin axis. It is used to keep the ball intervals. Therefore it is nonholonomically constrained with balls, an inner race, and an outer race, and its complex motion causes disturbances which are difficult to be effectively removed. In this paper, dynamics of the retainer is investigated through experimental tests and numerical simulations. Disturbances of normal and abnormal RWs are compared, and relation between retainer mass imbalances and their dynamics are investigated. As results, a trade-off relation between instability reduction and disturbance reduction is verified and one of the criteria to decide the appropriate mass imbalance is proposed.
Factors determining the spin axis of a pitched fastball in baseball.
Jinji, Tsutomu; Sakurai, Shinji; Hirano, Yuichi
2011-04-01
In this study, we wished to investigate the factors that determine the direction of the spin axis of a pitched baseball. Nineteen male baseball pitchers were recruited to pitch fastballs. The pitching motion was recorded with a three-dimensional motion analysis system (1000 Hz), and the orientations of the hand segment in a global coordinate system were calculated using Euler rotation angles. Reflective markers were attached to the ball, and the direction of the spin axis was calculated on the basis of their positional changes. The spin axis directions were significantly correlated with the orientations of the hand just before ball release. The ball is released from the fingertip and rotates on a plane that is formed by the palm and fingers; the spin axis of the ball is parallel to this plane. The lift force of the pitched baseball is largest when the angular and translational velocity vectors are mutually perpendicular. Furthermore, to increase the lift forces for the fastballs, the palm must face home plate.
NASA Astrophysics Data System (ADS)
Siewers, Fredrick D.; Phillips, Tom L.
2015-11-01
Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence suggests that CO2 degassing was important in coal-ball formation in the Herrin Coal, which mainly occurred sequentially upward with peat accumulation in the sites studied.
Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1
NASA Technical Reports Server (NTRS)
Marshall, D. D.; Montgomery, E. E.; New, L. S.; Stone, M. A.; Tiller, B. K.
1984-01-01
Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM.
Choi, Jisoo; Shin, Dong-Ah; Kim, Sohee
2017-03-15
A three-dimensional finite element model of intact lumbar spine was constructed and four surgical finite element models implanted with ball-and-socket artificial discs with four different radii of curvature were compared. To investigate biomechanical effects of the curvature of ball-and-socket artificial disc using finite element analysis. Total disc replacement (TDR) has been accepted as an alternative treatment because of its advantages over spinal fusion methods in degenerative disc disease. However, the influence of the curvature of artificial ball-and-socket discs has not been fully understood. Four surgical finite element models with different radii of curvature of ball-and-socket artificial discs were constructed. The range of motion (ROM) increased with decreasing radius of curvature in extension, flexion, and lateral bending, whereas it increased with increasing radius of curvature in axial torsion. The facet contact force was minimum with the largest radius of curvature in extension, flexion, and lateral bending, whereas it was maximum with the largest radius in axial torsion. It was also affected by the disc placement, more with posterior placement than anterior placement. The stress in L4 cancellous bone increased when the radius of curvature was too large or small. The geometry of ball-and-socket artificial disc significantly affects the ROM, facet contact force, and stress in the cancellous bone at the surgical level. The implication is that in performing TDR, the ball-and-socket design may not be ideal, as ROM and facet contact force are sensitive to the disc design, which may be exaggerated by the individual difference of anatomical geometry. N/A.
Yodoya, Mitsuko; Hiraki, Takao; Iguchi, Toshihiro; Fujiwara, Hiroyasu; Matsui, Yusuke; Masaoka, Yoshihisa; Sakurai, Jun; Mitsuhashi, Toshiharu; Gobara, Hideo; Kanazawa, Susumu
2017-06-01
To retrospectively evaluate the effect of cryoablation of renal-cell carcinoma on nearby renal cysts with the goal to investigate the potential for an alternative therapy to treat symptomatic renal cysts. The study population comprised 46 cysts (mean size, 12 mm; range, 5-43 mm) that were within or near the ice ball during cryoablation in 22 patients. Size change of each cyst was evaluated via enhanced CT or MR imaging before and 1, 3, 6, and 12 months after cryoablation. Forty-one cysts were also followed after 12 months. Variables including positional relationship between the cyst and the ice ball were evaluated via linear regression analysis using generalized estimating equation models to determine which factors affected cyst shrinkage rate at 12 months. Fifteen, 12, and 19 cysts were completely included in, partially included in, or excluded from the ice ball, respectively. The overall shrinkage rate was 62%, and 57% of cysts (26 of 46) had disappeared at 12 months. Only the relationship between the cyst and the ice ball was significantly (P < .001) associated with cyst shrinkage rate. Cyst disappearance rates at 12 months were 100% (15 of 15), 67% (8 of 12), and 16% (3 of 19) for cysts completely included, partially included, and excluded from the ice ball, respectively. Among the 22 cysts that disappeared at 12 months and continued to be followed, none recurred after 12 months. All renal cysts that were completely included in the ice ball disappeared after cryoablation, demonstrating the potential utility of cryoablation as an alternative therapy for symptomatic renal cysts. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
...: antifriction balls, ball bearings with integral shafts, ball bearings (including radial ball bearings) and... thereof (inner race, outer race, cage, rollers, balls, seals, shields, etc.) outlined above with certain...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... balls, ball bearings with integral shafts, ball bearings (including radial ball bearings) and parts... all the subject bearings and parts thereof (inner race, outer race, cage, rollers, balls, seals...
Dual load path ball screw with rod end swivel
NASA Technical Reports Server (NTRS)
Wngett, Paul (Inventor)
2002-01-01
A dual drive ball has a ball screw shaft coupled at one end to a gear train and coupled at the other end to a ball screw nut. The ball screw shaft and ball screw nut are connected through complementary helical grooves filled with ball bearing balls. The outer surface of the ball screw nut is plined and can be driven by a second gear train. An output tube is coupled at one end to the ball screw nut and at its opposite end has a connector portion with a groove on its inner surface. A rod end has a coupling member for coupling to a surface to be actuated and a shaft portion with a groobe on its outer surface. This shaft portion is received with in the outputtube portion and the corresponding grooves are coupled through the use of a plurality of ball bearing balls.
A Vibrating Wire System For Quadrupole Fiducialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Zachary
2010-12-13
A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.« less
ERIC Educational Resources Information Center
Wenger-Schulman, A. R. S.; Hoffman, Lauren
2018-01-01
Middle School 88 in Brooklyn, New York serves a community of students often considered at high risk for dropping out of high school and other socially undesirable behaviors. In this high-need setting, the authors designed and implemented an environmental education program designed to meet the needs of urban youth of color. The approach they used,…
ERIC Educational Resources Information Center
Efraimidou, Vasiliki; Sidiropoulou, Maria; Giagazoglou, Paraskevi; Proios, Miltiadis; Tsimaras, Vasileios; Orologas, Anastasios
2016-01-01
The purpose of this investigation was to examine the effect of a music and movement intervention program on gait, balance and psychological parameters of 10 male athletes in throwing events (ball and disc) with Cerebral Palsy (CP) (spastic hemiplegia), all coming from a sport club in Thessaloniki. Participants were divided randomly by methodical…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, Jenny L.; Malm, W. C.; Laskin, Alexander
2005-11-09
The Yosemite Aerosol Characterization Study of summer 2002 (YACS) occurred during an active fire season in the western U. S., and provided an opportunity to investigate many unresolved issues related to the radiative effects of biomass burning aerosols. Single particle analysis was performed on field collected aerosol samples using an array of electron microscopy techniques. Amorphous carbon spheres, or “tar balls”, were present in samples collected during episodes of high particle light scattering coefficients that occurred during the peak of a smoke/haze event. The highest concentrations of light-absorbing carbon from a dual-wavelength aethalometer (λ = 370 and 880 nm) occurredmore » during periods when the particles were predominantly tar balls, indicating they do absorb light in the UV and near-IR range of the solar spectrum. Closure experiments of mass concentrations and light scattering coefficients during periods dominated by tar balls did not require any distinct assumptions of organic carbon molecular weight correction factors, density, or refractive index compared to periods dominated by other types of organic carbon aerosols. Measurements of the hygroscopic behavior of tar balls using an environmental SEM indicate that tar balls do not exhibit deliquescence, but do uptake some water at high (~83 %) relative humidity. The ability of tar balls to efficiently scatter and absorb light, and to absorb water has important implications for their role in regional haze and climate fence.« less
Analysis of particle size to erosion wear of sliding sleeve ball seat based on fluent software
NASA Astrophysics Data System (ADS)
Ding, Kun; Yin, Hongcheng; Wan, Bingqian; Cheng, Hao; Xiang, Lu; Li, Jianmin
2017-04-01
The fracturing has become the most offensive stimulation treatment in the low permeability reservoir. But, as the construction displacement and sand dosage of overlong horizontal well were increased continuously, the erosion wear of ball seat of pitching sliding sleeve was increasingly serious, which might lead to the failure of opening the sliding sleeve. In the existing literature, there were many researches on the erosion wear of liquid-solid two-phase flow in the diameter of sudden expansion pipe, but the influence of solid particle with mixed particle size to the erosion wear was not considered. This paper studied the erosion wear of ball seat according to the mixed proppant with different particle sizes, and carried out the numerical simulation with Fluent software with the Euler two-fluid theory. The results showed that: the erosion wear rate of ball seat is in inversely proportional to the particle size of proppant; the erosion wear rate of ball seat is different when the volume fraction of proppant with different particle sizes is changed; and for the mixed proppant of which the particle size is 0.3mm and 0.8mm, the erosion wear rate of ball seat is minimum when the volume fraction of proppant, of which the particle size is 0.3mm, is about 20%. The simulated result contributed to the deep study on erosion wear law of solid particle, and meanwhile, provided a certain reference basis for the selection of staged fracturing material of horizontal well.
SHABERTH - ANALYSIS OF A SHAFT BEARING SYSTEM (CRAY VERSION)
NASA Technical Reports Server (NTRS)
Coe, H. H.
1994-01-01
The SHABERTH computer program was developed to predict operating characteristics of bearings in a multibearing load support system. Lubricated and non-lubricated bearings can be modeled. SHABERTH calculates the loads, torques, temperatures, and fatigue life for ball and/or roller bearings on a single shaft. The program also allows for an analysis of the system reaction to the termination of lubricant supply to the bearings and other lubricated mechanical elements. SHABERTH has proven to be a valuable tool in the design and analysis of shaft bearing systems. The SHABERTH program is structured with four nested calculation schemes. The thermal scheme performs steady state and transient temperature calculations which predict system temperatures for a given operating state. The bearing dimensional equilibrium scheme uses the bearing temperatures, predicted by the temperature mapping subprograms, and the rolling element raceway load distribution, predicted by the bearing subprogram, to calculate bearing diametral clearance for a given operating state. The shaft-bearing system load equilibrium scheme calculates bearing inner ring positions relative to the respective outer rings such that the external loading applied to the shaft is brought into equilibrium by the rolling element loads which develop at each bearing inner ring for a given operating state. The bearing rolling element and cage load equilibrium scheme calculates the rolling element and cage equilibrium positions and rotational speeds based on the relative inner-outer ring positions, inertia effects, and friction conditions. The ball bearing subprograms in the current SHABERTH program have several model enhancements over similar programs. These enhancements include an elastohydrodynamic (EHD) film thickness model that accounts for thermal heating in the contact area and lubricant film starvation; a new model for traction combined with an asperity load sharing model; a model for the hydrodynamic rolling and shear forces in the inlet zone of lubricated contacts, which accounts for the degree of lubricant film starvation; modeling normal and friction forces between a ball and a cage pocket, which account for the transition between the hydrodynamic and elastohydrodynamic regimes of lubrication; and a model of the effect on fatigue life of the ratio of the EHD plateau film thickness to the composite surface roughness. SHABERTH is intended to be as general as possible. The models in SHABERTH allow for the complete mathematical simulation of real physical systems. Systems are limited to a maximum of five bearings supporting the shaft, a maximum of thirty rolling elements per bearing, and a maximum of one hundred temperature nodes. The SHABERTH program structure is modular and has been designed to permit refinement and replacement of various component models as the need and opportunities develop. A preprocessor is included in the IBM PC version of SHABERTH to provide a user friendly means of developing SHABERTH models and executing the resulting code. The preprocessor allows the user to create and modify data files with minimal effort and a reduced chance for errors. Data is utilized as it is entered; the preprocessor then decides what additional data is required to complete the model. Only this required information is requested. The preprocessor can accommodate data input for any SHABERTH compatible shaft bearing system model. The system may include ball bearings, roller bearings, and/or tapered roller bearings. SHABERTH is written in FORTRAN 77, and two machine versions are available from COSMIC. The CRAY version (LEW-14860) has a RAM requirement of 176K of 64 bit words. The IBM PC version (MFS-28818) is written for IBM PC series and compatible computers running MS-DOS, and includes a sample MS-DOS executable. For execution, the PC version requires at least 1Mb of RAM and an 80386 or 486 processor machine with an 80x87 math co-processor. The standard distribution medium for the IBM PC version is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The standard distribution medium for the CRAY version is also a 5.25 inch 360K MS-DOS format diskette, but alternate distribution media and formats are available upon request. The original version of SHABERTH was developed in FORTRAN IV at Lewis Research Center for use on a UNIVAC 1100 series computer. The Cray version was released in 1988, and was updated in 1990 to incorporate fluid rheological data for Rocket Propellant 1 (RP-1), thereby allowing the analysis of bearings lubricated with RP-1. The PC version is a port of the 1990 CRAY version and was developed in 1992 by SRS Technologies under contract to NASA Marshall Space Flight Center.
Carboch, Jan; Süss, Vladimir; Kocib, Tomas
2014-01-01
Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers’ movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key points Players have shorter initial move time when they are facing the ball machine. Using the ball machine results in different swing timing and movement coordination. The use of the ball machine should be limited. PMID:24790483
Carboch, Jan; Süss, Vladimir; Kocib, Tomas
2014-05-01
Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers' movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key pointsPlayers have shorter initial move time when they are facing the ball machine.Using the ball machine results in different swing timing and movement coordination.The use of the ball machine should be limited.
Ric, Angel; Torrents, Carlota; Gonçalves, Bruno; Torres-Ronda, Lorena; Sampaio, Jaime; Hristovski, Robert
2017-01-01
The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players' spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a) players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b) players were allowed to move to an adjacent zone, and; c) non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players' long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players' positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the coordinative state became highly unstable when the distance from the target decreased. Ball location relative to the scoring zone and interpersonal distance constitute key environmental information that constrains the players' coordinative behaviour. Based on our results, dynamic overlap is presented as a good option to capture tactical performance. Moreover, the selected collective (i.e. relational) variables would allow coaches to identify the effects of training drills on teams and players' behaviour. More research is needed considering these type variables to understand how the manipulation of constraints induce a more stable or flexible dynamical structure of tactical behaviour.
Torrents, Carlota; Gonçalves, Bruno; Torres-Ronda, Lorena; Sampaio, Jaime; Hristovski, Robert
2017-01-01
The analysis of positional data in association football allows the spatial distribution of players during matches to be described in order to improve the understanding of tactical-related constraints on the behavioural dynamics of players. The aim of this study was to identify how players’ spatial restrictions affected the exploratory tactical behaviour and constrained the perceptual-motor workspace of players in possession of the ball, as well as inter-player passing interactions. Nineteen professional outfield male players were divided into two teams of 10 and 9 players, respectively. The game was played under three spatial constraints: a) players were not allowed to move out of their allocated zones, except for the player in possession of the ball; b) players were allowed to move to an adjacent zone, and; c) non-specific spatial constraints. Positional data was captured using a 5 Hz interpolated GPS tracking system and used to define the configuration states of players for each second in time. The configuration state comprised 37 categories derived from tactical actions, distance from the nearest opponent, distance from the target and movement speed. Notational analysis of players in possession of the ball allowed the mean time of ball possession and the probabilities of passing the ball between players to be calculated. The results revealed that the players’ long-term exploratory behaviour decreased and their short-term exploration increased when restricting their space of interaction. Relaxing players’ positional constraints seemed to increase the speed of ball flow dynamics. Allowing players to move to an adjacent sub-area increased the probabilities of interaction with the full-back during play build-up. The instability of the coordinative state defined by being free from opponents when players had the ball possession was an invariant feature under all three task constraints. By allowing players to move to adjacent sub-areas, the coordinative state became highly unstable when the distance from the target decreased. Ball location relative to the scoring zone and interpersonal distance constitute key environmental information that constrains the players’ coordinative behaviour. Based on our results, dynamic overlap is presented as a good option to capture tactical performance. Moreover, the selected collective (i.e. relational) variables would allow coaches to identify the effects of training drills on teams and players’ behaviour. More research is needed considering these type variables to understand how the manipulation of constraints induce a more stable or flexible dynamical structure of tactical behaviour. PMID:28708868
Teaching in Overseas Military Settings.
ERIC Educational Resources Information Center
McKinney, Fred
1980-01-01
Reveals strengths and weaknesses encountered by a psychology teacher involved in the overseas graduate counseling program for Ball State University. Problems included lack of proper teaching and counseling facilities, long teaching hours, and civilian teachers' ignorance of military protocol. Advantages included helping military personnel obtain a…
Performance of 75 millimeter-bore arched outer-race ball bearings
NASA Technical Reports Server (NTRS)
Coe, H. H.; Hamrock, B. J.
1976-01-01
An investigation was performed to determine the operating characteristics of 75-mm bore, arched outer-race bearings, and to compare the data with those for a similar, but conventional, deep groove ball bearing. Further, results of an analytical study, made using a computer program developed previously, were compared with the experimental data. Bearings were tested up to 28,000 rpm shaft speed with a load of 2200 N (500 lb). The amount of arching was 0.13, 0.25, and 0.51 mm (.005, .010, and .020 in.). All bearings operated satisfactorily. The outer-race temperatures and the torques, however, were consistently higher for the arched bearings than for the conventional bearing.
Performance of 75-millimeter bore arched outer-race ball bearings
NASA Technical Reports Server (NTRS)
Coe, H. H.; Hamrock, B. J.
1976-01-01
An investigation was performed to determine the operating characteristics of 75-mm bore, arched outer-race bearings, and to compare the data with those for a similar, but conventional, deep groove ball bearing. Further, results of an analytical study, made using a computer program developed previously, were compared with the experimental data. Bearings were tested up to 28,000 rpm shaft speed with a load of 2,200 N (500 lb). The amount of arching was 0.13, 0.25, and 0.51 mm (0.005, 0.010, and 0.020 in). All bearings operated satisfactorily. The outer-race temperatures and the torques, however, were consistently higher for the arched bearings than for the conventional bearings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.
2015-11-15
High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less
Does player time-in-game affect tackle technique in elite level rugby union?
Tierney, Gregory J; Denvir, Karl; Farrell, Garreth; Simms, Ciaran K
2018-02-01
It has been hypothesised that fatigue may be a major factor in tackle-related injury risk in rugby union and hence more injuries occur in the later stages of a game. The aim of this study is to identify changes in ball carrier or tackler proficiency characteristics, using elite level match video data, as player time-in-game increases. Qualitative observational cohort study. Three 2014/15 European Rugby Champions Cup games were selected for ball carrier and tackler proficiency analysis. Analysis was only conducted on players who started and remained on the field for the entire game. A separate analysis was conducted on 10 randomly selected 2014/15 European Rugby Champions Cup/Pro 12 games to assess the time distribution of tackles throughout a game. A Chi-square test and one-way way ANOVA with post-hoc testing was conducted to identify significant differences (p<0.05) for proficiency characteristics and tackle counts between quarters in the game, respectively. Player time-in-game did not affect tackle proficiency for both the ball carrier and tackler. Any results that showed statistical significance did not indicate a trend of deterioration in proficiency with increased player time-in-game. The time distribution of tackles analysis indicated that more tackles occurring in the final quarter of the game than the first (p=0.04) and second (p=<0.01). It appears that player time-in-game does not affect tackler or ball carrier tackle technique proficiency at the elite level. More tackles occurring in the final quarter of a game provides an alternative explanation to more tackle-related injuries occurring at this stage. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Bending stresses in spherically hollow ball bearing and fatigue experiments
NASA Technical Reports Server (NTRS)
Nypan, L. J.; Coe, H. H.; Parker, R. J.
1975-01-01
Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.
Nagai, Masahiro; Takakuda, Kazuo
2006-06-01
The influence of number of autoclave treatment cycles (N) on rotational speed and total indicated run-out of commercially available air-turbine handpieces from five manufacturers was investigated at N=0, 50, 100, 150, 200, 250 and 300 cycles, and the significance in the test results was assessed by Dunnett's multiple comparison test. Some air-turbine handpieces showed the significant differences in rotational speed at N=300 cycles, however, the decreases of the rotational speeds were only 1 to 3.5 percent. Some air-turbine handpieces showed the significant differences in total indicated run-out, however, the respective values were smaller than that at N=0 cycle. Accordingly, it can be considered that the ball bearing in the air-turbine handpieces is not affected significantly by autoclave. To further evaluate rotational performance, this study focused on the rotational vibration of the ball bearing components of the air-turbine, as measured by Fast Fourier Transform (FFT) analysis; the power spectra of frequency of the ball's revolution, frequency of the cage's rotation and frequency of the ball's rotation were comparatively investigated at N=0, 150 and 300 cycles, and the influence of autoclave was evaluated qualitatively. No abnormalities in the ball bearings were recognized.
Failure analysis of the ball bearings of dental air turbine handpieces.
Wei, M; Dyson, J E; Darvell, B W
2013-12-01
The aim of this study was to identify the nature and causes of deterioration and failure in dental handpiece ball bearings and thus provide guidance for clinical handling for service longevity. The bearings of 36 turbine assemblies were dismantled for visual inspection, documented using a digital camera, and examined using scanning electron microscopy, as appropriate. For the metal parts of the ball bearing assembly, defects observed were mainly wear arising from the running load and corrosion. This was in the form of scratches and discoloured circumferential bands on the balls, and dull or worn surfaces extending around the circumference of the raceways. Cage damage including cracking, fracture, surface rubbing and distortion occurred, in varying degrees, in every failed turbine. Dental ball bearing failure modes have been identified. Cumulative effects of damage from corrosion and mechanical factors lead to handpiece deterioration. The cage was found to be very vulnerable to damage, and this may be the key limitation on bearing lifetime. Autoclaving may contribute to that, as it does to corrosion in the absence of adequate lubrication, but this seems to be minor in comparison to the effects of abuse. There is no justification for failing to observe usage and sterilization instructions. © 2013 Australian Dental Association.
Carius, Daniel; Andrä, Christian; Clauß, Martina; Ragert, Patrick; Bunk, Michael; Mehnert, Jan
2016-01-01
Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses. PMID:27064925
Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan
2015-07-01
Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.
NASA Astrophysics Data System (ADS)
Schilling, Kurt G.; Nath, Vishwesh; Blaber, Justin; Harrigan, Robert L.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-02-01
High-angular-resolution diffusion-weighted imaging (HARDI) MRI acquisitions have become common for use with higher order models of diffusion. Despite successes in resolving complex fiber configurations and probing microstructural properties of brain tissue, there is no common consensus on the optimal b-value and number of diffusion directions to use for these HARDI methods. While this question has been addressed by analysis of the diffusion-weighted signal directly, it is unclear how this translates to the information and metrics derived from the HARDI models themselves. Using a high angular resolution data set acquired at a range of b-values, and repeated 11 times on a single subject, we study how the b-value and number of diffusion directions impacts the reproducibility and precision of metrics derived from Q-ball imaging, a popular HARDI technique. We find that Q-ball metrics associated with tissue microstructure and white matter fiber orientation are sensitive to both the number of diffusion directions and the spherical harmonic representation of the Q-ball, and often are biased when under sampled. These results can advise researchers on appropriate acquisition and processing schemes, particularly when it comes to optimizing the number of diffusion directions needed for metrics derived from Q-ball imaging.
Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, WF; Sepehri-Amin, H; Zheng, LY
2012-11-01
Anisotropic SmCo5 nanoflakes prepared by high-energy ball-milling with surfactants have great potential in applications for high-performance nanocomposite magnets. For such "nanocomposite" applications, the surface structure and chemistry of nanoflakes are crucial for achieving high coercivity. In this study, hot-pressed samples from anisotropic SmCo5 nanoflakes, ball-milled with different surfactants, oleic acid (OA) and oleylamine (OY), were investigated. Interface layers between the SmCo5 nanoflakes were found to consist of samarium oxides and a soft magnetic Co phase. These surface layers contribute to the degradation of hard magnetic performance, which is confirmed by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy analysis of themore » cross-section of a single flake ball-milled with OA. Samples milled with OY show a much thinner interface layer in compacted samples, which means that the surface degradation during ball-milling with OY is much less than that with OA. The results show clearly that the choice of proper surfactant and the control of processing parameters are the key factors for improving the surface condition of the nanoflakes and the resulting hard magnetic properties. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
1981-09-01
GRANT NuMBER(s) CENTER FOR THE ENVIRONMENT AND MAN, INC. DACW 33-8U-~e--’-e/ Work Order No. 8 I.~3 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ...08-735 Program Manager Lynn E. Johnson Principal Investigator Gaylord M. Northrop Project Staff John Ball Kenneth Bober Kayla Costenoble Brian...determination of the merits of continuing the program . This is a Stage 2 report. While six potential dredged material containment facilities are
Differences in Game Statistics Between Winning and Losing Rugby Teams in the Six Nations Tournament
Ortega, Enrique; Villarejo, Diego; Palao, José M.
