Sample records for program complex md

  1. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.

    PubMed

    Zheng, Mo; Li, Xiaoxia; Guo, Li

    2013-04-01

    Reactive force field (ReaxFF), a recent and novel bond order potential, allows for reactive molecular dynamics (ReaxFF MD) simulations for modeling larger and more complex molecular systems involving chemical reactions when compared with computation intensive quantum mechanical methods. However, ReaxFF MD can be approximately 10-50 times slower than classical MD due to its explicit modeling of bond forming and breaking, the dynamic charge equilibration at each time-step, and its one order smaller time-step than the classical MD, all of which pose significant computational challenges in simulation capability to reach spatio-temporal scales of nanometers and nanoseconds. The very recent advances of graphics processing unit (GPU) provide not only highly favorable performance for GPU enabled MD programs compared with CPU implementations but also an opportunity to manage with the computing power and memory demanding nature imposed on computer hardware by ReaxFF MD. In this paper, we present the algorithms of GMD-Reax, the first GPU enabled ReaxFF MD program with significantly improved performance surpassing CPU implementations on desktop workstations. The performance of GMD-Reax has been benchmarked on a PC equipped with a NVIDIA C2050 GPU for coal pyrolysis simulation systems with atoms ranging from 1378 to 27,283. GMD-Reax achieved speedups as high as 12 times faster than Duin et al.'s FORTRAN codes in Lammps on 8 CPU cores and 6 times faster than the Lammps' C codes based on PuReMD in terms of the simulation time per time-step averaged over 100 steps. GMD-Reax could be used as a new and efficient computational tool for exploiting very complex molecular reactions via ReaxFF MD simulation on desktop workstations. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.

    PubMed

    Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till

    2018-02-06

    Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus × domestica).

    PubMed

    Minamikawa, Mai F; Koyano, Ruriko; Kikuchi, Shinji; Koba, Takato; Sassa, Hidenori

    2014-01-01

    Gametophytic self-incompatibility (GSI) of Rosaceae, Solanaceae and Plantaginaceae is controlled by a single polymorphic S locus. The S locus contains at least two genes, S-RNase and F-box protein encoding gene SLF/SFB/SFBB that control pistil and pollen specificity, respectively. Generally, the F-box protein forms an E3 ligase complex, SCF complex with Skp1, Cullin1 (CUL1) and Rbx1, however, in Petunia inflata, SBP1 (S-RNase binding protein1) was reported to play the role of Skp1 and Rbx1, and form an SCFSLF-like complex for ubiquitination of non-self S-RNases. On the other hand, in Petunia hybrida and Petunia inflata of Solanaceae, Prunus avium and Pyrus bretschneideri of Rosaceae, SSK1 (SLF-interacting Skp1-like protein1) is considered to form the SCFSLF/SFB complex. Here, we isolated pollen-expressed apple homologs of SSK1 and CUL1, and named MdSSK1, MdCUL1A and MdCUL1B. MdSSK1 was preferentially expressed in pollen, but weakly in other organs analyzed, while, MdCUL1A and MdCUL1B were almost equally expressed in all the organs analyzed. MdSSK1 transcript abundance was significantly (>100 times) higher than that of MdSBP1. In vitro binding assays showed that MdSSK1 and MdSBP1 interacted with MdSFBB1-S9 and MdCUL1, and MdSFBB1-S9 interacted more strongly with MdSSK1 than with MdSBP1. The results suggest that both MdSSK1-containing SCFSFBB1 and MdSBP1-containing SCFSFBB1-like complexes function in pollen of apple, and the former plays a major role.

  4. Evaluations of the conformational search accuracy of CAMDAS using experimental three-dimensional structures of protein-ligand complexes

    NASA Astrophysics Data System (ADS)

    Oda, A.; Yamaotsu, N.; Hirono, S.; Takano, Y.; Fukuyoshi, S.; Nakagaki, R.; Takahashi, O.

    2013-08-01

    CAMDAS is a conformational search program, through which high temperature molecular dynamics (MD) calculations are carried out. In this study, the conformational search ability of CAMDAS was evaluated using structurally known 281 protein-ligand complexes as a test set. For the test, the influences of initial settings and initial conformations on search results were validated. By using the CAMDAS program, reasonable conformations whose root mean square deviations (RMSDs) in comparison with crystal structures were less than 2.0 Å could be obtained from 96% of the test set even though the worst initial settings were used. The success rate was comparable to those of OMEGA, and the errors of CAMDAS were less than those of OMEGA. Based on the results obtained using CAMDAS, the worst RMSD was around 2.5 Å, although the worst value obtained was around 4.0 Å using OMEGA. The results indicated that CAMDAS is a robust and versatile conformational search method and that it can be used for a wide variety of small molecules. In addition, the accuracy of a conformational search in relation to this study was improved by longer MD calculations and multiple MD simulations.

  5. The Influence of Perceived Characteristics of Management Development Programs on Employee Outcomes

    ERIC Educational Resources Information Center

    Ardts, Joost C. A.; van der Velde, Mandy E. G.; Maurer, Todd J.

    2010-01-01

    Employees' perceptions of Management Development (MD) programs is the topic of this study. The purpose is to examine the influence of three important perceived characteristics of MD programs on relevant MD outcomes. The MD characteristics are: availability of role models, perceived control, and understanding the MD program. Outcomes are:…

  6. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    PubMed

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  7. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple.

    PubMed

    Yuan, Hui; Meng, Dong; Gu, Zhaoyu; Li, Wei; Wang, Aide; Yang, Qing; Zhu, Yuandi; Li, Tianzhong

    2014-07-01

    As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. GMXPBSA 2.0: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2014-11-01

    GMXPBSA 2.0 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes. GMXPBSA 2.0 is flexible and can easily be customized to specific needs. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.0 performs different comparative analysis, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complexes trajectories, allowing the study the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS and the Poisson-Boltzmann equation solver APBS. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. The program is freely available under the GPL license.

  9. Flexible and Comprehensive Implementation of MD-PMM Approach in a General and Robust Code.

    PubMed

    Carrillo-Parramon, Oliver; Del Galdo, Sara; Aschi, Massimiliano; Mancini, Giordano; Amadei, Andrea; Barone, Vincenzo

    2017-11-14

    The Perturbed Matrix Method (PMM) approach to be used in combination with Molecular Dynamics (MD) trajectories (MD-PMM) has been recoded from scratch, improved in several aspects, and implemented in the Gaussian suite of programs for allowing a user-friendly and yet flexible tool to estimate quantum chemistry observables in complex systems in condensed phases. Particular attention has been devoted to a description of rigid and flexible quantum centers together with powerful essential dynamics and clustering approaches. The default implementation is fully black-box and does not require any external action concerning both MD and PMM sections. At the same time, fine-tuning of different parameters and use of external data are allowed in all the steps of the procedure. Two specific systems (Tyrosine and Uridine) have been reinvestigated with the new version of the code in order to validate the implementation, check the performances, and illustrate some new features.

  10. QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts

    PubMed Central

    Ribeiro, João V.; Bernardi, Rafael C.; Rudack, Till; Stone, John E.; Phillips, James C.; Freddolino, Peter L.; Schulten, Klaus

    2016-01-01

    The proper functioning of biomolecules in living cells requires them to assume particular structures and to undergo conformational changes. Both biomolecular structure and motion can be studied using a wide variety of techniques, but none offers the level of detail as do molecular dynamics (MD) simulations. Integrating two widely used modeling programs, namely NAMD and VMD, we have created a robust, user-friendly software, QwikMD, which enables novices and experts alike to address biomedically relevant questions, where often only molecular dynamics simulations can provide answers. Performing both simple and advanced MD simulations interactively, QwikMD automates as many steps as necessary for preparing, carrying out, and analyzing simulations while checking for common errors and enabling reproducibility. QwikMD meets also the needs of experts in the field, increasing the efficiency and quality of their work by carrying out tedious or repetitive tasks while enabling easy control of every step. Whether carrying out simulations within the live view mode on a small laptop or performing complex and large simulations on supercomputers or Cloud computers, QwikMD uses the same steps and user interface. QwikMD is freely available by download on group and personal computers. It is also available on the cloud at Amazon Web Services. PMID:27216779

  11. QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts

    NASA Astrophysics Data System (ADS)

    Ribeiro, João V.; Bernardi, Rafael C.; Rudack, Till; Stone, John E.; Phillips, James C.; Freddolino, Peter L.; Schulten, Klaus

    2016-05-01

    The proper functioning of biomolecules in living cells requires them to assume particular structures and to undergo conformational changes. Both biomolecular structure and motion can be studied using a wide variety of techniques, but none offers the level of detail as do molecular dynamics (MD) simulations. Integrating two widely used modeling programs, namely NAMD and VMD, we have created a robust, user-friendly software, QwikMD, which enables novices and experts alike to address biomedically relevant questions, where often only molecular dynamics simulations can provide answers. Performing both simple and advanced MD simulations interactively, QwikMD automates as many steps as necessary for preparing, carrying out, and analyzing simulations while checking for common errors and enabling reproducibility. QwikMD meets also the needs of experts in the field, increasing the efficiency and quality of their work by carrying out tedious or repetitive tasks while enabling easy control of every step. Whether carrying out simulations within the live view mode on a small laptop or performing complex and large simulations on supercomputers or Cloud computers, QwikMD uses the same steps and user interface. QwikMD is freely available by download on group and personal computers. It is also available on the cloud at Amazon Web Services.

  12. [MD PhD programs: Providing basic science education for ophthalmologists].

    PubMed

    Spaniol, K; Geerling, G

    2015-06-01

    Enrollment in MD PhD programs offers the opportunity of a basic science education for medical students and doctors. These programs originated in the USA where structured programs have been offered for many years, but now German universities also run MD PhD programs. The MD PhD programs provided by German universities were investigated regarding entrance requirements, structure and financing modalities. An internet and telephone-based search was carried out. Out of 34 German universities 22 offered MD PhD programs. At 15 of the 22 universities a successfully completed course of studies in medicine was required for enrollment, 7 programs admitted medical students in training and 7 programs required a medical doctoral thesis, which had to be completed with at least a grade of magna cum laude in 3 cases. Financing required scholarships in many cases. Several German universities currently offer MD PhD programs; however, these differ considerably regarding entrance requirements, structure and financing. A detailed analysis investigating the success rates of these programs (e.g. successful completion and career paths of graduates) would be of benefit.

  13. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations.

    PubMed

    Zhou, Yang; Dong, Wujun; Ye, Jun; Hao, Huazhen; Zhou, Junzhuo; Wang, Renyun; Liu, Yuling

    2017-11-01

    Phospholipid complex is one of the most successful approaches for enhancing oral bioavailability of poorly absorbed plant constituents. But the sticky property of phospholipids results in an unsatisfactory dissolution of drugs. In this study, a matrix dispersion of baicalein based on phospholipid complex (BaPC-MD) was first prepared by a discontinuous solvent evaporation method, in which polyvinylpyrrolidone-K30 (PVP-K30) was employed for improving the dispersibility of baicalein phospholipid complex (BaPC) and increasing dissolution of baicalein. The combination ratio of baicalein and phospholipids in BaPC-MD was 99.39% and baicalein was still in a complete complex state with phospholipid in BaPC-MD. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) analyzes demonstrated that baicalein was fully transformed to an amorphous state in BaPC-MD and phospholipid complex formed. The water-solubility and n-octanol solubility of baicalein in BaPC-MD significantly increased compared with those of pure baicalein. Compared with baicalein and BaPC, the cumulative dissolution of BaPC-MD at 120 min increased 2.77- and 1.23-fold, respectively. In vitro permeability study in Caco-2 cells indicated that the permeability of BaPC-MD was remarkably higher than those of baicalein and BaPC. Pharmacokinetic study showed that the average C max of BaPC-MD was significantly increased compared to baicalein and BaPC. AUC 0-14 h of BaPC-MD was 5.01- and 1.91-fold of baicalein and BaPC, respectively. The novel BaPC-MD significantly enhanced the oral bioavailability of baicalein by improving the dissolution and permeability of baicalein without destroying the complexation state of baicalein and phospholipids. The current drug delivery system provided an optimal strategy to significantly enhance oral bioavailability for poorly water-soluble drugs.

  14. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex.

    PubMed

    Mishra, Vinita; Pathak, Chandramani

    2018-05-29

    Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS-TLR4-MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein-protein interaction (PPI) in TLR4-MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4-MD-2) and dimerization (MD-2-TLR4*) protein-protein interaction interfaces in TLR4-MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4-MD-2 protein-protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4-MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.

  15. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts.

    PubMed

    Chen, Lih-Jen; Li, Hsou-Min

    2017-10-01

    Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  16. Partially Glycosylated Dendrimers Block MD-2 and Prevent TLR4-MD-2-LPS Complex Mediated Cytokine Responses

    PubMed Central

    Barata, Teresa S.; Teo, Ian; Brocchini, Steve; Zloh, Mire; Shaunak, Sunil

    2011-01-01

    The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4′phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design additional macromolecular dendrimer based antagonists for other Toll Like Receptors. They could be useful for treating a spectrum of infectious, inflammatory and malignant diseases. PMID:21738462

  17. Generation of physician-scientists manpower: a follow-up study of the first 294 graduates of the Harvard-MIT Program of Health Sciences and Technology.

    PubMed

    Abelmann, W H; Nave, B D; Wilkerson, L

    1997-06-01

    The MD program of the Harvard-MIT Division of Health Sciences and Technology was founded in 1970. One of its goals was the application of the academic resources of the two universities to the education of leaders in academic medicine and biomedical sciences. The first MD class was admitted in 1971. Prerequisites for admission are a strong background in quantitative sciences and demonstrated interest in research. Research and a thesis are obligatory. Enrollment in a PhD program is elective. Questionnaires were sent to 293 alumni who graduated from the MD program between 1975 and 1988, followed up by letters and telephone calls. By 1988, 296 students had graduated, 207 with an MD only, 89 with MD-PhD degrees. Follow-up by questionnaires of 293 living graduates (92%), plus indirect data on 11 others, revealed that 212 (75%) held faculty appointments in 64 medical schools. Overall, 73.5% of respondents were engaged in research: 68% of MDs and 86% of MD-PhDs. One hundred and four (38%) respondents spent more than 50% of their time on research: 54 (29%) of MDs and 50 (60%) of MD-PhDs. Seventy-five percent of respondents were active in teaching. Our experience indicates that both an MD-PhD program and a research-oriented MD program are effective in producing physician-scientists and leaders in academic medicine.

  18. Fluid Intelligence Predicts Novel Rule Implementation in a Distributed Frontoparietal Control Network.

    PubMed

    Tschentscher, Nadja; Mitchell, Daniel; Duncan, John

    2017-05-03

    Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.

  19. Evidence for ProTα-TLR4/MD-2 binding: molecular dynamics and gravimetric assay studies.

    PubMed

    Omotuyi, Olaposi; Matsunaga, Hayato; Ueda, Hiroshi

    2015-01-01

    During preconditioning, lipopolysaccharide (LPS) selectively activates TLR4/MD-2/Toll/IL-1 receptor-domain-containing adaptor inducing IFN-β (TRIF) pathway instead of pro-inflammatory myeloid differentiation protein-88 (MyD88)/MyD88-adaptor-like protein (MAL) pathway. Extracellular prothymosin alpha (ProTα) is also known to selectively activate the TLR4/MD2/TRIF-IRF3 pathway in certain diseased conditions. In the current study, biophysical evidence for ProTα/TLR4/MD-2 complex formation and its interaction dynamics have been studied. Gravimetric assay was used to investigate ProTα/TLR4/MD-2 complex formation while molecular dynamics (MD) simulation was used to study its interaction dynamics. Through electrostatic interaction, full-length ProTα (F-ProTα) C-terminal peptide (aa 91 - 111) superficially interacts with similar TLR4/MD-2 (KD = 273.36 nm vs 16.07 μg/ml [LPS]) conformation with LPS at an overlapping three-dimensional space while F-ProTα is hinged to the TLR4 scaffold by one-amino acid shift-Mosoian domain (aa-51 - 90). Comparatively, F-ProTα better stabilizes MD-2 metastable states transition and mediates higher TLR4/MD-2 interaction than LPS. ProTα via its C-terminal peptide (aa 91 - 111) exhibits in vitro biophysical contact with TLR4/MD-2 complex conformation recognized by LPS at overlapping LPS-binding positions.

  20. Complexity analysis of spontaneous brain activity in mood disorders: A magnetoencephalography study of bipolar disorder and major depression.

    PubMed

    Fernández, Alberto; Al-Timemy, Ali H; Ferre, Francisco; Rubio, Gabriel; Escudero, Javier

    2018-04-26

    The lack of a biomarker for Bipolar Disorder (BD) causes problems in the differential diagnosis with other mood disorders such as major depression (MD), and misdiagnosis frequently occurs. Bearing this in mind, we investigated non-linear magnetoencephalography (MEG) patterns in BD and MD. Lempel-Ziv Complexity (LZC) was used to evaluate the resting-state MEG activity in a cross-sectional sample of 60 subjects, including 20 patients with MD, 16 patients with BD type-I, and 24 control (CON) subjects. Particular attention was paid to the role of age. The results were aggregated by scalp region. Overall, MD patients showed significantly higher LZC scores than BD patients and CONs. Linear regression analyses demonstrated distinct tendencies of complexity progression as a function of age, with BD patients showing a divergent tendency as compared with MD and CON groups. Logistic regressions confirmed such distinct relationship with age, which allowed the classification of diagnostic groups. The patterns of neural complexity in BD and MD showed not only quantitative differences in their non-linear MEG characteristics but also divergent trajectories of progression as a function of age. Moreover, neural complexity patterns in BD patients resembled those previously observed in schizophrenia, thus supporting preceding evidence of common neuropathological processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  2. Development of Analytical Systems for Evaluation of US Reconstitution and Recovery Programs.

    DTIC Science & Technology

    1980-09-01

    Program Evaluation Economic M4odels US Economy ’MABB"ACT (Cort~at m~ Mae @0b neamv md kavily by block numbr) ~This study identifies economic models and...planning tasks Are more complex and difficult than those faced by planners In the post 󈧬s era. Also, because of those same factors and that the 1980s...comparative analysis outlined in the second study , while also concerned with the accomplishment of societal objectives, is somewhat different. The approach

  3. Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.).

    PubMed

    Longhi, Sara; Moretto, Marco; Viola, Roberto; Velasco, Riccardo; Costa, Fabrizio

    2012-02-01

    Fruit ripening is a complex physiological process in plants whereby cell wall programmed changes occur mainly to promote seed dispersal. Cell wall modification also directly regulates the textural properties, a fundamental aspect of fruit quality. In this study, two full-sib populations of apple, with 'Fuji' as the common maternal parent, crossed with 'Delearly' and 'Pink Lady', were used to understand the control of fruit texture by QTL mapping and in silico gene mining. Texture was dissected with a novel high resolution phenomics strategy, simultaneously profiling both mechanical and acoustic fruit texture components. In 'Fuji × Delearly' nine linkage groups were associated with QTLs accounting from 15.6% to 49% of the total variance, and a highly significant QTL cluster for both textural components was mapped on chromosome 10 and co-located with Md-PG1, a polygalacturonase gene that, in apple, is known to be involved in cell wall metabolism processes. In addition, other candidate genes related to Md-NOR and Md-RIN transcription factors, Md-Pel (pectate lyase), and Md-ACS1 were mapped within statistical intervals. In 'Fuji × Pink Lady', a smaller set of linkage groups associated with the QTLs identified for fruit texture (15.9-34.6% variance) was observed. The analysis of the phenotypic variance over a two-dimensional PCA plot highlighted a transgressive segregation for this progeny, revealing two QTL sets distinctively related to both mechanical and acoustic texture components. The mining of the apple genome allowed the discovery of the gene inventory underlying each QTL, and functional profile assessment unravelled specific gene expression patterns of these candidate genes.

  4. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Treesearch

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  5. Cross-sectional-derived determinants of satisfaction with physician-scientist training among Canadian MD/PhD graduates.

    PubMed

    Twa, David D W; Skinnider, Michael A; Squair, Jordan W; Lukac, Christine D

    2017-01-01

    Although MD/PhD programs require considerable commitment on behalf of students and learning institutions, they serve as an integral means of training future physician-scientists; individuals who engage in translational medicine. As attrition from these programs has longstanding effects on the community of translational medicine and comes at substantial cost to MD/PhD programs, we aimed to identify determinants that were associated with satisfaction among MD/PhD graduates, a feature that might inform on limiting program attrition. Anonymized data from a national survey of 139 Canadian MD/PhD alumni was analyzed. Factor analysis was conducted to evaluate the reliability of three questions that measured satisfaction and logistic regression was used to assess the association of outcomes with 17 independent determinants. Eighty-one percent of graduates were satisfied with MD/PhD training. Factor analysis confirmed the reliability of the questions measuring satisfaction. Determinants of self-reported satisfaction with physician-scientist training included co-authorship of more than six manuscripts during MD/PhD training. Additionally, protected research time at the place of current appointment was strongly associated with agreement that MD/PhD training had helped career progression. Demographic variables were not associated with any satisfaction indicator. Taken together, the majority of Canadian MD/PhD graduates are satisfied with their physician-scientist training. Project collaboration leading to co-authorships and protected research time were strongly associated with training satisfaction among graduates. If the value of collaboration can be realized among current and future physician-scientist trainees who are dissatisfied with their training, this might ultimately reduce program attrition.

  6. The Convergence of Business and Medicine: A Study of MD/MBA Programs in the United States

    ERIC Educational Resources Information Center

    Keogh, Timothy J.; Martin, William Marty

    2011-01-01

    The purpose of this paper is to identify the convergence of business and medical education and describe the curricula of MD/MBA (Medical Doctor/Master of Business Administration) programs in the US. The focus of this study is to provide a guide to dual MD/MBA programs for physicians, aspiring physicians, policy makers and healthcare organizations.…

  7. Genome-wide identification of allele-specific expression (ASE) in response to Marek's disease virus infection using next generation sequencing.

    PubMed

    Maceachern, Sean; Muir, William M; Crosby, Seth; Cheng, Hans H

    2011-06-03

    Marek's disease (MD), a T cell lymphoma induced by the highly oncogenic α-herpesvirus Marek's disease virus (MDV), is the main chronic infectious disease concern threatening the poultry industry. Enhancing genetic resistance to MD in commercial poultry is an attractive method to augment MD vaccines, which is currently the control method of choice. In order to optimally implement this control strategy through marker-assisted selection (MAS) and to gain biological information, it is necessary to identify specific genes that influence MD incidence. A genome-wide screen for allele-specific expression (ASE) in response to MDV infection was conducted. The highly inbred ADOL chicken lines 6 (MD resistant) and 7 (MD susceptible) were inter-mated in reciprocal crosses and half of the progeny challenged with MDV. Splenic RNA pools at a single time after infection for each treatment group point were generated, sequenced using a next generation sequencer, then analyzed for allele-specific expression (ASE). To validate and extend the results, Illumina GoldenGate assays for selected cSNPs were developed and used on all RNA samples from all 6 time points following MDV challenge. RNA sequencing resulted in 11-13+ million mappable reads per treatment group, 1.7+ Gb total sequence, and 22,655 high-confidence cSNPs. Analysis of these cSNPs revealed that 5360 cSNPs in 3773 genes exhibited statistically significant allelic imbalance. Of the 1536 GoldenGate assays, 1465 were successfully scored with all but 19 exhibiting evidence for allelic imbalance. ASE is an efficient method to identify potentially all or most of the genes influencing this complex trait. The identified cSNPs can be further evaluated in resource populations to determine their allelic direction and size of effect on genetic resistance to MD as well as being directly implemented in genomic selection programs. The described method, although demonstrated in inbred chicken lines, is applicable to all traits in any diploid species, and should prove to be a simple method to identify the majority of genes controlling any complex trait.

  8. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    PubMed Central

    2014-01-01

    Background Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes. PMID:25077693

  9. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories.

    PubMed

    Abdel-Azeim, Safwat; Chermak, Edrisse; Vangone, Anna; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  10. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation

    ERIC Educational Resources Information Center

    Tai, Robert H.; Kong, Xiaoqing; Mitchell, Claire E.; Dabney, Katherine P.; Read, Daniel M.; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative…

  11. Characteristics and outcomes of Canadian MD/PhD program graduates: a cross-sectional survey

    PubMed Central

    Skinnider, Michael A.; Squair, Jordan W.; Twa, David D.W.; Ji, Jennifer X.; Kuzyk, Alexandra; Wang, Xin; Steadman, Patrick E.; Zaslavsky, Kirill; Dey, Ayan K.; Eisenberg, Mark J.; Gagné, Ève-Reine; HayGlass, Kent T.; Lewis, James F.; Margetts, Peter J.; Underhill, D. Alan; Rosenblum, Norman D.; Raymond, Lynn A.

    2017-01-01

    Background: Combined MD/PhD programs provide a structured path for physician-scientist training, but assessment of their success within Canada is limited by a lack of quantitative data. We collected outcomes data for graduates of Canadian MD/PhD programs. Methods: We developed and implemented a Web-based survey consisting of 41 questions designed to collect outcomes data for Canadian MD/PhD program alumni from 8 Canadian universities who had graduated before September 2015. Respondents were categorized into 2 groups according to whether they had or had not completed all training. Results: Of the 186 eligible alumni of MD/PhD programs, 139 (74.7%) completed the survey. A total of 136/138 respondents (98.6%) had completed or were currently completing residency training, and 66/80 (82%) had completed at least 1 postgraduate fellowship. Most (58 [83%]) of the 70 respondents who had completed all training were appointed as faculty at academic institutions, and 37 (53%) had been principal investigators on at least 1 recent funded project. Among the 58 respondents appointed at academic institutions, 44/57 (77%) dedicated at least 20% of their time to research, and 25/57 (44%) dedicated at least 50% to research. During their combined degree, 102/136 respondents (75.0%) published 3 or more first-author papers, and 133/136 (97.8%) matched with their first choice of specialty. The median length of physician-scientist training was 13.5 years. Most respondents graduated with debt despite having been supported by Canadian Institutes of Health Research MD/PhD studentships. Interpretation: Most Canadian MD/PhD program alumni pursued careers consistent with their physician-scientist training, which indicates that these programs are meeting their primary objective. Nevertheless, our findings highlight that a minority of these positions are research intensive; this finding warrants further study. Our data provide a baseline for future monitoring of the output of Canadian MD/PhD programs. PMID:28442493

  12. Designing a Successful Acupuncture Treatment Program for Gulf War Illness

    DTIC Science & Technology

    2016-10-01

    Deployment psychology . Washington, DC: American Psychological Association. 2 Saab PG, et al. ENRICHD Investigators.(2009). The impact of cognitive ...1) Joe Chang Lic Ac, an acupuncturist with experience working in military settings; (2) Marc Goldstein MD, a physician at the VA in Boston MA who...War Illness (GWI) is a complex illness with multiple symptoms, including fatigue, sleep and mood disturbances, cognitive dysfunction and

  13. The Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity.

    PubMed

    Ortiz-Suarez, Maite L; Bond, Peter J

    2016-01-05

    MD-1 is a member of the MD-2-related lipid-recognition (ML) family, and associates with RP105, a cell-surface protein that resembles Toll-like receptor 4 (TLR4). The RP105⋅MD-1 complex has been proposed to play a role in fine-tuning the innate immune response to endotoxin such as bacterial lipopolysaccharide (LPS) via TLR4⋅MD-2, but controversy surrounds its mechanism. We have used atomically detailed simulations to reveal the structural basis for ligand binding and consequent functional dynamics of MD-1 and the RP105 complex. We rationalize reports of endogenous phospholipid binding, by showing that they prevent collapse of the malleable MD-1 fold, before refining crystallographic models and uncovering likely binding modes for LPS analogs. Subsequent binding affinity calculations reveal that endotoxin specificity arises from the entropic cost of expanding the MD-1 cavity to accommodate bulky lipid tails, and support the role of MD-1 as a "sink" that sequesters endotoxin from TLR4 and stabilizes RP105/TLR4 interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers.

    PubMed

    Kwan, Jennifer M; Daye, Dania; Schmidt, Mary Lou; Conlon, Claudia Morrissey; Kim, Hajwa; Gaonkar, Bilwaj; Payne, Aimee S; Riddle, Megan; Madera, Sharline; Adami, Alexander J; Winter, Kate Quinn

    2017-07-11

    Prior studies have described the career paths of physician-scientist candidates after graduation, but the factors that influence career choices at the candidate stage remain unclear. Additionally, previous work has focused on MD/PhDs, despite many physician-scientists being MDs. This study sought to identify career sector intentions, important factors in career selection, and experienced and predicted obstacles to career success that influence the career choices of MD candidates, MD candidates with research-intense career intentions (MD-RI), and MD/PhD candidates. A 70-question survey was administered to students at 5 academic medical centers with Medical Scientist Training Programs (MSTPs) and Clinical and Translational Science Awards (CTSA) from the NIH. Data were analyzed using bivariate or multivariate analyses. More MD/PhD and MD-RI candidates anticipated or had experienced obstacles related to balancing academic and family responsibilities and to balancing clinical, research, and education responsibilities, whereas more MD candidates indicated experienced and predicted obstacles related to loan repayment. MD/PhD candidates expressed higher interest in basic and translational research compared to MD-RI candidates, who indicated more interest in clinical research. Overall, MD-RI candidates displayed a profile distinct from both MD/PhD and MD candidates. MD/PhD and MD-RI candidates experience obstacles that influence their intentions to pursue academic medical careers from the earliest training stage, obstacles which differ from those of their MD peers. The differences between the aspirations of and challenges facing MD, MD-RI and MD/PhD candidates present opportunities for training programs to target curricula and support services to ensure the career development of successful physician-scientists.

  15. Internet-based peer support for Ménière's disease: a summary of web-based data collection, impact evaluation, and user evaluation.

    PubMed

    Pyykkő, Ilmari; Manchaiah, Vinaya; Levo, Hilla; Kentala, Erna; Juhola, Martti

    2017-07-01

    This paper presents a summary of web-based data collection, impact evaluation, and user evaluations of an Internet-based peer support program for Ménière's disease (MD). The program is written in html-form. The data are stored in a MySQL database and uses machine learning in the diagnosis of MD. The program works interactively with the user and assesses the participant's disorder profile in various dimensions (i.e., symptoms, impact, personal traits, and positive attitude). The inference engine uses a database to compare the impact with 50 referents, and provides regular feedback to the user. Data were analysed using descriptive statistics and regression analysis. The impact evaluation was based on 740 cases and the user evaluation on a sample of 75 cases of MD respectively. The web-based system was useful in data collection and impact evaluation of people with MD. Among those with a recent onset of MD, 78% rated the program as useful or very useful, whereas those with chronic MD rated the program 55%. We suggest that a web-based data collection and impact evaluation for peer support can be helpful while formulating the rehabilitation goals of building the self-confidence needed for coping and increasing social participation.

  16. JGromacs: a Java package for analyzing protein simulations.

    PubMed

    Münz, Márton; Biggin, Philip C

    2012-01-23

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .

  17. JGromacs: A Java Package for Analyzing Protein Simulations

    PubMed Central

    2011-01-01

    In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855

  18. A Novel Hydrogel-Based Biosampling Approach

    DTIC Science & Technology

    2016-03-01

    MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Edgewood Chemical Biological Center Seedling Program, APG, MD 21010-5424 10. SPONSOR/MONITOR’S...Std. Z39.18 ii Blank   iii PREFACE The work described in this report was authorized under the U.S. Army Edgewood Chemical Biological...a complex area of intensive, ongoing research. After a biorelease event, sampling is at the core of all pre- and post- decontamination analyses

  19. Swiss national MD-PhD-program: an outcome analysis.

    PubMed

    Kuehnle, Katrin; Winkler, David T; Meier-Abt, Peter J

    2009-09-19

    This study aims at a first evaluation of the outcome of the Swiss national MD-PhD program during the last 16 years. One hundred and twenty six former and current students in the Swiss national MD-PhD program were surveyed via a Web-based questionnaire in September 2007. Twenty-four questions assessed information regarding participant demographics, information on the PhD thesis and publication activity, current positions and research activity, as well as participant's opinions, attitudes and career goals. Eighty questionnaires were received from 126 MD-PhD students and graduates (63.5% response rate). The responders consisted of present students (36%), former graduates (56%), and dropouts (8%). The percentage of women in the program was 23%, and the average duration of the program was 4.2 +/- 1.4 years. Research interests were predominantly in the fields of neuroscience, immunology, molecular biology and cancer research. A considerable portion of the MD-PhD graduates had an excellent publication record stemming from their PhD research work, and 89% were planning to continue a research-orientated career. Over 50% of those MD-PhD graduates completing their thesis before 2002 had already reached an assistant or full professor position at the time of the survey. Nearly all participants considered the MD-PhD training helpful to their career and high quality standards were assigned to the acquired practical and intellectual skills. However, criticism was expressed concerning the general mentoring and the career related mentoring. Moreover, general mentoring and career related mentoring were significantly less well perceived in research groups employing more than seven PhD students at the same time. The MD-PhD students and graduates surveyed were satisfied with their education and most of them continued a research-orientated career. Regarding the overall positive evaluation, this study supports the view that MD-PhD graduates are well qualified for a successful career in academic medicine.

  20. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    PubMed Central

    Krepl, Miroslav; Cléry, Antoine; Blatter, Markus; Allain, Frederic H.T.; Sponer, Jiri

    2016-01-01

    RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM–RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein–RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein–RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for ‘MD-adapted structure ensemble’ as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein–RNA complexes. PMID:27193998

  1. CoMD Implementation Suite in Emerging Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Riyaz; Reeve, Sam; Juallmes, Luc

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecular dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended tomore » support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.« less

  2. ForConX: A forcefield conversion tool based on XML.

    PubMed

    Lesch, Volker; Diddens, Diddo; Bernardes, Carlos E S; Golub, Benjamin; Dequidt, Alain; Zeindlhofer, Veronika; Sega, Marcello; Schröder, Christian

    2017-04-05

    The force field conversion from one MD program to another one is exhausting and error-prone. Although single conversion tools from one MD program to another exist not every combination and both directions of conversion are available for the favorite MD programs Amber, Charmm, Dl-Poly, Gromacs, and Lammps. We present here a general tool for the force field conversion on the basis of an XML document. The force field is converted to and from this XML structure facilitating the implementation of new MD programs for the conversion. Furthermore, the XML structure is human readable and can be manipulated before continuing the conversion. We report, as testcases, the conversions of topologies for acetonitrile, dimethylformamide, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate comprising also Urey-Bradley and Ryckaert-Bellemans potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?

    PubMed

    Šponer, Jiří; Krepl, Miroslav; Banáš, Pavel; Kührová, Petra; Zgarbová, Marie; Jurečka, Petr; Havrila, Marek; Otyepka, Michal

    2017-05-01

    We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  4. The Structure of Cognition: Attentional Episodes in Mind and Brain

    PubMed Central

    Duncan, John

    2013-01-01

    Cognition is organized in a structured series of attentional episodes, allowing complex problems to be addressed through solution of simpler subproblems. A “multiple-demand” (MD) system of frontal and parietal cortex is active in many different kinds of tasks, and using data from neuroimaging, electrophysiology, neuropsychology, and cognitive studies of intelligence, I propose a core role for MD regions in assembly of the attentional episode. Monkey and human data show dynamic neural coding of attended information across multiple MD regions, with rapid communication within and between regions. Neuropsychological and imaging data link MD function to fluid intelligence, explaining some but not all “executive” deficits after frontal lobe lesions. Cognitive studies link fluid intelligence to goal neglect, and the problem of dividing complex task requirements into focused parts. Like the innate releasing mechanism of ethology, I suggest that construction of the attentional episode provides a core organizational principle for complex, adaptive cognition. PMID:24094101

  5. Prostate Cancer Research Training in Health Disparities for Undergraduates (PCaRT)

    DTIC Science & Technology

    2010-03-01

    management Program Mentors Carlton Adams, M.D. LaMonica Stewart, Ph.D. Ben Ogunkua, M.D., Ph.D. Alphonse Pasipanodya, M.D. Jay Fowke, Ph.D., MPH...African-Americans Alphonse Pasipanodya, MD. (Primary Mentor) Flora A. M. Ukoli, MD., MPH. (Principal Investigator) Derrick Beech, M.D. (Co-PI...my goals is to be a successful black woman influencing and touching the lives of all those I come in contact with daily. Alphonse Pasipanodya

  6. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning

    NASA Astrophysics Data System (ADS)

    Paissoni, C.; Spiliotopoulos, D.; Musco, G.; Spitaleri, A.

    2015-01-01

    GMXPBSA 2.1 is a user-friendly suite of Bash/Perl scripts for streamlining MM/PBSA calculations on structural ensembles derived from GROMACS trajectories, to automatically calculate binding free energies for protein-protein or ligand-protein complexes [R.T. Bradshaw et al., Protein Eng. Des. Sel. 24 (2011) 197-207]. GMXPBSA 2.1 is flexible and can easily be customized to specific needs and it is an improvement of the previous GMXPBSA 2.0 [C. Paissoni et al., Comput. Phys. Commun. (2014), 185, 2920-2929]. Additionally, it performs computational alanine scanning (CAS) to study the effects of ligand and/or receptor alanine mutations on the free energy of binding. Calculations require only for protein-protein or protein-ligand MD simulations. GMXPBSA 2.1 performs different comparative analyses, including a posteriori generation of alanine mutants of the wild-type complex, calculation of the binding free energy values of the mutant complexes and comparison of the results with the wild-type system. Moreover, it compares the binding free energy of different complex trajectories, allowing the study of the effects of non-alanine mutations, post-translational modifications or unnatural amino acids on the binding free energy of the system under investigation. Finally, it can calculate and rank relative affinity to the same receptor utilizing MD simulations of proteins in complex with different ligands. In order to dissect the different MM/PBSA energy contributions, including molecular mechanic (MM), electrostatic contribution to solvation (PB) and nonpolar contribution to solvation (SA), the tool combines two freely available programs: the MD simulations software GROMACS [S. Pronk et al., Bioinformatics 29 (2013) 845-854] and the Poisson-Boltzmann equation solver APBS [N.A. Baker et al., Proc. Natl. Acad. Sci. U.S.A 98 (2001) 10037-10041]. All the calculations can be performed in single or distributed automatic fashion on a cluster facility in order to increase the calculation by dividing frames across the available processors. This new version with respect to our previously published GMXPBSA 2.0 fixes some problem and allows additional kind of calculations, such as CAS on single protein in order to individuate the hot-spots, more custom options to perform APBS calculations, improvements of speed calculation of APBS (precF set to 0), possibility to work with multichain systems (see Summary of revisions for more details). The program is freely available under the GPL license.

  7. Clinical Investigation Program Annual Progress Report

    DTIC Science & Technology

    1989-10-01

    Investigators: Linda K. Kullama, Ph.D., Dr. Kenneth T. Nakamura,MD; Dr. Venkataraman Balaraman, MD, Wayne M. Ichimura, Biomedical Engineer. Department/Section...Investigators: John R. Claybaugh, Ph.D.; Kenneth T. Nakamura, MD; Dr. Venkataraman Balaraman, M.D. Department/Section: Clinical Investigation/Physiology Key...Pigs and Rats Principal ’Investigator: Linda K. Kullama, Ph.D.; John R. Claybaugh, Ph.D. Associate Investigators: Dr. Venkataraman Balaraman, M.D.; Dr

  8. Clinical Investigation Program, Reports Control Symbol MED-300(R1), Fiscal Year 1988

    DTIC Science & Technology

    1988-10-01

    Dr. Venkataraman Balaraman, M.D. Department/Section: Clinical Investigation Key Words: arginine vasopressin (AVP); vascular smooth muscle responses...Kullama, Ph.D. Associate Investigators: Dr. Venkataraman Balaraman, M.D.; Dr. Kenneth T. Nakamura, M.D.; John R. Claybaugh, Ph.D. Department/Section...Harrison Hassell, MC Associate Investigators: John R. Claybaugh, Ph.D.; Arnold Siemsen, MD; Jon Streltzer, MD Department/Section: Medicine/ Nephrology

  9. Multi-scale strategies for dealing with moving contact lines

    NASA Astrophysics Data System (ADS)

    Smith, Edward R.; Theodorakis, Panagiotis; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Molecular dynamics (MD) has great potential to elucidate the dynamics of the moving contact line. As a more fundamental model, it can provide a priori results for fluid-liquid interfaces, surface tension, viscosity, phase change, and near wall stick-slip behaviour which typically show very good agreement to experimental results. However, modelling contact line motion combines all this complexity in a single problem. In this talk, MD simulations of the contact line are compared to the experimental results obtained from studying the dynamics of a sheared liquid bridge. The static contact angles are correctly matched to the experimental data for a range of different electro-wetting results. The moving contact line results are then compared for each of these electro-wetting values. Despite qualitative agreement, there are notable differences between the simulation and experiments. Many MD simulation have studied contact lines, and the sheared liquid bridge, so it is of interest to review the limitations of this setup in light of this discrepancy. A number of factors are discussed, including the inter-molecular interaction model, molecular-scale surface roughness, model of electro-wetting and, perhaps most importantly, the limited system sizes possible using MD simulation. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  10. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  11. The Caenorhabditis elegans DAF-12 nuclear receptor: structure, dynamics, and interaction with ligands.

    PubMed

    Alvarez, Lautaro D; Mañez, Pau Arroyo; Estrin, Darío A; Burton, Gerardo

    2012-07-01

    A structure for the ligand binding domain (LBD) of the DAF-12 receptor from Caenorhabditis elegans was obtained from the X-ray crystal structure of the receptor LBD from Strongyloides stercoralis bound to (25R)-Δ(7)-dafachronic acid (DA) (pdb:3GYU). The model was constructed in the presence of the ligand using a combination of Modeller, Autodock, and molecular dynamics (MD) programs, and then its dynamical behavior was studied by MD. A strong ligand binding mode (LBM) was found, with the three arginines in the ligand binding pocket (LBP) contacting the C-26 carboxylate group of the DA. The quality of the ceDAF-12 model was then evaluated by constructing several ligand systems for which the experimental activity is known. Thus, the dynamical behavior of the ceDAF-12 complex with the more active (25S)-Δ(7)-DA showed two distinct binding modes, one of them being energetically more favorable compared with the 25R isomer. Then the effect of the Arg564Cys and Arg598Met mutations on the (25R)-Δ(7)-DA binding was analyzed. The MD simulations showed that in the first case the complex was unstable, consistent with the lack of transactivation activity of (25R)-Δ(7)-DA in this mutant. Instead, in the case of the Arg598Met mutant, known to produce a partial loss of activity, our model predicted smaller effects on the LBM with a more stable MD trajectory. The model also showed that removal of the C-25 methyl does not impede the simultaneous strong interaction of the carboxylate with the three arginines, predicting that 27-nor-DAs are putative ceDAF-12 ligands. Copyright © 2012 Wiley Periodicals, Inc.

  12. Proposal and Testing of a Methodology for Evaluating an Occupational Health Program at a U.S. Army Installation

    DTIC Science & Technology

    1983-08-01

    the literature for ten of the thirteen peptic ulcer diagnostic criteria most often cited in predeveloped listings compiled by various professional...Dershewitz, M.D., Richard A. Gross, M.D., and John W. Williamson, M.D., "Validating Audit Criteria: An Analytic Approach Illustrated by Peptic Ulcer ...A., M.D.; Gross, Richard A., M.D.; and Williamson, John W., M.D., "Validating Audit Criteria: An Analytic Approach Illustrated by Peptic Ulcer Disease

  13. C-1311 (Symadex), a potential anti-cancer drug, intercalates into DNA between A and G moieties. NMR-derived and MD-refined stereostructure of the d(GAGGCCTC)2:C-1311 complex

    NASA Astrophysics Data System (ADS)

    Laskowski, Tomasz; Borzyszkowska, Julia; Grynda, Jakub; Mazerski, Jan

    2017-08-01

    Imidazoacridinone C-1311 (Symadex®) is an antitumor agent which has been recommended for Phase II clinical trials a few years ago. Previously, it was shown experimentally that during the initial stage of its action C-1311 forms stable intercalation complexes with DNA duplexes. Herein, a NMR-derived stereostructure of d(GAGGCCTC)2:C-1311 complex was reported. The ligand was found locating itself between A and G moieties, forming symmetrical DNA:drug 1:2 mol/mol complex. Intercalation site was located upon the DNA-ligand proton/proton dipolar couplings observed in the NOESY spectrum and the performed MD simulations. NMR-derived stereostructure was hence refined by restrained MD using distance restraints obtained from the NOESY data and the result was compared with MD-derived structure of the proposed complex, obtained from the calculations performed with distance restraints applied only for hydrogen bonds in the terminal GC base pairs. The results of both simulations were coherent. Basing on the observed C-1311's intercalation sites and on our previous results concerning the d(CGATCG)2:C-1311 complex, we stated that AG/GA sequences are the preferred binding sites of imidazoacridinone C-1311.

