Sample records for program global energy

  1. Catalog of databases and reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtis, M.D.

    1996-04-01

    This document provides information about the many reports and other materials made available by the US Department of Energy`s (DOE`s) Global Change Research Program (GCRP). It is divided into nine sections plus author and title indexes: Section A -- US Department of Energy Global Change Research Program research plans and summaries; Section B -- US Department of Energy Global Change Research Program technical reports; Section C -- US Department of energy Atmospheric Radiation Measurement (ARM) program reports; Section D -- Other US Department of Energy reports; Section E -- CDIAC reports; Section F -- CDIAC numeric data and computer modelmore » distribution; Section G -- other data sets distributed by CDIAC; Section H -- USDA reports on response of vegetation to carbon dioxide; Section I -- other publications.« less

  2. Catalog of databases and reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burtis, M.D.

    1997-04-01

    This catalog provides information about the many reports and materials made available by the US Department of Energy`s (DOE`s) Global Change Research Program (GCRP) and the Carbon Dioxide Information Analysis Center (CDIAC). The catalog is divided into nine sections plus the author and title indexes: Section A--US Department of Energy Global Change Research Program Research Plans and Summaries; Section B--US Department of Energy Global Change Research Program Technical Reports; Section C--US Department of Energy Atmospheric Radiation Measurement (ARM) Program Reports; Section D--Other US Department of Energy Reports; Section E--CDIAC Reports; Section F--CDIAC Numeric Data and Computer Model Distribution; Section G--Othermore » Databases Distributed by CDIAC; Section H--US Department of Agriculture Reports on Response of Vegetation to Carbon Dioxide; and Section I--Other Publications.« less

  3. AEERL (AIR AND ENERGY ENGINEERING RESEARCH LABORATORY) RESEARCH PLAN ON THE GLOBAL CLIMATE EMISSIONS ASSESSMENT AND STABILIZATION PROGRAM

    EPA Science Inventory

    The paper discusses the Environmental Protection Agency's (EPA) Air and Energy Engineering Research Laboratory (AEERL) research plan for work in the global climate area. The plan, written for discussion with senior scientists and program managers at EPA's Global Climate Change Re...

  4. Sandia National Laboratories: National Security Missions: International

    Science.gov Websites

    Transportation Energy Energy Research Global Security WMD Counterterrorism & Response Global Threat Reduction Homeland Defense & Force Protection Homeland Security Cyber & Infrastructure Security Global Business Procurement Technical Assistance Program (PTAP) Current Suppliers iSupplier Account Accounts

  5. Sandia National Laboratories: Directed-energy tech receives funding to

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal researchmore » community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.« less

  7. GEWEX: The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  8. Global Auroral Energy Deposition Compared with Magnetic Indices

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Elsen, R.; Parks, G. K.; Germany, G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. in this session. Magnetic indices, such as Kp, AE, and Dst, which are sensitive to variations in magnetospheric current systems have been constructed from ground magnetometer measurements and employed as measures of activity. The systematic study of global energy deposition raises the possibility of constructing a global magnetospheric activity index explicitly based on particle precipitation to supplement magnetic indices derived from ground magnetometer measurements. The relationship between global magnetic activity as measured by these indices and the rate of total global energy loss due to precipitation is not known at present. We study the correlation of the traditional magnetic index of Kp for the month of January 1997 with the energy deposition derived from the UVI images. We address the question of whether the energy deposition through particle precipitation generally matches the Kp and AE indices, or the more exciting, but distinct, possibility that this particle-derived index may provide an somewhat independent measure of global magnetospheric activity that could supplement traditional magnetically-based activity indices.

  9. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  10. Thinking Globally, Acting Locally About Food, Population and Energy Issues. Seventh Grade Interdisciplinary Unit.

    ERIC Educational Resources Information Center

    Miller, Barbara, Ed.

    This social studies unit suggests activities and teaching methods for use by seventh grade social studies classroom teachers as they develop and implement educational programs on global food, population, and energy problems. Objectives are to help students become aware of global interdependence, identify roles of various nations in causing and…

  11. Design of China Leading Energy Efficiency Program (LEP) for equipment and appliances and comparative study of international experience on super-efficient products

    NASA Astrophysics Data System (ADS)

    Liang, Xiuying; Zhu, Chunyan

    2017-11-01

    With rising global emphasizes on climate change and sustainable development, how to accelerate the transformation of energy efficiency has become an important question. Designing and implementing energy-efficiency policies for super-efficient products represents an important direction to achieve breakthroughs in the field of energy conservation. On December 31, 2014, China’s National Development and Reform Commission (NDRC) jointly six other ministerial agencies launched China Leading Energy Efficiency Program (LEP), which identifies top efficiency models for selected product categories. LEP sets the highest energy efficiency benchmark. Design of LEP took into consideration of how to best motivate manufacturers to accelerate technical innovation, promote high efficiency products. This paper explains core elements of LEP, such as objectives, selection criteria, implementation method and supportive policies. It also proposes recommendations to further improve LEP through international policy comparison with Japan’s Top Runner Program, U.S. Energy Star Most Efficient, and SEAD Global Efficiency Medal.

  12. The Global Energy Situation on Earth, Teacher Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the teacher's guide to accompany the student guide which together comprise one of five computer-oriented environmental/energy education units. This unit is organized around a computerized data base of information related to global energy use. The data is organized on a country-by-country basis for the 83 largest countries in the world. For…

  13. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    PubMed

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  14. State Roles in the Global Climate Change Issue.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1995-02-01

    Events in 1988 helped focus the attention of several states on the global climate change issue. Consequently, the National Governors' Association conducted an assessment in 1989 and recommended various actions. By 1994, 22 states have enacted laws or regulations and/or established research programs addressing climate change. Most of these "no regrets" actions are set up to conserve energy or improve energy efficiency and also to reduce greenhouse gas emissions. Illinois has adopted an even broader program by 1) establishing a Global Climate Change Office to foster research and provide information and 2) forming a task force to address a wide array of issues including state input to federal policies such as the Clinton administration's 1993 Climate Change Action Plan and to the research dimensions of the U.S. Global Climate Change Research Program. The Illinois program calls for increased attention to studies of regional impacts, including integrated assessments, and to research addressing means to adapt to future climate change. These various state efforts to date help show the direction of policy development and should be useful to those grappling with these issues.

  15. Geothermal tomorrow 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  16. The Global Energy Situation on Earth, Student Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide are: (1) Introduction to the unit; (2) The "EARTH" program; (3) Exercises; and (4) Sources of information on the energy crisis. This guide supplements a simulation which allows students to analyze different aspects of…

  17. 75 FR 62115 - Energy Conservation Program for Consumer Products: Commonwealth of Massachusetts Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... requirements. Examples of these requirements cited by Massachusetts include its Global Warming Solutions Act...), Bard Manufacturing Company Inc., Carrier Residential and Light Commercial Systems, Goodman Global Inc...

  18. People and Environment: Understanding Global Relationships.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Discusses impacts of global resources and environment, focusing on food, fisheries, forests, energy, water, and air. Includes graphs, charts, maps, and tables of the current environmental situation; they are suitable for classroom use. Also includes suggested guidelines for implementing a global studies program and an annotated list of resource…

  19. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erez, Mattan; Yelick, Katherine; Sarkar, Vivek

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability:more » Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.« less

  20. A flexible tool for diagnosing water, energy, and entropy budgets in climate models

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lucarini, Valerio

    2017-04-01

    We have developed a new flexible software for studying the global energy budget, the hydrological cycle, and the material entropy production of global climate models. The program receives as input radiative, latent and sensible energy fluxes, with the requirement that the variable names are in agreement with the Climate and Forecast (CF) conventions for the production of NetCDF datasets. Annual mean maps, meridional sections and time series are computed by means of Climate Data Operators (CDO) collection of command line operators developed at Max-Planck Institute for Meteorology (MPI-M). If a land-sea mask is provided, the program also computes the required quantities separately on the continents and oceans. Depending on the user's choice, the program also calls the MATLAB software to compute meridional heat transports and location and intensities of the peaks in the two hemispheres. We are currently planning to adapt the program in order to be included in the Earth System Model eValuation Tool (ESMValTool) community diagnostics.

  1. How Academies use science to enhance global security and well-being.

    NASA Astrophysics Data System (ADS)

    Boright, John

    2017-01-01

    Science academies were originally created to facilitate science communication and later to recognize excellence. But in the last 20 years some 150 academies of science, engineering,and medicine around the world have united to cooperate in contributing to human welfare, by: 1. Providing evidence-based inputs to national, regional, and global policies addressing human needs, and 2. Conducting cooperative programs to increase the capacity of academies to provide such advice, and to better connect academies to publics and to policy makers. Examples: At the global level, 112 academies of science produce brief common statements on major global issues. They have also created an organization to provide in-depth reports on major issues such as a transition to sustainable energy systems, boosting agricultural productivity in Africa, and a guide to responsible conduct in the global research enterprise. Regional networks of those academies, in Africa, the Americas, Asia, and Europe conduct program on topics such as water, energy, engagement of women in science, and science education. They also help and mentor new academies.

  2. Status and prospect of NDT technology for nuclear energy industry in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hyun

    2016-02-01

    Innovative energy technology is considered to be one of the key solutions for meeting the challenges of climate change and energy security, which is why global leaders are focusing on enhancing energy technology R&D. In accordance with the global movements to accelerate energy R&D, the Korean government has made significant investments in a broad spectrum of energy R&D programs, including energy efficiency, resources, CCS, new and renewable energy, power generation and electricity delivery, nuclear power and nuclear waste management. In order to manage government sponsored energy R&D programs in an efficient and effective way, the government established the Korea Institute of Energy technology Evaluation and Planning (KETEP) in 2009. Main activities of KETEP include developing energy technology roadmaps, planning, evaluating, and managing R&D programs, fostering experts in the field of energy, promoting international cooperation programs, gathering and analyzing energy statistics, and supporting infrastructure and commercialization. KETEP assists the Ministry of Trade, Industry and Energy in developing national R&D strategies while also working with researchers, universities, national institutes and the private sector for their successful energy technology and deployment. This presentation consists of three parts. First, I will introduce the characteristics of energy trends and mix in Korea. Then, I'll speak about the related national R&D strategies of energy technology. Finally, I'll finish up with the status and prospect of NDT technology for nuclear energy industry in Korea. The development of the on-line structural integrity monitoring systems and the related techniques in Korean nuclear power plant for the purpose of condition based maintenance is introduced. The needs of NDT techniques for inspection and condition monitoring for GEN IV including SFR, small module reactor etc., are also discussed.

  3. Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Perrie, William; Fang, He; Zhao, Li; Yu, Wen-Jin; He, Yi-Jun

    2017-05-01

    Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC1401007), the Global Change Research Program of China (Grant No. 2015CB953901), the Canadian Program on Energy Research and Development (OERD), the Office of Naval Research (Code 322, “Arctic and Global Prediction” (Principal Investigator: William Perrie)) (Grant No. N00014-15-1-2611), and the National Natural Science Foundation of China (Grant No. 41276187).

  4. Design of Standards and Labeling programs in Chile: Techno-Economic Analysis for Refrigerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letschert, Virginie E.; McNeil, Michael A.; Pavon, Mariana

    2013-05-01

    Lawrence Berkeley National Laboratory is a global leader in the study of energy efficiency and its effective implementation through government policy. The Energy Analysis and Environmental Impacts Department of LBNL’s Environmental Energy Technologies Division provides technical assistance to help federal, stat e and local government agencies in the United States, and throughout the world, develop long-term strategies, policy, and programs to encourage energy efficiency in all sectors and industries. In the past, LBNL has assisted staff of various countries government agencies and their con tractors in providing methodologies to analyze cost-effectiveness of regulations and asses s overall national impacts ofmore » efficiency programs. The paper presents the work done in collaboration with the Ministry of Energy (MoE) in Chile and the Collaborative Labeling Appliance Standards Programs (CLASP) on designing a Minimum Energy Performance Standards (MEPS) and ext ending the current labeling program for refrigerators.« less

  5. Translational Science for Energy and Beyond.

    PubMed

    McKone, James R; Crans, Debbie C; Martin, Cheryl; Turner, John; Duggal, Anil R; Gray, Harry B

    2016-09-19

    A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel and chemical feedstocks. In this report, we discuss the importance of translational research-defined as work that explicitly targets basic discovery as well as technology development-in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.

  6. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Won Young; Phadke, Amol; Shah, Nihar

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in Januarymore » 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden, the United Arab Emirates, the United Kingdom, and the United States. More information on SEAD is available from its website at http://www.superefficient.org/.« less

  7. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climatemore » change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.« less

  8. A Future-Oriented, Globally Based Curriculum Model for Industrial Technology.

    ERIC Educational Resources Information Center

    Hacker, Michael

    1982-01-01

    Presents a future-oriented curriculum approach for industrial technology programs. Major global issues provide the basic structure for curriculum development. These issues include energy management, resource management, technological advancement, and international relations. Rationales for industrial technology are discussed and a curriculum…

  9. Our changing planet: The FY 1993 US global change research program. A supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An improved predictive understanding of the integrated Earth system, including human interactions, will provide direct benefits by anticipating and planning for possible impacts on commerce, agriculture, energy, resource utilization, human safety, and environmental quality. The central goal of the U.S. Global Change Research Program (USGCRP) is to help establish the scientific understanding and the basis for national and international policymaking related to natural and human-induced changes in the global Earth system. This will be accomplished through: (1) establishing an integrated, comprehensive, long-term program of documenting the Earth system on a global scale; (2) conducting a program of focused studies to improve our understanding of the physical, geological, chemical, biological, and social processes that influence the Earth system processes; and (3) developing integrated conceptual and predictive Earth system models.

  10. 78 FR 4401 - Orders Granting Authority To Import and Export Natural Gas, To Import and Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... 12-144-NG MC GLOBAL GAS CORPORATION 12-150-NG AGENCY: Office of Fossil Energy, Department of Energy (DOE). ACTION: Notice of orders. SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy... on the FE Web site at http://www.fossil.energy.gov/programs/gasregulation/authorizations/Orders-2012...

  11. 7 CFR 1710.407 - Business plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Business plan. 1710.407 Section 1710.407 Agriculture... Conservation Loan Program § 1710.407 Business plan. An Eligible EE Program must have a business plan for implementing the program. The business plan is expected to have a global perspective on the borrower's energy...

  12. The Modern Era of Research in Biosphere Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Fung, I. Y.; Sellers, P. J.; Randall, D. A.; Tucker, C. J.; Field, C. B.; Berry, J. A.; Ustin, S.

    2015-12-01

    Dr. Diane Wickland, the Program Scientist for NASA's EOS InterDisciplinary Science (IDS), encouraged and nurtured the growth of the field of global ecology and eco-climatology. This talk reviews the developments in, and integration of, theory, satellite and field observations that enabled the global modeling of biosphere-atmosphere interactions. Emphasis will be placed on the advances made during the EOS era in global datasets and global coupled carbon-climate models. The advances include functional classifications of the land surface using the NDVI, a global terrestrial carbon-energy-water model, and the greening of the CSU GCM. An equally important achievement of the EOS-IDS program is a new generation of multi-disciplinary scientists who are now leaders in the field.

  13. EPA ENERGY STAR: Tackling Growth in Home Electronics and Small Appliances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Marla Christine; Brown, Richard; Homan, Gregory

    2008-11-17

    Over a decade ago, the electricity consumption associated with home electronics and other small appliances emerged onto the global energy policy landscape as one of the fastest growing residential end uses with the opportunity to deliver significant energy savings. As our knowledge of this end use matures, it is essential to step back and evaluate the degree to which energy efficiency programs have successfully realized energy savings and where savings opportunities have been missed.For the past fifteen years, we have quantified energy, utility bill, and carbon savings for US EPA?s ENERGY STAR voluntary product labeling program. In this paper, wemore » present a unique look into the US residential program savings claimed to date for EPA?s ENERGY STAR office equipment, consumer electronics, and other small household appliances as well as EPA?s projected program savings over the next five years. We present a top-level discussion identifying program areas where EPA?s ENERGY STAR efforts have succeeded and program areas where ENERGY STAR efforts did not successfully address underlying market factors, technology issues and/or consumer behavior. We end by presenting the magnitude of ?overlooked? savings.« less

  14. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  15. The READY program: Building a global potential energy surface and reactive dynamic simulations for the hydrogen combustion.

    PubMed

    Mogo, César; Brandão, João

    2014-06-30

    READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. Copyright © 2014 Wiley Periodicals, Inc.

  16. Global Change Research Related in the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Berry, Linda R.

    2002-01-01

    The mission of the Global Change Research Related to the Earth's Energy and Hydrologic Cycle is to enhance the scientific knowledge and educational benefits obtained from NASA's Earth Science Enterprise and the U.S. Global Change Research Program, University of Alabama in Huntsville (UAH). This paper presents the final technical report on this collaborative effort. Various appendices include: A) Staff Travel Activities years one through three; B) Publications and Presentations years one through three; C) Education Activities; D) Students year one through three; E) Seminars year one through three; and F) Center for Applied Optics Projects.

  17. Energy Experiments for STEM Students

    NASA Astrophysics Data System (ADS)

    Fanchi, John

    2011-03-01

    Texas Christian University (TCU) is developing an undergraduate program that prepares students to become engineers with an emphasis in energy systems. One of the courses in the program is a technical overview of traditional energy (coal, oil and gas), nuclear energy, and renewable energy that requires as a pre-requisite two semesters of calculus-based physics. Energy experiments are being developed that will facilitate student involvement and provide hands-on learning opportunities. Students participating in the course will improve their understanding of energy systems; be introduced to outstanding scientific and engineering problems; learn about the role of energy in a global and societal context; and evaluate contemporary issues associated with energy. This talk will present the status of experiments being developed for the technical energy survey course.

  18. Counter Trafficking System Development "Analysis Training Program"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Dennis C.

    This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.

  19. Translational Science for Energy and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, James R.; Crans, Debbie C.; Martin, Cheryl

    A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel andmore » chemical feedstocks. In this report, we discuss the importance of translational research -- defined as work that explicitly targets basic discovery as well as technology development -- in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.« less

  20. Corporate Delivery of a Global Smart Buildings Program

    DOE PAGES

    Fernandes, Samuel; Granderson, Jessica; Singla, Rupam; ...

    2017-11-22

    Buildings account for about 40 percent of the total energy consumption in the U.S. and emit approximately one third of greenhouse gas emissions. But they also offer tremendous potential for achieving significant greenhouse gas reductions with the right savings strategies. With an increasing amount of data from buildings and advanced computational and analytical abilities, buildings can be made “smart” to optimize energy consumption and occupant comfort. Smart buildings are often characterized as having a high degree of data and system integration, connectivity and control, as well as the advanced use of data analytics. These “smarts” can enable up to 10–20%more » savings in a building, and help ensure that they persist over time. In 2009, Microsoft Corporation launched the Energy-Smart Buildings (ESB) program with a vision to improve building operations services, security and accessibility in services, and new tenant applications and services that improve productivity and optimize energy use. The ESB program focused on fault diagnostics, advanced analytics and new organizational processes and practices to support their operational integration. In addition to the ESB program, Microsoft undertook capital improvement projects that made effective use of a utility incentive program and lab consolidations over the same duration. The ESB program began with a pilot at Microsoft's Puget Sound campus that identified significant savings of up to 6–10% in the 13 pilot buildings. The success of the pilot led to a global deployment of the program. Between 2009 and 2015, there was a 23.7% reduction in annual electricity consumption (kWh) at the Puget Sound campus with 18.5% of that resulting from the ESB and lab consolidations. This article provides the results of research conducted to assess the best-practice strategies that Microsoft implemented to achieve these savings, including the fault diagnostic routines that are the foundation of the ESB program and organizational change management practices. It also presents the process that was adopted to scale the ESB program globally. We conclude with recommendations for how these successes can be generalized and replicated by other corporate enterprises.« less

  1. Corporate Delivery of a Global Smart Buildings Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Samuel; Granderson, Jessica; Singla, Rupam

    Buildings account for about 40 percent of the total energy consumption in the U.S. and emit approximately one third of greenhouse gas emissions. But they also offer tremendous potential for achieving significant greenhouse gas reductions with the right savings strategies. With an increasing amount of data from buildings and advanced computational and analytical abilities, buildings can be made “smart” to optimize energy consumption and occupant comfort. Smart buildings are often characterized as having a high degree of data and system integration, connectivity and control, as well as the advanced use of data analytics. These “smarts” can enable up to 10–20%more » savings in a building, and help ensure that they persist over time. In 2009, Microsoft Corporation launched the Energy-Smart Buildings (ESB) program with a vision to improve building operations services, security and accessibility in services, and new tenant applications and services that improve productivity and optimize energy use. The ESB program focused on fault diagnostics, advanced analytics and new organizational processes and practices to support their operational integration. In addition to the ESB program, Microsoft undertook capital improvement projects that made effective use of a utility incentive program and lab consolidations over the same duration. The ESB program began with a pilot at Microsoft's Puget Sound campus that identified significant savings of up to 6–10% in the 13 pilot buildings. The success of the pilot led to a global deployment of the program. Between 2009 and 2015, there was a 23.7% reduction in annual electricity consumption (kWh) at the Puget Sound campus with 18.5% of that resulting from the ESB and lab consolidations. This article provides the results of research conducted to assess the best-practice strategies that Microsoft implemented to achieve these savings, including the fault diagnostic routines that are the foundation of the ESB program and organizational change management practices. It also presents the process that was adopted to scale the ESB program globally. We conclude with recommendations for how these successes can be generalized and replicated by other corporate enterprises.« less

  2. Transmittal of Geotail Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Geotail is an element in the International Solar Terrestrial Physics (ISTP) Program. The overall goal of the ISTP Program is to employ simultaneous and closely coordinated remote observations of the sun and in situ observations both in the undisturbed heliosphere near Earth and in Earth s magnetosphere to measure, model, and quantitatively assess the processes in the sun/Earth interaction chain. In the early phase of the Program, simultaneous measurements in the key regions of geospace from Geotail and the two U.S. satellites of the Global Geospace Science (GGS) Program, Wind and Polar, along with equatorial measurements, will be used to characterize global energy transfer.