2009-01-01
The objective of the present study was to analyze the differences in rugby game statistics between winning and losing teams. The data from 58 games of round robin play from the Six Nations tournament from the 2003-2006 seasons were analyzed. The groups of variables studied were: number of points scored, way in which the points were scored; way teams obtained the ball and how the team used it; and technical and tactical aspects of the game. A univariate (t-test) and multivariate (discriminant) analysis of data was done. Winning teams had average values that were significantly higher in points scored, conversions, successful drops, mauls won, line breaks, possessions kicked, tackles completed, and turnovers won. Losing teams had significantly higher averages for the variables scrums lost and line-outs lost. The results showed that: a) in the phases of obtaining the ball and more specifically in scrummage and line-out, winning teams lose fewer balls than losing teams (winning teams have an efficacy of 90% in both actions); b) the winning team tends to play more with their feet when they obtain the ball, to utilize the maul as a way of attacking, and to break the defensive line more often than the losing team does; and c) On defence, winning teams recovered more balls and completed more tackles than losing teams, and the percentage of tackles completed by winning teams was 94%. The value presented could be used as a reference for practice and competition in peak performance teams. Key points This paper increases the knowledge about rugby match analysis. Give normative values to establish practice and match goals. Give applications ideas to connect research with coaches practice. PMID:24149592
Bending stresses in spherically hollow ball bearing and fatigue experiments
NASA Technical Reports Server (NTRS)
Nypan, L. J.; Coe, H. H.; Parker, R. J.
1975-01-01
Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.
A formula for comparison of selected sport ball compressibility.
Dowell, L J; Krebs, G
1991-01-01
The purpose of this study was to develop a formula to determine and compare the compressibility of selected sport balls. Six balls (basketball, volleyball, soccer ball, baseball, handball, golf ball) were dropped ten times from each of four different heights onto a smooth solid surface overlaid with a white sheet of typing paper, overlaid with a sheet of carbon paper. The diameter of the area of contact of each ball imprinted onto the typing paper was measured in millimetres with calipers. From the data, the distance (d) that each ball compressed for each velocity (v) was calculated. It was found that a linear relationship existed between velocity at impact and the distance for each ball studied. The compressibility coefficient (c) for each ball was calculated and a formula was developed to determine the distance each ball would compress at a given velocity. When velocity is measured in metres per second and the distance a ball compresses is measured in millimetres, the formula to determine d for selected balls, in order of compressibility is: basketball d = 3.07v, volleyball d = 2.90v, soccer ball d = 2.80v, baseball d = 0.77v, handball d = 0.53v, and golf ball d = 0.17v. PMID:1913029
Mascarin, Naryana Cristina; de Lira, Claudio Andre Barbosa; Vancini, Rodrigo Luiz; de Castro Pochini, Alberto; da Silva, Antonio Carlos; Dos Santos Andrade, Marilia
2017-05-01
Imbalance in shoulder-rotator muscles has been considered a risk factor for injuries in handball. Strength training programs (STPs) may play an important preventive role. To verify the effects of an STP using elastic bands on shoulder muscles and ball-throwing speed. Randomized and prospective controlled trial. Exercise physiology laboratory. Thirty-nine female handball players were randomly assigned to an experimental (EG, n = 21, 15.3 ± 1.1 y) or a control (CG, n = 18, 15.0 ± 0.8 y) group. The EG performed the STP with elastic-band progressive exercises for 6 wk before regular handball training, and the CG underwent only their regular training. Before and after the STP, both groups underwent a ball-throwing-speed test and isokinetic test to assess shoulder internal- (IR) and external-rotator muscle performance. Average power values for IR muscles presented a significant group-vs-time interaction effect (F = 3.9, P = .05); EG presented significantly higher values after the STP (P = .03). Ball speed presented higher values in EG after the STP in standing (P = .04) and jumping (P = .03) throws. IR peak-torque values and balance in shoulder-rotator muscles presented no group-vs-time interaction effect. STP using elastic bands performed for 6 wk was effective to improve muscle power and ball speed for young female handball players.
Rojhani-Shirazi, Zahra; Barzintaj, Fatemeh; Salimifard, Mohamad Reza
2017-11-01
The number of diabetic patients is increasing in the world. Peripheral neuropathy is the most important problem of diabetes. Neuropathy eventually leads to balance impairment which is the main cause of falling down in these patients However, not sufficient evidences available to compare different protocols for improving balance in diabetic patients. This study aimed to compare the effects of two therapeutic exercises on clinical balance measures in patients with type II diabetic peripheral neuropathy. The study was performed on 60 patients with diabetes categorized randomly into three groups: an intervention group (N=20) that received ball training exercise, another intervention group (N=20) that received Frenkel exercise and a control group (N=20) that received no interventions. Exercise training session was performed for 3 weeks. Then, clinical balance measures were computed in the three groups. Paired t-test and one-way ANOVA were used to analyze the collected data. Both types of therapeutic exercise programs significantly improved balance in single leg stance, star excursion test, and Berg balance scale test (P˂0.05) compared to the control group. Besides, this was more significant in the ball training group (P˂0.05). To improve balance in diabetic neuropathy, Swiss ball exercise is preferred compared to Frenkel training. Copyright © 2016. Published by Elsevier Ltd.
How Effective Was Civil Affairs in Bosnia?
2013-12-13
governance the US military employed CMO to influence the population. CMO included building roads, school, ports, and educational programs. The military......mine awareness messages to be printed in comic books and on soccer balls. CA supported this effort by distributing these products via their local
Ball, Kylie
2006-01-01
This commentary provides an overview and selected highlights from the scientific program of the 5th Annual Meeting of the International Society for Behavioral Nutrition and Physical Activity. PMID:16987427
Examining curricular coherence in an exemplary elementary school program.
Ennis, Catherine D
2008-03-01
A coherent curriculum is characterized by visible connections between purposes and experiences so that students acknowledge the content's immediate value. This study examined an exemplary elementary physical education curriculum for coherence components. Research questions examined the role of coherence in connecting and engaging students meaningfully in physical education. Observations and interviews were conducted to collect qualitative data in one program for 22 weeks. Data were analyzed using open, axial, and selective coding. Results described two units, Balls Skills, leading to modified basketball, and Scooter City, a theme-based unit emphasizing student choice and responsibility. Students reported that both units were enjoyable. Although the Balls Skills unit was well planned, taught, and managed, some students commented that the skill and games content was valuable only in basketball. In the Scooter City unit, students identified numerous connections to out-of-school activities that enhanced content value. Comparisons with Beane's coherence criteria suggested that students valued Scooter City based on concrete connections to their lived experiences.
A Force-Velocity Relationship and Coordination Patterns in Overarm Throwing
van den Tillaar, Roland; Ettema, Gertjan
2004-01-01
A force-velocity relationship in overarm throwing was determined using ball weights varying from 0.2 to 0.8 kg. Seven experienced handball players were filmed at 240 frames per second. Velocity of joints of the upper extremity and ball together with the force on the ball were derived from the data. A statistically significant negative relationship between force and maximal ball velocity, as well as between ball weight and maximal ball velocity was observed. Also, with increase of ball weight the total throwing movement time increased. No significant change in relative timing of the different joints was demonstrated, suggesting that the subjects did not change their “global ”coordination pattern (kinematics) within the tested range of ball weights. A simple model revealed that 67% of ball velocity at ball release was explained by the summation of effects from the velocity of elbow extension and internal rotation of the shoulder. With regard to the upper extremity the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. Key Points An inverse relationship between load and velocity and a linear force-velocity exists in overarm throwing with ball weights varying from 0.2 to 0.8 kg. Qualitatively, no changes in coordination pattern (relative timing) occur with increasing ball weight within the tested range of ball weights. The absolute throwing movement time increased with ball weight. Quantitatively, with regard to the upper extremity, the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. PMID:24624005
Pulse analysis of acoustic emission signals. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Houghton, J. R.
1976-01-01
A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.
Approximations and Solution Estimates in Optimization
2016-04-06
comprehensive descriptions of epi-convergence and its connections to variational analysis broadly. Our motivation for going beyond normed linear spaces , which...proper, every closed ball in this metric space is compact and the existence of solutions of such optimal fitting problems is more easily established...lsc-fcns(X), dl(fν , f) → 0 implies that fν epi-converges to f. We recall that a metric space is proper if every closed ball in that space is compact
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Munson, H. E.
1973-01-01
Seven 150-mm bore ball bearings were run under 8900 Newton (2000 lb) thrust load at speeds from 6670 to 20,000 rpm (1 to 3 million DN). Four of the bearings had conventional solid balls and three bearing had drilled (cylindrically hollow) balls with 50 percent mass reduction. The bearings were under-race cooled and slot-lubricated with Type 2 ester oil at flow rates from 4.35 to 5.80 liters per minute (1.15 to 1.57 gal min). Friction torque and temperatures were measured on all bearings. No significant difference in torque was noted, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800 Newtons (4000 lb) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball and cracks appeared in two other balls as the result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.
The Relationship Between Pitching Mechanics and Injury: A Review of Current Concepts
Chalmers, Peter N.; Wimmer, Markus A.; Verma, Nikhil N.; Cole, Brian J.; Romeo, Anthony A.; Cvetanovich, Gregory L.; Pearl, Michael L.; Chalmers, Peter N.; Wimmer, Markus A.; Verma, Nikhil N.; Cole, Brian J.; Romeo, Anthony A.; Cvetanovich, Gregory L.; Pearl, Michael L.
2017-01-01
Context: The overhand pitch is one of the fastest known human motions and places enormous forces and torques on the upper extremity. Shoulder and elbow pain and injury are common in high-level pitchers. A large body of research has been conducted to understand the pitching motion. Evidence Acquisition: A comprehensive review of the literature was performed to gain a full understanding of all currently available biomechanical and clinical evidence surrounding pitching motion analysis. These motion analysis studies use video motion analysis, electromyography, electromagnetic sensors, and markered motion analysis. This review includes studies performed between 1983 and 2016. Study Design: Clinical review. Level of Evidence: Level 5. Results: The pitching motion is a kinetic chain, in which the force generated by the large muscles of the lower extremity and trunk during the wind-up and stride phases are transferred to the ball through the shoulder and elbow during the cocking and acceleration phases. Numerous kinematic factors have been identified that increase shoulder and elbow torques, which are linked to increased risk for injury. Conclusion: Altered knee flexion at ball release, early trunk rotation, loss of shoulder rotational range of motion, increased elbow flexion at ball release, high pitch velocity, and increased pitcher fatigue may increase shoulder and elbow torques and risk for injury. PMID:28107113
Analysis of an arched outer-race ball bearing considering centrifugal forces
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Anderson, W. J.
1972-01-01
A Newton-Raphson method of iteration was used in evaluating the radial and axial projection of the distance between the ball center and the outer raceway groove curvature center (V and W). Fatigue life evaluations were made. The similar analysis of a conventional bearing can be directly obtained from the arched bearing analysis by simply letting the amount of arching be zero (g = 0) and not considering equations related to the unloaded half of the outer race. The analysis was applied to a 150-mm angular contact ball bearing. Results for life, contact loads, and angles are shown for a conventional bearing (g = 0) and two arched bearings (g = 0.127 mm (0.005 in.), and 0.254 mm (0.010 in.)). The results indicate that an arched bearing is highly desirable for high speed applications. In particular, for a DN value of 3 million (20,000 rpm) and an applied axial load of 4448 N (1000 lb), an arched bearing shows an improvement in life of 306 percent over that of a conventional bearing. At 4.2 million DN (28,000 rpm), the corresponding improvement is 340 percent. It was also found for low speeds, the arched bearing does not offer the advantages that it does for high speed applications.
Flight trajectory of a rotating golf ball with grooves
NASA Astrophysics Data System (ADS)
Baek, Moonheum; Kim, Jooha; Choi, Haecheon
2014-11-01
Dimples are known to reduce drag on a sphere by the amount of 50% as compared to a smooth surface. Despite the advantage of reducing drag, dimples deteriorate the putting accuracy owing to their sharp edges. To minimize this putting error but maintain the same flight distance, we have devised a grooved golf ball (called G ball hereafter) for several years. In this study, we modify the shape and pattern of grooves, and investigate the flow characteristics of the G ball by performing wind-tunnel experiments at the Reynolds numbers of 0 . 5 ×105 - 2 . 5 ×105 and the spin ratios (ratio of surface velocity to the free-stream velocity) of 0 - 0.6 that include the real golf-ball velocity and rotational speed. We measure the drag and lift forces on the rotating G ball and compare them with those of a smooth ball and two well-known dimpled balls. The lift-to-drag ratio of the G ball is much higher than that of a smooth ball and is in between those of the two dimpled balls. The trajectories of flying golf balls are computed. The flight distance of G ball is almost the same as that of one dimpled ball but slightly shorter than that of the other dimpled ball. The fluid-dynamic aspects of these differences will be discussed at the talk. Supported by 2011-0028032, 2014M3C1B1033980.
Development of high-speed rolling-element bearings. A historical and technical perspective
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1982-01-01
Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.
Disinfection alternatives for contact surfaces and toys at child care centers.
Jimenez, Maribel; Martinez, Celida I; Chaidez, Cristobal
2010-12-01
Child care surfaces are vehicles for disease-causing organisms. Disinfectant procedures prevent microbial dispersion. This study reports the effectiveness of CITRUS Farm Edition® (CFE), Clorox® GreenWorks™ (CGW) and Clorox® Anywhere® (CA) against Salmonella Typhimurium and Staphylococcus aureus inoculated (1 ml of 9Log(10) CFU/ml) on a high chair and ball toy. Disinfectants were sprayed and bacteria recovered from surfaces by sponge method. Exposing an inoculated high chair to CA resulted in the highest reduction of S. aureus (3.92 Log(10)) and S. Typhimurium (3.22 Log(10)). CGW reduced S. aureus and S. Typhimurium by 2.84 and 2.12 Log(10) from the inoculated high chair, while the inoculated ball toy showed a 2.50 and 1.80 Log(10) reduction, respectively. CFE showed the lowest reduction with 1.42 and 1.53 Log(10) of S. aureus and S. Typhimurium from the inoculated ball toy. CA was the best disinfectant no matter which bacteria or surface was analyzed. Emphasis on the effectiveness of disinfectant products is needed to be included in child care center infection control programs.
NASA Astrophysics Data System (ADS)
Eom, JiYong; Kim, DongYung; Kwon, HyukSang
The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C rev) increases with increasing ball-milling time, namely, from 351 mAh g -1 (Li 0.9C 6) for the purified MWNTs to 641 mAh g -1 (Li 1.7C 6) for the ball-milled MWNTs. The undesirable irreversible capacity (C irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g -1 (Li 2.7C 6) for the purified MWNTs to 518 mAh g -1 (Li 1.4C 6) for the ball-milled MWNTs. The decrease in C irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling.
Design and fabrication of prototype system for early warning of impending bearing failure
NASA Technical Reports Server (NTRS)
Broderick, J. J.; Burchill, R. F.; Clark, H. L.
1972-01-01
Ball bearing performance tests run on several identical ball bearings under a variety of load, speed, temperature, and lubrication conditions are reported. Bearing temperature, torque, vibration, noise, strain, cage speed, etc., were monitored to establish those measurements most suitable as indicators of ball bearing health. Tape records were made under steady-state conditions of a variety of speeds and loads. Sample sections were selected for narrowband spectral analysis with a real time analyzer. An artificial flow was created across the inner race surface of one bearing using an acid etch technique to produce the scratch. Tape records obtained before and after established a characteristic frequency response that identifies the presence of the flow. The signals found most useful as indicators of performance degradation were ultrasonic outputs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... classified under the following categories: Antifriction balls, ball bearings with integral shafts, ball..., outer race, cage, rollers, balls, seals, shields, etc.) outlined above with certain limitations. With...
Modeling deformation behavior of the baseball.
Nicholls, Rochelle Llewelyn; Miller, Karol; Elliott, Bruce C
2005-02-01
Regulating ball response to impact is one way to control ball exit velocity in baseball. This is necessary to reduce injuries to defensive players and maintain the balance between offense and defense in the game. This paper presents a model for baseball velocity-dependent behavior. Force-displacement data were obtained using quasi-static compression tests to 50% of ball diameter (n = 70 baseballs). The force-displacement curves for a very stiff baseball (Model B) and a softer type (Model C) were characterized by a Mooney-Rivlin model using implicit finite element analysis (ANSYS software, version 6.1). Agreement between experimental and numerical results was excellent for both Model B (C(10) = 0, C(01) = 3.7e(6) Pa) and Model C (C(10) = 0, C(01) = 2.6e(6) Pa). However, this material model was not available in the ANSYS/LSDYNA explicit dynamic software (version 6.1) used to quantify the transient behavior of the ball. Therefore the modeling process was begun again using a linear viscoelastic material. G(infinity), the long-term shear modulus of the material, was determined by the same implicit FEA procedure. Explicit FEA was used to quantify the time-dependent response of each ball in terms of instantaneous shear modulus (G0) and a decay term (beta). The results were evaluated with respect to published experimental data for the ball coefficient of restitution at five velocities (13.4-40.2 ms(-1)) and were in agreement with the experimental values. The model forms the basis for future research on baseball response to impact with the bat.
NASA Technical Reports Server (NTRS)
Scibbe, H. W.; Munson, H. E.
1974-01-01
Seven 150-millimeter-bore ball bearings were run under 8900-newton (2000-lbf) thrust load at speeds from 6670 to 20,000 rpm (1 million to 3 million DN). Four of the bearings had conventional solid balls, and three bearings had drilled (cylindrically hollow) balls with 50-percent mass reduction. The bearings were under-race cooled and slot lubricated with a type 2 ester oil at flow rates from 4.35 x 0.001 to 5.94 x 0.001 cubic meter/min (1.15 to 1.57 gal/min). Friction torque and temperature were measured on all bearings. While there was considerable spread in the temperature data, the drilled ball bearings tended to run slightly cooler than the solid ball bearings at higher speeds. No significant difference in torque was noted, however, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800-newton (4000-lbf) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball, and cracks appeared in other balls as a result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-16
... following categories: Antifriction balls, ball bearings with integral shafts, ball bearings (including..., rollers, balls, seals, shields, etc.) outlined above with certain limitations. With regard to finished...
Enhancing the Bounce of a Ball
NASA Astrophysics Data System (ADS)
Cross, Rod
2010-10-01
In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of restitution (COR) and the spin of a golf ball, I conducted several experiments to see what would happen when a 45-g, 42.8-mm diameter golf ball bounced on: (a) a 58-mm diameter, 103-g Super Ball®; (b) an 8-mm thick, 56-mm diameter circular disk of Super Ball material cut from a large Super Ball and glued to a 3.4-kg lead brick; and (c) a 3-mm thick sheet of rubber glued to a 3.4-kg lead brick. (See Fig. 1.)
Extreme ball lightning event of August 6, 1868 in County Donegal, Ireland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanDevender, J. Pace; McGinley, Niall; van Doorn, Peter
2008-04-01
Although laboratory experiments have produced glowing balls of light that fade in <1 s after external power is removed and theories have been proposed to explain low-energy events, energetic ball lightning is not understood. A seminal event that illuminates the fundamental nature of ball lightning is needed to advance our understanding of the phenomenon. We report such a seminal event: the energetic ball lightning event of August 6, 1868, in County Donegal, Ireland, extensively reported to the Royal Society by M. Fitzgerald. It lasted for 20 minutes, left a 6 m square hole and a 100 m long by 1.2more » m deep trench, tore away a 25 m long and 1.5 m deep stream bank that diverted the course of the stream, and terminated by producing a shallow cave in the opposite bank of the stream. We found and characterized the site and show that the geomorphology and carbon dating support the account by M. Fitzgerald. We find that the excavation is not consistent with chemical, nuclear, or electrostatic forces but is consistent with Analysis of the event and the local conditions in 2006 is consistent with magnetic induction at {approx} 1 MHz frequency expelling the moderately conductive, water saturated peat down to the underlying clay/rock layer. The 60-cm diameter--which diminished to 10 cm diameter without reducing the impact of the ball lightning on the environment--and the size of the depressions, the yield strength of the peat, and the lack of any mention of smoke or steam in Fitzgerald's report would be consistent with the core of the ball lightning being a magnetically levitated mini black hole weighing more than 20,000 kg. The results suggest that such energetic ball lightning should be detectable at great distances by its electromagnetic emissions, which might provide a characteristic signature to reveal the source of the energy and the equilibrium configuration of the contained currents. Unexplained intermittent emissions in the MHz range are necessary but not sufficient indicators of such emissions. We report on over fifty 1 to >1000-s bursts of electromagnetic energy between 3 MHz and 350 MHz that were recorded by the FORTE satellite in October of 1997 and that are not consistent with known sources.Ground-based time-resolved observations should help identify the origin of the FORTE emissions and may help find and understand modern energetic ball lightning events to move us beyond glowing balls of light.« less
[Volleyball sport school injuries].
Knobloch, K; Rossner, D; Gössling, T; Richter, M; Krettek, C
2004-12-01
Ball sport school injuries account for a significant morbidity among children and adolescents. Volleyball is popular in school sport and leads frequent injuries in youth besides basketball and soccer. During a school year 2234 school sport injuries have been reported to the Gemeinde Unfall Versicherung (GUV) from all schools in Niedersachsen, Germany. The major disciplines were ball sport injuries, accounting for 59.5 % (1330 accidents), Gymnastic sport injuries follow at second position accounting for 18 % (403 accidents), followed by athletics with 8.1 %. Regarding the non-gender-specific distribution of the ball sport disciplines, basketball leads with 32.4 % (431 injuries), followed by soccer (23.8 %, 316 injuries), volleyball (17.4 %, 232 injuries), small ball games (11.2 %, 149 injuries), handball (8.3 %, 110 injuries), and hockey (4.9 %, 65 injuries). In boys, volleyball accounts third among the ball sport injuries (10 %, 63 injuries), after soccer (38 %, 245 injuries), and basketball (28.5 %, 185 injuries). In girls, volleyball was the second major ball sport injury discipline (24.8 %, 169 injuries) after basketball (36.1 %, 246 injuries), followed by small ball games (12.9 %, 88 injuries), and soccer at 4 (th) position (10.4 %, 71 injuries). The analysis of the distribution of injury during volleyball accidents dominate upper extremity injuries (71.3 %), with special emphasis on finger injuries in 53 %, followed by lower extremity injuries (21.5 %) and head injuries (4.3 %). Spine injuries were rare (0.9 %). The type of injury during volleyball school sport injuries were predominantly sprains (21 %), ligament distorsions and ruptures (20 %), fractures (17 %), and bruise (16 %). Analyzing the circumstances of the injuries, most injuries during volleyball school sport occurred without a opponent contact during ball contact (59 %), followed during movements (9 %), the landing phase (9 %), and after a strike of the ball (7 %). Volleyball injuries account for a significant number of all school sport related injuries. Upper extremity injuries account for the vast majority of all injuries especially during individual game play. Blunt trauma and fractures are most prevalent among school sport injuries in soccer. Preventive measures such as preservation of a high level of attention when scheduling a sport lesson, safety measures, and awareness of the possible severe injuries and knowledge in basic life support are mandatory to implement in school sports, since ball sport is proven to be very valuable for the physical and psychological development of the children. The role of preventive finger taping in volleyball school sport has to be evaluated in prospective clininal trials.
A 3D visualization system for molecular structures
NASA Technical Reports Server (NTRS)
Green, Terry J.
1989-01-01
The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.
ERIC Educational Resources Information Center
RE:view, 1995
1995-01-01
Teachers of students with visual impairments share teaching ideas, including a high school student's quilting project (the quilt included raised Braille alphabet letters); development of a ball-tipped cane for travel on nonpaved surfaces, grocery shopping by students for a local food bank, and development of an in-school television news program.…
The novel support structure design of high stability for space borne primary reflector
NASA Astrophysics Data System (ADS)
Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun
2018-01-01
The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.