  14. Reaction mechanism of Ru(II) piano-stool complexes: umbrella sampling QM/MM MD study.

    PubMed

    Futera, Zdeněk; Burda, Jaroslav V

    2014-07-15

    Biologically relevant interactions of piano-stool ruthenium(II) complexes with ds-DNA are studied in this article by hybrid quantum mechanics-molecular mechanics (QM/MM) computational technique. The whole reaction mechanism is divided into three phases: (i) hydration of the [Ru(II) (η(6) -benzene)(en)Cl](+) complex, (ii) monoadduct formation between the resulting aqua-Ru(II) complex and N7 position of one of the guanines in the ds-DNA oligomer, and (iii) formation of the intrastrand Ru(II) bridge (cross-link) between two adjacent guanines. Free energy profiles of all the reactions are explored by QM/MM MD umbrella sampling approach where the Ru(II) complex and two guanines represent a quantum core, which is described by density functional theory methods. The combined QM/MM scheme is realized by our own software, which was developed to couple several quantum chemical programs (in this study Gaussian 09) and Amber 11 package. Calculated free energy barriers of the both ruthenium hydration and Ru(II)-N7(G) DNA binding process are in good agreement with experimentally measured rate constants. Then, this method was used to study the possibility of cross-link formation. One feasible pathway leading to Ru(II) guanine-guanine cross-link with synchronous releasing of the benzene ligand is predicted. The cross-linking is an exergonic process with the energy barrier lower than for the monoadduct reaction of Ru(II) complex with ds-DNA. Copyright © 2014 Wiley Periodicals, Inc.

  15. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses

    PubMed Central

    Mattis, Daiva M.; Chervin, Adam; Ranoa, Diana; Kelley, Stacy; Tapping, Richard; Kranz, David M.

    2015-01-01

    Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: 1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, 2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, 3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and 4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein. PMID:26320630

  16. Complex disruption effect of natural polyphenols on Bcl-2-Bax: molecular dynamics simulation and essential dynamics study.

    PubMed

    Verma, Sharad; Singh, Amit; Mishra, Abha

    2015-01-01

    Apoptosis (programmed cell death) is a process by which cells died after completing physiological function or after a severe genetic damage. Apoptosis is mainly regulated by the Bcl-2 family of proteins. Anti apoptotic protein Bcl-2 prevents the Bax activation/oligomerization to form heterodimer which is responsible for release of the cytochrome c from mitochondria to the cytosol in response to death signal. Quercetin and taxifolin (natural polyphenols) efficiently bound to hydrophobic groove of Bcl-2 and altered the structure by inducing conformational changes. Taxifolin was found more efficient when compared to quercetin in terms of interaction energy and collapse of hydrophobic groove. Taxifolin and quercetin were found to dissociate the Bcl-2-Bax complex during 12 ns MD simulation. The effect of taxifolin and quercetin was, further validated by the MD simulation of ligand-unbound Bcl-2-Bax which showed stability during the simulation. Obatoclax (an inhibitor of Bcl-2) had no significant dissociation effect on Bcl-2-Bax during simulation which favored the previous experimental results and disruption effect of taxifolin and quercetin.

  17. Evaluating Thermodynamic Integration Performance of the New Amber Molecular Dynamics Package and Assess Potential Halogen Bonds of Enoyl-ACP Reductase (FabI) Benzimidazole Inhibitors

    PubMed Central

    Su, Pin-Chih; Johnson, Michael E.

    2015-01-01

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the para-halogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. PMID:26666582

  18. Evaluating thermodynamic integration performance of the new amber molecular dynamics package and assess potential halogen bonds of enoyl-ACP reductase (FabI) benzimidazole inhibitors.

    PubMed

    Su, Pin-Chih; Johnson, Michael E

    2016-04-05

    Thermodynamic integration (TI) can provide accurate binding free energy insights in a lead optimization program, but its high computational expense has limited its usage. In the effort of developing an efficient and accurate TI protocol for FabI inhibitors lead optimization program, we carefully compared TI with different Amber molecular dynamics (MD) engines (sander and pmemd), MD simulation lengths, the number of intermediate states and transformation steps, and the Lennard-Jones and Coulomb Softcore potentials parameters in the one-step TI, using eleven benzimidazole inhibitors in complex with Francisella tularensis enoyl acyl reductase (FtFabI). To our knowledge, this is the first study to extensively test the new AMBER MD engine, pmemd, on TI and compare the parameters of the Softcore potentials in the one-step TI in a protein-ligand binding system. The best performing model, the one-step pmemd TI, using 6 intermediate states and 1 ns MD simulations, provides better agreement with experimental results (RMSD = 0.52 kcal/mol) than the best performing implicit solvent method, QM/MM-GBSA from our previous study (RMSD = 3.00 kcal/mol), while maintaining similar efficiency. Briefly, we show the optimized TI protocol to be highly accurate and affordable for the FtFabI system. This approach can be implemented in a larger scale benzimidazole scaffold lead optimization against FtFabI. Lastly, the TI results here also provide structure-activity relationship insights, and suggest the parahalogen in benzimidazole compounds might form a weak halogen bond with FabI, which is a well-known halogen bond favoring enzyme. © 2015 Wiley Periodicals, Inc.

  19. Validity of the Medical College Admission Test for Predicting MD-PhD Student Outcomes

    ERIC Educational Resources Information Center

    Bills, James L.; VanHouten, Jacob; Grundy, Michelle M.; Chalkley, Roger; Dermody, Terence S.

    2016-01-01

    The Medical College Admission Test (MCAT) is a quantitative metric used by MD and MD-PhD programs to evaluate applicants for admission. This study assessed the validity of the MCAT in predicting training performance measures and career outcomes for MD-PhD students at a single institution. The study population consisted of 153 graduates of the…

  20. All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems.

    PubMed

    Otto, Daniel P; de Villiers, Melgardt M

    2018-06-13

    Improvement of problematic dissolution and solubility properties of a model drug, furosemide, was investigated for poly(amidoamine) (PAMAM) dendrimer complexes of the drug. Full and half generation dendrimers with amino and ester terminals respectively, were studied. In vitro release performance of these complexes was investigated at drug loads ranging 5-60% using simulated gastric fluids. Full generation dendrimers accommodated higher drug loads, outperformed half-generation complexes, and free drug. Pharmacokinetic studies in rats indicated that the dendrimer complexes markedly improved in the bioavailability of the drug compared to the unformulated drug. The G3.0-PAMAM dendrimer complex showed a two-fold increase in C max and a 1.75-fold increase in AUC over the free drug. Additionally, T max was shortened from approximately 25 to 20 min. One of the first all-atomistic molecular dynamics (AA-MD) simulation studies was performed to evaluate low-generation dendrimer-drug complexes as well as its pharmacokinetic performance. AA-MD provided insight into the intermolecular interactions that take place between the dendrimer and drug. It is suggested that the dendrimer not only encapsulates the drug, but can also orientate the drug in stabilized dispersion to prevent drug clustering which could impact release and bioavailability negatively. AA-MD can be a useful tool to develop dendrimer-based drug delivery systems. Copyright © 2018. Published by Elsevier B.V.

  1. The Canadian clinician-scientist training program must be reinstated.

    PubMed

    Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X

    2015-11-03

    Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.

  2. The scope and variety of combined baccalaureate-MD programs in the United States.

    PubMed

    Eaglen, Robert H; Arnold, Louise; Girotti, Jorge A; Cosgrove, Ellen M; Green, Marianne M; Kollisch, Donald O; McBeth, Dani L; Penn, Mark A; Tracy, Sarah W

    2012-11-01

    The landscape of combined baccalaureate-MD programs has changed substantially in the last two decades but has not been documented in detail. The authors review the current state of these programs and discuss opportunities for future study of their evolving role and potential impact.In 2011, using a definition of baccalaureate-MD program built on prior research, the authors reviewed Association of American Medical Colleges sources and medical school Web sites to identify and characterize 81 active programs. In addition, they surveyed the 57 medical schools offering those programs; 31 schools with 39 programs responded. The resulting database inventories the number and distribution of programs; institutional affiliations; missions or goals; length; size; admissions criteria; curricula; and retention requirements.Since the inception of combined programs in 1961, their number and curricular length have increased. Pressures that spurred earlier programs remain evident in the goals of today's programs: attract talented high school or early college students, especially from diverse backgrounds; prepare physicians to meet societal needs; and offer an enriched premedical environment. Baccalaureate educational activities achieve program goals through special courses, medical experiences, community service, and learning communities tailored to students' needs. Admission and retention criteria are comparable to those of traditional medical schools.Combined baccalaureate-MD programs have evolved along several paths during the last half century and have enriched the baccalaureate experiences of medical students. Shifting expectations for the selection and education of future physicians warrant focused research on these programs to document their effectiveness in addressing those expectations.

  3. The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules.

    PubMed

    Luginbühl, P; Güntert, P; Billeter, M; Wüthrich, K

    1996-09-01

    A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with different force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints.

  4. Characterization and Expression Pattern Analysis of the T-Complex Protein-1 Zeta Subunit in Musca domestica L (Diptera).

    PubMed

    Zhao, Xuejun; Xiu, Jiangfan; Li, Yan; Ma, Huiling; Wu, Jianwei; Wang, Bo; Guo, Guo

    2017-07-01

    Chaperonins, belonging to the T-complex protein-1 (TCP-1) family, assist in the correct folding of nascent and misfolded proteins. It is well-known that in mammals, the zeta subunit of the TCP-1 complex (TCP-1ζ) plays a vital role in the folding and assembly of cytoskeleta proteins. This study reported for the first time the cloning, characterization and expression pattern analysis of the TCP-1ζ from Musca domestica, which was named as MdTCP-1ζ. The MdTCP-1ζ cDNA is 1,803 bp long with a 1,596 bp open reading frame that encodes a protein with 531 bp amino acids. The analysis of the transcriptional profile of MdTCP-1ζ using qRT-PCR revealed relatively high expression in the salivary glands and trachea at the tissues while among the developmental stages. The highest expression was observed only in the eggs suggesting that the MdTCP-1ζ may play a role in embryonic development. The expression of MdTCP-1ζ was also significantly induced after exposure to short-term heat shock and infection by Escherichia coli, Staphylococcus aureus, or Candida albicans. This suggested that MdTCP-1ζ may take part in the immune responses of housefly and perhaps contribute to the protection against cellular injury. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  5. An eHealth program versus a standard care supervised health program and associated health outcomes in individuals with mobility disability: study protocol for a randomized controlled trial.

    PubMed

    Berglind, Daniel; Nyberg, Gisela; Willmer, Mikaela; Persson, Margareta; Wells, Michael; Forsell, Yvonne

    2018-04-27

    Young adults with mobility disability (MD) are less likely to engage in regular physical activity (PA) compared with their able-bodied peers and inactive adults with a MD are more likely to report one or more chronic diseases compared to those who are physically active. Despite the vast amount of research published in the field of PA interventions over the past decades, little attention has been focused on interventions aiming to increase PA among individuals with MD. Thus, we propose to compare the effects of an eHealth program compared to a usual care supervised health program on levels of PA and other health behaviors. The current intervention will use a randomized controlled trial (RCT) design with two treatment groups (an eHealth program and a usual care supervised health program) in young adults with newly acquired MD. In total, 110 young adults (aged 18-40 years) with a MD, acquired within the past 3 years, will be recruited to participate in a 12-week intervention. The primary study outcome is accelerometer-measured time spent in moderate to vigorous PA. Secondary outcomes includes health-related quality of life, depression, stress, fitness, body composition, diet, musculoskeletal pain, motivation to exercise and work ability. There is a lack of RCTs investigating effective ways to increase levels of PA in young adults with MD. Increased levels of PA among this physically inactive population have the potential to substantially improve health-related outcomes, possibly more so than in the general population. The trial will put strong emphasis on optimizing exercise adherence and investigating feasibility in the two treatment programs. The Ethical Review Board (EPN) at Karolinska Institutet has approved the study (2017/1206-31/1). International Standard Randomised Controlled Trial Number (ISRCTN), reference number ISRCTN22387524 . Prospectively registered February 4, 2018.

  6. Preparing MD-PhD students for clinical rotations: navigating the interface between PhD and MD training.

    PubMed

    Goldberg, Charles; Insel, Paul A

    2013-06-01

    Many aspects of MD-PhD training are not optimally designed to prepare students for their future roles as translational clinician-scientists. The transition between PhD research efforts and clinical rotations is one hurdle that must be overcome. MD-PhD students have deficits in clinical skills compared with those of their MD-only colleagues at the time of this transition. Reimmersion programs (RPs) targeted to MD-PhD students have the potential to help them navigate this transition.The authors draw on their experience creating and implementing an RP that incorporates multiple types of activities (clinical exam review, objective structured clinical examination, and supervised practice in patient care settings) designed to enhance the participants' skills and readiness for clinical efforts. On the basis of this experience, they note that MD-PhD students' time away from the clinical environment negatively affects their clinical skills, causing them to feel underprepared for clinical rotations. The authors argue that participation in an RP can help students feel more comfortable speaking with and examining patients and decrease their anxiety regarding clinical encounters. The authors propose that RPs can have positive outcomes for improving the transition from PhD to clinical MD training in dual-degree programs. Identifying and addressing this and other transitions need to be considered to improve the educational experience of MD-PhD students.

  7. Marek's disease in backyard chickens, a study of pathological findings and viral loads in tumorous and non-tumorous birds

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease (MD) is a major cause of mortality in backyard chickens. The diagnosis of MD is complex, however, and knowledge on Marek’s disease virus (MDV) in spontaneous field cases such as in backyard chickens is largely unknown. Forty backyard chickens with presumptive MD diagnosis based on hi...

  8. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  9. Effect of two Howard Hughes Medical Institute research training programs for medical students on the likelihood of pursuing research careers.

    PubMed

    Fang, Di; Meyer, Roger E

    2003-12-01

    To assess the effect of Howard Hughes Medical Institute's (HHMI) two one-year research training programs for medical students on the awardees' research careers. Awardees of the HHMI Cloister Program who graduated between 1987 and 1995 and awardees of the HHMI Medical Fellows Program who graduated between 1991 and 1995 were compared with unsuccessful applicants to the programs and MD-PhD students who graduated during the same periods. Logistic regression analyses were conducted to assess research career outcomes while controlling for academic and demographic variables that could affect selection to the programs. Participation in both HHMI programs increased the likelihood of receiving National Institutes of Health postdoctoral support. Participation in the Cloister Program also increased the likelihood of receiving a faculty appointment with research responsibility at a medical school. In addition, awardees of the Medical Fellows Program were not significantly less likely than Medical Scientist Training Program (MSTP) and non-MSTP MD-PhD program participants to receive a National Institutes of Health postdoctoral award, and awardees of the Cloister Program were not significantly less likely than non-MSTP MD-PhD students to receive a faculty appointment with research responsibility. Women and underrepresented minority students were proportionally represented among awardees of the two HHMI programs whereas they were relatively underrepresented in MD-PhD programs. The one-year intensive research training supported by the HHMI training programs appears to provide an effective imprinting experience on medical students' research careers and to be an attractive strategy for training physician-scientists.

  10. LiGRO: a graphical user interface for protein-ligand molecular dynamics.

    PubMed

    Kagami, Luciano Porto; das Neves, Gustavo Machado; da Silva, Alan Wilter Sousa; Caceres, Rafael Andrade; Kawano, Daniel Fábio; Eifler-Lima, Vera Lucia

    2017-10-04

    To speed up the drug-discovery process, molecular dynamics (MD) calculations performed in GROMACS can be coupled to docking simulations for the post-screening analyses of large compound libraries. This requires generating the topology of the ligands in different software, some basic knowledge of Linux command lines, and a certain familiarity in handling the output files. LiGRO-the python-based graphical interface introduced here-was designed to overcome these protein-ligand parameterization challenges by allowing the graphical (non command line-based) control of GROMACS (MD and analysis), ACPYPE (ligand topology builder) and PLIP (protein-binder interactions monitor)-programs that can be used together to fully perform and analyze the outputs of complex MD simulations (including energy minimization and NVT/NPT equilibration). By allowing the calculation of linear interaction energies in a simple and quick fashion, LiGRO can be used in the drug-discovery pipeline to select compounds with a better protein-binding interaction profile. The design of LiGRO allows researchers to freely download and modify the software, with the source code being available under the terms of a GPLv3 license from http://www.ufrgs.br/lasomfarmacia/ligro/ .

  11. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model

    NASA Astrophysics Data System (ADS)

    Zhai, Yu; Li, Hui; Le Roy, Robert J.

    2018-04-01

    Spectroscopically accurate Potential Energy Surfaces (PESs) are fundamental for explaining and making predictions of the infrared and microwave spectra of van der Waals (vdW) complexes, and the model used for the potential energy function is critically important for providing accurate, robust and portable analytical PESs. The Morse/Long-Range (MLR) model has proved to be one of the most general, flexible and accurate one-dimensional (1D) model potentials, as it has physically meaningful parameters, is flexible, smooth and differentiable everywhere, to all orders and extrapolates sensibly at both long and short ranges. The Multi-Dimensional Morse/Long-Range (mdMLR) potential energy model described herein is based on that 1D MLR model, and has proved to be effective and accurate in the potentiology of various types of vdW complexes. In this paper, we review the current status of development of the mdMLR model and its application to vdW complexes. The future of the mdMLR model is also discussed. This review can serve as a tutorial for the construction of an mdMLR PES.

  12. Medical Device Plug-and-Play (MD PnP) Interoperability Standardization Program Development

    DTIC Science & Technology

    2009-08-01

    TATRC / DoD Sandy Weininger, FDA / CDRH ICE-PAC / Industry Tracy Rausch, DocBox Inc. Ken Fuchs, Draeger Medical Carl Wallroth, Draeger Medical...Systems (LSTAT) Paul Jones, FDA / CDRH Kamran Sayrafian-Pour, NIST © 2006-2009 a white paper from the MD PnP Program rev July 2009 Advancing

  13. MDTRA: a molecular dynamics trajectory analyzer with a graphical user interface.

    PubMed

    Popov, Alexander V; Vorobjev, Yury N; Zharkov, Dmitry O

    2013-02-05

    Most of existing software for analysis of molecular dynamics (MD) simulation results is based on command-line, script-guided processes that require the researchers to have an idea about programming language constructions used, often applied to the one and only product. Here, we describe an open-source cross-platform program, MD Trajectory Reader and Analyzer (MDTRA), that performs a large number of MD analysis tasks assisted with a graphical user interface. The program has been developed to facilitate the process of search and visualization of results. MDTRA can handle trajectories as sets of protein data bank files and presents tools and guidelines to convert some other trajectory formats into such sets. The parameters analyzed by MDTRA include interatomic distances, angles, dihedral angles, angles between planes, one-dimensional and two-dimensional root-mean-square deviation, solvent-accessible area, and so on. As an example of using the program, we describe the application of MDTRA to analyze the MD of formamidopyrimidine-DNA glycosylase, a DNA repair enzyme from Escherichia coli. Copyright © 2012 Wiley Periodicals, Inc.

  14. The Benefits and Costs of Accreditation of Undergraduate Medical Education Programs Leading to the MD Degree in the United States and Its Territories

    ERIC Educational Resources Information Center

    Muhtadi, Dalal J.

    2013-01-01

    This study assessed the value of accreditation of all 126 fully-accredited four-year undergraduate medical education programs leading to the MD degree in the US through two lenses, "perceived benefits and costs" from the perspective of the leadership of internal stakeholders of the aforementioned programs. The online survey was sent to a…

  15. Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp.

    PubMed

    Jiang, F; Jin, Q; Liang, L; Zhang, A B; Li, Z H

    2014-11-01

    Fruit flies in the family Tephritidae are the economically important pests that have many species complexes. DNA barcoding has gradually been verified as an effective tool for identifying species in a wide range of taxonomic groups, and there are several publications on rapid and accurate identification of fruit flies based on this technique; however, comprehensive analyses of large and new taxa for the effectiveness of DNA barcoding for fruit flies identification have been rare. In this study, we evaluated the COI barcode sequences for the diagnosis of fruit flies using 1426 sequences for 73 species of Bactrocera distributed worldwide. Tree-based [neighbour-joining (NJ)]; distance-based, such as Best Match (BM), Best Close Match (BCM) and Minimum Distance (MD); and character-based methods were used to evaluate the barcoding success rates obtained with maintaining the species complex in the data set, treating a species complex as a single taxon unit, and removing the species complex. Our results indicate that the average divergence between species was 14.04% (0.00-25.16%), whereas within a species this was 0.81% (0.00-9.71%); the existence of species complexes largely reduced the barcoding success for Tephritidae, for example relatively low success rates (74.4% based on BM and BCM and 84.8% based on MD) were obtained when the sequences from species complexes were included in the analysis, whereas significantly higher success rates were achieved if the species complexes were treated as a single taxon or removed from the data set - BM (98.9%), BCM (98.5%) and MD (97.5%), or BM (98.1%), BCM (97.4%) and MD (98.2%). © 2014 John Wiley & Sons Ltd.

  16. "Comets, Origins, and Life:” Promoting Interdisciplinary Science in Secondary and Middle Schools in the Washington, DC and Saint Louis, MO Metro Areas

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho; Gibb, E. L.; Brewer, G.; Novak, R.; Mandell, A. M.; Seaton, P.; Price, J.; Long, T.; Bahar, S.; Edwards, S. S.

    2010-10-01

    Developing a full-year program to support secondary and middle school science education is a key part of the "broader impact” component of NSF Grant AST- 0807939 (PI/Co-PI Bonev/Gibb). This program is realized at two stages: (1) a professional development course for teachers is offered during the summer; (2) during the subsequent academic year we collaborate with educators in lessons planning or curriculum development as demanded in their particular schools. We successfully offered the course “ Comets, Origins, and Life: Interdisciplinary Science in the Secondary Classroom ” (45 contact hours; 3 credits) in the summers of 2009 and 2010 at the Catholic University of America. This class demonstrates how a complex hypothesis - for the delivery of water and prebiotic organic matter to early Earth - is being tested by integrating astronomy, physics, chemistry, biology, and Earth and planetary science. Collaborations with participants from the 2009 class include curriculum development within the Earth Science program in Prince Georges county, MD and strengthening science in Washington DC public schools. Our next step is to offer our class in the Saint Louis, MO area. The main challenge in our work with educators is not to present them with "interesting information", but to fit what we offer within the very particular curriculum expectations of their school districts. These curriculum expectations often vary from district to district and sometimes from year to year. We gratefully acknowledge the support by the NSF, allowing to fully integrate our research area into education. We also gratefully acknowledge our collaborations with the Goddard Center for Astrobiology and the Howard B. Owens Science Center (both in MD) in developing our class curriculum. Educators interested in this program can contact Boncho Bonev (bonev@cua.edu; for the Washington DC and Baltimore, MD areas) and Erika Gibb (gibbe@umsl.edu; for the Saint Louis, MO area).

  17. A Combined Theoretical and Experimental Study for Silver Electroplating

    PubMed Central

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  18. Molecular dynamics simulations show altered secondary structure of clawless in binary complex with DNA providing insights into aristaless-clawless-DNA ternary complex formation.

    PubMed

    Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder

    2017-05-01

    Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.

  19. Dipole Models for UXO Discrimination at Live Sites - Pole Mountain

    DTIC Science & Technology

    2012-06-01

    48 ESTCP MR-201159 Pole Mountain Demonstration Report viii April 2012 Acronyms API Application Programming...working on transitioning our inversion algorithms to an API that will be generally accessible. 8 3. PERFORMANCE OBJECTIVES The performance...2098 35 0 0 Frag (light) 6 MD PM-2098 35 0 0 Frag (light) 4 MD PM-2098 35 0 0 Frag (light) 3.5 MD PM-1354 8.5 0 0 Frag (medium) 5 MD PM- 1104 3 15

  20. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  1. Perspective: PhD scientists completing medical school in two years: looking at the Miami PhD-to-MD program alumni twenty years later.

    PubMed

    Koniaris, Leonidas G; Cheung, Michael C; Garrison, Gwen; Awad, William M; Zimmers, Teresa A

    2010-04-01

    Producing and retaining physician-scientists remains a major challenge in advancing innovation, knowledge, and patient care across all medical disciplines. Various programs during medical school, including MD-PhD programs, have been instituted to address the need for continued production of physician-scientists. From 1971 through 1989, 508 students with a prior PhD in the sciences, mathematics, or engineering graduated in two years from an accelerated MD program at the University of Miami School of Medicine. The program, designed to address potential clinical physician shortages rather than physician-scientist shortages, quickly attracted many top-notch scientists to medicine. Many program graduates went to top-tier residencies, pursued research careers in academic medicine, and became academic leaders in their respective fields. A retrospective examination of graduates conducted in 2008-2009 demonstrated that approximately 59% took positions in academic university medical departments, 3% worked for governmental agencies, 5% entered industry as researchers or executives, and 33% opted for private practice. Graduates' positions included 85 full professors, 11 university directors or division heads, 14 academic chairs, 2 medical school deans, and 1 astronaut. Overall, 30% of graduates had obtained National Institutes of Health funding after completing the program. These results suggest that accelerated medical training for accomplished scientists can produce a large number of successful physician-scientists and other leaders in medicine. Furthermore, these results suggest that shortening the medical portion of combined MD-PhD programs might also be considered.

  2. Outcomes of Bacteremia in Burn Patients Involved in Combat Operations Overseas

    DTIC Science & Technology

    2008-03-01

    MD, Mark S Rasnake, MD, Duane R Hospenthal, MD, PhD, FACP, Steven E Wolf, MD, FACS BACKGROUND: Burn patients constitute approximately 5% of...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Ressner R. A., Murray C. K., Griffith M. E., Rasnake M. S ., Hospenthal D. R., Wolf S . E...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) United States Army Institute of Surgical

  3. Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2.

    PubMed

    Koo, Jung Eun; Park, Zee-Yong; Kim, Nam Doo; Lee, Joo Young

    2013-05-10

    Toll-like receptors (TLRs) are key pattern-recognition receptors that recognize invading pathogens and non-microbial endogenous molecules to induce innate and adaptive immune responses. Since activation of TLRs is deeply implicated in the pathological progress of autoimmune diseases, sepsis, metabolic diseases, and cancer, modulation of TLR activity is considered one of the most important therapeutic approaches. Lipopolysaccharide (LPS), an endotoxin of gram-negative bacteria, is a well-known agonist for TLR4 triggering inflammation and septic shock. LPS interacts with TLR4 through binding to a hydrophobic pocket in myeloid differentiation 2 (MD2), a co-receptor of TLR4. In this study, we showed that sulforaphane (SFN) interfered with the binding of LPS to MD2 as determined by in vitro binding assay and co-immunoprecipitation of MD2 and LPS in a cell system. The inhibitory effect of SFN on the interaction of LPS and MD2 was reversed by thiol supplementation with N-acetyl-L-cysteine or dithiothreitol showing that the inhibitory effect of SFN is dependent on its thiol-modifying activity. Indeed, micro LC-MS/MS analysis showed that SFN preferentially formed adducts with Cys133 in the hydrophobic pocket of MD2, but not with Cys95 and Cys105. Molecular modeling showed that SFN bound to Cys133 blocks the engagement of LPS and lipid IVa to hydrophobic pocket of MD2. Our results demonstrate that SFN interrupts LPS engagement to TLR4/MD2 complex by direct binding to Cys133 in MD2. Our data suggest a novel mechanism for the anti-inflammatory activity of SFN, and provide a novel target for the regulation of TLR4-mediated inflammatory and immune responses by phytochemicals. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    PubMed

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  5. How are Canadian universities training and supporting undergraduate medical, physiotherapy and occupational therapy students for global health experiences in international low-resource settings?

    PubMed

    Bessette, Jennifer; Camden, Chantal

    2016-12-27

    Canadian medical (MD), physiotherapy (PT) and occupational therapy (OT) students increasingly show an interest in global health experiences (GHEs). As certain moral hazards can occur as a result of student GHEs, a growing consensus exists that universities must have an established selection process, in-depth pre-departure training (PDT), adequate onsite supervision and formal debriefing for their students. This study aimed to identify current practices in Canadian MD, PT and OT programs and discuss areas for improvement by comparing them with recommendations found in the literature. Canadian MD, PT and OT programs (n = 45) were invited to answer an online survey about their current practices for GHE support and training. The survey included 24 close-ended questions and 18 open-ended questions. Descriptive statistics and a thematic analysis were performed on the data and results were discussed in comparison with recommendations found in the literature. Twenty-three programs responded to the survey. Student selection processes varied across universities; examples included using academic performance, interviews and motivation letters. All but one MD program had mandatory PDT; content and teaching formats varied, as did training duration (2-38 hours). All but one MD program had onsite supervision; local clinicians were frequently involved. Debriefing, although not systematic, covered similar content; debriefing was variable in duration (1-8 hours). Many current practices are encouraging, but areas for improvement exist. Integrating global health content into the regular curriculum, with advanced study options for students participating in GHEs, could help universities standardize support and training.

  6. Parallel cascade selection molecular dynamics for efficient conformational sampling and free energy calculation of proteins

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc

    2016-12-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.

  7. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Shah, Masaud; Choi, Sangdun

    2015-01-01

    TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in response to Rhodobacter sphaeroides lipid A (RsLA). Penta-acyl chain-containing RsLA is at the verge of agonist (6 acyl-chains) and antagonist (4 acyl-chains) structure, and activates the TLR4 pathway in horses and hamsters, while inhibiting in humans and murine. In the time-evolved coordinates, the promising factors that dictated the differential response included the local and global mobility pattern of complexes, solvent-accessible surface area of ligand, and surface charge distributions of TLR4 and MD2. We showed that the GlcN1-GlcN2 backbone acquires agonist (3FXI)-like configurations in horses and hamsters, while acquiring antagonist (2E59)-like configurations in humans and murine systems. Moreover, analysis of F126 behavior in the MD2 F126 loop (amino acids 123-129) and loop EF (81-89) suggested that certain sequence variations also contribute to species-specific response. This study underlines the TLR4 signaling mechanism and provides new therapeutic opportunities.

  8. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition

    PubMed Central

    Blatter, Markus; Cléry, Antoine; Damberger, Fred F.

    2017-01-01

    Abstract The Fox-1 RNA recognition motif (RRM) domain is an important member of the RRM protein family. We report a 1.8 Å X-ray structure of the free Fox-1 containing six distinct monomers. We use this and the nuclear magnetic resonance (NMR) structure of the Fox-1 protein/RNA complex for molecular dynamics (MD) analyses of the structured hydration. The individual monomers of the X-ray structure show diverse hydration patterns, however, MD excellently reproduces the most occupied hydration sites. Simulations of the protein/RNA complex show hydration consistent with the isolated protein complemented by hydration sites specific to the protein/RNA interface. MD predicts intricate hydration sites with water-binding times extending up to hundreds of nanoseconds. We characterize two of them using NMR spectroscopy, RNA binding with switchSENSE and free-energy calculations of mutant proteins. Both hydration sites are experimentally confirmed and their abolishment reduces the binding free-energy. A quantitative agreement between theory and experiment is achieved for the S155A substitution but not for the S122A mutant. The S155 hydration site is evolutionarily conserved within the RRM domains. In conclusion, MD is an effective tool for predicting and interpreting the hydration patterns of protein/RNA complexes. Hydration is not easily detectable in NMR experiments but can affect stability of protein/RNA complexes. PMID:28505313

  9. Positive predictive values by mammographic density and screening mode in the Norwegian Breast Cancer Screening Program.

    PubMed

    Moshina, Nataliia; Ursin, Giske; Roman, Marta; Sebuødegård, Sofie; Hofvind, Solveig

    2016-01-01

    To investigate the probability of breast cancer among women recalled due to abnormal findings on the screening mammograms (PPV-1) and among women who underwent an invasive procedure (PPV-2) by mammographic density (MD), screening mode and age. We used information about 28,826 recall examinations from 26,951 subsequently screened women in the Norwegian Breast Cancer Screening Program, 1996-2010. The radiologists who performed the recall examinations subjectively classified MD on the mammograms into three categories: fatty (<30% fibroglandular tissue); medium dense (30-70%) and dense (>70%). Screening mode was defined as screen-film mammography (SFM) and full-field digital mammography (FFDM). We examined trends of PPVs by MD, screening mode and age. We used logistic regression to estimate odds ratio (OR) of screen-detected breast cancer associated with MD among women recalled, adjusting for screening mode and age. PPV-1 and PPV-2 decreased by increasing MD, regardless of screening mode (p for trend <0.05 for both PPVs). PPV-1 and PPV-2 were statistically significantly higher for FFDM compared with SFM for women with fatty breasts. Among women recalled, the adjusted OR of breast cancer decreased with increasing MD. Compared with women with fatty breasts, the OR was 0.90 (95% CI: 0.84-0.96) for those with medium dense breasts and 0.85 (95% CI: 0.76-0.95) for those with dense breasts. PPVs decreased by increasing MD. Fewer women needed to be recalled or undergo an invasive procedure to detect one breast cancer among those with fatty versus dense breasts in the screening program in Norway, 1996-2010. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. An observational study of sequential protein-sparing, very low-calorie ketogenic diet (Oloproteic diet) and hypocaloric Mediterranean-like diet for the treatment of obesity.

    PubMed

    Castaldo, Giuseppe; Monaco, Luigi; Castaldo, Laura; Galdo, Giovanna; Cereda, Emanuele

    2016-09-01

    The impact of a rehabilitative multi-step dietary program consisting in different diets has been scantily investigated. In an open-label study, 73 obese patients underwent a two-phase weight loss (WL) program: a 3-week protein-sparing, very low-calorie, ketogenic diet (<500 kcal/day; Oloproteic(®) Diet) and a 6-week hypocaloric (25-30 kcal/kg of ideal body weight/day), low glycemic index, Mediterranean-like diet (hypo-MD). Both phases improved visceral adiposity, liver enzymes, GH levels, blood pressure and glucose and lipid metabolism. However, the hypo-MD was responsible for a re-increase in blood lipids and glucose tolerance parameters. Changes in visceral adiposity and glucose control-related variables were more consistent in patients with metabolic syndrome. However, in these patients the hypo-MD did not result in a consistent re-increase in glucose control-related variables. A dietary program consisting in a ketogenic regimen followed by a balanced MD appeared to be feasible and efficacious in reducing cardiovascular risk, particularly in patients with metabolic syndrome.

  11. The medical director and the use of power: limits, challenges and opportunities.

    PubMed

    Gabel, Stewart

    2011-09-01

    The organizational leadership in mental health agencies frequently resides in executives who are not psychiatrists and who may or may not have clinical backgrounds. Psychiatrists who are medical directors (MDs) of organizations with this structure are responsible for the success of the clinical programs, but are subordinate to the executive director (ED). The MD/ED relationship therefore is an example of the complexities and challenges of a relationship in which supervisor and supervisee have different types of power, but are mutually dependent on each other for the organization's success. Clarity and differentiation of the types of power of the MD and ED can be helpful in determining appropriate boundaries and facilitating a cooperative relationship that allows the organizational mission to be well served. Raven's model of the bases of social power (French and Raven, Studies in Social Power, 1959; Raven, Analyses of Social Issues and Public Policy 8(1):1-22, 2008) provides a useful framework to explore this relationship and the challenges and opportunities inherent in it.

  12. The STS-90 crew wave to family and friends in front of Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-90 crew wave to friends and family members near Launch Pad 39B, from which they are scheduled to launch aboard Columbia on May 16 at 2:19 p.m. EDT. The crew include, left to right, Mission Specialist Richard Linnehan, D.V.M., Commander Richard Searfoss, Pilot Scott Altman, Payload Specialists James Pawelczyk, Ph.D., and Jay Buckey, M.D., and Mission Specialists Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire. The Space Shuttle Columbia is seen in the background, protected by its Rotating Service Structure. This is the 25th flight of Columbia and the 90th mission flown since the start of the Space Shuttle program. STS-90 is a nearly 17-day life sciences research flight that will focus on the most complex and least understood part of the human body -- the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  13. KSC-98pc482

    NASA Image and Video Library

    1998-04-15

    KENNEDY SPACE CENTER, FLA. -- The STS-90 crew wave to friends and family members near Launch Pad 39B, from which they are scheduled to launch aboard Columbia on May 16 at 2:19 p.m. EDT. The crew include, left to right, Mission Specialist Richard Linnehan, D.V.M., Commander Richard Searfoss, Pilot Scott Altman, Payload Specialists James Pawelczyk, Ph.D., and Jay Buckey, M.D., and Mission Specialists Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire. The Space Shuttle Columbia is seen in the background, protected by its Rotating Service Structure. This is the 25th flight of Columbia and the 90th mission flown since the start of the Space Shuttle program. STS-90 is a nearly 17-day life sciences research flight that will focus on the most complex and least understood part of the human body the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body

  14. The effects of noise in cardiac diffusion tensor imaging and the benefits of averaging complex data.

    PubMed

    Scott, Andrew D; Nielles-Vallespin, Sonia; Ferreira, Pedro F; McGill, Laura-Ann; Pennell, Dudley J; Firmin, David N

    2016-05-01

    There is growing interest in cardiac diffusion tensor imaging (cDTI), but, unlike other diffusion MRI applications, there has been little investigation of the effects of noise on the parameters typically derived. One method of mitigating noise floor effects when there are multiple image averages, as in cDTI, is to average the complex rather than the magnitude data, but the phase contains contributions from bulk motion, which must be removed first. The effects of noise on the mean diffusivity (MD), fractional anisotropy (FA), helical angle (HA) and absolute secondary eigenvector angle (E2A) were simulated with various diffusion weightings (b values). The effect of averaging complex versus magnitude images was investigated. In vivo cDTI was performed in 10 healthy subjects with b = 500, 1000, 1500 and 2000 s/mm(2). A technique for removing the motion-induced component of the image phase present in vivo was implemented by subtracting a low-resolution copy of the phase from the original images before averaging the complex images. MD, FA, E2A and the transmural gradient in HA were compared for un-averaged, magnitude- and complex-averaged reconstructions. Simulations demonstrated an over-estimation of FA and MD at low b values and an under-estimation at high b values. The transition is relatively signal-to-noise ratio (SNR) independent and occurs at a higher b value for FA (b = 1000-1250 s/mm(2)) than MD (b ≈ 250 s/mm(2)). E2A is under-estimated at low and high b values with a transition at b ≈ 1000 s/mm(2), whereas the bias in HA is comparatively small. The under-estimation of FA and MD at high b values is caused by noise floor effects, which can be mitigated by averaging the complex data. Understanding the parameters of interest and the effects of noise informs the selection of the optimal b values. When complex data are available, they should be used to maximise the benefit from the acquisition of multiple averages. The combination of complex data is also a valuable step towards segmented acquisitions. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Pyrite: A blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques.

    PubMed

    Rajendiran, Nivedita; Durrant, Jacob D

    2018-05-05

    Molecular dynamics (MD) simulations provide critical insights into many biological mechanisms. Programs such as VMD, Chimera, and PyMOL can produce impressive simulation visualizations, but they lack many advanced rendering algorithms common in the film and video-game industries. In contrast, the modeling program Blender includes such algorithms but cannot import MD-simulation data. MD trajectories often require many gigabytes of memory/disk space, complicating Blender import. We present Pyrite, a Blender plugin that overcomes these limitations. Pyrite allows researchers to visualize MD simulations within Blender, with full access to Blender's cutting-edge rendering techniques. We expect Pyrite-generated images to appeal to students and non-specialists alike. A copy of the plugin is available at http://durrantlab.com/pyrite/, released under the terms of the GNU General Public License Version 3. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. KSC-2009-2504

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – On display at the Kennedy Space Center Visitor Complex in Florida is the Orion crew exploration vehicle mockup (left) and an exhibit about the Constellation Program. The Orion mockup is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-2507

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – On display at the Kennedy Space Center Visitor Complex in Florida is the Orion crew exploration vehicle mockup (right) and an exhibit about the Constellation Program. The Orion mockup is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-2505

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – A NASA official talks to visitors at the Kennedy Space Center Visitor Complex in Florida about the Orion crew exploration vehicle mockup and the Constellation Program. The Orion mockup is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  19. Glaucoma Symptoms

    MedlinePlus

    ... Alzheimer’s Disease Research Program Macular Degeneration Research Program National Glaucoma Research Program Molecular Neurodegeneration ... Foundation BrightFocus Foundation 22512 Gateway Center Drive Clarksburg, MD ...

  20. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics.

    PubMed

    Yang, Qian; Sing-Long, Carlos A; Reed, Evan J

    2017-08-01

    We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.

  1. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

    PubMed Central

    Sing-Long, Carlos A.

    2017-01-01

    We propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. In contrast, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our method on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. The framework described in this work paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates. PMID:28989618

  2. Learning reduced kinetic Monte Carlo models of complex chemistry from molecular dynamics

    DOE PAGES

    Yang, Qian; Sing-Long, Carlos A.; Reed, Evan J.

    2017-06-19

    Here, we propose a novel statistical learning framework for automatically and efficiently building reduced kinetic Monte Carlo (KMC) models of large-scale elementary reaction networks from data generated by a single or few molecular dynamics simulations (MD). Existing approaches for identifying species and reactions from molecular dynamics typically use bond length and duration criteria, where bond duration is a fixed parameter motivated by an understanding of bond vibrational frequencies. Conversely, we show that for highly reactive systems, bond duration should be a model parameter that is chosen to maximize the predictive power of the resulting statistical model. We demonstrate our methodmore » on a high temperature, high pressure system of reacting liquid methane, and show that the learned KMC model is able to extrapolate more than an order of magnitude in time for key molecules. Additionally, our KMC model of elementary reactions enables us to isolate the most important set of reactions governing the behavior of key molecules found in the MD simulation. We develop a new data-driven algorithm to reduce the chemical reaction network which can be solved either as an integer program or efficiently using L1 regularization, and compare our results with simple count-based reduction. For our liquid methane system, we discover that rare reactions do not play a significant role in the system, and find that less than 7% of the approximately 2000 reactions observed from molecular dynamics are necessary to reproduce the molecular concentration over time of methane. Furthermore, we describe a framework in this work that paves the way towards a genomic approach to studying complex chemical systems, where expensive MD simulation data can be reused to contribute to an increasingly large and accurate genome of elementary reactions and rates.« less

  3. The Structural Basis for Endotoxin-induced Allosteric Regulation of the Toll-like Receptor 4 (TLR4) Innate Immune Receptor*

    PubMed Central

    Paramo, Teresa; Piggot, Thomas J.; Bryant, Clare E.; Bond, Peter J.

    2013-01-01

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The “clamshell-like” motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the “molecular switch” in endotoxic signaling. PMID:24178299

  4. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor.

    PubMed

    Paramo, Teresa; Piggot, Thomas J; Bryant, Clare E; Bond, Peter J

    2013-12-20

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The "clamshell-like" motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the "molecular switch" in endotoxic signaling.

  5. Nonlinear digital signal processing in mental health: characterization of major depression using instantaneous entropy measures of heartbeat dynamics.

    PubMed

    Valenza, Gaetano; Garcia, Ronald G; Citi, Luca; Scilingo, Enzo P; Tomaz, Carlos A; Barbieri, Riccardo

    2015-01-01

    Nonlinear digital signal processing methods that address system complexity have provided useful computational tools for helping in the diagnosis and treatment of a wide range of pathologies. More specifically, nonlinear measures have been successful in characterizing patients with mental disorders such as Major Depression (MD). In this study, we propose the use of instantaneous measures of entropy, namely the inhomogeneous point-process approximate entropy (ipApEn) and the inhomogeneous point-process sample entropy (ipSampEn), to describe a novel characterization of MD patients undergoing affective elicitation. Because these measures are built within a nonlinear point-process model, they allow for the assessment of complexity in cardiovascular dynamics at each moment in time. Heartbeat dynamics were characterized from 48 healthy controls and 48 patients with MD while emotionally elicited through either neutral or arousing audiovisual stimuli. Experimental results coming from the arousing tasks show that ipApEn measures are able to instantaneously track heartbeat complexity as well as discern between healthy subjects and MD patients. Conversely, standard heart rate variability (HRV) analysis performed in both time and frequency domains did not show any statistical significance. We conclude that measures of entropy based on nonlinear point-process models might contribute to devising useful computational tools for care in mental health.

  6. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy

    PubMed Central

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-01-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA. PMID:26140374

  7. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy.

    PubMed

    Zhan, Minzhong; Guo, Ming; Jiang, Yanke; Wang, Xiaomeng

    2015-07-01

    The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.

  8. Validity of the Medical College Admission Test for predicting MD-PhD student outcomes.

    PubMed

    Bills, James L; VanHouten, Jacob; Grundy, Michelle M; Chalkley, Roger; Dermody, Terence S

    2016-03-01

    The Medical College Admission Test (MCAT) is a quantitative metric used by MD and MD-PhD programs to evaluate applicants for admission. This study assessed the validity of the MCAT in predicting training performance measures and career outcomes for MD-PhD students at a single institution. The study population consisted of 153 graduates of the Vanderbilt Medical Scientist Training Program (combined MD-PhD program) who matriculated between 1963 and 2003 and completed dual-degree training. This population was divided into three cohorts corresponding to the version of the MCAT taken at the time of application. Multivariable regression (logistic for binary outcomes and linear for continuous outcomes) was used to analyze factors associated with outcome measures. The MCAT score and undergraduate GPA (uGPA) were treated as independent variables; medical and graduate school grades, time-to-PhD defense, USMLE scores, publication number, and career outcome were dependent variables. For cohort 1 (1963-1977), MCAT score was not associated with any assessed outcome, although uGPA was associated with medical school preclinical GPA and graduate school GPA (gsGPA). For cohort 2 (1978-1991), MCAT score was associated with USMLE Step II score and inversely correlated with publication number, and uGPA was associated with preclinical GPA (mspGPA) and clinical GPA (mscGPA). For cohort 3 (1992-2003), the MCAT score was associated with mscGPA, and uGPA was associated with gsGPA. Overall, MCAT score and uGPA were inconsistent or weak predictors of training metrics and career outcomes for this population of MD-PhD students.