  3. 76 FR 7816 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... U.S. Japan Global Nuclear Energy Cooperation Working Group, U.S. industry program at the... submitted to the Civil Nuclear Trade Advisory Committee, Office of Energy & Environmental Industries, Room... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee...

  4. Sandia National Laboratories: National Security Programs

    Science.gov Websites

    policy. Topics About Nuclear Weapons Safety & Security Science & Technology Defense Systems & science and technology to help defend and protect the United States. Topics About Defense Systems & . Topics Stationary Power Earth Science Transportation Energy Energy Research Global Security Birc We

  5. Political economy of Clinton's ambitious energy program

    NASA Astrophysics Data System (ADS)

    Aldy, Joseph E.

    2016-10-01

    Hillary Clinton's campaign has stressed her continuity with Obama's energy policy on key aspects such as decarbonization of the US economy, technological innovation and global cooperation. However, policy reforms to deliver long-term climate goals might be out of reach in a highly divided Congress.

  6. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  7. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance,more » information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.« less

  8. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  9. Building Energy Codes: Policy Overview and Good Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie

    2016-02-19

    Globally, 32% of total final energy consumption is attributed to the building sector. To reduce energy consumption, energy codes set minimum energy efficiency standards for the building sector. With effective implementation, building energy codes can support energy cost savings and complementary benefits associated with electricity reliability, air quality improvement, greenhouse gas emission reduction, increased comfort, and economic and social development. This policy brief seeks to support building code policymakers and implementers in designing effective building code programs.

  10. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less

  11. Real world programs, real world strategies, real world successes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, K.

    1997-12-31

    This paper presents a very brief overview of market opportunities for using energy efficient technology. A brief summary of greenhouse gas emissions and global climate change concludes that the threat of global warming must be taken seriously. It is stated that there are numerous technologies available which can reduce energy use by up to 50%, while offering attractive rates of return. Market analysis has identified a trillion dollar market for high efficiency products and services over the next decade. Three main areas of business opportunity for capitalizing on the growing market for energy efficiency are identified: (1) using efficient energymore » technology in-house, (2) marketing energy efficient products, and (3) international markets.« less

  12. 78 FR 28812 - Energy Efficiency Program for Industrial Equipment: Petition of UL Verification Services Inc. for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... are engineers. UL today is comprised of five businesses, Product Safety, Verification Services, Life..., Director--Global Technical Research, UL Verification Services. Subscribed and sworn to before me this 20... (431.447(c)(4)) General Personnel Overview UL is a global independent safety science company with more...

  13. SmartWay

    EPA Pesticide Factsheets

    SmartWay is an EPA program that helps the freight transportation sector improve supply chain efficiency. SmartWay reduces transportation-related emissions, environmental risks for companies and increases global energy security.

  14. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  15. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    PubMed

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  16. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, N. K.; Park, W. Y.; Gerke, B.

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficientmore » and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and Indonesia, the highest-efficiency RAC models employ the low-GWP refrigerants R-32 or R-290. • RACs are available in most regions and worldwide that surpass the highest efficiency levels recognized by labeling programs. • Fixed-speed RACs using high-GWP and ozone-depleting R-22 refrigerant still dominate the market in many emerging economies. There is significant scope to improve RAC efficiency and transition to low-GWP refrigerants using commercially available technology and to design market-transformation programs for high-efficiency, low-GWP equipment including standards, labeling, procurement, and incentive programs.« less

  17. Our Changing Planet: The FY 1993 US Global Change Research Program. A report by the Committee on Earth and Environmental Sciences, a supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The U.S. Global Change Reasearch Program (USGCRP) was established as a Presidential initiative in the FY-1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction).

  18. Energy and Economic Impacts of H.R.5049, the Keep America Competitive Global Warming Policy

    EIA Publications

    2006-01-01

    This report responds to a May 2, 2006 request from Congressmen Tom Udall and Tom Petri asking the Energy Information Administration to analyze the impacts of their legislation implementing a market-based allowance program to cap greenhouse gas emissions at 2009 levels.

  19. Energy Literacy: A Natural and Essential Part of a Solutions-Based Approach to Climate Literacy

    NASA Astrophysics Data System (ADS)

    Inman, M. M.

    2011-12-01

    As with climate science topics, many Americans have misconceptions or gaps in understanding related to energy topics. Recent literacy efforts are geared to address these gaps in understanding. The U.S. Global Change Research Program's recently published "Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education" offers a welcome complement to the Climate Literacy Essential Principles released in 2008. Research and experience suggest that education, communication and outreach about global climate change and related topics is best done using a solutions-based approach. Energy is a natural and effective topic to frame these solutions around. Used as a framework for designing curricula, Energy Literacy naturally leads to solutions-based approaches to Climate Change education. An inherently interdisciplinary topic, energy education must happen in the context of both the natural and social sciences. The Energy Literacy Essential Principles reflect this and open the door to curriculum that integrates the two.

  20. Detection of meso-micro scale surface features based on microcanonical multifractal formalism

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyuan; Chen, Wei; Xie, Tao; Perrie, William

    2018-01-01

    Not Available Project supported by the National Key R&D Program of China (Grant No. 2016YFC1401007), the Global Change Research Program of China (Grant No. 2015CB953901), the National Natural Science Foundation of China (Grant No. 41776181), the Canadian Program on Energy Research and Development (OERD), Canadian Space Agency’s SWOT Program, and the Canadian Marine Environmental Observation Prediction and Response Network (MEOPAR).

  1. A Subspace Semi-Definite programming-based Underestimation (SSDU) method for stochastic global optimization in protein docking*

    PubMed Central

    Nan, Feng; Moghadasi, Mohammad; Vakili, Pirooz; Vajda, Sandor; Kozakov, Dima; Ch. Paschalidis, Ioannis

    2015-01-01

    We propose a new stochastic global optimization method targeting protein docking problems. The method is based on finding a general convex polynomial underestimator to the binding energy function in a permissive subspace that possesses a funnel-like structure. We use Principal Component Analysis (PCA) to determine such permissive subspaces. The problem of finding the general convex polynomial underestimator is reduced into the problem of ensuring that a certain polynomial is a Sum-of-Squares (SOS), which can be done via semi-definite programming. The underestimator is then used to bias sampling of the energy function in order to recover a deep minimum. We show that the proposed method significantly improves the quality of docked conformations compared to existing methods. PMID:25914440

  2. GEWEX - The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  3. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  4. The Arctic's Role in Climate.

    ERIC Educational Resources Information Center

    Baker, D. James

    1986-01-01

    Discusses the special role the Arctic region plays in climate, focusing on: (1) the global energy balance; (2) feedback mechanisms; (3) effects of increasing carbon dioxide; and (4) climate processes study programs. (JN)

  5. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less

  6. Comparisons of Solar Wind Coupling Parameters with Auroral Energy Deposition Rates

    NASA Technical Reports Server (NTRS)

    Elsen, R.; Brittnacher, M. J.; Fillingim, M. O.; Parks, G. K.; Germany G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. In this session. A number of parameters that predict the rate of coupling of solar wind energy into the magnetosphere have been proposed in the last few decades. Some of these parameters, such as the epsilon parameter of Perrault and Akasofu, depend on the instantaneous values in the solar wind. Other parameters depend on the integrated values of solar wind parameters, especially IMF Bz, e.g. applied flux which predicts the net transfer of magnetic flux to the tail. While these parameters have often been used successfully with substorm studies, their validity in terms of global energy input has not yet been ascertained, largely because data such as that supplied by the ISTP program was lacking. We have calculated these and other energy coupling parameters for January 1997 using solar wind data provided by WIND and other solar wind monitors. The rates of energy input predicted by these parameters are compared to those measured through UVI data and correlations are sought. Whether these parameters are better at providing an instantaneous rate of energy input or an average input over some time period is addressed. We also study if either type of parameter may provide better correlations if a time delay is introduced; if so, this time delay may provide a characteristic time for energy transport in the coupled solar wind-magnetosphere-ionosphere system.

  7. Opportunities in solar energy research over the next decade

    NASA Astrophysics Data System (ADS)

    Kennett, E.

    1989-06-01

    A sustainable energy path that relies on renewable energy sources can provide policymakers with the flexibility to cope with an uncertain national and global future. Improving market pricing signals, opening up the energy supply and energy savings business, educating society to see the true present value of future savings, and reinvigorating research and development programs will be difficult. However, those nations that accept the challenge will be rewarded with increased energy security, more stable economies, and a healthier global environment. The following report is an overview of eight trends in our society that are expected to shape the nature of architecture at the turn of the century. These trends will have pronounced effects on the use of renewable energy in our building stock. In turn, solar energy research can provide the answers to certain questions which will arise during these changes. Changes, if understood, can also serve to accelerate the inclusion of certain technologies, as in this particular case, solar energy.

  8. A History of Sandia’s Water Decision Modeling and Analysis Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Thomas Stephen; Pate, Ronald C.

    This document provides a brief narrative, and selected project descriptions, that represent Sandia’s history involving data, modeling, and analysis related to water, energy-water nexus, and energy-water-agriculture nexus within the context of climate change. Sandia National Laboratories has been engaged since the early-1990s with program development involving data, modeling, and analysis projects that address the interdependent issues, risks, and technology-based mitigations associated with increasing demands and stresses being placed on energy, water, and agricultural/food resources, and the related impacts on their security and sustainability in the face of both domestic and global population growth, expanding economic development, and climate change.

  9. Research on optimal investment path of transmission corridor under the global energy Internet

    NASA Astrophysics Data System (ADS)

    Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han

    2018-02-01

    Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.

  10. Colloborative International Resesarch on the Water Energy Nexus: Lessons Learned from the Clean Energy Research Center - Water Energy Technologies (CERC-WET)

    NASA Astrophysics Data System (ADS)

    Remick, C.

    2017-12-01

    The U.S.-China Clean Energy Research Center - Water and Energy Technologies (CERC-WET) is a global research partnership focused on developing and deploying technologies that to allow the U.S. and China to thrive in a future with constrained energy and water resources in a changing global climate. This presentation outlines and addresses the opportunities and challenges for international research collaboration on the so called "water-energy nexus", with a focus on industrial partnership, market readiness, and intellectual property. The U.S. Department of Energy created the CERC program as a research and development partnership between the United States and China to accelerate the development and deployment of advanced clean energy technologies. The United States and China are not only the world's largest economies; they are also the world's largest energy producers and energy consumers. Together, they account for about 40% of annual global greenhouse gas emissions. The bilateral investment in CERC-WET will total $50 million over five years and will target on the emerging issues and cut-edge research on the topics of (1) water use reduction at thermoelectric plants; (2) treatment and management of non-traditional waters; (3) improvements in sustainable hydropower design and operation; (4) climate impact modeling, methods, and scenarios to support improved understanding of energy and water systems; and (5) data and analysis to inform planning and policy.

  11. ARM/GCSS/SPARC TWP-ICE CRM Intercomparison Study

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Petch, Jon; Field, Paul; Hill, Adrian; McFarquhar, Greg; Xie, Shaocheng; Zhang, Minghua

    2010-01-01

    Specifications are provided for running a cloud-resolving model (CRM) and submitting results in a standardized format for inclusion in a n intercomparison study and archiving for public access. The simulated case study is based on measurements obtained during the 2006 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) led by the U. S. department of Energy Atmospheric Radiation Measurement (ARM) program. The modeling intercomparison study is based on objectives developed in concert with the Stratospheric Processes And their Role in Climate (SPARC) program and the GEWEX cloud system study (GCSS) program. The Global Energy and Water Cycle Experiment (GEWEX) is a core project of the World Climate Research PRogramme (WCRP).

  12. Energy and technology review

    NASA Astrophysics Data System (ADS)

    Johnson, K. C.

    1991-04-01

    This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.

  13. Stability of mechanical joints in launching vehicles: Local and global stationary values of energy density

    NASA Astrophysics Data System (ADS)

    Chue, Ching-Hwei

    A method was developed for predicting the behavior of mechanical joints in launch vehicles with particular emphasis placed on how the combined effects of loading, geometry, and materials could be optimized in terms of structure instability and/or integrity. What was considered to be essential is the fluctuation of the volume energy density with time in the structure. The peaks and valleys of the volume energy density function will be associated with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. The Solid Rocket Booster (SRB) of the space shuttle was analyzed under axisymmetric and non-axisymmetric loadings. A semi-analytical finite element program was developed for solving the case of non-axisymmetric loading. Following a dynamic stress analysis, contours of the volume energy density in the structure were obtained as a function of time. The magnitudes and locations of these stationary values were then calculated locally and globally and related to possible failure by fracture. In the case of axisymmetric flight, the local and global instability behavior do not change appreciably. Fluctuations in the energy density and the dynamic stability length parameter become appreciable when the non-axisymmetric loads are considered. The magnitude of the energy in the shell structure is sensitive to alterations in the gas pressure induced by the solid propellant.

  14. Review of economic and energy sector implications of adopting global climate change policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, M.H.

    1997-12-31

    This paper summarizes a number of studies examining potential economic impacts of global climate change policies. Implications for the United States as a whole, the U.S. energy sector, the U.S. economy, businesses and consumers, and world economies are considered. Impact assessments are performed of U.S. carbon emissions, carbon taxes, and carbon restrictions by comparing estimates from various organizations. The following conclusions were made from the economic studies: (1) the economic cost of carbon abatement is expensive; (2) the cost of unilateral action is very expensive with little quantifiable evidence that global emissions are reduced; (3) multilateral actions of developed countriesmore » are also very expensive, but there is quantifiable evidence of global emissions reductions; and (4) global actions have only been theoretically addressed. Paralleling these findings, the energy analyses show that the U.S. is technologically unprepared to give up fossil fuels. As a result: (1) carbon is not stabilized without a high tax, (2) stabilization of carbon is elusive, (3) technology is the only long-term answer, and (4) targeted programs may be appropriate to force technology development. 8 tabs.« less

  15. Bibliography of The World Energy Resources Program

    USGS Publications Warehouse

    Masters, Charles D.

    1994-01-01

    The following publications were prepared in the course of World Energy Studies by program scientists. Most are open-file reports because we consider it our prime responsibility to get the program supporting data into the public record. Various of the authors have also seen fit to publish their work in refereed scientific journals and those publication outlets are also listed.The summation of the program work is reported in the proceedings volumes of the World Petroleum Congresses-see Global section of the bibliography. In those reports, petroleum resource data were aggregated by major petroleum resource countries. It is our intention to ultimately report resource data by petroleum basin in order to provide a closer tie of resource understanding and petroleum geology.

  16. Graduate student theses supported by DOE`s Environmental Sciences Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, Robert M.; Parra, Bobbi M.

    1995-07-01

    This report provides complete bibliographic citations, abstracts, and keywords for 212 doctoral and master`s theses supported fully or partly by the U.S. Department of Energy`s Environmental Sciences Division (and its predecessors) in the following areas: Atmospheric Sciences; Marine Transport; Terrestrial Transport; Ecosystems Function and Response; Carbon, Climate, and Vegetation; Information; Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP); Atmospheric Radiation Measurement (ARM); Oceans; National Institute for Global Environmental Change (NIGEC); Unmanned Aerial Vehicles (UAV); Integrated Assessment; Graduate Fellowships for Global Change; and Quantitative Links. Information on the major professor, department, principal investigator, and program area is given for each abstract.more » Indexes are provided for major professor, university, principal investigator, program area, and keywords. This bibliography is also available in various machine-readable formats (ASCII text file, WordPerfect{reg_sign} files, and PAPYRUS{trademark} files).« less

  17. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information content of water cycle predictions in a way that allows for model improvement. The final challenge is to establish clear pathways to inform water managers, practitioners and decision makers about newly developed tools, observations and research results.

  18. Water and climate

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1994-01-01

    The vertical profiles and temperature and moisture in convective regimes were investigated, using moist available energy as a guide. The generalized convective available potential energy observed during the Global Atmosphere Research Program's Atlantic Tropical Experiment (GATE) phase 3 was analyzed. Ice effects were included. The results have been used to develop an improved cumulus parameterization. Several reprints from the Journal of Atmospheric Sciences are appended.

  19. RERTR 2009 (Reduced Enrichment for Research and Test Reactors)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totev, T.; Stevens, J.; Kim, Y. S.

    2010-03-01

    The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Testmore » Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.« less

  20. GCIP water and energy budget synthesis (WEBS)

    USGS Publications Warehouse

    Roads, J.; Lawford, R.; Bainto, E.; Berbery, E.; Chen, S.; Fekete, B.; Gallo, K.; Grundstein, A.; Higgins, W.; Kanamitsu, M.; Krajewski, W.; Lakshmi, V.; Leathers, D.; Lettenmaier, D.; Luo, L.; Maurer, E.; Meyers, T.; Miller, D.; Mitchell, Ken; Mote, T.; Pinker, R.; Reichler, T.; Robinson, D.; Robock, A.; Smith, J.; Srinivasan, G.; Verdin, K.; Vinnikov, K.; Vonder, Haar T.; Vorosmarty, C.; Williams, S.; Yarosh, E.

    2003-01-01

    As part of the World Climate Research Program's (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996-1999 fromthe "best available" observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or "close" budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets. Copyright 2003 by the American Geophysical Union.

  1. The United Nations development programme initiative for sustainable energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurry, S.

    1997-12-01

    Energy is central to current concerns about sustainable human development, affecting economic and social development; economic growth, the local, national, regional, and global environment; the global climate; a host of social concerns, including poverty, population, and health, the balance of payments, and the prospects for peace. Energy is not an end in itself, but rather the means to achieve the goals of sustainable human development. The energy systems of most developing countries are in serious crisis involving insufficient levels of energy services, environmental degradation, inequity, poor technical and financial performance, and capital scarcity. Approximately 2.5 billion people in the developingmore » countries have little access to commercial energy supplies. Yet the global demand for energy continues to grow: total primary energy is projected to grow from 378 exajoules (EJ) per year in 1990 to 571 EJ in 2020, and 832 EJ in 2050. If this increase occurs using conventional approaches and energy sources, already serious local (e.g., indoor and urban air pollution), regional (eg., acidification and land degradation), and global (e.g., climate change) environmental problems will be critically aggravated. There is likely to be inadequate capital available for the needed investments in conventional energy sources. Current approaches to energy are thus not sustainable and will, in fact, make energy a barrier to socio-economic development. What is needed now is a new approach in which energy becomes an instrument for sustainable development. The two major components of a sustainable energy strategy are (1) more efficient energy use, especially at the point of end-use, and (2) increased use of renewable sources of energy. The UNDP Initiative for Sustainable Energy (UNISE) is designed to harness opportunities in these areas to build upon UNDP`s existing energy activities to help move the world toward a more sustainable energy strategy by helping program countries.« less

  2. A Simple Climate Model Program for High School Education

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2012-04-01

    The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!

  3. The Future of Air Conditioning for Buildings - Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, J.

    2016-07-01

    The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less

  4. NCSE's 15th National Conference and Global Forum on Science, Policy, and the Environment: Energy and Climate Change, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Ellen

    The National Council for Science and the Environment (NCSE) held its 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change, on January 27-29, 2015, at the Hyatt Regency Hotel, Crystal City, VA. The National Conference: Energy and Climate Change developed and advanced partnerships that focused on transitioning the world to a new “low carbon” and “climate resilient” energy system. It emphasized advancing research and technology, putting ideas into action, and moving forward on policy and practice. More than 900 participants from the scientific research, policy and governance, business and civil society, and educationmore » communities attended. The Conference was organized around four themes: (1) a new energy system (including energy infrastructure, technologies and efficiencies, changes in distribution of energy sources, and low carbon transportation); (2) energy, climate and sustainable development; (3) financing and markets; and (4) achieving progress (including ideas for the 21st Conference of Parties to the United Nations Framework Convention on Climate Change). The program featured six keynote presentations, six plenary sessions, 41 symposia and 20 workshops. Conference participants were involved in the 20 workshops, each on a specific energy and climate-related issue. The workshops were designed as interactive sessions, with each workshop generating 10-12 recommendations on the topic. The recommendations were prepared in the final conference report, were disseminated nationally, and continue to be available for public use. The conference also featured an exhibition and poster sessions. The National Conference on Energy and Climate Change addressed a wide range of issues specific to the U.S. Department of Energy’s programs; involved DOE’s scientists and program managers in sessions and workshops; and reached out to a broad array of DOE stakeholders.« less

  5. Air, Climate and Energy (ACE) Centers: Supporting Air Quality and Climate Solutions

    EPA Pesticide Factsheets

    EPA through its Science to Achieve Results (STAR) program, is providing $30 million in funding for three university-based research centers to investigate regional differences in air pollution and the effects of global climate change.