Karthik, Subramani; Suriyaprabha, Rangaraj; Balu, Kolathupalayam Shanmugam; Manivasakan, Palanisamy; Rajendran, Venkatachalam
2017-02-01
The herbal nanoparticles were prepared from shade dried Tridax procumbens plant leaves employing ball milling technique using different process parameters, like ball ratio/size and milling time. The obtained nanoparticles were comprehensively characterised using X-ray diffraction, Fourier transform infrared spectroscopy, UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy and antimicrobial analysis techniques. The crystallinity of the nanoparticles was retained without altering even though the particle size changes due to milling periods. The antibacterial activities of the prepared herbal nanoparticles against Staphylococcus aureus and Escherichia coli were explored to understand the influence of particle size on antimicrobial activities and their functional properties. The increase in ball ratio and milling time periods leads to a decrease in nanoparticle size from 114 to 45 nm which in turn increases the antimicrobial activities. The above study confirms that antimicrobial activity relies on nanoparticle size. The observed knowledge on influence of particle size on antimicrobial activities will help to optimise the production of potential herbal nanoparticles for different biomedical applications.
Odabaş, Zafer; Dumludağ, Fatih; Ozkaya, Ali Riza; Yamauchi, Seigo; Kobayashi, Nagao; Bekaroğlu, Ozer
2010-09-21
The mononuclear Fe(II) phthalocyanine 2 and ball-type homobinuclear Fe(II)-Fe(II) and Cu(II)-Cu(II) phthalocyanines, 3 and 4 respectively, were synthesized from the corresponding 4,4'-[1,1'-methylenebis-(naphthalene-2,1-diyl)]bis(oxy)diphthalonitrile 1, and then ball-type heterobinuclear Fe(II)-Cu(II) phthalocyanine 5 was synthesized from 2. The novel compounds 4 and 5 have been characterized by elemental analysis, UV/vis, IR and MALDI-TOF mass spectroscopies. Electron paramagnetic resonance and magnetic circular dichroism measurements of 3, 4 and 5 were also examined. The voltammetric measurements of the complexes showed the formation of various electrochemically stable ligand- and metal-based mixed-valence species, due to the intramolecular interactions between the two MPc units, especially in ball-type binuclear iron(II) phthalocyanine. Impedance spectroscopy and d.c. conductivity measurements of 4 and 5 were performed as a function of temperature (295-523 K) and frequency (40-10(5) Hz). While room temperature impedance spectra consist of a curved line, a transformation into a full semicircle with increasing temperature was observed for both compounds.
Sigma model Q-balls and Q-stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbin, Y.
2007-10-15
A new kind of Q-balls is found: Q-balls in a nonlinear sigma model. Their main properties are presented together with those of their self-gravitating generalization, sigma model Q-stars. A simple special limit of solutions which are bound by gravity alone ('sigma stars') is also discussed briefly. The analysis is based on calculating the mass, global U(1) charge and binding energy for families of solutions parametrized by the central value of the scalar field. Two kinds (differing by the potential term) of the new sigma model Q-balls and Q-stars are analyzed. They are found to share some characteristics while differing inmore » other respects like their properties for weak central scalar fields which depend strongly on the form of the potential term. They are also compared with their ordinary counterparts and although similar in some respects, significant differences are found like the existence of an upper bound on the central scalar field. A special subset of the sigma model Q-stars contains those which do not possess a flat space limit. Their relation with sigma star solutions is discussed.« less
NASA Astrophysics Data System (ADS)
Slimani, Y.; Hannachi, E.; Azzouz, F. Ben; Salem, M. Ben
2018-06-01
We have reported the influence of planetary high energy ball milling parameters on morphology, microstructure and flux pinning capability of polycrystalline Y3Ba5Cu8Oy. Samples were prepared through the standard solid-state reaction by using two different milling methods, ball milling in a planetary crusher and hand grinding in a mortar. Phase analysis by X-ray diffraction (XRD) method, microstructural examination by scanning electron microscope (SEM), electrical resistivity, the global and intra-granular critical current densities measurements are done to characterize the samples. The processing parameters of the planetary milling have a considerable impact on the final product properties. SEM observations show the presence of nanoscale entities submerged within the Y3Ba5Cu8Oy crystallites. The results show that the fine grain microstructure of the Y3Ba5Cu8Oy bulk induced by ball milling process contributes to critical currents density enhancement in the magnetic field and promotes an optimized flux pinning ability.
Mechanism of Tennis Racket Spin Performance
NASA Astrophysics Data System (ADS)
Kawazoe, Yoshihiko; Okimoto, Kenji; Okimoto, Keiko
Players often say that some strings provide a better grip and more spin than others, but ball spin did not depend on string type, gauge, or tension in pervious laboratory experiments. There was no research work on spin to uncover what is really happening during an actual tennis impact because of the difficulty of performing the appropriate experiments. The present paper clarified the mechanism of top spin and its improvement by lubrication of strings through the use of high-speed video analysis. It also provided a more detailed explanation of spin behavior by comparing a racket with lubricated strings with the famous “spaghetti” strung racket, which was banned in 1978 by the International Tennis Federation because it used plastic spaghetti tubing over the strings to reduce friction, resulting in excessive ball spin. As the main strings stretch and slide sideways more, the ball is given additional spin due to the restoring force parallel to the string face when the main strings spring back and the ball is released from the strings. Herein, we also showed that the additional spin results in a reduction of shock vibrations of the wrist joint during impact.
Kinematic Description of Elite Vs. Low Level Players in Team-Handball Jump Throw
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P.; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key points Team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed. An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed. Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices. PMID:24149381
Kinematic description of elite vs. Low level players in team-handball jump throw.
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key pointsTeam-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed.An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed.Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices.
Sonic beam model of Newton’s cradle
NASA Astrophysics Data System (ADS)
Menger, Fredric M.; Rizvi, Syed A. A.
2016-07-01
The motions of Newton’s cradle, consisting of several steel balls hanging side-by-side, have been analysed in terms of a sound pulse that travels via points of contact among the balls. This presupposes a focused energy beam. When the pulse reaches the fifth and final ball, the energy disperses and dislocates the ball with a trajectory equivalent to that of the first ball after it was released. The pulse passes unchanged through the internal balls without, therefore, causing movement of these balls. Lack of movement can be affirmed by immobilising one or more of the balls, thereby disproving both the gap and vibrating lattice models. This also contrasts with previous mechanisms that postulate complete energy dispersal within a ball prior to transferring the energy to another ball. Inserting an inelastic barrier between the second and third balls disrupts the pulse such that it spreads out to reach regions that are not in contact with another ball. As a result, the normally stationary third ball is forced into a forward motion, thereby pushing the fourth and fifth ball with it as a single unit. The model is valuable in explaining a fact that has puzzled physicists for generations: why is only one motional mode observed among a multitude of motions that maintain a constant momentum and kinetic energy as required by the laws of physics? The answer lies in the fact that all motions, except the one that is actually observed, require a rebound in one or more of the balls. Since the energy beam formed upon impact is unidirectional, reverse motions are not accommodated.
Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.
Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2013-12-03
We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.
Performance and Kinematics of Various Throwing Techniques in Team-Handball
Wagner, Herbert; Pfusterschmied, Jürgen; von Duvillard, Serge P.; Müller, Erich
2011-01-01
In team-handball competition, the players utilize various throwing techniques that differ in the lower body movements (with and without run-up or jump). These different lower body movements influence changes in the upper body movements and thus also affect the performance. A comprehensive analysis of 3D-kinematics of team-handball throws that may explain these differences in performance is lacking. Consequently, the purpose of this study was (1) to compare performance (ball velocity and throwing accuracy) between the jump throw, standing throw with and without run-up, and the pivot throw; (2) to calculate the influence of kinematic parameters to ball velocity; and (3) to determine if these four throwing techniques differ significantly in kinematics. Three-dimensional kinematic data (angles, angular velocities and their timing, ball velocity and velocity of the center of mass) of 14 elite team-handball players were measured using an 8 camera Vicon MX13 motion capture system (Vicon, Oxford, UK), at 250 Hz. Significant difference was found between the four throwing techniques for ball velocity (p < 0. 001), maximal velocity of the center of mass in goal-directed movement (p < 0.001), and 15 additional kinematic variables (p < 0.003). Ball velocity was significant impacted by the run-up and the pelvis and trunk movements. Depending on floor contact (standing vs. jump throws), elite players in the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight) to accelerate the pelvis and trunk to yield differences in ball velocity. However, these players were able to utilize the throwing arm similarly in all four throwing techniques. Key points Elite team-handball players achieved the greatest ball velocity in the standing throw with run-up (100%), followed by the standing throw without run-up (93%), jump throw (92%) and pivot throw (85%). Depending on the floor contact (standing vs. jump throws) the elite players of the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight) to accelerate the pelvis and trunk that caused differences in ball velocity. Elite team-handball players were able to utilize the throwing arm similarly in all four throwing techniques. PMID:24149298
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, T.A.; Baker, D.F.; Edwards, C.L.
1993-10-01
Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less
2012-01-01
Background Catching an object is a complex movement that involves not only programming but also effective motor coordination. Such behavior is related to the activation and recruitment of cortical regions that participates in the sensorimotor integration process. This study aimed to elucidate the cortical mechanisms involved in anticipatory actions when performing a task of catching an object in free fall. Methods Quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 20 healthy right-handed participants performed the catching ball task. We used the EEG coherence analysis to investigate subdivisions of alpha (8-12 Hz) and beta (12-30 Hz) bands, which are related to cognitive processing and sensory-motor integration. Results Notwithstanding, we found the main effects for the factor block; for alpha-1, coherence decreased from the first to sixth block, and the opposite effect occurred for alpha-2 and beta-2, with coherence increasing along the blocks. Conclusion It was concluded that to perform successfully our task, which involved anticipatory processes (i.e. feedback mechanisms), subjects exhibited a great involvement of sensory-motor and associative areas, possibly due to organization of information to process visuospatial parameters and further catch the falling object. PMID:22364485
Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Parker, R. J.
1977-01-01
The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.
Demonstration of a Wire Suspension for Virtual Flight Testing in a Wind Tunnel
2009-02-01
They were connected by the roll shaft, which rotates in a pair of bearings. These bearings supported both radial and axial loads . Loads were...an axial load , and a radial ball bearing to support the radial loads . To determine whether the anticipated bearing friction is acceptable, we modeled... axial load due to cable pre-tension. Analysis showed that the best choice of pitch bearings is a combin- ation of a ball thrust bearing, which will carry
Automatic ball bar for a coordinate measuring machine
Jostlein, H.
1997-07-15
An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined. 5 figs.
Automatic ball bar for a coordinate measuring machine
Jostlein, Hans
1997-01-01
An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined.
The effect of instability training on knee joint proprioception and core strength.
Cuğ, Mutlu; Ak, Emre; Ozdemir, Recep Ali; Korkusuz, Feza; Behm, David G
2012-01-01
Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted.
Fluid Mechanics of Cricket and Tennis Balls
NASA Astrophysics Data System (ADS)
Mehta, Rabindra D.
2009-11-01
Aerodynamics plays a prominent role in defining the flight of a ball that is struck or thrown through the air in almost all ball sports. The main interest is in the fact that the ball can often deviate from its initial straight path, resulting in a curved, or sometimes an unpredictable, flight path. It is particularly fascinating that that not all the parameters that affect the flight of a ball are always under human influence. Lateral deflection in flight, commonly known as swing, swerve or curve, is well recognized in cricket and tennis. In tennis, the lateral deflection is produced by spinning the ball about an axis perpendicular to the line of flight, which gives rise to what is commonly known as the Magnus effect. It is now well recognized that the aerodynamics of sports balls are strongly dependent on the detailed development and behavior of the boundary layer on the ball's surface. A side force, which makes a ball curve through the air, can also be generated in the absence of the Magnus effect. In one of the cricket deliveries, the ball is released with the seam angled, which trips the laminar boundary layer into a turbulent state on that side. The turbulent boundary layer separates relatively late compared to the laminar layer on the other side, thereby creating a pressure difference and hence side force. The fluid mechanics of a cricket ball become very interesting at the higher Reynolds numbers and this will be discussed in detail. Of all the round sports balls, a tennis ball has the highest drag coefficient. This will be explained in terms of the contribution of the ``fuzz" drag and how that changes with Reynolds number and ball surface wear. It is particularly fascinating that, purely through historical accidents, small disturbances on the ball surface, such as the stitching on cricket balls and the felt cover on tennis balls are all about the right size to affect boundary layer transition and development in the Reynolds numbers of interest. The fluid mechanics of cricket and tennis balls will be discussed in detail with the help of latest test data, analyses and video clips.
2013-07-05
ISS036-E-015549 (5 July 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, watches as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.
2017-10-25
Anuj Chokshi of FPL, center, speaks during the Energy Action Day employee event held in NASA Kennedy Space Center's Space Station Processing Facility. Part of Energy Awareness Month, the event featured subject matter experts in the area of solar energy, its connections to the space program and options for residential solar power. From left to right are Chuck Tatro of NASA's Launch Services Program; Sam Ball of NASA Kennedy's Engineering directorate; Chokshi; and Bill McMullen of Southern Power.
Herndon, Charles; Brown, Roger A.
2002-01-01
An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.
Boucher, Maria O; Smitherman, Andrew B; Pahl, Kristy S; Rao, Kathleen W; Deal, Allison M; Blatt, Julie
2016-04-01
RUNX1 (AML1) amplification in patients with B-cell acute lymphoblastic leukemia (B-ALL) has been associated with poor survival for unclear reasons. Our anecdotal experience suggests that children with B-ALL and RUNX1 amplification might be predisposed to thrombosis. We performed a retrospective cohort study of children with B-ALL treated from 2008 to 2014 at the North Carolina Children's Hospital. Patient demographics, cytogenetics, and diagnosis of thrombosis were extracted by blinded chart review. Analysis was performed examining the relationship between RUNX1 amplification and thrombosis. We identified 119 patients with B-ALL and a median age of 4.9 years (interquartile range, 2.9 to 8.6 y) at diagnosis. Four patients (3%) had RUNX1 amplification. The average number of RUNX1 copies among those with amplification was 5 (SD 0.81 [range, 4 to 6]). Eighteen thromboses were diagnosed within 6 months of starting treatment. These events were more likely among patients with RUNX1 amplification than in patients without amplification (75% vs. 13%; RR 5.75, 95% confidence interval, 2.75-12.01). RUNX1 amplification may predispose to early thrombotic events in children with B-ALL which could, in part, contribute to their poorer outcomes. Treatment implications, including possible prophylactic anticoagulation of patients with of RUNX1 amplification, justify larger studies to confirm these findings.
Analysis of the Hamstring Muscle Activation During two Injury Prevention Exercises
Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark
2017-01-01
Abstract The aim of this study was to perform an electromyographic and kinetic comparison of two commonly used hamstring eccentric strengthening exercises: Nordic Curl and Ball Leg Curl. After determining the maximum isometric voluntary contraction of the knee flexors, ten female athletes performed 3 repetitions of both the Nordic Curl and Ball Leg Curl, while knee angular displacement and electromyografic activity of the biceps femoris and semitendinosus were monitored. No significant differences were found between biceps femoris and semitendinosus activation in both the Nordic Curl and Ball Leg Curl. However, comparisons between exercises revealed higher activation of both the biceps femoris (74.8 ± 20 vs 50.3 ± 25.7%, p = 0.03 d = 0.53) and semitendinosus (78.3 ± 27.5 vs 44.3 ± 26.6%, p = 0.012, d = 0.63) at the closest knee angles in the Nordic Curl vs Ball Leg Curl, respectively. Hamstring muscles activation during the Nordic Curl increased, remained high (>70%) between 60 to 40° of the knee angle and then decreased to 27% of the maximal isometric voluntary contraction at the end of movement. Overall, the biceps femoris and semitendinosus showed similar patterns of activation. In conclusion, even though the hamstring muscle activation at open knee positions was similar between exercises, the Nordic Curl elicited a higher hamstring activity compared to the Ball Leg Curl. PMID:29339983
Factors Principals Consider When Choosing Professional Development for Teachers
ERIC Educational Resources Information Center
Price, Kimberly Jacob
2017-01-01
Professional development is supposed to increase instructional capacity in teachers. It is well funded by the Elementary and Secondary Education Act, which also provides clear expectations for activities and programs that research suggests make it effective in improving student learning (Ball & Cohen, 1999; Banilower et al., 2006; Gersten et…
Ballistically Initiated Fire Ball Generation Using M&S: Innovation Grant (Briefing Charts)
2012-01-26
isotropic in nature Phenomenological models for explosives initiation. – HVRB, forest fire etc. Equation of state – Ideal gas, Mie-Gruneisen, JWL ...perfectly plastic description • EOS • Mie Gruneisen • JWL for explosive • Phenomenological Model for EFP • High Explosive input for programmed burn
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
NASA Astrophysics Data System (ADS)
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
NASA Technical Reports Server (NTRS)
Benjamin, Theodore G.; Garcia, Roberto; Mcconnaughey, Paul K.; Wang, Ten-See; Vu, Bruce T.; Dakhoul, Youssef
1993-01-01
These analyses were undertaken to aid in the understanding of flow phenomena in the Alternate Turbopump Development (ATD) High-pressure Oxidizer Turbopump (HPOTP) Pump-end ball bearing (PEBB) cavities and their roles in turbopump vibration initiation and bearing distress. This effort was being performed to provide timely support to the program in a decision as to whether or not the program should be continued. In the first case, it was determined that a change in bearing through flow had no significant effect on axial preload. This was a follow-on to a previous study which had resulted in a redesign of the bearing exit cavity which virtually eliminated bearing axial loading. In the second case, a three-dimensional analysis of the inner-race-guided cage configuration was performed so as to determine the pressure distribution on the outer race when the shaft is 0.0002 inches off-center. The results indicate that there is virtually no circumferential pressure difference caused by the offset to contribute to bearing tilt. In the third case, axisymmetric analyses were performed on an outer-race guided cage configuration to determine the magnitude of tangential flow entering the bearing. The removed-shoulder case was analyzed as was the static diverter case. A third analysis where the preload spring was shielded by a sheet of metal for the baseline case was also performed. It was determined that the swirl entering the bearing was acceptable and the project decided to use the outer-race-guided cage configuration. In the fourth case, more bearing configurations were analyzed. These analyses included thermal modeling so as to determine the added benefit of injecting colder fluid directly onto the bearing inner-race contact area. The results of these analyses contributed to a programmatic decision to include coolant injection in the design.
Raastad, Olav; Aune, Tore Kristian; van den Tillaar, Roland
2016-10-01
The aim of this study was to investigate if making the skill acquisition phase more difficult or easier would enhance performance in soccer juggling, and if this practice has a positive intertask transfer effect to ball reception performance. Twenty-two adolescent soccer players were tested in juggling a soccer ball and in the control of an approaching ball at a pre, post and retention test. The participants were randomly divided in a small ball size and bigger ball size training group that both trained four times per week for 6 weeks. At the post and retention test both groups enhanced performance in soccer juggling test with no difference between groups and no increase in ball reception performance at these tests. It was concluded that about intra task transfer and retention of soccer juggling skills, it does not matter if you increase (small balls) or decrease the difficulty (larger balls) when using the same amount of practice time within the skill acquisition phase in soccer juggling. In addition that for ball juggling and ball reception (inter task) these two tasks differ too much in afferent information and movement characteristics that no positive transfer between these two skills no positive intertask transfer can be expected.
Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock
NASA Astrophysics Data System (ADS)
Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun
2014-02-01
In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.
2012-01-01
The effect of internal clearance on radially loaded deepgroove ball and cylindrical roller bearing load distribution and fatigue life was determined for four clearance groups defined in the bearing standards. The analysis was extended to negative clearance (interference) conditions to produce a curve of life factor versus internal clearance. Rolling-element loads can be optimized and bearing life maximized for a small negative operating clearance. Life declines gradually with positive clearance and rapidly with increasing negative clearance. Relationships were found between bearing life and internal clearance as a function of ball or roller diameter, adjusted for load. Results are presented as life factors for radially loaded bearings independent of bearing size or applied load. In addition, a modified Stribeck Equation is presented that relates the maximum rolling-element load to internal bearing clearance.
Sheffler, Will; Baker, David
2009-01-01
We present a novel method called RosettaHoles for visual and quantitative assessment of underpacking in the protein core. RosettaHoles generates a set of spherical cavity balls that fill the empty volume between atoms in the protein interior. For visualization, the cavity balls are aggregated into contiguous overlapping clusters and small cavities are discarded, leaving an uncluttered representation of the unfilled regions of space in a structure. For quantitative analysis, the cavity ball data are used to estimate the probability of observing a given cavity in a high-resolution crystal structure. RosettaHoles provides excellent discrimination between real and computationally generated structures, is predictive of incorrect regions in models, identifies problematic structures in the Protein Data Bank, and promises to be a useful validation tool for newly solved experimental structures.
Sheffler, Will; Baker, David
2009-01-01
We present a novel method called RosettaHoles for visual and quantitative assessment of underpacking in the protein core. RosettaHoles generates a set of spherical cavity balls that fill the empty volume between atoms in the protein interior. For visualization, the cavity balls are aggregated into contiguous overlapping clusters and small cavities are discarded, leaving an uncluttered representation of the unfilled regions of space in a structure. For quantitative analysis, the cavity ball data are used to estimate the probability of observing a given cavity in a high-resolution crystal structure. RosettaHoles provides excellent discrimination between real and computationally generated structures, is predictive of incorrect regions in models, identifies problematic structures in the Protein Data Bank, and promises to be a useful validation tool for newly solved experimental structures. PMID:19177366
Effect of ball geometry on endurance limit in bending of drilled balls
NASA Technical Reports Server (NTRS)
Munson, H. E.
1975-01-01
Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.
A kicking simulator to investigate the foot-ball interaction during a rugby place kick.
Minnaar, Nick; van den Heever, Dawie J
2015-01-01
Foot-ball interaction is an important aspect in rugby place kicking but has received very little attention in literature. This preliminary study presents an adjustable mechanical kicking simulator used to investigate different foot positions and orientations during the foot-ball interaction on resultant ball motion. It was found that changes in foot position and orientation during ball contact can have a large influence on ball motion. It is believed that with further research an optimal place-kicking technique can be found to maximize energy transfer to the ball while still maintaining accuracy.
Ceramic Rail-Race Ball Bearings
NASA Technical Reports Server (NTRS)
Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.
2010-01-01
Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls
Effect of panel shape of soccer ball on its flight characteristics
Hong, Sungchan; Asai, Takeshi
2014-01-01
Soccer balls are typically constructed from 32 pentagonal and hexagonal panels. Recently, however, newer balls named Cafusa, Teamgeist 2, and Jabulani were respectively produced from 32, 14, and 8 panels with shapes and designs dramatically different from those of conventional balls. The newest type of ball, named Brazuca, was produced from six panels and will be used in the 2014 FIFA World Cup in Brazil. There have, however, been few studies on the aerodynamic properties of balls constructed from different numbers and shapes of panels. Hence, we used wind tunnel tests and a kick-robot to examine the relationship between the panel shape and orientation of modern soccer balls and their aerodynamic and flight characteristics. We observed a correlation between the wind tunnel test results and the actual ball trajectories, and also clarified how the panel characteristics affected the flight of the ball, which enabled prediction of the trajectory. PMID:24875291
NASA Technical Reports Server (NTRS)
Coe, H. H.; Parker, R. J.; Scibbe, H. W.
1975-01-01
An experimental investigation was performed to determine the rolling element fatigue life of electron beam-welded hollow balls with a diameter ratio (o.d./i.d.) of 1.26 and to determine the operating characteristics of bearings using these hollow balls. Similar bearings with solid balls were also tested and the data compared. The bearings were operated at shaft speeds up to 28,000 rpm with a thrust load of 2200 N (500 lb). Ball failures during the bearing tests were due to flexure fatigue. The solid and hollow ball bearings tested showed little difference in outer race temperatures and indicated the same bearing torque. The 17.5-mm (0.6875-in.) diameter balls were also tested in the five-ball fatigue tester and showed no significant difference in life when compared with the life of a solid ball.
Effect of panel shape of soccer ball on its flight characteristics
NASA Astrophysics Data System (ADS)
Hong, Sungchan; Asai, Takeshi
2014-05-01
Soccer balls are typically constructed from 32 pentagonal and hexagonal panels. Recently, however, newer balls named Cafusa, Teamgeist 2, and Jabulani were respectively produced from 32, 14, and 8 panels with shapes and designs dramatically different from those of conventional balls. The newest type of ball, named Brazuca, was produced from six panels and will be used in the 2014 FIFA World Cup in Brazil. There have, however, been few studies on the aerodynamic properties of balls constructed from different numbers and shapes of panels. Hence, we used wind tunnel tests and a kick-robot to examine the relationship between the panel shape and orientation of modern soccer balls and their aerodynamic and flight characteristics. We observed a correlation between the wind tunnel test results and the actual ball trajectories, and also clarified how the panel characteristics affected the flight of the ball, which enabled prediction of the trajectory.
Visualization of air flow around soccer ball using a particle image velocimetry
Hong, Sungchan; Asai, Takeshi; Seo, Kazuya
2015-01-01
A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory. PMID:26446616
Visualization of air flow around soccer ball using a particle image velocimetry
NASA Astrophysics Data System (ADS)
Hong, Sungchan; Asai, Takeshi; Seo, Kazuya
2015-10-01
A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory.