  9. The health care response to pandemic influenza.

    PubMed

    Barnitz, Laura; Berkwits, Michael

    2006-07-18

    The threat of an H5N1 influenza virus (avian flu) pandemic is substantial. The success of the current U.S. influenza pandemic response plan depends on effective coordination among state and local public health authorities and individual health care providers. This article is a summary of a public policy paper developed by the American College of Physicians to address issues in the U.S. Department of Health and Human Services Pandemic Influenza Plan that involve physicians. The College's positions call for the following: 1) development of local public health task forces that include physicians representing all specialties and practice settings; 2) physician access to 2-way communication with public health authorities and to information technology tools for diagnosis and syndrome surveillance; 3) clear identification and authorization of agencies to process licensing and registration of volunteer physicians; 4) clear guidelines for overriding standard procedures for confidentiality and consent in the interest of the public's health; 5) clear and fair infection control measures that do not create barriers to care; 6) analysis of and solutions to current problems with seasonal influenza vaccination programs as a way of developing a maximally efficient pandemic flu vaccine program; 7) federal funding to provide pandemic flu vaccine for the entire U.S. population and antiviral drugs for 25% of the population; and 8) planning for health care in alternative, nonhospital settings to prevent a surge in demand for hospital care that exceeds supply. *This paper is an abridged version of a full-text position paper (available at http://www.acponline.org/college/pressroom/as06/pandemic_policy.pdf) written by Laura Barnitz, BJ, MA, and updated and adapted for publication in Annals of Internal Medicine by Michael Berkwits, MD, MSCE. The original position paper was developed for the Health and Public Policy Committee of the American College of Physicians: Jeffrey P. Harris, MD (Chair); David L. Bronson, MD (Vice Chair); CPT Julie Ake, MD; Patricia P. Barry, MD; Molly Cooke, MD; Herbert S. Diamond, MD; Joel S. Levine, MD; Mark E. Mayer, MD; Thomas McGinn, MD; Robert M. McLean, MD; Ashley E. Starkweather; and Frederick E. Turton, MD. It was approved by the Board of Regents on 3 April 2006.

  10. Impact of Critical Care Trained Flight Paramedics on Casualty Survival During Helicopter Evacuation in the Current War in Afghanistan

    DTIC Science & Technology

    2012-01-01

    survival during helicopter evacuation in the current war in Afghanistan Robert L . Mabry ...MD, MC, Amy Apodaca , MS, Jason Penrod , PharmD, Jean A . Orman , ScD, MPH, Robert T. Gerhardt , MD, MPH, and Warren C. Dorlac, MD, Fort Sam Houston...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mabry R. L ., Apodaca A ., Penrod J.,

  11. Cognition in the Brain: Investigations Using Positron Emission Tomography

    DTIC Science & Technology

    1992-07-16

    0029 DDIRESS (City. State and ZIP Code) 10. SOURCE Of FUNDING NOS. _____________ .dg. 410 PROGRAM PROJECT TASKC WORK .,%r illing Air Force Base, DC...Bethesda, MD 20892 20. Daniel Bubb, M.D. Department of Neurolinguistics Montreal Neurological Institute 15. Sung-cheng tHuang, Ph.D. 3801 University...Chief of Pediatric Neu- rology Service Director, Center for Morphomet- 24. Terry Allard, Ph.D. ric Analysis Cognitive Science Programs Kennedy 9 Office

  12. Pathways to rural family practice at Memorial University of Newfoundland

    PubMed Central

    Rourke, James; O’Keefe, Danielle; Ravalia, Mohamed; Moffatt, Scott; Parsons, Wanda; Duggan, Norah; Stringer, Katherine; Jong, Michael; Walsh, Kristin Harris; Hippe, Janelle

    2018-01-01

    Abstract Objective To assess Memorial University of Newfoundland’s (MUN’s) commitment to a comprehensive pathways approach to rural family practice, and to determine the national and provincial effects of applying this approach. Design Analysis of anonymized secondary data. Setting Canada. Participants Memorial’s medical degree (MD) graduates practising family medicine in Newfoundland and Labrador as of January 2015 (N = 305), MUN’s 2011 and 2012 MD graduates (N = 120), and physicians who completed family medicine training programs in Canada between 2004 and 2013 and who were practising in Canada 2 years after completion of their postgraduate training (N = 8091). Main outcome measures National effect was measured by the proportion of MUN’s family medicine program graduates practising in rural Canada compared with those from other Canadian family medicine training programs. Provincial effect was measured by the location of MUN’s MD graduates practising family medicine in Newfoundland and Labrador as of January 2015. Commitment to a comprehensive pathways approach to rural family practice was measured by anonymized geographic data on admissions, educational placements, and practice locations of MUN’s 2011 and 2012 MD graduates, including those who completed family medicine residencies at MUN. Results Memorial’s comprehensive pathways approach to training physicians for rural practice was successful on both national and provincial levels: 26.9% of MUN family medicine program graduates were in a rural practice location 2 years after exiting their post-MD training from 2004 to 2013 compared with the national rate of 13.3% (national effect); 305 of MUN’s MD graduates were practising family medicine in Newfoundland and Labrador as of 2015, with 36% practising in rural areas (provincial effect). Of 114 MD students with known background who graduated in 2011 and 2012, 32% had rural backgrounds. Memorial’s 2011 and 2012 MD graduates spent 20% of all clinical placement weeks in rural areas; of note, 90% of all first-year placements and 95% of third-year family medicine clerkship placements were rural. For the 25 MUN 2011 and 2012 MD graduates who also completed family medicine residencies at MUN, 38% of family medicine placement weeks were spent in rural communities or rural towns. Of the 30 MUN 2011 and 2012 MD graduates practising family medicine in Canada as of January 2015, 42% were practising in rural communities or rural towns; 73% were practising in Newfoundland and Labrador and half of those were in rural communities and rural towns. Conclusion A comprehensive rural pathways approach that includes recruiting rural students and exposing all medical students to extensive rural placements and all family medicine residents to rural family practice training has resulted in more rural generalist physicians in family practice in Newfoundland and Labrador and across Canada. PMID:29540400

  13. Pathways to rural family practice at Memorial University of Newfoundland.

    PubMed

    Rourke, James; O'Keefe, Danielle; Ravalia, Mohamed; Moffatt, Scott; Parsons, Wanda; Duggan, Norah; Stringer, Katherine; Jong, Michael; Walsh, Kristin Harris; Hippe, Janelle

    2018-03-01

    To assess Memorial University of Newfoundland's (MUN's) commitment to a comprehensive pathways approach to rural family practice, and to determine the national and provincial effects of applying this approach. Analysis of anonymized secondary data. Canada. Memorial's medical degree (MD) graduates practising family medicine in Newfoundland and Labrador as of January 2015 (N = 305), MUN's 2011 and 2012 MD graduates (N = 120), and physicians who completed family medicine training programs in Canada between 2004 and 2013 and who were practising in Canada 2 years after completion of their postgraduate training (N = 8091). National effect was measured by the proportion of MUN's family medicine program graduates practising in rural Canada compared with those from other Canadian family medicine training programs. Provincial effect was measured by the location of MUN's MD graduates practising family medicine in Newfoundland and Labrador as of January 2015. Commitment to a comprehensive pathways approach to rural family practice was measured by anonymized geographic data on admissions, educational placements, and practice locations of MUN's 2011 and 2012 MD graduates, including those who completed family medicine residencies at MUN. Memorial's comprehensive pathways approach to training physicians for rural practice was successful on both national and provincial levels: 26.9% of MUN family medicine program graduates were in a rural practice location 2 years after exiting their post-MD training from 2004 to 2013 compared with the national rate of 13.3% (national effect); 305 of MUN's MD graduates were practising family medicine in Newfoundland and Labrador as of 2015, with 36% practising in rural areas (provincial effect). Of 114 MD students with known background who graduated in 2011 and 2012, 32% had rural backgrounds. Memorial's 2011 and 2012 MD graduates spent 20% of all clinical placement weeks in rural areas; of note, 90% of all first-year placements and 95% of third-year family medicine clerkship placements were rural. For the 25 MUN 2011 and 2012 MD graduates who also completed family medicine residencies at MUN, 38% of family medicine placement weeks were spent in rural communities or rural towns. Of the 30 MUN 2011 and 2012 MD graduates practising family medicine in Canada as of January 2015, 42% were practising in rural communities or rural towns; 73% were practising in Newfoundland and Labrador and half of those were in rural communities and rural towns. A comprehensive rural pathways approach that includes recruiting rural students and exposing all medical students to extensive rural placements and all family medicine residents to rural family practice training has resulted in more rural generalist physicians in family practice in Newfoundland and Labrador and across Canada. Copyright© the College of Family Physicians of Canada.

  14. The draft genome of MD-2 pineapple using hybrid error correction of long reads

    PubMed Central

    Redwan, Raimi M.; Saidin, Akzam; Kumar, S. Vijay

    2016-01-01

    The introduction of the elite pineapple variety, MD-2, has caused a significant market shift in the pineapple industry. Better productivity, overall increased in fruit quality and taste, resilience to chilled storage and resistance to internal browning are among the key advantages of the MD-2 as compared with its previous predecessor, the Smooth Cayenne. Here, we present the genome sequence of the MD-2 pineapple (Ananas comosus (L.) Merr.) by using the hybrid sequencing technology from two highly reputable platforms, i.e. the PacBio long sequencing reads and the accurate Illumina short reads. Our draft genome achieved 99.6% genome coverage with 27,017 predicted protein-coding genes while 45.21% of the genome was identified as repetitive elements. Furthermore, differential expression of ripening RNASeq library of pineapple fruits revealed ethylene-related transcripts, believed to be involved in regulating the process of non-climacteric pineapple fruit ripening. The MD-2 pineapple draft genome serves as an example of how a complex heterozygous genome is amenable to whole genome sequencing by using a hybrid technology that is both economical and accurate. The genome will make genomic applications more feasible as a medium to understand complex biological processes specific to pineapple. PMID:27374615

  15. 77 FR 42713 - Notice of Intent to Grant an Exclusive License; PadJack, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Security Agency Technology Transfer Program, 9800 Savage Road, Suite 6541, Fort George G. Meade, MD 20755... Savage Road, Suite 6541, Fort George G. Meade, MD 20755-6541, telephone (443) 479-9569. Dated: July 17...

  16. Program Spotlight: UPR and MD Anderson Partnership Welcomes Its First Graduates

    Cancer.gov

    CRCHD joins the PIs and Diversity Training co-leaders of the Univ. of Puerto Rico and the Univ. of Texas MD Anderson Cancer Center U54 Partnership for Excellence in Cancer Research in congratulating its first graduates.

  17. Prone Positioning Improves Oxygenation in Adult Burn Patients with Severe Acute Respiratory Distress Syndrome

    DTIC Science & Technology

    2012-01-01

    Prone positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome Diane F. Hale, MD, Jeremy W. Cannon, MD...Kevin K. Chung, MD, San Antonio, Texas BACKGROUND: Prone positioning (PP) improves oxygenation and may provide a benefit in patients with acute... positioning improves oxygenation in adult burn patients with severe acute respiratory distress syndrome 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  18. View How Glaucoma May Affect Vision

    MedlinePlus

    ... Alzheimer’s Disease Research Program Macular Degeneration Research Program National Glaucoma Research Program Molecular Neurodegeneration ... Foundation BrightFocus Foundation 22512 Gateway Center Drive Clarksburg, MD ...

  19. ROLE OF INSTITUTIONAL CLIMATE IN FOSTERING DIVERSITY IN BIOMEDICAL RESEARCH WORKFORCE: A CASE STUDY

    PubMed Central

    Butts, Gary C.; Hurd, Yasmin; Palermo, Ann-Gel S.; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A.

    2012-01-01

    This article reviews the barriers to diversity in biomedical research, describes the evolution and efforts to address climate issues to enhance the ability to attract, retain and develop underrepresented minorities (URM) - underrepresented minorities whose underrepresentation is found both in science and medicine, in the graduate school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine (MSSM). We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. MSSM diversity climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs PhD, MD/PhD, MD, and at the residency, post doctoral fellow, and faculty levels. Lessons learned from four decades of targeted programs and activities at MSSM may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. PMID:22786740

  20. Crystallographic and Molecular Dynamics Simulation Analysis of Escherichia Coli Dihydroneopterin Aldolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaszczyk, Jaroslaw; Lu, Zhenwei; Li, Yue

    2014-09-01

    To understand the structural basis for the biochemical differences and further investigate the catalytic mechanism of DHNA, we have determined the structure of EcDHNA complexed with NP at 1.07-Å resolution [PDB:2O90], built an atomic model of EcDHNA complexed with the substrate DHNP, and performed molecular dynamics (MD) simulation analysis of the substrate complex. EcDHNA has the same fold as SaDHNA and also forms an octamer that consists of two tetramers, but the packing of one tetramer with the other is significantly different between the two enzymes. Furthermore, the structures reveal significant differences in the vicinity of the active site, particularlymore » in the loop that connects strands β3 and β4, mainly due to the substitution of nearby residues. The building of an atomic model of the complex of EcDHNA and the substrate DHNP and the MD simulation of the complex show that some of the hydrogen bonds between the substrate and the enzyme are persistent, whereas others are transient. The substrate binding model and MD simulation provide the molecular basis for the biochemical behaviors of the enzyme, including noncooperative substrate binding, indiscrimination of a pair of epimers as the substrates, proton wire switching during catalysis, and formation of epimerization product.« less

  1. MD-2-mediated Ionic Interactions between Lipid A and TLR4 Are Essential for Receptor Activation*

    PubMed Central

    Meng, Jianmin; Lien, Egil; Golenbock, Douglas T.

    2010-01-01

    Lipopolysaccharide (LPS) activates innate immune responses through TLR4·MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4·MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IVA, a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IVA activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IVA activation. Computational studies suggested that unique ionic interactions exist between lipid IVA and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4′-phosphate on lipid IVA interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys367 and Arg434) at the dimerization interface. When replaced with their negatively charged human counterparts Glu369 and Gln436, mouse TLR4 was no longer responsive to lipid IVA. In contrast, human TLR4 gained lipid IVA responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IVA species specificity. Thus, using lipid IVA as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation. PMID:20018893

  2. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.

    PubMed

    Rudling, Axel; Orro, Adolfo; Carlsson, Jens

    2018-02-26

    Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.

  3. KSC-05pd2632A

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians monitor New Horizons as it is lowered onto a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  4. KSC-05pd2636

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - A Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility awaits the arrival of New Horizons at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  5. KSC-05pd2633

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, New Horizons sits atop a transporter awaiting its move to Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  6. KSC-05pd2634

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - New Horizons leaves the Payload Hazardous Servicing Facility before dawn for its journey to the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  7. KSC-05pd2635

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians prepare to move New Horizons before dawn from the Payload Hazardous Servicing Facility to the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  8. KSC-05pd2637

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - New Horizons arrives at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station where buildup of its Lockheed Martin Atlas V launch vehicle is complete. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  9. KSC-05pd2639

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is secured to the nose of the fairing enclosing New Horizons at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  10. KSC-05pd2630

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians prepare to lift New Horizons to a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  11. KSC-05pd2642

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons arrives at the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  12. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2).

    PubMed

    Xu, Zheng; Li, Weixin; Han, Jibo; Zou, Chunpeng; Huang, Weijian; Yu, Weihui; Shan, Xiaoou; Lum, Hazel; Li, Xiaokun; Liang, Guang

    2017-03-21

    Growing evidence indicates that angiotensin II (Ang II), a potent biologically active product of RAS, is a key regulator of renal inflammation and fibrosis. In this study, we tested the hypothesis that Ang II induces renal inflammatory injury and fibrosis through interaction with myeloid differentiation protein-2 (MD2), the accessory protein of toll-like receptor 4 (TLR4) of the immune system. Results indicated that in MD2 -/- mice, the Ang II-induced renal fibrosis, inflammation and kidney dysfunction were significantly reduced compared to control Ang II-infused wild-type mice. Similarly, in the presence of small molecule MD2 specific inhibitor L6H21 or siRNA-MD2, the Ang II-induced increases of pro-fibrotic and pro-inflammatory molecules were prevented in tubular NRK-52E cells. MD2 blockade also inhibited activation of NF-κB and ERK. Moreover, MD2 blockade prevented the Ang II-stimulated formation of the MD2/TLR4/MyD88 signaling complex, as well as the increased surface binding of Ang II in NRK-52E cells. In addition, Ang II directly bound recombinant MD2 protein, rather than TLR4 protein. We conclude that MD2 is a significant contributor in the Ang II-induced kidney inflammatory injury in chronic renal diseases. Furthermore, MD2 inhibition could be a new and important therapeutic strategy for preventing progression of chronic renal diseases.

  13. Efficiency in nonequilibrium molecular dynamics Monte Carlo simulations

    DOE PAGES

    Radak, Brian K.; Roux, Benoît

    2016-10-07

    Hybrid algorithms combining nonequilibrium molecular dynamics and Monte Carlo (neMD/MC) offer a powerful avenue for improving the sampling efficiency of computer simulations of complex systems. These neMD/MC algorithms are also increasingly finding use in applications where conventional approaches are impractical, such as constant-pH simulations with explicit solvent. However, selecting an optimal nonequilibrium protocol for maximum efficiency often represents a non-trivial challenge. This work evaluates the efficiency of a broad class of neMD/MC algorithms and protocols within the theoretical framework of linear response theory. The approximations are validated against constant pH-MD simulations and shown to provide accurate predictions of neMD/MC performance.more » An assessment of a large set of protocols confirms (both theoretically and empirically) that a linear work protocol gives the best neMD/MC performance. Lastly, a well-defined criterion for optimizing the time parameters of the protocol is proposed and demonstrated with an adaptive algorithm that improves the performance on-the-fly with minimal cost.« less

  14. Computational modeling of carbohydrate recognition in protein complex

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2017-11-01

    To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.

  15. The NIH Undiagnosed Diseases Program | NIH MedlinePlus the Magazine

    MedlinePlus

    ... to discover and understand rare diseases,” says Eric D. Green, M.D., Ph.D., director of the National Human Genome Research Institute ( ... interdisciplinary approach,” says NIH Director Francis S. Collins, M.D., Ph.D. “The disorder had long-evaded conventional ...

  16. Microenvironment -Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

    DTIC Science & Technology

    2016-10-01

    accomplished all goals in Aims 1 and 2. Our lab recently relocated from the MD Anderson Cancer Center to Roswell Park Cancer Institute in Buffalo. We ...G. Tang, M.D., Ph.D. CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer Center Houston, TX 77030 REPORT DATE: October 2016 TYPE OF... Anderson Cancer Center Houston, TX 77030 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical

  17. Gaussian Accelerated Molecular Dynamics in NAMD

    PubMed Central

    2016-01-01

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310

  18. Gaussian Accelerated Molecular Dynamics in NAMD.

    PubMed

    Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew

    2017-01-10

    Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.

  19. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits.

    PubMed

    Han, Sang Eun; Seo, Young Sam; Kim, Daeil; Sung, Soon-Kee; Kim, Woo Taek

    2007-08-01

    Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.

  20. Modeling of three dimensional structure of human alpha-fetoprotein complexed with diethylstilbestrol: docking and molecular dynamics simulation study.

    PubMed

    Terentiev, Alexander A; Moldogazieva, Nurbubu T; Levtsova, Olga V; Maximenko, Dmitry M; Borozdenko, Denis A; Shaitan, Konstantin V

    2012-04-01

    It has been long experimentally demonstrated that human alpha-fetoprotein (HAFP) has an ability to bind immobilized estrogens with the most efficiency for synthetic estrogen analog - diethylstilbestrol (DES). However, the question remains why the human AFP (HAFP), unlike rodent AFP, cannot bind free estrogens. Moreover, despite the fact that AFP was first discovered more than 50 years ago and is presently recognized as a "golden standard" among onco-biomarkers, its three-dimensional (3D) structure has not been experimentally solved yet. In this work using MODELLER program, we generated 3D model of HAFP on the basis of homology with human serum albumin (HSA) and Vitamin D-binding protein (VTDB) with subsequent molecular docking of DES to the model structure and molecular dynamics (MD) simulation study of the complex obtained. The model constructed has U-shaped structure in which a cavity may be distinguished. In this cavity the putative estrogen-binding site is localized. Validation by RMSD calculation and with the use of PROCHECK program showed good quality of the model and stability of extended region of four alpha-helical structures that contains putative hormone-binding residues. Data extracted from MD simulation trajectory allow proposing two types of interactions between amino acid residues of HAFP and DES molecule: (1) hydrogen bonding with involvement of residues S445, R452, and E551; (2) hydrophobic interactions with participation of L138, M448, and M548 residues. A suggestion is made that immobilization of the hormone using a long spacer provides delivery of the estrogen molecule to the binding site and, thereby, facilitates interaction between HAFP and the hormone.

  1. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    PubMed Central

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy. PMID:26098630

  2. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif.

    PubMed

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were -0.44 Kcal/mol and -9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  3. Hierarchical Model for the Analysis of Scattering Data of Complex Materials

    DOE PAGES

    Oyedele, Akinola; Mcnutt, Nicholas W.; Rios, Orlando; ...

    2016-05-16

    Interpreting the results of scattering data for complex materials with a hierarchical structure in which at least one phase is amorphous presents a significant challenge. Often the interpretation relies on the use of large-scale molecular dynamics (MD) simulations, in which a structure is hypothesized and from which a radial distribution function (RDF) can be extracted and directly compared against an experimental RDF. This computationally intensive approach presents a bottleneck in the efficient characterization of the atomic structure of new materials. Here, we propose and demonstrate an approach for a hierarchical decomposition of the RDF in which MD simulations are replacedmore » by a combination of tractable models and theory at the atomic scale and the mesoscale, which when combined yield the RDF. We apply the procedure to a carbon composite, in which graphitic nanocrystallites are distributed in an amorphous domain. We compare the model with the RDF from both MD simulation and neutron scattering data. Ultimately, this procedure is applicable for understanding the fundamental processing-structure-property relationships in complex magnetic materials.« less

  4. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking.

    PubMed

    Makeneni, Spandana; Thieker, David F; Woods, Robert J

    2018-03-26

    In this work, we developed a computational protocol that employs multiple molecular docking experiments, followed by pose clustering, molecular dynamic simulations (10 ns), and energy rescoring to produce reliable 3D models of antibody-carbohydrate complexes. The protocol was applied to 10 antibody-carbohydrate co-complexes and three unliganded (apo) antibodies. Pose clustering significantly reduced the number of potential poses. For each system, 15 or fewer clusters out of 100 initial poses were generated and chosen for further analysis. Molecular dynamics (MD) simulations allowed the docked poses to either converge or disperse, and rescoring increased the likelihood that the best-ranked pose was an acceptable pose. This approach is amenable to automation and can be a valuable aid in determining the structure of antibody-carbohydrate complexes provided there is no major side chain rearrangement or backbone conformational change in the H3 loop of the CDR regions. Further, the basic protocol of docking a small ligand to a known binding site, clustering the results, and performing MD with a suitable force field is applicable to any protein ligand system.

  5. Advanced Composite Aircraft Electromagnetic Design and Synthesis

    DTIC Science & Technology

    1980-05-01

    Naval Air Systems Command, July 1978. 9. J.L. Bogdanor , R.A. Pearlman, and M.D. Siegel, Intrasystem Electromagnetic Compatibility Analysis Program...F30602-72-C-0277, RADC-TR-74-342, December 1974. 11. J.L. Bogdanor , R.A. Pearlman, and M.D. Siegel, Intrasystem Electromagnetic Comptibility Analysis

  6. Scheduling of eccentric lower limb injury prevention exercises during the soccer micro-cycle: Which day of the week?

    PubMed

    Lovell, R; Whalan, M; Marshall, P W M; Sampson, J A; Siegler, J C; Buchheit, M

    2018-05-24

    Scheduling eccentric-based injury prevention programs (IPP) during the common 6-day micro-cycle in soccer is challenged by recovery and tapering phases. This study profiled muscle damage, neuromuscular performance, and perceptual responses to a lower limb eccentric-based IPP administered 1 (MD+1) vs 3 days (MD+3) postmatch. A total of 18 semi-professional players were monitored daily during 3 in-season 6-day micro-cycles, including weekly competitive fixtures. Capillary creatine kinase concentration (CK), posterior lower limb isometric peak force (PF), counter-movement jump (CMJ) performance, and muscle soreness were assessed 24 hours prior to match-day (baseline), and every 24 hours up to 120 hours postmatch. The IPP consisted of lunges, single stiff leg dead-lifts, single leg-squats, and Nordic hamstring exercises. Performing the IPP on MD+1 attenuated the decline in CK normally observed following match play (CON: 142%; MD+3: 166%; small differences). When IPP was delivered on MD+3, CK was higher vs CON and MD+1 trials on both MD+4 (MD+3: 260%; CON: 146%; MD+1: 151%; moderate differences) and MD+5 (MD+3: 209%; CON: 125%; MD+1: 127%; small differences). Soreness ratings were not exacerbated when the IPP was delivered on MD+1, but when prescribed on MD+3, hamstring soreness ratings remained higher on MD+4 and MD+5 (small differences). No between-trial differences were observed for PF and CMJ. Administering the IPP in the middle of the micro-cycle (MD+3) increased measures of muscle damage and soreness, which remained elevated on the day prior to the next match (MD+5). Accordingly, IPP should be scheduled early in the micro-cycle, to avoid compromising preparation for the following match. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Newborn screening: A disease-changing intervention for glutaric aciduria type 1.

    PubMed

    Boy, Nikolas; Mengler, Katharina; Thimm, Eva; Schiergens, Katharina A; Marquardt, Thorsten; Weinhold, Natalie; Marquardt, Iris; Das, Anibh M; Freisinger, Peter; Grünert, Sarah C; Vossbeck, Judith; Steinfeld, Robert; Baumgartner, Matthias R; Beblo, Skadi; Dieckmann, Andrea; Näke, Andrea; Lindner, Martin; Heringer, Jana; Hoffmann, Georg F; Mühlhausen, Chris; Maier, Esther M; Ensenauer, Regina; Garbade, Sven F; Kölker, Stefan

    2018-05-01

    Untreated individuals with glutaric aciduria type 1 (GA1) commonly present with a complex, predominantly dystonic movement disorder (MD) following acute or insidious onset striatal damage. Implementation of GA1 into newborn screening (NBS) programs has improved the short-term outcome. It remains unclear, however, whether NBS changes the long-term outcome and which variables are predictive. This prospective, observational, multicenter study includes 87 patients identified by NBS, 4 patients missed by NBS, and 3 women with GA1 identified by positive NBS results of their unaffected children. The study population comprises 98.3% of individuals with GA1 identified by NBS in Germany during 1999-2016. Overall, cumulative sensitivity of NBS is 95.6%, but it is lower (84%) for patients with low excreter phenotype. The neurologic outcome of patients missed by NBS is as poor as in the pre-NBS era, and the clinical phenotype of diagnosed patients depends on the quality of therapeutic interventions rather than noninterventional variables. Presymptomatic start of treatment according to current guideline recommendations clearly improves the neurologic outcome (MD: 7% of patients), whereas delayed emergency treatment results in acute onset MD (100%), and deviations from maintenance treatment increase the risk of insidious onset MD (50%). Independent of the neurologic phenotype, kidney function tends to decline with age, a nonneurologic manifestation not predicted by any variable included in this study. NBS is a beneficial, disease-changing intervention for GA1. However, improved neurologic outcome critically depends on adherence to recommended therapy, whereas kidney dysfunction does not appear to be impacted by recommended therapy. Ann Neurol 2018;83:970-979. © 2018 American Neurological Association.

  8. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica.

    PubMed

    Hajjar, Adeline M; Ernst, Robert K; Fortuno, Edgardo S; Brasfield, Alicia S; Yam, Cathy S; Newlon, Lindsay A; Kollmann, Tobias R; Miller, Samuel I; Wilson, Christopher B

    2012-01-01

    Although lipopolysaccharide (LPS) stimulation through the Toll-like receptor (TLR)-4/MD-2 receptor complex activates host defense against Gram-negative bacterial pathogens, how species-specific differences in LPS recognition impact host defense remains undefined. Herein, we establish how temperature dependent shifts in the lipid A of Yersinia pestis LPS that differentially impact recognition by mouse versus human TLR4/MD-2 dictate infection susceptibility. When grown at 37°C, Y. pestis LPS is hypo-acylated and less stimulatory to human compared with murine TLR4/MD-2. By contrast, when grown at reduced temperatures, Y. pestis LPS is more acylated, and stimulates cells equally via human and mouse TLR4/MD-2. To investigate how these temperature dependent shifts in LPS impact infection susceptibility, transgenic mice expressing human rather than mouse TLR4/MD-2 were generated. We found the increased susceptibility to Y. pestis for "humanized" TLR4/MD-2 mice directly paralleled blunted inflammatory cytokine production in response to stimulation with purified LPS. By contrast, for other Gram-negative pathogens with highly acylated lipid A including Salmonella enterica or Escherichia coli, infection susceptibility and the response after stimulation with LPS were indistinguishable between mice expressing human or mouse TLR4/MD-2. Thus, Y. pestis exploits temperature-dependent shifts in LPS acylation to selectively evade recognition by human TLR4/MD-2 uncovered with "humanized" TLR4/MD-2 transgenic mice.

  9. Neurology Falls. Patient Falls Risk Assessment, Neurology Clinic, Johns Hopkins Hospital, Baltimore, MD

    DTIC Science & Technology

    2009-07-06

    currently valid ()MB control number. PLEASE DO NOT RETURN YOf IR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 21 JUL 2008 2. REPORT TYPE Final...Hospital, Baltimore, MD 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) LT John M Gardner, MSC, USN 5d. PROJECT...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Johns Hopkins Hospital, Baltimore, MD Residency Site

  10. A Survey of Invasive Catheter Practices in US Burn Centers

    DTIC Science & Technology

    2012-12-01

    exist. The purpose of this study was to define the breadth of current practices and identify areas of practice variation that may be targets for...Centers Robert L . Sheridan, MD,*|| Alice N. Neely, PhD,† Mayra A. Castillo, RN, BS,‡ Heather A. Shankowsky, RN,§ Shawn P. Fagan, MD,*|| Kevin K. Chung, MD...Practices in US Burn Centers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sheridan R. L ., Neely A. N., Castillo M. A

  11. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.

    PubMed

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  12. Species-Specific Activation of TLR4 by Hypoacylated Endotoxins Governed by Residues 82 and 122 of MD-2

    PubMed Central

    Oblak, Alja; Jerala, Roman

    2014-01-01

    The Toll-like receptor 4/MD-2 receptor complex recognizes endotoxin, a Gram-negative bacterial cell envelope component. Recognition of the most potent hexaacylated form of endotoxin is mediated by the sixth acyl chain that protrudes from the MD-2 hydrophobic pocket and bridges TLR4/MD-2 to the neighboring TLR4 ectodomain, driving receptor dimerization via hydrophobic interactions. In hypoacylated endotoxins all acyl chains could be accommodated within the binding pocket of the human hMD-2. Nevertheless, tetra- and pentaacylated endotoxins activate the TLR4/MD-2 receptor of several species. We observed that amino acid residues 82 and 122, located at the entrance to the endotoxin binding site of MD-2, have major influence on the species-specific endotoxin recognition. We show that substitution of hMD-2 residue V82 with an amino acid residue with a bulkier hydrophobic side chain enables activation of TLR4/MD-2 by pentaacylated and tetraacylated endotoxins. Interaction of the lipid A phosphate group with the amino acid residue 122 of MD-2 facilitates the appropriate positioning of the hypoacylated endotoxin. Moreover, mouse TLR4 contributes to the agonistic effect of pentaacylated msbB endotoxin. We propose a molecular model that explains how the molecular differences between the murine or equine MD-2, which both have sufficiently large hydrophobic pockets to accommodate all five or four acyl chains, influence the positioning of endotoxin so that one of the acyl chains remains outside the pocket and enables hydrophobic interactions with TLR4, leading to receptor activation. PMID:25203747

  13. Species-specific activation of TLR4 by hypoacylated endotoxins governed by residues 82 and 122 of MD-2.

    PubMed

    Oblak, Alja; Jerala, Roman

    2014-01-01

    The Toll-like receptor 4/MD-2 receptor complex recognizes endotoxin, a Gram-negative bacterial cell envelope component. Recognition of the most potent hexaacylated form of endotoxin is mediated by the sixth acyl chain that protrudes from the MD-2 hydrophobic pocket and bridges TLR4/MD-2 to the neighboring TLR4 ectodomain, driving receptor dimerization via hydrophobic interactions. In hypoacylated endotoxins all acyl chains could be accommodated within the binding pocket of the human hMD-2. Nevertheless, tetra- and pentaacylated endotoxins activate the TLR4/MD-2 receptor of several species. We observed that amino acid residues 82 and 122, located at the entrance to the endotoxin binding site of MD-2, have major influence on the species-specific endotoxin recognition. We show that substitution of hMD-2 residue V82 with an amino acid residue with a bulkier hydrophobic side chain enables activation of TLR4/MD-2 by pentaacylated and tetraacylated endotoxins. Interaction of the lipid A phosphate group with the amino acid residue 122 of MD-2 facilitates the appropriate positioning of the hypoacylated endotoxin. Moreover, mouse TLR4 contributes to the agonistic effect of pentaacylated msbB endotoxin. We propose a molecular model that explains how the molecular differences between the murine or equine MD-2, which both have sufficiently large hydrophobic pockets to accommodate all five or four acyl chains, influence the positioning of endotoxin so that one of the acyl chains remains outside the pocket and enables hydrophobic interactions with TLR4, leading to receptor activation.

  14. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.

    PubMed

    Xue, Yi; Yuwen, Tairan; Zhu, Fangqiang; Skrynnikov, Nikolai R

    2014-10-21

    Intrinsically disordered proteins (IDPs) often rely on electrostatic interactions to bind their structured targets. To obtain insight into the mechanism of formation of the electrostatic encounter complex, we investigated the binding of the peptide Sos (PPPVPPRRRR), which serves as a minimal model for an IDP, to the c-Crk N-terminal SH3 domain. Initially, we measured ¹⁵N relaxation rates at two magnetic field strengths and determined the binding shifts for the complex of Sos with wild-type SH3. We have also recorded a 3 μs molecular dynamics (MD) trajectory of this complex using the Amber ff99SB*-ILDN force field. The comparison of the experimental and simulated data shows that MD simulation consistently overestimates the strength of salt bridge interactions at the binding interface. The series of simulations using other advanced force fields also failed to produce any satisfactory results. To address this issue, we have devised an empirical correction to the Amber ff99SB*-ILDN force field whereby the Lennard-Jones equilibrium distance for the nitrogen-oxygen pair across the Arg-to-Asp and Arg-to-Glu salt bridges has been increased by 3%. Implementing this correction resulted in a good agreement between the simulations and the experiment. Adjusting the strength of salt bridge interactions removed a certain amount of strain contained in the original MD model, thus improving the binding of the hydrophobic N-terminal portion of the peptide. The arginine-rich C-terminal portion of the peptide, freed from the effect of the overstabilized salt bridges, was found to interconvert more rapidly between its multiple conformational states. The modified MD protocol has also been successfully used to simulate the entire binding process. In doing so, the peptide was initially placed high above the protein surface. It then arrived at the correct bound pose within ∼2 Å of the crystallographic coordinates. This simulation allowed us to analyze the details of the dynamic binding intermediate, i.e., the electrostatic encounter complex. However, an experimental characterization of this transient, weakly populated state remains out of reach. To overcome this problem, we designed the double mutant of c-Crk N-SH3 in which mutations Y186L and W169F abrogate tight Sos binding and shift the equilibrium toward the intermediate state resembling the electrostatic encounter complex. The results of the combined NMR and MD study of this engineered system will be reported in the next part of this paper.

  15. How the Build Up of Aqueous Humor Can Damage the Optic Nerve

    MedlinePlus

    ... Alzheimer’s Disease Research Program Macular Degeneration Research Program National Glaucoma Research Program Molecular Neurodegeneration ... Foundation BrightFocus Foundation 22512 Gateway Center Drive Clarksburg, MD ...

  16. Purified monomeric ligand.MD-2 complexes reveal molecular and structural requirements for activation and antagonism of TLR4 by Gram-negative bacterial endotoxins.

    PubMed

    Gioannini, Theresa L; Teghanemt, Athmane; Zhang, DeSheng; Esparza, Gregory; Yu, Liping; Weiss, Jerrold

    2014-08-01

    A major focus of work in our laboratory concerns the molecular mechanisms and structural bases of Gram-negative bacterial endotoxin recognition by host (e.g., human) endotoxin-recognition proteins that mediate and/or regulate activation of Toll-like receptor (TLR) 4. Here, we review studies of wild-type and variant monomeric endotoxin.MD-2 complexes first produced and characterized in our laboratories. These purified complexes have provided unique experimental reagents, revealing both quantitative and qualitative determinants of TLR4 activation and antagonism. This review is dedicated to the memory of Dr. Theresa L. Gioannini (1949-2014) who played a central role in many of the studies and discoveries that are reviewed.

  17. New insights into the electrochemical desorption of alkanethiol SAMs on gold

    PubMed Central

    Pensa, Evangelina; Vericat, Carolina; Grumelli, Doris; Salvarezza, Roberto C.; Park, Sung Hyun; Longo, Gabriel S.; Szleifer, Igal

    2012-01-01

    A combination of Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) under electrochemical control, Electrochemical Scanning Tunneling Microscopy (ECSTM) and Molecular Dynamics (MD) simulations has been used to shed light on the reductive desorption process of dodecanethiol (C12) and octadecanethiol (C18) SAMs on gold in aqueous electrolytes. Experimental PMIRRAS, ECSTM and MD simulations data for C12 desorption are consistent with formation of randomly distributed micellar aggregates stabilized by Na+ ions, coexisting with a lying-down phase of molecules. The analysis of pit and Au island coverage before and after desorption is consistent with the thiolate-Au adatoms models. On the other hand, PMIRRAS and MD data for C18 indicate that the desorbed alkanethiolates adopt a Na+ ion-stabilized bilayer of interdigitated alkanethiolates, with no evidence of lying down molecules. MD simulations also show that both the degree of order and tilt angle of the desorbed alkanethiolates change with the surface charge on the metal, going from bilayers to micelles. These results demonstrate the complexity of the alkanethiol desorption in the presence of water and the fact that chain length and counterions play a key role in a complex structure. PMID:22870508

  18. KSC-05pd2641

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture raises the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  19. KSC-05pd2646

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons awaits further processing upon its arrival atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  20. KSC-06pd0009

    NASA Image and Video Library

    2006-01-11

    KENNEDY SPACE CENTER, FLA. - In the Vertical Integration Facility on Launch Complex 41, Cape Canaveral Air Force Station, Hal Weaver, New Horizons project scientist with the Johns Hopkins University Applied Physics Laboratory, signs the fairing enclosing the New Horizons spacecraft. The fairing protects the spacecraft during launch and flight through the atmosphere. Once out of the atmosphere, the fairing is jettisoned. The compact 1,060-pound New Horizons probe carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  1. KSC-05pd2644

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians monitor the fairing enclosing New Horizons as it is lowered onto the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  2. KSC-05pd2647

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons awaits further processing upon its arrival atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  3. KSC-05pd2645

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians monitor the fairing enclosing New Horizons as it is positioned atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  4. KSC-05pd2640

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture lifts the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  5. Role of institutional climate in fostering diversity in biomedical research workforce: a case study.

    PubMed

    Butts, Gary C; Hurd, Yasmin; Palermo, Ann-Gel S; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A

    2012-01-01

    This article reviews the barriers to diversity in biomedical research and describes the evolution of efforts to address climate issues to enhance the ability to attract, retain, and develop underrepresented minorities, whose underrepresentation is found both in science and medicine, in the graduate-school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine. We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. The Mount Sinai School of Medicine diversity-climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs: PhD, MD/PhD, and MD, and at the residency, postdoctoral fellow, and faculty levels. Lessons learned from 4 decades of targeted programs and activities at the Mount Sinai School of Medicine may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. © 2012 Mount Sinai School of Medicine.

  6. Should I get a Master of Business Administration? The anesthesiologist with education training: training options and professional opportunities.

    PubMed

    Desai, Arjun M; Trillo, Raul A; Macario, Alex

    2009-04-01

    Many physicians want to know whether they should get a Master of Business Administration (MBA), what type of program is best, and what career paths exist. It is commonly (incorrectly) assumed that a physician successful in clinical practice can easily transfer to managing/leading an organization. To be effective, the MD/MBA must bridge the cultures of the business world and medicine. Often just a single management course is sufficient to give the physician the knowledge they seek. MBA programs come in many forms and require choosing from a range of time commitments. Leaving a good clinical job in favor of the less-defined course of an MD/MBA can be daunting. Although a wide spectrum of opportunities are available, the MD/MBA may have to start over professionally, most likely with a pay cut, and will have to 'work their way up' again. A stigma exists for MD/MBAs because they are often perceived as caring more about business than about patients. Many MD/MBAs eventually choose to stay in full-time medical practice because financial and geographic stability may be more easily attained. The MBA is a good idea for the physicians who enjoy the intellectual challenges of business administration and proactively plan their own career.

  7. Mammographic density and risk of breast cancer according to tumor characteristics and mode of detection: a Spanish population-based case-control study

    PubMed Central

    2013-01-01

    Introduction It is not clear whether high mammographic density (MD) is equally associated with all subtypes of breast cancer (BC). We investigated the association between MD and subsequent BC, considering invasiveness, means of detection, pathologic subtype, and the time elapsed since mammographic exploration and BC diagnosis. Methods BC cases occurring in the population of women who attended screening from 1997 through 2004 in Navarre, a Spanish region with a fully consolidated screening program, were identified via record linkage with the Navarre Cancer Registry (n = 1,172). Information was extracted from the records of their first attendance at screening in that period. For each case, we randomly selected four controls, matched by screening round, year of birth, and place of residence. Cases were classified according to invasiveness (ductal carcinoma in situ (DCIS) versus invasive tumors), pathologic subtype (considering hormonal receptors and HER2), and type of diagnosis (screen-detected versus interval cases). MD was evaluated by a single, experienced radiologist by using a semiquantitative scale. Data on BC risk factors were obtained by the screening program in the corresponding round. The association between MD and tumor subtype was assessed by using conditional logistic regression. Results MD was clearly associated with subsequent BC. The odds ratio (OR) for the highest MD category (MD >75%) compared with the reference category (MD <10%) was similar for DCIS (OR = 3.47; 95% CI = 1.46 to 8.27) and invasive tumors (OR = 2.95; 95% CI = 2.01 to 4.35). The excess risk was particularly high for interval cases (OR = 7.72; 95% CI = 4.02 to 14.81) in comparison with screened detected tumors (OR = 2.17; 95% CI = 1.40 to 3.36). Sensitivity analyses excluding interval cases diagnosed in the first year after MD assessment or immediately after an early recall to screening yielded similar results. No differences were seen regarding pathologic subtypes. The excess risk associated with MD persisted for at least 7 to 8 years after mammographic exploration. Conclusions Our results confirm that MD is an important risk factor for all types of breast cancer. High breast density strongly increases the risk of developing an interval tumor, and this excess risk is not completely explained by a possible masking effect. PMID:23360535

  8. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor

    PubMed Central

    Shen, Mei; Zhang, Ning; Zheng, Sanduo; Zhang, Wen-Bo; Zhang, Hai-Man; Lu, Zekuan; Su, Qian Peter; Sun, Yujie; Li, Xiang-dong

    2016-01-01

    The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals. PMID:27647889

  9. Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor.

    PubMed

    Shen, Mei; Zhang, Ning; Zheng, Sanduo; Zhang, Wen-Bo; Zhang, Hai-Man; Lu, Zekuan; Su, Qian Peter; Sun, Yujie; Ye, Keqiong; Li, Xiang-Dong

    2016-10-04

    The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca 2+ -dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca 2+ -dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca 2+ -bound CaM (Ca 2+ -CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca 2+ -CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca 2+ -CaM structure, the N-lobe and the C-lobe of Ca 2+ -CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca 2+ -CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca 2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca 2+ transition and that the binding of CaM to IQ1 increases Ca 2+ affinity and substantially changes the kinetics of the Ca 2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca 2+ sensor responding to distinct calcium signals.

  10. Background Characterization Techniques For Pattern Recognition Applications

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Noah, Paul V.; Schroeder, John W.; Kessler, Bernard V.; Chernick, Julian A.

    1989-08-01

    The Department of Defense has a requirement to investigate technologies for the detection of air and ground vehicles in a clutter environment. The use of autonomous systems using infrared, visible, and millimeter wave detectors has the potential to meet DOD's needs. In general, however, the hard-ware technology (large detector arrays with high sensitivity) has outpaced the development of processing techniques and software. In a complex background scene the "problem" is as much one of clutter rejection as it is target detection. The work described in this paper has investigated a new, and innovative, methodology for background clutter characterization, target detection and target identification. The approach uses multivariate statistical analysis to evaluate a set of image metrics applied to infrared cloud imagery and terrain clutter scenes. The techniques are applied to two distinct problems: the characterization of atmospheric water vapor cloud scenes for the Navy's Infrared Search and Track (IRST) applications to support the Infrared Modeling Measurement and Analysis Program (IRAMMP); and the detection of ground vehicles for the Army's Autonomous Homing Munitions (AHM) problems. This work was sponsored under two separate Small Business Innovative Research (SBIR) programs by the Naval Surface Warfare Center (NSWC), White Oak MD, and the Army Material Systems Analysis Activity at Aberdeen Proving Ground MD. The software described in this paper will be available from the respective contract technical representatives.