  6. A Global Review of Incentive Programs to Accelerate Energy-Efficient Appliances and Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Rue du Can, Stephane; Phadke, Amol; Leventis, Greg

    Incentive programs are an essential policy tool to move the market toward energy-efficient products. They offer a favorable complement to mandatory standards and labeling policies by accelerating the market penetration of energy-efficient products above equipment standard requirements and by preparing the market for increased future mandatory requirements. They sway purchase decisions and in some cases production decisions and retail stocking decisions toward energy-efficient products. Incentive programs are structured according to their regulatory environment, the way they are financed, by how the incentive is targeted, and by who administers them. This report categorizes the main elements of incentive programs, using casemore » studies from the Major Economies Forum to illustrate their characteristics. To inform future policy and program design, it seeks to recognize design advantages and disadvantages through a qualitative overview of the variety of programs in use around the globe. Examples range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-Points that reward customers for buying efficient appliances under a government recovery program (Japan). We found that evaluations have demonstrated that financial incentives programs have greater impact when they target highly efficient technologies that have a small market share. We also found that the benefits and drawbacks of different program design aspects depend on the market barriers addressed, the target equipment, and the local market context and that no program design surpasses the others. The key to successful program design and implementation is a thorough understanding of the market and effective identification of the most important local factors hindering the penetration of energy-efficient technologies.« less

  7. Upper Atmosphere Research Satellite (UARS): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.A. Wigeland

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and themore » resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.« less

  9. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  10. The Business Value of Superior Energy Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKane, Aimee; Scheihing, Paul; Evans, Tracy

    Industrial facilities participating in the U.S. Department of Energy’s (US DOE) Superior Energy Performance (SEP) program are finding that it provides them with significant business value. This value starts with the implementation of ISO 50001-Energy management system standard, which provides an internationally-relevant framework for integration of energy management into an organization’s business processes. The resulting structure emphasizes effective use of available data and supports continual improvement of energy performance. International relevance is particularly important for companies with a global presence or trading interests, providing them with access to supporting ISO standards and a growing body of certified companies representing themore » collective knowledge of communities of practice. This paper examines the business value of SEP, a voluntary program that builds on ISO 50001, inviting industry to demonstrate an even greater commitment through third-party verification of energy performance improvement to a specified level of achievement. Information from 28 facilities that have already achieved SEP certification will illustrate key findings concerning both the value and the challenges from SEP/ISO 50001 implementation. These include the facilities’ experience with implementation, internal and external value of third-party verification of energy performance improvement; attractive payback periods and the importance of SEP tools and guidance. US DOE is working to bring the program to scale, including the Enterprise-Wide Accelerator (SEP for multiple facilities in a company), the Ratepayer-Funded Program Accelerator (supporting tools for utilities and program administrators to include SEP in their program offerings), and expansion of the program to other sectors and industry supply chains.« less

  11. Global stability of plane Couette flow beyond the energy stability limit

    NASA Astrophysics Data System (ADS)

    Fuentes, Federico; Goluskin, David

    2017-11-01

    This talk will present computations verifying that the laminar state of plane Couette flow is nonlinearly stable to all perturbations. The Reynolds numbers up to which this globally stability is verified are larger than those at which stability can be proven by the energy method, which is the typical method for demonstrating nonlinear stability of a fluid flow. This improvement is achieved by constructing Lyapunov functions that are more general than the energy. These functions are not restricted to being quadratic, and they are allowed to depend explicitly on the spectrum of the velocity field in the eigenbasis of the energy stability operator. The optimal choice of such a Lyapunov function is a convex optimization problem, and it can be constructed with computer assistance by solving a semidefinite program. This general method will be described in a companion talk by David Goluskin; the present talk focuses on its application to plane Couette flow.

  12. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  13. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  14. The U.S. Geological Survey Land Remote Sensing Program

    USGS Publications Warehouse

    ,

    2007-01-01

    The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.

  15. Physics Parameterization for Seasonal Prediction

    DTIC Science & Technology

    2012-09-30

    comparison Project, a joint effort between the Year of Tropical Convection (YOTC) Program and the Global Energy and Water Cycle Experiment (GEWEX) Cloud...unified” representation of the water cycle in the model. One such area is the correspondence between diagnosed cloud cover and prognostic cloud

  16. Nuclear energy related capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing themore » nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.« less

  17. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  18. HOMER® Micropower Optimization Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    2005-01-01

    NREL has developed the HOMER micropower optimization model. The model can analyze all of the available small power technologies individually and in hybrid configurations to identify least-cost solutions to energy requirements. This capability is valuable to a diverse set of energy professionals and applications. NREL has actively supported its growing user base and developed training programs around the model. These activities are helping to grow the global market for solar technologies.

  19. The SEAD global efficiency medal competition: accelerating market transformation for efficient televisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravi, Kavita; Bennich, Peter; Cockburn, John

    2013-10-15

    The Global Efficiency Medal competition, a cornerstone activity of the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative, is an awards program that encourages the production and sale of super-efficient products. SEAD is a voluntary multinational government collaboration of the Clean Energy Ministerial (CEM). This winner-takes-all competition recognizes products with the best energy efficiency, guides early adopter purchasers towards the most efficient product choices and demonstrates the levels of energy efficiency achievable by commercially available and emerging technologies. The first Global Efficiency Medals were awarded to the most energy-efficient flat panel televisions; an iconic consumer purchase. SEAD Global Efficiency Medals weremore » awarded to televisions that have proven to be substantially more energy efficient than comparable models available at the time of the competition (applications closed in the end of May 2012). The award-winning TVs consume between 33 to 44 percent less energy per 2 unit of screen area than comparable LED-backlit LCD televisions sold in each regional market and 50 to 60 percent less energy than CCFL-backlit LCD TVs. Prior to the launch of this competition, SEAD conducted an unprecedented international round-robin test (RRT) to qualify TV test laboratories to support verification testing for SEAD awards. The RRT resulted in increased test laboratory capacity and expertise around the world and ensured that the test results from participating regional test laboratories could be compared in a fair and transparent fashion. This paper highlights a range of benefits resulting from this first SEAD awards competition and encourages further investigation of the awards concept as a means to promote energy efficiency in other equipment types.« less

  20. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less

  1. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  2. Future Earth, Global Science and Regional Programs: Building regional integrated science capacities in a global science organization

    NASA Astrophysics Data System (ADS)

    Tewksbury, J.

    2016-12-01

    Future Earth has emerged from the more than 30-year history of Global Change Research Programs, including IGBP, DIVERSITAS and IHDP. These programs supported interdisciplinary science in service of societies around the world. Now, their focus on building a greater understanding of changing Earth systems and their couplings with society has passed to Future Earth - with an important addition: Future Earth was also established to focus global change efforts around key societal challenges. The implications for the structure of Future Earth are large. Many challenges within topics, such as the water, energy, food nexus or the future of cities, are manifested within local, national, and regional contexts. How should we organize globally to most effectively confront these multi-scale challenges? The solution proposed in the framing of Future Earth was the formation of regional as well as national committees, as well as the formation of regional centers and offices. Regional Committees serve to both advocate for Future Earth in their regions and to advocate for regional interests in the global Future Earth platform, while regional Centers and offices are built into the Future Earth secretariat to perform a parallel regional implementation function. Implementation has not been easy, and the process has placed regionally-focused projects in an awkward place. Programs such as the Monsoon Asia Integrated Regional Study (MAIRS), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the South/Southeast Asia Research Initiative (SARI) represent some of the best global change communities in the world, but by design, their focus is regional. The effective integration of these communities into the Future Earth architecture will be critical, and this integration will require the formation of strong regional committees and regional centers.

  3. Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)

    ScienceCinema

    Keasling, Jay; Bristow, Jim; Tringe, Susannah Green

    2017-12-09

    Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.

  4. Global threat reduction initiative Russian nuclear material removal progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, Kelly; Bolshinsky, Igor

    2008-07-15

    In December 1999 representatives from the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) started discussing a program to return to Russia Soviet- or Russian-supplied highly enriched uranium (HEU) fuel stored at the Russian-designed research reactors outside Russia. Trilateral discussions among the United States, Russian Federation, and the International Atomic Energy Agency (IAEA) have identified more than 20 research reactors in 17 countries that have Soviet- or Russian-supplied HEU fuel. The Global Threat Reduction Initiative's Russian Research Reactor Fuel Return Program is an important aspect of the U.S. Government's commitment to cooperate with the other nationsmore » to prevent the proliferation of nuclear weapons and weapons-usable proliferation-attractive nuclear materials. To date, 496 kilograms of Russian-origin HEU have been shipped to Russia from Serbia, Latvia, Libya, Uzbekistan, Romania, Bulgaria, Poland, Germany, and the Czech Republic. The pilot spent fuel shipment from Uzbekistan to Russia was completed in April 2006. (author)« less

  5. Renewable energy for an environmentally sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderman, D.N.

    1993-12-31

    One of the major objectives of the renewable energy program is to allow the employment of environmentally benign energy technologies based upon the sun. Other objectives include national energy independence and industrial competitiveness in future energy technology markets. The National Renewable Energy Laboratory (formerly SERI) in Golden, Colorado, has for 15 years been the lead U.S. laboratory in research on photovoltaics, wind energy systems, and ethanol from biomass. During this period, substantional cost reductions were achieved and efficiencies improved. NREL also works closely with industry to facilitate the commercialization of these and related technologies. As much as 50% of NRELmore » funding goes to industry in cost-shared contracts for research and development, planned with industry representatives and the U.S. Department of Energy. Besides lessening dependence on fossil fuels and their short-term environmental impacts, these technologies will also alleviate the impact on the potential global warming issue. Other direct environmental research at NREL is the solar-detox program, in which solar radiation is employed to destroy hazardous organic materials in ground water and other waste streams.« less

  6. Energy savings opportunities in the global digital television transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Won Young; Gopal, Anand; Phadke, Amol

    Globally, terrestrial television (TV) broadcasting is in the midst of a complete transition to digital signals. The last analog terrestrial broadcast is expected to be switched off in the early 2020s. This transition presents huge energy savings opportunities that have thus far been ignored. Digital TV switchovers have likely increased energy consumption as countries have completed transitions by providing digital TV converters to analog TV users, which increase energy consumption and extend the life of energy-inefficient analog TVs. We find that if analog TVs were retired at the time of a digital switchover and replaced with super-efficient flat-panel TVs, suchmore » as light-emitting diode (LED) backlit liquid crystal display (LCD) TVs, there is a combined electricity savings potential of 32 terawatt hours [TWh] per year in countries that have not yet completed their digital TV transition. In view of these findings as well as the dramatic drops of super-efficient TV prices and the unique early-retirement opportunity resulting from cessation of terrestrial analog broadcasts, TV-exchange programs would easily and substantially advance energy efficiency.« less

  7. Energy savings opportunities in the global digital television transition

    DOE PAGES

    Park, Won Young; Gopal, Anand; Phadke, Amol

    2016-12-20

    Globally, terrestrial television (TV) broadcasting is in the midst of a complete transition to digital signals. The last analog terrestrial broadcast is expected to be switched off in the early 2020s. This transition presents huge energy savings opportunities that have thus far been ignored. Digital TV switchovers have likely increased energy consumption as countries have completed transitions by providing digital TV converters to analog TV users, which increase energy consumption and extend the life of energy-inefficient analog TVs. We find that if analog TVs were retired at the time of a digital switchover and replaced with super-efficient flat-panel TVs, suchmore » as light-emitting diode (LED) backlit liquid crystal display (LCD) TVs, there is a combined electricity savings potential of 32 terawatt hours [TWh] per year in countries that have not yet completed their digital TV transition. In view of these findings as well as the dramatic drops of super-efficient TV prices and the unique early-retirement opportunity resulting from cessation of terrestrial analog broadcasts, TV-exchange programs would easily and substantially advance energy efficiency.« less

  8. Life as a graduate student in a globalized collaboration

    NASA Astrophysics Data System (ADS)

    Fracchiolla, Claudia

    2009-05-01

    A global vision is important, if not essential, in all scientific fields. In the case of graduate students, the language of instruction is not the only issue. We must learn different research methodologies and understand a new set of complex cultural dynamics both in our living situations and in our new university workplaces. My research program is in experimental particle astrophysics. I study ultra-high energy cosmic rays with the Pierre Auger Observatory located in Argentina. More than 400 scientists from 18 different countries are a part of this science program. As a graduate student within this model provides me with a comprehensive understanding of global cultures combined with research skills, proficiency in different languages, and an international experience. I will discuss the benefits and challenges of working in a large international collaboration, and how it can help you grow not only as a scientist, but also as a person.

  9. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  10. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0161

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  11. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0192

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2001-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  12. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_KP_0139

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    1999-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  13. International Solar-Terrestrial Program Key Parameter Visualization Tool Data: USA_NASA_DDF_ISTP_IM_KP_0185

    NASA Technical Reports Server (NTRS)

    Ocuna, M. H.; Ogilvie, K. W.; Baker, D. N.; Curtis, S. A.; Fairfield, D. H.; Mish, W. H.

    2000-01-01

    The Global Geospace Science Program (GGS) is designed to improve greatly the understanding of the flow of energy, mass and momentum in the solar-terrestrial environment with particular emphasis on "Geospace". The Global Geospace Science Program is the US contribution to the International Solar-Terrestrial Physics (ISTP) Science Initiative. This CD-ROM issue describes the WIND and POLAR spacecraft, the scientific experiments carried onboard, the Theoretical and Ground Based investigations which constitute the US Global Geospace Science Program and the ISTP Data Systems which support the data acquisition and analysis effort. The International Solar-Terrestrial Physics Program (ISTP) Key Parameter Visualization Tool (KPVT), provided on the CD-ROM, was developed at the ISTP Science Planning and Operations Facility (SPOF). The KPVT is a generic software package for visualizing the key parameter data produced from all ISTP missions, interactively and simultaneously. The tool is designed to facilitate correlative displays of ISTP data from multiple spacecraft and instruments, and thus the selection of candidate events and data quality control. The software, written in IDL, includes a graphical/widget user interface, and runs on many platforms, including various UNIX workstations, Alpha/Open VMS, Macintosh (680x0 and PowerPC), and PC/Windows NT, Windows 3.1, and Windows 95.

  14. Science Writer's Guide to Landsat 7

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Earth science program, is a suite of spacecraft and interdisciplinary science investigations dedicated to advancing our understanding of global change. The flagship EOS satellite, Terra (formerly EOS AM-1), scheduled for launch in July 1999, will provide key measurements of the physical and radiative properties of clouds; air-land and air-sea exchanges of energy, carbon, and water; trace gases; and volcanoes. Flying in formation with Terra, Landsat 7 will make global high spatial resolution measurements of land surface and surrounding coastal regions. Other upcoming EOS missions and instruments include QuikSCAT, to collect sea surface wind data; the Stratospheric Gas and Aerosol Experiment (SAGE III), to create global profiles of key atmospheric gases; and the Active Cavity Radiometer Irradiance Monitors (ACRIM) to measure the energy output of the Sun. The second of the major, multi-instrument EOS platforms, PM-1, is scheduled for launch in 2000. Interdisciplinary research projects sponsored by EOS use specific Earth science data sets for a broader investigation into the function of Earth systems. Current EOS research spans a wide range of sciences, including atmospheric chemistry, hydrology, land use, and marine ecosystems. The EOS program has been managed since 1990 by the Goddard Space Flight Center in Greenbelt, Md., for NASA's Office of Earth Science in Washington, D. C. Additional information on the program can be found on the EOS Project Science Office Web site (http://eospso.gsfc.nasa.gov).

  15. Nonproliferation and Threat Reduction Assistance: U.S. Programs in the Former Soviet Union

    DTIC Science & Technology

    2011-04-26

    large - scale former BW-related facilities so that they can perform peaceful research issues such as infectious diseases. The Global Threat Reduction...indicated that it may not pursue the MOX program to eliminate its plutonium, opting instead for the construction of fast breeder reactors that could...burn plutonium directly for energy production. The United States might not fund this effort, as many in the United States argue that breeder reactors

  16. Closeout Report for CTEQ Summer School 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Tao

    The CTEQ Collaboration is an informal group of 37 experimental and theoretical high energy physicists from 20 universities and 5 national labs, engaged in a program to advance research in and understanding of QCD. This program includes the well-known collaborative project on global QCD analysis of parton distributions, the organization of a variety of workshops, periodic collaboration meetings, and the subject of this proposal: the CTEQ Summer Schools on QCD Analysis and Phenomenology.

  17. The USGS World Energy Program

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.

    1997-01-01

    The world has recently experienced rapid change to market-driven economies and increasing reliance on petroleum supplies from areas of political instability. The interplay of unprecedented growth of the global population, increasing worldwide energy demand, and political instability in two major petroleum exporting regions (the former Soviet Union and the Middle East) requires that the United States maintains a current, reliable, objective assessment of the world's energy resources. The need is compounded by the environmental implications of rapid increases in coal use in the Far East and international pressure on consumption of fossil fuels.

  18. A Glance at China’s Household Consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shui, Bin

    2009-10-01

    Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide-range social marketing activities to promote energy conservation.

  19. Monitoring the spring-summer surface energy budget transition in the Gobi Desert using AVHRR GAC data. [Global Area Coverage

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Reiter, Elmar R.

    1986-01-01

    A research program has been started in which operationally available weather satellites radiance data are used to reconstruct various properties of the diurnal surface energy budget over sites for which detailed estimates of the complete radiation, heat, and moisture exchange process are available. In this paper, preliminary analysis of the 1985 Gobi Desert summer period results is presented. The findings demonstrate various important relationships concerning the feasibility of retrieving the amplitudes of the diurnal surface energy budget processes for daytime and nighttime conditions.

  20. Role of environmental geology in US Department of Energy's advanced research and development programs to promote energy security in the United States

    NASA Astrophysics Data System (ADS)

    Brown, C. E.

    1995-12-01

    The purpose of this report is to describe the research programs and program activities of the US Department of Energy (DOE) that most directly relate to topics in the field of environmental geology. In this light, the mission of the DOE and the definition of environmental geology will be discussed. In a broad sense, environmental geology is that branch of earth science that emphasizes the entire spectrum of human interactions with the physical environment that include environmental health, mineral exploration and exploitation, waste management, energy use and conservation, global change, environmental law, natural and man-made hazard assessment, and land-use planning. A large number of research, development, and demonstration programs are under DOE's administration and guidance that directly or indirectly relate to topics in environmental geology. The primary mission of the DOE is to contribute to the welfare of the nation by providing the scientific foundation, technology, policy, and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The research and development funding effort has most recently been redirected toward greater utilization of clean fossil fuels, especially natural gas, weatherization, renewable energy, energy efficiency, fusion energy, and high-energy physics. This paper will summarize the role that environmental geology has played and will continue to play in the execution of DOE's mission and the energy options that DOE has investigated closely. The specific options are those that center around energy choices, such as alternative-fueled transportation, building technologies, energy-efficient lighting, and clean energy.

  1. Simulation of the brightness temperatures observed by the visible infrared imaging radiometer suite instrument

    NASA Astrophysics Data System (ADS)

    Evrard, Rebecca L.; Ding, Yifeng

    2018-01-01

    Clouds play a large role in the Earth's global energy budget, but the impact of cirrus clouds is still widely questioned and researched. Cirrus clouds reside high in the atmosphere and due to cold temperatures are comprised of ice crystals. Gaining a better understanding of ice cloud optical properties and the distribution of cirrus clouds provides an explanation for the contribution of cirrus clouds to the global energy budget. Using radiative transfer models (RTMs), accurate simulations of cirrus clouds can enhance the understanding of the global energy budget as well as improve the use of global climate models. A newer, faster RTM such as the visible infrared imaging radiometer suite (VIIRS) fast radiative transfer model (VFRTM) is compared to a rigorous RTM such as the line-by-line radiative transfer model plus the discrete ordinates radiative transfer program. By comparing brightness temperature (BT) simulations from both models, the accuracy of the VFRTM can be obtained. This study shows root-mean-square error <0.2 K for BT difference using reanalysis data for atmospheric profiles and updated ice particle habit information from the moderate-resolution imaging spectroradiometer collection 6. At a higher resolution, the simulated results of the VFRTM are compared to the observations of VIIRS resulting in a <1.5 % error from the VFRTM for all cases. The VFRTM is validated and is an appropriate RTM to use for global cloud retrievals.

  2. Phase I - Smart Grid Data Access Pilot Program: Utilizing STEM Education as a Catalyst for Residential Consumer Decision Making and Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lishness, Alan; Peake, Leigh

    2014-11-19

    Under Phase I of the Smart Grid Data Access Pilot Program, the Gulf of Maine Research Institute (GMRI) partnered with Central Maine Power (CMP), and the Maine Mathematics and Science Alliance (MMSA) and engaged key vendors Tilson Government Services, LLC (Tilson), and Image Works to demonstrate the efficacy of PowerHouse, an interactive online learning environment linking middle school students with their home electricity consumption data provided through CMP’s Advanced Metering Infrastructure (AMI). The goal of the program is to harness the power of youth to alter home energy consumption behaviors using AMI data. Successful programs aimed at smoking cessation, recycling,more » and seat belt use have demonstrated the power of young people to influence household behaviors. In an era of increasing concern about energy costs, availability, and human impacts on global climate, GMRI sought to demonstrate the effectiveness of a student-focused approach to understanding and managing household energy use. We also sought to contribute to a solid foundation of science-literate students who can analyze evidence to find solutions to increasingly complex energy challenges.« less

  3. DOE's Geothermal Program still in game

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    In the ongoing search to find cost-effective, renewable forms of energy that neither contribute to global warming nor threaten national security, geothermal energy remains a player. Although Department of Energy funding for geothermal research has declined over the past decade, from its peak in 1979 of $160 million, there is still tremendous potential in terms of geothermal development, said Gladys Hooper, program manager of DOE's Hot Dry Rock and Brine Chemistry divisions. Technology for harnessing geothermal power is by and large there, she said. What is needed is more awareness and publicity regarding the merits of geothermal energy.For fiscal year 1993, proposed DOE funding for geothermal research was $24 million, down from $27 million in fiscal 1992 and nearly $30 million in fiscal 1991. DOE's Geothermal Division oversees the network of national laboratories and universities involved in developing the nation's geothermal resources and bringing them into commercial competitiveness.