Carmeli, Eli; Bar-Chad, Shmuel; Lotan, Meir; Merrick, Joav; Coleman, Raymond
2003-08-01
Incidence rates of falling increase progressively with aging. Preventing or delaying the onset of functional decline is a crucial important goal, because more individuals with intellectual disability (ID) are living well into their sixth and seventh decades. The question of whether walking and ball exercises can effect balance performance has never been reported. This pilot study was conducted to determine the effects of therapeutic training on improving balance capabilities in adults with mild ID. The study included 13 women and 4 men, aged 50-67 years (mean age 56.5 years) residing in a residential care center. Five clinical tests were used to determine the "real" picture of the locomotor function and balance before and after the training protocol. Baseline values were determined using 2 control groups of age-matched adults with and without ID. The tests included modified get-up-and-go, full turn, forward reach, sit-to-stand, and one-legged standing. Therapeutic training for 6 months included dynamic ball exercises and treadmill walking with a 2-3% positive inclination. Participants in the program showed little to no improvement in terms of their static and dynamic balance compared to their initial values. Thus, only 2 of the tests showed statistical significance. Lack of improvement was noted in both postural and balance control in adults with mild ID as a result of 6 months of intervention by means of ball exercise and treadmill training.
Palucci Vieira, Luiz H; de Andrade, Vitor L; Aquino, Rodrigo L; Moraes, Renato; Barbieri, Fabio A; Cunha, Sérgio A; Bedo, Bruno L; Santiago, Paulo R
2017-12-01
The main aim of this study was to verify the relationship between the classification of coaches and actual performance in field tests that measure the kicking performance in young soccer players, using the K-means clustering technique. Twenty-three U-14 players performed 8 tests to measure their kicking performance. Four experienced coaches provided a rating for each player as follows: 1: poor; 2: below average; 3: average; 4: very good; 5: excellent as related to three parameters (i.e. accuracy, power and ability to put spin on the ball). The scores interval established from k-means cluster metric was useful to originating five groups of performance level, since ANOVA revealed significant differences between clusters generated (P<0.01). Accuracy seems to be moderately predicted by the penalty kick, free kick, kicking the ball rolling and Wall Volley Test (0.44≤r≤0.56), while the ability to put spin on the ball can be measured by the free kick and the corner kick tests (0.52≤r≤0.61). Body measurements, age and PHV did not systematically influence the performance. The Wall Volley Test seems to be a good predictor of other tests. Five tests showed reasonable construct validity and can be used to predict the accuracy (penalty kick, free kick, kicking a rolling ball and Wall Volley Test) and ability to put spin on the ball (free kick and corner kick tests) when kicking in soccer. In contrast, the goal kick, kicking the ball when airborne and the vertical kick tests exhibited low power of discrimination and using them should be viewed with caution.
Effect of Number of Players and Maturity on Ball-Drills Training Load in Youth Basketball
Conte, Daniele; Favero, Terence; Niederhausen, Meike; Capranica, Laura; Tessitore, Antonio
2017-01-01
This study aimed to assess the basketball ball-drills workload analyzing: (1) the effect of varying the number of players involved on physiological and technical demands; (2) the temporal changes in players’ responses across bouts; and (3) the relationship of players’ workload with their maturation status and training age. Twelve young male basketball players (mean ± SD; age 13.9 ± 0.7 years; height 1.76 ± 0.06 m; body mass 65.7 ± 12.5 kg; HRmax 202 ± 8 beat·min−1) completed three bouts of 4 min interspersed by 2 min of passive recovery of two vs. two and four vs. four ball-drills. The mean percentage of HRmax (%HRmax) and ratings of perceived exertion (RPE) were collected. Technical actions (TAs) (dribbles, passes, shots, interceptions, steals, rebounds, and turnovers) were calculated through notational analysis. Players’ genitalia development (GD) and pubic hair (PH) growth were assessed using Tanner scale. Results showed a higher %HRmax (p = 0.018), RPE (p = 0.042), dribbles (p = 0.007), shots (p = 0.003), and rebounds (p = 0.006) in two vs. two compared to four vs. four condition. Furthermore, a statistical difference was found for %HRmax (p = 0.005) and number of passes (p = 0.020) between bouts. In addition, no correlation between GD, PH, and training age with %HRmax, RPE, and TAs was found. These findings suggest that variations of the number of players involved affect ball-drills workload and that ball-drills training intensity varies across bouts. Finally, ball-drills elicit an adequate training stimulus, regardless of players’ maturation status and training age. PMID:29910363
Kinematic and kinetic comparisons between American and Korean professional baseball pitchers.
Escamilla, Rafael; Fleisig, Glen; Barrentine, Steven; Andrews, James; Moorman, Claude
2002-07-01
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.
RCSD1-ABL1 Translocation Associated with IKZF1 Gene Deletion in B-Cell Acute Lymphoblastic Leukemia.
Kamran, Shawana; Raca, Gordana; Nazir, Kamran
2015-01-01
The RCSD1 gene has recently been identified as a novel gene fusion partner of the ABL1 gene in cases of B-cell Acute Lymphoblastic Leukemia (B-ALL). The RCSD1 gene is located at 1q23 and ABL1 is located at 9q34, so that the RCSD1-ABL1 fusion typically arises through a rare reciprocal translocation t(1;9)(q23;q34). Only a small number of RCSD1-ABL1 positive cases of B-ALL have been described in the literature, and the full spectrum of clinical, morphological, immunophenotypic, and molecular features associated with this genetic abnormality has not been defined. We describe extensive genetic characterization of a case of B-ALL with RCSD1-ABL1 fusion, by using conventional cytogenetic analysis, Fluorescence In Situ Hybridization (FISH) studies, and Chromosomal Microarray Analysis (CMA). The use of CMA resulted in detection of an approximately 70 kb deletion at 7p12.2, which caused a disruption of the IKZF1 gene. Deletions and mutations of IKZF1 are recurring abnormalities in B-ALL and are associated with a poor prognosis. Our findings highlight the association of the deletion of IKZF1 gene with the t(1;9)(q24;q34) and illustrate the importance of comprehensive cytogenetic and molecular evaluation for accurate prediction of prognosis in patients with B-cell ALL.
RCSD1-ABL1 Translocation Associated with IKZF1 Gene Deletion in B-Cell Acute Lymphoblastic Leukemia
Kamran, Shawana; Nazir, Kamran
2015-01-01
The RCSD1 gene has recently been identified as a novel gene fusion partner of the ABL1 gene in cases of B-cell Acute Lymphoblastic Leukemia (B-ALL). The RCSD1 gene is located at 1q23 and ABL1 is located at 9q34, so that the RCSD1-ABL1 fusion typically arises through a rare reciprocal translocation t(1;9)(q23;q34). Only a small number of RCSD1-ABL1 positive cases of B-ALL have been described in the literature, and the full spectrum of clinical, morphological, immunophenotypic, and molecular features associated with this genetic abnormality has not been defined. We describe extensive genetic characterization of a case of B-ALL with RCSD1-ABL1 fusion, by using conventional cytogenetic analysis, Fluorescence In Situ Hybridization (FISH) studies, and Chromosomal Microarray Analysis (CMA). The use of CMA resulted in detection of an approximately 70 kb deletion at 7p12.2, which caused a disruption of the IKZF1 gene. Deletions and mutations of IKZF1 are recurring abnormalities in B-ALL and are associated with a poor prognosis. Our findings highlight the association of the deletion of IKZF1 gene with the t(1;9)(q24;q34) and illustrate the importance of comprehensive cytogenetic and molecular evaluation for accurate prediction of prognosis in patients with B-cell ALL. PMID:26600955
Genomic analysis of adult B-ALL identifies potential markers of shorter survival.
Patel, Shiven; Mason, Clinton C; Glenn, Martha J; Paxton, Christian N; South, Sara T; Cessna, Melissa H; Asch, Julie; Cobain, Erin F; Bixby, Dale L; Smith, Lauren B; Reshmi, Shalini; Gastier-Foster, Julie M; Schiffman, Joshua D; Miles, Rodney R
2017-05-01
B lymphoblastic leukemia (B-ALL) in adults has a higher risk of relapse and lower long-term survival than pediatric B-ALL, but data regarding genetic prognostic biomarkers are much more limited for adult patients. We identified 70 adult B-ALL patients from three institutions and performed genome-wide analysis via single nucleotide polymorphism (SNP) arrays on DNA isolated from their initial diagnostic sample and, when available, relapse bone marrow specimens to identify recurring copy number alterations (CNA). As B-cell developmental genes play a crucial role in this leukemia, we assessed such for recurrent deletions in diagnostic and relapse samples. We confirmed previous findings that the most prevalent deletions of these genes occur in CDKN2A, IKZF1, and PAX5, with several others at lower frequencies. Of the 16 samples having paired diagnostic and relapse samples, 5 showed new deletions in these recurrent B-cell related genes and 8 showed abolishment. Deletion of EBF1 heralded a significant negative prognostic impact on relapse free survival in univariate and multivariate analyses. The combination of both a CDKN2A/B deletion and an IKZF1 alteration (26% of cases) also showed a trend toward predicting worse overall survival compared to having only one or neither of these deletions. These findings add to the understanding of genomic influences on this comparably understudied disease cohort that upon further validation may help identify patients who would benefit from upfront treatment intensification. Copyright © 2017 Elsevier Ltd. All rights reserved.
A general theory for ball lightning structure and light output
NASA Astrophysics Data System (ADS)
Morrow, R.
2018-03-01
A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.
The Head Tracks and Gaze Predicts: How the World’s Best Batters Hit a Ball
Mann, David L.; Spratford, Wayne; Abernethy, Bruce
2013-01-01
Hitters in fast ball-sports do not align their gaze with the ball throughout ball-flight; rather, they use predictive eye movement strategies that contribute towards their level of interceptive skill. Existing studies claim that (i) baseball and cricket batters cannot track the ball because it moves too quickly to be tracked by the eyes, and that consequently (ii) batters do not – and possibly cannot – watch the ball at the moment they hit it. However, to date no studies have examined the gaze of truly elite batters. We examined the eye and head movements of two of the world’s best cricket batters and found both claims do not apply to these batters. Remarkably, the batters coupled the rotation of their head to the movement of the ball, ensuring the ball remained in a consistent direction relative to their head. To this end, the ball could be followed if the batters simply moved their head and kept their eyes still. Instead of doing so, we show the elite batters used distinctive eye movement strategies, usually relying on two predictive saccades to anticipate (i) the location of ball-bounce, and (ii) the location of bat-ball contact, ensuring they could direct their gaze towards the ball as they hit it. These specific head and eye movement strategies play important functional roles in contributing towards interceptive expertise. PMID:23516460
Inserts Automatically Lubricate Ball Bearings
NASA Technical Reports Server (NTRS)
Hager, J. A.
1983-01-01
Inserts on ball-separator ring of ball bearings provide continuous film of lubricant on ball surfaces. Inserts are machined or molded. Small inserts in ball pockets provide steady supply of lubricant. Technique is utilized on equipment for which maintenance is often poor and lubrication interval is uncertain, such as household appliances, automobiles, and marine engines.
NASA Astrophysics Data System (ADS)
Ibrahim, Nurul Farhana; Mohamad, Hasmaliza; Noor, Siti Noor Fazliah Mohd
2016-12-01
The present work aims to study the effects of using different milling media on bioactive glass produced through melt-derived method for biomaterial application. The bioactive glass powder based on SiO2-CaO-Na2O-P2O5 system was fabricated using two different types of milling media which are tungsten carbide (WC) and zirconia (ZrO2) balls. However, in this work, no P2O5 was added in the new composition. XRF analysis indicated that tungsten trioxide (WO3) was observed in glass powder milled using WC balls whereas ZrO2 was observed in glass powder milled using ZrO2 balls. Amorphous structure was detected with no crystalline peak observed through XRD analysis for both glass powders. FTIR analysis confirmed the formation of silica network with the existence of functional groups Si-O-Si (bend), Si-O-Si (tetrahedral) and Si-O-Si (stretch) for both glass powders. The results revealed that there was no significant effect of milling media on amorphous silica network glass structure which shows that WC and zirconia can be used as milling media for bioactive glass fabrication without any contamination. Therefore, the fabricated BG can be tested safely for bioactivity assessment in biological fluids environment.
Tactical metrics that discriminate winning, drawing and losing teams in UEFA Euro 2012®.
Winter, Christian; Pfeiffer, Mark
2016-01-01
The objectives of this article are twofold: first, an innovative approach to notational analysis in football is outlined. By considering the important theoretical requirements for the analysis of sports games (like the interaction between two parties, the procedural sequence of action or the significance of tactical behaviour) the meaning of the introduced parameters, called tactical metrics, is illustrated. In a second step, the validity of this approach is tested using matches of the Union of European Football Associations (UEFA) Euro 2012® to investigate a connection between these metrics and success. The results show that 11 tactical metrics model tactical behaviour in 4 different dimensions (game speed, transition play after ball recovery, transition play after ball loss and offence efficiency (OE)). Discriminant analysis based on the factor values leads to a correct classification of 64.8% identifying winners, losers and drawers. This successful discrimination reveals a connection between match success and the presented metrics. Especially, the transition play after losing the ball and the OE seem to be factors connected directly with the result of a match, since those were important values for a successful discrimination. Furthermore, the procedural description of tactical behaviour provides the opportunity to conduct meaningful recommendations for the training and coaching process.
Kobayashi, Makiko; Hattori, Yusuke; Sasaki, Tetsuo; Otsuka, Makoto
2017-01-01
The purposes of this study were to clarify the amorphization by ball milling of atorvastatin calcium sesquihydrate (AT) and to analyse the change in dissolution kinetics. The amorphous AT was prepared from crystal AT by ball milling and analysed in terms of the changes of its physicochemical properties by powder X-ray diffraction analysis (XRD), thermal analysis and infrared spectroscopy (IR). Moreover, to evaluate the usefulness of the amorphous form for pharmaceutical development, intrinsic solubility of the ground product was evaluated using a dissolution kinetic method. The XRD results indicated that crystalline AT was transformed into amorphous solids by more than 30-min milling. The thermal analysis result suggested that chemical potential of the ground AT are changed significantly by milling. The IR spectra of the AT showed the band shift from the amide group at 3406 cm -1 with an intermolecular hydrogen bond to a free amide group at 3365 cm -1 by milling. The dissolution of amorphous AT follows a dissolution kinetic model involving phase transformation. The initial dissolution rate of the ground product increased with the increase in milling time to reflect the increase in the intrinsic solubility based on the amorphous state. © 2016 Royal Pharmaceutical Society.
Design and validation of the Grip-ball for measurement of hand grip strength.
Jaber, Rana; Hewson, David J; Duchêne, Jacques
2012-11-01
The Grip-ball is a new dynamometer used to evaluate grip strength, as well as for use in home-based rehabilitation of the hand and forearm. The Grip-ball consists of pressure and temperature sensors and an electronic wireless communication system contained in an airtight ball. That can be inflated to different pressures. The device has advantages over standard dynamometers in that it looks like a simple ball, and can wirelessly communicate via Bluetooth to any compatible receiver, thus have potential to be used for clinical assessment and rehabilitation in a remote setting. The reliability and reproducibility of the device were assessed for the pressure sensor itself, as well as the relationship between the force applied and the pressure measured by the Grip-ball. The initial validation was performed using the pressure sensor without the ball in order to confirm the accuracy of the sensor used. A second validation study was conducted using the Grip-ball rather than just its sensor to examine the relationship between the pressure measured inside the ball and force applied. The results showed that there is a very good correlation (r=0.997, p<0.05) between the pressure measured by the Grip-ball sensor and that measured by a Vigorimeter, thus confirming the reliability of the sensor used in the Grip-ball. A quadratic regression equation was calculated in order to predict the force applied based on the pressure measured inside the ball, and the initial pressure to which the ball was inflated (R(2)=0.97, standard error 10.9N). Such a finding compares favourably with the variability inherent in Jamar recordings, thus indicating that the Grip-ball could be used to assess grip force. An industrial version of the Grip-ball, which is currently under development, will be able to be used for the entire range of grip force in the population. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
2010-09-01
5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S...AND ADDRESS(ES) Bestech,1040 Lorne Street unit 3,Sudbury, Ontario P3C 4R9, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...athletic activities, including soccer, baseball, softball , t-ball, football, cheerleading, junior wrestling, and basketball. Instructional programs
2013-05-23
ISS036-E-003308(23 May 2013) --- Onboard the International Space Station, Expedition 36 Flight Engineer Chris Cassidy, NASA astronaut, watches from just out of frame as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.
Effects of turbulence on the drag force on a golf ball
NASA Astrophysics Data System (ADS)
Cross, Rod
2016-09-01
Measurements are presented of the drag force on a golf ball dropped vertically into a tank of water. As observed previously in air, the drag coefficient drops sharply when the flow becomes turbulent. The experiment would be suitable for undergraduate students since it can be undertaken at low ball speeds and since the effects of turbulence are easily observed on video film. A modified golf ball was used to show how a ball with a smooth and a rough side, such as a cricket ball, is subject to a side force when the ball surface itself is asymmetrical in the transverse direction.
Evaluation of drilled-ball bearings at DN values to three million. 1: Variable oil flow tests
NASA Technical Reports Server (NTRS)
Holmes, P. W.
1932-01-01
Two 125-mm-bore solid ball bearings and two similar drilled ball bearings were operated at speeds up to 24,000 rpm (3.0 million DN) with a 13,000 newton (3000 lb) thrust load. The oil flow rate was varied from 0.045 to 0.121 kilograms per second (6 to 16 lb/min). The solid ball bearings operated satisfactorily over the entire range of conditions. The drilled ball bearing experienced cage rub with marginal lubrication at 0.045 kilograms per second (6 lb/min). The drilled ball bearing generally ran cooler than the solid ball bearings.
Rolling-element fatigue life of AMS 5900 balls
NASA Technical Reports Server (NTRS)
Parker, R. J.
1983-01-01
The rolling-element fatigue life of AMS 5900 12.7-mm (1/2-in.) dia was determined in five-ball fatigue testers. The 10% life with the warm headed AMS 5900 balls was equivalent to that of AMS 5749 and over eight times that of AISI M-50. The AMS balls fabricated by cold heading had small surface cracks which initiated fatigue spalls where these cracks were crossed by running tracks. The cold-headed AMS 5900 balls had a 10% fatigue life an order of magnitude less than that of the warm headed balls even when failures on the cold headed balls at visible surface cracks were omitted.
Accuracy and Reliability of a New Tennis Ball Machine
Brechbuhl, Cyril; Millet, Grégoire; Schmitt, Laurent
2016-01-01
The aim was to evaluate the reliability of a newly-developed ball machine named 'Hightof', on the field and to assess its accuracy. The experiment was conducted in the collaboration of the 'Hawk-Eye' technology. The accuracy and reliability of this ball machine were assessed during an incremental test, with 1 min of exercise and 30 sec of recovery, where the frequency of the balls increased from 10 to 30 balls·min-1. The initial frequency was 10 and increased by 2 until 22, then by 1 until 30 balls·min-1. The reference points for the impact were 8.39m from the net and 2.70m from lateral line for the right side and 2.83m for the left side. The precision of the machine was similar on the right and left sides (0.63 ± 0.39 vs 0.63 ± 0.34 m). The distances to the reference point were 0.52 ± 0.42, 0.26 ± 0.19, 0.52 ± 0.37, 0.28 ± 0.19 m for the Y-right, X-right, Y-left and X-left impacts. The precision was constant and did not increase with the intensity. (e.g ball frequency). The ball velocity was 86.3 ± 1.5 and 86.5 ± 1.3 km·h-1 for the right and the left side, respectively. The coefficient of variation for the velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min-1). Conclusion: both the accuracy and the reliability of this new ball machine appear satisfying enough for field testing and training. Key points The reliability and accuracy of a new ball machine named 'Hightof' were assessed. The impact point was reproducible and similar on the right and left sides (±0.63 m). The precision was constant and did not increase with the intensity (e.g ball frequency). The coefficient of variation of the ball velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min-1). PMID:27274663
Accuracy and Reliability of a New Tennis Ball Machine.
Brechbuhl, Cyril; Millet, Grégoire; Schmitt, Laurent
2016-06-01
The aim was to evaluate the reliability of a newly-developed ball machine named 'Hightof', on the field and to assess its accuracy. The experiment was conducted in the collaboration of the 'Hawk-Eye' technology. The accuracy and reliability of this ball machine were assessed during an incremental test, with 1 min of exercise and 30 sec of recovery, where the frequency of the balls increased from 10 to 30 balls·min(-1). The initial frequency was 10 and increased by 2 until 22, then by 1 until 30 balls·min(-1). The reference points for the impact were 8.39m from the net and 2.70m from lateral line for the right side and 2.83m for the left side. The precision of the machine was similar on the right and left sides (0.63 ± 0.39 vs 0.63 ± 0.34 m). The distances to the reference point were 0.52 ± 0.42, 0.26 ± 0.19, 0.52 ± 0.37, 0.28 ± 0.19 m for the Y-right, X-right, Y-left and X-left impacts. The precision was constant and did not increase with the intensity. (e.g ball frequency). The ball velocity was 86.3 ± 1.5 and 86.5 ± 1.3 km·h(-1) for the right and the left side, respectively. The coefficient of variation for the velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min(-1)). both the accuracy and the reliability of this new ball machine appear satisfying enough for field testing and training. Key pointsThe reliability and accuracy of a new ball machine named 'Hightof' were assessed.The impact point was reproducible and similar on the right and left sides (±0.63 m).The precision was constant and did not increase with the intensity (e.g ball frequency).The coefficient of variation of the ball velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min(-1)).
Virta, R.L.
2001-01-01
Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.
A Comparative Study of Two Types of Ball-on-Ball Collision
ERIC Educational Resources Information Center
White, Colin
2017-01-01
This paper describes three methods of measuring the coefficient of restitution (CoR) for two different types of ball-on-ball collision. The first collision type (for which two different CoR measurement procedures are described) is a static, hanging steel ball forming part of a Newton's cradle arrangement, which is then hit by its adjacent…
SHP2 Is Required for BCR-ABL1-Induced Hematologic Neoplasia
Gu, Shengqing; Sayad, Azin; Chan, Gordon; Yang, Wentian; Lu, Zhibin; Virtanen, Carl; Van Etten, Richard A.; Neel, Benjamin G.
2017-01-01
BCR-ABL1-targeting tyrosine kinase inhibitors (TKIs) have revolutionized treatment of Philadelphia chromosome-positive (Ph+) hematologic neoplasms. Nevertheless, acquired TKI resistance remains a major problem in chronic myeloid leukemia (CML), and TKIs are less effective against Ph+ B-cell acute lymphoblastic leukemia (B-ALL). GAB2, a scaffolding adaptor that binds and activates SHP2, is essential for leukemogenesis by BCR-ABL1, and a GAB2 mutant lacking SHP2 binding cannot mediate leukemogenesis. Using a genetic loss-of-function approach and bone marrow transplantation (BMT) models for CML and BCR-ABL1+ B-ALL, we show that SHP2 is required for BCR-ABL1-evoked myeloid and lymphoid neoplasia. Ptpn11 deletion impairs initiation and maintenance of CML-like myeloproliferative neoplasm, and compromises induction of BCR-ABL1+ B-ALL. SHP2, and specifically, its SH2 domains, PTP activity and C-terminal tyrosines, is essential for BCR-ABL1+, but not WT, pre-B cell proliferation. The MEK/ERK pathway is regulated by SHP2 in WT and BCR-ABL1+ pre-B cells, but is only required for the proliferation of BCR-ABL1+ cells. SHP2 is required for SRC family kinase (SFK) activation only in BCR-ABL1+ pre-B cells. RNAseq reveals distinct SHP2-dependent transcriptional programs in BCR-ABL1+ and WT pre-B cells. Our results suggest that SHP2, via SFKs and ERK, represses MXD3/4 to facilitate a MYC-dependent proliferation program in BCR-ABL1-transformed pre-B cells. PMID:28804122
ERIC Educational Resources Information Center
Carpenter, D. Rae, Jr.; And Others
1988-01-01
Discusses a demonstration of vertical collision of two balls. Shows the theoretical height ratio using mathematical expression and diagrams. Compares it with researchers' experimental results. Expands the two-ball collision to multi-ball system. (YP)
Neutron detection using a crystal ball calorimeter
NASA Astrophysics Data System (ADS)
Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.
2015-12-01
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.