  11. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.

    PubMed

    Hu, Guodong; Ma, Aijing; Wang, Jihua

    2017-04-24

    Riboswitches regulate gene expression through direct and specific interactions with small metabolite molecules. Binding of a ligand to its RNA target is high selectivity and affinity and induces conformational changes of the RNA's secondary and tertiary structure. The structural difference of two purine riboswitches aptamers is caused by only one single mutation, where cytosine 74 in the guanine riboswitch is corresponding to a uracil 74 in adenine riboswitch. Here we employed molecular dynamics (MD) simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and thermodynamic integration computational methodologies to evaluate the energetic and conformational changes of ligands binding to purine riboswitches. The snapshots used in MM-PBSA calculation were extracted from ten 50 ns MD simulation trajectories for each complex. These free energy results are in consistent with the experimental data and rationalize the selectivity of the riboswitches for different ligands. In particular, it is found that the loss in binding free energy upon mutation is mainly electrostatic in guanine (GUA) and riboswitch complex. Furthermore, new hydrogen bonds are found in mutated complexes. To reveal the conformational properties of guanine riboswitch, we performed a total of 6 μs MD simulations in both the presence and the absence of the ligand GUA. The MD simulations suggest that the conformation of guanine riboswitch depends on the distance of two groups in the binding pocket of ligand. The conformation is in a close conformation when U51-A52 is close to C74-U75.

  12. Molecular Dynamics Simulations of the Interfacial Region between Boehmite and Gibbsite Basal Surfaces and High Ionic Strength Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.

    Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less

  13. Trends in MD/PhD Graduates Entering Psychiatry: Assessing the Physician-Scientist Pipeline.

    PubMed

    Arbuckle, Melissa R; Luo, Sean X; Pincus, Harold Alan; Gordon, Joshua A; Chung, Joyce Y; Chavez, Mark; Oquendo, Maria A

    2018-06-01

    The goal of this study was to identify trends in MD/PhD graduates entering psychiatry, to compare these trends with other specialties, and to review strategies for enhancing the physician-scientist pipeline. Data on 226,588 medical students graduating from Liaison Committee on Medical Education accredited programs between 1999 and 2012 (6626 MD/PhDs) were used to evaluate the number, percentage, and proportion of MD/PhDs entering psychiatry in comparison with other specialties (neurology, neurosurgery, internal medicine, family medicine, and radiation oncology). Linear regression and multiple linear regression determined whether these values increased over time and varied by sex. Over 14 years, an average of 18 MD/PhDs (range 13-29) enrolled in psychiatry each year. The number of MD/PhDs going into psychiatry significantly increased, although these gains were modest (less than one additional MD/PhD per year). The proportion of students entering psychiatry who were MD/PhDs varied between 2.9 and 5.9 per 100 residents, with no significant change over time. There was also no change in the percentage of MD/PhDs entering psychiatry from among all MD/PhD graduates. The rate of increase in the number of MD/PhDs going into psychiatry did not differ significantly from other specialties except for family medicine, which is decreasing. The rate of MD/PhDs going into psychiatry was higher for women, suggesting closure of the sex gap in 17 years. Despite the increase in the number of MD/PhDs entering psychiatry, these numbers remain low. Expanding the cohort of physician-scientists dedicated to translational research in psychiatry will require a multipronged approach.

  14. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    NASA Astrophysics Data System (ADS)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-01

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0…tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution time/parallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  15. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using amore » variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl+4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. By using these algorithms we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 seconds per time step to 6.9 seconds per time step.« less

  16. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.

    PubMed

    Bylaska, Eric J; Weare, Jonathan Q; Weare, John H

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  17. 78 FR 25259 - Notice of Intent To Grant an Exclusive License; Integrata Security, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ..., 9800 Savage Road, Suite 6848, Fort George G. Meade, MD 20755-6848. FOR FURTHER INFORMATION CONTACT: Marian T. Roche, Director, Technology Transfer Program, 9800 Savage Road, Suite 6848, Fort George G. Meade, MD 20755-6848, telephone (443) 634-3514. Dated: April 24, 2013. Aaron Siegel, Alternate OSD...

  18. Multimedia Cai Program for Students with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Seo, You-Jin; Bryant, Diane

    2012-01-01

    This study investigated the effectiveness of "Math Explorer" at enhancing the word problem-solving skills of students with mathematics difficulties (MD). The study, which had a multiple-probe-across-subjects design, was conducted over 18 weeks. Four students with MD in Grades 2 and 3 participated. All students were able to use the four-step…

  19. Formation of Covalently Modified Folding Intermediates of Simian Virus 40 Vp1 in Large T Antigen-Expressing Cells

    PubMed Central

    Watanabe, Marika; Phamduong, Ellen; Huang, Chu-Han; Itoh, Noriko; Bernal, Janie; Nakanishi, Akira; Rundell, Kathleen; Gjoerup, Ole

    2013-01-01

    The folding and pentamer assembly of the simian virus 40 (SV40) major capsid protein Vp1, which take place in the infected cytoplasm, have been shown to progress through disulfide-bonded Vp1 folding intermediates. In this report, we further demonstrate the existence of another category of Vp1 folding or assembly intermediates: the nonreducible, covalently modified mdVp1s. These species were present in COS-7 cells that expressed a recombinant SV40 Vp1, Vp1ΔC, through plasmid transfection. The mdVp1s persisted under cell and lysate treatment and SDS-PAGE conditions that are expected to have suppressed the formation of artifactual disulfide cross-links. As shown through a pulse-chase analysis, the mdVp1s were derived from the newly synthesized Vp1ΔC in the same time frame as Vp1's folding and oligomerization. The apparent covalent modifications occurred in the cytoplasm within the core region of Vp1 and depended on the coexpression of the SV40 large T antigen (LT) in the cells. Analogous covalently modified species were found with the expression of recombinant polyomavirus Vp1s and human papillomavirus L1s in COS-7 cells. Furthermore, the mdVp1s formed multiprotein complexes with LT, Hsp70, and Hsp40, and a fraction of the largest mdVp1, md4, was disulfide linked to the unmodified Vp1ΔC. Both mdVp1 formation and most of the multiprotein complex formation were blocked by a Vp1 folding mutation, C87A-C254A. Our observations are consistent with a role for LT in facilitating the folding process of SV40 Vp1 by stimulating certain covalent modifications of Vp1 or by recruiting certain cellular proteins. PMID:23427157

  20. Eritoran inhibits S100A8-mediated TLR4/MD-2 activation and tumor growth by changing the immune microenvironment.

    PubMed

    Deguchi, A; Tomita, T; Ohto, U; Takemura, K; Kitao, A; Akashi-Takamura, S; Miyake, K; Maru, Y

    2016-03-17

    S100A8/A9 is a major component of the acute phase of inflammation, and appears to regulate cell proliferation, redox regulation and chemotaxis. We previously reported that S100A8/S100A9 are upregulated in the premetastatic lung. However, the detailed mechanisms by which S100A8 contributes to tumor progression have not been elucidated. In this study, we investigated the TLR4/MD-2 dependency by S100A8 on tumor progression. We found that S100A8 (2-89) peptide stimulated cell migration in a manner dependent on TLR4, MD-2 and MyD88. The S100A8 (2-89) peptide also activated p38 and NF-κB in TLR4-dependent manner. The peptide induced the upregulation of both IL-6 and Ccl2 in peritoneal macrophages obtained from wild-type mice, but not TLR4-deficient mice. We then investigated the responsible region of S100A8 for TLR4/MD-2 binding by a binding assay, and found that C-terminal region of S100A8 binds to TLR4/MD-2 complex. To further evaluate the TLR4 dependency on tumor microenvironment, Lewis lung carcinoma-bearing mice were treated with Eritoran, an antagonist of TLR4/MD-2 complex. We found that both tumor volume and pulmonary recruitment of myeloid-derived suppressor cells were reduced with the treatment of Eritoran for five consecutive days. Eritoran reduced the development of tumor vasculature, and increased tumor-infiltration of CD8(+) T-cells. Taken together, S100A8 appears to play a crucial role in the activation of the TLR4/MD-2 pathway and the promotion of a tumor growth-enhancing immune microenvironment.

  1. Structural basis for binding of aurora-AG198N- INCENP complex: MD simulations and free energy calculations.

    PubMed

    Tanneeru, Karunakar; Guruprasad, Lalitha

    2013-11-01

    Aurora-A, B and C are non-receptor serine/threonine kinases in Homo sapiens. In spite of high similarity in their sequences, they possess distinct binding partners. These kinases play an important role in cell division and overexpressed in certain cancers. It has been demonstrated that Gly198 in Aurora-A kinase is responsible for its basal kinase activity, the mutation G198N transforms Aurora-A to Aurora-B like function and localization by binding to Inner centromere protein (INCENP). The molecular mechanisms, structural determinants and the binding energetics of the Aurora-A - INCENP complex owing to a single amino acid G198N mutation are not studied. Therefore, we have docked INCENP into human Aurora-A kinase, mutated Gly198 to Asn, Leu and Ala. The wild type and mutant Aurora-A - INCENP complexes were subjected to 40 ns molecular dynamics (MD) simulations. The Asn198 is located in the amphipathic cavity comprising Leu869(IN), Glu868(IN), Thr872(IN), Tyr197(AurA) and Tyr199(AurA) and the interactions mediated via hydrogen bonds are important to stabilize the Aurora-A(G198N) - INCENP complex. The fluctuations in the secondary structural elements and the solvent accessible surface area of all the four complexes during the MD simulations were studied. We calculated the binding free energy upon mutation in the three mutant complexes. The Aurora-A(G198N) - INCENP complex with hydrophilic amino acid mutation has the negative free energy of solvation indicating favorable interactions with INCENP. Our results provide the structural basis and energetics of the human Aurora-A(G198N) - INCENP complex.

  2. MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA.

    PubMed

    Meng, Jianmin; Drolet, Joshua R; Monks, Brian G; Golenbock, Douglas T

    2010-09-03

    Lipopolysaccharide (LPS) activates the innate immune response through the Toll-like receptor 4 (TLR4).MD-2 complex. A synthetic lipid A precursor, lipid IV(A), induces an innate immune response in mice but not in humans. Both TLR4 and MD-2 are required for the agonist activity of lipid IV(A) in mice, with TLR4 interacting through specific surface charges at the dimerization interface. In this study, we used site-directed mutagenesis to identify the MD-2 residues that determine lipid IV(A) species specificity. A single mutation of murine MD-2 at the hydrophobic pocket entrance, E122K, substantially reduced the response to lipid IV(A). Combining the murine MD-2 E122K with the murine TLR4 K367E/S386K/R434Q mutations completely abolished the response to lipid IV(A), effectively converting the murine cellular response to a human-like response. In human cells, however, simultaneous mutations of K122E, K125L, Y41F, and R69G on human MD-2 were required to promote a response to lipid IV(A). Combining the human MD-2 quadruple mutations with the human TLR4 E369K/Q436R mutations completely converted the human MD-2/human TLR4 receptor to a murine-like receptor. Because MD-2 residues 122 and 125 reside at the dimerization interface near the pocket entrance, surface charge differences here directly affect receptor dimerization. In comparison, residues 42 and 69 reside at the MD-2/TLR4 interaction surface opposite the dimerization interface. Surface charge differences there likely affect the binding angle and/or rigidity between MD-2 and TLR4, exerting an indirect influence on receptor dimerization and activation. Thus, surface charge differences at the two MD-2/TLR4 interfaces determine the species-specific activation of lipid IV(A).

  3. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    PubMed Central

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques. PMID:25721341

  4. Defense Environmental Restoration Program; Annual Report to Congress for Fiscal Year 1987

    DTIC Science & Technology

    1988-03-01

    14 6 0 0 0 ARIZONA ARMY BUCKEYE 1 1 FLORENCE 1 1 FORT HUACHUCA 2 2 1 2 NAVAJO ADA 1 1 PAPAGO MILITARY RESERVATION 1 1 YUMA PROVING GROUND 2 1 1 NAVY...Aberdeen Proving Ground , MD; Jolt AAR IL; lntterken. ny AD, PA; NAS Whidbey Island, WA. All final listed or proposed sites are priority ranked "A" using...Army Ammunition Plant Doyline P MD Aberdeen Proving Ground -Michaelsville (Landfill) Aberdeen P MD Aberdeen Proving Ground -Edgewood Area Edgewood P ME

  5. A Computer Program to Implement the Chen Method of Dimensional Analysis

    DTIC Science & Technology

    1990-01-01

    Director: AXHE-S (m. B Corna)U.S. Army TRADOX Systems Analysis Activity ATTdN: AXrE-IS (Mr. B. Corona) ATM: ATOR-TSL Aberden Proving Ground , MD 21005-5001...Laboratory I Aberdeen Proving Ground , MD 21005-5066 ATTN: AMSMI-ROC Redstone Arsenal, AL 35898-5242 Direct or D U.S. Army Human Engineering Laboratory 1...Kokinakis) U.S. Army Missile Laboratory Aberdeen Proving Ground , MD 21005-5066 ReTN AMSMI-R C1edstone Arsenal, AL 35898-5242 Director Director 1 U.S. Army

  6. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  7. Conformational analysis of GT1B ganglioside and its interaction with botulinum neurotoxin type B: a study by molecular modeling and molecular dynamics.

    PubMed

    Venkateshwari, Sureshkumar; Veluraja, Kasinadar

    2012-01-01

    The conformational property of oligosaccharide GT1B in aqueous environment was studied by molecular dynamics (MD) simulation using all-atom model. Based on the trajectory analysis, three prominent conformational models were proposed for GT1B. Direct and water-mediated hydrogen bonding interactions stabilize these structures. The molecular modeling and 15 ns MD simulation of the Botulinum Neuro Toxin/B (BoNT/B) - GT1B complex revealed that BoNT/B can accommodate the GT1B in the single binding mode. Least mobility was seen for oligo-GT1B in the binding pocket. The bound conformation of GT1B obtained from the MD simulation of the BoNT/B-GT1B complex bear a close conformational similarity with the crystal structure of BoNT/A-GT1B complex. The mobility noticed for Arg 1268 in the dynamics was accounted for its favorable interaction with terminal NeuNAc. The internal NeuNAc1 tends to form 10 hydrogen bonds with BoNT/B, hence specifying this particular site as a crucial space for the therapeutic design that can restrict the pathogenic activity of BoNT/B.

  8. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  9. Neural network error correction for solving coupled ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  10. New Exploration of Kerguelen Plateau Margins

    NASA Astrophysics Data System (ADS)

    Vially, R.; Roest, W. R.; Loubrieu, B.; Courreges, E.; Lecomte, J.; Patriat, M.; Pierre, D.; Schaming, M.; Schmitz, J.

    2008-12-01

    France ratified the United Nations Convention on the Law of the Sea in 1996, and has since undertaken an ambitious program of bathymetric and seismic data acquisition (EXTRAPLAC Program) to support claims for the extension of the legal continental shelf, in accordance with Article 76 of this convention. For this purpose, three oceanographic surveys took place on board of the R/V Marion Dufresne II on the Kerguelen Plateau, in Southern Indian Ocean: MD137-Kergueplac1 (February 2004), MD150-Kergueplac2 (October 2005) and MD165-Kergueplac3 (January 2008), operated by the French Polar Institute. Thus, more than 20 000 km of multibeam bathymetric, magnetic and gravimetric profiles, and almost 6 000 km of seismic profiles where acquired during a total of 62 days of survey in the study area. Ifremer's "rapid seismic" system was used, comprised of 4 guns and a 24 trace digital streamer, operated at speeds up to 10 knots. In addition to its use for the Extraplac Program, the data set issued from these surveys gives the opportunity to improve our knowledge of the structure of the Kerguelen Plateau and more particularly of its complex margins. In this poster, we will show the high resolution bathymetry (200 m) data set, that allows us to specify the irregular morphology of the sea floor in the north Kerguelen Plateau, characterised by ridges and volcanoes chains, radial to the plateau, that intersect the oceanic basin on the NE edge of the Kerguelen Plateau. We will also show magnetic and gravity data, which help us to understand the setting up of the oceanic plateau and the kinematics reconstructions. The seismic profiles show that the acoustic basement of the plateau is not much tectonised, and displays a very smooth texture, clearly contrasting it from typical oceanic basement. Both along the edge of the plateau as in the abyssal plain, sediments have variable thicknesses. The sediments on the margin of the plateau are up to 1200 meters thick and display irregular crisscross patterns, suggesting the presence of important bottom currents.

  11. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  12. Examining Summer Laboratory Research Apprenticeships for High School Students as a Factor in Entry to MD/PhD Programs at Matriculation.

    PubMed

    Tai, Robert H; Kong, Xiaoqing; Mitchell, Claire E; Dabney, Katherine P; Read, Daniel M; Jeffe, Donna B; Andriole, Dorothy A; Wathington, Heather D

    2017-01-01

    Do summer laboratory research apprenticeships during high school have an impact on entry into MD/PhD programs? Apart from the nearly decade-long span of time between high school and matriculation into an MD/PhD program, young people have many life-shaping experiences that presumably impact their education and career trajectories. This quantitative study ( n = 236,432) examines the connection between early laboratory research apprenticeship experiences at the high school level and matriculation into one of the more rigorous educational programs for scientific research training. The span of time covered by this analysis reaches across more than a decade, examining the potential importance of research experiences during the precollege years in the educational trajectory of young people. Intertwined with this question on research experiences is a second major concern regarding diversity in the life sciences research corps. Diversity in this wide-ranging discipline refers specifically to the underrepresentation of Blacks/African Americans, Hispanics/Latino/as, and American Indians/Alaska Natives among the ranks of research scientists. Thus, this study includes analyses that specifically focus on research apprenticeships of Blacks/African Americans and Hispanics/Latino/as and their entrance into MD/PhD programs. © 2017 R. H. Tai et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Defense Science and Technology RELIANCE. Defense Technology Objectives Success Stories

    DTIC Science & Technology

    2001-03-01

    27 MD.04 Medical Countermeasures for Botulinum Toxin ...flexibility of U.S. forces. Completed. 1998 SPONSORS DoD Chemical and Biological Defense Program MEDICAL COUNTERMEASURES FOR BOTULINUM TOXIN (MD.04) 29...system operates satisfactorily against a high-level jamming environment in the target area. On four AGTFT free flights, the AGTFT flight test vehicles

  14. From Theory to Air Force Practice: Applications and Non-Binary Extensions of Probabilistic Model-Building Genetic Algorithms

    DTIC Science & Technology

    2006-05-31

    dynamics (MD) and kinetic Monte Carlo ( KMC ) procedures. In 2D surface modeling our calculations project speedups of 9 orders of magnitude at 300 degrees...programming is used to perform customized statistical mechanics by bridging the different time scales of MD and KMC quickly and well. Speedups in

  15. 76 FR 16788 - Medicare Program; Solicitation of Two Nominations to the Advisory Panel on Ambulatory Payment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... September 30, 2011.) E. L. Hambrick, M.D., J.D., Chair, a CMS Medical Officer Ruth L. Bush, M.D., M.P.H... disability; medical or technical specialty; and type of hospital, hospital health system, or other Medicare... encompasses hospital payment systems; hospital medical care delivery systems; provider billing systems; APC...

  16. 75 FR 14606 - Medicare Program; Request for Nominations to the Advisory Panel on Ambulatory Payment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... Medical Officer Ruth L. Bush, M.D., M.P.H. Dawn L. Francis, M.D., M.H.S. Kathleen M. Graham, R.N., MSHA... practice; race, ethnicity, sex, and disability; medical or technical specialty; and type of hospital... the Panel's work. Such expertise encompasses hospital payment systems; hospital medical care delivery...

  17. Entry of US Medical School Graduates Into Family Medicine Residencies: 2015-2016.

    PubMed

    Kozakowski, Stanley M; Travis, Alexandra; Bentley, Ashley; Fetter, Gerald

    2016-10-01

    This is the 35th national study conducted by the American Academy of Family Physicians (AAFP) that reports retrospectively the percentage of graduates from MD-granting and DO-granting medical schools who entered Accreditation Council for Graduate Medical Education (ACGME)-accredited family medicine residency programs as first-year residents. Approximately 8.7% of the 18,929 students graduating from US MD-granting medical schools and 15.5% of the 5,314 students graduating from DO-granting medical schools between July 2014 and June 2015 entered an ACGME family medicine residency in 2015. Together, 10.2% of graduates of MD- and DO-granting schools entered family medicine. Of the 1,640 graduates of the MD-granting medical schools who entered a family medicine residency in 2015, 80% graduated from 70 of the 134 schools (52%). In 2015, DO-granting medical schools graduated 823 into ACGME-accredited family medicine residencies, 80% graduating from 19 of the 32 schools (59%). In aggregate, medical schools west of the Mississippi River represent less than a third of all MD-granting schools but have a rate of students selecting family medicine that is 40% higher than schools located east of the Mississippi. Fifty-one percent (24/47) of states and territories containing medical schools produce 80% of the graduates entering ACGME-accredited family medicine residency programs. A rank order list of MD-granting medical schools was created based on the last 3 years' average percentage of graduates who became family medicine residents, using the 2015 and prior AAFP census data.

  18. The Single Graduate Medical Education (GME) Accreditation System Will Change the Future of the Family Medicine Workforce.

    PubMed

    Peabody, Michael R; O'Neill, Thomas R; Eden, Aimee R; Puffer, James C

    2017-01-01

    Due to the Accreditation Council for Graduate Medical Education (ACGME)/American Osteopathic Association (AOA) single-accreditation model, the specialty of family medicine may see as many as 150 programs and 500 trainees in AOA-accredited programs seek ACGME accreditation. This analysis serves to better understand the composition of physicians completing family medicine residency training and their subsequent certification by the American Board of Family Medicine. We identified residents who completed an ACGME-accredited or dual-accredited family medicine residency program between 2006 and 2016 and cross-tabulated the data by graduation year and by educational background (US Medical Graduate-MD [USMG-MD], USMG-DO, or International Medical Graduate-MD [IMG-MD]) to examine the cohort composition trend over time. The number and proportion of osteopaths completing family medicine residency training continues to rise concurrent with a decline in the number and proportion of IMGs. Take Rates for USMG-MDs and USMG-IMGs seem stable; however, the Take Rate for the USMG-DOs has generally been rising since 2011. There is a clear change in the composition of graduating trainees entering the family medicine workforce. As the transition to a single accreditation system for graduate medical education progresses, further shifts in the composition of this workforce should be expected. © Copyright 2017 by the American Board of Family Medicine.

  19. Physician-directed software design: the role of utilization statistics and user input in enhancing HELP results review capabilities.

    PubMed

    Michael, P A

    1993-01-01

    The M.D. Rounds Report program was developed and implemented in June of 1992 as an adjunct to the HELP System at Rex Hospital. The program facilitates rapid access to information on allergies and current medications, laboratory results, radiology reports and therapist notes for a list of patients without physicians having to make additional menu or submenu selections. In planning for an upgrade of the program, utilization statistics and user feedback provided valuable information in terms of frequency of access, features used and unused, and the value of the program as a reporting tool in comparison to other online results reporting applications. A brief description of the functionality of the M.D. Rounds Report, evaluation of the program audit trail and user feedback, planned enhancements to the program, and a discussion of the prototyping and monitoring experience and the impact on future physician subsystem development will be presented.

  20. 76 FR 21755 - Office of the Director, National Institutes of Health; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ....14, Intramural Research Training Award; 93.22, Clinical Research Loan Repayment Program for... Program; 93.187, Undergraduate Scholarship Program for Individuals from Disadvantaged Backgrounds... Drive, Bethesda, MD 20892. Contact Person: Sheria Washington, Executive Secretary/Outreach Program...

  1. A comparative study of Message Digest 5(MD5) and SHA256 algorithm

    NASA Astrophysics Data System (ADS)

    Rachmawati, D.; Tarigan, J. T.; Ginting, A. B. C.

    2018-03-01

    The document is a collection of written or printed data containing information. The more rapid advancement of technology, the integrity of a document should be kept. Because of the nature of an open document means the document contents can be read and modified by many parties so that the integrity of the information as a content of the document is not preserved. To maintain the integrity of the data, it needs to create a mechanism which is called a digital signature. A digital signature is a specific code which is generated from the function of producing a digital signature. One of the algorithms that used to create the digital signature is a hash function. There are many hash functions. Two of them are message digest 5 (MD5) and SHA256. Those both algorithms certainly have its advantages and disadvantages of each. The purpose of this research is to determine the algorithm which is better. The parameters which used to compare that two algorithms are the running time and complexity. The research results obtained from the complexity of the Algorithms MD5 and SHA256 is the same, i.e., ⊖ (N), but regarding the speed is obtained that MD5 is better compared to SHA256.

  2. The three-dimensional structure of TrmB, a transcriptional regulator of dual function in the hyperthermophilic archaeon Pyrococcus furiosus in complex with sucrose

    PubMed Central

    Krug, Michael; Lee, Sung-Jae; Boos, Winfried; Diederichs, Kay; Welte, Wolfram

    2013-01-01

    TrmB is a repressor that binds maltose, maltotriose, and sucrose, as well as other α-glucosides. It recognizes two different operator sequences controlling the TM (Trehalose/Maltose) and the MD (Maltodextrin) operon encoding the respective ABC transporters and sugar-degrading enzymes. Binding of maltose to TrmB abrogates repression of the TM operon but maintains the repression of the MD operon. On the other hand, binding of sucrose abrogates repression of the MD operon but maintains repression of the TM operon. The three-dimensional structure of TrmB in complex with sucrose was solved and refined to a resolution of 3.0 Å. The structure shows the N-terminal DNA binding domain containing a winged-helix-turn-helix (wHTH) domain followed by an amphipathic helix with a coiled-coil motif. The latter promotes dimerization and places the symmetry mates of the putative recognition helix in the wHTH motif about 30 Å apart suggesting a canonical binding to two successive major grooves of duplex palindromic DNA. This suggests that the structure resembles the conformation of TrmB recognizing the pseudopalindromic TM promoter but not the conformation recognizing the nonpalindromic MD promoter. PMID:23576322

  3. Fate and wetting potential of bio-refractory organics in membrane distillation for coke wastewater treatment.

    PubMed

    Ren, Jing; Li, Jianfeng; Chen, Zuliang; Cheng, Fangqin

    2018-06-02

    Membrane distillation (MD) has been hindered in industrial applications due to the potential wetting or fouling caused by complicated organic compositions. This study investigated the correlations between the fate and wetting potential of bio-refractory organics in the MD process, where three coke wastewater samples pre-treated with bio-degradation and coagulation served as feed solutions. Results showed that although most of the bio-refractory organics in coke wastewater were rejected by the hydrophobic membrane, some volatile aromatic organics including benzenes, phenols, quinolines and naphthalenes passed through the membrane during the MD process. Interestingly, membrane wetting occurred coincidently with the penetration of phenolic and heterocyclic organics. The wetting rate was obviously correlated with the feed composition and membrane surface properties. Ultimately, novel insights into the anti-wetting strategy of MD with bio-refractory organics was proposed, illustrating that the polyaluminum chloride/polyacrylamide coagulation not only removed contaminants which could accelerate membrane wetting, but also retarded membrane wetting by the complexation with organics. The deposition of these complexes on the membrane surface introduced a secondary hydrophilic layer on the hydrophobic substrate, which established a composite membrane structure with superior wetting resistance. These new findings would be beneficial to wetting control in membrane distillation for wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Zinc complexation in chloride-rich hydrothermal fluids (25-600 °C): A thermodynamic model derived from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mei, Yuan; Sherman, David M.; Liu, Weihua; Etschmann, Barbara; Testemale, Denis; Brugger, Joël

    2015-02-01

    The solubility of zinc minerals in hydrothermal fluids is enhanced by chloride complexation of Zn2+. Thermodynamic models of these complexation reactions are central to models of Zn transport and ore formation. However, existing thermodynamic models, derived from solubility measurements, are inconsistent with spectroscopic measurements of Zn speciation. Here, we used ab initio molecular dynamics simulations (with the PBE exchange-correlation functional) to predict the speciation of Zn-Cl complexes from 25 to 600 °C. We also obtained in situ XAS measurements of Zn-Cl solutions at 30-600 °C. Qualitatively, the simulations reproduced the main features derived from in situ XANES and EXAFS measurements: octahedral to tetrahedral transition with increasing temperature and salinity, stability of ZnCl42- at high chloride concentration up to ⩾500 °C, and increasing stability of the trigonal planar [ZnCl3]- complex at high temperature. Having confirmed the dominant species, we directly determined the stability constants for the Zn-Cl complexes using thermodynamic integration along constrained Zn-Cl distances in a series of MD simulations. We corrected our stability constants to infinite dilution using the b-dot model for the activity coefficients of the solute species. In order to compare the ab initio results with experiments, we need to re-model the existing solubility data using the species we identified in our MD simulations. The stability constants derived from refitting published experimental data are in reasonable agreement with those we obtained using ab initio MD simulations. Our new thermodynamic model accurately predicts the experimentally observed changes in ZnO(s) and ZnCO3(s) solubility as a function of chloride concentration from 200 (Psat) to 600 °C (2000 bar). This study demonstrates that metal speciation and geologically useful stability constants can be derived for species in hydrothermal fluids from ab initio MD simulations even at the generalized gradient approximation for exchange-correlation. We caution, however, that simulations are mostly reliable at high T where ligand exchange is fast enough to yield thermodynamic averages over the timescales of the simulations.

  5. General Trends of Dihedral Conformational Transitions in a Globular Protein

    PubMed Central

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; McCammon, J. Andrew

    2017-01-01

    Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and Adaptive Biasing Force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions ~2 times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the Bend, Coil and Turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein sidechains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Sidechains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. PMID:26799251

  6. KSC-05pd2638

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is lowered toward the nose of the fairing enclosing New Horizons upon its arrival at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. A Lockheed Martin Atlas V launch vehicle stands ready to receive it in the background. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  7. KSC-05pd2631

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians lift New Horizons toward a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. The last strip of the mission decal will be installed on the fairing after the spacecraft is delivered to the pad. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  8. KSC-05pd2632

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians lower New Horizons onto a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. The last strip of the mission decal will be installed on the fairing after the spacecraft is delivered to the pad. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  9. KSC-05pd2643

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - InDyne employee Mic Miracle captures on video the arrival of the fairing enclosing New Horizons at the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  10. Short Communication: Transplacental Nucleoside Analogue Exposure and Mitochondrial Parameters in HIV-Uninfected Children

    PubMed Central

    Brogly, Susan B.; DiMauro, Salvatore; Van Dyke, Russell B.; Williams, Paige L.; Naini, Ali; Libutti, Daniel E.; Choi, Julia; Chung, Michelle

    2011-01-01

    Abstract Transplacental nucleoside analogue exposure can affect infant mitochondrial DNA (mtDNA). We evaluated mitochondria in peripheral blood mononuclear cells of children with and without clinical signs of mitochondrial dysfunction (MD) and antiretroviral (ARV) exposure. We previously identified 20 children with signs of MD (cases) among 1037 HIV-uninfected children born to HIV-infected women. We measured mtDNA copies/cell and oxidative phosphorylation (OXPHOS) NADH dehydrogenase (complex I) and cytochrome c oxidase (complex IV) protein levels and enzyme activities, determined mtDNA haplogroups and deletions in 18 of 20 cases with stored samples and in sex- and age-matched HIV-uninfected children, both ARV exposed and unexposed, (1) within 18 months of birth and (2) at the time of presentation of signs of MD. In specimens drawn within 18 months of birth, mtDNA levels were higher and OXPHOS protein levels and enzyme activities lower in cases than controls. In contrast, at the time of MD presentation, cases and ARV-exposed controls had lower mtDNA levels, 214 and 215 copies/cell, respectively, than ARV-unexposed controls, 254 copies/cell. OXPHOS protein levels and enzyme activities were lower in cases than exposed controls, and higher in cases than unexposed controls, except for complex IV activity, which was higher in cases. Haplotype H was less frequent among cases (6%) than controls (31%). No deletions were found. The long-term significance of these small but potentially important alterations should continue to be studied as these children enter adolescence and adulthood. PMID:21142587

  11. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE PAGES

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk; ...

    2017-11-07

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  12. Constant-pH Molecular Dynamics Simulations for Large Biomolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radak, Brian K.; Chipot, Christophe; Suh, Donghyuk

    We report that an increasingly important endeavor is to develop computational strategies that enable molecular dynamics (MD) simulations of biomolecular systems with spontaneous changes in protonation states under conditions of constant pH. The present work describes our efforts to implement the powerful constant-pH MD simulation method, based on a hybrid nonequilibrium MD/Monte Carlo (neMD/MC) technique within the highly scalable program NAMD. The constant-pH hybrid neMD/MC method has several appealing features; it samples the correct semigrand canonical ensemble rigorously, the computational cost increases linearly with the number of titratable sites, and it is applicable to explicit solvent simulations. The present implementationmore » of the constant-pH hybrid neMD/MC in NAMD is designed to handle a wide range of biomolecular systems with no constraints on the choice of force field. Furthermore, the sampling efficiency can be adaptively improved on-the-fly by adjusting algorithmic parameters during the simulation. Finally, illustrative examples emphasizing medium- and large-scale applications on next-generation supercomputing architectures are provided.« less

  13. KSC-05pd2613

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - At their consoles in the Atlas V Spaceflight Operations Center on Cape Canaveral Air Force Station, members of the New Horizons team take part in a dress rehearsal for the launch scheduled in mid-January. From left are Lockheed Martin's Program Manager John Crocker; Michael Kubiak with the U.S. Air Force, participating with Lockheed Martin on the Education with Industry program; and Lockheed Martin's Carlos Prado. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  14. MD/MBA Students: An Analysis of Medical Student Career Choice.

    PubMed

    Sherrill, Windsor Westbrook

    2004-12-01

    An increasing number of medical schools are offering dual degree MD/MBA programs. Career choices and factors influencing students to enter these programs provide an indicator of the roles in which dual degree students will serve in health care as well as the future of dual degree programs. Using career choice theory as a conceptual framework, career goals and factors influencing decisions to enter dual degree programs were assessed among dual degree medical students. Students enrolled at dual degree programs at six medical schools were surveyed and interviewed. A control group of traditional medical students was also surveyed. Factors influencing students to seek both medical and business training are varied but are often related to a desire for leadership opportunities, concerns about change in medicine and job security and personal career goals. Most students expect to combine clinical and administrative roles. Students entering these programs do so for a variety of reasons and plan diverse careers. These findings can provide guidance for program development and recruitment for dual degree medical education programs.

  15. Molecular Genetic Analysis of an Endotoxin Nonresponder Mutant Cell Line

    PubMed Central

    Schromm, Andra B.; Lien, Egil; Henneke, Philipp; Chow, Jesse C.; Yoshimura, Atsutoshi; Heine, Holger; Latz, Eicke; Monks, Brian G.; Schwartz, David A.; Miyake, Kensuke; Golenbock, Douglas T.

    2001-01-01

    Somatic cell mutagenesis is a powerful tool for characterizing receptor systems. We reported previously two complementation groups of mutant cell lines derived from CD14-transfected Chinese hamster ovary–K1 fibroblasts defective in responses to bacterial endotoxin. Both classes of mutants expressed a normal gene product for Toll-like receptor (TLR)4, and fully responded to stimulation by tumor necrosis factor (TNF)-α or interleukin (IL)-1β. We identified the lesion in one of the complementation groups in the gene for MD-2, a putative TLR4 coreceptor. The nonresponder phenotype of this mutant was reversed by transfection with MD-2. Cloning of MD-2 from the nonresponder cell line revealed a point mutation in a highly conserved region resulting in a C95Y amino acid exchange. Both forms of MD-2 colocalized with TLR4 on the cell surface after transfection, but only the wild-type cDNA reverted the lipopolysaccharide (LPS) nonresponder phenotype. Furthermore, soluble MD-2, but not soluble MD-2C95Y, functioned to enable LPS responses in cells that expressed TLR4. Thus, MD-2 is a required component of the LPS signaling complex and can function as a soluble receptor for cells that do not otherwise express it. We hypothesize that MD-2 conformationally affects the extracellular domain of TLR4, perhaps resulting in a change in affinity for LPS or functioning as a portion of the true ligand for TLR4. PMID:11435474

  16. Relationship between consecutive deterioration of mean deviation value and progression of visual field defect in open-angle glaucoma.

    PubMed

    Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Takeda, Ryuji; Shiraga, Fumio

    2015-01-01

    To analyze the relationship between consecutive deterioration of mean deviation (MD) value and glaucomatous visual field (VF) progression in open-angle glaucoma (OAG), including primary OAG and normal tension glaucoma. The subjects of the study were patients undergoing treatment for OAG who had performed VF tests at least 10 times with a Humphrey field analyzer (SITA standard, C30-2 program). The VF progression was defined by a significantly negative MD slope (MD slope worsening) at the final VF test during the follow-up period. The relationship between the MD slope worsening and the consecutive deterioration of MD value were retrospectively analyzed. A total of 165 eyes of 165 patients were included in the analysis. Significant progression of VF defects was observed in 72 eyes of 72 patients (43.6%), while no significant progression was evident in 93 eyes of 93 patients (56.4%). There was significant relationship between the frequency of consecutive deterioration of MD value and MD slope worsening (P<0.0001, Cochran-Armitage trend test). A significant association was observed for MD slope worsening in the eyes with three (odds ratio: 2.1, P=0.0224) and four (odds ratio: 3.6, P=0.0008) consecutive deterioration of MD value in multiple logistic regression analysis, but no significant association in the eyes with two consecutive deterioration (odds ratio: 1.1, P=0.8282). The eyes with VF progression had significantly lower intraocular pressure reduction rate (P<0.01). This retrospective study has shown that three or more consecutive deterioration of MD value might be a predictor to future significant MD slope worsening in OAG.

  17. KSC-2009-2506

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – On display at the Kennedy Space Center Visitor Complex in Florida is the Orion crew exploration vehicle mockup, which will be moved onto the center before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-2503

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – Visitors to the Visitor Complex at NASA's Kennedy Space Center in Florida get a look at the Orion crew exploration vehicle mockup, which is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  19. A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer.

    PubMed

    Komeiji, Y; Yokoyama, H; Uebayasi, M; Taiji, M; Fukushige, T; Sugimoto, D; Takata, R; Shimizu, A; Itsukashi, K

    1996-01-01

    GRAPE (GRavity PipE) processors are special purpose computers for simulation of classical particles. The performance of MD-GRAPE, one of the GRAPEs developed for molecular dynamics, was investigated. The effective speed of MD-GRAPE was equivalent to approximately 6 Gflops. The precision of MD-GRAPE was good judging from the acceptable fluctuation of the total energy. Then a software named PEACH (Program for Energetic Analysis of bioCHemical molecules) was developed for molecular dynamics of biomolecules in combination with MD-GRAPE. Molecular dynamics simulation was performed for several protein-solvent systems with different sizes. Simulation of the largest system investigated (27,000 atoms) took only 5 sec/step. Thus, the PEACH-GRAPE system is expected to be useful in accurate and reliable simulation of large biomolecules.

  20. Pilot Study to Aid in the Designing of Research on the Officer Candidate Training Program. PJ-3407-01

    DTIC Science & Technology

    1952-08-01

    Coadidate Scbhol, Aberden Proving Oromds, Md. 20 G The Antiaircraft sa OuGided Misiles Brach Officer Canidate School, Fort B11.., Temaw 22 9 The Army...M4onmouth, N. J. R The Infantry Officer Candidate School, Fort BenninG, Georgia F The Ordnance Officer Candidate School, Aberdeen Proving Grounds , Md

  1. Admissions and Plebe Year Data as Indicators of Academic Success in Engineering Majors at the United States Naval Academy

    DTIC Science & Technology

    2002-06-01

    3 = Divorced ) Number of Dependents Self-Explanatory Continuous Variable Related Job Experience Was job experience related to college program...Crawford Naval Postgraduate School Monterrey , CA 7. Professor Roger Little U. S. Naval Academy Annapolis, MD 8. LT Nicholas A. Kristof Chester, MD 9. Mr. and Mrs. Zoltan J. Kristof Pittsburgh, PA

  2. 76 FR 72708 - Medicare Program; Renaming and Other Changes to the Advisory Panel on Hospital Outpatient Payment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    .... L. Hambrick, M.D., J.D., Chair, a CMS Medical Officer. Ruth L. Bush, M.D., M.P.H. Kari S. Cornicelli..., rural or urban practice, points of view, medical or technical specialty, type of hospital, hospital... the member based upon their technical expertise in hospital payment systems; hospital medical care...

  3. Investigating the Role of Radiation Therapy Breast Cancer Clinical and Translational Research

    DTIC Science & Technology

    2006-05-01

    radiosensitizing and anticancer properties of green tea and curcumin and found a complex response cascade in cell lines. For example, the anticancer ...this fall. 5. Arber Kodra: Effect of Green Tea and Curcumin on Breast Cancer Cell Lines Mentor: Gary Kao, MD PhD Arber examined the...Breast Cancer Elizabeth Gurney Mentor: Gary Kao, MD, PhD Effect of Green Tea and Curcumin on Breast Cancer Cell Lines Arber Kodra Mentor

  4. 77 FR 35418 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852, (Telephone Conference Call... of Federal Domestic Assistance Program Nos.: 93.279, Drug Abuse and Addiction Research Programs...

  5. 78 FR 31566 - National Vaccine Injury Compensation Program; List of Petitions Received

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Vaccine Injury Compensation Program; List of Petitions Received AGENCY: Health Resources and Services... publishing this notice of petitions received under the National Vaccine Injury Compensation Program (``the..., National Vaccine Injury Compensation Program, 5600 Fishers Lane, Room 11C-26, Rockville, MD 20857; (301...

  6. 75 FR 59605 - National Veterinary Accreditation Program; Currently Accredited Veterinarians Performing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    .... APHIS-2006-0093] RIN 0579-AC04 National Veterinary Accreditation Program; Currently Accredited... Veterinary Accreditation Program (NVAP) may continue to perform accredited duties and to elect to continue to..., National Veterinary Accreditation Program, VS, APHIS, 4700 River Road Unit 200, Riverdale, MD 20737; (301...

  7. Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions.

    PubMed

    Gillespie, Nathan A; Neale, Michael C; Hagler, Donald J; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Lyons, Michael J; McEvoy, Linda K; Dale, Anders M; Panizzon, Matthew S; Kremen, William S

    2017-05-01

    Increased mean diffusivity (MD) is hypothesized to reflect tissue degeneration and may provide subtle indicators of neuropathology as well as age-related brain changes in the absence of volumetric differences. Our aim was to determine the degree to which genetic and environmental variation in subcortical MD is distinct from variation in subcortical volume. Data were derived from a sample of 387 male twins (83 MZ twin pairs, 55 DZ twin pairs, and 111 incomplete twin pairs) who were MRI scanned as part of the Vietnam Era Twin Study of Aging. Quantitative estimates of MD and volume for 7 subcortical regions were obtained: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. After adjusting for covariates, bivariate twin models were fitted to estimate the size and significance of phenotypic, genotypic, and environmental correlations between MD and volume at each subcortical region. With the exception of the amygdala, familial aggregation in MD was entirely explained by additive genetic factors across all subcortical regions with estimates ranging from 46 to 84%. Based on bivariate twin modeling, variation in subcortical MD appears to be both genetically and environmentally unrelated to individual differences in subcortical volume. Therefore, subcortical MD may be an alternative biomarker of brain morphology for complex traits worthy of future investigation. Hum Brain Mapp 38:2589-2598, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  9. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator

    NASA Astrophysics Data System (ADS)

    Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît

    2018-01-01

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.

  10. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator.

    PubMed

    Suh, Donghyuk; Radak, Brian K; Chipot, Christophe; Roux, Benoît

    2018-01-07

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.

  11. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.

  12. Efficient hybrid non-equilibrium molecular dynamics - Monte Carlo simulations with symmetric momentum reversal

    NASA Astrophysics Data System (ADS)

    Chen, Yunjie; Roux, Benoît

    2014-09-01

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct equilibrium probability distribution with this prescription.

  13. The Maastricht-Duke bridge: An era of mentoring in clinical research - A model for mentoring in clinical research - A tribute to Dr. Galen Wagner.