  4. Development of a Regional U.S. MARKAL Database for Energy and Emissions Modeling

    EPA Science Inventory

    The U.S. Climate Change Science Program (CCSP) is a collaborative effort among 13 agencies of the U.S. federal government. From the CCSP's 2003 strategic plan, its mission is to: "facilitate the creation and application of knowledge of the earth's global environment through resea...

  5. 78 FR 40403 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... from today's proposed determination. There currently is no statutory definition of portable ACs. DOE...\\ Transparency Media Research. Air Conditioning Systems Market--Global Scenario, Trends, Industry Analysis, Size... amended by the Small Business Regulatory Enforcement Fairness Act of 1996) requires preparation of an...

  6. 76 FR 36908 - Draft Competition Rules for a Global Appliance Efficiency Award for Televisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... solicitation of comments. SUMMARY: The U.S. Department of Energy (DOE) is working with partner governments... program can be directed to: Mr. Arne Jacobson, Senior Advisor, DOE Office of Policy and International... working groups, covering standards and test procedures, awards, procurement, incentives, and cross-cutting...

  7. TESTING OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: GROTON LANDFILL

    EPA Science Inventory

    The report summarizes the results of follow-on tests following a four-phase EPA program. The environmental impact of widespread use of this concept would be a significant reduction of global warming gas emissions (methane and carbon dioxide). The follow-on testing, conducted by N...

  8. Environmental Sciences Division annual progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-04-01

    This annual report summarizes activities in the Aquatic Ecology, Earth Sciences, Environmental Analyses, and Terrestrial Ecology sections, as well as in the Fossil Energy, Biomass, Low-Level Waste Research and Management, and Global Carbon Cycle Programs. Separate abstracts have been prepared for each section. (ACR)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Brian; Cochran, Jaquelin; Watson, Andrea

    As a recognized leader in efforts to mitigate global climate change, the Government of Mexico (GOM) works proactively to reduce emissions, demonstrating strong political will and capacity to comprehensively address climate change. Since 2010, the U.S. government (USG) has supported these efforts by partnering with Mexico under the Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program. Through the program, the USG has partnered with Mexico’s Ministry of Energy (SENER), as well as other government agencies, to support GOM in reaching its clean energy and climate change goals. Specifically, the EC-LEDS program is supporting GOM’s clean energy goal of generatingmore » 35% of its electricity from renewable energy (RE) by 2024. EC-LEDS, through the U.S. Agency for International Development (USAID) and the U.S Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), has been collaborating with SENER and GOM interagency working group—the Consejo Consultivo para las Energías Renovables (Consultative Council on Renewable Energy)—to create a grid integration roadmap for variable RE. 1 A key objective in creating a grid integration roadmap is assessing likely impacts of wind and solar energy on the power system and modifying planning and operations accordingly. This paper applies best practices in conducting a grid integration study to the Mexican context.« less

  10. Review of science issues, deployment strategy, and status for the ARM north slope of Alaska-Adjacent Arctic Ocean climate research site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamnes, K.; Ellingson, R.G.; Curry, J.A.

    1999-01-01

    Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program is designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks, which are believed to be important to the predicted enhanced warming inmore » the Arctic. The most important scientific issues of Arctic, as well as global, significance to be addressed at the NSA-AAO CART site are discussed, and a brief overview of the current approach toward, and status of, site development is provided. ARM radiometric and remote sensing instrumentation is already deployed and taking data in the perennial Arctic ice pack as part of the SHEBA (Surface Heat Budget of the Arctic ocean) experiment. In parallel with ARM`s participation in SHEBA, the NSA-AAO facility near Barrow was formally dedicated on 1 July 1997 and began routine data collection early in 1998. This schedule permits the US Department of Energy`s ARM Program, NASA`s Arctic Cloud program, and the SHEBA program (funded primarily by the National Science Foundation and the Office of Naval Research) to be mutually supportive. In addition, location of the NSA-AAO Barrow facility on National Oceanic and Atmospheric Administration land immediately adjacent to its Climate Monitoring and Diagnostic Laboratory Barrow Observatory includes NOAA in this major interagency Arctic collaboration.« less

  11. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  12. Evaluating the potential of reforestation as a mitigative measure for greenhouse gas induced global warming using an energy balance global climate model

    NASA Astrophysics Data System (ADS)

    Starheim, Fred John

    The subject of global warming due to the human addition of greenhouse gases (GHGs) to the atmosphere has been the subject of considerable attention and research in the last two decades. The principal GHG of concern related to human influence is carbon dioxide (CO2). Emissions of this gas have grown rapidly since the industrial revolution in response to the energy and agricultural demands of an increasing world population. Concern exists that the atmospheric concentrations of GHGs may rise sufficiently high so as to impose dangerous interference with the climate system. Numerous methods and measures for the sequestration and avoidance of GHGs have been proposed with the object of decreasing the growth and ultimately stabilizing atmospheric GHG concentrations. The purpose of this work is to examine the effectiveness of one such measure-that of the feasibiltiy of large-scale reforestation/afforestation efforts to mitigate projected global warming. An energy balance global climate model was selected to conduct this work. The model is based on previous work of Pease (1987) in the Annals of the AAG, (77), 450-461, which has been expanded to include dimensions of time and space. The assumed reforestation/afforestation activities are based on a World Resources Institute study by Trexler and Haugen (1995) entitled Keeping it Green Tropical Forest Opportunities for Mitigating Climate Change. The forestry activities are assumed to take place in the tropics where a year-round growing season, plentiful rainfall, and relatively low land development costs should provide the most economically favorable conditions for instituting such a program. The climate model simulations examine the effect of carbon absorption and sequestration in isolation, and then in a subsequent step, examine the combined effect of carbon absorption/sequestration and albedo changes attendant with increased forest cover. Results of the modeling show only small temperature benefits (an approximate 0.1 degree C cooling) associated with implementation of this large-scale reforestation program versus a CO2 doubling case with no forestry programs. Of the approximate 0.1 degree C temperature change, the largest effect was due to CO2 sequestration with the surface albedo effect being negligible (less than 0.01 degree C).

  13. An efficient annealing in Boltzmann machine in Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz

    2012-09-01

    This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.

  14. The NOAA Integrated Surface Irradiance Study (ISIS)-A New Surface Radiation Monitoring Program.

    NASA Astrophysics Data System (ADS)

    Hicks, B. B.; Deluisi, J. J.; Matt, D. R.

    1996-12-01

    This paper describes a new radiation monitoring program, the Integrated Surface Irradiance Study (ISIS), that builds upon and takes over from earlier NOAA networks monitoring components of solar radiation [both the visible component (SOLRAD) and the shortwave component that causes sunburn, UV-B] across the continental United States. ISIS is implemented in two levels. Level 1 addresses incoming radiation only, and level 2 addresses the surface radiation balance. Level 2 also constitutes the SURFRAD (Surface Radiation) program of the NOAA Office of Global Programs, specifically intended to provide radiation data to support large-scale hydrologic studies that will be conducted under the Global Energy and Water Cycle Experiment. Eventually, it is planned for level 2 sites to monitor all components of the surface energy balance. Both levels of ISIS will eventually measure both visible and UV radiation components. At present, there are nine sites that are considered to be at ISIS level 1 standard and an additional four level 2 SURFRAD sites. A 10th level 1 site will be in operation soon. Plans call for an increase in the number of sites of both kinds, up to about 15 ISIS sites, of which 6 will be at the SURFRAD level. Data are available via FTP at ftp.atdd.noaa.govlpublisis or at http://www.srrb.noaa.gov (level 2).

  15. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    NASA Astrophysics Data System (ADS)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol-1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  16. Technical and Economic Aspects of Designing an Efficient Room Air-Conditioner Program in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Nikit; Shah, Nihar; Phadke, Amol

    Several studies have projected a massive increase in the demand for air conditioners (ACs) over the next two decades in India. By 2030, room ACs could add 140 GW to the peak load, equivalent to over 30% of the total projected peak load. Therefore, there is significant interest among policymakers, regulators, and utilities in managing room AC demand by enhancing energy efficiency. Building on the historical success of the Indian Bureau of Energy Efficiency’s star-labeling program, Energy Efficiency Services Limited recently announced a program to accelerate the sale of efficient room ACs using bulk procurement, similar to their successful UJALAmore » light-emitting diode (LED) bulk procurement program. This report discusses some of the key considerations in designing a bulk procurement or financial incentive program for enhancing room AC efficiency in India. We draw upon our previous research to demonstrate the overall technical potential and price impact of room AC efficiency improvement and its technical feasibility in India. We also discuss the importance of using low global warming potential (GWP) refrigerants and smart AC equipment that is demand response (DR) ready.« less

  17. National Labs Host Classroom Ready Energy Educational Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to take research to the classroom. The DOE ACTS program is designed for science and math teachers seeking an independent research experience with a mentor scientist at a DOE National Laboratory to serve as technical leaders and agents of positive change in their local, regional and national communities. (www.scied.science.doe.gov/scied/ACTS/about.htm) The National Labs developed education materials and outreach combined with DOE ACTS are several small steps in the right direction. That is, a small step toward impacting and influencing thousands of youth across the nation (our future workforce) as only teachers can do. (www.rne2ew.org http://www1.eere.energy.gov/education/)

  18. Quality of institution and the FEG (forest, energy intensity, and globalization) -environment relationships in sub-Saharan Africa.

    PubMed

    Amuakwa-Mensah, Franklin; Adom, Philip Kofi

    2017-07-01

    The current share of sub-Saharan Africa in global carbon dioxide emissions is negligible compared to major contributors like Asia, Americas, and Europe. This trend is, however, likely to change given that both economic growth and rate of urbanization in the region are projected to be robust in the future. The current study contributes to the literature by examining both the direct and the indirect impacts of quality of institution on the environment. Specifically, we investigate whether the institutional setting in the region provides some sort of a complementary role in the environment-FEG relationships. We use the panel two-step system generalized method of moments (GMM) technique to deal with the simultaneity problem. Data consists of 43 sub-Saharan African countries. The result shows that energy inefficiency compromises environmental standards. However, the quality of the institutional setting helps moderate this negative consequences; countries with good institutions show greater prospects than countries with poor institutions. On the other hand, globalization of the region and increased forest size generate positive environmental outcomes in the region. Their impacts are, however, independent of the quality of institution. Afforestation programs, promotion of other clean energy types, and investment in energy efficiency, basic city infrastructure, and regulatory and institutional structures, are desirable policies to pursue to safeguard the environment.

  19. The CHANCE Program: Promoting Learning for Teachers and Students via Experience and Inquiry

    ERIC Educational Resources Information Center

    McLaughlin, Jacqueline S.

    2006-01-01

    Today's high school students and biology teachers alike face challenges arising from constantly-changing environments. From global warming to species reduction to energy policy, the issues the students will face will have immediate and long-lasting implications. At the same time, biology teachers are charged with achieving legislated standards,…

  20. A measurement of global event shape distributions in the hadronic decays of the Z 0

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, L. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; MacBeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, P. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; van den Plas, D.; Vandalen, G. J.; Vasseur, G.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.

    1990-12-01

    We present measurements of global event shape distributions in the hadronic decays of the Z 0. The data sample, corresponding to an integrated luminosity of about 1.3 pb-1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at the Z 0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.

  1. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  2. Certifying Industrial Energy Efficiency Performance: AligningManagement, Measurement, and Practice to Create Market Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKane, Aimee; Scheihing, Paul; Williams, Robert

    2007-07-01

    More than fifteen years after the launch of programs in theU.K. and U.S., industry still offers one of the largest opportunities forenergy savings worldwide. The International Energy Agency (IEA) estimatesthe savings potential from cost-optimization of industrial motor-drivensystems alone at 7 percent of global electricity use. The U.S. Departmentof Energy (USDOE) Industrial Technologies Program estimates 7 percentsavings potential in total US industrial energy use through theapplication of proven best practice. Simple paybacks for these types ofprojects are frequently two years or less. The technology required toachieve these savings is widely available; the technical skills requiredto identify energy saving opportunities are knownmore » and transferable.Although programs like USDOE's Best Practices have been highlysuccessful, most plants, as supported by 2002 MECS data, remain eitherunaware or unmotivated to improve their energy efficiency--as evidencedby the 98 percent of US industrial facilities reporting to MECS say thatthey lack a full-time energy manager. With the renewed interest in energyefficiency worldwide and the emergence of carbon trading and newfinancial instruments such as white certificates1, there is a need tointroduce greater transparency into the way that industrial facilitiesidentify, develop, and document energy efficiency projects. Historically,industrial energy efficiency projects have been developed by plantengineers, frequently with assistance from consultants and/or supplierswith highly specialized technical skills. Under this scenario,implementation of energy efficiency improvements is dependent onindividuals. These individuals typically include "champions" within anindustrial facility or corporation, working in cooperation withconsultants or suppliers who have substantial knowledge based on years ofexperience. This approach is not easily understood by others without thisspecialized technical knowledge, penetrates the market fairly slowly, andhas no assurance of persistence, since champions may leave the company orbe reassigned after project completion.This paper presents an alternatescenario that builds on the body of expert knowledge concerning energymanagement best practices and the experience of industrial champions toengage industry in continuous energy efficiency improvement at thefacility rather than the individual level. Under this scenario,standardized methodologies for applying and validating energy managementbest practices in industrial facilities will be developed through aconsensus process involving both plant personnel and specializedconsultants and suppliers. The resulting protocols will describe aprocess or framework for conducting an energy savings assessment andverifying the results that will be transparent to policymakers, managers,and the financial community, and validated by a third-party organization.Additionally, a global dialogue is being initiated by the United NationsIndustrial Development Organization (UNIDO) concerning the development ofan international industrial energy management standard that would be ISOcompatible. The proposed scenario will combine the resulting standardwith the best practice protocols for specific energy systems (i.e.,steam, process heating, compressed air, pumping systems, etc.) to formthe foundation of a third party, performance-based certification programfor the overall industrial facility that is compatible with existingmanagement systems, including ISO 9001:2000, 14001:2004 and 6 Sigma. Thelong term goal of this voluntary, industry designed certification programis to develop a transparent, globally accepted system for validatingenergy efficiency projects and management practices. This system wouldcreate a verified record of energy savings with potential market valuethat could be recognized among sectors and countries.« less

  3. Optimization methodology for the global 10 Hz orbit feedback in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu; Hulsart, R.; Mernick, K.

    To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less

  4. Optimization methodology for the global 10 Hz orbit feedback in RHIC

    DOE PAGES

    Liu, Chuyu; Hulsart, R.; Mernick, K.; ...

    2018-05-08

    To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less

  5. Public-Private roundtables at the fourth Clean Energy Ministerial, 17-18 April 2013, New Delhi, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Tracey

    2013-06-30

    The Clean Energy Ministerial (CEM) is a high-level global forum to share best practices and promote policies and programs that advance clean energy technologies and accelerate the transition to a global clean energy economy. The CEM works to increase energy efficiency, expand clean energy supply, and enhance clean energy access worldwide. To achieve these goals, the CEM pursues a three-part strategy that includes high-level policy dialogue, technical cooperation, and engagement with the private sector and other stakeholders. Each year, energy ministers and other high-level delegates from the 23 participating CEM governments come together to discuss clean energy, review clean energymore » progress, and identify tangible next steps to accelerate the clean energy transition. The U.S. Department of Energy, which played a crucial role in launching the CEM, hosted the first annual meeting of energy ministers in Washington, DC, in June 2010. The United Arab Emirates hosted the second Clean Energy Ministerial in 2011, and the United Kingdom hosted the third Clean Energy Ministerial in 2012. In April 2013, India hosted the fourth Clean Energy Ministerial (CEM4) in New Delhi. Key insights from CEM4 are summarized in the report. It captures the ideas and recommendations of the government and private sector leaders who participated in the discussions on six discussion topics: reducing soft costs of solar PV; energy management systems; renewables policy and finance; clean vehicle adoption; mini-grid development; and power systems in emerging economies.« less

  6. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    PubMed

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  7. Hawaii Ocean Mixing Experiment: Program Summary

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    It is becoming apparent that insufficient mixing occurs in the pelagic ocean to maintain the large scale thermohaline circulation. Observed mixing rates fall a factor of ten short of classical indices such as Munk's "Abyssal Recipe." The growing suspicion is that most of the mixing in the sea occurs near topography. Exciting recent observations by Polzin et al., among others, fuel this speculation. If topographic mixing is indeed important, it must be acknowledged that its geographic distribution, both laterally and vertically, is presently unknown. The vertical distribution of mixing plays a critical role in the Stommel Arons model of the ocean interior circulation. In recent numerical studies, Samelson demonstrates the extreme sensitivity of flow in the abyssal ocean to the spatial distribution of mixing. We propose to study the topographic mixing problem through an integrated program of modeling and observation. We focus on tidally forced mixing as the global energetics of this process have received (and are receiving) considerable study. Also, the well defined frequency of the forcing and the unique geometry of tidal scattering serve to focus the experiment design. The Hawaiian Ridge is selected as a study site. Strong interaction between the barotropic tide and the Ridge is known to take place. The goals of the Hawaiian Ocean Mixing Experiment (HOME) are to quantify the rate of tidal energy loss to mixing at the Ridge and to identify the mechanisms by which energy is lost and mixing generated. We are challenged to develop a sufficiently comprehensive picture that results can be generalized from Hawaii to the global ocean. To achieve these goals, investigators from five institutions have designed HOME, a program of historic data analysis, modeling and field observation. The Analysis and Modeling efforts support the design of the field experiments. As the program progresses, a global model of the barotropic (depth independent) tide, and two models of the baroclinic (depth varying) tide, all validated with near-Ridge data, will be applied, to reveal the mechanisms of tidal energy conversion along the Ridge, and allow spatial and temporal integration of the rate of conversion. Field experiments include a survey to identify "hot spots" of enhanced mixing and barotropic to baroclinic conversion, a Nearfield study identifying the dominant mechanisms responsible for topographic mixing, and a Farfield program which quantifies the barotropic energy flux convergence at the Ridge and the flux divergence associated with low mode baroclinic waves radiation. The difference is a measure of the tidal power available for mixing at the Ridge. Field work is planned from years 2000 through 2002, with analysis and modeling efforts extending through early 2006. If successful, HOME will yield an understanding of the dominant topographic mixing processes applicable throughout the global ocean. It will advance understanding of two central problems in ocean science, the maintenance of the abyssal stratification, and the dissipation of the tides. HOME data will be used to improve the parameterization of dissipation in models which presently assimilate TOPEX-POSEIDON observations. The improved understanding of the dynamics and spatial distribution of mixing processes will benefit future long-term programs such as CLIVAR.

  8. Comprehensive evaluation of global energy interconnection development index

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  9. Overview of the SMAP Applications and the SMAP Early Adopters Program - NASA's First Mission-Directed Outreach Effort

    NASA Technical Reports Server (NTRS)

    Escobar, V. M.; Delgado Arias, S.; Nearing, G.; Entekhabi, D.; Njoku, E.; Yueh, S.; Doorn, B.; Reichle, R.

    2016-01-01

    Satellite data provide global observations of many of the earths system processes and features. These data are valuable for developing scientific products that increase our understanding of how the earths systems are integrated. The water, energy and carbon cycle exchanges between the land and atmosphere are linked by soil moisture. NASAs Soil Moisture Active Passive (SMAP) mission provides soil moisture and freeze thaw measurements from space and allows scientists to link the water energy and carbon cycles. In order for SMAP data to be best integrated into decision support systems, the mission has engaged with the stakeholder community since 2009 and has attempted to scale the utility of the data to the thematic societal impacts of the satellite product applications. The SMAP Mission, which launched on January 31, 2015, has actively grown an Early Adopter (EA) community as part of its applications effort and worked with these EAs to demonstrate a scaled thematic impact of SMAP data product in societally relevant decision support applications. The SMAP mission provides global observations of the Earths surface soil moisture, providing high accuracy, resolution and continuous global coverage. Through the Early Adopters Program, the SMAP Applications Team will spend the next 2 years after launch documenting and evaluating the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security.

  10. Determining the Optimal Solution for Quadratically Constrained Quadratic Programming (QCQP) on Energy-Saving Generation Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Lesmana, E.; Chaerani, D.; Khansa, H. N.

    2018-03-01

    Energy-Saving Generation Dispatch (ESGD) is a scheme made by Chinese Government in attempt to minimize CO2 emission produced by power plant. This scheme is made related to global warming which is primarily caused by too much CO2 in earth’s atmosphere, and while the need of electricity is something absolute, the power plants producing it are mostly thermal-power plant which produced many CO2. Many approach to fulfill this scheme has been made, one of them came through Minimum Cost Flow in which resulted in a Quadratically Constrained Quadratic Programming (QCQP) form. In this paper, ESGD problem with Minimum Cost Flow in QCQP form will be solved using Lagrange’s Multiplier Method

  11. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.