Spheres settling in an Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
Pan, Tsorng-Whay; Glowinski, Roland
2017-11-01
In this talk we present a numerical study of the dynamics of balls settling in a vertical channel with a square cross-section filled with an Oldroyd-B fluid. For the case of two balls, two typical kinds of particle dynamics are obtained: (i) periodic interaction between two balls and (ii) the formation of a vertical chain of two balls. For the periodic interaction of two balls occurred at lower values of the elasticity number, two balls draft, kiss and break away periodically and the chain is not formed due to not strong enough elastic force. For slightly higher values of the elasticity number, two balls draft, kiss and break away a couple times first and then form a chain. Such chain finally becomes a vertical one after the oscillation damps out. For higher values of the elasticity number, two balls draft, kiss and form a vertical chain right away. The formation of three ball chain can be obtained at higher values of the elasticity number. This work was supported by NSF (Grant DMS-1418308).
How Cristiano Ronaldo performs his knuckleball?
NASA Astrophysics Data System (ADS)
Cohen, Caroline; Darbois Texier, Baptiste; Quere, David; Clanet, Christophe
2012-11-01
A soccer ball kicked at very low spin can exhibit a zigzag trajectory. Along its straight path, the ball deviates laterally from about 0.2 m, that is to say one ball diameter. One zig zag happens as the ball travelled about 15 m. As the deviation direction seems unpredictable, this effect is highly annoying for goalkeepers. That why Cristiano Ronaldo and many soccer players are looking for this phenomenon. Those trajectories called knuckleballs are also observed on volleyball and baseball. We study experimentally indoor knuckleballs for different balls varying from soccer balls to smooth spheres. We show that knuckle effect doesn't derive from ball deformations at foot impact or ball seams. Actually, aerodynamic lift forces on a smooth sphere are fluctuating and are responsible for knuckleballs. From this study, we deduce side force intensity exerted on smooth spheres and sport balls for typical game Reynolds number (Re ~104 -106). Finally we discuss required conditions to observe a knuckleball on the sport field.
Sekendiz, Betül; Cuğ, Mutlu; Korkusuz, Feza
2010-11-01
The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.
The Effect of Stereotype Threat on Performance of a Rhythmic Motor Skill
Huber, Meghan E.; Seitchik, Allison E.; Brown, Adam J.; Sternad, Dagmar; Harkins, Stephen G.
2015-01-01
Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. Three experiments tested the effect of stereotype threat on a rhythmic ball bouncing task, both at the novice and skilled level. Previous analysis of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. PMID:25706769
Ernstbrunner, L; Werthel, J-D; Hatta, T; Thoreson, A R; Resch, H; An, K-N; Moroder, P
2016-10-01
The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo. Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius. The experimental SR is comparable with the calculated SR (mean difference 10%, sd 8%; relative values). The experimental incongruence study observed almost no differences (2%, sd 2%). The calculated SR on the basis of the socket concavity radius is superior in predicting the experimental SR (mean difference 10%, sd 9%) compared with the calculated SR based on the plastic ball radius (mean difference 42%, sd 55%). The present biomechanical investigation confirmed the validity of the BSSR. Incongruence has no significant effect on the SR of a shoulder model. In the event of an incongruent system, the calculation of the BSSR on the basis of the glenoid concavity radius is recommended.Cite this article: L. Ernstbrunner, J-D. Werthel, T. Hatta, A. R. Thoreson, H. Resch, K-N. An, P. Moroder. Biomechanical analysis of the effect of congruence, depth and radius on the stability ratio of a simplistic 'ball-and-socket' joint model. Bone Joint Res 2016;5:453-460. DOI: 10.1302/2046-3758.510.BJR-2016-0078.R1. © 2016 Ernstbrunner et al.
Impact Circuit Training in High School
ERIC Educational Resources Information Center
LaFleche, Marc Joseph
2012-01-01
This article discusses Impact Circuit Training (ICT) which combines dodging and striking movements to create a workout that increases physical fitness levels in participants. Participants of ICT will strike a heavy bag, mitts, and a speed bag, jump rope, throw and catch a medicine ball, and jog as part of their exercise program. No contact is made…
Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer
NASA Astrophysics Data System (ADS)
Kampe, Thomas U.; Good, William S.
2017-09-01
NASA's Sustainable Land Imaging (SLI) program, managed through the Earth Science Technology Office, aims to develop technologies that will provide future Landsat-like measurements. SLI aims to develop a new generation of smaller, more capable, less costly payloads that meet or exceed current imaging capabilities. One projects funded by this program is Ball's Compact Hyperspectral Prism Spectrometer (CHPS), a visible-to-shortwave imaging spectrometer that provides legacy Landsat data products as well as hyperspectral coverage suitable for a broad range of land science products. CHPS exhibits extremely low straylight and accommodates full aperture, full optical path calibration needed to ensure the high radiometric accuracy demanded by SLI measurement objectives. Low polarization sensitivity in visible to near-infrared bands facilitates coastal water science as first demonstrated by the exceptional performance of the Operational Land Imager. Our goal is to mature CHPS imaging spectrometer technology for infusion into the SLI program. Our effort builds on technology development initiated by Ball IRAD investment and includes laboratory and airborne demonstration, data distribution to science collaborators, and maturation of technology for spaceborne demonstration. CHPS is a three year program with expected exiting technology readiness of TRL-6. The 2013 NRC report Landsat and Beyond: Sustaining and Enhancing the Nations Land Imaging Program recommended that the nation should "maintain a sustained, space-based, land-imaging program, while ensuring the continuity of 42-years of multispectral information." We are confident that CHPS provides a path to achieve this goal while enabling new science measurements and significantly reducing the cost, size, and volume of the VSWIR instrument.
Ball mounting fixture for a roundness gage
Gauler, Allen L.; Pasieka, Donald F.
1983-01-01
A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.
Measuring the rebound resilience of a bouncing ball
NASA Astrophysics Data System (ADS)
Wadhwa, Ajay
2012-09-01
Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property 'rebound resilience' and express it as the ratio of the rebound height to the initial drop height of the ball. We determine the rebound resilience for three different types of ball by calculating the coefficient of restitution of the ball-surface combination from the experimentally measurable physical quantities, such as initial drop height and time interval between successive bounces. Using these we also determine the contact time of balls with the surface of impact. For measurements we have used audio, motion and surface-temperature sensors that were interfaced through a USB port with a computer.
Complete analytical solution of electromagnetic field problem of high-speed spinning ball
NASA Astrophysics Data System (ADS)
Reichert, T.; Nussbaumer, T.; Kolar, J. W.
2012-11-01
In this article, a small sphere spinning in a rotating magnetic field is analyzed in terms of the resulting magnetic flux density distribution and the current density distribution inside the ball. From these densities, the motor torque and the eddy current losses can be calculated. An analytical model is derived, and its results are compared to a 3D finite element analysis. The model gives insight into the torque and loss characteristics of a solid rotor induction machine setup, which aims at rotating the sphere beyond 25 Mrpm.
An analytical solution for the squeeze film between a nondeformable sphere and groove
NASA Technical Reports Server (NTRS)
Allen, C. W.; Wilson, M. P.
1972-01-01
An analysis is presented to compute the film thickness, pressure and load relations between a rigid ball and rigid groove in normal approach when lubricated by a fluid with an exponential pressure-viscosity relationship. The geometry of the ball-groove system is reduced to the equivalent system of a paraboloid approaching a flat plate. Exact and approximate solutions are presented for the load and pressure relations. There is found to be a limiting load for a given geometry and lubricant regardless of the rate of approach.
NASA Astrophysics Data System (ADS)
Negrea, Adina; Busuioceanu, Ioana Iuliana
2018-02-01
Present paper estimates the mechanics of the impact of a ball and a hand-arm, during the sports training using a classical model for the hand-arm system, avoiding the contribution of the coefficient of restitution. The results of this investigation are focused on the equations needed to find out theimpact reactions in elbow and shoulder joints, for different anthropometric data. Also, the computing of the position of mass centers and the moments of inertia for each constitutive part of hand-arm system is made.
A statistical physics viewpoint on the dynamics of the bouncing ball
NASA Astrophysics Data System (ADS)
Chastaing, Jean-Yonnel; Géminard, Jean-Christophe; Bertin, Eric
2016-06-01
We compute, in a statistical physics perspective, the dynamics of a bouncing ball maintained in a chaotic regime thanks to collisions with a plate experiencing an aperiodic vibration. We analyze in details the energy exchanges between the bead and the vibrating plate, and show that the coupling between the bead and the plate can be modeled in terms of both a dissipative process and an injection mechanism by an energy reservoir. An analysis of the injection statistics in terms of fluctuation relation is also provided.
Optical Autocovariance Wind Lidar (OAWL): aircraft test-flight history and current plans
NASA Astrophysics Data System (ADS)
Tucker, Sara C.; Weimer, Carl; Adkins, Mike; Delker, Tom; Gleeson, David; Kaptchen, Paul; Good, Bill; Kaplan, Mike; Applegate, Jeff; Taudien, Glenn
2015-09-01
To address mission risk and cost limitations the US has faced in putting a much needed Doppler wind lidar into space, Ball Aerospace and Technologies Corp, with support from NASA's Earth Science Technology Office (ESTO), has developed the Optical Autocovariance Wind Lidar (OAWL), designed to measure winds from aerosol backscatter at the 355 nm or 532 nm wavelengths. Preliminary proof of concept hardware efforts started at Ball back in 2004. From 2008 to 2012, under an ESTO-funded Instrument Incubator Program, Ball incorporated the Optical Autocovariance (OA) interferometer receiver into a prototype breadboard lidar system by adding a laser, telescope, and COTS-based data system for operation at the 355 nm wavelength. In 2011, the prototype system underwent ground-based validation testing, and three months later, after hardware and software modifications to ensure autonomous operation and aircraft safety, it was flown on the NASA WB-57 aircraft. The history of the 2011 test flights are reviewed, including efforts to get the system qualified for aircraft flights, modifications made during the flight test period, and the final flight data results. We also present lessons learned and plans for the new, robust, two-wavelength, aircraft system with flight demonstrations planned for Spring 2016.
Schettini, M A; Prigge, E C; Nestor, E L
1999-07-01
To assess the influence of volume and mass of ruminal contents on voluntary intake and related variables, five ruminally cannulated steers (550 kg) were fed a low-quality forage diet (43.1% ADF, 8.1% CP) in a 5 x 5 Latin square experiment. Mass and volume of ruminal contents were altered by adding varying numbers and weights of filled tennis balls (6.7-cm diameter) to the rumen immediately before the initiation of each experimental period. Treatments consisted of 0 balls (control), 50 balls with a 1.1 specific gravity (SG), 100 balls with a 1.1 SG, 50 balls with a 1.3 SG, and 100 balls with a SG of 1.3. The total volume of balls was 7.25 and 14.5 L for 50 and 100 balls, respectively. The total weight of balls was 8.5 and 17 kg for 50 and 100 balls with a 1.1 SG and 10.75 and 21.5 kg for 50 and 100 balls with a 1.3 SG, respectively. Daily DMI was 8.3, 7.3, 7.0, 6.5, and 6.0 kg for control; 50, 1.1 SG; 50, 1.3 SG; 100, 1.1 SG; and 100, 1.3 SG, respectively. Addition of balls to the rumen reduced (P < .01) DMI. Increasing the number (P < .01) and SG (P <. 01) of the balls decreased DMI further. However, digestibilities of DM, NDF, ADF, and CP were not influenced by treatment. Increasing the number of balls in the rumen increased (P < .05) rate of passage of digesta from the rumen, but increasing SG of the balls did not alter rate of passage. There was a treatment x hour interaction (P < .05) in the proportion of ruminal digesta with a functional specific gravity (FSG) less than 1.1, which decreased with time after feeding for the control but increased with time after feeding for other treatments. Ruminal passage rate of inert particles added in the rumen of different SG (1.1 and 1.3) and length (1 and 3 mm) decreased (P < .05) as SG of the balls increased. Mean fecal particle size was greater for those treatments with the heavier balls. Both the number and SG of balls (P < .10) influenced total VFA, and total concentrations were greater for the control and for the 1.1 SG than for the 1.3 SG treatments.
Uccellini, Lorenzo; Ossiboff, Robert J; de Matos, Ricardo E C; Morrisey, James K; Petrosov, Alexandra; Navarrete-Macias, Isamara; Jain, Komal; Hicks, Allison L; Buckles, Elizabeth L; Tokarz, Rafal; McAloose, Denise; Lipkin, Walter Ian
2014-08-08
Respiratory infections are important causes of morbidity and mortality in reptiles; however, the causative agents are only infrequently identified. Pneumonia, tracheitis and esophagitis were reported in a collection of ball pythons (Python regius). Eight of 12 snakes had evidence of bacterial pneumonia. High-throughput sequencing of total extracted nucleic acids from lung, esophagus and spleen revealed a novel nidovirus. PCR indicated the presence of viral RNA in lung, trachea, esophagus, liver, and spleen. In situ hybridization confirmed the presence of intracellular, intracytoplasmic viral nucleic acids in the lungs of infected snakes. Phylogenetic analysis based on a 1,136 amino acid segment of the polyprotein suggests that this virus may represent a new species in the subfamily Torovirinae. This report of a novel nidovirus in ball pythons may provide insight into the pathogenesis of respiratory disease in this species and enhances our knowledge of the diversity of nidoviruses.
Ball catching in children with developmental coordination disorder: control of degrees of freedom.
Utley, Andrea; Steenbergen, Bert; Astill, Sarah Louise
2007-01-01
This study investigated two-handed catching in eight children (four males, four females) aged 7 to 8 years (mean 7y 4mo [SD 3mo]) with developmental coordination disorder (DCD) and their age-matched controls (AMCs). Kinematic data were collected to examine Bernstein's (1967) notion of freezing and releasing degrees of freedom (DF). Participants were asked to catch a ball 30 times, delivered in three blocks of 10 trials. Video analysis showed that children with DCD caught significantly fewer balls than their AMCs (p< or =0.001) counterparts. Kinematic analyses showed that children with DCD exhibited smaller ranges of motion and less variable angular excursions of the elbow joints than their AMCs, and that their elbows are more rigidly coupled (p< or =0.001). These data suggest that children with DCD rigidly fix and couple their limbs to reduce the number of DF actively involved in the task.
Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim
2015-04-20
It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skill-related differences between athletes and nonathletes in speed discrimination.
Thomson, Kaivo; Watt, Anthony; Liukkonen, Jarmo
2008-12-01
This study examined differences in decision-making time and accurscy as attributes of speed discrimination between participants skilled and less skilled in ball games. A total of 130 men, ages 18 to 28 years (M=21.2, SD=2.6), participated. The athlete sample (skilled group) comprised Estonian National League volleyball (n=26) and basketball players (n=27). The nonathlete sample (less skilled group) included 77 soldiers of the Estonian Defence Force with no reported top level experience in ball games. Speed-discrimination stimuli were images of red square shapes presented moving along the sagittal axis at four different virtual velocities on a computer (PC) screen which represented the frontal plane. Analysis indicated that only decision-making time was significantly different between the elite athlete and nonathlete groups. This finding suggests a possible effect of ball-game skills for decision-making time in speed discrimination.
Comparison of male and female foot shape.
Luo, Gangming; Houston, Vern L; Mussman, Martin; Garbarini, Maryanne; Beattie, Aaron C; Thongpop, Chaiya
2009-01-01
Morphological and geometric differences between male and female feet can be the decisive factor of whether well-fitting, functional, and comfortable footwear is available for both men and women. Optical scans, plaster wrap casts, and a set of manual measurements from the right feet of 51 female participants, aged 20 to 59 years (32 +/- 10.2 years), and 39 male participants, aged 22 to 71 years (47.1 +/- 12.1 years), were taken to determine which parameters were the most significant in characterizing pedal geometry and which had the largest difference between male and female feet. Analysis showed that the heel-to-ball length (ball length) of the male participants' feet (181.5 mm) was significantly longer, on average, than that of the female participants' feet (165.0 mm). The width of the male paticipants' feet at the ball, instep, and heel regions, as well as the ball circumference, normalized by the ball length, were all significantly larger on average, than the female test participants' feet. However, toe region, instep, and medial and lateral malleoli heights were larger, on average, for the female participants than for the male. The results show that female feet differ in size and shape from male feet and are not algebraically scaled, smaller versions of male feet, as is often assumed. The study shows that the average male participants' feet are longer than that of the female participants' feet, while the female feet are relatively narrower but higher than those of the male participants.
Torondel, Belen; Gyekye-Aboagye, Yaw; Routray, Parimita; Boisson, Sophie; Schimdt, Wolf; Clasen, Thomas
2015-06-01
Sentinel toys are increasingly used as a method of assessing young children's exposure to faecal pathogens in households in low-income settings. However, there is no consensus on the suitability of different approaches. We evaluated three types of toy balls with different surfaces (plastic, rubber, urethane) in the laboratory to compare the uptake of faecal indicator bacteria (Escherichia coli) on their surface. We performed bacteria survival analysis under different environmental conditions and tested laboratory methods for bacteria removal and recovery. In a field study we distributed sterile urethane balls to children <5 from 360 households in rural India. After 24 hours, we collected and rinsed the toys in sterile water, assayed for thermotolerant coliforms (TTC) and explored associations between the level of contamination and household characteristics. In the laboratory, urethane foam balls took up more indicator bacteria than the other balls. Bacteria recovery did not differ based on mechanic vs no agitation. Higher temperatures and moisture levels increased bacterial yield. In the field, the only factor associated with a decreased recovery of TTC from the balls was having a soil (unpaved) floor. Sentinel toys may be an effective tool for assessing young children's exposure to faecal pathogens. However, even using methods designed to increase bacterial recovery, limited sensitivity may require larger sample sizes. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Banzato, Tommaso; Russo, Elisa; Finotti, Luca; Zotti, Alessandro
2012-07-01
To develop a technique for radiographic evaluation of the gastrointestinal tract in ball pythons (Python regius). 10 ball python cadavers (5 males and 5 females) and 18 healthy adult ball pythons (10 males and 8 females). Live snakes were allocated to 3 groups (A, B, and C). A dose (25 mL/kg) of barium sulfate suspension at 3 concentrations (25%, 35%, and 45% [wt/vol]) was administered through an esophageal probe to snakes in groups A, B, and C, respectively. Each evaluation ended when all the contrast medium had reached the large intestine. Transit times through the esophagus, stomach, and small intestine were recorded. Imaging quality was evaluated by 3 investigators who assigned a grading score on the basis of predetermined criteria. Statistical analysis was conducted to evaluate differences in quality among the study groups. The esophagus and stomach had a consistent distribution pattern of contrast medium, whereas 3 distribution patterns of contrast medium were identified in the small intestine, regardless of barium concentration. Significant differences in imaging quality were detected among the 3 groups. Radiographic procedures were tolerated well by all snakes. The 35% concentration of contrast medium yielded the best imaging quality. Use of contrast medium for evaluation of the cranial portion of the gastrointestinal tract could be a reliable technique for the diagnosis of gastrointestinal diseases in ball pythons. However, results of this study may not translate to other snake species because of variables identified in this group of snakes.
ANALYSIS OF ANIMAL- AND PLANT-DERIVED FEED ...
During a national survey of polychlorinated dibenzo-p-dioxins (CDD), dibenzofurans (CDF), and dioxin-like coplanar PCBs (PCB) in poultry, elevated concentrations above 20 parts per trillion (ppt) toxic equivalents (TEQ) were found in the fat of 2 broilers. These TEQ values were driven by very high concentrations of CDD. A team comprised of individuals from the United States (US) Environmental Protection Agency (EPA), the US Food and Drug Administration (FDA), and the US Department of Agriculture (DA) traced the source of elevated CDD to a minor component in the poultry feed. This component was ball clay and it was used as an anti-caking agent in the soybean meal. The ball clay often comprised less than 0.2% of the dry weight of the complete ration in contaminated poultry. The investigation traced the ball clay to a mine in Mississippi. After learning that other ball clay mines in Kentucky and Tennessee also contained elevated CDD levels, the FDA issued a letter to producers or users of clay products in animal feeds asking that they cease using ball clay in any animal feed or feed ingredient. Subsequent contaminations of animal feed in Belgium with PCB and of citrus pulp from Brazil with CDD and CDF alerted countries worldwide that animal feeds can become contaminated with CDD/CDF/PCB (DFP) via contamination of minor feed components. This type of contamination can overshadow the normal air-to-leaf process that is thought to dominate the food chain for terr
Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells.
Lee, Sang Joo; Yang, Shengyuan
2017-09-01
While cells attach, spread, migrate, proliferate, and differentiate in three-dimensional (3D) micromechanical environments, the mechanical factors of these environments influence the shapes, sizes, and adhesion forces of the cells. Here, the authors culture human mesenchymal stem cells (hMSCs) on a unique class of curvature-defined substrates, micro glass ball embedded polyacrylamide gels, prepared with an improved protocol, and investigate the spreading responses of the hMSCs on the glass balls to study the effects of substrate curvature on the spreading of hMSCs. The authors find that, among the used diameters of glass balls, the minimum diameter of a glass ball on which an hMSC can attach and spread is 500 μm. In contrast to the well-spread morphologies with randomly-multiple lamellipodia for the hMSCs growing on the flat glass plates, the morphologies of the hMSCs growing on the glass balls are almost uniformly spindle-shaped with two lamellipodia. The sensitivities of the attachment and spreading morphology of an hMSC to substrate curvature are very different from those of a fibroblast. The RT-PCR analysis reveals that the substrate curvature alone can induce adipogenesis of the hMSCs. These findings imply that substrate curvature has profound effects on stem cell behaviors, and detailed and in-depth studies on these effects and their underlying biophysical mechanisms are necessary. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Facile Fabrication of 100% Bio-Based and Degradable Ternary Cellulose/PHBV/PLA Composites
Wang, Jinwu
2018-01-01
Modifying bio-based degradable polymers such as polylactide (PLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with non-degradable agents will compromise the 100% degradability of their resultant composites. This work developed a facile and solvent-free route in order to fabricate 100% bio-based and degradable ternary cellulose/PHBV/PLA composite materials. The effects of ball milling on the physicochemical properties of pulp cellulose fibers, and the ball-milled cellulose particles on the morphology and mechanical properties of PHBV/PLA blends, were investigated experimentally and statistically. The results showed that more ball-milling time resulted in a smaller particle size and lower crystallinity by way of mechanical disintegration. Filling PHBV/PLA blends with the ball-milled celluloses dramatically increased the stiffness at all of the levels of particle size and filling content, and improved their elongation at the break and fracture work at certain levels of particle size and filling content. It was also found that the high filling content of the ball-milled cellulose particles was detrimental to the mechanical properties for the resultant composite materials. The ternary cellulose/PHBV/PLA composite materials have some potential applications, such as in packaging materials and automobile inner decoration parts. Furthermore, filling content contributes more to the variations of their mechanical properties than particle size does. Statistical analysis combined with experimental tests provide a new pathway to quantitatively evaluate the effects of multiple variables on a specific property, and figure out the dominant one for the resultant composite materials. PMID:29495315
Relationship of biomechanical factors to baseball pitching velocity: within pitcher variation.
Stodden, David F; Fleisig, Glenn S; McLean, Scott P; Andrews, James R
2005-02-01
To reach the level of elite, most baseball pitchers need to consistently produce high ball velocity but avoid high joint loads at the shoulder and elbow that may lead to injury. This study examined the relationship between fastball velocity and variations in throwing mechanics within 19 baseball pitchers who were analyzed via 3-D high-speed motion analysis. Inclusion in the study required each one to demonstrate a variation in velocity of at least 1.8 m/s (range 1.8-3.5 m/s) during 6 to 10 fastball pitch trials. Three mixed model analyses were performed to assess the independent effects of 7 kinetic, 11 temporal, and 12 kinematic parameters on pitched ball velocity. Results indicated that elbow flexion torque, shoulder proximal force, and elbow proximal force were the only three kinetic parameters significantly associated with increased ball velocity. Two temporal parameters (increased time to max shoulder horizontal adduction and decreased time to max shoulder internal rotation) and three kinematic parameters (decreased shoulder horizontal adduction at foot contact, decreased shoulder abduction during acceleration, and increased trunk tilt forward at release) were significantly related to increased ball velocity. These results point to variations in an individual's throwing mechanics that relate to pitched ball velocity, and also suggest that pitchers should focus on consistent mechanics to produce consistently high fastball velocities. In addition, pitchers should strengthen shoulder and elbow musculature that resist distraction as well as improve trunk strength and flexibility to maximize pitching velocity and help prevent injury.
How Magnus Bends the Flying Ball--Experimenting and Modeling
ERIC Educational Resources Information Center
Timková, V.; Ješková, Z.
2017-01-01
Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways,…
Enhancing the Bounce of a Ball
ERIC Educational Resources Information Center
Cross, Rod
2010-01-01
In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of…
Determination of Contact Time of Rubber Balls Using a Digital Oscilloscope
ERIC Educational Resources Information Center
Wadhwa, Ajay
2010-01-01
We present a new method for determining the contact time of a rubber ball with the rebounding surface by using a sound-detecting electronic circuit and a digital storage oscilloscope. The rubber ball (a tennis ball or squash ball) is dropped from a known height onto a rigid surface and its contact time on first bounce is determined on the…
Propagation of self-localized Q -ball solitons in the 3He universe
NASA Astrophysics Data System (ADS)
Autti, S.; Heikkinen, P. J.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B.