    PubMed

    Meijs, Loek; Zusterzeel, Robbert; Wellens, Hein Jj; Gorgels, Anton Pm

    With the passing of Dr. Galen Wagner, an exceptional collaboration between Maastricht University Medical Center, The Netherlands, and Duke Clinical Research Institute, USA, has come to an end. This article focuses on the background of what Galen coined the Maastricht-Duke bridge (MD-bridge), its merits, limitations and development throughout the years, and his special role. Between 2004 and 2015, 23 Maastricht University medical students and post-graduate students were enrolled in the 4-month research elective, mentored by Galen and the Maastricht co-mentor. They were asked to complete a survey about their MD-bridge experience. Sixteen out of the 23 students responded. None but 1 participant had prior research experience. Following their MD bridge-program most participants published 1 or more manuscripts and/or presented their research in an international setting. They felt they had full responsibility as a leader of their project with all participants developing meaningful skills useful in their current job. Fourteen out of 16 would recommend the MD-bridge experience to others. Participants considered the program of great value for their personal growth and independence, giving a feeling of achievement. In addition, for some participants it led to careers in foreign countries including medical practice and research, or obtaining PhDs. With Galen's impressive career of mentoring students, including the 23 MD-bridge participants, he has left behind an amazing concept of self-development in research and personal life. The successes of the MD-bridge prove that it is possible for students to be young investigators during or just after medical school with the potential to contribute to developing meaningful skills and noteworthy careers. Collaborations between international universities, such as the MD-bridge, are feasible and should be embraced by other institutions. Published by Elsevier Inc.

  14. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery

    PubMed Central

    Li, Rongzhong; Macnamara, Lindsay M.; Leuchter, Jessica D.; Alexander, Rebecca W.; Cho, Samuel S.

    2015-01-01

    While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes. PMID:26184179

  15. 76 FR 15329 - National Institute on Drug Abuse; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    .... Place: National Institutes of Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852... of Federal Domestic Assistance Program Nos.: 93.279, Drug Abuse and Addiction Research Programs...

  16. The first nationwide survey of MD-PhDs in the social sciences and humanities: training patterns and career choices.

    PubMed

    Holmes, Seth M; Karlin, Jennifer; Stonington, Scott D; Gottheil, Diane L

    2017-03-21

    While several articles on MD-PhD trainees in the basic sciences have been published in the past several years, very little research exists on physician-investigators in the social sciences and humanities. However, the numbers of MD-PhDs training in these fields and the number of programs offering training in these fields are increasing, particularly within the US. In addition, accountability for the public funding for MD-PhD programs requires knowledge about this growing population of trainees and their career trajectories. The aim of this paper is to describe the first cohorts of MD-PhDs in the social sciences and humanities, to characterize their training and career paths, and to better understand their experiences of training and subsequent research and practice. This paper utilizes a multi-pronged recruitment method and novel survey instrument to examine an understudied population of MD-PhD trainees in the social sciences and humanities, many of whom completed both degrees without formal programmatic support. The survey instrument was designed to collect demographic, training and career trajectory data, as well as experiences of and perspectives on training and career. It describes their routes to professional development, characterizes obstacles to and predictors of success, and explores career trends. The average length of time to complete both degrees was 9 years. The vast majority (90%) completed a clinical residency, almost all (98%) were engaged in research, the vast majority (88%) were employed in academic institutions, and several others (9%) held leadership positions in national and international health organizations. Very few (4%) went into private practice. The survey responses supply recommendations for supporting current trainees as well as areas for future research. In general, MD-PhDs in the social sciences and humanities have careers that fit the goals of agencies providing public funding for training physician-investigators: they are involved in mutually-informative medical research, clinical practice, and teaching - working to improve our responses to the social, cultural, and political determinants of health and health care. These findings provide strong evidence for continued and improved funding and programmatic support for MD-PhD trainees in the social sciences and humanities.

  17. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-01

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  18. Lutetium(III) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessa, Francesco; D’Angelo, Paola, E-mail: p.dangelo@uniroma1.it; Spezia, Riccardo

    2016-05-28

    The structure and dynamics of the lutetium(III) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(III) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shellmore » at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(III) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.« less

  19. Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex.

    PubMed

    Sessa, Francesco; Spezia, Riccardo; D'Angelo, Paola

    2016-05-28

    The structure and dynamics of the lutetium(iii) ion in aqueous solution have been investigated by means of a polarizable force field molecular dynamics (MD). An 8-fold square antiprism (SAP) geometry has been found to be the dominant configuration of the lutetium(iii) aqua ion. Nevertheless, a low percentage of 9-fold complexes arranged in a tricapped trigonal prism (TTP) geometry has been also detected. Dynamic properties have been explored by carrying out six independent MD simulations for each of four different temperatures: 277 K, 298 K, 423 K, 632 K. The mean residence time of water molecules in the first hydration shell at room temperature has been found to increase as compared to the central elements of the lanthanoid series in agreement with previous experimental findings. Water exchange kinetic rate constants at each temperature and activation parameters of the process have been determined from the MD simulations. The obtained structural and dynamical results suggest that the water exchange process for the lutetium(iii) aqua ion proceeds with an associative mechanism, in which the SAP hydration complex undergoes temporary structural changes passing through a 9-fold TTP intermediate. Such results are consistent with the water exchange mechanism proposed for heavy lanthanoid atoms.

  20. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. © 2016 Wiley Periodicals, Inc.

  1. The Multiple-Demand System in the Novelty of Musical Improvisation: Evidence from an MRI Study on Composers.

    PubMed

    Lu, Jing; Yang, Hua; He, Hui; Jeon, Seun; Hou, Changyue; Evans, Alan C; Yao, Dezhong

    2017-01-01

    The multiple-demand (MD) system has proven to be associated with creating structured mental programs in comprehensive behaviors, but the functional mechanisms of this system have not been clarified in the musical domain. In this study, we explored the hypothesis that the MD system is involved in a comprehensive music-related behavior known as musical improvisation. Under a functional magnetic resonance imaging (fMRI) paradigm, 29 composers were recruited to improvise melodies through visual imagery tasks according to familiar and unfamiliar cues. We found that the main regions of the MD system were significantly activated during both musical improvisation conditions. However, only a greater involvement of the intraparietal sulcus (IPS) within the MD system was shown when improvising with unfamiliar cues. Our results revealed that the MD system strongly participated in musical improvisation through processing the novelty of melodies, working memory, and attention. In particular, improvising with unfamiliar cues required more musical transposition manipulations. Moreover, both functional and structural analyses indicated evidence of neuroplasticity in MD regions that could be associated with musical improvisation training. These findings can help unveil the functional mechanisms of the MD system in musical cognition, as well as improve our understanding of musical improvisation.

  2. The Multiple-Demand System in the Novelty of Musical Improvisation: Evidence from an MRI Study on Composers

    PubMed Central

    Lu, Jing; Yang, Hua; He, Hui; Jeon, Seun; Hou, Changyue; Evans, Alan C.; Yao, Dezhong

    2017-01-01

    The multiple-demand (MD) system has proven to be associated with creating structured mental programs in comprehensive behaviors, but the functional mechanisms of this system have not been clarified in the musical domain. In this study, we explored the hypothesis that the MD system is involved in a comprehensive music-related behavior known as musical improvisation. Under a functional magnetic resonance imaging (fMRI) paradigm, 29 composers were recruited to improvise melodies through visual imagery tasks according to familiar and unfamiliar cues. We found that the main regions of the MD system were significantly activated during both musical improvisation conditions. However, only a greater involvement of the intraparietal sulcus (IPS) within the MD system was shown when improvising with unfamiliar cues. Our results revealed that the MD system strongly participated in musical improvisation through processing the novelty of melodies, working memory, and attention. In particular, improvising with unfamiliar cues required more musical transposition manipulations. Moreover, both functional and structural analyses indicated evidence of neuroplasticity in MD regions that could be associated with musical improvisation training. These findings can help unveil the functional mechanisms of the MD system in musical cognition, as well as improve our understanding of musical improvisation. PMID:29311776

  3. Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes.

    PubMed

    Islam, Md S; Zeng, Linghe; Thyssen, Gregory N; Delhom, Christopher D; Kim, Hee Jin; Li, Ping; Fang, David D

    2016-06-01

    Three QTL regions controlling three fiber quality traits were validated and further fine-mapped with 27 new single nucleotide polymorphism (SNP) markers. Transcriptome analysis suggests that receptor-like kinases found within the validated QTLs are potential candidate genes responsible for superior fiber strength in cotton line MD52ne. Fiber strength, length, maturity and fineness determine the market value of cotton fibers and the quality of spun yarn. Cotton fiber strength has been recognized as a critical quality attribute in the modern textile industry. Fine mapping along with quantitative trait loci (QTL) validation and candidate gene prediction can uncover the genetic and molecular basis of fiber quality traits. Four previously-identified QTLs (qFBS-c3, qSFI-c14, qUHML-c14 and qUHML-c24) related to fiber bundle strength, short fiber index and fiber length, respectively, were validated using an F3 population that originated from a cross of MD90ne × MD52ne. A group of 27 new SNP markers generated from mapping-by-sequencing (MBS) were placed in QTL regions to improve and validate earlier maps. Our refined QTL regions spanned 4.4, 1.8 and 3.7 Mb of physical distance in the Gossypium raimondii reference genome. We performed RNA sequencing (RNA-seq) of 15 and 20 days post-anthesis fiber cells from MD52ne and MD90ne and aligned reads to the G. raimondii genome. The QTL regions contained 21 significantly differentially expressed genes (DEGs) between the two near-isogenic parental lines. SNPs that result in non-synonymous substitutions to amino acid sequences of annotated genes were identified within these DEGs, and mapped. Taken together, transcriptome and amino acid mutation analysis indicate that receptor-like kinase pathway genes are likely candidates for superior fiber strength and length in MD52ne. MBS along with RNA-seq demonstrated a powerful strategy to elucidate candidate genes for the QTLs that control complex traits in a complex genome like tetraploid upland cotton.

  4. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J., E-mail: Eric.Bylaska@pnnl.gov; Weare, Jonathan Q., E-mail: weare@uchicago.edu; Weare, John H., E-mail: jweare@ucsd.edu

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for themore » trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.« less

  5. 78 FR 79701 - National Vaccine Injury Compensation Program; List of Petitions Received

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Vaccine Injury Compensation Program; List of Petitions Received AGENCY: Health Resources and Services... publishing this notice of petitions received under the National Vaccine Injury Compensation Program (the... Vaccine Injury Compensation Program, 5600 Fishers Lane, Room 11C-26, Rockville, MD 20857; (301) 443-6593...

  6. 78 FR 72680 - National Vaccine Injury Compensation Program; List of Petitions Received

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... Vaccine Injury Compensation Program; List of Petitions Received AGENCY: Health Resources and Services... publishing this notice of petitions received under the National Vaccine Injury Compensation Program (the... Vaccine Injury Compensation Program, 5600 Fishers Lane, Room 11C-26, Rockville, MD 20857; (301) 443-6593...

  7. Employee Wellness: A Cost-Saving Approach.

    ERIC Educational Resources Information Center

    Friedman, Glenn

    1987-01-01

    Employee ill health causes high health costs. Employee "wellness" programs are instrumental in helping control rising health costs. Presents discussion on how to develop effective wellness programs and their benefits. Includes an employee survey. (MD)

  8. Modeling complex and multi-component food systems in molecular dynamics simulations on the example of chocolate conching.

    PubMed

    Greiner, Maximilian; Sonnleitner, Bettina; Mailänder, Markus; Briesen, Heiko

    2014-02-01

    Additional benefits of foods are an increasing factor in the consumer's purchase. To produce foods with the properties the consumer demands, understanding the micro- and nanostructure is becoming more important in food research today. We present molecular dynamics (MD) simulations as a tool to study complex and multi-component food systems on the example of chocolate conching. The process of conching is chosen because of the interesting challenges it provides: the components (fats, emulsifiers and carbohydrates) contain diverse functional groups, are naturally fluctuating in their chemical composition, and have a high number of internal degrees of freedom. Further, slow diffusion in the non-aqueous medium is expected. All of these challenges are typical to food systems in general. Simulation results show the suitability of present force fields to correctly model the liquid and crystal density of cocoa butter and sucrose, respectively. Amphiphilic properties of emulsifiers are observed by micelle formation in water. For non-aqueous media, pulling simulations reveal high energy barriers for motion in the viscous cocoa butter. The work for detachment of an emulsifier from the sucrose crystal is calculated and matched with detachment of the head and tail groups separately. Hydrogen bonding is shown to be the dominant interaction between the emulsifier and the crystal surface. Thus, MD simulations are suited to model the interaction between the emulsifier and sugar crystal interface in non-aqueous media, revealing detailed information about the structuring and interactions on a molecular level. With interaction parameters being available for a wide variety of chemical groups, MD simulations are a valuable tool to understand complex and multi-component food systems in general. MD simulations provide a substantial benefit to researchers to verify their hypothesis in dynamic simulations with an atomistic resolution. Rapid rise of computational resources successively increases the complexity and the size of the systems that can be studied.

  9. Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides.

    PubMed

    Kalathiya, Umesh; Padariya, Monikaben; Baginski, Maciej

    2017-03-01

    Shelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate the molecular basis of these interactions, we employed molecular dynamics (MD) simulations of TRF1 TRFH -TIN2 TBM and TRF2 TRFH -TIN2 TBM /Apollo TBM complexes and of the isolated proteins. MD enabled a structural and dynamical comparison of protein-peptide complexes including H-bond interactions and interfacial residues that may regulate TRF protein binding to the given peptides, especially focusing on interactions described in crystallographic data. Residues with a selective function in both TRF1 TRFH and TRF2 TRFH and forming a stable hydrogen bond network with TIN2 TBM or Apollo TBM peptides were traced. Our study revealed that TIN2 TBM forms a well-defined binding mode with TRF1 TRFH as compared to TRF2 TRFH , and that the binding pocket of TIN2 TBM is deeper for TRF2 TRFH protein than Apollo TBM . The MD data provide a basis for the reinterpretation of mutational data obtained in crystallographic work for the TRF proteins. Together, the previously determined X-ray structure and our MD provide a detailed view of the TRF-peptide binding mode and the structure of TRF1/2 binding pockets. Particular TRF-peptide interactions are very specific for the formation of each protein-peptide complex, identifying TRF proteins as potential targets for the design of inhibitors/drugs modulating telomere machinery for anticancer therapy.

  10. Pharmacist and physician satisfaction and rates of switching to preferred medications associated with an instant prior authorization program for proton pump inhibitors in the North Carolina Medicaid program.

    PubMed

    Jacobson Vann, Julie C; Christofferson, Stephanie; Humble, Charles G; Wegner, Steven E; Feaganes, John R; Trygstad, Troy K

    2010-05-01

    Proton pump inhibitors (PPIs) are among the highest expenditure drugs covered by health care plans. During fiscal year 2001-2002, Medicaid programs nationwide spent nearly $2 billion on PPIs. Although the costs of individual PPIs vary widely, there is little variation in therapeutic effectiveness. On June 1, 2007, the North Carolina Medicaid program implemented an "instant approval" option simultaneously with a prior authorization (PA) program for PPIs with the goal of managing costs and maintaining high-quality care. Preferred PPIs included generic omeprazole and Prilosec OTC. This instant approval process (IAP) was expected to impose less administrative burden than is typically associated with PA programs by permitting physician and nonphysician prescribers to either write the PA criteria directly on a prescription form or use "MD Easy," a preprinted form that could be faxed by the prescriber to the dispensing pharmacy. A previous study found that from the prescriber's perspective the IAP reduced practice-related administrative burden and was associated with a reduced gap in PPI therapy when compared with traditional PA. To evaluate the acceptability and effectiveness of this IAP for PPIs as assessed by the outcome measures of (a) pharmacist satisfaction with the IAP; (b) physician and pharmacist satisfaction with the MD Easy form; and (c) utilization rates for preferred PPIs, comparing medical practices that used the MD Easy form with practices that did not. A cross-sectional design was used to assess pharmacist and physician satisfaction. A stratified random sample of 240 pharmacies was selected from 1,561 North Carolina pharmacies with claims in the Medicaid claims data file during state fiscal year 2006. Additionally, a stratified random sample of 240 medical practices was selected from 1,045 primary care practices serving Medicaid beneficiaries during 2006. Surveys were administered to pharmacists using either in-person interviews or self-administered questionnaires and to physicians using a mailed questionnaire with follow-up to nonrespondents. An interrupted time series analysis was used to evaluate the effect of the MD Easy form on switching to preferred PPIs using paid Medicaid claims of surveyed practices from calendar year 2007. Practices that reported both using the IAP and receiving the MD Easy form were defined as MD Easy users. Monthly market share data were analyzed using log negative binomial regression models to account for autocorrelation in the time series data. The pharmacy survey was completed by 202 (84.2%) pharmacies selected for participation. Of 198 permanently employed pharmacists, 140 (70.7%) reported experience with the IAP for PPIs. More than two-thirds (68.6%) of the pharmacist respondents with IAP experience indicated that the IAP is better (34.3%) or much better (34.3%) than traditional PA with RESEARCH respect to overall administrative burden of phone calls, faxes, patient interactions, and doctor contacts. Surveys were completed by 171 (71.3%) of selected physician practices, of which 56 (32.7%) reported experience with the MD Easy forms. Of practices that recalled receiving the MD Easy forms, 52 of 56 (92.9%) reported that the forms "very much" or "somewhat" helped prevent gaps in PPI therapy; 54 of 55 (98.2%) reported that they helped identify patients affected by Medicaid PPI PA; and 100% reported that they helped physicians to follow PA requirements. Immediately after implementation of the IAP and MD Easy form, the observed market share of preferred PPIs increased by 4.1 times (95% CI = 3.57-4.62). From May to June 2007, the preferred PPI market share increased by 64.0 percentage points, from 19.3% to 83.3% (P < 0.001), for practices that reported using the IAP and receiving the MD Easy form (n = 56) and by 55.4 percentage points, from 21.8% to 77.2% (P < 0.001), for practices that either (a) reported not receiving the MD Easy form (n = 25) or (b) reported not using the IAP (n = 84) or (c) did not respond to the survey item asking about the MD Easy form (n = 4). The overall increase in preferred PPI market share after implementation of the IAP was 1.29 times higher for practices that used the MD Easy form than for those that did not based on negative binomial regression modeling; this difference approached statistical significance (95% CI = 1.00-1.68; P = 0.053). This study suggests that an IAP for PPIs using either handwritten prescriptions or a preprinted form is an effective alternative to traditional PA. The IAP was associated with an increase in market share for preferred PPIs and was perceived by pharmacists as less administratively burdensome than traditional PA. Additional studies are needed to determine sustainability and the applicability to other prescription drugs.

  11. Clinical Investigation Program Report.

    DTIC Science & Technology

    1983-10-01

    metastatic to liver. (0) H-83-63. Double-blind, randomized parallel comparison of two different dosage regimens of naproxen sodium in patients with...different dosage regimens of naproxen sodium in patients with bone pain due to m etastatic cancer. Start Date: May 83 Est Comp Date: Indefinite Principal...Investigator: Facility: LTC D Gandara, MD LAMC CPT R Mansour, MD D ept/Svc: Associate Investigators: Hematology-Oncology Key Words: naproxen sodium

  12. Does RBC Storage Age Effect Inflammation, Immune Function and Susceptibility to Transfusion Associated Microchimerism in Critically Ill Patients? Adverse Effects of RBC Storage in Critically Ill Patients

    DTIC Science & Technology

    2013-12-01

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip Spinella, M.D. 5d. PROJECT NUMBER Philip J. Norris , M.D.; Avani Shah, MPH 5e. TASK NUMBER Email...dysfunction syndrome , serious thrombotic events and nosocomial infections, and ICU and hospital length of stay. Prospective clinical studies investigating

  13. Comparison of microbial communities during the anaerobic digestion of Gracilaria under mesophilic and thermophilic conditions.

    PubMed

    Azizi, Aqil; Kim, Wonduck; Lee, Jung Hyun

    2016-10-01

    Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.

  14. General trends of dihedral conformational transitions in a globular protein.

    PubMed

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C; McCammon, J Andrew

    2016-04-01

    Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ∼ 3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. © 2016 Wiley Periodicals, Inc.

  15. General trends of dihedral conformational transitions in a globular protein

    DOE PAGES

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; ...

    2016-02-15

    In this paper, dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed bymore » the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. In conclusion, these general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Masataka; Core Research for Evolutional Science and Technology; ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520

    A new efficient hybrid Monte Carlo (MC)/molecular dynamics (MD) reaction method with a rare event-driving mechanism is introduced as a practical ‘atomistic’ molecular simulation of large-scale chemically reactive systems. Starting its demonstrative application to the racemization reaction of (R)-2-chlorobutane in N,N-dimethylformamide solution, several other applications are shown from the practical viewpoint of molecular controlling of complex chemical reactions, stereochemistry and aggregate structures. Finally, I would like to mention the future applications of the hybrid MC/MD reaction method.

  17. Demonstrating an Order-of-Magnitude Sampling Enhancement in Molecular Dynamics Simulations of Complex Protein Systems.

    PubMed

    Pan, Albert C; Weinreich, Thomas M; Piana, Stefano; Shaw, David E

    2016-03-08

    Molecular dynamics (MD) simulations can describe protein motions in atomic detail, but transitions between protein conformational states sometimes take place on time scales that are infeasible or very expensive to reach by direct simulation. Enhanced sampling methods, the aim of which is to increase the sampling efficiency of MD simulations, have thus been extensively employed. The effectiveness of such methods when applied to complex biological systems like proteins, however, has been difficult to establish because even enhanced sampling simulations of such systems do not typically reach time scales at which convergence is extensive enough to reliably quantify sampling efficiency. Here, we obtain sufficiently converged simulations of three proteins to evaluate the performance of simulated tempering, a member of a widely used class of enhanced sampling methods that use elevated temperature to accelerate sampling. Simulated tempering simulations with individual lengths of up to 100 μs were compared to (previously published) conventional MD simulations with individual lengths of up to 1 ms. With two proteins, BPTI and ubiquitin, we evaluated the efficiency of sampling of conformational states near the native state, and for the third, the villin headpiece, we examined the rate of folding and unfolding. Our comparisons demonstrate that simulated tempering can consistently achieve a substantial sampling speedup of an order of magnitude or more relative to conventional MD.

  18. Nurse care coordination and technology effects on health status of frail older adults via enhanced self-management of medication: randomized clinical trial to test efficacy.

    PubMed

    Marek, Karen Dorman; Stetzer, Frank; Ryan, Polly A; Bub, Linda Denison; Adams, Scott J; Schlidt, Andrea; Lancaster, Rachelle; O'Brien, Anne-Marie

    2013-01-01

    Self-management of complex medication regimens for chronic illness is challenging for many older adults. The purpose of this study was to evaluate health status outcomes of frail older adults receiving a home-based support program that emphasized self-management of medications using both care coordination and technology. This study used a randomized controlled trial with three arms and longitudinal outcome measurement. Older adults having difficulty in self-managing medications (n = 414) were recruited at discharge from three Medicare-certified home healthcare agencies in a Midwestern urban area. All participants received baseline pharmacy screens. The control group received no further intervention. A team of advanced practice nurses and registered nurses coordinated care for 12 months to two intervention groups who also received either an MD.2 medication-dispensing machine or a medplanner. Health status outcomes (the Geriatric Depression Scale, Mini Mental Status Examination, Physical Performance Test, and SF-36 Physical Component Summary and Mental Component Summary) were measured at baseline and at 3, 6, 9, and 12 months. After covariate and baseline health status adjustment, time × group interactions for the MD.2 and medplanner groups on health status outcomes were not significant. Time × group interactions were significant for the medplanner and control group comparisons. Participants with care coordination had significantly better health status outcomes over time than those in the control group, but addition of the MD.2 machine to nurse care coordination did not result in better health status outcomes.

  19. Ligand Binding Pathways and Conformational Transitions of the HIV Protease.

    PubMed

    Miao, Yinglong; Huang, Yu-Ming M; Walker, Ross C; McCammon, J Andrew; Chang, Chia-En A

    2018-03-06

    It is important to determine the binding pathways and mechanisms of ligand molecules to target proteins to effectively design therapeutic drugs. Molecular dynamics (MD) is a promising computational tool that allows us to simulate protein-drug binding at an atomistic level. However, the gap between the time scales of current simulations and those of many drug binding processes has limited the usage of conventional MD, which has been reflected in studies of the HIV protease. Here, we have applied a robust enhanced simulation method, Gaussian accelerated molecular dynamics (GaMD), to sample binding pathways of the XK263 ligand and associated protein conformational changes in the HIV protease. During two of 10 independent GaMD simulations performed over 500-2500 ns, the ligand was observed to successfully bind to the protein active site. Although GaMD-derived free energy profiles were not fully converged because of insufficient sampling of the complex system, the simulations still allowed us to identify relatively low-energy intermediate conformational states during binding of the ligand to the HIV protease. Relative to the X-ray crystal structure, the XK263 ligand reached a minimum root-mean-square deviation (RMSD) of 2.26 Å during 2.5 μs of GaMD simulation. In comparison, the ligand RMSD reached a minimum of only ∼5.73 Å during an earlier 14 μs conventional MD simulation. This work highlights the enhanced sampling power of the GaMD approach and demonstrates its wide applicability to studies of drug-receptor interactions for the HIV protease and by extension many other target proteins.

  20. Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics.

    PubMed

    Preto, Jordane; Clementi, Cecilia

    2014-09-28

    The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.

  1. Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.

    PubMed

    Gesell, Andreas; Yoshida, Kazuko; Tran, Lan T; Constabel, C Peter

    2014-09-01

    The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.

  2. Improved estimation of ligand macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods

    NASA Astrophysics Data System (ADS)

    Khandelwal, Akash; Balaz, Stefan

    2007-01-01

    Structure-based predictions of binding affinities of ligands binding to proteins by coordination bonds with transition metals, covalent bonds, and bonds involving charge re-distributions are hindered by the absence of proper force fields. This shortcoming affects all methods which use force-field-based molecular simulation data on complex formation for affinity predictions. One of the most frequently used methods in this category is the Linear Response (LR) approach of Åquist, correlating binding affinities with van der Waals and electrostatic energies, as extended by Jorgensen's inclusion of solvent-accessible surface areas. All these terms represent the differences, upon binding, in the ensemble averages of pertinent quantities, obtained from molecular dynamics (MD) or Monte Carlo simulations of the complex and of single components. Here we report a modification of the LR approach by: (1) the replacement of the two energy terms through the single-point QM/MM energy of the time-averaged complex structure from an MD simulation; and (2) a rigorous consideration of multiple modes (mm) of binding. The first extension alleviates the force-field related problems, while the second extension deals with the ligands exhibiting large-scale motions in the course of an MD simulation. The second modification results in the correlation equation that is nonlinear in optimized coefficients, but does not lead to an increase in the number of optimized coefficients. The application of the resulting mm QM/MM LR approach to the inhibition of zinc-dependent gelatinase B (matrix metalloproteinase 9) by 28 hydroxamate ligands indicates a significant improvement of descriptive and predictive abilities.

  3. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. GPU-enabled molecular dynamics simulations of ankyrin kinase complex

    NASA Astrophysics Data System (ADS)

    Gautam, Vertika; Chong, Wei Lim; Wisitponchai, Tanchanok; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.; Tayapiwatana, Chatchai; Lee, Vannajan Sanghiran

    2014-10-01

    The ankyrin repeat (AR) protein can be used as a versatile scaffold for protein-protein interactions. It has been found that the heterotrimeric complex between integrin-linked kinase (ILK), PINCH, and parvin is an essential signaling platform, serving as a convergence point for integrin and growth-factor signaling and regulating cell adhesion, spreading, and migration. Using ILK-AR with high affinity for the PINCH1 as our model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. In this study, the long time scale dynamics simulations with GPU accelerated molecular dynamics (MD) simulations in AMBER12 have been performed to locate the hot spots of protein-protein interaction by the analysis of the Molecular Mechanics-Poisson-Boltzmann Surface Area/Generalized Born Solvent Area (MM-PBSA/GBSA) of the MD trajectories. Our calculations suggest good binding affinity of the complex and also the residues critical in the binding.

  5. 77 FR 54615 - Strategic Management Program; Fiscal Year 2013-2016 Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... Manager, Strategic Management Program; National Transportation Safety Board, 490 L'Enfant Plaza SW., MD-1... NATIONAL TRANSPORTATION SAFETY BOARD Strategic Management Program; Fiscal Year 2013-2016 Strategic Plan AGENCY: National Transportation Safety Board. ACTION: Notice: Request for comments. SUMMARY: This...

  6. XRP -- SMM XRP Data Analysis & Reduction

    NASA Astrophysics Data System (ADS)

    McSherry, M.; Lawden, M. D.

    This manual describes the various programs that are available for the reduction and analysis of XRP data. These programs have been developed under the VAX operating system. The original programs are resident on a VaxStation 3100 at the Solar Data Analysis Center (NASA/GSFC Greenbelt MD).

  7. Physician-directed software design: the role of utilization statistics and user input in enhancing HELP results review capabilities.

    PubMed Central

    Michael, P. A.

    1993-01-01

    The M.D. Rounds Report program was developed and implemented in June of 1992 as an adjunct to the HELP System at Rex Hospital. The program facilitates rapid access to information on allergies and current medications, laboratory results, radiology reports and therapist notes for a list of patients without physicians having to make additional menu or submenu selections. In planning for an upgrade of the program, utilization statistics and user feedback provided valuable information in terms of frequency of access, features used and unused, and the value of the program as a reporting tool in comparison to other online results reporting applications. A brief description of the functionality of the M.D. Rounds Report, evaluation of the program audit trail and user feedback, planned enhancements to the program, and a discussion of the prototyping and monitoring experience and the impact on future physician subsystem development will be presented. PMID:8130443

  8. Breast cancer: a global perspective.

    PubMed

    Collyar, D E

    2001-09-15

    The 2001 American Society of Clinical Oncology (ASCO) International Symposium, Breast Cancer: A Global Perspective, was conducted by members of the ASCO International Committee and additional speakers from around the world. An interactive format was chosen to: (1) learn how patterns of incidence, epidemiology, and causal biology relate to breast cancer around the world; (2) discuss the challenges in screening, diagnosis, and treatment of breast cancer, as well as its socioeconomic impact in various regions; (3) describe international differences in approach to and management of advanced breast cancer; and (4) discuss treatment in terms of hormone response, clinical research, and drug metabolism. After a brief introduction, each speaker gave an overview of breast cancer challenges and issues in their country, and discussed how the following case might be diagnosed and treated: A 44-year-old mother who presents with a finding of a painless breast lump and no prior history of breast masses, trauma, or surgery. Comments from a patient perspective were then presented, followed by a panel discussion and closing remarks. Co-chairs of this Symposium included Deborah Collyar (President, PAIR-Patient Advocates in Research) and Elizabeth Eisenhauer, MD (Director, Investigational New Drug Program, National Cancer Institute of Canada Clinical Trials Group). Speakers included Gilberto Schwartsmann, MD (South America), Monica Morrow, MD (North America), Daniel Vorobiof, MD (South Africa), Rakesh Chopra, MD (India), Klaus Hoeffken, MD (Eastern Europe), Russell Basser, MD (Australia), Susan Matsuko Shinigawa (patient perspective), and Larry Norton, MD (closing remarks).

  9. The repeatability of mean defect with size III and size V standard automated perimetry.

    PubMed

    Wall, Michael; Doyle, Carrie K; Zamba, K D; Artes, Paul; Johnson, Chris A

    2013-02-15

    The mean defect (MD) of the visual field is a global statistical index used to monitor overall visual field change over time. Our goal was to investigate the relationship of MD and its variability for two clinically used strategies (Swedish Interactive Threshold Algorithm [SITA] standard size III and full threshold size V) in glaucoma patients and controls. We tested one eye, at random, for 46 glaucoma patients and 28 ocularly healthy subjects with Humphrey program 24-2 SITA standard for size III and full threshold for size V each five times over a 5-week period. The standard deviation of MD was regressed against the MD for the five repeated tests, and quantile regression was used to show the relationship of variability and MD. A Wilcoxon test was used to compare the standard deviations of the two testing methods following quantile regression. Both types of regression analysis showed increasing variability with increasing visual field damage. Quantile regression showed modestly smaller MD confidence limits. There was a 15% decrease in SD with size V in glaucoma patients (P = 0.10) and a 12% decrease in ocularly healthy subjects (P = 0.08). The repeatability of size V MD appears to be slightly better than size III SITA testing. When using MD to determine visual field progression, a change of 1.5 to 4 decibels (dB) is needed to be outside the normal 95% confidence limits, depending on the size of the stimulus and the amount of visual field damage.

  10. The binding domain of the HMGB1 inhibitor carbenoxolone: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Mollica, Luca; Curioni, Alessandro; Andreoni, Wanda; Bianchi, Marco E.; Musco, Giovanna

    2008-05-01

    We present a combined computational and experimental study of the interaction of the Box A of the HMGB1 protein and carbenoxolone, an inhibitor of its pro-inflammatory activity. The computational approach consists of classical molecular dynamics (MD) simulations based on the GROMOS force field with quantum-refined (QRFF) atomic charges for the ligand. Experimental data consist of fluorescence intensities, chemical shift displacements, saturation transfer differences and intermolecular Nuclear Overhauser Enhancement signals. Good agreement is found between observations and the conformation of the ligand-protein complex resulting from QRFF-MD. In contrast, simple docking procedures and MD based on the unrefined force field provide models inconsistent with experiment. The ligand-protein binding is dominated by non-directional interactions.

  11. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    NASA Astrophysics Data System (ADS)

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  12. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; ...

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  13. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.

    PubMed

    Lee, Jumin; Cheng, Xi; Swails, Jason M; Yeom, Min Sun; Eastman, Peter K; Lemkul, Justin A; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S; Case, David A; Brooks, Charles L; MacKerell, Alexander D; Klauda, Jeffery B; Im, Wonpil

    2016-01-12

    Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  14. 76 FR 62312 - Multi-Agency Informational Meeting Concerning Compliance With the Federal Select Agent Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... Select Agent Program; Public Meeting AGENCIES: Animal and Plant Health Inspection Service, USDA. ACTION... will be held to provide specific regulatory guidance related to the Federal Select Agent Program... Select Agent Program, APHIS, 4700 River Road, Unit 2, Riverdale, MD 20737; (301) 734-5960. CDC: Dr...

  15. Checklist and Decision Support in Nutritional Care for Burned Patients

    DTIC Science & Technology

    2014-10-01

    in Nutritional Care for Burned Patients PRINCIPAL INVESTIGATOR: Steven E. Wolf, MD CONTRACTING ORGANIZATION: REPORT DATE... Nutritional Care for Burned Patients 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven E Wolf, MD Betty Diamond...Study/Product Aim(s) were as follows: 1) To determine under what conditions compliance with nutritional goals are not met in severely burned adults, 2

  16. Novel Small Molecules Disabling the IL-6/IL-6R/GP130 Heterohexamer Complex

    DTIC Science & Technology

    2012-10-01

    fluctuations over 20 ns MD simulation. The HFI unit of MDL-A showed instability in the gp130 D1-domain binding pocket, whereas the hydrophobic tail...compound containing only an HFI unit was not capable of inhibiting gp130 homodimerization. Our MDLs MD simulation studies showed consistent results...chain attached to the HFI unit which is designed to take advantage of interactions with the “additional” subpockets surrounding the MDL-A binding site

  17. Principals and Computers: Getting Started Together. Special Report: Computers in the Schools.

    ERIC Educational Resources Information Center

    Holland, Lori; Rude-Parkins, Carolyn

    1986-01-01

    Outlines five lessons learned at Roosevelt-Perry Elementary School (Kentucky) when the computer education program, Humana Computer Tutor project, was implemented. The principal was important to the success of the program. (MD)

  18. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    NASA Astrophysics Data System (ADS)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.

  19. Toll-like receptor (TLR)-4 mediates anti-β2GPI/β2GPI-induced tissue factor expression in THP-1 cells

    PubMed Central

    Zhou, H; Yan, Y; Xu, G; Zhou, B; Wen, H; Guo, D; Zhou, F; Wang, H

    2011-01-01

    Our previous study demonstrated that annexin A2 (ANX2) on cell surface could function as a mediator and stimulate tissue factor (TF) expression of monocytes by anti-β2-glycoprotein I/β2-glycoprotein I complex (anti-β2GPI/β2GPI). However, ANX2 is not a transmembrane protein and lacks the intracellular signal transduction pathway. Growing evidence suggests that Toll-like receptor 4 (TLR-4) might act as an ‘adaptor’ for intracellular signal transduction in anti-β2GPI/β2GPI-induced TF expressing cells. In the current study, we investigated the roles of TLR-4 and its related molecules, myeloid differentiation protein 2 (MD-2) and myeloid differentiation factor 88 (MyD88), in anti-β2GPI/β2GPI-induced TF expressing human monocytic-derived THP-1 (human acute monocytic leukaemia) cells. The relationship of TLR-4 and ANX2 in this process was also explored. Along with TF, expression of TLR-4, MD-2 and MyD88 in THP-1 cells increased significantly when treated by anti-β2GPI (10 µg/ml)/β2GPI (100 µg/ml) complex. The addition of paclitaxel, which competes with the MD-2 ligand, could inhibit the effects of anti-β2GPI/β2GPI on TLR-4, MD-2, MyD88 and TF expression. Both ANX2 and TLR-4 in THP-1 cell lysates could bind to β2GPI that had been conjugated to a column (β2GPI-Affi-Gel). Furthermore, TLR-4, MD-2, MyD88 and TF expression was remarkably diminished in THP-1 cells infected with ANX2-specific RNA interference (RNAi) lentivirus (LV-RNAi-ANX2), in spite of treatment with a similar concentration of anti-β2GPI/β2GPI complex. These results indicate that TLR-4 and its signal transduction pathway contribute to anti-β2GPI/β2GPI-induced TF expression in THP-1 cells, and the effects of TLR-4 with ANX2 are tightly co-operative. PMID:21091668

  20. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling.

    PubMed

    Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua

    2018-02-01

    Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley Periodicals, Inc.

  1. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    PubMed

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.

  2. An unusual plant triterpene synthase with predominant α-amyrin-producing activity identified by characterizing oxidosqualene cyclases from Malus × domestica.

    PubMed

    Brendolise, Cyril; Yauk, Yar-Khing; Eberhard, Ellen D; Wang, Mindy; Chagne, David; Andre, Christelle; Greenwood, David R; Beuning, Lesley L

    2011-07-01

    The pentacyclic triterpenes, in particular ursolic acid and oleanolic acid and their derivatives, exist abundantly in the plant kingdom, where they are well known for their anti-inflammatory, antitumour and antimicrobial properties. α-Amyrin and β-amyrin are the precursors of ursolic and oleanolic acids, respectively, formed by concerted cyclization of squalene epoxide by a complex synthase reaction. We identified three full-length expressed sequence tag sequences in cDNA libraries constructed from apple (Malus × domestica 'Royal Gala') that were likely to encode triterpene synthases. Two of these expressed sequence tag sequences were essentially identical (> 99% amino acid similarity; MdOSC1 and MdOSC3). MdOSC1 and MdOSC2 were expressed by transient expression in Nicotiana benthamiana leaves and by expression in the yeast Pichia methanolica. The resulting products were analysed by GC and GC-MS. MdOSC1 was shown to be a mixed amyrin synthase (a 5 : 1 ratio of α-amyrin to β-amyrin). MdOSC1 is the only triterpene synthase so far identified in which the level of α-amyrin produced is > 80% of the total product and is, therefore, primarily an α-amyrin synthase. No product was evident for MdOSC2 when expressed either transiently or in yeast, suggesting that this putative triterpene synthase is either encoded by a pseudogene or does not express well in these systems. Transcript expression analysis in Royal Gala indicated that the genes are mostly expressed in apple peel, and that the MdOSC2 expression level was much lower than that of MdOSC1 and MdOSC3 in all the tissues tested. Amyrin content analysis was undertaken by LC-MS, and demonstrated that levels and ratios differ between tissues, but that the true consequence of synthase activity is reflected in the ursolic/oleanolic acid content and in further triterpenoids derived from them. Phylogenetic analysis placed the three triterpene synthase sequences with other triterpene synthases that encoded either α-amyrin and/or β-amyrin synthase. MdOSC1 and MdOSC3 clustered with the multifunctional triterpene synthases, whereas MdOSC2 was most similar to the β-amyrin synthases. © 2011 The New Zealand Institute for Plant and Food Research Limited. Journal compilation © 2011 FEBS.

  3. Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons.

    PubMed

    Popa, Vlad; Trecroce, Danielle A; McAllister, Robert G; Konermann, Lars

    2016-06-16

    Electrospray ionization mass spectrometry (ESI-MS) has become an indispensable technique for examining noncovalent protein complexes. Collision-induced dissociation (CID) of these multiply protonated gaseous ions usually culminates in ejection of a single subunit with a disproportionately large amount of charge. Experiments suggest that this process involves subunit unfolding prior to separation from the residual complex, as well as H(+) migration onto the unravelling chain. Molecular dynamics (MD) simulations are a promising avenue for gaining detailed insights into these CID events. Unfortunately, typical MD algorithms do not allow for mobile protons. Here we address this limitation by implementing a strategy that combines atomistic force fields (such as OPLS/AA and CHARMM36) with a proton hopping algorithm, focusing on the tetrameric complexes transthyretin and streptavidin. Protons are redistributed over all acidic and basic sites in 20 ps intervals, subject to an energy function that reflects electrostatic interactions and proton affinities. Our simulations predict that nativelike conformers at the onset of collisional heating contain multiple salt bridges. Collisional heating initially causes subtle structural changes that lead to a gradual decline of these zwitterionic patterns. Many of the MD runs show gradual unfolding of a single subunit in conjunction with H(+) migration, culminating in subunit separation from the complex. However, there are also instances where two or more chains start to unfold simultaneously, giving rise to charge competition. The scission point where the "winning" subunit separates from the complex can be attained for different degrees of unfolding, giving rise to product ions in various charge states. The simulated product ion distributions are in close agreement with experimental CID data. Proton enrichment in the departing subunit is driven by charge-charge repulsion, but the combination of salt bridge depletion, charge migration, and proton affinity causes surprising compensation effects among the various energy terms. It appears that this work provides the most detailed account to date of the mechanism whereby noncovalent protein complexes disassemble during CID.

  4. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy

    PubMed Central

    Imani, Saber; Cheng, Jingliang; Shasaltaneh, Marzieh Dehghan; Wei, Chunli; Yang, Lisha; Fu, Shangyi; Zou, Hui; Khan, Md. Asaduzzaman; Zhang, Xianqin; Chen, Hanchun; Zhang, Dianzheng; Duan, Chengxia; Lv, Hongbin; Li, Yumei; Chen, Rui; Fu, Junjiang

    2018-01-01

    Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T>C (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD. PMID:29416601

  5. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins.

    PubMed

    Karp, Jerome M; Eryilmaz, Ertan; Erylimaz, Ertan; Cowburn, David

    2015-01-01

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  7. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  8. Increasing girls' physical activity during a short-term organized youth sport basketball program: A randomized controlled trial.

    PubMed

    Guagliano, Justin M; Lonsdale, Chris; Kolt, Gregory S; Rosenkranz, Richard R; George, Emma S

    2015-07-01

    To evaluate the short-term efficacy of coach education on basketball players' physical activity (PA) intensity during practices. Intervention effects on players' motivation were also investigated. Randomized controlled trial. This study took place over the course of a 5-day organized youth sport (OYS) basketball program in 2 sports centres in Greater Western Sydney, Australia (September, 2013). A convenience sample of 76 players and 8 coaches were recruited. Players were girls aged 9 to 12 years. Following the first 2 days of the basketball program, coaches allocated into the intervention condition attended 2 coach education sessions where strategies to increase moderate-to-vigorous physical activity (MVPA) and decrease inactivity were discussed. Each coach education session lasted approximately 2h. Compared to the control group, players in the intervention group spent a significantly higher proportion of practice time in MVPA (mean difference [MD]=14.6%; standard error [SE]=2.2%), vigorous PA (VPA; MD=12.6%; SE=1.9%), moderate PA (MD=2.0%; SE=0.5%) and a significantly lower proportion of practice time inactive (MD=-14.5%; SE=2.3%) from baseline to follow-up. There were no significant changes in motivation from baseline to follow-up in either group. Brief coach education sessions can increase MVPA and decrease inactivity without deleterious effects on players' motivation. Also, substantial increases in VPA were found, which is an important finding because VPA has been associated with health benefits, over and above benefits accrued from lower-intensity activity. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. 75 FR 57658 - National Veterinary Accreditation Program; Correcting Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... [Docket No. APHIS-2006-0093] RIN 0579-AC04 National Veterinary Accreditation Program; Correcting Amendment..., Docket No. APHIS-2006-0093), and effective on February 1, 2010, we amended the National Veterinary... Veterinary Accreditation Program, VS, APHIS, 4700 River Road Unit 200, Riverdale, MD 20737; (301) 851-3401...

  10. ST-analyzer: a web-based user interface for simulation trajectory analysis.

    PubMed

    Jeong, Jong Cheol; Jo, Sunhwan; Wu, Emilia L; Qi, Yifei; Monje-Galvan, Viviana; Yeom, Min Sun; Gorenstein, Lev; Chen, Feng; Klauda, Jeffery B; Im, Wonpil

    2014-05-05

    Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations. Copyright © 2014 Wiley Periodicals, Inc.