  12. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SA Edgerton; LR Roeder

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less

  13. Internal contamination of an irradiator discovered during security enhancement.

    PubMed

    Harvey, R P

    2014-08-01

    High-risk radioactive sources regulated under Increased Controls Regulations have been protected by licensed facilities, but the federal government has placed significant emphasis on these sources and has developed initiatives to assist radioactive material licensees. The Department of Energy's Global Threat Reduction Initiative (GTRI) Domestic Threat Reduction Program is a voluntary federally funded program for security enhancements of high-risk radiological material. During the hardening or security enhancement process by the United States Department of Energy (U.S. DOE) contractors, a small amount of radioactive contamination was discovered in a Cesium irradiator. Ultimately, it was decided to pursue disposal with U.S. DOE's Off-Site Recovery Program (OSRP). Radiological devices may have a leaking source or known internal contamination that may cause difficulty during security enhancement. If the licensee understands this, it may provide facilities the opportunity to plan and prepare for unusual circumstances.

  14. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, G.M.; Tichler, J.L.

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less

  15. The U.S.Geological Survey Energy Resources Program

    USGS Publications Warehouse

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  16. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, usingmore » two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.« less

  17. Developing Energy Technology Course for Undergraduate Engineering Management Study Program in Lake Toba Area with Particular Focus to Sustainable Energy Systems in Development Context

    NASA Astrophysics Data System (ADS)

    Manik, Yosef; Sinaga, Rizal; Saragi, Hadi

    2018-02-01

    Undergraduate Engineering Management Study Program of Institut Teknologi Del is one of the pioneers for its field in Indonesia. Located in Lake Toba Area, this study program has a mission to provide high quality Engineering Management education that produces globally competitive graduates who in turn will contribute to local development. Framing the Energy Technology course—one of the core subjects in Engineering Management Body of Knowledge—in the context of sustainable development of Lake Toba Area is very essential. Thus, one particular focus in this course is sustainable energy systems in local development context that incorporates identification and analysis of locally available energy resources. In this paper we present our experience in designing such course. In this work, we introduce the domains that shape the Engineering Management Body of Knowledge. Then, we explain the results of our evaluation on the key considerations to meet the rapidly changing needs of society in local context. Later, we present the framework of the learning outcomes and the syllabus as a result of mapping the road map with the requirement. At the end, the summary from the first two semesters of delivering this course in academic year 2015/2016 and 2016/2017 are reported.

  18. The International Database of Efficient Appliances (IDEA): A New Resource for Global Efficiency Policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F; McNeil, Michael A; Tu, Thomas

    A major barrier to effective appliance efficiency program design and evaluation is a lack of data for determination of market baselines and cost-effective energy savings potential. The data gap is particularly acute in developing countries, which may have the greatest savings potential per unit GDP. To address this need, we are developing the International Database of Efficient Appliances (IDEA), which automatically compiles data from a wide variety of online sources to create a unified repository of information on efficiency, price, and features for a wide range of energy-consuming products across global markets. This paper summarizes the database framework and demonstratesmore » the power of IDEA as a resource for appliance efficiency research and policy development. Using IDEA data for refrigerators in China and India, we develop robust cost-effectiveness indicators that allow rapid determination of savings potential within each market, as well as comparison of that potential across markets and appliance types. We discuss implications for future energy efficiency policy development.« less

  19. Benchmarks of Global Clean Energy Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, Debra; Chung, Donald; Keyser, David

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  20. Influence of El Niño Southern Oscillation on global hydropower production

    NASA Astrophysics Data System (ADS)

    Ng, Jia Yi; Turner, Sean; Galelli, Stefano

    2016-04-01

    Hydropower contributes significantly to meeting the world's energy demand, accounting for at least 16% of total electrical output. Its role as a mature and cost competitive renewable energy source is expected to become increasingly important as the world transits to a low-carbon economy. A key component of hydropower production is runoff, which is highly dependent on precipitation and other climate variables. As such, it becomes critical to understand how the drivers of climate variability impact hydropower production. One globally-important driver is the El Niño Southern Oscillation (ENSO). While it is known that ENSO influences hydrological processes, the potential value of its associated teleconnection in design related tasks has yet to be explored at the global scale. Our work seeks to characterize the impact of ENSO on global hydropower production so as to quantify the potential for increased production brought about by incorporating climate information within reservoir operating models. We study over 1,500 hydropower reservoirs - representing more than half the world's hydropower capacity. A historical monthly reservoir inflow time series is assigned to each reservoir from a 0.5 degree gridded global runoff dataset. Reservoir operating rules are designed using stochastic dynamic programming, and storage dynamics are simulated to assess performance under the climate conditions of the 20th century. Results show that hydropower reservoirs in the United States, Brazil, Argentina, Australia, and Eastern China are strongly influenced by ENSO episodes. Statistically significant lag correlations between ENSO indicators and hydropower production demonstrate predictive skill with lead times up to several months. Our work highlights the potential for using these indicators to increase the contribution of existing hydropower plants to global energy supplies.

  1. The Origins of Plasmas in the Earth's Neighborhood (OPEN) program

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1984-01-01

    The nature and objectives of the OPEN program are overviewed. The Origins of Plasmas in the Earth's Neighborhood program was conceived in 1979 and proposed as a major new initiative to study the energetics of the earth's space environment by the end of the 1980s. The objectives of OPEN have been integrated into the Global Geospace Study (GGS) segment to the International Solar-Terrestrial Physics (ISTP) program now being planned jointly by NASA, ESA, and Japan. The goals will be to develop a global understanding of the flow of energy from the sun through the earth's space environment above the neutral atmosphere and to define the cause and effect relationships between the plasma physics processes that link different regions of this dynamic environment. A network of four spacecraft will be used, each one carrying an instrument complement to characterize the composition and behavior of the upstream solar wind, the high-altitude polar magnetosphere, the equatorial magnetosphere, and the comet-like geomagnetic tail. Multispectral cameras will also be carried to image polar auroras at ultraviolet, visible and X-ray wavelengths. Experimentalists and theorists on the international team will participate.

  2. Dark Skies Awareness Programs for the International Year of Astronomy: Involvement, Outcomes and Sustainability

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2010-01-01

    The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the IYA Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The presentation will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.

  3. Promoting Dark Skies Awareness Programs Beyond the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Dark Skies Working Group

    2010-01-01

    The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA2009 to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The poster will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.

  4. Can we Observe and Assess Whether the Global Hydrological Cycle is "Intensifying"?

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Sheffield, J.

    2012-12-01

    There is controversy over whether the hydrological cycle is "intensifying" (or "accelerating"), and if so how and where? Resolving this critical question is a central goal of both national (e.g. NASA's Energy and Water cycle Study: NEWS) and international (WCRP Global Energy and Water cycle Experiment: GEWEX) programs. Its resolution has significant implications for understanding changes in hydroclimatic states and variability, and in future water security at regional to global scales. Over the last decade a number of papers have addressed trends and change in specific water cycle variables with results that can best be described as inconclusive, regardless of the conclusions of specific papers. In this presentation a number of recent studies will be reviewed for their consistency in assessing whether collectively one can make conclusions regarding how the hydrologic cycle is changing. The presentation will also demonstrate a pathway for analyzing where to observe for the detection of change based on a NASA-supported, global, 1983-2009, terrestrial water cycle Earth System Data Record project being led by the author. Initial results will be presented and a discussion presented on the extent that the proposed strategy can be used to detect change in the terrestrial hydrological cycle.

  5. Introduction to Energy

    NASA Astrophysics Data System (ADS)

    Cassedy, Edward S.; Grossman, Peter Z.

    1999-01-01

    Energy issues such as pollution, resource depletion, global warming, nuclear power and waste are problems demanding timely solutions. This book provides a critical examination of the resources, market forces, and social impacts of modern energy production. The book addresses the dilemmas that have arisen due to society's crucial dependence on energy, particularly fossil fuels, and explores the available alternative energy producing technologies. The second edition has increased emphasis on those issues at the forefront of the current energy debate: energy sustainability, climate change, and the radical restructuring of the power industry due to deregulation. Assuming no prior technical expertise and avoiding complex mathematical formulation. The second edition, like the first, will be especially useful as a textbook for undergraduate programs in Science, Technology and Society (STS), and as a supplementary text in a variety of courses that touch on energy studies, including environmental and technology policy, environmental, mineral and business law, energy and resource economics.

  6. Green campus management based on conservation program in Universitas Negeri Semarang

    NASA Astrophysics Data System (ADS)

    Prihanto, Teguh

    2018-03-01

    Universitas Negeri Semarang (UNNES) has a great commitment in the development of higher education programs in line with its vision as a conservation - minded and internationally reputable university. Implementation of conservation programs with respect to the rules or conservation aspects of sustainable use, preservation, provisioning, protection, restoration and conservation of nature. In order to support the implementation of UNNES conservation program more focused, development strategies and development programs for each conservation scope are covered: (1) Biodiversity management; (2) Internal transportation management; (3) energy management; (4) Green building management; (5) Waste and water management; (6) Cultural conservation management. All related to conservation development strategies and programs are managed in the form of green campus management aimed at realizing UNNES as a green campus, characterized and reputable at the regional and global level.

  7. Materials @ LANL: Solutions for National Security Challenges

    NASA Astrophysics Data System (ADS)

    Teter, David

    2012-10-01

    Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.

  8. The SAGES Fundamental Use of Surgical Energy program (FUSE): history, development, and purpose.

    PubMed

    Fuchshuber, P; Schwaitzberg, S; Jones, D; Jones, S B; Feldman, L; Munro, M; Robinson, T; Purcell-Jackson, G; Mikami, D; Madani, A; Brunt, M; Dunkin, B; Gugliemi, C; Groah, L; Lim, R; Mischna, J; Voyles, C R

    2018-06-01

    Adverse events due to energy device use in surgical operating rooms are a daily occurrence. These occur at a rate of approximately 1-2 per 1000 operations. Hundreds of operating room fires occur each year in the United States, some causing severe injury and even mortality. The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) therefore created the first comprehensive educational curriculum on the safe use of surgical energy devices, called Fundamental Use of Surgical Energy (FUSE). This paper describes the history, development, and purpose of this important training program for all members of the operating room team. The databases of SAGES and the FUSE committee as well as personal photographs and documents of members of the FUSE task force were used to establish a brief history of the FUSE program from its inception to its current status. The authors were able to detail all aspects of the history, development, and national as well as global implementation of the third SAGES Fundamentals Program FUSE. The written documentation of the making of FUSE is an important contribution to the history and mission of SAGES and allows the reader to understand the idea, concept, realization, and implementation of the only free online educational tool for physicians on energy devices available today. FUSE is the culmination of the SAGES efforts to recognize gaps in patient safety and develop state-of-the-art educational programs to address those gaps. It is the goal of the FUSE task force to ensure that general FUSE implementation becomes multinational, involving as many countries as possible.

  9. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, R.L.; Klazura, J.; Lesht, B.M.

    The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to themore » east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.« less

  11. A proliferation of nuclear waste for the Southeast.

    PubMed

    Alvarez, Robert; Smith, Stephen

    2007-12-01

    The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.

  12. Ultra-Low-Energy Sub-Threshold Circuits: Program Overview

    DTIC Science & Technology

    2007-04-10

    with global > 0.1 corner, but so does VUL, VIH 0 .0 5 -_ "or ni n a Global Variatlion 0.0a 0•,lN& 0.24.. 7 Mir" Output Swing Metrics " Need a... VIH . lines plot the VTCs when random local VT mismatch is ap- In Figure 1(b), a NAND gate has sufficient output swing plied to the inverter. One case...the VTC is input-dependent, all inputs are varied simultaneously to >P 1 0 SNM side of largest obtain the worst case ViH and VIL. > 0 ins0nbedsquare

  13. Global health training in ophthalmology residency programs.

    PubMed

    Coombs, Peter G; Feldman, Brad H; Lauer, Andreas K; Paul Chan, Robison V; Sun, Grace

    2015-01-01

    To assess current global health education and international electives in ophthalmology residency programs and barriers to global health implementation in ophthalmology resident education. A web-based survey regarding participation in global health and international electives was emailed to residency program directors at 116 accredited ophthalmology residency programs via an Association of University Professors in Ophthalmology (AUPO) residency program director listserv. Fifty-nine (51%) ophthalmology residency program directors responded. Thirty-seven program directors (63%) said global health was important to medical students when evaluating residency programs. Thirty-two program directors (55%) reported developing international electives. Reported barriers to resident participation in international electives were: 1) insufficient financial support, 2) inadequate resident coverage at home, and 3) lack of ACGME approval for international electives. Program directors requested more information about resident international electives, funding, and global ophthalmology educational resources. They requested ACGME recognition of international electives to facilitate resident participation. More than half (54%) of program directors supported international electives for residents. This survey demonstrates that program directors believe global health is an important consideration when medical students evaluate training programs. Despite perceived barriers to incorporating global health opportunities into residency training, program directors are interested in development of global health resources and plan to further develop global health opportunities. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  15. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  16. Cladding and duct materials for advanced nuclear recycle reactors

    NASA Astrophysics Data System (ADS)

    Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.

    2008-01-01

    The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.

  17. Spatial variation in energy exchange across coastal environments in Greenland

    NASA Astrophysics Data System (ADS)

    Lund, M.; Abermann, J.; Citterio, M.; Hansen, B. U.; Larsen, S. H.; Stiegler, C.; Sørensen, L. L.; van As, D.

    2015-12-01

    The surface energy partitioning in Arctic terrestrial and marine areas is a crucial process, regulating snow, glacier ice and sea ice melt, and permafrost thaw, as well as modulating Earth's climate on both local, regional, and eventually, global scales. The Arctic region has warmed approximately twice as much as the global average, due to a number of feedback mechanisms related to energy partitioning, most importantly the snow and ice-albedo feedback. However, direct measurements of surface energy budgets in the Arctic are scarce, especially for the cold and dark winter period and over transects going from the ice sheet and glaciers to the sea. This study aims to describe annual cycles of the surface energy budget from various surface types in Arctic Greenland; e.g. glacier, snow, wet and dry tundra and sea ice, based on data from a number of measurement locations across coastal Greenland related to the Greenland Ecosystem Monitoring (GEM) program, including Station Nord/Kronprins Christians Land, Zackenberg/Daneborg, Disko, Qaanaq, Nuuk/Kobbefjord and Upernaviarsuk. Based on the available time series, we will analyze the sensitivity of the energy balance partitioning to variations in meteorological conditions (temperature, cloudiness, precipitation). Such analysis would allow for a quantification of the spatial variation in the energy exchange in aforementioned Arctic environments. Furthermore, this study will identify uncertainties and knowledge gaps in Arctic energy budgets and related climate feedback effects.

  18. The 1984 ASEE-NASA summer faculty fellowship program (aeronautics and research)

    NASA Technical Reports Server (NTRS)

    Dah-Nien, F.; Hodge, J. R.; Emad, F. P.

    1984-01-01

    The 1984 NASA-ASEE Faculty Fellowship Program (SFFP) is reported. The report includes: (1) a list of participants; (2) abstracts of research projects; (3) seminar schedule; (4) evaluation questionnaire; and (5) agenda of visitation by faculty programs committee. Topics discussed include: effects of multiple scattering on laser beam propagation; information management; computer techniques; guidelines for writing user documentation; 30 graphics software; high energy electron and antiproton cosmic rays; high resolution Fourier transform infrared spectrum; average monthly annual zonal and global albedos; laser backscattering from ocean surface; image processing systems; geomorphological mapping; low redshift quasars; application of artificial intelligence to command management systems.

  19. Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering.

    PubMed

    Slepoy, A; Peters, M D; Thompson, A P

    2007-11-30

    Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.

  20. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  1. The Coastal and Marine Geology Program of the U.S. Geological Survey

    USGS Publications Warehouse

    Williams, S. Jeffress

    1997-01-01

    Nearly half of all Americans live within an hour's drive of an ocean, the Gulf of Mexico, or the Great Lakes. The U.S. coastal oceans are an economically vital transportation, commercial and recreational resource. They provide food, energy, and minerals for the entire Nation: on a global scale, they harbor critical habitat for important animal and plant species.

  2. Global climate change and the mitigation challenge.

    PubMed

    Princiotta, Frank

    2009-10-01

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.

  3. International Experiences with Quantifying the Co-Benefits of Energy-Efficiency and Greenhouse-Gas Mitigation Programs and Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Christopher; Hasanbeigi, Ali; Price, Lynn

    Improving the efficiency of energy production and consumption and switching to lower carbon energy sources can significantly decrease carbon dioxide (CO2) emissions and reduce climate change impacts. A growing body of research has found that these measures can also directly mitigate many non-climate change related human health hazards and environmental damage. Positive impacts of policies and programs that occur in addition to the intended primary policy goal are called co-benefits. Policy analysis relies on forecasting and comparing the costs of policy and program implementation and the benefits that accrue to society from implementation. GHG reduction and energy efficiency policies andmore » programs face political resistance in part because of the difficulty of quantifying their benefits. On the one hand, climate change mitigation policy benefits are often global, long-term, and subject to large uncertainties, and subsidized energy pricing can reduce the direct monetary benefits of energy efficiency policies to below their cost. On the other hand, the co-benefits that accrue from these efforts’ resultant reductions in conventional air pollution (such as improved health, agricultural productivity, reduced damage to infrastructure, and local ecosystem improvements) are generally near term, local, and more certain than climate change mitigation benefits and larger than the monetary value of energy savings. The incorporation of co-benefits into energy efficiency and climate mitigation policy and program analysis therefore might significantly increase the uptake of these policies. Faster policy uptake is especially important in developing countries because ongoing development efforts that do not consider co-benefits may lock in suboptimal technologies and infrastructure and result in high costs in future years. Over the past two decades, studies have repeatedly documented that non-climate change related benefits of energy efficiency and fuel conversion efforts, as a part of GHG mitigation strategies, can be from between 30% to over 100% of the costs of such policies and programs strategies. Policy makers around the world are increasingly interested in including both GHG and non-GHG impacts in analyses of energy efficiency and fuel switching policies and programs and a set of methodologies has matured from the efforts of early moving jurisdictions such as the European Union, the United States, and Japan.« less

  4. Will fusion be ready to meet the energy challenge for the 21st century?

    NASA Astrophysics Data System (ADS)

    Bréchet, Yves; Massard, Thierry

    2016-05-01

    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.

  5. The Emergence of Undergraduate Majors in Global Health: Systematic Review of Programs and Recommendations for Future Directions

    PubMed Central

    Drain, Paul K.; Mock, Charles; Toole, David; Rosenwald, Anne; Jehn, Megan; Csordas, Thomas; Ferguson, Laura; Waggett, Caryl; Obidoa, Chinekwu; Wasserheit, Judith N.

    2017-01-01

    Global health education has been expanding rapidly and several universities have created an undergraduate major degree (bachelor's degree) in global heath or global health studies. Because there are currently no national guidelines for undergraduate degrees in global health, each of these programs was developed along individual lines. To guide the development of future global health majors, we conducted a systematic review of undergraduate majors in global health. We identified eight programs and invited program directors or representatives to a symposium at the Consortium of Universities for Global Health 2016 conference to review their existing undergraduate major in global health and to discuss lessons learned and recommendations for other colleges and universities seeking to develop undergraduate degrees in global health. We noted significant diversity among the existing programs in terms of required courses, international field experiences, and thesis research projects. In this review, we describe these global health programs, their student characteristics, as well as the key educational competencies, program requirements, and core global health courses. Based on program reviews and discussions, we identify seven recommendations for the development and expansion of an undergraduate major in global health and discuss issues that have arisen in the curricular development of these programs that warrant further exploration. As the field of global health education continues to expand, following these students after graduation will be essential to ensure that the degree programs in global health both meet student needs and launch students on viable career pathways. PMID:28077739

  6. Linked Open Data in the Global Change Information System (GCIS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.

    2012-01-01

    The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will centralize access to data and information related to global change across the U.S. federal government. The first implementation will focus on the 2013 National Climate Assessment (NCA) . (http://assessment.globalchange.gov) The NCA integrates, evaluates, and interprets the findings of the USGCRP; analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The NCA has received over 500 distinct technical inputs to the process, many of which are reports distilling and synthesizing even more information, coming from thousands of individuals around the federal, state and local governments, academic institutions and non-governmental organizations. The GCIS will present a web-based version of the NCA including annotations linking the findings and content of the NCA with the scientific research, datasets, models, observations, etc. that led to its conclusions. It will use semantic tagging and a linked data approach, assigning globally unique, persistent, resolvable identifiers to all of the related entities and capturing and presenting the relationships between them, both internally and referencing out to other linked data sources and back to agency data centers. The developing W3C PROV Data Model and ontology will be used to capture the provenance trail and present it in both human readable web pages and machine readable formats such as RDF and SPARQL. This will improve visibility into the assessment process, increase understanding and reproducibility, and ultimately increase credibility and trust of the resulting report. Building on the foundation of the NCA, longer term plans for the GCIS include extending these capabilities throughout the U.S. Global Change Research Program, centralizing access to global change data and information across the thirteen agencies that comprise the program.