2018-01-01
In relativistic quantum field theories, compact objects of interacting bosons can become stable owing to conservation of an additive quantum number Q . Discovering such Q balls propagating in the universe would confirm supersymmetric extensions of the standard model and may shed light on the mysteries of dark matter, but no unambiguous experimental evidence exists. We have created long-lived Q -ball solitons in superfluid 3He, where the role of the Q ball is played by a Bose-Einstein condensate of magnon quasiparticles. The principal qualitative attribute of a Q ball is observed experimentally: its propagation in space together with the self-created potential trap. Additionally, we show that this system allows for a quantitatively accurate representation of the Q -ball Hamiltonian. Our Q ball belongs to the class of the Friedberg-Lee-Sirlin Q balls with an additional neutral field ζ , which is provided by the orbital part of the Nambu-Goldstone mode. Multiple Q balls can be created in the experiment, and we have observed collisions between them. This set of features makes the magnon condensates in superfluid 3He a versatile platform for studies of Q -ball dynamics and interactions in three spatial dimensions.
Zodrow, E.L.; Lyons, P.C.; Millay, M.A.
1996-01-01
The 11-13 m thick Foord Seam in the fault-bounded Stellarton Basin, Nova Scotia, is the thickest seam from the Euramerican floral province known to contain coal-balls. In addition to the first discovery of autochthonous coal-balls in the Foord Seam, Nova Scotia, its shale parting also contains hypautochthonous coal-balls with histologically preserved plant structures. The coal-ball discovery helps fill a stratigraphic gap in coal-ball occurrences in the upper Carboniferous (Bolsovian) of Euramerica. The autochthonous and hypautochthonous coal-balls have a similar mineralogical composition and are composed of siderite (81-100%), dolomite-ankerite (0-19%), minor quartz and illite, and trace amounts of 'calcite'. Similar is also their permineralizing mineralogy, which consists of dolomite-ankerite and siderite. Their low pyrite content and carbonate mineralogy, and nonmarine origin, differentiates the Foord Seam coal-balls from other Euramerican coal-ball occurrences. A preliminary geochemical model, which is based on oxygen and carbon isotopic data, indicates that siderite in both the autochthonous and hypautochthonous coal-balls is of very early diagenetic (nonmarine) origin from 13C-enriched bicarbonate derived from bacterial methanogenesis of organic matter.
Telescoping magnetic ball bar test gage
Bryan, J.B.
1982-03-15
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.
The effect of load uncertainty on anticipatory muscle activity in catching.
Eckerle, Jason J; Berg, William P; Ward, Rose Marie
2012-08-01
To investigate how the CNS copes with load uncertainty in catching, anticipatory postural adjustments (APAs) in one-handed catching of balls of known and unknown weights were compared. Twenty-nine (n = 29) men (mean age = 21.1 years) participated, all of whom had engaged in a sport activity requiring hand-eye coordination. Participants' muscle activity in the biceps brachii, triceps brachii, wrist flexor group, and bilateral erector spinae at L4-5 was recorded using electromyography (EMG) while they caught visually identical balls of four different weights (0.5, 1.33, 2.17, and 3.0 kg). EMG integrals were computed for the 1 s prior to ball drop (pre-drop period), and the interval between ball drop and catch (drop period). Uncertainty about ball weight had no effect on APA activity during the pre-drop period. During the drop period, however, load uncertainty did influence APA activity in the biceps brachii, triceps brachii, and the wrist flexor muscles (i.e., the effect of ball weight on APA magnitude depended on the presence or absence of load knowledge). In the known ball weight condition, participants exhibit greater APA magnitude with increases in ball weight. In contrast, under the unknown ball weight condition, APA magnitude was relatively consistent across ball weights and at a level similar to the APA magnitude for an intermediate weight (i.e., the second heaviest ball of four) in the known weight condition. In catching balls of unknown weights, the CNS appears to scale APA magnitude to afford the greatest chance of catching the ball, regardless of the weight.
Aerodynamics in the classroom and at the ball park
NASA Astrophysics Data System (ADS)
Cross, Rod
2012-04-01
Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.
How does gravity save or kill Q-balls?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, Takashi; Sakai, Nobuyuki; Department of Education, Yamagata University, Yamagata 990-8560
2011-02-15
We explore stability of gravitating Q-balls with potential V{sub 4}({phi})=(m{sup 2}/2){phi}{sup 2}-{lambda}{phi}{sup 4}+({phi}{sup 6}/M{sup 2}) via catastrophe theory, as an extension of our previous work on Q-balls with potential V{sub 3}({phi})=(m{sup 2}/2){phi}{sup 2}-{mu}{phi}{sup 3}+{lambda}{phi}{sup 4}. In flat spacetime Q-balls with V{sub 4} in the thick-wall limit are unstable and there is a minimum charge Q{sub min}, where Q-balls with Q
The strange flight behaviour of slowly spinning soccer balls
NASA Astrophysics Data System (ADS)
Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki
2013-05-01
The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights.
Ball mounting fixture for a roundness gage
Gauler, A.L.; Pasieka, D.F.
1983-11-15
A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball. 6 figs.
Examining action effects in the execution of a skilled soccer kick by using erroneous feedback.
Ford, Paul; Hodges, Nicola J; Williams, A Mark
2007-11-01
The authors examined the role of action effects (i.e., ball trajectory) during the performance of a soccer kick. Participants were 20 expert players who kicked a ball over a height barrier toward a ground-level target. The authors occluded participants' vision of the ball trajectory after foot-to-ball contact. Participants in a 1st group received erroneous feedback from a video that showed a ball-trajectory apex approximately 75 cm lower than that of their actual kick, although the ball's landing position was unaltered. Participants in a 2nd group received correct video feedback of both the ball trajectory and the landing position. The erroneous-feedback group showed a significant bias toward higher ball trajectories than did the correct-feedback group. The authors conclude that performers at high levels of skill use the visual consequences of the action to plan and execute an action.
Carbon nanotube balls and their application in supercapacitors.
Kang, Da-Young; Moon, Jun Hyuk
2014-01-08
We have provided a design of the macroscopic morphology of carbon nanotubes (CNTs) using emulsion droplet confinement. The evaporation of CNT-dispersed aqueous emulsion droplets in oil produces spherical CNT assemblies, i.e., CNT balls. In this emulsion-assisted method, compact packing of CNT was obtained by the presence of capillary pressure during droplet evaporation. The size of the CNT balls could be controlled by changing the concentration of the CNT dispersion solution; typically, CNT balls with an average size in the range of 8-12 μm were obtained with a Brunauer-Emmett-Teller (BET) specific area of 200 m(2)/g. Heat treatment of the CNT balls, which was required to remove residual solvent, and cement CNTs was followed, and their effect has been characterized; the heat treatment at high temperature desorbed surface oxygenated groups of CNTs and created defective carbon structures, but did not change pore structure. The dispersion of CNT balls was applied to form CNT ball-assembled film for a supercapacitor electrode. The specific capacitance of 80 F/g was obtained at 500 °C heat treatment, but the CNT balls prepared at a higher temperature actually decreased the capacitance, because of the removal of surface oxygenated groups, thereby decreasing the pseudo-capacitance. The capacitive properties of CNT ball-assembled electrodes were compared to CNT films; the CNT ball electrodes showed 40% higher specific electrochemical capacitance and higher rate performance, which is attributed to the compact packing of CNTs in the CNT ball and the hierarchical porous structures in the ball assemblies.
2017-12-01
Birmingham Airport to come up with a set of short-, mid-, and long-term initiatives for its employees. The first step was to pull the top layer of...programs are defensive and akin to a goalie patrolling the net. They know what they are defending against and the area (goal) they are protecting...Unfortunately, even the best goalies from time to time have the ball kicked past them. At their core, security programs can be split into two main
Convex Relaxation For Hard Problem In Data Mining And Sensor Localization
2017-04-13
Drusvyatskiy, S.A. Vavasis, and H. Wolkowicz. Extreme point in- equalities and geometry of the rank sparsity ball. Math . Program., 152(1-2, Ser. A...521–544, 2015. [3] M-H. Lin and H. Wolkowicz. Hiroshima’s theorem and matrix norm inequalities. Acta Sci. Math . (Szeged), 81(1-2):45–53, 2015. [4] D...9867-4. [8] D. Drusvyatskiy, G. Li, and H. Wolkowicz. Alternating projections for ill-posed semidenite feasibility problems. Math . Program., 2016
Ball feeder for replenishing evaporator feed
Felde, David K.; McKoon, Robert H.
1993-01-01
Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.
Ball feeder for replenishing evaporator feed
Felde, D.K.; McKoon, R.H.
1993-03-23
Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.
Bigsby, Kathryn; Mangine, Robert E; Clark, Joseph F; Rauch, Joseph T; Bixenmann, Benjamin; Susaret, Antonia W; Hasselfeld, Kimberly A; Colosimo, Angelo J
2014-08-01
Visuomotor ability is an important parameter for neurologic function and effective sport performance. Adding a balance challenge during a structured eye-hand coordination task, such as hitting lights on a light board (Dynavision™), has not been previously reported. Using Division I football players, the aim of this study was to determine normative data on a dual-task performance regimen combining a visuomotor light board task with a balance task. The intent is to use such normative data and baseline data as part of a concussion management program. Division I college football team members, n=105, were consented. Subjects first performed Dynavision™ D2™ Visuomotor Training Device (D2™) eye-hand coordination tasks, the A* and the RT; they then performed the same tasks with an added balance challenge, standing on a BOSU® ball. Ninety-four athletes completed the full testing procedure on the D2™ system. The mean score of the A* test was 93 ± 11.0 hits per minute; and the mean on the A* test with the added BOSU® balance challenge was 83.7 ± 9.2 hits per minute. The mean RT time was 0.33 ± 0.036 seconds. Mean reaction time increased to 0.38 ± 0.063 while the subject stood on the BOSU® ball. Performance on the D2™ A* and RT were both statistically significantly different in the dual task condition (p<0.05). Results show an approximate 10% decline in D2™ performance when healthy individuals stand on a BOSU® ball. From the data presented here, the authors determined that there is a 10% decrement in performance when one's balance is challenged on the BOSU® ball. A fall in performance of substantially greater than 10% may indicate abnormal vestibulocerebellar regulatory processing of balance and motion. Further research, using these normative data is needed to determine more specific parameters for definitions of impairment and return-to-play and if there is utility for such studies as part of a concussion management program. III.
NASA Technical Reports Server (NTRS)
Herrera-Fierro, Pilar; Masuko, Masabumi; Jones, William R., Jr.; Pepper, Stephen V.
1994-01-01
This work presents the results of the X-Ray Photoelectron Spectroscopy (XPS) analysis of AISI 440C ball surfaces lubricated with perfluoropolyether (PFPE) oils after friction experiments under sliding conditions at high load in air and vacuum environments. The PFPE lubricants tested were Demnum S100, Fomblin Z-25, and Krytox 143AB. It was found that all the PFPE lubricants were degraded by sliding contact causing the formation of inorganic fluorides on the metallic surfaces and a layer of organic decomposition products. KRYTOX 143AB was the least reactive of the three lubricants tested. It was also found that metal fluoride formed at off-scar areas. This suggests the formation of reactive species, such as COF2 or R(sub f)COF, during sliding experiments, which can diffuse through the lubricant film and react with the metallic surfaces away from the contact region. Comparison of reference specimens before sliding with those that had undergone the sliding tests showed that the amount of non-degraded PFPE remaining on the surface of the balls after the sliding experiments was greater than that of the balls without sliding.
Cavala, Marijana; Katić, Ratko
2010-12-01
The aim of the study was to define biomotor characteristics that determine playing performance and position in female handball. A battery of 13 variables consisting of somatotype components (3 variables), basic motor abilities (5 variables) and specific motor abilities (5 variables) were applied in a sample of 52 elite female handball players. Differences in biomotor characteristics according to playing performance and position of female handball players were determined by use of the analysis of variance (ANOVA) and discriminative analysis. Study results showed the high-quality female handball players to predominantly differ from the less successful ones in the specific factor of throw strength and basic dash factor, followed by the specific abilities of movement without and with ball, basic coordination/agility and specific ability of ball manipulation, and a more pronounced mesomorphic component. Results also revealed the wing players to be superior in the speed of movement frequency (psychomotor speed), run (explosive strength) and speed of movement with ball as compared with players at other playing positions. Also, endomorphic component was less pronounced in players at the wing and back player positions as compared with goalkeeper and pivot positions, where endomorphic component was considerably more pronounced.
Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Abdullah, U.; Yaacob, I.; Ali, Y.
2016-04-01
Currently, carbon nanotube (CNT) is attracting much interest as fibrous materials for reinforcing aluminum matrix composites due to unique properties, such as high strength, elastic modulus, flexibility and high aspect ratios. However, the quality of the dispersion is the major concerning factor which determines the homogeneity of the enhanced mechanical and tribological properties of the composite. This work study and characterized carbon nanotube dispersion in ballmilled CNT-aluminum mixed powders with four different formulations such as 1, 1.5, 2 and 2.5 wt% CNT under high energy planetary ball milling operations. The ball milling was performed for two hours at constant milling speed of 250 rpm under controlled atmosphere. The characterization is performed using FESEM and EDX analyzer for mapping, elemental and line analysis. The experimental results showed homogeneous dispersion of CNTs in aluminum matrix. The composite mixture showed similar pattern from mapping, elemental and line analysis. Identification of only two peaks proved that controlled atmosphere during milling prevented the formation of inter metallic compounds such as aluminum carbide in the composite mixture. Therefore, this CNT-A1 composite powder mixture can be used for new nano-composite development without any agglomeration problem.
A Qualitative Study on Patients' Perceptions of Two Types of Attachments for Implant Overdentures.
Pisani, Marina; Bedos, Christophe; da Silva, Cláudia Helena Lovato; Fromentin, Olivier; de Albuquerque, Rubens F
2017-12-01
The aim of this qualitative study was to gain a deeper understanding of patient perceptions of wearing implant-retained overdentures with ball-shaped or cylindrical attachment systems. Twenty-two wearers of implant-supported overdentures participated in this qualitative study based on a randomized crossover clinical trial that aimed to compare a cylindrical attachment and a ball attachment. In phase I of the study, group A experienced ball attachments (n = 11) and group B Locator attachments (n = 11) for 1 year. Afterward, in phase II, the attachments were changed; group A received Locator attachments and group B received ball attachments. One week after the attachment's replacement, semistructured individual interviews were conducted. All interviews were audiotaped and transcribed. The analysis was guided by thematic content analysis. Most of the patients from both groups preferred the attachment they received in phase II, regardless the type. A major theme raised by the participants to justify their preference between the attachment types was prosthesis retention/stability, sometimes considered as a positive and other times as a negative factor. Other themes were also explored: oral function, pain, hygiene, previous experiences, confidence on the dentist's work, and esthetic. Aspects related to the retention/stability of the overdentures are the main concerns associated with the perceptions of most patients treated with implant overdentures regardless of the type of attachment. Adequate retention level should be identified and adjusted on an individual basis and maintained overtime as possible. Therefore, follow-up appointments should be planned for readjustment of the attachment's retention. Overretention should be avoided.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... with integral shafts, ball bearings (including radial ball bearings) and parts thereof, and housed or... thereof (inner race, outer race, cage, rollers, balls, seals, shields, etc.) outlined above with certain...
Two degree of freedom camera mount
NASA Technical Reports Server (NTRS)
Ambrose, Robert O. (Inventor)
2003-01-01
A two degree of freedom camera mount. The camera mount includes a socket, a ball, a first linkage and a second linkage. The socket includes an interior surface and an opening. The ball is positioned within an interior of the socket. The ball includes a coupling point for rotating the ball relative to the socket and an aperture for mounting a camera. The first and second linkages are rotatably connected to the socket and slidably connected to the coupling point of the ball. Rotation of the linkages with respect to the socket causes the ball to rotate with respect to the socket.
NASA Astrophysics Data System (ADS)
Olaru, D.; Balan, M. R.; Tufescu, A.
2016-08-01
The authors investigated analytically and experimentally the friction torque in a modified thrust ball bearing operating at very low axial load in dry conditions by using only three balls and a cage. The experiments were conducted by using spin-down methodology. The results evidenced the influence of the sliding friction between the cage and the balls on the total friction torque. It was concluded that at very low loads the friction between cage and balls in a thrust ball bearing has an important contribution on total friction torque.
Thermal Stability of Gun Propellants from Munition Articles That Returned from Cambodia.
1998-02-01
0482 0661 0312 0472 EMZ 79- 11 MEN 80-8 DAG 86-2 MEN 88-57 DAG 89- 11 DAG 90-3 IMI91-4 7% 9 % 12% 15% 17% 18% 16% CTG.50 inch Ball LKD...5. Peltierelement, 6. diffe- rentiemeetpunt, 7. aluminium binnenblok, 8. referentievat, 9 . isolatie, 10. verwarmingsman- tel, 11 . isolatie, 12...W/TR CTG 7,62 mm NATO Ball CTG.50 inch Med RNG Ball LKD, W/TR CTG 7,62 mm NATO Ball CTG 9 mm NATO Ball CTG 7,62 mm NATO Ball CTG 7,62 mm NATO
Peploe, C; McErlain-Naylor, S A; Harland, A R; King, M A
2018-06-01
Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A "sweet region" on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.
Telescoping magnetic ball bar test gage
Bryan, J.B.
1984-03-13
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.
The Effect of Instability Training on Knee Joint Proprioception and Core Strength
Cuğ, Mutlu; Ak, Emre; Özdemir, Recep Ali; Korkusuz, Feza; Behm, David G
2012-01-01
Although there are many studies demonstrating increased trunk activation under unstable conditions, it is not known whether this increased activation would translate into meaningful trunk strength with a prolonged training program. Additionally, while balance-training programs have been shown to improve stability, their effect on specific joint proprioception is not clear. Thus the objective of this study was to examine training adaptations associated with a 10-week instability-training program. Participants were tested pre- and post-training for trunk extension and flexion strength and knee proprioception. Forty-three participants participated in either a 10-week (3 days per week) instability-training program using Swiss balls and body weight as resistance or a control group (n = 17). The trained group increased (p < 0. 05) trunk extension peak torque/body weight (23.6%) and total work output (20.1%) from pre- to post-training while the control group decreased by 6.8% and 6.7% respectively. The exercise group increased their trunk flexion peak torque/body weight ratios by 18.1% while the control group decreased by 0.4%. Knee proprioception (combined right and left joint repositioning) improved 44.7% from pre- to post-training (p = 0.0006) and persisted (21.5%) for 9 months post-training. In addition there was a side interaction with the position sense of the right knee at 9 months showing 32.1% (p = 0.03) less deviation from the reference angle than the right knee during pre-testing. An instability-training program using Swiss balls with body weight as resistance can provide prolonged improvements in joint proprioception and core strength in previously untrained individuals performing this novel training stress which would contribute to general health. Key pointsAlthough traditional free weight resistance exercises have been recommended as most beneficial for improving strength and power in athletes (Behm et al., 2010b), an IT program using Swiss balls and body weight as a resistance may provide an alternative starting point for the sedentary untrained population.As it is well documented that force or strength is decreased when unbalanced (Behm et al., 2010b) and balance-training programs improve balance (Behm and Kean 2006), this type of instability RT program can provide significant adaptations to improve trunk strength especially with the untrained.This type of training should also be incorporated into a new program as the improvements in joint proprioception may help protect from joint injuries over a protracted period.The finding that improved joint proprioception persists for months after training should be emphasized to those individuals whose training is regularly or inconsistently interrupted. PMID:24149355
Ateyah, Mohamed E; Hashem, Mona E; Abdelsalam, Mohamed
2017-02-01
Acute B lymphoblastic leukaemia (B-ALL) is the most common type of childhood malignancy worldwide but little is known of its origin. Recently, many studies showed both a high incidence of Epstein-Barr virus (EBV) infection and high levels of CD4 + CD25 + Foxp3 + (Treg cells) in children with B-ALL. In our study, we investigated the possible relationship between EBV infection and the onset of B-ALL, and its relation to expression of CD4 + , CD25 high+ Foxp3+ T regulatory cells. We analysed expression and mean fluorescence intensity (MFI) of Treg cells in peripheral blood of 45 children with B-ALL and in 40 apparently healthy children as a control, using flow cytometry. Serum anti-EBV viral capsid antigen (VCA) IgG, anti-EBV nuclear antigen (EBNA) IgG (for latent infection) and anti-EBV VCA IgM (for acute infection) were investigated using ELISA. Analysis of the Treg cells population in patients and controls revealed that expression of CD4 + CD25 high+ T lymphocytes was higher in patients than in controls (mean±SD 15.7±4.1 and 10.61±2.6 in patients and controls, respectively, and MFI of Foxp3 was 30.1±7.1 and 16.7±3.7 in patients and controls, respectively (p<0.001)). There was a high incidence of latent EBV infection in patients (31%) compared with controls (10%) while the incidence of acute infection was 12% in patients and 0% in the control group. To study the role of latent EBV infection in the pathogenesis of acute B-ALL, OR was calculated (OR=4.06, coefficient index 1.2-13.6). These findings suggest a possible role for Treg cells and EBV in the pathogenesis of B-ALL. Further studies are needed on the possible mechanisms of tumour genesis related to Treg cells and EBV in children with B-ALL. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Appropriate IMFs associated with cepstrum and envelope analysis for ball-bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Tsao, Wen-Chang; Pan, Min-Chun
2014-03-01
The traditional envelope analysis is an effective method for the fault detection of rolling bearings. However, all the resonant frequency bands must be examined during the bearing-fault detection process. To handle the above deficiency, this paper proposes using the empirical mode decomposition (EMD) to select a proper intrinsic mode function (IMF) for the subsequent detection tools; here both envelope analysis and cepstrum analysis are employed and compared. By virtue of the band-pass filtering nature of EMD, the resonant frequency bands of structure to be measured are captured in the IMFs. As impulses arising from rolling elements striking bearing faults modulate with structure resonance, proper IMFs potentially enable to characterize fault signatures. In the study, faulty ball bearings are used to justify the proposed method, and comparisons with the traditional envelope analysis are made. Post the use of IMFs highlighting faultybearing features, the performance of using envelope analysis and cepstrum analysis to single out bearing faults is objectively compared and addressed; it is noted that generally envelope analysis offers better performance.
Zhang, Shaofu; Luan, Weiling; Zhong, Qixin; Yin, Shaofeng; Yang, Fuqian
2016-10-12
The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.
Detonator-activated ball shutter
McWilliams, Roy A.; von Holle, William G.
1983-01-01
A detonator-activated ball shutter for closing an aperture in about 300.mu. seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture.
Playing Ball in a Space Station
ERIC Educational Resources Information Center
Simoson, Andrew J.
2006-01-01
How does artificial gravity affect the path of a thrown ball? This paper contrasts ball trajectories on the Little Prince's asteroid planet B-612 and Arthur C. Clarke's rotating-drum spacecraft of 2001, and demonstrates curve balls with multiple loops in the latter environment.
Holmstrand, Henry; Gadomski, Damien; Mandalakis, Manolis; Tysklind, Mats; Irvine, Robert; Andersson, Per; Gustafsson, Orjan
2006-06-15
Polychlorinated dibenzo-p-dioxins (PCDDs) of high concentrations in a ball clay deposit from the Mississippi Embayment were found to be consistent with a natural abiotic and non-pyrogenic origin by investigation with bulk radiocarbon analysis, compound-specific chlorine isotope analysis (CSIA-delta37Cl) of octachlorodibenzo-p-dioxin (OCDD), and black carbon (BC) analysis. The conventional radiocarbon date of total organic carbon from a depth of approximately 10 m in three parallel cores ranged from 14 700 years to >48 000 years, indicating that the strata with elevated levels of PCDDs have remained isolated from recent anthropogenic input in these >40 Ma old clay sediments. The CSIA-delta37Cl of OCDD yielded a delta37Cl of -0.2 per thousandth, which is significantly higher than the postulated range for biotic chlorination by chloroperoxidase enzymes, -11 to -10 per thousandth, and falls within the known range for abiotic organochlorines, -6 to +3 per thousandth. The absence of correlations between concentrations of PCDDs and corresponding pyrogenic black carbon (BC), together with estimations of BC sorptive loadings and the absence of polychlorinated dibenzofurans (PCDFs), suggest that vegetation fires did not form these ball-clay PCDDs. Results from this study indicate that the high levels of the toxic and carcinogenic PCDDs found in kaolinite-bearing clays may result from natural abiotic formation via in situ surface-promoted reactions on the clay mineral, including a so-far unknown organic precursor, rather than being the result of anthropogenic contamination.
Assessment of head injury of children due to golf ball impact.