  11. From pipelines to pathways: the Memorial experience in educating doctors for rural generalist practice.

    PubMed

    Rourke, James; Asghari, Shabnam; Hurley, Oliver; Ravalia, Mohamed; Jong, Michael; Parsons, Wanda; Duggan, Norah; Stringer, Katherine; O'Keefe, Danielle; Moffatt, Scott; Graham, Wendy; Sturge Sparkes, Carolyn; Hippe, Janelle; Harris Walsh, Kristin; McKay, Donald; Samarasena, Asoka

    2018-03-01

    This report describes the community context, concept and mission of The Faculty of Medicine at Memorial University of Newfoundland (Memorial), Canada, and its 'pathways to rural practice' approach, which includes influences at the pre-medical school, medical school experience, postgraduate residency training, and physician practice levels. Memorial's pathways to practice helped Memorial to fulfill its social accountability mandate to populate the province with highly skilled rural generalist practitioners. Programs/interventions/initiatives: The 'pathways to rural practice' include initiatives in four stages: (1) before admission to medical school; (2) during undergraduate medical training (medical degree (MD) program); (3) during postgraduate vocational residency training; and (4) after postgraduate vocational residency training. Memorial's Learners & Locations (L&L) database tracks students through these stages. The Aboriginal initiative - the MedQuest program and the admissions process that considers geographic or minority representation in terms of those selecting candidates and the candidates themselves - occurs before the student is admitted. Once a student starts Memorial's MD program, the student has ample opportunities to have rural-based experiences through pre-clerkship and clerkship, of which some take place exclusively outside of St. John's tertiary hospitals. Memorial's postgraduate (PG) Family Medicine (FM) residency (vocational) training program allows for deeper community integration and longer periods of training within the same community, which increases the likelihood of a physician choosing rural family medicine. After postgraduate training, rural physicians were given many opportunities for professional development as well as faculty development opportunities. Each of the programs and initiatives were assessed through geospatial rurality analysis of administrative data collected upon entry into and during the MD program and PG training (L&L). Among Memorial MD-graduating classes of 2011-2020, 56% spent the majority of their lives before their 18th birthday in a rural location and 44% in an urban location. As of September 2016, 23 Memorial MD students self-identified as Aboriginal, of which 2 (9%) were from an urban location and 20 (91%) were from rural locations. For Year 3 Family Medicine, graduating classes 2011 to 2019, 89% of placement weeks took place in rural communities and 8% took place in rural towns. For Memorial MD graduating classes 2011-2013 who completed Memorial Family Medicine vocational training residencies, (N=49), 100% completed some rural training. For these 49 residents (vocational trainees), the average amount of time spent in rural areas was 52 weeks out of a total average FM training time of 95 weeks. For Family Medicine residencies from July 2011 to October 2016, 29% of all placement weeks took place in rural communities and 21% of all placement weeks took place in rural towns. For 2016-2017 first-year residents, 53% of the first year training is completed in rural locations, reflecting an even greater rural experiential learning focus. Memorial's pathways approach has allowed for the comprehensive training of rural generalists for Newfoundland and Labrador and the rest of Canada and may be applicable to other settings. More challenges remain, requiring ongoing collaboration with governments, medical associations, health authorities, communities, and their physicians to help achieve reliable and feasible healthcare delivery for those living in rural and remote areas.

  12. 76 FR 30178 - Submission for OMB review; Comment Request; Process Evaluation of the NIH Roadmap Epigenomics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... identify areas for program improvement and lessons learned that might be useful to other research programs..., NSC--Neuroscience Center, 5229, 6001 Executive Blvd., Rockville, MD, 20852, or call non-toll-free...

  13. Working with an Insurance Market in Turmoil.

    ERIC Educational Resources Information Center

    Boggs, Ronald R.

    1985-01-01

    Outlines specific ways for schools to react to insurance premium increases and new coverage restrictions. Suggests such options as buying less insurance, considering larger retentions,and starting pooling programs, and discusses other non-traditional approaches to conventional insurance programs. (MD)

  14. Molecular dynamics simulation and TDDFT study of the structures and UV-vis absorption spectra of MCT-β-CD and its inclusion complexes.

    PubMed

    Lu, Huijuan; Wang, Yujiao; Xie, Xiaomei; Chen, Feifei; Li, Wei

    2015-01-01

    In this research, the inclusion ratios and inclusion constants of MCT-β-CD/PERM and MCT-β-CD/CYPERM inclusion complexes were measured by UV-vis and fluorescence spectroscopy. The inclusion ratios are both 1:1, and the inclusion constants are 60 and 342.5 for MCT-β-CD/PERM and MCT-β-CD/CYPERM, respectively. The stabilities of inclusion complexes were investigated by MD simulation. MD shows that VDW energy plays a vital role in the stability of inclusion complex, and the destruction of inclusion complex is due to the increasing temperature. The UV-vis absorption spectra of MCT-β-CD and its inclusion complexes were studied by time-dependent density functional theory (TDDFT) method employing BLYP-D3, B3LYP-D3 and M06-2X-D3 functionals. BLYP-D3 well reproduces the UV-vis absorption spectrum and reveals that the absorption bands of MCT-β-CD mainly arise from n→π(∗) and n→σ(∗) transition, and those of inclusion complexes mainly arise from intramolecular charge transfer (ICT). ICT results in the shift of main absorption bands of MCT-β-CD. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Assessment of virtual reality robotic simulation performance by urology resident trainees.

    PubMed

    Ruparel, Raaj K; Taylor, Abby S; Patel, Janil; Patel, Vipul R; Heckman, Michael G; Rawal, Bhupendra; Leveillee, Raymond J; Thiel, David D

    2014-01-01

    To examine resident performance on the Mimic dV-Trainer (MdVT; Mimic Technologies, Inc., Seattle, WA) for correlation with resident trainee level (postgraduate year [PGY]), console experience (CE), and simulator exposure in their training program to assess for internal bias with the simulator. Residents from programs of the Southeastern Section of the American Urologic Association participated. Each resident was scored on 4 simulator tasks (peg board, camera targeting, energy dissection [ED], and needle targeting) with 3 different outcomes (final score, economy of motion score, and time to complete exercise) measured for each task. These scores were evaluated for association with PGY, CE, and simulator exposure. Robotic skills training laboratory. A total of 27 residents from 14 programs of the Southeastern Section of the American Urologic Association participated. Time to complete the ED exercise was significantly shorter for residents who had logged live robotic console compared with those who had not (p = 0.003). There were no other associations with live robotic console time that approached significance (all p ≥ 0.21). The only measure that was significantly associated with PGY was time to complete ED exercise (p = 0.009). No associations with previous utilization of a robotic simulator in the resident's home training program were statistically significant. The ED exercise on the MdVT is most associated with CE and PGY compared with other exercises. Exposure of trainees to the MdVT in training programs does not appear to alter performance scores compared with trainees who do not have the simulator. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  16. Preliminary comparison of the Essie and PubMed search engines for answering clinical questions using MD on Tap, a PDA-based program for accessing biomedical literature.

    PubMed

    Sutton, Victoria R; Hauser, Susan E

    2005-01-01

    MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information.

  17. Information Operations Team Training & Information Operations Training Aid, Information Warfare Effectiveness (IWE) Program, Delivery Order 8

    DTIC Science & Technology

    2010-03-01

    submenus and toolbar with icon buttons 4. The IFOTA shall conform to Defense Information Infrastructure Common Operating Environment ( DII COE) and...him my business card , but it might come in the package we request via AFRL). PSYOP Instructor IWST is now called IWT (??) SME MD MD Instructor...Engineering and Software Engineering CTA Cognitive Task Analysis DII COE Defense Information Infrastructure Common Operating Environment EJB Enterprise Java

  18. Nasal Irrigation for Chronic Rhinosinusitis and Fatigue in Patients with Gulf War Syndrome

    DTIC Science & Technology

    2015-07-01

    Syndrome ” PRINCIPAL INVESTIGATOR: David Rabago, MD CONTRACTING ORGANIZATION: University of Wisconsin Systems Board of Regents REPORT DATE...Patients with Gulf War Syndrome ” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Rabago, MD 5d. PROJECT NUMBER 5e. TASK NUMBER...Rhinosinusitis, Fatigue, Gulf War Syndrome , Nasal Irrigation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a

  19. Direct Prediction of EPR Spectra from Lipid Bilayers: Understanding Structure and Dynamics in Biological Membranes.

    PubMed

    Catte, Andrea; White, Gaye F; Wilson, Mark R; Oganesyan, Vasily S

    2018-06-02

    Of the many biophysical techniques now being brought to bear on studies of membranes, electron paramagnetic resonance (EPR) of nitroxide spin probes was the first to provide information about both mobility and ordering in lipid membranes. Here, we report the first prediction of variable temperature EPR spectra of model lipid bilayers in the presence and absence of cholesterol from the results of large scale fully atomistic molecular dynamics (MD) simulations. Three types of structurally different spin probes were employed in order to study different parts of the bilayer. Our results demonstrate very good agreement with experiment and thus confirm the accuracy of the latest lipid force fields. The atomic resolution of the simulations allows the interpretation of the molecular motions and interactions in terms of their impact on the sensitive EPR line shapes. Direct versus indirect effects of cholesterol on the dynamics of spin probes are analysed. Given the complexity of structural organisation in lipid bilayers, the advantage of using a combined MD-EPR simulation approach is two-fold. Firstly, prediction of EPR line shapes directly from MD trajectories of actual phospholipid structures allows unambiguous interpretation of EPR spectra of biological membranes in terms of complex motions. Secondly, such an approach provides an ultimate test bed for the up-to-date MD simulation models employed in the studies of biological membranes, an area that currently attracts great attention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    NASA Astrophysics Data System (ADS)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  1. Coherent Vortices in Strongly Coupled Liquids

    NASA Astrophysics Data System (ADS)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  2. Construction, MD simulation, and hydrodynamic validation of an all-atom model of a monoclonal IgG antibody.

    PubMed

    Brandt, J Paul; Patapoff, Thomas W; Aragon, Sergio R

    2010-08-04

    At 150 kDa, antibodies of the IgG class are too large for their structure to be determined with current NMR methodologies. Because of hinge-region flexibility, it is difficult to obtain atomic-level structural information from the crystal, and questions regarding antibody structure and dynamics in solution remain unaddressed. Here we describe the construction of a model of a human IgG1 monoclonal antibody (trastuzumab) from the crystal structures of fragments. We use a combination of molecular-dynamics (MD) simulation, continuum hydrodynamics modeling, and experimental diffusion measurements to explore antibody behavior in aqueous solution. Hydrodynamic modeling provides a link between the atomic-level details of MD simulation and the size- and shape-dependent data provided by hydrodynamic measurements. Eight independent 40 ns MD trajectories were obtained with the AMBER program suite. The ensemble average of the computed transport properties over all of the MD trajectories agrees remarkably well with the value of the translational diffusion coefficient obtained with dynamic light scattering at 20 degrees C and 27 degrees C, and the intrinsic viscosity measured at 20 degrees C. Therefore, our MD results likely represent a realistic sampling of the conformational space that an antibody explores in aqueous solution. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental validation of Gouy-Chapman (GC) theory to charged lipid membranes, a test of GC theory by MD simulations has been elusive. Here we demonstrate that the ion distributions at different salt concentrations in anionic lipid bilayer systems agree well with GC predictions using MD simulations. Na+ ions are adsorbed to the bilayer through favorable interactions with carbonyls and hydroxyls, reducing the surface charge density by 72.5%. The interactions of amantadine, an antiinfluenza A drug, with DMPC bilayers are investigated by an MD simulation and by solid-state NMR. The MD simulation results and NMR data demonstrate that amantadine is located within the interfacial region with upward orientation and interacts with the lipid headgroup and glycerol backbone, while the adamantane group of amantadine interacts with the glycerol backbone and much of fatty acyl chain, as it wraps underneath of the drug. The lipid headgroup orientation is influenced by the drug as well. The recent prevalence of amantadine-resistant mutants makes a development of new drug urgent. The mechanism of inhibition of M2 proton channel in influenza virus A by amantadine is investigated. In the absence of high resolution structure, we model the apo and drug bound forms based on NMR structures. MD simulations demonstrate that channel pore is blocked by a primary gate formed by Trp41 helped by His37 and a secondary gate formed by Val27. The blockage by the secondary gate is extended by the drug bound just below the gate, resulting in a broken water wire throughout the simulation, suggesting a novel role of Val27 in the inhibition by amantadine. Recent X-ray structure validates the simulation results.

  4. DEFINING THE RELEVANT OUTCOME MEASURES IN MEDICAL DEVICE ASSESSMENTS: AN ANALYSIS OF THE DEFINITION PROCESS IN HEALTH TECHNOLOGY ASSESSMENT.

    PubMed

    Jacobs, Esther; Antoine, Sunya-Lee; Prediger, Barbara; Neugebauer, Edmund; Eikermann, Michaela

    2017-01-01

    Defining relevant outcome measures for clinical trials on medical devices (MD) is complex, as there is a large variety of potentially relevant outcomes. The chosen outcomes vary widely across clinical trials making the assessment in evidence syntheses very challenging. The objective is to provide an overview on the current common procedures of health technology assessment (HTA) institutions in defining outcome measures in MD trials. In 2012-14, the Web pages of 126 institutions involved in HTA were searched for methodological manuals written in English or German that describe methods for the predefinition process of outcome measures. Additionally, the institutions were contacted by email. Relevant information was extracted. All process steps were performed independently by two reviewers. Twenty-four manuals and ten responses from the email request were included in the analysis. Overall, 88.5 percent of the institutions describe the type of outcomes that should be considered in detail and 84.6 percent agree that the main focus should be on patient relevant outcomes. Specifically related to MD, information could be obtained in 26 percent of the included manuals and email responses. Eleven percent of the institutions report a particular consideration of MD related outcomes. This detailed analysis on common procedures of HTA institutions in the context of defining relevant outcome measures for the assessment of MD shows that standardized procedures for MD from the perspective of HTA institutions are not widespread. This leads to the question if a homogenous approach should be implemented in the field of HTA on MD.

  5. The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane.

    PubMed

    Tanimura, Natsuko; Saitoh, Shin-Ichiroh; Ohto, Umeharu; Akashi-Takamura, Sachiko; Fujimoto, Yukari; Fukase, Koichi; Shimizu, Toshiyuki; Miyake, Kensuke

    2014-06-01

    TLR4/MD-2 senses lipid A, activating the MyD88-signaling pathway on the plasma membrane and the TRIF-signaling pathway after CD14-mediated TLR4/MD-2 internalization into endosomes. Monophosphoryl lipid A (MPL), a detoxified derivative of lipid A, is weaker than lipid A in activating the MyD88-dependent pathway. Little is known, however, about mechanisms underlying the attenuated activation of MyD88-dependent pathways. We here show that MPL was impaired in induction of CD14-dependent TLR4/MD-2 dimerization compared with lipid A. Impaired TLR4/MD-2 dimerization decreased CD14-mediated TNFα production. In contrast, MPL was comparable to lipid A in CD14-independent MyD88-dependent TNFα production and TRIF-dependent responses including cell surface CD86 up-regulation and IFNβ induction. Although CD86 up-regulation is dependent on TRIF signaling, it was induced by TLR4/MD-2 at the plasma membrane. These results revealed that the attenuated MPL responses were due to CD14-initiated responses at the plasma membrane, but not just to responses initiated by MyD88, that is, MPL was specifically unable to induce CD14-dependent TLR4/MD-2 dimerization that selectively enhances MyD88-mediated responses at the plasma membrane. © The Japanese Society for Immunology. 2013. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Targeting myeloid differentiation protein 2 by the new chalcone L2H21 protects LPS-induced acute lung injury.

    PubMed

    Zhang, Yali; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Pan, Zheer; Huang, Yi; Mei, Liqin; Dai, Yuanrong; Liu, Xing; Shan, Xiaoou; Liang, Guang

    2017-04-01

    Acute inflammatory diseases are the leading causes of mortality in intensive care units. Myeloid differentiation 2 (MD-2) is required for recognizing lipopolysaccharide (LPS) by toll-like receptor 4 (TLR4), and represents an attractive therapeutic target for LPS-induced inflammatory diseases. In this study, we report a chalcone derivative, L2H21, as a new MD2 inhibitor, which could inhibit LPS-induced inflammation both in vitro and in vivo. We identify that L2H21 as a direct inhibitor of MD-2 by binding to Arg 90 and Tyr 102 residues in MD-2 hydrophobic pocket using a series of biochemical experiments, including surface plasmon response, molecular docking and amino acid mutation. L2H21 dose dependently inhibited LPS-induced inflammatory cytokine expression in primary macrophages. In mice with LPS intratracheal instillation, L2H21 significantly decreased LPS-induced pulmonary oedema, pathological changes in lung tissue, protein concentration increase in bronchoalveolar lavage fluid, inflammatory cells infiltration and inflammatory gene expression, accompanied with the decrease in pulmonary TLR4/MD-2 complex. Meanwhile, administration with L2H21 protects mice from LPS-induced mortality at a degree of 100%. Taken together, this study identifies a new MD2 inhibitor L2H21 as a promising candidate for the treatment of acute lung injury (ALI) and sepsis, and validates that inhibition of MD-2 is a potential therapeutic strategy for ALI. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Complex Living Conditions Impair Behavioral Inhibition but Improve Attention in Rats

    PubMed Central

    van der Veen, Rixt; Kentrop, Jiska; van der Tas, Liza; Loi, Manila; van IJzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J.; Joëls, Marian

    2015-01-01

    Rapid adaptation to changes, while maintaining a certain level of behavioral inhibition is an important feature in every day functioning. How environmental context and challenges in life can impact on the development of this quality is still unknown. In the present study, we examined the effect of a complex rearing environment during adolescence on attention and behavioral inhibition in adult male rats. We also tested whether these effects were affected by an adverse early life challenge, maternal deprivation (MD). We found that animals that were raised in large, two floor MarlauTM cages, together with 10 conspecifics, showed improved attention, but impaired behavioral inhibition in the 5-choice serial reaction time task. The early life challenge of 24 h MD on postnatal day 3 led to a decline in bodyweight during adolescence, but did not by itself influence responses in the 5-choice task in adulthood, nor did it moderate the effects of complex housing. Our data suggest that a complex rearing environment leads to a faster adaptation to changes in the environment, but at the cost of lower behavioral inhibition. PMID:26733839

  8. Summary of the 2016 Partners Against Mortality in Epilepsy (PAME) Conference.

    PubMed

    2016-01-01

    Authors: Kevin D Graber, MD, Jeffrey Buchhalter, MD, PhD, Elson So, MD, Rainer Surges, MD, Detlev Boison, PhD, Franck Kalume, PhD, Cyndi Wright, Brian Gehlbach, MD, Jeff Noebels, MD, PhD, Vicky Whittemore, PhD, Elizabeth J. Donner, MD, MSc, Tom Stanton, MPP, Henry Smithson, MD, Jane Hanna, Masud Seyal, MD, PhD, Philippe Ryvlin, MD, PhD The third biannual Partners Against Mortality in Epilepsy (PAME) conference was held in Alexandria, VA from June 23-26, 2016. This was an intimate meeting of clinical and basic scientists, clinicians, people affected by Sudden Unexpected Death in Epilepsy Patients (SUDEP) in a loved one, people living with epilepsy and patient advocate organizations. Plenary sessions have been summarized by moderators, including: 1) Mortality in people with epilepsy: epidemiology and surveillance. 2) Mortality in children. 3) What do we know about the factors that predispose certain people to die from a seizure? 4) What are the events that occur during and after a seizure that cause a death in SUDEP? 5) What are the options for prevention now and in the future? 6) Advocacy perspectives: how can we speed up awareness and prevention? 7) Updates and discussion on select programs in mortality research. Breakout sessions allowed for a more focused audience. Those summarized here are: Frequent non-SUDEP causes of mortality in people with epilepsy; Mechanisms of SUDEP; Lessons learned in grief and how to better support families; Future directions for research to impact prevention; and How do we improve SUDEP risk disclosure? While significant progress has been made with review of human mortality in epilepsy and study of animal models, this meeting emphasized the need for: better understandings of the epidemiology of SUDEP, advances in the understandings of mechanisms, continued search for biomarkers and preventative measures, patient education, increased awareness, continued advocacy for patient and family support and research funding.

  9. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  10. What will it take? Pathways, time and funding: Australian medical students' perspective on clinician-scientist training.

    PubMed

    Eley, Diann S; Jensen, Charmaine; Thomas, Ranjeny; Benham, Helen

    2017-12-08

    Clinician-scientists are in decline worldwide. They represent a unique niche in medicine by bridging the gap between scientific discovery and patient care. A national, integrated approach to training clinician-scientists, typically programs that comprise a comprehensive MD-PhD pathway, are customary. Such a pathway is lacking in Australia. The objective was to gather perceptions from Australian medical students on factors they perceive would influence their decision to pursue clinician-scientist training. A cross-sectional mixed methods design used quantitative and qualitative questions in an online self-report survey with medical students from a four-year MD program. Quantitative measures comprised scaled response questions regarding prior experience and current involvement in research, and short- and long-term opinions about factors that influence their decisions to undertake a research higher degree (RHD) during medical school. Qualitative questions gathered broader perceptions of what a career pathway as a clinician-scientist would include and what factors are most conducive to a medical student's commitment to MD-PhD training. Respondents (N = 418; 51% female) indicated Time, Funding and Pathway as the major themes arising from the qualitative data, highlighting negative perceptions rather than possible benefits to RHD training. The lack of an evident Pathway was inter-related to Time and Funding. Themes were supported by the quantitative data. Sixty percent of students have previous research experience of varying forms, and 90% report a current interest, mainly to improve their career prospects. The data emphasise the need for an MD-PhD pathway in Australia. A model that provides an early, integrated, and exclusive approach to research training pathways across all stages of medical education is suggested as the best way to rejuvenate the clinician-scientist. A national pathway that addresses factors influencing career decision making throughout the medical education continuum should include an appropriate funding structure, and provide early and continuing advice and mentoring. It should be flexible, gender equitable, and include post-graduate training. The implications of implementing MD-PhD programs represent a substantial investment. However this should not be a deterrent to Australia's commitment to an MD-PhD pathway, but rather a challenge to help ensure our future healthcare is guided by highly trained and competent clinician-scientists.

  11. Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R as a Test Case.

    PubMed

    Bortolato, Andrea; Deflorian, Francesca; Weiss, Dahlia R; Mason, Jonathan S

    2015-09-28

    The residence time of a ligand-protein complex is a crucial aspect in determining biological effect in vivo. Despite its importance, the prediction of ligand koff still remains challenging for modern computational chemistry. We have developed aMetaD, a fast and generally applicable computational protocol to predict ligand-protein unbinding events using a molecular dynamics (MD) method based on adiabatic-bias MD and metadynamics. This physics-based, fully flexible, and pose-dependent ligand scoring function evaluates the maximum energy (RTscore) required to move the ligand from the bound-state energy basin to the next. Unbinding trajectories are automatically analyzed and translated into atomic solvation factor (SF) values representing the water dynamics during the unbinding event. This novel computational protocol was initially tested on two M3 muscarinic receptor and two adenosine A2A receptor antagonists and then evaluated on a test set of 12 CRF1R ligands. The resulting RTscores were used successfully to classify ligands with different residence times. Additionally, the SF analysis was used to detect key differences in the degree of accessibility to water molecules during the predicted ligand unbinding events. The protocol provides actionable working hypotheses that are applicable in a drug discovery program for the rational optimization of ligand binding kinetics.

  12. Scalable nanohelices for predictive studies and enhanced 3D visualization.

    PubMed

    Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P

    2014-11-12

    Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.

  13. 1984 Summer Scholars Participants. A Follow Up.

    ERIC Educational Resources Information Center

    Mares, Kenneth R.; And Others

    A followup study was conducted to assess the impact of two 1984 Summer Scholars Programs at the University of Missouri, Kansas City, School of Medicine, which sponsors a combined bachelor's degree and doctor of medicine (M.D.) program. The university, in cooperation with area hospitals, implemented a 4-week program to identify and motivate…

  14. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  15. Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics

    PubMed Central

    Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran; Gold-von Simson, Gabrielle

    2018-01-01

    Drug discovery and development (DDD) is a collaborative, dynamic process of great interest to researchers, but an area where there is a lack of formal training. The Drug Development Educational Program (DDEP) at New York University was created in 2012 to stimulate an improved, multidisciplinary DDD workforce by educating early stage scientists as well as a variety of other like-minded students. The first course of the program emphasizes post-compounding aspects of DDD; the second course focuses on molecular signaling pathways. In five years, 196 students (candidates for PhD, MD, Master’s degree, and post-doctoral MD/PhD) from different schools (Medicine, Biomedical Sciences, Dentistry, Engineering, Business, and Education) completed the course(s). Pre/post surveys demonstrate knowledge gain across all course topics. 26 students were granted career development awards (73% women, 23% underrepresented minorities). Some graduates of their respective degree-granting/post-doctoral programs embarked on DDD related careers. This program serves as a framework for other academic institutions to develop compatible programs designed to train a more informed DDD workforce. PMID:29657854

  16. Analysis of the solution structure of Thermosynechococcus elongatus photosystem I in n-dodecyl-β-d-maltoside using small-angle neutron scattering and molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Rosemary K.; Harris, Bradley J.; Iwuchukwu, Ifeyinwa J.

    2014-05-01

    Small-angle neutron scattering (SANS) and molecular dynamics (MD) simulation were used to investigate the structure of trimeric photosystem I (PSI) from Thermosynechococcus elongatus (T. elongatus) stabilized in n-dodecyl-β-d-maltoside (DDM) detergent solution. Scattering curves of detergent and protein–detergent complexes were measured at 18% D2O, the contrast match point for the detergent, and 100% D2O, allowing observation of the structures of protein/detergent complexes. It was determined that the maximum dimension of the PSI–DDM complex was consistent with the presence of a monolayer belt of detergent around the periphery of PSI. A dummy-atom reconstruction of the shape of the complex from the SANSmore » data indicates that the detergent envelope has an irregular shape around the hydrophobic periphery of the PSI trimer rather than a uniform, toroidal belt around the complex. A 50 ns MD simulation model (a DDM ring surrounding the PSI complex with extra interstitial DDM) of the PSI–DDM complex was developed for comparison with the SANS data. The results suggest that DDM undergoes additional structuring around the membrane-spanning surface of the complex instead of a simple, relatively uniform belt, as is generally assumed for studies that use detergents to solubilize membrane proteins.« less

  17. The Risk and Clinical/Molecular Characteristics of Breast Cancer in Women with Neurofibromatosis Type 1

    DTIC Science & Technology

    2014-10-01

    Neurofibromatosis Type 1 PRINCIPAL INVESTIGATOR: Xia Wang, M.D., Ph.D. CONTRACTING ORGANIZATION: Henry Ford Health System Detroit... Neurofibromatosis Type 1” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Betty Diamond 5d. PROJECT NUMBER Xia Wang, MD, PhD; Renee... Neurofibromatosis type 1 (NF1) in a multi-institutional setting. Aim 1 assessed the incidence of breast cancer in this cohort and the clinical

  18. Combination Immunotherapy for the Treatment of High-Risk HER2-Positive Breast Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-1-0109 TITLE: Combination Immunotherapy for the Treatment of High-Risk HER2-Positive Breast Cancer PRINCIPAL INVESTIGATOR...Elizabeth A. Mittendorf, MD, PhD CONTRACTING ORGANIZATION: University of Texas MD Anderson Cancer Center Houston, TX 77030 REPORT DATE: October...CONTRACT NUMBER Combination Immunotherapy for the Treatment of High-Risk HER2-Positive Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0109 5c. PROGRAM

  19. Preliminary comparison of the Essie and PubMed search engines for answering clinical questions using MD on Tap, a PDA-based program for accessing biomedical literature

    PubMed Central

    Sutton, Victoria R.; Hauser, Susan E.

    2005-01-01

    MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information. PMID:16779415

  20. HBCU Summer Undergraduate Training Program in Prostate Cancer: A Partnership Between USU-CPDR and UDC

    DTIC Science & Technology

    2017-10-01

    Bethesda, MD 20817 REPORT DATE: October 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort...AUTHOR(S) Shiv Srivastava, PhD; Taduru Sreenath, PhD; Center for Prostate Disease Research , Dept of Surgery, Uniformed Services University of the...Army Medical Research Materiel Command Fort Detrick, MD 21702-5012 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12

  1. Will PEDF Therapy Reverse Chronic Demyelination and Prevent Axon Loss in a Murine Model of Progressive Multiple Sclerosis

    DTIC Science & Technology

    2015-12-01

    Multiple Sclerosis ? PRINCIPAL INVESTIGATOR: David Pleasure MD CONTRACTING ORGANIZATION: University of California Davis, CA 95618 REPORT DATE...Murine Model of Progressive Multiple Sclerosis ? 5b. GRANT NUMBER W81XWH-12-1-0566 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Pleasure MD 5d...enhance central nervous system (CNS) remyelination and preserve CNS axons in mouse models of multiple sclerosis models. After determining the dosage of

  2. Organtropic Metastatic Secretomes and Exosomes in Breast Cancer

    DTIC Science & Technology

    2016-10-01

    MD, PhD CONTRACTING ORGANIZATION: Joan & Sanford I Weill Medical College of Cornell University New York, NY 10065 REPORT DATE: October 2016 TYPE...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and...Cancer 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER David Lyden, MD, PhD, Ayuko Hoshino, PhD, Irina Matei, PhD

  3. American Burn Association Practice Guidelines: Burn Shock Resuscitation

    DTIC Science & Technology

    2008-02-01

    Ann Surg 1979;189: 546–52. 39. Jelenko C III, Williams JB, Wheeler ML, et al. Studies in shock and resuscitation, I: use of a hypertonic, albumin...SUMMARY ARTICLE American Burn Association Practice Guidelines Burn Shock Resuscitation Tam N. Pham, MD,* Leopoldo C . Cancio, MD,† Nicole S. Gibran...practice guidelines burn shock resuscitation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pham T. N., Cancio L. C

  4. 75th Ranger Regiment Nutrition Program

    DTIC Science & Technology

    2008-07-15

    75th Ranger Regiment Nutrition Program LTC Russ Kotwal CPT Nick Barringer Medical Director Dietician SFC Cesar Veliz SFC Justin...Siple Medical Training Culinary Advisor Warfighter Nutrition Conference USUHS, Bethesda, MD 15 JULY 2008 Report Documentation Page Form...DATES COVERED - 4. TITLE AND SUBTITLE 75th Ranger Regiment Nutrition Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  5. Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.

    2011-10-01

    An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.

  6. Combined distribution functions: A powerful tool to identify cation coordination geometries in liquid systems

    NASA Astrophysics Data System (ADS)

    Sessa, Francesco; D'Angelo, Paola; Migliorati, Valentina

    2018-01-01

    In this work we have developed an analytical procedure to identify metal ion coordination geometries in liquid media based on the calculation of Combined Distribution Functions (CDFs) starting from Molecular Dynamics (MD) simulations. CDFs provide a fingerprint which can be easily and unambiguously assigned to a reference polyhedron. The CDF analysis has been tested on five systems and has proven to reliably identify the correct geometries of several ion coordination complexes. This tool is simple and general and can be efficiently applied to different MD simulations of liquid systems.

  7. Coffee to Go: Woman "Thinks" First Cup in 15 Years | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Bioengineering (NIBIB) www.nibib.nih.gov/ NIBIB Rehabilitation Engineering Program Area www.nibib.nih.gov/Research/ProgramAreas/ ... M.D., Ph.D., an associate professor of engineering at Brown University in Providence, R.I. and ...

  8. 78 FR 4421 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ...: National Institutes of Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852... contract proposals. Place: National Institutes of Health, Neuroscience Center, 6001 Executive Boulevard... Federal Domestic Assistance Program Nos.: 93.279, Drug Abuse and Addiction Research Programs, National...

  9. 77 FR 63843 - National Institute on Drug Abuse; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ...: To review and evaluate grant applications. Place: National Institutes of Health, Neuroscience Center... of Health, Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852, (Telephone Conference... Federal Domestic Assistance Program Nos.: 93.279, Drug Abuse and Addiction Research Programs, National...

  10. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of reaction dynamics, which provides a useful tool to study chemical or biochemical systems in solution or enzymes.

  11. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica.

    PubMed

    Priya, R; Sumitha, Rajendrarao; Doss, C George Priya; Rajasekaran, C; Babu, S; Seenivasan, R; Siva, R

    2015-10-01

    Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation.

  12. Early rehabilitation after total knee replacement surgery: a multicenter, noninferiority, randomized clinical trial comparing a home exercise program with usual outpatient care.

    PubMed

    Han, Annie S Y; Nairn, Lillias; Harmer, Alison R; Crosbie, Jack; March, Lyn; Parker, David; Crawford, Ross; Fransen, Marlene

    2015-02-01

    To determine, at 6 weeks postsurgery, if a monitored home exercise program (HEP) is not inferior to usual care rehabilitation for patients undergoing primary unilateral total knee replacement (TKR) surgery for osteoarthritis. We conducted a multicenter, randomized clinical trial. Patients ages 45-75 years were allocated at the time of hospital discharge to usual care rehabilitation (n = 196) or the HEP (n = 194). Outcomes assessed 6 weeks after surgery included the Western Ontario and McMaster Universities Osteoarthritis Index pain and physical function subscales, knee range of motion, and the 50-foot walk time. The upper bound of the 95% confidence interval (95% CI) mean difference favoring usual care was used to determine noninferiority. At 6 weeks after surgery there were no significant differences between usual care and HEP, respectively, for pain (7.4 and 7.2; 95% CI mean difference [MD] -0.7, 0.9), physical function (22.5 and 22.4; 95% CI MD -2.5, 2.6), knee flexion (96° and 97°; 95% CI MD -4°, 2°), knee extension (-7° and -6°; 95% CI MD -2°, 1°), or the 50-foot walk time (12.9 and 12.9 seconds; 95% CI MD -0.8, 0.7 seconds). At 6 weeks, 18 patients (9%) allocated to usual care and 11 (6%) to the HEP did not achieve 80° knee flexion. There was no difference between the treatment allocations in the number of hospital readmissions. The HEP was not inferior to usual care as an early rehabilitation protocol after primary TKR. Copyright © 2015 by the American College of Rheumatology.

  13. Computational modeling on the recognition of the HRE motif by HIF-1: molecular docking and molecular dynamics studies.

    PubMed

    Sokkar, Pandian; Sathis, Vani; Ramachandran, Murugesan

    2012-05-01

    Hypoxia inducible factor-1 (HIF-1) is a bHLH-family transcription factor that controls genes involved in glycolysis, angiogenesis, migration, as well as invasion factors that are important for tumor progression and metastasis. HIF-1, a heterodimer of HIF-1α and HIF-1β, binds to the hypoxia responsive element (HRE) present in the promoter regions of hypoxia responsive genes, such as vascular endothelial growth factor (VEGF). Neither the structure of free HIF-1 nor that of its complex with HRE is available. Computational modeling of the transcription factor-DNA complex has always been challenging due to their inherent flexibility and large conformational space. The present study aims to model the interaction between the DNA-binding domain of HIF-1 and HRE. Experiments showed that rigid macromolecular docking programs (HEX and GRAMM-X) failed to predict the optimal dimerization of individually modeled HIF-1 subunits. Hence, the HIF-1 heterodimer was modeled based on the phosphate system positive regulatory protein (PHO4) homodimer. The duplex VEGF-DNA segment containing HRE with flanking nucleotides was modeled in the B form and equilibrated via molecular dynamics (MD) simulation. A rigid docking approach was used to predict the crude binding mode of HIF-1 dimer with HRE, in which the putative contacts were found to be present. An MD simulation (5 ns) of the HIF-1-HRE complex in explicit water was performed to account for its flexibility and to optimize its interactions. All of the conserved amino acid residues were found to play roles in the recognition of HRE. The present work, which sheds light on the recognition of HRE by HIF-1, could be beneficial in the design of peptide or small molecule therapeutics that can mimic HIF-1 and bind with the HRE sequence.

  14. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.

    PubMed

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  15. Cherry-picking functionally relevant substates from long md trajectories using a stratified sampling approach.

    PubMed

    Chandramouli, Balasubramanian; Mancini, Giordano

    2016-01-01

    Classical Molecular Dynamics (MD) simulations can provide insights at the nanoscopic scale into protein dynamics. Currently, simulations of large proteins and complexes can be routinely carried out in the ns-μs time regime. Clustering of MD trajectories is often performed to identify selective conformations and to compare simulation and experimental data coming from different sources on closely related systems. However, clustering techniques are usually applied without a careful validation of results and benchmark studies involving the application of different algorithms to MD data often deal with relatively small peptides instead of average or large proteins; finally clustering is often applied as a means to analyze refined data and also as a way to simplify further analysis of trajectories. Herein, we propose a strategy to classify MD data while carefully benchmarking the performance of clustering algorithms and internal validation criteria for such methods. We demonstrate the method on two showcase systems with different features, and compare the classification of trajectories in real and PCA space. We posit that the prototype procedure adopted here could be highly fruitful in clustering large trajectories of multiple systems or that resulting especially from enhanced sampling techniques like replica exchange simulations. Copyright: © 2016 by Fabrizio Serra editore, Pisa · Roma.

  16. Near quantitative agreement of model free DFT- MD predictions with XAFS observations of the hydration structure of highly charged transition metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Bylaska, Eric J.; Bogatko, Stuart A.

    DFT-MD simulations (PBE96 and PBE0) with MD-XAFS scattering calculations (FEFF9) show near quantitative agreement with new and existing XAFS measurements for a comprehensive series of transition metal ions which interact with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE's Office ofmore » Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  17. Mapping multiple potential ATP binding sites on the matrix side of the bovine ADP/ATP carrier by the combined use of MD simulation and docking.

    PubMed

    Di Marino, Daniele; Oteri, Francesco; della Rocca, Blasco Morozzo; D'Annessa, Ilda; Falconi, Mattia

    2012-06-01

    The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier-AAC-was crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). The protein consists of a six-transmembrane helix bundle that defines the nucleotide translocation pathway, which is closed towards the matrix side due to sharp kinks in the odd-numbered helices. In this paper, we describe the interaction between the matrix side of the AAC transporter and the ATP(4-) molecule using carrier structures obtained through classical molecular dynamics simulation (MD) and a protein-ligand docking procedure. Fifteen structures were extracted from a previously published MD trajectory through clustering analysis, and 50 docking runs were carried out for each carrier conformation, for a total of 750 runs ("MD docking"). The results were compared to those from 750 docking runs performed on the X-ray structure ("X docking"). The docking procedure indicated the presence of a single interaction site in the X-ray structure that was conserved in the structures extracted from the MD trajectory. MD docking showed the presence of a second binding site that was not found in the X docking. The interaction strategy between the AAC transporter and the ATP(4-) molecule was analyzed by investigating the composition and 3D arrangement of the interaction pockets, together with the orientations of the substrate inside them. A relationship between sequence repeats and the ATP(4-) binding sites in the AAC carrier structure is proposed.

  18. Genetics Home Reference: tuberous sclerosis complex

    MedlinePlus

    ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  19. KSC-05pd2409

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, the New Horizons spacecraft is shrouded in insulating blankets that were installed to serve as a heat shield. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  20. KSC-05pd2407

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts part of the blanket that is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  1. KSC-05pd2408a

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts the blanket that is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  2. KSC-05pd2407a

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts the blanket that is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  3. KSC-05pd2625

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - The mission decal for New Horizons is laid out in strips on the floor of the Payload Hazardous Servicing Facility before installation onto the spacecraft's fairing. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  4. KSC-05pd2406

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, technicians from the Applied Physics Laboratory are installing blankets that serve as heat shields around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  5. 78 FR 55750 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ..., Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of.... Contact Person: Caterina Bianco, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch...: David G. Ransom, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of...

  6. 9 CFR 55.22 - Participation and enrollment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC WASTING DISEASE Chronic Wasting Disease Herd Certification Program § 55.22 Participation and enrollment. (a... National Center for Animal Health Program, VS, APHIS, 4700 River Road Unit 43, Riverdale, MD 20737-1235...

  7. 9 CFR 55.22 - Participation and enrollment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE COOPERATIVE CONTROL AND ERADICATION OF LIVESTOCK OR POULTRY DISEASES CONTROL OF CHRONIC WASTING DISEASE Chronic Wasting Disease Herd Certification Program § 55.22 Participation and enrollment. (a... to the National Center for Animal Health Program, VS, APHIS, 4700 River Road Unit 43, Riverdale, MD...

  8. 78 FR 28234 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ...: Caterina Bianco, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of... Officer, Research Programs Review Branch, Division of Extramural Activities, National Cancer Institute....396, Cancer Biology Research; 93.397, Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399...

  9. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding.

    PubMed

    Asamitsu, Kaori; Hirokawa, Takatsugu; Okamoto, Takashi

    2017-01-01

    In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.

  10. Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations.

    PubMed

    Knapp, Bernhard; Demharter, Samuel; Esmaielbeiki, Reyhaneh; Deane, Charlotte M

    2015-11-01

    The interaction between T-cell receptors (TCRs) and major histocompatibility complex (MHC)-bound epitopes is one of the most important processes in the adaptive human immune response. Several hypotheses on TCR triggering have been proposed. Many of them involve structural and dynamical adjustments in the TCR/peptide/MHC interface. Molecular Dynamics (MD) simulations are a computational technique that is used to investigate structural dynamics at atomic resolution. Such simulations are used to improve understanding of signalling on a structural level. Here we review how MD simulations of the TCR/peptide/MHC complex have given insight into immune system reactions not achievable with current experimental methods. Firstly, we summarize methods of TCR/peptide/MHC complex modelling and TCR/peptide/MHC MD trajectory analysis methods. Then we classify recently published simulations into categories and give an overview of approaches and results. We show that current studies do not come to the same conclusions about TCR/peptide/MHC interactions. This discrepancy might be caused by too small sample sizes or intrinsic differences between each interaction process. As computational power increases future studies will be able to and should have larger sample sizes, longer runtimes and additional parts of the immunological synapse included. © The Author 2015. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

  11. A virtual-system coupled multicanonical molecular dynamics simulation: Principles and applications to free-energy landscape of protein-protein interaction with an all-atom model in explicit solvent

    NASA Astrophysics Data System (ADS)

    Higo, Junichi; Umezawa, Koji; Nakamura, Haruki

    2013-05-01

    We propose a novel generalized ensemble method, a virtual-system coupled multicanonical molecular dynamics (V-McMD), to enhance conformational sampling of biomolecules expressed by an all-atom model in an explicit solvent. In this method, a virtual system, of which physical quantities can be set arbitrarily, is coupled with the biomolecular system, which is the target to be studied. This method was applied to a system of an Endothelin-1 derivative, KR-CSH-ET1, known to form an antisymmetric homodimer at room temperature. V-McMD was performed starting from a configuration in which two KR-CSH-ET1 molecules were mutually distant in an explicit solvent. The lowest free-energy state (the most thermally stable state) at room temperature coincides with the experimentally determined native complex structure. This state was separated to other non-native minor clusters by a free-energy barrier, although the barrier disappeared with elevated temperature. V-McMD produced a canonical ensemble faster than a conventional McMD method.

  12. Experimental and Theoretical Study of Molecular Response of Amine Bases in Organic Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathmann, Shawn M.; Cho, Herman M.; Chang, Tsun-Mei

    2014-05-08

    Reorientational correlation times of various amine bases (viz., pyridine, 2,6-lutidene, 2,2,6,6-tetramethylpiperidine) and organic solvents (dichloromethane, toluene) were determined by solution-state NMR relaxation time measurements and compared with predictions from molecular dynamics (MD) simulations. The bases and solvents are reagents in complex reactions involving Frustrated Lewis Pairs (FLP), which display remarkable catalytic activity in metal-free H2 scission. The comparison of measured and simulated correlation times is a key test of the ability of recent MD and quantum electronic structure calculations to elucidate the mechanism of FLP activity. Correla- tion times were found to be in the range 1.4-3.4 ps (NMR) andmore » 1.23-5.28 ps (MD) for the amines, and 0.9-2.3 ps (NMR) and 0.2-1.7 ps (MD) for the solvent molecules. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacic Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  13. Anharmonic Infrared Spectroscopy through the Fourier Transform of Time Correlation Function Formalism in ONETEP.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Dubois, Simon M-M; Fangohr, Hans; Skylaris, Chris-Kriton

    2015-07-14

    Density functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFT-MD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in the understanding and assignment of experimental peaks and bands at finite temperature, particularly in the case of floppy molecules. Linear-scaling DFT methods can be used to study large and complex systems, such as peptides, DNA strands, amorphous solids, and molecules in solution. Here, we present the implementation of DFT-MD IR spectroscopy in the ONETEP linear-scaling code. In addition, two methods for partitioning the dipole moment within the ONETEP framework are presented. Dipole moment partitioning allows us to compute spectra of molecules in solution, which fully include the effects of the solvent, while at the same time removing the solvent contribution from the spectra.

  14. Model Early Childhood Learning Program, Baltimore, Maryland. Model Programs, Title III--Elementary and Secondary Education Act.

    ERIC Educational Resources Information Center

    National Center for Educational Communication (DHEW/NIE), Washington, DC.

    The purpose of the Model Early Childhood Learning Program of Baltimore, Md., City Schools is to provide experiences for disadvantaged children which will constitute the prerequisite developmental history needed to undertake first grade concepts and skills. The project's stated objectives are: (1) to improve the measured aptitude or readiness for…

  15. Hydromorphone overdose

    MedlinePlus

    ... Updated by: Jacob L. Heller, MD, MHA, Emergency Medicine, Emeritus, Virginia Mason Medical Center, Seattle, WA. ... as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is ...