  7. The environment becomes a political issue. Highlights of the Brundtland Commission Report.

    PubMed

    1988-03-01

    The Report of the Brundtland Commission (World Commission on Environment and Development) has been released by the UN. The Report points out that environmental survival requires development and development is only possible if the resources of the global environment are conserved. Although the UN and the World Bank must make commitments to development, each nation must devise its own strategy because development is inextricably linked to political, economic, and social factors such as poverty, overpopulation and the status of women. The Report makes 3 specific recommendations: 1) An independent body should be set up to assess global risks; 2) A universal declaration on environment and development should be made and followed by a convention; and 3) The UN General Assembly should set up a UN Program on Sustainable Development. The highest priority should be given to finding alternatives to nuclear energy as well as making the use of nuclear energy safer. Other major environmental problems include desertification, acid rain, the "greenhouse effect" and its impact on global climate and sea levels, and the destruction of the ozone layer with concomitant increase in cancer.

  8. Analysis of the influencing factors of global energy interconnection development

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; He, Yongxiu; Ge, Sifan; Liu, Lin

    2018-04-01

    Under the background of building global energy interconnection and achieving green and low-carbon development, this paper grasps a new round of energy restructuring and the trend of energy technology change, based on the present situation of global and China's global energy interconnection development, established the index system of the impact of global energy interconnection development factors. A subjective and objective weight analysis of the factors affecting the development of the global energy interconnection was conducted separately by network level analysis and entropy method, and the weights are summed up by the method of additive integration, which gives the comprehensive weight of the influencing factors and the ranking of their influence.

  9. Laboratory Directed Research and Development FY2011 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundationalmore » science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.« less

  10. Markets, Climate Change and Food Security in West Africa

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Hintermann, Beat; Higgins, Nathaniel

    2009-01-01

    West Africa is one of the most food insecure regions of the world. Sharply increased food and energy prices in 2008 brought the role of markets in food access and availability around the world into the spotlight, particularly in urban areas. The period of high prices had the immediate consequence of sharply increasing the number of hungry people in the region without boosting farmer incomes significantly. In this article, the interaction between markets, food prices, agricultural technology and development is explored in the context of West Africa. To improve food security in West Africa, sustained commitment to investment in the agriculture sector will be needed to provide some protection against global swings in both production and world markets. Climate change mitigation programs are likely to force global energy and commodity price increases in the coming decades, putting pressure on regions like West Africa to produce more food locally to ensure stability in food security for the most vulnerable.

  11. Global Potential of Energy Efficiency Standards and Labeling Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds ofmore » policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.« less

  12. Atmospheric radiation measurement program facilities newsletter, September 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdridge, D. J.

    Our Changing Climate--Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global meanmore » surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is responsible for the increased levels of carbon dioxide in the atmosphere. According to the EPA, the burning of fossil fuels for cars and trucks, the heating of homes and businesses, and the operation of power plants account for approximately 98% of U.S. carbon dioxide emissions. The increase of greenhouse gases will, theoretically, enhance the greenhouse effect by trapping more of the heat energy emitted by Earth's surface, thus increasing the surface temperatures on a global scale. Scientists expect that the global average surface temperature could rise 1-4.5 F in the next 50 years and as much as 10 F in the next century. Global warming could potentially have harmful effects on human health, water resources, forests, agriculture, wildlife, and coastal areas. A few degrees of warming might lead to more frequent and severe heat waves, worsened air pollution with adverse effects on human respiratory health, and wider spread of tropical disease such as malaria. The world's hydrologic cycle might be affected by an increase in evaporation and, thus, in precipitation. An increase in evaporation will increase atmospheric water vapor, a significant natural greenhouse gas. The increase in water vapor might further enhance the global warming caused by the greenhouse effect. This is known as a positive feedback. The increase in water vapor could also change the amount of clouds present in the atmosphere, which could reduce temperatures in a negative feedback. Many interrelated factors affect the global climate and are responsible for climate change. Predicting the outcome of the interactions among the many factors is not easy, but it must be addressed. The ARM Program is taking a lead in this effort by collecting vast amounts of data whose analysis will improve our forecasting models for both daily weather and long-term climate. For more information on the ARM Program, please visit our web site at www.arm.gov.« less

  13. An empirical analysis of financial development and energy demand: establishing the role of globalization.

    PubMed

    Saud, Shah; Danish; Chen, Songsheng

    2018-06-14

    The rapid mode of globalization is experienced in the last few years. The acceleration in globalization expands economic activities through a share of knowledge and transfer of technology which influence energy demand. So, the objective of this empirical work is to explore the impact of financial development on energy demand incorporating globalization. The empirical finding is based on autoregressive distributed lag (ARDL) bound testing approach from 1980 to 2016 in case of China. Overall, we infer that financial development increases energy demand in China. Furthermore, the finding shows that globalization has a negative and significant impact on energy demand. The additional determinants, such as economic growth, and urbanization stimulate energy consumption. Besides, energy consumption granger cause financial development in the long-run path. Similarly, unidirectional causality is detected between globalization and energy consumption. The result gives direction to policymakers to preserve as well as to enhance efficient energy consumption and sustain economic growth in China with acceleration in globalization.

  14. GEWEX Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Try, Paul

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.

  15. First-Annual Global Clean Energy Manufacturing Report Shows Strong Domestic Benefits for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EERE Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) commissioned the Clean Energy Manufacturing Analysis Center to conduct the first-ever annual assessment of the economic state of global clean energy manufacturing. The report, Benchmarks of Global Clean Energy Manufacturing, makes economic data on clean energy technology widely available.

  16. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    NASA Technical Reports Server (NTRS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  17. The NEWS Water Cycle Climatology

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.

    2012-12-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  18. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  19. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Export Electric Energy; E-T Global Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... an application from E-T Global for authority to transmit electric energy from the United States to...

  20. The effect of OPC Factor on energy levels in healthy adults ages 45-65: a phase IIb randomized controlled trial.

    PubMed

    LaRiccia, Patrick J; Farrar, John T; Sammel, Mary D; Gallo, Joseph J

    2008-07-01

    To determine the efficacy of the food supplement OPC Factor to increase energy levels in healthy adults aged 45 to 65. Randomized, placebo-controlled, triple-blind crossover study. Twenty-five (25) healthy adults recruited from the University of Pennsylvania Health System. OPC Factor,trade mark (AlivenLabs, Lebanon, TN) a food supplement that contains oligomeric proanthocyanidins from grape seeds and pine bark along with other nutrient supplements including vitamins and minerals, was in the form of an effervescent powder. The placebo was similar in appearance and taste. Five outcome measurements were performed: (1) Energy subscale scores of the Activation-Deactivation Adjective Check List (AD ACL); (2) One (1) global question of percent energy change (Global Energy Percent Change); (3) One (1) global question of energy change measured on a Likert scale (Global Energy Scale Change); 4. One (1) global question of percent overall status change (Global Overall Status Percent Change); and (5) One (1) global question of overall status change measured on a Likert scale (Global Overall Status Scale Change). There were no carryover/period effects in the groups randomized to Placebo/Active Product sequence versus Active Product/Placebo sequence. Examination of the AD ACL Energy subscale scores for the Active Product versus Placebo comparison revealed no significant difference in the intention-to-treat (IT) analysis and the treatment received (TR) analysis. However, Global Energy Percent Change (p = 0.06) and Global Energy Scale Change (p = 0.09) both closely approached conventional levels of statistical significance for the active product in the IT analysis. Global Energy Percent Change (p = 0.05) and Global Energy Scale Change (p = 0.04) reached statistical significance in the TR analysis. A cumulative percent responders analysis graph indicated greater response rates for the active product. OPC Factor may increase energy levels in healthy adults aged 45-65 years. A larger study is recommended. Clinical Trials.gov identifier: NCT03318019.

  1. Research in progress: FY 1992. Summaries of projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Biological and Environmental Research (BER) Program of OHER has two main missions: (1) to develop the knowledge base necessary to identify, understand, and anticipate the long-term health and environmental consequences of energy use and development and (2) to utilize the Department`s unique scientific and technological capabilities to solve major scientific problems in medicine, biology, and the environment. These missions reflect a commitment to develop the beneficial uses of advanced energy technologies while at the same time assuring that any potentially adverse health and environmental impacts of the Nation`s energy policies are fully identified and understood. The BER Program includesmore » research in atmospheric, marine, and terrestrial processes, including the linkage between the use in greenhouse gases, carbon dioxide, and regional and global climate change; in molecular and subcellular mechanisms underlying human somatic and genetic processes and their responses to energy-related environmental toxicants; in nuclear medicine, structural biology, the human genome, measurement sciences and instrumentation, and other areas that require the unique capabilities of the Department`s laboratory system. The principal areas of research are Health Research and Environmental Research.« less

  2. Mountain birdwatch: developing a coordinated monitoring program for high-elevation birds in the Atlantic northern forest

    Treesearch

    John D. Lloyd; Julie Hart; J. Dan Lambert

    2010-01-01

    Birds occupying high-elevation forests in the northeast are perceived to be at risk from a variety of external forces, most notably the potential loss and alteration of habitat associated with global climate change and the increased deployment of wind-energy facilities. However, the Breeding Bird Survey (BBS), a standardized national monitoring scheme widely used to...

  3. Scientific Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) Program

    NASA Astrophysics Data System (ADS)

    Chandra, C. V.; Reising, S. C.; Kummerow, C. D.; van den Heever, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Haddad, Z. S.; Koch, T.; Berg, G.; L'Ecuyer, T.; Munchak, S. J.; Luo, Z. J.; Boukabara, S. A.; Ruf, C. S.

    2014-12-01

    Over the past decade and a half, we have gained a better understanding of the role of clouds and precipitation on Earth's water cycle, energy budget and climate, from focused Earth science observational satellite missions. However, these missions provide only a snapshot at one point in time of the cloud's development. Processes that govern cloud system development occur primarily on time scales of the order of 5-30 minutes that are generally not observable from low Earth orbiting satellites. Geostationary satellites, in contrast, have higher temporal resolution but at present are limited to visible and infrared wavelengths that observe only the tops of clouds. This observing gap was noted by the National Research Council's Earth Science Decadal Survey in 2007. Uncertainties in global climate models are significantly affected by processes that govern the formation and dissipation of clouds that largely control the global water and energy budgets. Current uncertainties in cloud parameterization within climate models lead to drastically different climate outcomes. With all evidence suggesting that the precipitation onset may be governed by factors such atmospheric stability, it becomes critical to have at least first-order observations globally in diverse climate regimes. Similar arguments are valid for ice processes where more efficient ice formation and precipitation have a tendency to leave fewer ice clouds behind that have different but equally important impacts on the Earth's energy budget and resulting temperature trends. TEMPEST is a unique program that will provide a small constellation of inexpensive CubeSats with millimeter-wave radiometers to address key science needs related to cloud and precipitation processes. Because these processes are most critical in the development of climate models that will soon run at scales that explicitly resolve clouds, the TEMPEST program will directly focus on examining, validating and improving the parameterizations currently used in cloud scale models. The time evolution of cloud and precipitation microphysics is dependent upon parameterized process rates. The outcome of TEMPEST will provide a first-order understanding of how individual assumptions in current cloud model parameterizations behave in diverse climate regimes.

  4. Global change: Geographical approaches (A Review)*

    PubMed Central

    Kotlyakov, V. M.; Mather, J. R.; Sdasyuk, G. V.; White, G. F.

    1988-01-01

    The International Geosphere Biosphere Program sponsored by the International Council of Scientific Unions is directing attention to geophysical and biological change as influenced by human modifications in global energy and mass exchanges. Geographers in the Soviet Union and the United States have joined in critical appraisal of their experience in studying environmental change. This initial report is on some promising approaches, such as the reconstruction of earlier landscape processes, modeling of the dynamics of present-day landscapes, analysis of causes and consequences of anthropogenic changes in specified regions, appraisal of social response to change, and enhanced geographic information systems supported by detailed site studies. PMID:16593971

  5. From molecule to solid: The prediction of organic crystal structures

    NASA Astrophysics Data System (ADS)

    Dzyabchenko, A. V.

    2008-10-01

    A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.

  6. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil.more » Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.« less

  7. Synthetic fuels, and a sustainable set of civilizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, R.S.

    Described in this paper is a concept that combines a set of technologies with a set of economic and social concepts that would allow people to create sustainable ecologies for their region or country. As such it describes a possible implementation path. The technologies are : solar electricity, power satellites, wireless power transmission, electrolytic hydrogen, and synthetic liquid fuels manufactured from air, water, and electricity. Economic initiatives and policies include creating sustainable economic development regions through the use of tax incentives and tax penalties. The technologies and economies are brought together by social concepts such as Technopolis and the theorymore » of self-organizing and self-energizing social systems, i.e. creating wealth where there was none through sweat equity. Existing organizational structures such as credit unions, kibbutz`s and agricultural and marketing cooperatives provide methods by which global marco-projects can be implemented on a local level. Some topics of this paper are : creating global markets by solving global problems or how to breakout of the chicken or egg paradox that has stymied the development of energy from space for so long ; and linking energy availability to self-help economic development programs that create sustainable cultures while benefiting both the local and global environment. 1 refs., 6 figs., 6 tabs.« less

  8. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control

    PubMed Central

    Gali Ramamoorthy, Thanuja; Begum, Ghazala; Harno, Erika; White, Anne

    2015-01-01

    The prevalence of obesity in adults and children has increased globally at an alarming rate. Mounting evidence from both epidemiological studies and animal models indicates that adult obesity and associated metabolic disorders can be programmed by intrauterine and early postnatal environment- a phenomenon known as “fetal programming of adult disease.” Data from nutritional intervention studies in animals including maternal under- and over-nutrition support the developmental origins of obesity and metabolic syndrome. The hypothalamic neuronal circuits located in the arcuate nucleus controlling appetite and energy expenditure are set early in life and are perturbed by maternal nutritional insults. In this review, we focus on the effects of maternal nutrition in programming permanent changes in these hypothalamic circuits, with experimental evidence from animal models of maternal under- and over-nutrition. We discuss the epigenetic modifications which regulate hypothalamic gene expression as potential molecular mechanisms linking maternal diet during pregnancy to the offspring's risk of obesity at a later age. Understanding these mechanisms in key metabolic genes may provide insights into the development of preventative intervention strategies. PMID:25954145

  9. Structural, vibrational spectroscopic and nonlinear optical activity studies on 2-hydroxy- 3, 5-dinitropyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-06-01

    The conformational analysis was carried out for 2-Hydroxy- 3, 5-dinitropyridine molecule using potential energy surface scan and the most stable optimized conformer was predicted. The vibrational frequencies and Mulliken atomic charge distribution were calculated for the optimized geometry of the molecule using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intramolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness values of the title molecule were carried out. The nonlinear optical activity of the molecule was studied by means of first order hyperpolarizability, which was computed as 7.64 times greater than urea. The natural bond orbital analysis was performed to confirm the nonlinear optical activity of the molecule.

  10. The Power of Large Scale Partnerships to Increase Climate Awareness and Literacy Around the World

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Andersen, T. J.; Wegner, K.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that connects a network of communities around the world and gives them the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. In the last few years, there has been an infusion of energy in the program as a result of a change to a more community focus. GLOBE was one of the first attempts at a citizen science program at the K-12 level proposed on a global scale. An initial ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. One hundred and seventeen countries have participated in the program since its establishment in 1994. These countries are divided into six regions: Africa (23 countries); Asia and Pacific (18); Europe and Eurasia (41); Latin America and Caribbean (20); Near East and North Africa (13); and North America (2). The community within these regions has reached a maturity level that allows it to organize its own science campaigns ranging from aerosols to phenology…all of which increase awareness of climate issues. In addition, some countries within the regions have established science fairs, GLOBE proved to be the impetus for these fairs. The program's partnership network provides students and teachers with a platform for learning about climate issues in their local and global environment, as well as providing scientists with a network to organize data collection and analysis campaigns. Within the U.S., over 130 educational organizations (universities, science museums, nature centers) are members of a partner network divided into six geographical areas: Northwest; Midwest; Northeast and Mid-Atlantic; Southeast; Southwest; and Pacific. For the first time ever, the U.S. held GLOBE science fairs with considerable input and support from the community, the U.S. Partner Forum members, and U.S. Country Coordinator. GLOBE students exhibited their research and learned about climate issues at these fairs. GLOBE has evolved in 20 years and its strength is the community of partners that has helped moved climate literacy forward on a global scale.

  11. Global health education in United States anesthesiology residency programs: a survey of resident opportunities and program director attitudes.

    PubMed

    Kaur, Gunisha; Tabaie, Sheida; Brar, Jasmit; Tangel, Virginia; Pryor, Kane O

    2017-11-16

    Interest in global health during postgraduate residency training is increasing across medical specialties, and multiple disciplines have categorized global health training opportunities in their arena. No such cataloging exists for anesthesiology residency programs. The aim of this study was to assess and characterize global health opportunities and the attitudes of program directors (PDs) in U.S. anesthesiology residency programs towards this training. A cross-sectional 20-question survey on global health opportunities was distributed to 128 ACGME accredited anesthesiology residency program directors via email between October 2015 and January 2016. Descriptive statistics and exploratory inferential analyses were applied. Maximal nonresponse selection bias was estimated. The overall response rate was 44%. Of those who responded, 61% reported that their residency program had a global health elective, with a maximal bias estimate of 6.5%. 45% of program directors with no global health elective reported wanting to offer one. 77% of electives have articulated educational goals, but there is substantial heterogeneity in curricula offered. Program director attitudes regarding the value of global health programs differed significantly between those with and without existing programs. The proportion of U.S. anesthesiology residency programs offering global health electives is similar to that in other medical specialties. There is inconsistency in program structure, goals, curriculum, and funding. Attitudes of program directors differ between programs with and without electives, which may reflect bidirectional influence to be investigated further. Further studies are needed to codify curricula, assess effectiveness, and validate methodologies.

  12. Pricing of swing options: A Monte Carlo simulation approach

    NASA Astrophysics Data System (ADS)

    Leow, Kai-Siong

    We study the problem of pricing swing options, a class of multiple early exercise options that are traded in energy market, particularly in the electricity and natural gas markets. These contracts permit the option holder to periodically exercise the right to trade a variable amount of energy with a counterparty, subject to local volumetric constraints. In addition, the total amount of energy traded from settlement to expiration with the counterparty is restricted by a global volumetric constraint. Violation of this global volumetric constraint is allowed but would lead to penalty settled at expiration. The pricing problem is formulated as a stochastic optimal control problem in discrete time and state space. We present a stochastic dynamic programming algorithm which is based on piecewise linear concave approximation of value functions. This algorithm yields the value of the swing option under the assumption that the optimal exercise policy is applied by the option holder. We present a proof of an almost sure convergence that the algorithm generates the optimal exercise strategy as the number of iterations approaches to infinity. Finally, we provide a numerical example for pricing a natural gas swing call option.

  13. Solar wind and high energy particle effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, Jan

    1989-01-01

    The solar wind variability and high energy particle effects in the neutral middle atmosphere are not much known. These factors are important in the high latitude upper mesosphere, lower thermosphere energy budget. They influence temperature, composition (minor constituents of nitric oxide, ozone), circulation (wind system) and airflow. The vertical and latitudinal structures of such effects, mechanisms of downward penetration of energy and questions of energy abundance are largely to be solved. The most important recent finding seems to be the discovery of the role of highly relativistic electrons in the middle atmosphere at L = 3 - 8 (Baker et al., 1987). The solar wind and high energy particle flux variability appear to form a part of the chain of possible Sun-weather (climate) relationships. The importance of such studies in the nineties is emphasized by their role in big international programs STEP and IGBP - Global Change.

  14. Sustainable Biofuels A Transitions Approach to Understanding the Global Expansion of Ethanol and Biodiesel

    NASA Astrophysics Data System (ADS)

    Cottes, Jeffrey Jacob

    Between 1998 and 2008, the promise of biofuels to increase rural development, enhance energy security, and reduce greenhouse gas emissions stimulated their diffusion across international markets. This rapid expansion of ethanol and biodiesel encouraged many jurisdictions to implement biofuels expansion policies and programs. Global biofuels, characterised by mass production and international trade of ethanol and biodiesel, occurred despite their long history as marginal technologies on the fringe of the petroleum-based transportation energy regime. The first purpose of this dissertation is to examine the global expansion of ethanol and biodiesel to understand how these recurrent socio-technological failures co-evolved with petroleum transportation fuels. Drawing from the field of socio-technical transitions, this dissertation also assesses the global expansion of ethanol and biodiesel to determine whether or not these first generation biofuels are sustainable. Numerous studies have assessed the technical effects of ethanol and biodiesel, but effects-based technical assessments of transport biofuels are unable to explain the interaction of wider system elements. The configuration of multi-level factors (i.e., niche development, the technological regime, and the socio-technical landscape) informs the present and emerging social functions of biofuels, which become relevant when determining how biofuels might become a sustainable energy option. The biofuels regimes that evolved in Brazil, the United States, and the European Union provide case studies show how ethanol and biodiesel expanded from fringe fuels to global commodities. The production infrastructures within these dominant biofuels regimes contribute to a persistence of unsustainable first generation biofuels that can inhibit the technical development and sustainability of biofuels. However, new and emerging ethanol and biodiesel markets are relatively small in comparison to the dominant regimes, and can readily adapt to technical and regulatory change. This dissertation argues that dominant biofuels regimes have not produced a sustainable energy option. It explores the Canadian case to evaluate the opportunities for niche development, and suggests that small markets can develop niche innovations by regulating the insertion of sustainability criteria in order to de-align the dominant trajectory of global biofuels production regimes and encourage their re-alignment in a more sustainable configuration.