Lee, Heow Pueh; Wang, Fang
2010-10-01
Head trauma injury due to impact by a flying golf ball is one of the most severe possible injury accidents on the golf course. Numerical simulations based on the finite element method are presented to investigate head injury in children due to impact by a flying golf ball. The stress and energy flow patterns in a head model during the golf ball impact are computed for various combinations of striking speed, falling angle of the golf ball before impact, and impact location. It is found that a child is more prone to head injury due to golf ball impact on the frontal and side/temporal areas. The simulated results are found to conform to the clinical reports on children's head injuries from flying golf balls.
NASA Astrophysics Data System (ADS)
Okamoto, Yuji; Harada, Yoshitomo; Ohta, Narumi; Takada, Kazunori; Sumiya, Masatomo
2016-09-01
We demonstrate that a SiO disproportionation reaction can be achieved simply by high energy mechanochemical milling. The planetary ball-milling of ZrO2 for a few minutes generated Si nano-crystals. Milling conditions including rotation speed, ball number, milling time, and type of ball material were able to control the oxidation states of Si. The ball-milled SiO powder was tested as an anode of a lithium battery. ZrO2 contamination from the vial and balls was eliminated by dipping the ball-milled SiO powder in (NH4)HSO4 molten salt and heating for 5 min. The disproportionated SiO powder showed characteristics comparable to those of a powder prepared by a conventional heating process taking several hours.
Application of coordinate transform on ball plate calibration
NASA Astrophysics Data System (ADS)
Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei
2015-02-01
For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.
Probability of Loss of Crew Achievability Studies for NASA's Exploration Systems Development
NASA Technical Reports Server (NTRS)
Boyer, Roger L.; Bigler, Mark A.; Rogers, James H.
2015-01-01
Over the last few years, NASA has been evaluating various vehicle designs for multiple proposed design reference missions (DRM) beyond low Earth orbit in support of its Exploration Systems Development (ESD) programs. This paper addresses several of the proposed missions and the analysis techniques used to assess the key risk metric, probability of loss of crew (LOC). Probability of LOC is a metric used to assess the safety risk as well as a design requirement. These assessments or studies were categorized as LOC achievability studies to help inform NASA management as to what "ball park" estimates of probability of LOC could be achieved for each DRM and were eventually used to establish the corresponding LOC requirements. Given that details of the vehicles and mission are not well known at this time, the ground rules, assumptions, and consistency across the programs become the important basis of the assessments as well as for the decision makers to understand.
Aerocapture Technology Developments from NASA's In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Moon, Steven A.
2007-01-01
This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA's Ames Research Center, and NASA's Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.
Heading in football. Part 3: Effect of ball properties on head response
Shewchenko, N; Withnall, C; Keown, M; Gittens, R; Dvorak, J
2005-01-01
Objectives: Head impacts from footballs are an essential part of the game but have been implicated in mild and acute neuropsychological impairment. Ball characteristics have been noted in literature to affect the impact response of the head; however, the biomechanics are not well understood. The present study determined whether ball mass, pressure, and construction characteristics help reduce head and neck can impact response. Methods: Head responses under ball impact (6–7 m/s) were measured with a biofidelic numerical human model and controlled human subject trials (n = 3). Three ball masses and four ball pressures were investigated for frontal heading. Further, the effect of ball construction in wet/dry conditions was studied with the numerical model. The dynamic ball characteristics were determined experimentally. Head linear and angular accelerations were measured and compared with injury assessment functions comprising peak values and head impact power. Neck responses were assessed with the numerical model. Results: Ball mass reductions up to 35% resulted in decreased head responses up to 23–35% for the numerical and subject trials. Similar decreases in neck axial and shear responses were observed. Ball pressure reductions of 50% resulted in head and neck response reductions up to 10–31% for the subject trials and numerical model. Head response reductions up to 15% were observed between different ball constructions. The wet condition generally resulted in greater head and neck responses of up to 20%. Conclusion: Ball mass, pressure, and construction can reduce the impact severity to the head and neck. It is foreseeable that the benefits can be extended to players of all ages and skill levels. PMID:16046354
An investigation of the generation and properties of laboratory-produced ball lightning
NASA Astrophysics Data System (ADS)
Oreshko, A. G.
2015-06-01
The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.
The 4 P's of Accessibility in Post-Secondary Education: Philosophy, Policy, Procedures and Programs.
ERIC Educational Resources Information Center
Vickery, Leah J.; McClure, Michael D.
This paper describes how Ball State University in Indiana provides accommodations for individuals with disabilities, including faculty, staff and students. The university's history of providing accommodations is traced from the 1920s, when members of the football team carried a student using a wheelchair up stairways to attend classes, through the…
Learning From Our Past: How a Vietnam-Era Pacification Program Can Help Us Win in Afghanistan
2009-09-01
Economies, March 26, 2004), http://www.uib.es/depart/deaweb/ smed /pdf/collier.pdf (accessed August 25, 2009). 34 Nicole J. Ball, “Strengthening Democratic...Challenge Paper. Centre for the Study of African Economies, March 26, 2004, http://www.uib.es/depart/deaweb/ smed /pdf/collier.pdf (accessed August 25, 2009
TIRS Cryocooler: Spacecraft Integration and Test and Early Flight Data
NASA Technical Reports Server (NTRS)
Boyle, R.; Marquardt, E.
2013-01-01
The Thermal Infrared Sensor (TIRS) is an instrument on Landsat 8, launched in February 2013. The focal plane is cooled by a two-stage Ball Aerospace Stirling cycle cryocooler, with a coldfinger operating at 40K. This paper describes events during the spacecraft integration and test program, and results from early orbit operation of the cryocooler.
Energy Conversion and Combustion Sciences
2013-03-08
Property issues Flameholding (flammability limit) Flame propagation (turbulent-flame speed) combustion-Mixing interaction shock Cavity Based Scramjet ...focusing: • “Very-high” speed (space access) region • Overlapping interests and close coordination with AF programs ( scramjet , rockets etc.). • NSF...and Relevant Conditions Hypersonics Gas Turbines Rockets M > 0.1 Re ? Da ? wrinkled flame ball laminar flame Auto Engines PGC (1
ERIC Educational Resources Information Center
Schwab, Keri; Dustin, Daniel
2014-01-01
Engaging youth in traditional physical education exercises or ball sports can be a challenging task, especially when they prefer novelty, entertainment, or excitement in their leisure-time activities. In addition, many youth are unaware of the opportunities that exist to exercise or recreate in nature, often preferring to spend time indoors…
Bringing Language to Life: Quest's TheatreBridge Enhances Learning in Class
ERIC Educational Resources Information Center
McCarty, Tim; Delk, Linda
2012-01-01
In math, students and teachers toss tennis balls. In science, students become rain, hail, sleet, and snow. In language arts, students maneuver their bodies into related positions and hold into a frieze they call "tableau." The students and teachers are part of TheatreBridge, a four-year model demonstration and dissemination program lead…
2012 Problem 15: Frustrating Golf Ball
NASA Astrophysics Data System (ADS)
Huang, Shan; Zhu, Zheyuan; Gao, Wenli; Wang, Sihui
2015-10-01
This paper studies the condition for a golf ball to escape from a hole. The two determining factors are the ball's initial velocity v0 and its deviation from the center of the hole d. There is a critical escaping velocity vc for every deviation d. The ball's motion is analyzed by calculating the change of velocity whenever the ball collides with the hole. The critical conditions predicted by our theory are verified through experiment.
Device Rotates Bearing Balls For Inspection
NASA Technical Reports Server (NTRS)
Burley, R. K.
1988-01-01
Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.
Detonator-activated ball shutter
McWilliams, R.A.; Holle, W.G. von.
1983-08-16
A detonator-activated ball shutter for closing an aperture in about 300[mu] seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture. 3 figs.
Flare angles measured with ball gage
NASA Technical Reports Server (NTRS)
Cleghorn, D.; Wall, W. A.
1968-01-01
Precision tungsten carbide balls measure the internal angle of flared joints. Measurements from small and large balls in the flare throat to an external reference point are made. The difference in distances and diameters determine the average slope of the flare between the points of ball contact.
Kim, Kyungmok
2015-01-01
This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471
The effects of ball size distribution on attritor efficiency
NASA Astrophysics Data System (ADS)
Cook, T. M.; Courtney, T. H.
1995-09-01
A study was undertaken to determine how media dynamics are altered when differently sized grinding balls are used in an attritor. Cinematographic techniques identify the extent of segregation/mixing of the differently sized balls within the attritor as a function of impeller rotational velocity and small ball number fraction. This permits determination of rotational velocities needed to most efficiently use the tactic of milling with differently sized media. Cinematographic observations show that the close-packed media array, assumed when balls of the same size are used for milling, is disrupted when differently sized balls are used. Monitoring powder particle numbers as a function of milling time for the situations when the same and differently sized balls are used can be used to assess relative milling efficiencies. Results indicate powder deformation, fracture, and welding are enhanced through employment of differently sized balls. This conclusion is reinforced by observations of microstructural characteristics of powder processed with the different type of media.
Ball Lightning in Zero Gravity in the Laboratory
NASA Astrophysics Data System (ADS)
Alexeff, Igor; Parameswaran, Sriram; Grace, Michael
2004-11-01
We have created balls of orange plasma in atmospheric - pressure air that survive for over 1/2 second without power input. The technique used was to create a pulsed horizontal electric arc in a zero - gravity environment using 6 neon - sign transformers in parallel, each producing 16,000 V at 60 mA. The zero - gravity environment reduces heat losses by reducing thermal convection, creating a larger ball. Previous work (1) suggests that the ball lifetime scales as the square of the ball radius. The balls were photographed after power turnoff with a high - speed 16 mm movie camera. Movies of the balls being formed and decaying will be shown. We suggest that there are several other forms of ball lightning (2). 1.Igor Alexeff et. al. International Conference On Plasma Science, Jeju, Korea, June 2-5, 2003, Conference Record, p 254. 2. Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, Dec. 1992, pp.669-671. Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, p. 271.
Rowan, Diana; DeSousa, Maysa; Randall, Ethan Makai; White, Chelsea; Holley, Lamont
2014-01-01
The house/ball community is an understudied sub-group of young Black men who have sex with men and transgender persons in urban centers of the United States who affiliate in social structures called houses and gather at elaborate dance and performance events called balls. In Charlotte, North Carolina, 12 house/ball members were interviewed about their experiences with health care providers and their assessment of any barriers to care due to their affiliation with the rather clandestine house/ball sub-culture. Additionally, HIV-specific health care providers were interviewed, to assess their knowledge of the sub-culture. House/ball members reported both positive and negative perceptions of treatment by their health care providers with respect to their house/ball involvement. Some reported feeling stigmatized, especially around HIV status. Results showed that increased knowledge about the house/ball community could improve practitioners' cultural competence, thereby reducing stigma-related barriers to care.
Cerebellar subjects show impaired adaptation of anticipatory EMG during catching.
Lang, C E; Bastian, A J
1999-11-01
We evaluated the role of the cerebellum in adapting anticipatory muscle activity during a multijointed catching task. Individuals with and without cerebellar damage caught a series of balls of different weights dropped from above. In Experiment 1 (light-heavy-light), each subject was required to catch light balls (baseline phase), heavy balls (adaptation phase), and then light balls again (postadaptation phase). Subjects were not told when the balls would be switched, and they were required to keep their hand within a vertical spatial "window" during the catch. During the series of trials, we measured three-dimensional (3-D) position and electromyogram (EMG) from the catching arm. We modeled the adaptation process using an exponential decay function; this model allowed us to dissociate adaptation from performance variability. Results from the position data show that cerebellar subjects did not adapt or adapted very slowly to the changed ball weight when compared with the control subjects. The cerebellar group required an average of 30.9 +/- 8.7 trials (mean +/- SE) to progress approximately two-thirds of the way through the adaptation compared with 1.7 +/- 0.2 trials for the control group. Only control subjects showed a negative aftereffect indicating storage of the adaptation. No difference in performance variability existed between the two groups. EMG data show that control subjects increased their anticipatory muscle activity in the flexor muscles of the arm to control the momentum of the ball at impact. Cerebellar subjects were unable to differentially increase the anticipatory muscle activity across three joints to perform the task successfully. In Experiment 2 (heavy-light-heavy), we tested to see whether the rate of adaptation changed when adapting to a light ball versus a heavy ball. Subjects caught the heavy balls (baseline phase), the light balls (adaptation phase), and then heavy balls again (postadaptation phase). Comparison of rates of adaptation between Experiment 1 and Experiment 2 showed that the rate of adaptation was unchanged whether adapting to a light ball or a heavy ball. Given these findings, we conclude that the cerebellum is important in generating the appropriate anticipatory muscle activity across multiple muscles and modifying it in response to changing demands though trial-and-error practice.
Analysis of hydrodynamic losses for various types of aortic valves
NASA Astrophysics Data System (ADS)
Starobin, I. M.; Lupachev, S. P.; Dolgopolov, R. V.; Zaiko, V. M.; Kas'yanov, V. A.; Mungalov, D. D.; Morov, G. V.
1985-05-01
The creation of an automated computer-controlled hydraulic stand made it possible to measure the main hydrodynamic parameters of the flow through the investigated HVP and to determine the coefficients of Eq. (2) of fluid flow in the test chamber of the stand. The coefficients found can serve as a criterion of a comparative assessment of the hydrodynamics of HVPs. An analysis of the coefficients showed that the main contribution to pressure losses across ball and disc valves is made by viscous and convective effects. An analysis of inertial losses confirmed the presence of oscillations of the ball closing elements of the AKCh-3-06 valve around the props of the stroke limiters and made it possible to assess them quantitatively. For leaflet valves the contribution of inertial losses to the total pressure losses is more considerable than in the case of disc and ball valves both in the regime of an increase of power of the output and in the regime of a constant power. The mechanical properties of the material of leaflet valves have an effect on the hydrodynamic characteristics. The advantage of the investigated leaflet valves consists not only in that they have smaller total hydraulic losses compared with the other valves, but also in that they provide a high amplitude of pulsations of the blood stream in the case of insufficient contractility of the heart.
Božović, Mijat; Garzoli, Stefania; Sabatino, Manuela; Pepi, Federico; Baldisserotto, Anna; Andreotti, Elisa; Romagnoli, Carlo; Mai, Antonello; Manfredini, Stefano; Ragno, Rino
2017-01-26
A comprehensive study on essential oils extracted from different Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball samples from Tarquinia (Italy) is reported. In this study, the 24-h steam distillation procedure for essential oil preparation, in terms of different harvesting and extraction times, was applied. The Gas chromatography-mass spectrometry (GC/MS) analysis showed that C. nepeta (L.) Savi subsp. glandulosa (Req.) Ball essential oils from Tarquinia belong to the pulegone-rich chemotype. The analysis of 44 samples revealed that along with pulegone, some other chemicals may participate in exerting the related antifungal activity. The results indicated that for higher activity, the essential oils should be produced with at least a 6-h steam distillation process. Even though it is not so dependent on the period of harvesting, it could be recommended not to harvest the plant in the fruiting stage, since no significant antifungal effect was shown. The maximum essential oil yield was obtained in August, with the highest pulegone percentage. To obtain the oil with a higher content of menthone, September and October should be considered as the optimal periods. Regarding the extraction duration, vegetative stage material gives the oil in the first 3 h, while material from the reproductive phase should be extracted at least at 6 or even 12 h.
Neutron detection using a crystal ball calorimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martem’yanov, M. A., E-mail: mmartemi@gmail.com; Kulikov, V. V.; Krutenkova, A. P.
2015-12-15
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describemore » the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.« less
UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nefkens, B M.K.; Goetz, J; Lapik, A
2011-05-18
This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup 0}, 2{pi}{sup }0, 3{pi}{sup 0}, {eta} , {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4 . It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonicmore » matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G-parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta} ,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta} and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and noncoherent 0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the {pi}{sup 0} final state and exclusive for background such as 2 {pi}{sup 0}.« less
Apparatus and method for inspecting a bearing ball
NASA Technical Reports Server (NTRS)
Bankston, B. F. (Inventor)
1985-01-01
A method and apparatus for inspecting the surface of a ball bearing is disclosed which includes a base having a high friction non-abrasive base scanning surface. A holding device includes a cone-shaped cup recess in which a ball element is received. Air is introduced through a passage to relieve friction between the wall of the recess and the ball element and facilitate rolling of the ball over the high friction base surface. The holding device is moved over the base scanning surface in a predetermined pattern such that the entire surface of the ball element is inspected byan eddy current probe which detects any surface defects.
Process engineering with planetary ball mills.
Burmeister, Christine Friederike; Kwade, Arno
2013-09-21
Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.
Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.
Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong
2017-12-05
Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.
Determination of the boundary conditions of the grinding load in ball mills
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.
The principal time balls of New Zealand
NASA Astrophysics Data System (ADS)
Kinns, Roger
2017-04-01
Accurate time signals in New Zealand were important for navigation in the Pacific. Time balls at Wellington and Lyttelton were noted in the 1880 Admiralty list of time signals, with later addition of Otago. The time ball service at Wellington started in March 1864 using the first official observatory in New Zealand, but there was no Wellington time ball service during a long period of waterfront redevelopment during the 1880s. The time ball service restarted in November 1888 at a different harbour location. The original mechanical apparatus was used with a new ball, but the system was destroyed by fire in March 1909 and was never replaced. Instead, a time light service was inaugurated in 1912. The service at Lyttelton, near Christchurch, began in December 1876 after construction of the signal station there. It used telegraph signals from Wellington to regulate the time ball. By the end of 1909, it was the only official time ball in New Zealand, providing a service that lasted until 1934. The Lyttelton time ball tower was an iconic landmark in New Zealand that had been carefully restored. Tragically, the tower collapsed in the 2011 earthquakes and aftershocks that devastated Christchurch. A daily time ball service at Port Chalmers, near Dunedin, started in June 1867, initially using local observatory facilities. The service appears to have been discontinued in October 1877, but was re-established in April 1882 as a weekly service, with control by telegraph from Wellington. The service had been withdrawn altogether by the end of 1909. Auckland never established a reliable time ball service, despite provision of a weekly service for mariners by a public-spirited citizen between August 1864 and June 1866. A time ball was finally installed on the Harbour Board building in 1901, but the signal was unreliable and it ceased in 1902. Complaints from ships' masters led to various proposals to re-establish a service. These concluded with erection of a time ball on the new Ferry Building in 1912. The service was finally announced in April 1915, but it was again unreliable and the time ball had been replaced by time lights before the end of that year. The provision of time balls at Wellington, Lyttelton, Port Chalmers and Auckland is described in this paper with particular reference to newspaper announcements.
Faigenbaum, Avery D.; McFarland, James E.; Keiper, Fred B.; Tevlin, William; Ratamess, Nicholas A.; Kang, Jie; Hoffman, Jay R.
2007-01-01
The purpose of this study was to compare the effects of a six week training period of combined plyometric and resistance training (PRT, n = 13) or resistance training alone (RT, n = 14) on fitness performance in boys (12-15 yr). The RT group performed static stretching exercises followed by resistance training whereas the PRT group performed plyometric exercises followed by the same resistance training program. The training duration per session for both groups was 90 min. At baseline and after training all participants were tested on the vertical jump, long jump, medicine ball toss, 9.1 m sprint, pro agility shuttle run and flexibility. The PRT group made significantly (p < 0.05) greater improvements than RT in long jump (10.8 cm vs. 2.2 cm), medicine ball toss (39.1 cm vs. 17.7 cm) and pro agility shuttle run time (-0.23 sec vs. -0.02 sec) following training. These findings suggest that the addition of plyometric training to a resistance training program may be more beneficial than resistance training and static stretching for enhancing selected measures of upper and lower body power in boys. Key pointsYouth conditioning programs which include different types of training and different loading schemes (e.g., high velocity plyometrics and resistance training) may be most effective for enhancing power performance.The effects of resistance training and plyometric training may be synergistic in children, with their combined effects being greater that each program performed alone. PMID:24149486
Real-time detecting and tracking ball with OpenCV and Kinect
NASA Astrophysics Data System (ADS)
Osiecki, Tomasz; Jankowski, Stanislaw
2016-09-01
This paper presents a way to detect and track ball with using the OpenCV and Kinect. Object and people recognition, tracking are more and more popular topics nowadays. Described solution makes it possible to detect ball based on the range, which is set by the user and capture information about ball position in three dimensions. It can be store in the computer and use for example to display trajectory of the ball.
Telescoping magnetic ball bar test gage
Bryan, James B.
1984-01-01
A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out. Two gage balls (10, 12) are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit (14) and a rigid member (16, 18, 20, 22, 24). One gage ball (10) is secured by a magnetic socket knuckle assembly (34) which fixes its center with respect to the machine being tested. The other gage ball (12) is secured by another magnetic socket knuckle assembly (38) which is engaged or held by the machine in such manner that the center of that ball (12) is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball (10). As the moving ball (12) executes its trajectory, changes in the radial distance between the centers of the two balls (10, 12) caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly (50, 52, 54, 56, 58, 60) actuated by the parallel reed flexure unit (14). Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball (10) locations, thereby determining the accuracy of the machine.
Ball Bearing Analysis with the ORBIS Tool
NASA Technical Reports Server (NTRS)
Halpin, Jacob D.
2016-01-01
Ball bearing design is critical to the success of aerospace mechanisms. Key bearing performance parameters, such as load capability, stiffness, torque, and life all depend on accurate determination of the internal load distribution. Hence, a good analytical bearing tool that provides both comprehensive capabilities and reliable results becomes a significant asset to the engineer. This paper introduces the ORBIS bearing tool. A discussion of key modeling assumptions and a technical overview is provided. Numerous validation studies and case studies using the ORBIS tool are presented. All results suggest the ORBIS code closely correlates to predictions on bearing internal load distributions, stiffness, deflection and stresses.
An algorithm to diagnose ball bearing faults in servomotors running arbitrary motion profiles
NASA Astrophysics Data System (ADS)
Cocconcelli, Marco; Bassi, Luca; Secchi, Cristian; Fantuzzi, Cesare; Rubini, Riccardo
2012-02-01
This paper describes a procedure to extend the scope of classical methods to detect ball bearing faults (based on envelope analysis and fault frequencies identification) beyond their usual area of application. The objective of this procedure is to allow condition-based monitoring of such bearings in servomotor applications, where typically the motor in its normal mode of operation has to follow a non-constant angular velocity profile that may contain motion inversions. After describing and analyzing the algorithm from a theoretical point of view, experimental results obtained on a real industrial application are presented and commented.
Prolate-Spheroid (``Rugby-Shaped'') Hohlraum for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Vandenboomgaerde, M.; Bastian, J.; Casner, A.; Galmiche, D.; Jadaud, J.-P.; Laffite, S.; Liberatore, S.; Malinie, G.; Philippe, F.
2007-08-01
A novel rugby-ball shaped hohlraum is designed in the context of the indirect-drive scheme of inertial-confinement fusion (ICF). Experiments were performed on the OMEGA laser and are the first use of rugby hohlraums for ICF studies. Analysis of experimental data shows that the hohlraum energetics is well understood. We show that the rugby-ball shape exhibits advantages over cylinder, in terms of temperature and of symmetry control of the capsule implosion. Simulations indicate that rugby hohlraum driven targets may be candidates for ignition in a context of early Laser MegaJoule experiments with reduced laser energy.
Project O.R.B (Operation Reef Ball): Creating Artificial Reefs, Educating the Community
NASA Astrophysics Data System (ADS)
Phipps, A.
2012-04-01
The Project O.R.B. (Operation Reef Ball) team at South Plantation High School's Everglades Restoration & Environmental Science Magnet Program is trying to help our ailing south Florida coral reefs by constructing, deploying, and monitoring designed artificial reefs. Students partnered with the Reef Ball Foundation, local concrete companies, state parks, Girl Scouts, Sea Scouts, local universities and environmental agencies to construct concrete reef balls, each weighing approximately 500 lbs (227 kg). Students then deployed two artificial reefs consisting of over 30 concrete reef balls in two sites previously permitted for artificial reef deployment. One artificial reef was placed approximately 1.5 miles (2.4 km) offshore of Golden Beach in Miami-Dade County with the assistance of Florida Atlantic University and their research vessel. A twin reef was deployed at the mouth of the river in Oleta River State Park in Miami. Monitoring and maintenance of the sites is ongoing with semi-annual reports due to the Reef Ball Foundation and DERM (Department of Environmental Resource Management) of Miami-Dade County. A second goal of Project O.R.B. is aligned with the Florida Local Action Strategy, the Southeast Florida Coral Reef Initiative, and the U.S. Coral Reef Task Force, all of which point out the importance of awareness and education as key components to the health of our coral reefs. Project O.R.B. team members developed and published an activity book targeting elementary school students. Outreach events incorporate cascade learning where high school students teach elementary and middle school students about various aspects of coral reefs through interactive "edu-tainment" modules. Attendees learn about water sampling, salinity, beach erosion, surface runoff, water cycle, ocean zones, anatomy of coral, human impact on corals, and characteristics of a well-designed artificial reef. Middle school students snorkel on the artificial reef to witness first-hand the success of this artificial reef. Over 3,000 students have been reached through the educational outreach endeavors of Project O.R.B. This successful STEM project models the benefits of partnerships with universities, local K-12 public schools and community conservation organizations and provides students with authentic learning experiences. Students are able to have a positive impact on their local coral reef environment, their peers and their community through this comprehensive service-learning project.