  16. Precision Medicine in NCI’s National Clinical Trials Network: Progress and Lessons Learned

    Cancer.gov

    NCI’s Jeff Abrams, M.D., Acting Director for Clinical Research in the Division of Cancer Treatment and Diagnosis (DCTD) and Associate Director of the Cancer Therapy Evaluation Program (CTEP) and Nita Seibel, M.D., Head of the Pediatric Solid Tumor Therapeutics in the Clinical Investigations Branch of CTEP, DCTD will host a Google Hangout on Air. The discussion will be moderated by Andrea Denicoff, R.N., N.P, Head, NCTN Clinical Trials Operations in the Investigational Drug Branch of CTEP, DCTD.

  17. EF5 PET of Tumor Hypoxia: A Predictive Imaging Biomarker of Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer

    DTIC Science & Technology

    2017-11-01

    SABR) for Early Lung Cancer PRINCIPAL INVESTIGATOR: Billy W Loo Jr, MD PhD CONTRACTING ORGANIZATION: The Leland Stanford Junior University...Response to Stereotactic Ablative Radiotherapy (SABR) for Early Lung Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Billy W Loo Jr, MD...for early stage lung cancer in patients who are not candidates for surgery because of excessive surgical risk, and will be an important treatment option

  18. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability.

    PubMed

    Wang, Zhangxin; Lin, Shihong

    2017-04-01

    Membrane distillation (MD) has been identified as a promising technology to desalinate the hypersaline wastewaters from fracking and other industries. However, conventional hydrophobic MD membranes are highly susceptible to fouling and/or wetting by the hydrophobic and/or amphiphilic constituents in these wastewaters of complex compositions. This study systematically investigates the impact of the surface wetting properties on the membrane wetting and/or fouling behaviors in MD. Specifically, we compare the wetting and fouling resistance of three types of membranes of different wetting properties, including hydrophobic and omniphobic membranes as well as composite membranes with a hydrophobic substrate and a superhydrophilic top surface. We challenged the MD membranes with hypersaline feed solutions that contained a relatively high concentration of crude oil with and without added synthetic surfactants, Triton X-100. We found that the composite membranes with superhydrophilic top surface were robustly resistant to oil fouling in the absence of Triton X-100, but were subject to pore wetting in the presence of Triton X-100. On the other hand, the omniphobic membranes were easily fouled by oil-in-water emulsion without Triton X-100, but successfully sustained stable MD performance with Triton X-100 stabilized oil-in-water emulsion as the feed solution. In contrast, the conventional hydrophobic membranes failed readily regardless whether Triton X-100 was present, although via different mechanisms. These findings are corroborated by contact angle measures as well as oil-probe force spectroscopy. This study provides a holistic picture regarding how a hydrophobic membrane fails in MD and how we can leverage membranes with special wettability to prevent membrane failure in MD operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures

    NASA Astrophysics Data System (ADS)

    Saavedra-Vélez, Margarita Virginia; Correa-Basurto, José; Matus, Myrna H.; Gasca-Pérez, Eloy; Bello, Martiniano; Cuevas-Hernández, Roberto; García-Rodríguez, Rosa Virginia; Trujillo-Ferrara, José; Ramos-Morales, Fernando Rafael

    2014-12-01

    The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo( b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR-D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR-D1, and GABAAR-CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.

  20. Protein folding simulations: from coarse-grained model to all-atom model.

    PubMed

    Zhang, Jian; Li, Wenfei; Wang, Jun; Qin, Meng; Wu, Lei; Yan, Zhiqiang; Xu, Weixin; Zuo, Guanghong; Wang, Wei

    2009-06-01

    Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based Gō-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL, the development of discrete MD and its application in studying the alpha-beta conformational conversion and oligomer assembling process, and the modeling of metal ion involved protein folding. (c) 2009 IUBMB.

  1. Pilot Study of a Parent Training Program for Young Children with Autism: The PLAY Project Home Consultation Program

    ERIC Educational Resources Information Center

    Solomon, Richard; Necheles, Jonathan; Ferch, Courtney; Bruckman, David

    2007-01-01

    The PLAY Project Home Consultation (PPHC) program trains parents of children with autistic spectrum disorders using the DIR/Floortime model of Stanley Greenspan MD. Sixty-eight children completed the 8-12 month program. Parents were encouraged to deliver 15 hours per week of 1:1 interaction. Pre/post ratings of videotapes by blind raters using the…

  2. Test Review for Preschool-Wide Evaluation Tool (PreSET) Manual: Assessing Universal Program-Wide Positive Behavior Support in Early Childhood

    ERIC Educational Resources Information Center

    Rodriguez, Billie Jo

    2013-01-01

    The Preschool-Wide Evaluation Tool (PreSET; Steed & Pomerleau, 2012) is published by Paul H. Brookes Publishing Company in Baltimore, MD. The PreSET purports to measure universal and program-wide features of early childhood programs' implementation fidelity of program-wide positive behavior intervention and support (PW-PBIS) and is,…

  3. Comparison of molecular dynamics and superfamily spaces of protein domain deformation.

    PubMed

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-02-17

    It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.

  4. Comparison of molecular dynamics and superfamily spaces of protein domain deformation

    PubMed Central

    Velázquez-Muriel, Javier A; Rueda, Manuel; Cuesta, Isabel; Pascual-Montano, Alberto; Orozco, Modesto; Carazo, José-María

    2009-01-01

    Background It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). Results Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. Conclusion Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding. PMID:19220918

  5. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we examine the effect of reaction rates on shock direction, fuel oil fraction, and crystal/fuel oil/void microstructural arrangement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Admin. under contract DEAC0494AL85000.

  6. [Relationship between visual field index and visual field morphological stages of glaucoma and their diagnostic value].

    PubMed

    Hou, X R; Qin, J Y; Ren, Z Q

    2017-02-11

    Objective: To investigate the rationality of visual field morphological stages of glaucoma, its relationship with visual field index and their diagnostic value. Methods: Retrospective series case study. Two hundred and seventy-four glaucoma patients and 100 normal control received visual field examination by Humphrey perimeter using standard automatic perimetry (SAP) program from March 2014 to September 2014. Glaucoma patients were graded into four stages according to characteristic morphological damage of visual field, distribution of mean defect (MD) and visual field index (VFI) of each stage were plotted and receiver operation characteristic curve (ROC) was used to explore its correlation with MD and VFI. The diagnostic value of MD and VFI was also compared. For the comparison of general data of subjects, categorical variables were compared using χ(2) test, numerical variables were compared using F test. MD and VFI were compared using ANOVA among stages according to visual field, followed by multiple comparisons using LSD method. The correlation between MD and VFI and different stages according to visual field defined their diagnostic value, and compared using area under the curve (AUC) of ROC. Results: No characteristic visual field damage was found in normal control group, and MD and VFI was (-0.06±1.24) dB and (99.15±0.76)%, respectively. Glaucomatous visual field damage was graded into early, medium, late and end stage according to morphological characteristic. MD for each stage were (-2.83±2.00) dB, (-9.70±3.68) dB, (-18.46±2.90) dB, and (-27.96±2.76) dB, respectively. VFI for each stage were (93.84±3.61)%, (75.16±10.85)%, (49.36±11.26)% and (17.65±10.59)%, respectively. MD and VFI of each stage of glaucomatous group and normal control group were all significantly different ( F= 1 165.53 and P <0.01 for MD; F= 1 028.04 and P <0.01 for VFI). AUC of ROC was A(MD)=0.91 and Se(MD)=0.01 (95% confident interval was 0.89-0.94) for MD, and A(VFI)=0.97, Se(VFI)=0.01 (95% confident interval was 0.94-0.10) for VFI. So, AUC(VFI)>AUC(MD) ( P< 0.05). Conclusions: It is feasible and rational of glaucomatous visual field damage to be graded into early, medium, late and end stage using Humphrey perimeter. Distribution of MD and VFI for each stage was relatively concentrative. Both MD and VFI were useful for grading glaucomatous visual field damage with preference for VFI. (Chin J Ophthalmol, 2017, 53: 92-97) .

  7. OTP Directory

    Science.gov Websites

    Skip Navigation medication-assisted treatment for substance use disorders Back to MAT home  • Opioid Treatment Program Directory Select to view the opioid treatment programs in a State - Select - All Substance Abuse Treatment Division of Pharmacologic Therapies 5600 Fishers Lane * Rockville, MD 20857 * 240

  8. A Proposed Incentive System for Jefferson County Teachers.

    ERIC Educational Resources Information Center

    Schlechty, Phillip C.; Ingwerson, Donald W.

    1987-01-01

    Outlines a teacher incentive plan developed for the Jefferson County (Kentucky) Public Schools and scheduled for pilot testing during the 1987-88 school year. The program is modeled after airline frequent flyer programs and is designed to encourage cooperative action and individual incentive among teachers. (MD)

  9. 76 FR 65107 - Recovery of Delinquent Debts-Treasury Offset Program Enhancements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... SOCIAL SECURITY ADMINISTRATION 20 CFR Parts 404, 408, 416, and 422 [Docket No. SSA-2010-0010] RIN 0960-AH19 Recovery of Delinquent Debts--Treasury Offset Program Enhancements AGENCY: Social Security... Recovery Policy, Social Security Administration, 6401 Security Boulevard, Baltimore, MD 21235-6401, (410...

  10. Unlocking the Latchkey Problem.

    ERIC Educational Resources Information Center

    Press-Dawson, Andee

    1987-01-01

    "Kids-on-Campus" provides before and after school child care services in partnership with seven school districts in Sacramento and Yolo Counties (CA). It is the ideal solution to the latchkey children problem with the program taking responsibility for all the development and administration of in-school child care programs. (MD)

  11. Charging Properties of Cassiterite (alpha-SnO2) surfaces in NaCl and RbCl Ionic Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas

    2009-01-01

    The acid-base properties of cassiterite (alpha-SnO2) surfaces at 10-50 degrees C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 degrees C, respectively. This is contrary to the situation on the isostructural alpha-TiO2 (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb+ is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH(-0.40)) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less

  12. Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH.

    PubMed

    Okuda, Masahiko; Higo, Junichi; Komatsu, Tadashi; Konuma, Tsuyoshi; Sugase, Kenji; Nishimura, Yoshifumi

    2016-09-06

    General transcription factor II E (TFIIE) contains an acid-rich region (residues 378-393) in its α-subunit, comprising 13 acidic and two hydrophobic (Phe387 and Val390) residues. Upon binding to the p62 subunit of TFIIH, the acidic region adopts an extended string-like structure on the basic groove of the pleckstrin homology domain (PHD) of p62, and inserts Phe387 and Val390 into two shallow pockets in the groove. Here, we have examined the dynamics of this interaction by NMR and molecular dynamics (MD) simulations. Although alanine substitution of Phe387 and/or Val390 greatly reduced binding to PHD, the binding mode of the mutants was similar to that of the wild-type, as judged by the chemical-shift changes of the PHD. NMR relaxation dispersion profiles of the interaction exhibited large amplitudes for residues in the C-terminal half-string in the acidic region (Phe387, Glu388, Val390, Ala391, and Asp392), indicating a two-site binding mode: one corresponding to the final complex structure, and one to an off-pathway minor complex. To probe the off-pathway complex structure, an atomically detailed free-energy landscape of the binding mode was computed by all-atom multicanonical MD. The most thermodynamically stable cluster corresponded to the final complex structure. One of the next stable clusters was the off-pathway structure cluster, showing the reversed orientation of the C-terminal half-string on the PHD groove, as compared with the final structure. MD calculations elucidated that the C-terminal half-acidic-string forms encounter complexes mainly around the positive groove region with nearly two different orientations of the string, parallel and antiparallel to the final structure. Interestingly, the most encountered complexes exhibit a parallel-like orientation, suggesting that the string has a tendency to bind around the groove in the proper orientation with the aid of Phe387 and/or Val390 to proceed smoothly to the final complex structure. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Charging properties of cassiterite (alfa-SnO2) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, L.

    The acid-base properties of cassiterite (alfa-SnO2) surfaces at 10 50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH-range 4.0 to 4.5 at all conditions and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical Molecular Dynamics (MD) simulations, was analyzed in detail and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH2 group is more acidic than the bridging Sn2OH group, with protonation constants (log KH) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural alfa-TiO2 (rutile), apparently due to the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na+ and Rb+, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, while adsorbed rubidium ions form comparable amounts of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na+ between the different complexes shows a considerable dependence on surface charge density (pH), while the distribution of adsorbed Rb+ is almost independent of pH. A Surface Complexation Model (SCM) capable of accurately describing both the measured surface charge and the MD predicted speciation of adsorbed Na+/Rb+ was formulated. According to the SCM, the deprotonated terminal group (SnOH-0.40) and the protonated bridging group (Sn2OH+0.36) dominate the surface speciation over the entire pH-range (2.7 10), illustrating the ability of positively and negatively charged surface groups to coexist. Complexation of the medium cations increases significantly with increasing negative surface charge and at pH 10 roughly 40 percent of the terminal sites are predicted to form cation complexes, while anion complexation is minor throughout the studied pH-range.« less

  14. Probing the dynamic nature of water molecules and their influences on ligand binding in a model binding site.

    PubMed

    Cappel, Daniel; Wahlström, Rickard; Brenk, Ruth; Sotriffer, Christoph A

    2011-10-24

    The model binding site of the cytochrome c peroxidase (CCP) W191G mutant is used to investigate the structural and dynamic properties of the water network at the buried cavity using computational methods supported by crystallographic analysis. In particular, the differences of the hydration pattern between the uncomplexed state and various complexed forms are analyzed as well as the differences between five complexes of CCP W191G with structurally closely related ligands. The ability of docking programs to correctly handle the water molecules in these systems is studied in detail. It is found that fully automated prediction of water replacement or retention upon docking works well if some additional preselection is carried out but not necessarily if the entire water network in the cavity is used as input. On the other hand, molecular interaction fields for water calculated from static crystal structures and hydration density maps obtained from molecular dynamics simulations agree very well with crystallographically observed water positions. For one complex, the docking and MD results sensitively depend on the quality of the starting structure, and agreement is obtained only after redetermination of the crystal structure and refinement at higher resolution.

  15. 18. DETAIL VIEW OF FIRE ALARM SYSTEM BOARD THAT LISTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL VIEW OF FIRE ALARM SYSTEM BOARD THAT LISTS AREAS IN SHOPS COMPLEX. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD

  16. Students Help Students with Sails.

    ERIC Educational Resources Information Center

    Toskas, Denny

    1987-01-01

    Outlines a student tutoring program called SAILS (Student Assistance in Learning and Support) that helps students who have chronic difficulties in mathematics, reading, English, and with personal problems. (MD)

  17. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulations Guided by a Coarse-Grained Model.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-08-11

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water.

  18. Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics—Monte Carlo Simulations Guided by a Coarse-Grained Model

    PubMed Central

    2015-01-01

    Molecular dynamics (MD) trajectories based on a classical equation of motion provide a straightforward, albeit somewhat inefficient approach, to explore and sample the configurational space of a complex molecular system. While a broad range of techniques can be used to accelerate and enhance the sampling efficiency of classical simulations, only algorithms that are consistent with the Boltzmann equilibrium distribution yield a proper statistical mechanical computational framework. Here, a multiscale hybrid algorithm relying simultaneously on all-atom fine-grained (FG) and coarse-grained (CG) representations of a system is designed to improve sampling efficiency by combining the strength of nonequilibrium molecular dynamics (neMD) and Metropolis Monte Carlo (MC). This CG-guided hybrid neMD-MC algorithm comprises six steps: (1) a FG configuration of an atomic system is dynamically propagated for some period of time using equilibrium MD; (2) the resulting FG configuration is mapped onto a simplified CG model; (3) the CG model is propagated for a brief time interval to yield a new CG configuration; (4) the resulting CG configuration is used as a target to guide the evolution of the FG system; (5) the FG configuration (from step 1) is driven via a nonequilibrium MD (neMD) simulation toward the CG target; (6) the resulting FG configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-ends momentum reversal prescription is used for the neMD trajectories of the FG system to guarantee that the CG-guided hybrid neMD-MC algorithm obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The enhanced sampling achieved with the method is illustrated with a model system with hindered diffusion and explicit-solvent peptide simulations. Illustrative tests indicate that the method can yield a speedup of about 80 times for the model system and up to 21 times for polyalanine and (AAQAA)3 in water. PMID:26574442

  19. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    PubMed

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  20. 75 FR 17859 - Grants to States for Construction or Acquisition of State Home Facilities-Update of Authorized Beds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... abuse, Alcoholism, Claims, Day care, Dental health, Drug abuse, Foreign relations, Government contracts, Grant programs--health, Grant programs--veterans, Health care, Health facilities, Health professions... FURTHER INFORMATION CONTACT: James F. Burris, MD, Chief Consultant, Geriatrics and Extended Care State...

  1. 78 FR 50065 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Methodological Research for Cancer Epidemiology Cohorts. Date: October 25, 2013. Time: 10:30 a.m. to 2:30 p.m... Lopaczynski, MD, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division of Extramural.... Contact Person: Shakeel Ahmad, Ph.D., Scientific Review Officer, Research Programs Review Branch, Division...

  2. Resource-Based Intervention: Success with Community-Centered Practices

    ERIC Educational Resources Information Center

    Torrey, Michelle Kerber; Leginus, Mary Anne; Cecere, Susan

    2011-01-01

    In this commentary the authors share their experiences on the design and implementation of community-centered early intervention programs in Prince George's County, MD. Their aim in designing community-centered programs was to provide infants and toddlers opportunities for learning, language, and motor development in natural environments with…

  3. 77 FR 38680 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... persons, scientific and technical information relevant to program planning. DATES: Monday, July 23, 2012... Goddard Space Flight Center (GSFC), Building 1, Room E100D, 8800 Greenbelt Road, Greenbelt, MD 20771. FOR... Session with the NAC Science Committee on Mars Program Planning Group and Joint Robotic Precursor...

  4. 75 FR 13136 - National Institute on Drug Abuse; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... unwarranted invasion of personal privacy. Name of Committee: National Institute on Drug Abuse Special Emphasis... Institute on Drug Abuse, NIH. DHHS, Room 220, MSC 8401, 6101 Executive Boulevard, Bethesda, MD 20892- 8401... Assistance Program Nos. 93.279, Drug Abuse and Addiction Research Programs, National Institutes of Health...

  5. 76 FR 19778 - National Vaccine Injury Compensation Program: Statement of Reasons for Not Conducting Rule-Making...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... Vaccine Injury Compensation Program: Statement of Reasons for Not Conducting Rule-Making Proceedings... conducting a rule-making proceeding for adding Guillain-Barr[eacute] Syndrome (GBS) to the Vaccine Injury...: Geoffrey Evans, M.D., Director, Division of Vaccine Injury Compensation, Healthcare Systems Bureau, Health...

  6. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.

    PubMed

    Li, Mei; Zhu, Lizhong; Lin, Daohui

    2011-03-01

    Water chemistry can be a major factor regulating the toxicity mechanism of ZnO nanoparticles (nano-ZnO) in water. The effect of five commonly used aqueous media with various chemical properties on the toxicity of nano-ZnO to Escherichia coli O111 (E. coli) was investigated, including ultrapure water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis (MD), and Luria-Bertani (LB). Combined results of physicochemical characterization and antibacterial tests of nano-ZnO in the five media suggest that the toxicity of nano-ZnO is mainly due to the free zinc ions and labile zinc complexes. The toxicity of nano-ZnO in the five media deceased as follows: ultrapure water > NaCl > MD > LB > PBS. The generation of precipitates (Zn(3)(PO(4))(2) in PBS) and zinc complexes (of zinc with citrate and amino acids in MD and LB, respectively) dramatically decreased the concentration of Zn(2+) ions, resulting in the lower toxicity in these media. Additionally, the isotonic and rich nutrient conditions improved the tolerance of E. coli to toxicants. Considering the dramatic difference of the toxicity of nano-ZnO in various aqueous media, the effect of water chemistry on the physicochemical properties of nanoparticles should be paid more attention in future nanotoxicity evaluations.

  7. Functional Loop Dynamics of the Streptavidin-Biotin Complex

    PubMed Central

    Song, Jianing; Li, Yongle; Ji, Changge; Zhang, John Z. H.

    2015-01-01

    Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop3-4 in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop3-4 from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop3-4 and biotin. (3) The closure of loop3-4 is concerted to the stable binding of biotin to streptavidin. When the loop3-4 is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop3-4 and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop3-4 in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer. PMID:25601277

  8. A computational analysis of SARS cysteine proteinase-octapeptide substrate interaction: implication for structure and active site binding mechanism

    PubMed Central

    Phakthanakanok, Krongsakda; Ratanakhanokchai, Khanok; Kyu, Khin Lay; Sompornpisut, Pornthep; Watts, Aaron; Pinitglang, Surapong

    2009-01-01

    Background SARS coronavirus main proteinase (SARS CoVMpro) is an important enzyme for the replication of Severe Acute Respiratory Syndrome virus. The active site region of SARS CoVMpro is divided into 8 subsites. Understanding the binding mode of SARS CoVMpro with a specific substrate is useful and contributes to structural-based drug design. The purpose of this research is to investigate the binding mode between the SARS CoVMpro and two octapeptides, especially in the region of the S3 subsite, through a molecular docking and molecular dynamics (MD) simulation approach. Results The one turn α-helix chain (residues 47–54) of the SARS CoVMpro was directly involved in the induced-fit model of the enzyme-substrate complex. The S3 subsite of the enzyme had a negatively charged region due to the presence of Glu47. During MD simulations, Glu47 of the enzyme was shown to play a key role in electrostatic bonding with the P3Lys of the octapeptide. Conclusion MD simulations were carried out on the SARS CoVMpro-octapeptide complex. The hypothesis proposed that Glu47 of SARS CoVMpro is an important residue in the S3 subsite and is involved in binding with P3Lys of the octapeptide. PMID:19208150

  9. Exploration of bulk and interface behavior of gas molecules and 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid using equilibrium and nonequilibrium molecular dynamics simulation and quantum chemical calculation.

    PubMed

    Yang, Quan; Achenie, Luke E K

    2018-04-18

    Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.

  10. Calculations of the free energy of interaction of the c-Fos-c-Jun coiled coil: effects of the solvation model and the inclusion of polarization effects.

    PubMed

    Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L

    2010-12-27

    The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

  11. The effect of macromolecular crowding on the structure of the protein complex superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Rajapaksha Mudalige, Ajith Rathnaweera

    Biological environments contain between 7 - 40% macromolecules by volume. This reduces the available volume for macromolecules and elevates the osmotic pressure relative to pure water. Consequently, biological macromolecules in their native environments tend to adopt more compact and dehydrated conformations than those in vitro. This effect is referred to as macromolecular crowding and constitutes an important physical difference between native biological environments and the simple solutions in which biomolecules are usually studied. We used small angle scattering (SAS) to measure the effects of macromolecular crowding on the size of a protein complex, superoxide dismutase (SOD). Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl-alpha-glucoside (alpha-MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%. SAS coupled with osmotic pressure measurements allowed us to estimate a compressibility modulus for SOD. We believe this to be the first time the osmotic compressibility of a protein complex was measured. Molecular Dynamics (MD) simulations are widely used to obtain insights on biomolecular processes. However, it is not clear whether MD is capable of predicting subtle effects of macromolecular crowding. We used our experimentally observed compressibility of SOD to evaluate the ability of MD to predict macromolecular crowding. Effects of macromolecular crowding due to PEG on SOD were modeled using an all atom MD simulation with the CHARMM forcefield and the crystallographically resolved structures of SOD and PEG. Two parallel MD simulations were performed for SOD in water and SOD in 40% PEG for over 150~ns. Over the period of the simulation the SOD structure in 40% PEG did not change compared to the SOD structure in water. It therefore appears that under the conditions of our simulations MD could not describe the experimentally observed effects of macromolecular crowding. In a separate project, we measured the rate of diffusive transport in excised porcine corneal stroma using FCS for fluorescent labeled dextran molecules with hydrodynamic radii ranging from 1.3 to 34 nm. Dextran molecules diffuse more slowly in cornea as compared to buffer solution. The reduction in diffusion coefficient is modest however (67% smaller), and is uniform over the range of sizes that we measured. Diffusion coefficients measured parallel vs. perpendicular to the collagen lamellae were indistinguishable. This indicates that diffusion in the corneal stroma is not highly anisotropic. Delivery of therapeutic agents to the eye requires efficient transport through cellular and extracellular barriers. Our measurements bring important insights into how macromolecular and nanoparticle therapeutics might permeate through the eyes.

  12. A clinical refresher course for medical scientist trainees.

    PubMed

    Swartz, Talia H; Lin, Jenny J

    2014-06-01

    MD-PhD students experience a prolonged hiatus away from clinical medicine during their laboratory research phase and some have experienced difficulty transitioning back to clinical medicine during clerkship years. We developed a clinical refresher program that serves to rebuild clinical skills prior to re-entering the clinical clerkship years. A nine-week program includes a combination of didactic and practical review in history, physical exam, presentation and clinical reasoning skills. The program uses multiple modalities from classroom-based activities to patient care encounters and includes a final assessment using standardized patients. After seven years of experience, we have made modifications that result in our students scoring comparably well on a standardized patient exam to their second-year medical student colleagues. By the end of the course, all students reported feeling more comfortable completing a history and physical examination and some improvement in preclinical knowledge base. Review of clerkship scores showed a higher percentage of MD-PhD students scoring Honors in a clerkship in years after course implementation as compared to years prior to course implementation. We describe a clinical refresher course for successfully retraining MD-PhD students to re-enter clinical medical training. It is effective at restoring clinical skills to a level comparable to their medical student contemporaries and prepares them to rejoin the medical student class at the conclusion of their research phase.

  13. Scientific Growth and Identity Development during a Postbaccalaureate Program: Results from a Multisite Qualitative Study

    ERIC Educational Resources Information Center

    Remich, Robin; Naffziger-Hirsch, Michelle E.; Gazley, J. Lynn; McGee, Richard

    2016-01-01

    This report builds upon our previous study, which described five patterns of why college graduates join National Institutes of Health (NIH)-funded diversity-focused Postbaccalaureate Research Education Programs (PREP). A 2015 report from the NIH showed that a high fraction of PREP participants matriculate into PhD and MD/PhD programs. This current…

  14. The Army Racial Awareness Program: A Case Study of Program Impact on Personal Values. Special Report

    ERIC Educational Resources Information Center

    Vaughan, Michael R.; Kriner, Richard E.

    The effects of two forms of presentation of the Army Racial Awareness Program (RAP) on the personal values of equality and freedom were assessed. Subjects were Army personnel assigned to RAP at Fort Meade, Md. The research instrument was the Rokeach Value Survey, in pretest-posttest administrations. Results suggested that the official RAP…

  15. Marketing Medical Education: An Examination of Recruitment Web Sites for Traditional and Combined-Degree M.D. Programs

    ERIC Educational Resources Information Center

    Schneider, Roberta L.

    2004-01-01

    The Internet has the potential to reshape college recruiting; however, little research has been done to see the impact of the Internet on marketing graduate programs, including medical schools. This paper explores the Web sites of 20 different medical schools, including traditional four-year and bachelor's-M.D. degree programs, to ascertain…

  16. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  17. A Collaborative Translational Autism Research Program for the Military

    DTIC Science & Technology

    2016-02-26

    AFRL-SA-WP-TR-2016-0001 A Collaborative Translational Autism Research Program for the Military Gail E. Herman, MD, PhD; Emily...DATES COVERED (From – To) September 2012 – December 2015 4. TITLE AND SUBTITLE A Collaborative Translational Autism Research Program for the...proposed research is that a collaborative translational autism research program with the military will result in the improved diagnosis and care of those

  18. Insomnia

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  19. Schizophrenia

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  20. Agoraphobia

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  1. The free-energy barrier to hydride transfer across a dipalladium complex

    DOE PAGES

    Ramirez-Cuesta, Anibal J.

    2015-01-01

    We use density-functional theory molecular dynamics (DFT-MD) simulations to determine the hydride transfer coordinate between palladium centres of the crystallographically observed terminal hydride locations, Pd-Pd-H, originally postulated for the solution dynamics of the complex bis-NHC dipalladium hydride [{(MesIm)(2)CH2}(2)Pd2H][PF6], and then calculate the free-energy along this coordinate. We estimate the transfer barrier-height to be about 20 kcal mol(-1) with a hydride transfer rate in the order of seconds at room temperature. We validate our DFT-MD modelling using inelastic neutron scattering which reveals anharmonicity of the hydride environment that is so pronounced that there is complete failure of the harmonic model formore » the hydride ligand. The simulations are extended to high temperature to bring the H-transfer to a rate that is accessible to the simulation technique.« less

  2. A direct ab initio molecular dynamics (MD) study on the benzophenone-water 1 : 1 complex.

    PubMed

    Tachikawa, Hiroto; Iyama, Tetsuji; Kato, Kohichi

    2009-07-28

    Direct ab initio molecular dynamics (MD) method has been applied to a benzophenone-water 1 : 1 complex Bp(H(2)O) and free benzophenone (Bp) to elucidate the effects of zero-point energy (ZPE) vibration and temperature on the absorption spectra of Bp(H(2)O). The n-pi transition of free-Bp (S(1) state) was blue-shifted by the interaction with a water molecule, whereas three pi-pi transitions (S(2), S(3) and S(4)) were red-shifted. The effects of the ZPE vibration and temperature of Bp(H(2)O) increased the intensity of the n-pi transition of Bp(H(2)O) and caused broadening of the pi-pi transitions. In case of the temperature effect, the intensity of n-pi transition increases with increasing temperature. The electronic states of Bp(H(2)O) were discussed on the basis of the theoretical results.

  3. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  4. Ion specific correlations in bulk and at biointerfaces.

    PubMed

    Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J

    2009-10-21

    Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.

  5. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  6. A comparison of the clinical characteristics of women with recurrent major depression with and without suicidal symptomatology.

    PubMed

    Bi, B; Xiao, X; Zhang, H; Gao, J; Tao, M; Niu, H; Wang, Y; Wang, Q; Chen, C; Sun, N; Li, K; Fu, J; Gan, Z; Sang, W; Zhang, G; Yang, L; Tian, T; Li, Q; Yang, Q; Sun, L; Li, Ying; Rong, H; Guan, C; Zhao, X; Ye, D; Zhang, Y; Ma, Z; Li, H; He, K; Chen, J; Cai, Y; Zhou, C; Luo, Y; Wang, S; Gao, S; Liu, J; Guo, L; Guan, J; Kang, Z; Di, D; Li, Yajuan; Shi, S; Li, Yihan; Chen, Y; Flint, J; Kendler, K; Liu, Y

    2012-12-01

    The relationship between recurrent major depression (MD) in women and suicidality is complex. We investigated the extent to which patients who suffered with various forms of suicidal symptomatology can be distinguished from those subjects without such symptoms. We examined the clinical features of the worst episode in 1970 Han Chinese women with recurrent DSM-IV MD between the ages of 30 and 60 years from across China. Student's t tests, and logistic and multiple logistic regression models were used to determine the association between suicidality and other clinical features of MD. Suicidal symptomatology is significantly associated with a more severe form of MD, as indexed by both the number of episodes and number of MD symptoms. Patients reporting suicidal thoughts, plans or attempts experienced a significantly greater number of stressful life events. The depressive symptom most strongly associated with lifetime suicide attempt was feelings of worthlessness (odds ratio 4.25, 95% confidence interval 2.9-6.3). Excessive guilt, diminished concentration and impaired decision-making were also significantly associated with a suicide attempt. This study contributes to the existing literature on risk factors for suicidal symptomatology in depressed women. Identifying specific depressive symptoms and co-morbid psychiatric disorders may help improve the clinical assessment of suicide risk in depressed patients. These findings could be helpful in identifying those who need more intense treatment strategies in order to prevent suicide.

  7. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.

    PubMed

    Bader, M S H

    2005-05-20

    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  8. Adjustment disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  9. Drug abuse

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  10. Conversion disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  11. Panic disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  12. Personality disorders

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  13. KSC-98pc280

    NASA Image and Video Library

    1998-02-06

    The STS-90 Neurolab payload is honored with a ceremony after being lowered into its payload canister in KSC's Operations and Checkout Building for the last time. This phase of the Shuttle program is winding down as the second phase of the International Space Station (ISS) program gets under way. Microgravity and life science research that formerly was conducted in Spacelab modules, such as Neurolab, will eventually be conducted inside the completed ISS. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  14. Membrane association of the PTEN tumor suppressor: Neutron scattering and MD simulations reveal the structure of protein-membranes complexes

    PubMed Central

    Nanda, Hirsh; Heinrich, Frank; Lösche, Mathias

    2014-01-01

    Neutron reflection (NR) from planar interfaces is an emerging technology that provides unique and otherwise inaccessible structural information on disordered molecular systems such as membrane proteins associated with fluid bilayers, thus addressing one of the remaining challenges of structural biology. Although intrinsically a low-resolution technique, using structural information from crystallography or NMR allows the construction of NR models that describe the architecture of protein-membrane complexes at high resolution. In addition, a combination of these methods with molecular dynamics (MD) simulations has the potential to reveal the dynamics of protein interactions with the bilayer in atomistic detail. We review recent advances in this area by discussing the application of these techniques to the complex formed by the PTEN phosphatase with the plasma membrane. These studies provide insights in the cellular regulation of PTEN, its interaction with PI(4,5)P2 in the inner plasma membrane and the pathway by which its substrate, PI(3,4,5)P3, accesses the PTEN catalytic site. PMID:25461777

  15. Tenure Track Investigator | Center for Cancer Research

    Cancer.gov

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR) of the National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Bethesda, MD, is actively recruiting for a tenure-track principal investigator to work in the area of immunology and/or immunotherapy.  The NOB Immunology/Immunotherapy Investigator will be tasked with forming and leading an independent research program.  This position will build the basic immunology program in the NOB and complement ongoing and planned translational research and clinical trials evaluating the effects of immunotherapy in patients with primary brain tumors.  This program will be able to access biospecimens generated from ongoing and planned immunotherapy protocols within the NOB, thus creating an opportunity to perform correlative studies to interrogate the complex biology of immunologic response, toxicity, and treatment resistance.  Demonstrated expertise in scientific inquiries in immunotherapy and/or immunology are essential, but prior work in brain tumors is not required.  This is an exciting opportunity to join a growing trans-institutional research team that promotes and supports collaborations across the basic, translational, and clinical research spectrum to develop novel therapeutics for individuals with primary central nervous system malignancies that will globally influence the field.

  16. Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin--a molecular dynamics study.

    PubMed

    Blessy, J Jino; Sharmila, D Jeya Sundara

    2015-02-01

    Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.

  17. In Silico Analysis for the Study of Botulinum Toxin Structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomonori; Miyazaki, Satoru

    2010-01-01

    Protein-protein interactions play many important roles in biological function. Knowledge of protein-protein complex structure is required for understanding the function. The determination of protein-protein complex structure by experimental studies remains difficult, therefore computational prediction of protein structures by structure modeling and docking studies is valuable method. In addition, MD simulation is also one of the most popular methods for protein structure modeling and characteristics. Here, we attempt to predict protein-protein complex structure and property using some of bioinformatic methods, and we focus botulinum toxin complex as target structure.

  18. Meta-analysis of the safety and efficacy of droxidopa for neurogenic orthostatic hypotension.

    PubMed

    Elgebaly, Ahmed; Abdelazeim, Bassant; Mattar, Omar; Gadelkarim, Mohamed; Salah, Rehab; Negida, Ahmed

    2016-06-01

    Droxidopa has been approved for the treatment of neurogenic orthostatic hypotension (NOH) under the US Food and Drug Administration accelerated approval program, which warrants confirmatory evidence on long-term efficacy of droxidopa. Hereby, we synthesize evidence from published randomized controlled trials (RCTs) about the safety and efficacy of droxidopa for patients with neurogenic orthostatic hypotension. A computer literature search of PubMed, Scopus, Web of Science, and Cochrane Central was conducted using relevant keywords. Records were screened for eligible studies and data were extracted and synthesized using Review Manager version 5.3 for Windows. Subgroup analysis and sensitivity analysis were conducted to investigate long-term durability of droxidopa against placebo. Four RCTs with a total of 485 patients (droxidopa, n = 246; placebo, n = 239) were eligible for the final analysis. The mean difference (MD) of change in the main outcomes from baseline to endpoint favored droxidopa than placebo [Orthostatic Hypotension Questionnaire (OHQ) MD -0.61, P = 0.004; dizziness/lightheadedness score MD -0.83, P = 0.008; and standing systolic blood pressure (SBP) MD 4.09, P = 0.03]. The efficacy of droxidopa decreased gradually after 2 weeks, and its statistical significance was lost after 8 weeks (OHQ score MD -0.18, P = 0.61; dizziness/lightheadedness score MD -0.71, P = 0.11; and standing SBP MD 2.96, P = 0.29). None of the adverse events were significantly higher in the case of droxidopa compared to placebo. Droxidopa is a safe and effective drug for the short-term management of NOH symptoms. However, current evidence is insufficient to confirm the efficacy of droxidopa for long-term use. Therefore, further studies with increased sample size are needed.

  19. Illness anxiety disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  20. Paranoid personality disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  1. Avoidant personality disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  2. Dependent personality disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  3. Antisocial personality disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  4. Generalized anxiety disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  5. Phobia - simple/specific

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  6. Schizotypal personality disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic Psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  7. NH and OH Concentration Profiles in a Stoichiometric CH4/N2O Flame by Laser Excited Fluorescence and Absorption Techniques.

    DTIC Science & Technology

    1982-10-01

    PROGRAM ELEMENT. PROJECT. TASK US Army Ballistic Research Laboratory ATTN: DRDAR-BLI 1L161102AH43 Aberdeen Proving Ground , MD 21005 It. CONTROLLING...34112 ABERDEEN PROVING GROUND Dir, USANSAA ATTN: DRXSY-D DRXSY-NP, H. Cohen Cdr, USATECOG ATTN: DRSTE-TO-F Dir, USACSL, Bldg E3516 ATTN: DRDAR-CLB-PA . U...Research Laboratory 1 1NECESSARYAberden IIF MAILED Aberdeen Proving Ground , MD 21005 [ IN THE _UNITED STATES OFFICIAL BUSINESS AOR PRIVAT U9. 0.3M

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holloway, Lawrence E.; Qu, Zhihua; Mohr-Schroeder, Margaret J.

    In this study, we consider collaborative power systems education through the FEEDER consortium. To increase students' access to power engineering educational content, the consortium of seven universities was formed. A framework is presented to characterize different collaborative education activities among the universities. Three of these approaches of collaborative educational activities are presented and discussed. These include 1) cross-institutional blended courses ("MS-MD''); 2) cross-institutional distance courses ("SS-MD''); and 3) single-site special experiential courses and concentrated on-site programs available to students across consortium institutions ("MS-SD''). As a result, this paper presents the advantages and disadvantages of each approach.

  9. Despin of a Highly Spinning Object: Despin of the Army’s Unattended Expendable Jammer.

    DTIC Science & Technology

    1981-09-01

    AD-A07 725 HARRY DIAMOND LABS AOELPHI MD F/6 17/4 DESPIN OF A HIGHLY SPINNING OBJECT: DESPIN OF THE ARMY’S UNATTE-ETC(U) SEP al I POLLIN...OF REPORT & PERIOD COVERED lDespin of a Highl%. Spinning Object: Despin of the Technical Report Armss UattededExpedabe Jamer6. PERFORMING ORG. REPORT...Diamond Laboratories AREA & WORK UNIT NUMBERS 28W8 Powder Mill Road Program Ele: 6.37.55. A Adelphi, MD 20783 11. CONTROLLING OFFICE NAME AND ADDRESS

  10. Association of Posttraumatic Stress Disorder with Somatic Symptoms, Health Care Visits, and Absenteeism among Iraq War Veterans

    DTIC Science & Technology

    2007-01-01

    Health Care Visits, and Absenteeism Among Iraq War Veterans Charles W. Hoge, M.D. Artin Terhakopian, M.D. Carl A. Castro, Ph.D. Stephen C. Messer, Ph.D...Disorder With Somatic Symptoms, Health Care Visits, and Absenteeism Among Iraq War Veterans 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Walter Reed Army

  11. High fidelity computational characterization of the mechanical response of thermally aged polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Zesheng; Zhang, Lili; Jasa, John; Li, Wenlong; Gazonas, George; Negahban, Mehrdad

    2017-07-01

    A representative all-atom molecular dynamics (MD) system of polycarbonate (PC) is built and conditioned to capture and predict the behaviours of PC in response to a broad range of thermo-mechanical loadings for various thermal aging. The PC system is constructed to have a distribution of molecular weights comparable to a widely used commercial PC (LEXAN 9034), and thermally conditioned to produce models for aged and unaged PC. The MD responses of these models are evaluated through comparisons to existing experimental results carried out at much lower loading rates, but done over a broad range of temperatures and loading modes. These experiments include monotonic extension/compression/shear, unilaterally and bilaterally confined compression, and load-reversal during shear. It is shown that the MD simulations show both qualitative and quantitative similarity with the experimental response. The quantitative similarity is evaluated by comparing the dilatational response under bilaterally confined compression, the shear flow viscosity and the equivalent yield stress. The consistency of the in silico response to real laboratory experiments strongly suggests that the current PC models are physically and mechanically relevant and potentially can be used to investigate thermo-mechanical response to loading conditions that would not easily be possible. These MD models may provide valuable insight into the molecular sources of certain observations, and could possibly offer new perspectives on how to develop constitutive models that are based on better understanding the response of PC under complex loadings. To this latter end, the models are used to predict the response of PC to complex loading modes that would normally be difficult to do or that include characteristics that would be difficult to measure. These include the responses of unaged and aged PC to unilaterally confined extension/compression, cyclic uniaxial/shear loadings, and saw-tooth extension/compression/shear.

  12. Molecular Docking and Molecular Dynamics to Identify a Novel Human Immunodeficiency Virus Inhibitor from Alkaloids of Toddalia asiatica

    PubMed Central

    Priya, R.; Sumitha, Rajendrarao; Doss, C. George Priya; Rajasekaran, C.; Babu, S.; Seenivasan, R.; Siva, R.

    2015-01-01

    Background: Acquired immunodeficiency syndrome caused by human immunodeficiency virus (HIV) is an immunosuppressive disease. Over the past decades, it has plagued human health due to the grave consequences in its harness. Objective: For this reason, anti-HIV agents are imperative, and the search for the same from natural resources would assure the safety. Materials and Methods: In this investigation we have performed molecular docking, molecular property prediction, drug-likeness score, and molecular dynamics (MD) simulation to develop a novel anti-HIV drug. We have screened 12 alkaloids from a medicinal plant Toddalia asiatica for its probabilistic binding with the active site of the HIV-1-reverse transcriptase (HIV-1-RT) domain (the major contributor to the onset of the disease). Results: The docking results were evaluated based on free energies of binding (ΔG), and the results suggested toddanol, toddanone, and toddalenone to be potent inhibitors of HIV-1-RT. In addition, the alkaloids were subjected to molecular property prediction analysis. Toddanol and toddanone with more rotatable bonds were found to have a drug-likeness score of 0.23 and 0.11, respectively. These scores were comparable with the standard anti-HIV drug zidovudine with a model score 0.28. Finally, two characteristic protein-ligand complexes were exposed to MD simulation to determine the stability of the predicted conformations. Conclusion: The toddanol-RT complex showed higher stability and stronger H-bonds than toddanone-RT complex. Based on these observations, we firmly believe that the alkaloid toddanol could aid in efficient HIV-1 drug discovery. SUMMARY In the present study, the molecular docking and MD simulations are performed to explore the possible binding mode of HIV 1 RT with 12 alkaloids of T. asiatica. Molecular docking by AutoDock4 revealed three alkaloids toddanol, toddanone, and toddalenone with highest binding affinity towards HIV 1 RT. The drug likeness model score revealed a positive score for toddanol and toddanone which is comparable to the drug likeness score of the standard anti HIV drug zidovudine. Results from simulation analysis revealed that toddanol RT complex is more stable than toddanone RT complex inferring toddanol as a potential anti HIV drug molecule. Abbreviations used: HIV: Human immunodeficiency virus, HIV 1 RT: HIV 1 reverse transcriptase, RNase H: Ribonuclease H, MD: Molecular dynamics, PDB: Protein databank, RMSD: Root mean square deviation, RMSF: Root mean square fluctuation. PMID:26929575

  13. 77 FR 60679 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Navy Training and Testing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...; the Undersea Warfare Training Range; the Key West Range Complex; the Naval Surface Warfare Center... of Protected Resources, National Marine Fisheries Service, 1315 East-West Highway, Silver Spring, MD...