  15. Communicating with whom? The effectiveness of appliance energy labels in the U.S. and Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pont, P. du

    The proliferation of household appliances is a global energy problem, and this comparative study of appliance energy labeling in the US and Thailand offers opportunities to learn from the implementation of programs in countries with different income levels and cultural and political climates. In the US, the author conducted participant observation in an appliance store and interviewed 16 policymakers, 14 salespeople, and 100 consumers. In Thailand, he interviewed 11 policymakers, 53 salespeople, and 62 consumers, and carried out a national survey of 971 consumers. This study is the first time that energy labels have been examined primarily as a problemmore » of consumer cognition in context--that is, how consumers read, interpret, and think about energy labels in the retail environment. After just three years of implementation, the Thai appliance labeling program is having a significantly greater impact on the consumer appliance market than is the 20-year-old US program. While Thai salespeople report that more than 60% of consumers ask about or look at the label, the corresponding number for the US is just 20%. Energy efficiency was reported among the top-three purchase priorities by 28% of Thai appliance consumers, compared to just 11% of US consumers. In his in-store tests of label cognition, the US EnergyGuide label fared poorly, and the Thai appliance label was more effective at helping consumers to identify efficient models. Yet both labels suffer from the problem of too much detailed product information, which hinders label comprehension.« less

  16. Benchmark Study of Global Clean Energy Manufacturing | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Benchmark Study of Global Clean Energy Manufacturing Benchmark Study of Global Clean Energy Manufacturing Through a first-of-its-kind benchmark study, the Clean Energy Technology End Product.' The study examined four clean energy technologies: wind turbine components

  17. Catalog of data bases and reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This document provides information about the many reports and other materials made available by the US Department of Energy (DOE) Global Change Research Program (GCRP). It is divided into nine sections plus author and title indexes. The reports in Section A provide information about the scope, activities, and direction of the GCRP, Sections B, C, D, and E contain information about research that has been sponsored by GCRP, including those produced by CDIAC.

  18. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  19. Masters Study in Advanced Energy and Fuels Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternatemore » energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands.The application of this Professional Science Masters’ (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team-oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management.« less

  20. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    PubMed

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  1. The nexus between energy consumption and financial development: estimating the role of globalization in Next-11 countries.

    PubMed

    Danish; Saud, Shah; Baloch, Muhammad Awais; Lodhi, Rab Nawaz

    2018-04-28

    In the modern era of globalization, the economic activities expand with the passage of time. This expansion may increase demand for energy both in developing and developed countries. Therefore, this study assesses the impact of financial development on energy consumption incorporating the role of globalization in Next-11 countries. A group of panel estimation techniques is used to analyze the panel data and time series data for the time 1990-2014. The empirical results of the study suggest that financial development stimulates energy consumption. Also, globalization increases demand for energy consumption, although the single country analysis suggests that the effect of globalization on energy demand is heterogeneous among N-11 countries. Furthermore, feedback hypothesis is confirmed between financial development and energy consumption. Also, bidirectional causality is found between economic growth and energy consumption. The findings urge for the attention of policymaker in emerging countries to develop a strategy to reduce the consequences of energy consumption by controlling resource transfer through globalization to the host country and by adopting energy conversation policies.

  2. Establishing a program of global initiatives for nursing education.

    PubMed

    Kulage, Kristine M; Hickey, Kathleen T; Honig, Judy C; Johnson, Mary P; Larson, Elaine L

    2014-07-01

    In the global nursing community, schools of nursing are increasingly developing initiatives and networks across national boundaries. This article describes the process undertaken at a school of nursing to determine its global health priorities and develop a program of global initiatives for nursing education. A series of meetings were held to determine faculty global activities and gauge interest in designing a 5-year strategic plan for the program. A volunteer Strategic Planning Work-group was convened to formalize a mission, vision, and strategic plan for the program, which were presented to, refined by, and vetted by an advisory board and the faculty at large. We recommend this process to schools committed to developing or expanding a program dedicated to global initiatives and a global perspective in educational planning. Involving stakeholders, building on current strengths, and aligning with mission and vision are essential elements for developing a meaningful program of global initiatives for nursing education. Copyright 2014, SLACK Incorporated.

  3. PA014-- Deception and Doubt --Strategies for Undermining and Supporting Global Climate Science--PA014

    NASA Astrophysics Data System (ADS)

    Nelson, C.

    2012-12-01

    DECEPTION AND DOUBT--STRATEGIES FOR UNDERMINING AND SUPPORTING GLOBAL CLIMATE SCIENCE--PA014 The fundamental strategy for undermining confidence in the now substantial scientific consensus about global warming is to sow doubt about the degree of consensus. Rather than mount an obvious anti-science stance, commercial interests seek to champion science, arguing for better science, more complete and definitive science. This strategy has a sixty-year history, beginning with the tobacco industry in the 1950s and proceeding through the chemical, energy, paint, and other industries. Thousands of faculty members have quietly sold themselves as public spokespersons or confidential consultants to industry in the service of this strategy. A multipart program--involving educating people about this history and exposing faculty collaboration--may help free climate science from those who aim to distort its conclusions.

  4. Examination of Satellite and Model Reanalysis Precipitation with Climate Oscillations

    NASA Astrophysics Data System (ADS)

    Donato, T. F.; Houser, P. R.

    2016-12-01

    The purpose of this study is to examine the efficacy of satellite and model reanalysis precipitation with climate oscillations. Specifically, we examine and compare the relationship between the Global Precipitation Climate Project (GPCP) with Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) in regards to four climate indices: The North Atlantic Oscillation, Southern Oscillation Index, the Southern Annular Mode and Solar Activity. This analysis covers a 35-year observation period from 1980 through 2015. We ask two questions: How is global and regional precipitation changing over the observation period, and how are global and regional variations in precipitation related to global climate variation? We explore and compare global and regional precipitation trends between the two data sets. To do this, we constructed a total of 56 Regions of Interest (ROI). Nineteen of the ROIs were focused on geographic regions including continents, ocean basins, and marginal seas. Twelve ROIs examine hemispheric processes. The remaining 26 regions are derived from spatial-temporal classification analysis of GPCP data over a ten-year period (2001-2010). These regions include the primary wet and dry monsoon regions, regions influenced by western boundary currents, and orography. We investigate and interpret the monthly, seasonal and yearly global and regional response to the selected climate indices. Initial results indicate that no correlation exist between the GPCP data and Merra-2 data. Preliminary qualitative assessment between GCPC and solar activity suggest a possible relationship in intra-annual variability. This work is performed under the State of the Global Water and Energy Cycle (SWEC) project, a NASA-sponsored program in support of NASA's Energy and Water cycle Study (NEWS).

  5. The global contribution of energy consumption by product exports from China.

    PubMed

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  6. Global/Local: What Does It Mean for Global Health Educators and How Do We Do It?

    PubMed

    Rowthorn, Virginia

    2015-01-01

    There has been dramatic growth in the number of innovative university programs that focus on social justice and teach community-based strategies that are applicable both domestically in North America and internationally. These programs often are referred to as global/local and reflect an effort to link global health and campus community engagement efforts to acknowledge that a common set of transferable skills can be adapted to work with vulnerable populations wherever they may be. However, the concepts underlying global/local education are undertheorized and universities struggle to make the global/local link without a conceptual framework to guide them in this pursuit. This study reports on the outcomes of a 2015 national meeting of 120 global health educators convened to discuss the concepts underlying global/local education, to share models of global/local programs, and to draft a preliminary list of critical elements of a meaningful and didactically sound global/local educational program. A qualitative analysis was conducted of the discussions that took place at the national meeting. The analysis was supported by videorecordings made of full-group discussions. Results were categorized into a preliminary list of global/local program elements. Additionally, a synthesis was developed of critical issues raised at the meeting that warrant future discussion and study. A preliminary list was developed of 7 program components that global health educators consider essential to categorize a program as global/local and to ensure that such a program includes specific critical elements. Interest is great among global health educators to understand and teach the conceptual link between learning on both the global and community levels. Emphasis on this link has high potential to unite the siloed fields of global health and domestic community public health and the institutions, funding options, and career pathways that flow from them. Future research should focus on implementation of global/local programming and evaluation of student learning and community health outcomes related to such programs. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  7. Putting the pieces together: creating and implementing an Interprofessional Global Health Grant Program.

    PubMed

    Rowthorn, Virginia; Olsen, Jody

    2015-12-01

    In 2014, the Center for Global Education Initiatives (CGEI) at the University of Maryland, Baltimore (UMB) created an innovative Faculty and Student Interprofessional Global Health Grant Program. Under the terms of this program, a UMB faculty member can apply for up to $10,000 for an interprofessional global health project that includes at least two students from different schools. Students selected to participate in a funded project receive a grant for the travel portion of their participation. This is the first university-sponsored global health grant program in North America that conditions funding on interprofessional student participation. The program grew out of CGEI's experience creating interprofessional global health programming on a graduate campus with six schools (dentistry, law, medicine, nursing, pharmacy, and social work) and meets several critical goals identified by CGEI faculty: increased global health experiential learning opportunities, increased use of interprofessional education on campus; and support for sustainable global health programming. This case study describes the history that led to the creation of the grant program, the development and implementation process, the parameters of the grant program, and the challenges to date. The case study is designed to provide guidance to other universities that want to foster interprofessional global health on their campuses. Copyright © 2015. Published by Elsevier Inc.

  8. Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.

    1992-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.

  9. Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Worley, B. A. (Editor); Peslen, C. A. (Editor)

    1984-01-01

    Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.

  10. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    PubMed

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  11. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles

    DOE PAGES

    Buttner, William; Rivkin, C.; Burgess, R.; ...

    2017-02-04

    Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less

  12. Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, D.A.; Jensen, T.G.

    1995-10-01

    Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less

  13. Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2017-11-01

    The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.

  14. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silicamore » high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.« less

  15. 75 FR 70742 - E-T Global Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2039-000] E-T Global Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request For Blanket... proceeding of E-T Global Energy, LLC's application for market-based rate authority, with an accompanying rate...

  16. A simple, physically-based method for evaluating the economic costs of geo-engineering schemes

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2009-04-01

    The consumption of primary energy (e.g coal, oil, uranium) by the global economy is done in expectation of a return on investment. For geo-engineering schemes, however, the relationship between the primary energy consumption required and the economic return is, at first glance, quite different. The energy costs of a given scheme represent a removal of economically productive available energy to do work in the normal global economy. What are the economic implications of the energy consumption associated with geo-engineering techniques? I will present a simple thermodynamic argument that, in general, real (inflation-adjusted) economic value has a fixed relationship to the rate of global primary energy consumption. This hypothesis will be shown to be supported by 36 years of available energy statistics and a two millennia period of statistics for global economic production. What is found from this analysis is that the value in any given inflation-adjusted 1990 dollar is sustained by a constant 9.7 +/- 0.3 milliwatts of global primary energy consumption. Thus, insofar as geo-engineering is concerned, any scheme that requires some nominal fraction of continuous global primary energy output necessitates a corresponding inflationary loss of real global economic value. For example, if 1% of global energy output is required, at today's consumption rates of 15 TW this corresponds to an inflationary loss of 15 trillion 1990 dollars of real value. The loss will be less, however, if the geo-engineering scheme also enables a demonstrable enhancement to global economic production capacity through climate modification.

  17. Globalizing Social Justice Education: The Case of The Global Solidarity Network Study e-Broad Program

    ERIC Educational Resources Information Center

    Harrison, Yvonne D.; Kostic, Kevin; Toton, Suzanne C.; Zurek, Jerome

    2010-01-01

    This paper documents the development, implementation, and evaluation of "The Global Solidarity Network Study e-Broad Program (GSNSeBP)", an online social justice educational program that is blended into an onsite academic course. This global electronic program, which was developed through a partnership between Catholic Relief Services (CRS) and…

  18. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  19. US medical specialty global health training and the global burden of disease

    PubMed Central

    Kerry, Vanessa B.; Walensky, Rochelle P.; Tsai, Alexander C.; Bergmark, Regan W.; Bergmark, Brian A.; Rouse, Chaturia; Bangsberg, David R.

    2013-01-01

    Background Rapid growth in global health activity among US medical specialty education programs has lead to heterogeneity in types of activities and global health training models. The breadth and scope of this activity is not well chronicled. Methods Using a standardized search protocol, we examined the characteristics of US medical residency global health programs by number of programs, clinical specialty, nature of activity (elective, research, extended curriculum based field training), and geographic location across seven different clinical medical residency education specialties. We tabulated programmatic activity by clinical discipline, region and country. We calculated the Spearman's rank correlation coefficient to estimate the association between programmatic activity and country–level disease burden. Results Of the 1856 programs assessed between January and June 2011, there were 380 global health residency training programs (20%) working in 141 countries. 529 individual programmatic activities (elective–based rotations, research programs, extended curriculum–based field training, or other) occurred at 1337 specific sites. The majority of the activities consisted of elective–based rotations. At the country level, disease burden had a statistically significant association with programmatic activity (Spearman's ρ = 0.17) but only explained 3% of the total variation between countries. Conclusions There were a substantial number of US medical specialty global health programs, but a relative paucity of surgical and mental health programs. Elective–based programs were more common than programs that offer longitudinal experiences. Despite heterogeneity, there was a small but statistically significant association between program location and the global burden of disease. Areas for further study include the degree to which US–based programs develop partnerships with their program sites, the significance of this activity for training, and number and breadth of programs in medical specialty global health education in other countries around the world. PMID:24363924

  20. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  1. Factors influencing anesthesia residency selection: impact of global health opportunities.

    PubMed

    Evans, Faye M; Mallepally, Niharika R; Dubowitz, Gerald; Vasilopoulos, Terrie; McClain, Craig D; Enneking, Kayser

    2016-06-01

    There is growing evidence to suggest that the current generation of medical students and young physicians is interested in global health. However, there are few data on the interest in global health by students pursuing a career in anesthesiology. The objective of this survey was to evaluate the importance of global health opportunities in regard to applicants' choice of anesthesiology residency programs. Anesthesiology residency program directors in the United States were invited to distribute an online survey to recently matched residents. To reduce study bias, the survey included a wide selection of reasons for program choices in addition to global health. Participants were asked to rate independently, on a scale of 1 to 10 (1 = least important, 10 = most important), the importance that each factor had on their selection of an anesthesiology residency program. Of the 117 U.S. anesthesiology programs contacted, 87 (74%) distributed the survey. Completed surveys were obtained from 582 of 1,092 (53%) polled participants. All factors assessed were rated between 5 and 9 and the global health median [interquartile range] rating was 6 [3-7]. Nearly half of the survey respondents were interested in incorporating global health into future careers. More than three-quarters reported being interested in participating in, or reading about, global health activities during their residency. Responders with previous global health experience, or who were interested in an "in-country" experience, were more likely to choose programs that had global health opportunities available during residency. Anesthesia residency program applicants are interested in global health. Having a global health opportunity was an important reason for choosing a residency program, comparable to some more traditional factors. Regardless of previous global health experience, the majority of future anesthesia residents are either planning or considering participation in global health activities during or after training.

  2. Preliminary topical report on comparison reactor disassembly calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, T.P.

    1975-11-01

    Preliminary results of comparison disassembly calculations for a representative LMFBR model (2100-l voided core) and arbitrary accident conditions are described. The analytical methods employed were the computer programs: FX2- POOL, PAD, and VENUS-II. The calculated fission energy depositions are in good agreement, as are measures of the destructive potential of the excursions, kinetic energy, and work. However, in some cases the resulting fuel temperatures are substantially divergent. Differences in the fission energy deposition appear to be attributable to residual inconsistencies in specifying the comparison cases. In contrast, temperature discrepancies probably stem from basic differences in the energy partition models inherentmore » in the codes. Although explanations of the discrepancies are being pursued, the preliminary results indicate that all three computational methods provide a consistent, global characterization of the contrived disassembly accident. (auth)« less

  3. Impacts of renewable fuel regulation and production on agriculture, energy, and welfare

    NASA Astrophysics Data System (ADS)

    McPhail, Lihong Lu

    The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We consider two federal ethanol policies: the Renewable Fuel Standard (RFS) contained in the Energy Security and Independence Act of 2007 and tax credits to ethanol blenders contained in the Food, Conservation, and Energy Act of 2008. My first essay estimates the distribution of short-run impacts of changing federal ethanol policies on U.S. energy prices, agricultural commodity prices, and welfare through a stochastic partial equilibrium model of U.S. corn, ethanol, and gasoline markets. My second essay focuses on studying the price behavior of the renewable fuel credit (RFC) market, which is the mechanism developed by the Environmental Protection Agency (EPA) to meet the RFS. RFCs are a tradable, bankable, and borrowable accounting mechanism to ensure that all obligated parties use a mandated level of renewable fuel. I first develop a conceptual framework to understand how the market works and then apply stochastic dynamic programming to simulate prices for RFCs, examine the sensitivity of prices to relevant shocks, and estimate RFC option premiums. My third essay assesses the impact of policy led U.S. ethanol on the markets of global crude oil and U.S. gasoline using a structural Vector Auto Regression model of global crude oil, U.S. gasoline and ethanol markets.

  4. Successful recruiting strategies for geoscience degrees and careers at the two-year college: An example from Metropolitan Community College - Kansas City

    NASA Astrophysics Data System (ADS)

    Wolfe, B.

    2012-12-01

    The overwhelming majority of students at 2-year colleges take geoscience courses (e.g. physical geology or physical geography) to fulfill part of the general education requirements of the Associates in Arts degree or General Education certificates for transfer to a 4-year school. It is common in community college earth science programs to have a relatively small number of students continuing on to major in geoscience programs at their transfer 4-year institution. To increase interest and retention in geosciences courses, we have developed a two prong approach - one aimed at students looking to transfer to a 4-year institution and the other aimed at students in the often overlooked career and technical education (CTE) programs. In the case of transfer students, we employ a "high touch" approach in introductory Physical Geology courses. This includes raising awareness of geoscience related careers combined with faculty mentor and advisor activities for students who express interest in science on their admission forms or in discussions of potential careers in science in first-year experience courses. Faculty mentorships have been very effective, not only in recruiting students to consider careers in geology, but also in advising a curriculum for students necessary to be successful upon transfer to a 4-year institution (such as completing college level chemistry, physics, and calculus courses prior to transfer). The second approach focuses on students pursuing certificates and degrees in CTE energy-related programs (such as HVAC, industrial engineering technology, electrician, and utility linemen). To increase awareness of vocational related geoscience careers, many of which require a good foundation in the vocational training students are currently pursing, we developed a foundation energy course - Energy and the Environment - which fulfills both the science general education component of the AA degree for students looking to transfer as well as CTE students. The curriculum focuses on fundamental concepts of energy generation and environmental impact, including analysis of energy fundamentals, fossil fuel exploration and use, atmospheric pollution, global climate change, nuclear energy, alternative energy sources, and energy conservation, all of which are directly related to geologic processes. This new course is part of newly created energy certificate programs in Photovoltaics, energy efficiency, and solar thermal - with the intention of expanding to AAS degrees in each.

  5. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  6. Prenatal and postnatal mothering by diesel exhaust PM2.5-exposed dams differentially program mouse energy metabolism.

    PubMed

    Chen, Minjie; Liang, Shuai; Zhou, Huifen; Xu, Yanyi; Qin, Xiaobo; Hu, Ziying; Wang, Xiaoke; Qiu, Lianglin; Wang, Wanjun; Zhang, Yuhao; Ying, Zhekang

    2017-01-18

    Obesity is one of the leading threats to global public health. It is consequent to abnormal energy metabolism. Currently, it has been well established that maternal exposure to environmental stressors that cause inappropriate fetal development may have long-term adverse effects on offspring energy metabolism in an exposure timing-dependent manner, known as developmental programming of health and diseases paradigm. Rapidly increasing evidence has indicated that maternal exposure to ambient fine particles (PM 2.5 ) correlates to abnormal fetal development. In the present study, we therefore assessed whether maternal exposure to diesel exhaust PM 2.5 (DEP), the major component of ambient PM 2.5 in urban areas, programs offspring energy metabolism, and further examined how the timing of exposure impacts this programming. The growth trajectory of offspring shows that although prenatal maternal exposure to DEP did not impact the birth weight of offspring, it significantly decreased offspring body weight from postnatal week 2 until the end of observation. This weight loss effect of prenatal maternal exposure to DEP coincided with decreased food intake but not alteration in brown adipose tissue (BAT) morphology. The hypophagic effect of prenatal maternal exposure to DEP was in concord with decreased hypothalamic expression of an orexigenic peptide NPY, suggesting that the prenatal maternal exposure to DEP impacts offspring energy balance primarily through programming of food intake. Paradoxically, the reduced body weight resulted from prenatal maternal exposure to DEP was accompanied by increased mass of epididymal adipose tissue, which was due to hyperplasia as morphological analysis did not observe any hypertrophy. In direct contrast, the postnatal mothering by DEP-exposed dams increased offspring body weight during lactation and adulthood, paralleled by markedly increased fat accumulation and decreased UCP1 expression in BAT but not alteration in food intake. The weight gain induced by postnatal mothering by DEP-exposed dams was also expressed as an increased adiposity. But it concurred with a marked hypertrophy of adipocytes. Prenatal and postnatal mothering by DEP-exposed dams differentially program offspring energy metabolism, underscoring consideration of the exposure timing when examining the adverse effects of maternal exposure to ambient PM 2.5 .