Age and gender differences in adolescent and adult overarm throwing.
Lorson, Kevin M; Stodden, David F; Langendorfer, Stephen J; Goodway, Jacqueline D
2013-06-01
The purposes of this study were to examine age and gender differences in throwing performance across an underexplored portion of the lifespan: middle adolescents (14-17 years old), young adults (18-25 years old), and adults (35-55 years old). Throwing performance was assessed using the body component levels from Roberton's developmental sequences for force and ball velocity that were recorded by a radar gun. Participants in each age group performed between 5 to 10 forceful overhand throws toward a target approximately 15m to 20m from the thrower. A Wilcoxon-Mann-Whitney Test was used to determine gender differences and a Wilcoxon-Signed Ranks Test was used to determine age-group differences for each component. Gender and age-group differences in ball speed were determined by a 3 (age group) x 2 (gender) factorial analysis of variance with follow-up post-hoc tests. Young-adult men had higher body component levels and ball speed compared with the adolescent boys and adult men. Female age-group differences existed only for humerus action between young-adult and adult groups and for ball speed between young-adult and adolescent groups. Gender differences (p < .01) existed in component levels for the adolescent and young-adult groups, but not the adult groups. Gender differences in ball speed (p < .001) existed within each age group. Although these data were cross-sectional, the regressive developmental changes observed and the narrowing gender gap may eventually provide insight related to the relationships among motor skill competence, physical fitness, and physical activity across the lifespan.
Lv, Ling; Wu, Cuie; Sun, Henjuan; Zhu, Saijuan; Yang, Yongchen; Chen, Xi; Fu, Hua; Bao, Liming
2010-06-01
The methylenetetrahydrofolate reductase (MTHFR) encodes a major enzyme in folate metabolism. It has been suggested that two MTHFR polymorphisms, 677C>T and 1298A>C, influence risk of acute lymphoblastic leukemia (ALL). Most studies on relation of MTHFR polymorphisms to ALL susceptibility have been in pediatric populations because ALL is relatively rare in adults. Here, we report a case-control study of 127 Chinese patients with adult precursor B lymphoblastic leukemia (B-ALL) to examine correlation between the MTHFR polymorphisms and B-ALL susceptibility in adults. Our data show that although the prevalence of genotype 1298CC was significantly higher in the female patients than in the controls (P = 0.04), the differences in distributions of combined genotypes of 1298CC with either 677CC or 677CT between the cases and the controls were statistically insignificant. Haplotype analysis revealed no significant difference between the cases and the controls. The prevalence for joint MTHFR genotypes 677CC/1298AC was significantly lower in the female B-ALL cases than in the controls [odds ratio (OR) = 0.06, 95% CI = 0.00-0.53, P = 0.0033] and no differences among the men [OR = 0.71, 95% CI = 0.20-2.53, P = 0.55], suggesting that protective effects of combined MTHFR 677CC/1298AC genotypes on susceptibility of adult B-ALL are gender bias toward women with 677CC/1298AC women being at a 17-fold reduced odds to develop B-ALL.
NASA Astrophysics Data System (ADS)
Van Hoten, Hendri; Gunawarman; Mulyadi, Ismet Hari; Kurniawan Mainil, Afdhal; Putra, Bismantoloa dan
2018-02-01
This research is about manufacture nanopowder Bioceramics from local materials used Ball Milling for biomedical applications. Source materials for the manufacture of medicines are plants, animal tissues, microbial structures and engineering biomaterial. The form of raw material medicines is a powder before mixed. In the case of medicines, research is to find sources of biomedical materials that will be in the nanoscale powders can be used as raw material for medicine. One of the biomedical materials that can be used as raw material for medicine is of the type of bioceramics is chicken eggshells. This research will develop methods for manufacture nanopowder material from chicken eggshells with Ball Milling using the Taguchi method and ANOVA. Eggshell milled using a variation of Milling rate on 150, 200 and 250 rpm, the time variation of 1, 2 and 3 hours and variations the grinding balls to eggshell powder weight ratio (BPR) 1: 6, 1: 8, 1: 10. Before milled with Ball Milling crushed eggshells in advance and calcinate to a temperature of 900°C. After the milled material characterization of the fine powder of eggshell using SEM to see its size. The result of this research is optimum parameter of Taguchi Design analysis that is 250 rpm milling rate, 3 hours milling time and BPR is 1: 6 with the average eggshell powder size is 1.305 μm. Milling speed, milling time and ball to powder weight of ratio have contribution successively equal to 60.82%, 30.76% and 6.64% by error equal to 1.78%.
NASA Astrophysics Data System (ADS)
Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan
2015-07-01
Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.
Salem, Mohamed Labib; El-Shanshory, Mohamed R; Abdou, Said H; Attia, Mohamed S; Sobhy, Shymaa M; Zidan, Mona F; Zidan, Abdel-Aziz A
2018-04-01
Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children. The precise mechanism behind the relapse in this disease is not clearly known. One possible mechanism could be the accumulation of immunosuppressive cells, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (T regs ) which we and others have reported to mediate suppression of anti-tumor immune responses. In this study, we aimed to analyze the numbers of these cells in a population of B-ALL pediatric patients. Peripheral blood samples withdrawn from B-ALL pediatric patients (n = 45 before, during and after the induction phase of chemotherapy. Using multi parametric flow cytometric analysis. MDSCs were identified as Lin - HLA-DR - CD33 + CD11b + ; and T reg cells were defined as CD4 + CD25 + CD127 -/low . Early diagnosed B-ALL patients showed significant increases in the numbers of MDSCs and T regs as compared to healthy volunteers. During induction of chemotherapy, however, the patients showed higher and lower numbers of MDSCs and T reg cells, respectively as compared to early diagnosed patients (i.e., before chemotherapy). After induction of chemotherapy, the numbers of MDSCs and T reg cells showed higher increases and decreases, respectively as compared to the numbers in patients during chemotherapy. Our results indicate that B-ALL patients harbor high numbers of both MDSCs and T regs cells. This pilot study opens a new avenue to investigate the mechanism mediating the emergence of these cells on larger number of B-ALL patients at different treatment stages.
Neural Extrapolation of Motion for a Ball Rolling Down an Inclined Plane
La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka
2014-01-01
It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion. PMID:24940874
Neural extrapolation of motion for a ball rolling down an inclined plane.
La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka
2014-01-01
It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.
Percutaneous Renal Cryoablation: Short-Axis Ice-Ball Margin as a Predictor of Outcome.
Ge, Benjamin H; Guzzo, Thomas J; Nadolski, Gregory J; Soulen, Michael C; Clark, Timothy W I; Malkowicz, Stanley B; Wein, Alan J; Hunt, Stephen J; Stavropoulos, S William
2016-03-01
To determine if CT characteristics of intraprocedural ice balls correlate with outcomes after cryoablation. A retrospective review was performed on 63 consecutive patients treated with renal cryoablation. Preprocedural and intraprocedural images were used to identify the size and location of renal tumors and ice balls as well as the tumor coverage and ice-ball margins. Review of follow-up imaging (1 mo and then 3-6-mo intervals) distinguished successful ablations from cases of residual tumor. Patients who underwent successful ablation (n = 50; 79%) had a mean tumor diameter of 2.5 cm (range, 0.9-4.3 cm) and mean ice-ball margin of 0.4 cm (range, 0.2-1.2 cm). Patients with residual tumor (n = 13; 21%) had a mean tumor diameter of 3.8 cm (range, 1.8-4.5 cm) and mean ice-ball margin of -0.4 cm (range, -0.9 to 0.4 cm). Residual and undertreated tumors were larger and had smaller ice-ball margins than successfully treated tumors (P < .01). Ice-ball diameters were significantly smaller after image reformatting (P < .01). Ice-ball margins of 0.15 cm had 90% sensitivity, 92% specificity, and 98% positive predictive value for successful ablation. Success was independent of tumor location or number of cryoprobes. Ice-ball margin and real-time intraprocedural reformatting could be helpful in predicting renal cryoablation outcomes. Although a 0.5-cm margin is preferred, a well-centered ice ball with a short-axis margin greater than 0.15 cm strongly correlated with successful ablation. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
El-Anwar, Mohamed I.; El-Taftazany, Eman A.; Hamed, Hamdy A.; ElHay, Mohamed A. Abd
2017-01-01
AIM: This study aimed to compare the stresses generated by using two or four root form dental implants supporting mandibular overdentures that were retained with ball and locator attachments. METHODS: Under ANSYS environment, four 3D finite element models were prepared. These models simulated complete overdentures supported by two or four implants with either ball or locator attachments as a connection mechanism. The models’ components were created by CAD/CAM package then were imported to ANSYS. Load of 100 N was applied at the right premolar/molar region vertically and at an oblique angle of 110° from lingual direction. RESULTS: Within the conditions of this research, in all cases, it was found that cortical and cancellous bone regions were the least to be stressed. Also, the ball attachment produced higher stresses. CONCLUSION: Caps deformation and stresses are negligible in cases of using locator attachment in comparison to ball attachments. This may indicate longer lifetime and less repair/maintenance operations in implant overdentures retained by locator attachments. Although the study revealed that bone was insensitive to a number of implants or attachment type, it may be recommended to use two implants in the canine region than using four, where the locator attachments were found to be better. PMID:28507636
Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling
NASA Astrophysics Data System (ADS)
Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.
2012-01-01
We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.
El-Anwar, Mohamed I; El-Taftazany, Eman A; Hamed, Hamdy A; ElHay, Mohamed A Abd
2017-04-15
This study aimed to compare the stresses generated by using two or four root form dental implants supporting mandibular overdentures that were retained with ball and locator attachments. Under ANSYS environment, four 3D finite element models were prepared. These models simulated complete overdentures supported by two or four implants with either ball or locator attachments as a connection mechanism. The models' components were created by CAD/CAM package then were imported to ANSYS. Load of 100 N was applied at the right premolar/molar region vertically and at an oblique angle of 110° from lingual direction. Within the conditions of this research, in all cases, it was found that cortical and cancellous bone regions were the least to be stressed. Also, the ball attachment produced higher stresses. Caps deformation and stresses are negligible in cases of using locator attachment in comparison to ball attachments. This may indicate longer lifetime and less repair/maintenance operations in implant overdentures retained by locator attachments. Although the study revealed that bone was insensitive to a number of implants or attachment type, it may be recommended to use two implants in the canine region than using four, where the locator attachments were found to be better.
Zhao, Tieshi; Zhao, Yanzhi; Hu, Qiangqiang; Ding, Shixing
2017-01-01
The measurement of large forces and the presence of errors due to dimensional coupling are significant challenges for multi-dimensional force sensors. To address these challenges, this paper proposes an over-constrained six-dimensional force sensor based on a parallel mechanism of steel ball structures as a measurement module. The steel ball structure can be subject to rolling friction instead of sliding friction, thus reducing the influence of friction. However, because the structure can only withstand unidirectional pressure, the application of steel balls in a six-dimensional force sensor is difficult. Accordingly, a new design of the sensor measurement structure was designed in this study. The static equilibrium and displacement compatibility equations of the sensor prototype’s over-constrained structure were established to obtain the transformation function, from which the forces in the measurement branches of the proposed sensor were then analytically derived. The sensor’s measurement characteristics were then analysed through numerical examples. Finally, these measurement characteristics were confirmed through calibration and application experiments. The measurement accuracy of the proposed sensor was determined to be 1.28%, with a maximum coupling error of 1.98%, indicating that the proposed sensor successfully overcomes the issues related to steel ball structures and provides sufficient accuracy. PMID:28867812
Toozandehjani, Meysam; Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly
2017-10-26
The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness ( HV ), nano-hardness ( HN ), and Young's modulus ( E ) of Al-5Al₂O₃ nanocomposites. HV , HN , and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.
Henrique, Angelita José; Gabrielloni, Maria Cristina; Rodney, Patricia; Barbieri, Márcia
2018-03-07
This study aimed to investigate the effect of warm shower hydrotherapy and perineal exercises with a ball on pain, anxiety, and neuroendocrine stress parameters during childbirth. This randomized controlled trial was conducted with 128 women during childbirth, admitted for hospital birth in São Paulo, Brazil, from June 2013 to February 2014. The participants were randomly assigned into one of the following intervention groups: received warm shower hydrotherapy (GA); performed perineal exercises with a ball (GB); and combined intervention group, which received warm shower hydrotherapy and perineal exercises with a ball (GC) (n = 39). Pre-and post-intervention parameters were evaluated using visual analogue scales for pain and anxiety, and salivary samples were collected for the stress hormones analysis. Pain, anxiety, and epinephrine release decreased in the group performing perineal exercises with a ball (GB). β-endorphin levels increased in this group (GB) after the intervention and showed significant difference in capacity to cause this effect (P = .007). However, no significant differences were observed in cortisol, epinephrine, and norepinephrine levels. Warm showers and perineal exercises could be considered as adjunct therapy for women suffering from pain, anxiety, and stress during childbirth. Clinical Trial Registry RBR-84xprt. © 2018 John Wiley & Sons Australia, Ltd.
Catching a Ball at the Right Time and Place: Individual Factors Matter
Cesqui, Benedetta; d'Avella, Andrea; Portone, Alessandro; Lacquaniti, Francesco
2012-01-01
Intercepting a moving object requires accurate spatio-temporal control. Several studies have investigated how the CNS copes with such a challenging task, focusing on the nature of the information used to extract target motion parameters and on the identification of general control strategies. In the present study we provide evidence that the right time and place of the collision is not univocally specified by the CNS for a given target motion; instead, different but equally successful solutions can be adopted by different subjects when task constraints are loose. We characterized arm kinematics of fourteen subjects and performed a detailed analysis on a subset of six subjects who showed comparable success rates when asked to catch a flying ball in three dimensional space. Balls were projected by an actuated launching apparatus in order to obtain different arrival flight time and height conditions. Inter-individual variability was observed in several kinematic parameters, such as wrist trajectory, wrist velocity profile, timing and spatial distribution of the impact point, upper limb posture, trunk motion, and submovement decomposition. Individual idiosyncratic behaviors were consistent across different ball flight time conditions and across two experimental sessions carried out at one year distance. These results highlight the importance of a systematic characterization of individual factors in the study of interceptive tasks. PMID:22384072
Virta, Robert L.
2010-01-01
The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.
ERIC Educational Resources Information Center
Moinester, Murray; Gerland, Lars; Liger-Belair, Gerard; Ocherashvili, Aharon
2012-01-01
We describe the fluid dynamics principles governing the up-down oscillatory cycling of a bubble-covered, low-density, low-mass ball of material (referred to henceforth as a "fizz-ball") immersed inside a glass of bubbling (super-saturated) carbonated liquid. The bubbles serve to desaturate the liquid of excess CO[subscript 2]. The fizz-ball acts…
Shah, Taimur T.; Arbel, Uri; Foss, Sonja; Zachman, Andrew; Rodney, Simon; Ahmed, Hashim U.; Arya, Manit
2016-01-01
Objective To gain a better understanding of ice ball dimensions and temperature isotherms relevant for cell kill when using combinations of cryo-needles we set out to answer 4 questions: (1) what type of cryo-needle? (2) how many needles? (3) best spatial configuration? and (4) correct duty cycle percentage? Methods We conducted laboratory experiments to monitor ice ball dimensions and create multi-needle planar isotherm maps for 17G and 10G cryo-needles using a novel multi-needle thermocouple fixture within gel at body temperature. We tested configurations of 1-4 cryo-needles at duty cycles of 20%-100% with 1-2.5 cm spacing. Results Analysis of various combinations shows that a central core of ≤−40°C develops at a distance of ~1 cm around the cryo-needles. Temperature increases linearly from this point to the ice ball leading edge (0°C), which is a further ≈1 cm away. Thus, the −40°C isotherm is approximately 1 cm inside the leading edge of the ice ball. The optimum distance between cryo-needles was 1.5-2 cm, at duty cycle settings of 70%-100%. At distances further apart or with lower duty cycle settings, ice balls either had a central core >−40°C or had an hourglass shape. Conclusion In answer to questions 1-3, tumor length, diameter, and shape will ultimately determine the number of needles and their configuration. However, we propose a conservative distance for cryo-needle placement between 1 and 1.5 cm should be adopted for clinical practice. In answer to question 4, using low duty cycle settings runs the risk of incomplete −40°C isotherm coverage of the tumor, and thus in routine practice we suggest that settings of 70%-100% are most appropriate. PMID:26902833
Gender differences of foot characteristics in older Japanese adults using a 3D foot scanner.
Saghazadeh, Mahshid; Kitano, Naruki; Okura, Tomohiro
2015-01-01
Knowledge of gender differences in foot shape assists shoe manufactures with designing appropriate shoes for men and women. Although gender differences in foot shapes are relatively known among young men and women, less is known about how the older men and women's feet differ in shape. A recent development in foot shape assessment is the use of 3D foot scanners. To our knowledge this technology has yet to be used to examine gender differences in foot shape of Japanese older adults. This cross-sectional study included 151 older men (74.5 ± 5.6 years) and 140 older women (73.9 ± 5.1 years) recruited in Kasama City, Japan. Foot variables were measured in sitting and standing positions using Dream GP Incorporated's 3D foot scanner, Footstep PRO (Osaka, Japan). Scores were analyzed as both raw and normalized to truncated foot length using independent samples t-test and analysis of covariance, respectively. In men, the measurement values for navicular height, first and fifth toe and instep heights, ball and heel width, ball girth, arch height index (just standing), arch rigidity index and instep girth were significantly greater than the women's, whereas the first toe angle, in both sitting and standing positions was significantly smaller. However, after normalizing, the differences in ball width, heel width, height of first and fifth toes in both sitting and standing and ball girth in sitting position were nonsignificant. According to Cohen's d, among all the foot variables, the following had large effect sizes in both sitting and standing positions: truncated foot length, instep, navicular height, foot length, ball girth, ball width, heel width and instep girth. This study provides evidence of anthropometric foot variations between older men and women. These differences need to be considered when manufacturing shoes for older adults.
NASA Astrophysics Data System (ADS)
Ryan, R.; Gross, L. A.
1995-05-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
NASA Technical Reports Server (NTRS)
Ryan, R.; Gross, L. A.
1995-01-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
Virta, R.L.
2000-01-01
Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.
Size doesn't really matter: ambiguity aversion in Ellsberg urns with few balls.
Pulford, Briony D; Colman, Andrew M
2008-01-01
When attempting to draw a ball of a specified color either from an urn containing 50 red balls and 50 black balls or from an urn containing an unknown ratio of 100 red and black balls, a majority of decision makers prefer the known-risk urn, and this ambiguity aversion effect violates expected utility theory. In an experimental investigation of the effect of urn size on ambiguity aversion, 149 participants showed similar levels of aversion when choosing from urns containing 2, 10, or 100 balls. The occurrence of a substantial and significant ambiguity aversion effect even in the smallest urn suggests that influential theoretical interpretations of ambiguity aversion may need to be reconsidered.
Ball Screw Actuator Including an Axial Soft Stop
NASA Technical Reports Server (NTRS)
Forrest, Steven Talbert (Inventor); Woessner, George (Inventor); Abel, Steve (Inventor); Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)
2016-01-01
An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.
NASA Technical Reports Server (NTRS)
Hannum, N. P.; Nielson, C. E.
1983-01-01
Data are presented for two different experimental programs which were conducted to investigate the characteristics of a hybrid (hydrostatic/ball) bearing operating in liquid hydrogen. The same bearing design was used in both programs. Analytical predictions were made of the bearing characteristics and are compared with the experimental results when possible. The first program used a bearing tester to determine the steady state, transient, and cyclic life characteristics of the bearing over a wide range of operating conditions. The second program demonstrated the feasibility of applying hybrid bearings to an actual high speed turbopump by retrofitting and then testing an existing liquid hydrogen turbopump with the bearings.
Behavior of hollow balls containing granules bouncing repeatedly off the ground
NASA Astrophysics Data System (ADS)
Hu, Min; Mu, Qing-song; Luo, Ning; Li, Gang; Peng, Ning-bo
2013-07-01
An experimental study of the behavior of hollow balls filled with some granules (mung beans or millets) bouncing repeatedly off a static flat horizontal surface is presented. We observed that the bounce number of the ball is limited and decreases regularly with an increasing number of granules. Moreover, for two balls containing a different kind of granules, their bounce numbers are basically equal when the two balls have the same mass of granules. While there is no clear relationship between the first rebound height of one ball and the number of granules, there appears an exponential decay of the second rebound height with an increase of the granule number. Furthermore, a two-dimensional numerical model has been created to find out the law of the ball's rebound height and the dissipation law of the granule nested system. A generalized prediction equation to reasonably explain the law of the bounce number has also been proposed.
PDC bit hydraulics design, profile are key to reducing balling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariharan, P.R.; Azar, J.J.
1996-12-09
Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less
Mucormycosis (Mucor fungus ball) of the maxillary sinus.
Cho, Hang Sun; Yang, Hoon Shik; Kim, Kyung Soo
2014-01-01
A fungus ball is an extramucosal fungal proliferation that completely fills one or more paranasal sinuses and usually occurs as a unilateral infection. It is mainly caused by Aspergillus spp in an immunocompetent host, but some cases of paranasal fungal balls reportedly have been caused by Mucor spp. A Mucor fungus ball is usually found in the maxillary sinus and/or the sphenoid sinus and may be black in color. Patients with mucormycosis, or a Mucor fungal ball infection, usually present with facial pain or headache. On computed tomography, there are no pathognomonic findings that are conclusive for a diagnosis of mucormycosis. In this article we report a case of mucormycosis in a 56-year-old woman and provide a comprehensive review of the literature on the "Mucor fungus ball." To the best of our knowledge, 5 case reports (8 patients) have been published in which the fungus ball was thought to be caused by Mucor spp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoemaker, Ian M.
2009-08-01
The gauge-mediated model of supersymmetry breaking implies that stable nontopological solitons, Q-balls, could form in the early Universe and comprise the dark matter. It is shown that the inclusion of the effects from gravity-mediation set an upper limit on the size of Q-balls. When in a dense baryonic environment Q-balls grow until reaching this limiting size at which point they fragment into two equal-sized Q-balls. This Q-splitting process will rapidly destroy a neutron star that absorbs even one Q-ball. The new limits on Q-ball dark matter require an ultralight gravitino m{sub 3/2} < or approx. keV, naturally avoiding the gravitinomore » overclosure problem, and providing the minimal supersymmetric standard model with a dark matter candidate where gravitino dark matter is not viable.« less
Ball-morph: definition, implementation, and comparative evaluation.
Whited, Brian; Rossignac, Jaroslaw Jarek
2011-06-01
We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.
NASA Technical Reports Server (NTRS)
Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)
2012-01-01
A stemless ball valve comprising: a right flange; left flange; ball with an axis pin and two travel pins; ball seal on either side of the ball; guide sleeve with inner walls comprising two channels; cartridge guide holder; inner magnetic cartridge; and outer magnetic cartridge. The ball is situated inside of the guide sleeve, and a travel pin is located in each of the two channels. The guide sleeve is situated inside of the cartridge guide holder, which is located adjacent to and outside of the inner magnetic cartridge and secured to the inner magnetic cartridge such that when the inner magnetic cartridge rotates, the cartridge guide holder also rotates. The cartridge guide holder is secured to the guide sleeve such that when the cartridge guide holder rotates, the travel pins move within the channels in the inner walls of the guide sleeve, thereby causing the ball to rotate.
An impact analysis of a flexible bat using an iterative solver.
Penrose, J M; Hose, D R
1999-08-01
Although technology has now infiltrated and prompted evolution in most mass participation sports, the advances in bat technology in such sports as baseball and cricket have been relatively minor. In this study, we used a simple finite element modelling approach to try to shed new light upon the underlying mechanics of the bat-ball impact, with a view to the future optimization of bat design. The analysis of a flexible bat showed that the point of impact that produced the maximum post-impact ball velocity was a function of the bat's vibrational properties and was not necessarily at the centre of percussion. The details of the analysis agreed well with traditional Hertzian impact theory, and broadly with empirical data. An inspection of the relative modal contributions to the deformations during impact also showed that the position of the node of the first flexure mode was important. In conclusion, considerable importance should be attached to the bat's vibrational properties in future design and analysis.
Naive Beliefs in Baseball: Systematic Distortion in Perceived Time of Apex for Fly Balls
ERIC Educational Resources Information Center
Shaffer, Dennis M.; McBeath, Michael K.
2005-01-01
When fielders catch fly balls they use geometric properties to optically maintain control over the ball. The strategy provides ongoing guidance without indicating precise positional information concerning where the ball is located in space. Here, the authors show that observers have striking misconceptions about what the motion of projectiles…