  14. 3. ENVIRONMENT, FROM WEST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ENVIRONMENT, FROM WEST, SHOWING BOSTON STREET BRIDGE CARRYING BOSTON STREET OVER HARRIS CREEK SEWER, WITH PORTION OF AMERICAN CAN COMPANY COMPLEX - Boston Street Bridge, Spanning Harris Creek Sewer at Boston Street, Baltimore, Independent City, MD

  15. KSC-05pd2592

    NASA Image and Video Library

    2005-12-13

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, clean-suit garbed workers secure the fairing sections around the New Horizons spacecraft for encapsulation. The fairing protects the spacecraft during launch and flight through the atmosphere. Once out of the atmosphere, the fairing is jettisoned. The compact 1,060-pound New Horizons probe carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  16. KSC-05pd2615

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - At their consoles in the Atlas V Spaceflight Operations Center on Cape Canaveral Air Force Station, members of the New Horizons team take part in a dress rehearsal for the launch scheduled in mid-January. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  17. KSC-05pd2408

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts part of the blanket that it is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  18. KSC-05pd2628

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - Technicians install strips of the New Horizons mission decal on the spacecraft fairing in the Payload Hazardous Servicing Facility. The last strip will be installed on the fairing after the spacecraft is delivered to Pad 41 on Dec. 17. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  19. KSC-05pd2614

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - At their consoles in the Atlas V Spaceflight Operations Center on Cape Canaveral Air Force Station, members of the New Horizons team take part in a dress rehearsal for the launch scheduled in mid-January. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  20. KSC-05pd2590

    NASA Image and Video Library

    2005-12-13

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the two fairing sections move into place around the New Horizons spacecraft for encapsulation. The fairing protects the spacecraft during launch and flight through the atmosphere. Once out of the atmosphere, the fairing is jettisoned. The compact 1,060-pound New Horizons probe carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  1. KSC-05pd2629

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - Technicians install strips of the New Horizons mission decal on the spacecraft fairing in the Payload Hazardous Servicing Facility. The last strip will be installed on the fairing after the spacecraft is delivered to Pad 41 on Dec. 17. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  2. KSC-05pd2591

    NASA Image and Video Library

    2005-12-13

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the two fairing sections close in around the New Horizons spacecraft to encapsulate it. The fairing protects the spacecraft during launch and flight through the atmosphere. Once out of the atmosphere, the fairing is jettisoned. The compact 1,060-pound New Horizons probe carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  3. KSC-05pd2627

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - Technicians install strips of the New Horizons mission decal on the spacecraft fairing in the Payload Hazardous Servicing Facility. The last strip will be installed on the fairing after the spacecraft is delivered to Pad 41 on Dec. 17. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  4. KSC-05pd2589

    NASA Image and Video Library

    2005-12-13

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the New Horizons spacecraft waits for encapsulation within the fairing sections waiting nearby. The fairing protects the spacecraft during launch and flight through the atmosphere. Once out of the atmosphere, the fairing is jettisoned. The compact 1,060-pound New Horizons probe carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  5. Towards validated chemistry at extreme conditions: reactive MD simulations of shocked Polyvinyl Nitrate and Nitromethane

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.

  6. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek

    2015-06-01

    We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).

  7. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins.

    PubMed

    Walczewska-Szewc, Katarzyna; Deplazes, Evelyne; Corry, Ben

    2015-07-14

    Adequately sampling the large number of conformations accessible to proteins and other macromolecules is one of the central challenges in molecular dynamics (MD) simulations; this activity can be difficult, even for relatively simple systems. An example where this problem arises is in the simulation of dye-labeled proteins, which are now being widely used in the design and interpretation of Förster resonance energy transfer (FRET) experiments. In this study, MD simulations are used to characterize the motion of two commonly used FRET dyes attached to an immobilized chain of polyproline. Even in this simple system, the dyes exhibit complex behavior that is a mixture of fast and slow motions. Consequently, very long MD simulations are required to sufficiently sample the entire range of dye motion. Here, we compare the ability of enhanced sampling methods to reproduce the behavior of fluorescent labels on proteins. In particular, we compared Accelerated Molecular Dynamics (AMD), metadynamics, Replica Exchange Molecular Dynamics (REMD), and High Temperature Molecular Dynamics (HTMD) to equilibrium MD simulations. We find that, in our system, all of these methods improve the sampling of the dye motion, but the most significant improvement is achieved using REMD.

  8. Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Yokoyama, Ryoichi; Kotozaki, Yuka; Nakagawa, Seishu; Sekiguchi, Atsushi; Iizuka, Kunio; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Miyauchi, Carlos Makoto; Shinada, Takamitsu; Sakaki, Kohei; Nozawa, Takayuki; Ikeda, Shigeyuki; Yokota, Susumu; Daniele, Magistro; Sassa, Yuko; Kawashima, Ryuta

    2018-04-11

    Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults.

  9. Doing the hard work where it's easiest? Examining the relationships between urban greening programs and social and ecological characteristics

    Treesearch

    Dexter H. Locke; J. Morgan Grove

    2016-01-01

    In this paper we examine the performance of formal programs associated with tree plantings in Washington, D.C. and Baltimore, MD to understand the relationships between the implementation of urban greening programs and the social and ecological characteristics of a city. Previous research has examined variations in patterns of existing and possible tree canopy cover...

  10. Quality College and University Instructional Physical Activity Programs Contribute to "Mens Sana in Corpore Sano, The Good Life," and Healthy Societies

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.

    2017-01-01

    Physical education debuted in higher education in 1860 at Amherst College. The program, aimed at the general student body, thrived under the leadership of Edward Hitchcock, Jr., M.D. Similar programs were developed elsewhere. At its high point, an estimated 97% of colleges and universities required their students to partake in some form of…

  11. Aircraft Scheduled Structural Maintenance Programs: Current Philosophies and Methods in the United States and their Applicability to the Royal Australian Air Force

    DTIC Science & Technology

    1988-09-01

    maintenance programs. They use "a dedicated age exploration technique and actuarial analyses (31:847)" to Justify any changes to programs. RAAF. The...A066593). 8. Coffin, M.D. and C.F. Tiffany. "New Air Force Requirements for Structural Safety, Durability and Life Management," AIAA/ ASME /SAE 16th

  12. Long Term Hippocampal and Cortical Changes Induced by Maternal Deprivation and Neonatal Leptin Treatment in Male and Female Rats

    PubMed Central

    Mela, Virginia; Díaz, Francisca; Borcel, Erika; Argente, Jesús; Chowen, Julie A.; Viveros, Maria-Paz

    2015-01-01

    Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect. PMID:26382238

  13. 75 FR 6042 - National Institute on Drug Abuse; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... unwarranted invasion of personal privacy. Name of Committee: National Institute on Drug Abuse Special Emphasis... Institute on Drug Abuse, NIH, DHHS, Room 220, MSC 8401, 6101 Executive Blvd., Bethesda, MD 20892-8401, 301... Assistance Program Nos. 93.279, Drug Abuse and Addiction Research Programs, National Institutes of Health...

  14. 76 FR 54240 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ...: Robert G. Keefe, PhD, Scientific Review Officer, Scientific Review Program, DEA/NIAID/NIH/DHHS, Room 3256... Conference Call). Contact Person: Robert G. Keefe, PhD, Scientific Review Officer, Scientific Review Program... Drive, Bethesda, MD 20817 (Telephone Conference Call). Contact Person: Robert G. Keefe, PhD, Scientific...

  15. 77 FR 19004 - Fishing Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Capacity Reduction Program for the Southeast Alaska Purse Seine Salmon Fishery AGENCY: National Marine... Salmon Fishery. DATES: Comments must be submitted on or before 5 p.m. EST April 13, 2012. ADDRESSES: Send... Seine Salmon Buyback, 1315 East-West Highway, Silver Spring, MD 20910 (see FOR FURTHER INFORMATION...

  16. The Microcomputer in the Small School District.

    ERIC Educational Resources Information Center

    Whitworth, Jerry

    1985-01-01

    Small school district administrators can use microcomputers to improve their management abilities and productivity through computerized accounting, electronic mail and online subscription services, and the use of integrated software programs. (MD)

  17. Obsessive-compulsive personality disorder

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  18. Managing your depression - teens

    MedlinePlus

    ... Updated by: Fred K. Berger, MD, addiction and forensic psychiatrist, Scripps Memorial Hospital, La Jolla, CA. Also ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  19. Pairing Physician Education With Patient Activation to Improve Shared Decisions in Prostate Cancer Screening: A Cluster Randomized Controlled Trial

    PubMed Central

    Wilkes, Michael S.; Day, Frank C.; Srinivasan, Malathi; Griffin, Erin; Tancredi, Daniel J.; Rainwater, Julie A.; Kravitz, Richard L.; Bell, Douglas S.; Hoffman, Jerome R.

    2013-01-01

    BACKGROUND Most expert groups recommend shared decision making for prostate cancer screening. Most primary care physicians, however, routinely order a prostate-specific antigen (PSA) test with little or no discussion about whether they believe the potential benefits justify the risk of harm. We sought to assess whether educating primary care physicians and activating their patients to ask about prostate cancer screening had a synergistic effect on shared decision making, rates and types of discussions about prostate cancer screening, and the physician’s final recommendations. METHODS Our study was a cluster randomized controlled trial among primary care physicians and their patients, comparing usual education (control), with physician education alone (MD-Ed), and with physician education and patient activation (MD-Ed+A). Participants included 120 physicians in 5 group practices, and 712 male patients aged 50 to 75 years. The interventions comprised a Web-based educational program for all intervention physicians and MD-Ed+A patients compared with usual education (brochures from the Centers for Disease Control and Prevention). The primary outcome measure was patients’ reported postvisit shared decision making regarding prostate cancer screening; secondary measures included unannounced standardized patients’ reported shared decision making and the physician’s recommendation for prostate cancer screening. RESULTS Patients’ ratings of shared decision making were moderate and did not differ between groups. MD-Ed+A patients reported that physicians had higher prostate cancer screening discussion rates (MD-Ed+A = 65%, MD-Ed = 41%, control=38%; P <.01). Standardized patients reported that physicians seeing MD-Ed+A patients were more neutral during prostate cancer screening recommendations (MD-Ed+A=50%, MD-Ed=33%, control=15%; P <.05). Of the male patients, 80% had had previous PSA tests. CONCLUSIONS Although activating physicians and patients did not lead to significant changes in all aspects of physician attitudes and behaviors that we studied, interventions that involved physicians did have a large effect on their attitudes toward screening and in the discussions they had with patients, including their being more likely than control physicians to engage in prostate cancer screening discussions and more likely to be neutral in their final recommendations. PMID:23835818

  20. Detrital illite crystals identified from crystallite thickness measurements in siliciclastic sediments

    USGS Publications Warehouse

    Aldega, L.; Eberl, D.D.

    2005-01-01

    Illite crystals in siliciclastic sediments are heterogeneous assemblages of detrital material coming from various source rocks and, at paleotemperatures >70 ??C, of superimposed diagenetic modification in the parent sediment. We distinguished the relative proportions of 2M1 detrital illite and possible diagenetic 1Md + 1M illite by a combined analysis of crystal-size distribution and illite polytype quantification. We found that the proportions of 1Md + 1M and 2M1 illite could be determined from crystallite thickness measurements (BWA method, using the MudMaster program) by unmixing measured crystallite thickness distributions using theoretical and calculated log-normal and/or asymptotic distributions. The end-member components that we used to unmix the measured distributions were three asymptotic-shaped distributions (assumed to be the diagenetic component of the mixture, the 1Md + 1M polytypes) calculated using the Galoper program (Phase A was simulated using 500 crystals per cycle of nucleation and growth, Phase B = 333/cycle, and Phase C = 250/ cycle), and one theoretical log-normal distribution (Phase D, assumed to approximate the detrital 2M1 component of the mixture). In addition, quantitative polytype analysis was carried out using the RockJock software for comparison. The two techniques gave comparable results (r2 = 0.93), which indicates that the unmixing method permits one to calculate the proportion of illite polytypes and, therefore, the proportion of 2M1 detrital illite, from crystallite thickness measurements. The overall illite crystallite thicknesses in the samples were found to be a function of the relative proportions of thick 2M1 and thin 1Md + 1M illite. The percentage of illite layers in I-S mixed layers correlates with the mean crystallite thickness of the 1Md + 1M polytypes, indicating that these polytypes, rather than the 2M1 polytype, participate in I-S mixed layering.

  1. 76 FR 78672 - National Institute on Drug Abuse; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ..., Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852 (Telephone Conference Call). Contact Person... Addiction Research Programs, National Institutes of Health, HHS) Dated: December 13, 2011. Jennifer S...

  2. 76 FR 7571 - National Institute on Drug Abuse; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ..., Neuroscience Center, 6001 Executive Boulevard, Rockville, MD 20852, (Telephone Conference Call). Contact Person....: 93.279, Drug Abuse and Addiction Research Programs, National Institutes of Health, HHS) Dated...

  3. A Fast Algorithm for Massively Parallel, Long-Term, Simulation of Complex Molecular Dynamics Systems

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, Andres; Goddard, William A, III; Fijany, Amir

    1997-01-01

    The advances in theory and computing technology over the last decade have led to enormous progress in applying atomistic molecular dynamics (MD) methods to the characterization, prediction, and design of chemical, biological, and material systems,.

  4. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations.

    PubMed

    Jain, Vaibhav; Maiti, Prabal K; Bharatam, Prasad V

    2016-09-28

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH 2 ) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH 2 ) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH 2 ) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an important role in the stabilization of complex. Interestingly, it was observed from the equilibrated structures of dendrimer-drug complexes at low pH that encapsulated drug molecules in the G4 PAMAM(NH 2 ) formed cluster, while in the case of nontoxic G4 PAMAM(Ac) they were uniformly distributed inside the dendritic cavities. Thus, the latter dendrimer is suggested to be suitable nanovehicle for the delivery of Ntg. This computational analysis highlighted the importance of realistic molecular models of dendrimer-drug complexes (1:n) in order to obtain reliable results.

  5. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an important role in the stabilization of complex. Interestingly, it was observed from the equilibrated structures of dendrimer-drug complexes at low pH that encapsulated drug molecules in the G4 PAMAM(NH2) formed cluster, while in the case of nontoxic G4 PAMAM(Ac) they were uniformly distributed inside the dendritic cavities. Thus, the latter dendrimer is suggested to be suitable nanovehicle for the delivery of Ntg. This computational analysis highlighted the importance of realistic molecular models of dendrimer-drug complexes (1:n) in order to obtain reliable results.

  6. A workshop on leadership for senior MD-PhD students.

    PubMed

    Meador, Catherine B; Parang, Bobak; Musser, Melissa A; Haliyur, Rachana; Owens, David A; Dermody, Terence S

    2016-01-01

    Leadership skills are essential for a successful career as a physician-scientist, yet many MD-PhD training programs do not offer formal training in leadership. The Vanderbilt Medical Scientist Training Program (MSTP) previously established a 2-day leadership workshop that has been held biennially since 2006 for students in the first and second years of the graduate school portion of combined MD and PhD training (G1/G2 students). Workshop attendees have consistently rated this workshop as a highly effective experience. However, opportunities for structured training in leadership competencies during the subsequent 3-5 years of MD-PhD training are limited. Given the success of the G1/G2 leadership workshop and the need for continuity in this model of leadership training, we developed a half-day workshop for MSTP students in the clinical years of medical school (M3/M4 students) to foster continued training in leadership. Our workshop curriculum, based in part on original cases drafted by Vanderbilt MSTP students, provides concrete strategies to manage conflict and navigate leadership transitions in the physician-scientist career path. The curriculum emphasizes both short-term competencies, such as effective participation as a member of a clinical team, and long-term competencies, such as leadership of a research team, division, or department. Our inaugural senior leadership workshop, held in August, 2015, was judged by student participants to be well organized and highly relevant to leadership concepts and skills. It will be offered biennially in our training curriculum for M3 and M4 MSTP students.

  7. Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods

    PubMed Central

    Johnston, Jennifer M.

    2014-01-01

    The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803

  8. Accelerating molecular dynamic simulation on the cell processor and Playstation 3.

    PubMed

    Luttmann, Edgar; Ensign, Daniel L; Vaidyanathan, Vishal; Houston, Mike; Rimon, Noam; Øland, Jeppe; Jayachandran, Guha; Friedrichs, Mark; Pande, Vijay S

    2009-01-30

    Implementation of molecular dynamics (MD) calculations on novel architectures will vastly increase its power to calculate the physical properties of complex systems. Herein, we detail algorithmic advances developed to accelerate MD simulations on the Cell processor, a commodity processor found in PlayStation 3 (PS3). In particular, we discuss issues regarding memory access versus computation and the types of calculations which are best suited for streaming processors such as the Cell, focusing on implicit solvation models. We conclude with a comparison of improved performance on the PS3's Cell processor over more traditional processors. (c) 2008 Wiley Periodicals, Inc.

  9. European National Society Cardiovascular Journals

    PubMed Central

    Alfonso, F.; Ambrosio, G.; Pinto, F.J.; van der Wall, E.E.

    2008-01-01

    Anesti Kondili MD, Djamaleddine Nibouche MD, Karlen Adamyan MD, Kurt Huber MD, Hugo Ector MD, Izet Masic MD, Rumiana Tarnovska MD, Mario Ivanusa MD, Vladimír Stane˘k MD, Jørgen Videbæk MD, Mohamed Hamed MD, Alexandras Laucevicius MD, Pirjo Mustonen MD, Jean-Yves Artigou MD, Ariel Cohen MD, Mamanti Rogava MD, Michael Böhm MD, Eckart Fleck MD, Gerd Heusch MD, Rainer Klawki MD, Panos Vardas MD, Christodoulos Stefanadis MD, József Tenczer MD, Massimo Chiariello MD, Aleksandras Laucevicius MD, Joseph Elias MD, Halima Benjelloun MD, Olaf Rødevand MD, Piotr Kul/akowski MD, Edvard Apetrei MD, Victor A. Lusov MD, Rafael G. Oganov MD, Velibor Obradovic MD, Gabriel Kamensky MD, Miran F. Kenda MD, Christer Höglund MD, Thomas F. Lüscher MD, René Lerch MD, Moufid Jokhadar MD, Habib Haouala MD, Vedat Sansoy MD, Valentin Shumakov MD, Adam Timmis MD. (European National Society Cardiovascular Journals Editors, see Appendix for complete affiliations) PMID:18665206

  10. The integration of the risk management process with the lifecycle of medical device software.

    PubMed

    Pecoraro, F; Luzi, D

    2014-01-01

    The application of software in the Medical Device (MD) domain has become central to the improvement of diagnoses and treatments. The new European regulations that specifically address software as an important component of MD, require complex procedures to make software compliant with safety requirements, introducing thereby new challenges in the qualification and classification of MD software as well as in the performance of risk management activities. Under this perspective, the aim of this paper is to propose an integrated framework that combines the activities to be carried out by the manufacturer to develop safe software within the development lifecycle based on the regulatory requirements reported in US and European regulations as well as in the relevant standards and guidelines. A comparative analysis was carried out to identify the main issues related to the application of the current new regulations. In addition, standards and guidelines recently released to harmonise procedures for the validation of MD software have been used to define the risk management activities to be carried out by the manufacturer during the software development process. This paper highlights the main issues related to the qualification and classification of MD software, providing an analysis of the different regulations applied in Europe and the US. A model that integrates the risk management process within the software development lifecycle has been proposed too. It is based on regulatory requirements and considers software risk analysis as a central input to be managed by the manufacturer already at the initial stages of the software design, in order to prevent MD failures. Relevant changes in the process of MD development have been introduced with the recognition of software being an important component of MDs as stated in regulations and standards. This implies the performance of highly iterative processes that have to integrate the risk management in the framework of software development. It also makes it necessary to involve both medical and software engineering competences to safeguard patient and user safety.

  11. Semaphorin 3F Is a Bifunctional Guidance Cue for Dopaminergic Axons and Controls Their Fasciculation, Channeling, Rostral Growth, and Intracortical Targeting

    PubMed Central

    Kolk, Sharon M.; Gunput, Rou-Afza F.; Tran, Tracy S.; van den Heuvel, Dianne M. A.; Prasad, Asheeta A.; Hellemons, Anita J. C. G. M.; Adolfs, Youri; Ginty, David D.; Kolodkin, Alex L.; Burbach, J. Peter H.; Smidt, Marten P.; Pasterkamp, R. Jeroen

    2010-01-01

    Dopaminergic neurons in the mesodiencephalon (mdDA neurons) make precise synaptic connections with targets in the forebrain via the mesostriatal, mesolimbic, and mesoprefrontal pathways. Because of the functional importance of these remarkably complex ascending axon pathways and their implication in human disease, the mechanisms underlying the development of these connections are of considerable interest. Despite extensive in vitro studies, the molecular determinants that ensure the perfect formation of these pathways in vivo remain mostly unknown. Here, we determine the embryonic origin and ontogeny of the mouse mesoprefrontal pathway and use these data to reveal an unexpected requirement for semaphorin 3F (Sema3F) and its receptor neuropilin-2 (Npn-2) during mdDA pathway development using tissue culture approaches and analysis of sema3F−/−, npn-2−/−, and npn-2−/−;TH-Cre mice. We show that Sema3F is a bifunctional guidance cue for mdDA axons, some of which have the remarkable ability to regulate their responsiveness to Sema3F as they develop. During early developmental stages, Sema3F chemorepulsion controls previously uncharacterized aspects of mdDA pathway development through both Npn-2-dependent (axon fasciculation and channeling) and Npn-2-independent (rostral growth) mechanisms. Later on, chemoattraction mediated by Sema3F and Npn-2 is required to orient mdDA axon projections in the cortical plate of the medial prefrontal cortex. This latter finding demonstrates that regulation of axon orientation in the target field occurs by chemoattractive mechanisms, and this is likely to also apply to other neural systems. In all, this study provides a framework for additional dissection of the molecular basis of mdDA pathway development and disease. PMID:19812329

  12. Exploring the association between Morgellons disease and Lyme disease: identification of Borrelia burgdorferi in Morgellons disease patients.

    PubMed

    Middelveen, Marianne J; Bandoski, Cheryl; Burke, Jennie; Sapi, Eva; Filush, Katherine R; Wang, Yean; Franco, Agustin; Mayne, Peter J; Stricker, Raphael B

    2015-02-12

    Morgellons disease (MD) is a complex skin disorder characterized by ulcerating lesions that have protruding or embedded filaments. Many clinicians refer to this condition as delusional parasitosis or delusional infestation and consider the filaments to be introduced textile fibers. In contrast, recent studies indicate that MD is a true somatic illness associated with tickborne infection, that the filaments are keratin and collagen in composition and that they result from proliferation and activation of keratinocytes and fibroblasts in the skin. Previously, spirochetes have been detected in the dermatological specimens from four MD patients, thus providing evidence of an infectious process. Based on culture, histology, immunohistochemistry, electron microscopy and molecular testing, we present corroborating evidence of spirochetal infection in a larger group of 25 MD patients. Irrespective of Lyme serological reactivity, all patients in our study group demonstrated histological evidence of epithelial spirochetal infection. Strength of evidence based on other testing varied among patients. Spirochetes identified as Borrelia strains by polymerase chain reaction (PCR) and/or in-situ DNA hybridization were detected in 24/25 of our study patients. Skin cultures containing Borrelia spirochetes were obtained from four patients, thus demonstrating that the organisms present in dermatological specimens were viable. Spirochetes identified by PCR as Borrelia burgdorferi were cultured from blood in seven patients and from vaginal secretions in three patients, demonstrating systemic infection. Based on these observations, a clinical classification system for MD is proposed. Our study using multiple detection methods confirms that MD is a true somatic illness associated with Borrelia spirochetes that cause Lyme disease. Further studies are needed to determine the optimal treatment for this spirochete-associated dermopathy.

  13. Internal Coordinate Molecular Dynamics: A Foundation for Multiscale Dynamics

    PubMed Central

    2015-01-01

    Internal coordinates such as bond lengths, bond angles, and torsion angles (BAT) are natural coordinates for describing a bonded molecular system. However, the molecular dynamics (MD) simulation methods that are widely used for proteins, DNA, and polymers are based on Cartesian coordinates owing to the mathematical simplicity of the equations of motion. However, constraints are often needed with Cartesian MD simulations to enhance the conformational sampling. This makes the equations of motion in the Cartesian coordinates differential-algebraic, which adversely impacts the complexity and the robustness of the simulations. On the other hand, constraints can be easily placed in BAT coordinates by removing the degrees of freedom that need to be constrained. Thus, the internal coordinate MD (ICMD) offers an attractive alternative to Cartesian coordinate MD for developing multiscale MD method. The torsional MD method is a special adaptation of the ICMD method, where all the bond lengths and bond angles are kept rigid. The advantages of ICMD simulation methods are the longer time step size afforded by freezing high frequency degrees of freedom and performing a conformational search in the more important low frequency torsional degrees of freedom. However, the advancements in the ICMD simulations have been slow and stifled by long-standing mathematical bottlenecks. In this review, we summarize the recent mathematical advancements we have made based on spatial operator algebra, in developing a robust long time scale ICMD simulation toolkit useful for various applications. We also present the applications of ICMD simulations to study conformational changes in proteins and protein structure refinement. We review the advantages of the ICMD simulations over the Cartesian simulations when used with enhanced sampling methods and project the future use of ICMD simulations in protein dynamics. PMID:25517406

  14. Solution NMR Refinement of a Metal Ion Bound Protein Using Metal Ion Inclusive Restrained Molecular Dynamics Methods

    PubMed Central

    Chakravorty, Dhruva K.; Wang, Bing; Lee, Chul Won; Guerra, Alfredo J.; Giedroc, David P.; Merz, Kenneth M.

    2013-01-01

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational dynamics in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies. PMID:23609042

  15. 78 FR 23572 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ..., Rockville, MD 20852. Contact Person: Priti Mehrotra, Ph.D., Chief, Immunology Review Branch, Scientific... Domestic Assistance Program Nos. 93.855, Allergy, Immunology, and Transplantation Research; 93.856...

  16. 36 CFR 1239.12 - Whom may agencies contact to request program assistance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Archives and Records Administration, Life Cycle Management Division (NWML), 8601 Adelphi Rd., College Park, MD 20740-6001, phone number 301-837-1738. Agency field organizations may contact the...

  17. 36 CFR 1239.12 - Whom may agencies contact to request program assistance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Archives and Records Administration, Life Cycle Management Division (NWML), 8601 Adelphi Rd., College Park, MD 20740-6001, phone number 301-837-1738. Agency field organizations may contact the...

  18. 36 CFR 1239.12 - Whom may agencies contact to request program assistance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Archives and Records Administration, Life Cycle Management Division (NWML), 8601 Adelphi Rd., College Park, MD 20740-6001, phone number 301-837-1738. Agency field organizations may contact the...

  19. 76 FR 52336 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ..., Bethesda, MD 20892. 301-435- 1259. [email protected] . Name of Committee: Molecular, Cellular and... of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research...

  20. A workshop on leadership for MD/PhD students

    PubMed Central

    Ciampa, Erin j.; Hunt, Aubrey A.; Arneson, Kyle O.; Mordes, Daniel A.; Oldham, William M.; Vin Woo, Kel; Owens, David A.; Cannon, Mark D.; Dermody, Terence S.

    2011-01-01

    Success in academic medicine requires scientific and clinical aptitude and the ability to lead a team effectively. Although combined MD/PhD training programs invest considerably in the former, they often do not provide structured educational opportunities in leadership, especially as applied to investigative medicine. To fill a critical knowledge gap in physician-scientist training, the Vanderbilt Medical Scientist Training Program (MSTP) developed a biennial two-day workshop in investigative leadership. MSTP students worked in partnership with content experts to develop a case-based curriculum and deliver the material. In its initial three offerings in 2006, 2008, and 2010, the workshop was judged by MSTP student attendees to be highly effective. The Vanderbilt MSTP Leadership Workshop offers a blueprint for collaborative student-faculty interactions in curriculum design and a new educational modality for physician-scientist training. PMID:21841905

  1. Economic evaluation of pediatric influenza immunization program compared with other pediatric immunization programs: A systematic review

    PubMed Central

    Gibson, Edward; Begum, Najida; Sigmundsson, Birgir; Sackeyfio, Alfred; Hackett, Judith; Rajaram, Sankarasubramanian

    2016-01-01

    ABSTRACT This study compared the economic value of pediatric immunisation programmes for influenza to those for rotavirus (RV), meningococcal disease (MD), pneumococcal disease (PD), human papillomavirus (HPV), hepatitis B (Hep B), and varicella reported in recent (2000 onwards) cost-effectiveness (CE) studies identified in a systematic review of PubMed, health technology, and vaccination databases. The systematic review yielded 51 economic evaluation studies of pediatric immunisation — 10 (20%) for influenza and 41 (80%) for the other selected diseases. The quality of the eligible articles was assessed using Drummond's checklist. Although inherent challenges and limitations exist when comparing economic evaluations of immunisation programmes, an overall comparison of the included studies demonstrated cost-effectiveness/cost saving for influenza from a European-Union-Five (EU5) and United States (US) perspective; point estimates for cost/quality-adjusted life-years (QALY) from dominance (cost-saving with more effect) to ≤45,444 were reported. The economic value of influenza programmes was comparable to the other vaccines of interest, with cost/QALY in general considerably lower than RV, Hep B, MD and PD. Independent of the perspective and type of analysis, the economic impact of a pediatric influenza immunisation program was influenced by vaccine efficacy, immunisation coverage, costs, and most significantly by herd immunity. This review suggests that pediatric influenza immunisation may offer a cost effective strategy when compared with HPV and varicella and possibly more value compared with other childhood vaccines (RV, Hep B, MD and PD). PMID:26837602

  2. Economic evaluation of pediatric influenza immunization program compared with other pediatric immunization programs: A systematic review.

    PubMed

    Gibson, Edward; Begum, Najida; Sigmundsson, Birgir; Sackeyfio, Alfred; Hackett, Judith; Rajaram, Sankarasubramanian

    2016-05-03

    This study compared the economic value of pediatric immunisation programmes for influenza to those for rotavirus (RV), meningococcal disease (MD), pneumococcal disease (PD), human papillomavirus (HPV), hepatitis B (Hep B), and varicella reported in recent (2000 onwards) cost-effectiveness (CE) studies identified in a systematic review of PubMed, health technology, and vaccination databases. The systematic review yielded 51 economic evaluation studies of pediatric immunisation - 10 (20%) for influenza and 41 (80%) for the other selected diseases. The quality of the eligible articles was assessed using Drummond's checklist. Although inherent challenges and limitations exist when comparing economic evaluations of immunisation programmes, an overall comparison of the included studies demonstrated cost-effectiveness/cost saving for influenza from a European-Union-Five (EU5) and United States (US) perspective; point estimates for cost/quality-adjusted life-years (QALY) from dominance (cost-saving with more effect) to ≤45,444 were reported. The economic value of influenza programmes was comparable to the other vaccines of interest, with cost/QALY in general considerably lower than RV, Hep B, MD and PD. Independent of the perspective and type of analysis, the economic impact of a pediatric influenza immunisation program was influenced by vaccine efficacy, immunisation coverage, costs, and most significantly by herd immunity. This review suggests that pediatric influenza immunisation may offer a cost effective strategy when compared with HPV and varicella and possibly more value compared with other childhood vaccines (RV, Hep B, MD and PD).

  3. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes

    PubMed Central

    Yesudhas, Dhanusha; Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Durai, Prasannavenkatesh; Shah, Masaud; Choi, Sangdun

    2016-01-01

    The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox20bp) or 3 base pairs (Oct4/Sox23bp) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox20bp and Oct4/Sox23bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming. PMID:26790000

  4. Multimodal pediatric pain management (part 2).

    PubMed

    Friedrichsdorf, Stefan J

    2017-05-01

    Dr Stefan Friedrichsdorf speaks to Commissioning Editor Jade Parker: Stefan Friedrichsdorf, MD, is medical director of the Department of Pain Medicine, Palliative Care and Integrative Medicine at Children's Hospitals and Clinics of Minnesota in Minneapolis/St Paul, MN, USA, home to one of the largest and most comprehensive programs of its kind in the country. The pain and palliative care program is devoted to control acute, chronic/complex and procedural pain for inpatients and outpatients in close collaboration with all pediatric subspecialties at Children's Minnesota. The team also provides holistic, interdisciplinary care for children and teens with life limiting or terminal diseases and their families. Integrative medicine provides and teaches integrative, nonpharmacological therapies (such as massage, acupuncture/acupressure, biofeedback, aromatherapy and self-hypnosis) to provide care that promotes optimal health and supports the highest level of functioning in all individual children's activities. In this second part of the interview they discuss multimodal (opioid-sparing) analgesia for hospitalized children in pain and how analgesics and adjuvant medications, interventions, rehabilitation, psychological and integrative therapies act synergistically for more effective pediatric pain control with fewer side effects than a single analgesic or modality.

  5. KSC-05pd2616

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - In the communications room above the Atlas V Spaceflight Operations Center on Cape Canaveral Air Force Station, NASA Public Information Officer George Diller rehearses his role for the upcoming launch of the New Horizons spacecraft. Behind him are Tiffany Nail, with the Launch Services Program at Kennedy Space Center, and Bob Summerville, a Lockheed Martin console system software engineer. Members of the New Horizons team are taking part in a dress rehearsal for the launch scheduled in mid-January. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  6. New clinical program will study metastatic colorectal cancer in viable patient tissue samples | Center for Cancer Research

    Cancer.gov

    Jonathan Hernandez, M.D., Investigator in the Thoracic and Gastrointestinal Oncology Branch, has established a new clinical program to understand how metastases form, which may yield insights into how to treat or even prevent them. The program will conduct first-of-their-kind studies with tumor-containing liver that is kept alive outside of the body after it is removed from a

  7. Entry of US Medical School Graduates Into Family Medicine Residencies: 2014-2015.

    PubMed

    Kozakowski, Stanley M; Fetter, Gerald; Bentley, Ashley

    2015-10-01

    This is the 34th national study conducted by the American Academy of Family Physicians (AAFP) that reports retrospectively the percentage of graduates from US MD-granting and DO-granting medical schools who entered Accreditation Council for Graduate Medical Education (ACGME)-accredited family medicine residency programs as first-year residents in 2014. Approximately 8.5% of the 18,241 students graduating from US MD-granting medical schools between July 2013 and June 2014 entered a family medicine residency. Of the 1,458 graduates of the US MD-granting medical schools who entered a family medicine residency in 2014, 80% graduated from 69 of the 131 schools. Eleven schools lacking departments or divisions of family medicine produced only a total of 26 students entering family medicine. In aggregate, medical schools west of the Mississippi River represent less than a third of all US MD-granting schools but have an aggregate rate of students selecting family medicine that is two-thirds higher than schools to the east of the Mississippi. A rank order list of US MD-granting medical schools was created based on the last 3 years' average percentage of graduates who became family medicine residents, using the 2014 and prior AAFP census data. US MD schools continue to fail to produce a primary care workforce, a key measure of social responsibility as measured by their production of graduates entering into family medicine. DO-granting and international medical school graduates filled the majority of ACGME-accredited family medicine first-year resident positions in 2014.

  8. Birthweight, early life body size and adult mammographic density: a review of epidemiologic studies.

    PubMed

    Yochum, Laura; Tamimi, Rulla M; Hankinson, Susan E

    2014-10-01

    To evaluate the association between birth weight and early life body size with adult mammographic density in the peer-reviewed literature. A comprehensive literature search was conducted through January, 2014. English language articles that assessed adult mammographic density (MD) in relation to early life body size (≤18 years old), or birthweight were included. Nine studies reported results for early life body size and %MD. Both exposure and outcome were assessed at different ages using multiple methods. In premenopausal women, findings were inconsistent; two studies reported significant, inverse associations, one reported a non-significant, inverse association, and two observed no association. Reasons for these inconsistencies were not obvious. In postmenopausal women, four of five studies supported an inverse association. Two of three studies that adjusted for menopausal status found significant, inverse associations. Birthweight and %MD was evaluated in nine studies. No association was seen in premenopausal women and two of three studies reported positive associations in postmenopausal women. Three of four studies that adjusted for menopausal status found no association. Early life body size and birthweight appear unrelated to %MD in premenopausal women while an inverse association in postmenopausal women is more likely. Although based on limited data, birthweight and %MD appear positively associated in postmenopausal women. Given the small number of studies, the multiple methods of data collection and analysis, other methodologic issues, and lack of consistency in results, additional research is needed to clarify this complex association and develop a better understanding of the underlying biologic mechanisms.

  9. Genetic and Environmental Influences on Disability Pension Due To Mental Diagnoses: Limited Importance of Major Depression, Generalized Anxiety, and Chronic Fatigue.

    PubMed

    Narusyte, Jurgita; Ropponen, Annina; Alexanderson, Kristina; Svedberg, Pia

    2016-02-01

    Previous research indicates that liability to disability pension (DP) due to mental diagnoses is moderately influenced by genetic factors. This study investigates whether genetic contributions to the liability to DP due to mood and neurotic diagnoses overlap with the genetic influences on major depression (MD), generalized anxiety disorder (GAD), or chronic fatigue (CF). A prospective cohort study including 9,985 female twins born in Sweden 1933-1958. The presence of MD, GAD, and CF was assessed by computer-assisted telephone interviews conducted in 1998-2002. Data on DP due to mood and neurotic diagnoses were obtained from nationwide registers for the years 1998-2010. Common genetic and environmental influences on the phenotypes were estimated by applying structural equation modeling. The prevalence of MD/GAD was 30%, CF 8%, and DP due to mood and neurotic diagnoses 3% in 2010. Genetic effects on MD/GAD explained 31% of the total genetic variation in DP, whereas genetic contributions in common with CF were small and not significant. The majority of the total non-shared environmental variance in DP (85%) was explained by the factors that were unique to DP. Large proportions of genetic and non-shared environmental influences in DP due to mood and neurotic diagnoses were not explained by the contributions from MD/GAD or CF. The results suggest that the process leading to DP is complex and influenced by factors other than those related to the disorder underlying DP.

  10. Lori Minasian, MD, FACP | Division of Cancer Prevention

    Cancer.gov

    Dr. Lori Minasian, Deputy Director for the Division of Cancer Prevention, is a board-certified medical oncologist, who for 15 years led the NCI’s Community Clinical Oncology Program. This program is a community-based clinical trials network created in 1983 as a mechanism for community physicians to partner with academic investigators for the purpose of accelerating the

  11. 75 FR 22400 - Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Wheelabrator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9142-6] Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Wheelabrator Baltimore, L.P., Baltimore City, MD AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of final action. SUMMARY: Pursuant to section 505(b)(2) of the Clean...

  12. Biomass Program 2007 Program Peer Review - Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  13. AQCESS (Automated Quality of Care Evaluation Support System) Ad Hoc Report Generator Quick Reference Guide.

    DTIC Science & Technology

    1986-06-01

    GUIDE JJ TRIMIS Program Office 5401 Westbard Avenue Bethesda, Maryland 20816 W" V NDC Federal Systems. lnc.._" 1300 Piccard Drive .. -Rockville, Marylcn...Project/Teay iUnft1. DOD A A fri-Service Medical Information Systems Program office 11. Contract(C) orGaw a 5401 Westbard Avenue (C) Bethesda, MD 20816

  14. Shock and Impact Response of Naval Composite Structures

    DTIC Science & Technology

    2010-08-09

    elucidating physical mechanisms that control the survivability of composite structures under blast and impact. TECHNICAL APPROACH The Principal...the Proceedings of the 16th International Conference on Composite Structures , Kyoto, Japan, July 8-13, 2007. D. ONR Solid Mechanics Program...ONR Solid Mechanics Program Review, Marine Composites and Sandwich Structures , University of Maryland University College, Adelphi, MD, September 21

  15. The Sophie Davis School of Biomedical Education: The First 20 Years of a Unique BS-MD Program.

    ERIC Educational Resources Information Center

    Roman, Stanford A., Jr.; McGanney, Mary Lou

    1994-01-01

    A study assessed the extent to which the City University of New York medical school's innovative integrated baccalaureate/preclinical degree program has met its objectives of expanding access to medical careers among inner-city youth, especially minorities, and encouraging pursuit of primary care specialties among graduates. Results suggest…

  16. Charging Properties of Cassiterite (alpha-SnO2) Surfaces in NaCl and RbCl Ionic Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenqvist, Jorgen K; Machesky, Michael L.; Vlcek, Lukas

    2009-01-01

    The acid-base properties of cassiterite ({alpha}-SnO{sub 2}) surfaces at 10-50 C were studied using potentiometric titrations of powder suspensions in aqueous NaCl and RbCl media. The proton sorption isotherms exhibited common intersection points in the pH range of 4.0-4.5 under all conditions, and the magnitude of charging was similar but not identical in NaCl and RbCl. The hydrogen bonding configuration at the oxide-water interface, obtained from classical molecular dynamics (MD) simulations, was analyzed in detail, and the results were explicitly incorporated in calculations of protonation constants for the reactive surface sites using the revised MUSIC model. The calculations indicated thatmore » the terminal SnOH{sub 2} group is more acidic than the bridging Sn{sub 2}OH group, with protonation constants (log K{sub H}) of 3.60 and 5.13 at 25 C, respectively. This is contrary to the situation on the isostructural {alpha}-TiO{sub 2} (rutile), apparently because of the difference in electronegativity between Ti and Sn. MD simulations and speciation calculations indicated considerable differences in the speciation of Na{sup +} and Rb{sup +}, despite the similarities in overall charging. Adsorbed sodium ions are almost exclusively found in bidentate surface complexes, whereas adsorbed rubidium ions form comparable numbers of bidentate and tetradentate complexes. Also, the distribution of adsorbed Na{sup +} between the different complexes shows a considerable dependence on the surface charge density (pH), whereas the distribution of adsorbed Rb{sup +} is almost independent of pH. A surface complexation model (SCM) capable of accurately describing both the measured surface charge and the MD-predicted speciation of adsorbed Na{sup +}/Rb{sup +} was formulated. According to the SCM, the deprotonated terminal group (SnOH{sup -0.40}) and the protonated bridging group (Sn{sub 2}OH{sup +0.36}) dominate the surface speciation over the entire pH range of this study (2.7-10). The complexation of medium cations increases significantly with increasing negative surface charge, and at pH 10, roughly 40% of the terminal sites are predicted to form cation complexes, whereas anion complexation is minor throughout the studied pH range.« less

  17. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    PubMed

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  18. Multiple Causal Links Between Magnocellular-Dorsal Pathway Deficit and Developmental Dyslexia.

    PubMed

    Gori, Simone; Seitz, Aaron R; Ronconi, Luca; Franceschini, Sandro; Facoetti, Andrea

    2016-10-17

    Although impaired auditory-phonological processing is the most popular explanation of developmental dyslexia (DD), the literature shows that the combination of several causes rather than a single factor contributes to DD. Functioning of the visual magnocellular-dorsal (MD) pathway, which plays a key role in motion perception, is a much debated, but heavily suspected factor contributing to DD. Here, we employ a comprehensive approach that incorporates all the accepted methods required to test the relationship between the MD pathway dysfunction and DD. The results of 4 experiments show that (1) Motion perception is impaired in children with dyslexia in comparison both with age-match and with reading-level controls; (2) pre-reading visual motion perception-independently from auditory-phonological skill-predicts future reading development, and (3) targeted MD trainings-not involving any auditory-phonological stimulation-leads to improved reading skill in children and adults with DD. Our findings demonstrate, for the first time, a causal relationship between MD deficits and DD, virtually closing a 30-year long debate. Since MD dysfunction can be diagnosed much earlier than reading and language disorders, our findings pave the way for low resource-intensive, early prevention programs that could drastically reduce the incidence of DD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. [Health inequities in mood disorders based on material and social deprivation in dwelling sectors ].

    PubMed

    Vanasse, Alain; Courteau, Josiane; Lesage, Alain; Fleury, Marie-Josée; Grégoire, Jean-Pierre; Moisan, Jocelyne; Lauzier, Sophie; Bergeron, Claude

    2012-12-01

    To compare mood disorder (MD) prevalence in Quebec in 2006, and compare health services and medication use, mortality and morbidity in patients with MD based on sex and the dwelling sector level of material and social deprivation. The objective was also to identify subgroups of individuals using health services in a larger proportion and having a higher risk of morbidity and mortality. We conducted a secondary analysis of the Régie de l’assurance maladie du Québec medico-administrative data. The cohort is composed of adults diagnosed with MD and living in Quebec in 2006. Variables include: physician consultation, medication demand, consultation for substance or alcohol abuse, emergency visit, hospitalization for a mental disorder, and death. Dwelling sector types are defined by crossing Pampalon material and social deprivation quintiles. MD prevalence in 2006 was 3.06% (177 850 patients), with prevalence in women 1.7-fold with respect to men. Findings show a higher MD prevalence as well as a higher mortality and morbidity rate in materially and socially deprived dwelling sectors. Young men also represent a specifically vulnerable subgroup for many study variables. Public policies aimed at improving material conditions (income, education, employment) and breaking out social isolation would have an important impact on the population mental health. Public health program development should pay close attention to young men population.

  20. Family Medicine or Primary Care Residency Selection: Effects of Family Medicine Interest Groups, MD/MPH Dual Degrees, and Rural Medical Education.

    PubMed

    Wei McIntosh, Elizabeth; Morley, Christopher P

    2016-05-01

    If medical schools are to produce primary care physicians (family medicine, pediatrics, or general internal medicine), they must provide educational experiences that enable medical students to maintain existing or form new interests in such careers. This study examined three mechanisms for doing so, at one medical school: participation as an officer in a family medicine interest group (FMIG), completion of a dual medical/public health (MD/MPH) degree program, and participation in a rural medical education (RMED) clinical track. Specialty Match data for students who graduated from the study institution between 2006 and 2015 were included as dependent variables in bivariate analysis (c2) and logistic regression models, examining FMIG, MD/MPH, and RMED participation as independent predictors of specialty choice (family medicine yes/no, or any primary care (PC) yes/no), controlling for student demographic data. In bivariate c2 analyses, FMIG officership did not significantly predict matching with family medicine or any PC; RMED and MD/MPH education were significant predictors of both family medicine and PC. Binary logistic regression analyses replicated the bivariate findings, controlling for student demographics. Dual MD/MPH and rural medical education had stronger effects in producing primary care physicians than participation in a FMIG as an officer, at one institution. Further study at multiple institutions is warranted.

Top