  7. Hybrid Power Management Program Evaluated Ultracapacitors for the Next Generation Launch Transportation Project

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated baseline testing of ultracapacitors to obtain empirical data in determining the feasibility of using ultracapacitors for the Next Generation Launch Transportation (NGLT) Project. There are large transient loads associated with NGLT that require a very large primary energy source or an energy storage system. The primary power source used for this test was a proton-exchange-membrane (PEM) fuel cell. The energy storage system can consist of batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. NASA Glenn has a wealth of experience in ultracapacitor technology through the Hybrid Power Management (HPM) Program, which the Avionics, Power and Communications Branch of Glenn s Engineering Development Division initiated for the Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-ofthe- art power devices in optimal configurations for space and terrestrial applications. The appropriate application and control of the various advanced power devices (such as ultracapacitors and fuel cells) significantly improves overall system performance and efficiency. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  8. Solar Energy Meteorological Research and Training Site: Region 5. Annual report, 30 September 1977-29 September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, C.R.N.; Hewson, E.W.

    The primary facility which is to be a benchmark site for the acquisition of research quality solar radiation and solar energy related meteorological data has been set up and will be fully operational in the near future. The training program has been established with the introduction of two, two-quarter courses on solar radiation and meteorological measurements and on atmospheric radiative processes. Also, as part of the training program, a week-long workshop on solar energy measurement and instrumentation was conducted during the summer of '78 and a series of seminars on solar energy related topics, catering to both professionals and non-professionals,more » was arranged during the 1977-78 academic year. A meeting of solar radiation scientists from the five states of the region was held in Corvallis (August '78) to explore the feasibility of setting up a regional network of stations to acquire research quality solar radiation and meteorological data. Useful global irradiance measurements have been made at the five sites, making up the general quality network in Oregon, over the greater part of the year.« less

  9. A Modeling Approach to Global Land Surface Monitoring with Low Resolution Satellite Imaging

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer; Livingston, Gerry P.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    The effects of changing land use/land cover on global climate and ecosystems due to greenhouse gas emissions and changing energy and nutrient exchange rates are being addressed by federal programs such as NASA's Mission to Planet Earth (MTPE) and by international efforts such as the International Geosphere-Biosphere Program (IGBP). The quantification of these effects depends on accurate estimates of the global extent of critical land cover types such as fire scars in tropical savannas and ponds in Arctic tundra. To address the requirement for accurate areal estimates, methods for producing regional to global maps with satellite imagery are being developed. The only practical way to produce maps over large regions of the globe is with data of coarse spatial resolution, such as Advanced Very High Resolution Radiometer (AVHRR) weather satellite imagery at 1.1 km resolution or European Remote-Sensing Satellite (ERS) radar imagery at 100 m resolution. The accuracy of pixel counts as areal estimates is in doubt, especially for highly fragmented cover types such as fire scars and ponds. Efforts to improve areal estimates from coarse resolution maps have involved regression of apparent area from coarse data versus that from fine resolution in sample areas, but it has proven difficult to acquire sufficient fine scale data to develop the regression. A method for computing accurate estimates from coarse resolution maps using little or no fine data is therefore needed.

  10. Global Gathering Addresses PV Role in Energy Prosperity and Climate Change

    Science.gov Websites

    Mitigation | News | NREL Global Gathering Addresses PV Role in Energy Prosperity and Climate Change Mitigation News Release: Global Gathering Addresses PV Role in Energy Prosperity and Climate Laboratory (NREL), along with their counterparts from solar energy research institutes in Germany and Japan

  11. An Effective Model for Improving Global Health Nursing Competence.

    PubMed

    Kang, Sun-Joo

    2016-01-01

    This paper proposed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by evaluation of four implemented programs by the author. All programs were conducted with students majoring in nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students' needs assessment, program design, and implementation and evaluation factors. The concept and composition of global nursing competence, identified within previous studies, were deemed appropriate in all of our programs. Program composition varied from curricular to extracurricular domains. During the implementation phase, some of the programs included non-Korean students to improve cultural diversity and overcome language barriers. Qualitative and quantitative surveys were conducted to assess program efficacy. Data triangulation from students' reflective journals was examined. Additionally, students' awareness regarding changes within global health nursing, improved critical thinking, cultural understanding, and global leadership skills were investigated pre- and post-program implementation. The importance of identifying students' needs regarding global nursing competence when developing appropriate curricula is discussed.

  12. Assessing global resource utilization efficiency in the industrial sector.

    PubMed

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Going global: considerations for introducing global health into family medicine training programs.

    PubMed

    Evert, Jessica; Bazemore, Andrew; Hixon, Allen; Withy, Kelley

    2007-10-01

    Medical students and residents have shown increasing interest in international health experiences. Before attempting to establish a global health training program in a family medicine residency, program faculty must consider the goals of the international program, whether there are champions to support the program, the resources available, and the specific type of program that best fits with the residency. The program itself should include didactics, peer education, experiential learning in international and domestic settings, and methods for preparing learners and evaluating program outcomes. Several hurdles can be anticipated in developing global health programs, including finances, meeting curricular and supervision requirements, and issues related to employment law, liability, and sustainability.

  14. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  15. 75 FR 63147 - Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...] Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global Climate Change... Program; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. To enhance the...; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. EDA will publish separate...

  16. Chernobyl: an unbelievable failure to help.

    PubMed

    Bertell, Rosalie

    2008-01-01

    The disaster at the Chernobyl power reactor near Kiev, which began on April 26, 1986, was one of the world's worst industrial accidents. Yet the global community, usually most generous in its aid to a stricken community, has been slow to understand the scope of the disaster and reach out to the most devastated people of Ukraine, Belarus, and Russia. This article probes the causes of this confusion of perception and failure of response; clearly the problem is one of communication. Has the International Atomic Energy Agency betrayed the victims of the Chernobyl disaster because of its plans to promote the "peaceful atom" nuclear program in the developing world? Has the World Health Organization failed to provide clear, reliable information on the health effects resulting from the disaster? Are other historical problems or actors interfering with reasonable handling of the late effects of a nuclear disaster? Most importantly, what can be done to remedy this situation, to assist those most hurt by the late effects of Chernobyl and prevent such injustice in future? With the current promotion of nuclear energy as a "solution" to global climate change, we need to take a sober second look at the nuclear energy experiment and management of its hazards.

  17. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asath, R. Mohamed; Premkumar, S.; Mathavan, T.

    2016-05-23

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the moleculemore » were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.« less

  18. Vibrational spectroscopic, structural and nonlinear optical activity studies on 2-amino-3-chloro-5-trifluoromethyl pyridine: A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 2-amino-3-chloro-5-trifluoromethylpyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was studied and the first order hyperpolarizability value was computed, which was 3.48 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ACTP molecule is a promising candidate for NLO materials.

  19. Conformational, vibrational spectroscopic and nonlinear optical activity studies on N,N-Di-Boc-2-amino pyridine : A DFT approach

    NASA Astrophysics Data System (ADS)

    Asath, R. Mohamed; Premkumar, R.; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    The conformational analysis was carried out for N,N-Di-Boc-2-amino pyridine using potential energy surface (PES) scan and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVTZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program package. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the calculation of ionization energy, electron affinity, global hardness, chemical potential, electrophilicity index and softness of the molecule were carried out. The nonlinear optical (NLO) activity was examined and the first order hyperpolarizability value was computed, which was 2.27 times greater than the urea. The natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the DBAP molecule is a promising candidate for NLO materials.

  20. EAGLE: relay mirror technology development

    NASA Astrophysics Data System (ADS)

    Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.

    2002-06-01

    EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipwash, Jacqueline L; Kovacic, Donald N

    Infrastructure Preparedness and Vietnam Jacqueline L. Shipwash and Donald N. Kovacic (shipwashjl@ornl.gov, 865-241-9129, and kovacicdn@ornl.gov, 865-576-1459) Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 The global expansion of nuclear energy will require international cooperation to ensure that nuclear materials, facilities, and sensitive technologies are not diverted to non-peaceful uses. Developing countries will require assistance to ensure the effective regulation, management, and operation of their nuclear programs to achieve best practices in nuclear nonproliferation. A developing nation has many hurdles to pass before it can give assurances to the international community that it is capable of implementing a sustainable nuclear energymore » program. In August of this year, the U.S. Department of Energy and the Ministry of Science and Technology of the Socialist Republic of Vietnam signed an arrangement for Information Exchange and Cooperation on the Peaceful Uses of Nuclear Energy. This event signals an era of cooperation between the U.S. and Vietnam in the area of nuclear nonproliferation. This paper will address how DOE is supporting the development of secure and sustainable infrastructures in emerging nuclear nations such as Vietnam.« less

  3. Networking: the view from HEP

    NASA Astrophysics Data System (ADS)

    McKee, Shawn

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. National and global-scale collaborations that characterize HEP would not be feasible without ubiquitous capable networks. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. This paper will briefly discuss the history of networking in HEP, the current activities and challenges we are facing, and try to provide some understanding of where networking may be going in the next 5 to 10 years.

  4. Proceedings from the first Global Summit on Radiological Quality and Safety.

    PubMed

    Stern, Eric J; Adam, E Jane; Bettman, Michael A; Brink, James A; Dreyer, Keith J; Frija, Guy; Keefer, Raina; Mildenberger, Peter; Remedios, Denis; Vock, Peter

    2014-10-01

    The ACR, the European Society of Radiology, and the International Society of Radiology held the first joint Global Summit on Radiological Quality and Safety in May 2013. The program was divided into 3 day-long themes: appropriateness of imaging, radiation protection/infrastructure, and quality and safety. Participants came from global organizations, including the International Atomic Energy Agency, the World Health Organization, and other institutions; industry and patient advocacy groups with an interest in imaging were also represented. The goal was to exchange ideas and solutions and share concerns to arrive at a better and more uniform approach to quality and safety. Participants were asked to use the information presented to develop strategies and tactics to harmonize and promote best practices worldwide. These strategies were summarized at the conclusion of the meeting. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  5. Can Structural Optimization Explain Slow Dynamics of Rocks?

    NASA Astrophysics Data System (ADS)

    Kim, H.; Vistisen, O.; Tencate, J. A.

    2009-12-01

    Slow dynamics is a recovery process that describes the return to an equilibrium state after some external energy input is applied and then removed. Experimental studies on many rocks have shown that a modest acoustic energy input results in slow dynamics. The recovery process of the stiffness has consistently been found to be linear to log(time) for a wide range of geomaterials and the time constants appear to be unique to the material [TenCate JA, Shankland TJ (1996), Geophys Res Lett 23, 3019-3022]. Measurements of this nonequilibrium effect in rocks (e.g. sandstones and limestones) have been linked directly to the cement holding the individual grains together [Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004), Geophys Res Lett 31, L16604], also suggesting a potential link to porosity and permeability. Noting that slow dynamics consistently returns the overall stiffness of rocks to its maximum (original) state, it is hypothesized that the original state represents the global minimum strain energy state. Consequently the slow dynamics process represents the global minimization or optimization process. Structural optimization, which has been developed for engineering design, minimises the total strain energy by rearranging the material distribution [Kim H, Querin OM, Steven GP, Xie YM (2002), Struct Multidiscip Optim 24, 441-448]. The optimization process effectively rearranges the way the material is cemented. One of the established global optimization methods is simulated annealing (SA). Derived from cooling of metal to a thermal equilibrium, SA finds an optimum solution by iteratively moving the system towards the minimum energy state with a probability of 'uphill' moves. It has been established that the global optimum can be guaranteed by applying a log(time) linear cooling schedule [Hajek B (1988, Math Ops Res, 15, 311-329]. This work presents the original study of applying SA to the maximum stiffness optimization problem. Preliminary results indicate that the maximum stiffness solutions are achieved when using log(time) linear cooling schedule. The optimization history reveals that the overall stiffness of the structure is increased linearly to log(time). The results closely resemble the slow dynamics stiffness recovery of geomaterials and support the hypothesis that the slow dynamics is an optimization process for strain energy. [Work supported by the Department of Energy through the LANL/LDRD Program].

  6. Global engineering education programs: More than just international experiences

    NASA Astrophysics Data System (ADS)

    McNeill, Nathan J.

    Engineers in both industry and academia recognize the global nature of the profession. This has lead to calls for engineering students to develop knowledge, skills, and attitudes necessary for success within a global profession. Many institutions are developing globally oriented programs specifically for their engineering students and are eager to know if these programs are helping their students to develop attributes that meet their program objectives, accreditation requirements, and the needs and desires of prospective employers. Administrators of such programs currently lack research data to support the learning objectives they are setting for their programs. This study documented the individual experiences and learning outcomes of students involved in three global education programs for engineering students. The first program provided a portfolio of experiences including foreign language instruction, one semester of study abroad, internships in the U.S. and abroad, and a two-semester global team design project. The second program was a one semester study abroad program in China, and the third was a global service project whose purpose was to design an irrigation system for two small farms in Rwanda. The research questions guiding this study were: 1. What specific knowledge, skills, and attitudes are students gaining from participation in their respective global engineering programs? 2. What kinds of experiences are resulting in these learning outcomes? Interviews were used to elicit the experiences and learning outcomes of participants in this study. Program administrators were also interviewed for their perspectives on the experiences and learning outcomes of participants for the purpose of triangulation. The study identified more than 50 outcomes that resulted from students' experiences in these three programs. The most prevalent outcomes across all three programs included knowledge of culture, openness to new experiences and other cultures, and communication skills.

  7. The Analysis of Renewable Energy Researches in Turkey

    NASA Astrophysics Data System (ADS)

    Tan, S. O.; Toku, T.; Türker, İ.

    2016-11-01

    The rapid consumption of limited conventional energy resources mobilizes many countries in the world against global energy crisis. As well as the energy crisis, the environmental pollution caused by existing energy sources also encourages the researchers to study in new energy technologies and also renewable energy resources. From this point of view, it is important for each country to identify its wind, solar, geothermal, biomass, hydro and other renewable energy potentials. Considering this urgent energy requirement, the researches and especially the academic studies have been increased on renewable energy resources to meet the energy demand by means of indigenous resources in each country. Consequently, the main purpose of this study is to analyze the academic studies in Turkey to find out the increment rate of researches, their publication years and the more focusing branch on renewable energy by illustrating the statistical distribution of these data. Automated Data Retrieval Methods have been employed to achieve data from Web of Science database and statistical analyses have been made by SQL server management studio program. The academic studies in all variety of renewable energy areas have a tendency to increase which indicates the importance ratio of renewable energy in Turkey.

  8. Spacecraft Dynamic Characterization by Strain Energies Method

    NASA Astrophysics Data System (ADS)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven forcing direction. The first step consists of the following : for each part the modal strain energy ratio is calculated with respect to the total strain energy of the Spacecraft global model. The results are shown in tabular form : for each mode the parts with a strain energy ratio greater then 1% are reported. The second step can be summarized as follows : for each part or subsystem, in order to compare the relative importance, in terms of dynamic response, among all the modes identified by the percentage method, the subsystem strain energy in Joule is calculated for each axis 1g base driven excitation. Then plots are given where, for each subsystem and for each base forcing direction, the strain energy values are shown in a 0-100 Hz frequency range. Through this method, for each subsystem the sizing eigenfrequencies and associated excitation axis are identified in a clear way, allowing at the same time a better understanding of dynamic responses.

  9. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies

    NASA Astrophysics Data System (ADS)

    Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; Krey, Volker; McCollum, David L.; Rao, Narasimha D.; Riahi, Keywan; Rogelj, Joeri; De Stercke, Simon; Cullen, Jonathan; Frank, Stefan; Fricko, Oliver; Guo, Fei; Gidden, Matt; Havlík, Petr; Huppmann, Daniel; Kiesewetter, Gregor; Rafaj, Peter; Schoepp, Wolfgang; Valin, Hugo

    2018-06-01

    Scenarios that limit global warming to 1.5 °C describe major transformations in energy supply and ever-rising energy demand. Here, we provide a contrasting perspective by developing a narrative of future change based on observable trends that results in low energy demand. We describe and quantify changes in activity levels and energy intensity in the global North and global South for all major energy services. We project that global final energy demand by 2050 reduces to 245 EJ, around 40% lower than today, despite rises in population, income and activity. Using an integrated assessment modelling framework, we show how changes in the quantity and type of energy services drive structural change in intermediate and upstream supply sectors (energy and land use). Down-sizing the global energy system dramatically improves the feasibility of a low-carbon supply-side transformation. Our scenario meets the 1.5 °C climate target as well as many sustainable development goals, without relying on negative emission technologies.

  10. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elementsmore » and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.« less

  11. Public Policy and Economic Efficiency in Ontario's Electricity Market: 2002 to 2011

    NASA Astrophysics Data System (ADS)

    Olmstead, Derek E. H.

    A competitive wholesale electricity market began operation in Ontario in 2002. The institutional features and development process are described, and the outcomes associated with certain features are assessed. First, a six-equation model of the market is specified and estimated. The results are used to undertake analysis of the province's renewable energy program. The impacts of the program on consumers' and producers' surplus, as well as the resulting degree of carbon dioxide (CO2) emission-abatement, are estimated. These results are used to infer the per-unit cost of CO 2 abatement resulting from the program. Under the assumption that the renewable-fuelled energy displaces coal-fuelled energy from the market, the estimated cost is approximately 93/tonne of CO2; under the alternative assumption that natural gas-fuelled generation is displaced, the estimated cost is 207/tonne of CO2. Comparison to costs observed in other markets and jurisdictions reveals the program to cost approximately one order of magnitude greater than elsewhere. It is concluded that Ontario pays substantially more for emission abatement than is necessary or, alternatively, that Ontario achieves substantially less abatement than is feasible for each dollar of economic resources expended. Second, the market model is also used to assess the treatment of electricity exports with respect to the so-called global adjustment charge. The analysis reveals that the current practise of exempting exports from the charge is not socially optimal from a total surplus-maximisation standpoint. That objective would be achieved if global adjustment was allocated to exports at approximately 32% of the rate at which it is applied to Ontario-based consumers, a result consistent with a Ramsey-type inverse elasticity rule. Third, the forward market unbiasedness hypothesis is assessed in the context of the market for financial transmission rights (FTR). Issues related to left-censoring of payouts at $0 and overlapping observations are dealt with. The analysis reveals little evidence in favour of the hypothesis, but finds less biasedness in long-term rights as compared to short-term rights. Analysis of bidder behaviour reveals greater levels of participation in auctions of FTRs that link Ontario to similarly competitive neighbouring jurisdictions as opposed to non-competitive jurisdictions.

  12. ARM Climate Research Facility Annual Report 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency programmore » within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.« less

  13. Scientific Challenges in Sustainable Energy Technology

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan

    2006-03-01

    This presentation will describe and evaluate the challenges, both technical, political, and economic, involved with widespread adoption of renewable energy technologies. First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years. Secondly, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels. Thirdly, we evaluate the level and timescale of R&D investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power. Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements. Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power on the needed scale by the 2050 timeframe. Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

  14. Review of Global Change Research Program plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The draft 10-year strategic plan for the U.S. Global Change Research Program (USGCRP), which proposes broadening the scope of the program from climate change only to climate change and climaterelated global changes, “is an important step in the right direction,” according to a 5 January review of the plan by a committee of the U.S. National Research Council (NRC) of the National Academies. However, the committee also said that the program's legislative mandate is even broader in allowing USGCRP to address many aspects of global change including climate change, the global hydrological cycle, and widespread land use changes. “The Program's legislative mandate is to address all of global change, whether or not related to climate. The Committee concurs that this broader scope is appropriate, but realizes that such an expansion may be constrained by budget realities and by the practical challenge of maintaining clear boundaries for an expanded program,” the report states. “We encourage sustained efforts to expand the Program over time, along with efforts to better define and prioritize what specific topics are included within the bounds of global change research.”

  15. Western Mountain Initiative - Research Links

    Science.gov Websites

    Parks programS Forest Service Climate Change Resource Center (CCRC) North American Nitrogen Center to be told." US Global Change Research Program (GlobalChange.gov) USGS Climate and Land Use Rocky Mountain Science Center Global Change Research Program -- A Focus on Mountain Ecosystems Western

  16. A generalized global alignment algorithm.

    PubMed

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  17. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is an international project under the auspices of the World Climate Research Program (WCRP) and GEWEX (Global Water and Energy Experiment). The GPCP group consists of scientists from agencies and universities in various countries that work together to produce a set of global precipitation analyses at time scales of monthly, pentad, and daily. The status of the current products will be briefly summarized, focusing on the monthly analysis. Global and large regional rainfall variations and possible long-term changes are examined using the 27-year (1 979-2005) monthly dataset. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of long-term change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward change in the Tropics (25s-25N) during the period,. especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the linear change is examined. Plans for a GPCP reprocessing for a Version 3 of products, potentially including a fine-time resolution product will be discussed. Current and future links to IPWG will also be addressed.

  18. Simulation of mixing in the quick quench region of a rich burn-quick quench mix-lean burn combustor

    NASA Technical Reports Server (NTRS)

    Shih, Tom I.-P.; Nguyen, H. Lee; Howe, Gregory W.; Li, Z.

    1991-01-01

    A computer program was developed to study the mixing process in the quick quench region of a rich burn-quick quench mix-lean burn combustor. The computer program developed was based on the density-weighted, ensemble-averaged conservation equations of mass, momentum (full compressible Navier-Stokes), total energy, and species, closed by a k-epsilon turbulence model with wall functions. The combustion process was modeled by a two-step global reaction mechanism, and NO(x) formation was modeled by the Zeldovich mechanism. The formulation employed in the computer program and the essence of the numerical method of solution are described. Some results obtained for nonreacting and reacting flows with different main-flow to dilution-jet momentum flux ratios are also presented.

  19. Satellite ozone measurements and the detection of trends

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest

    1990-01-01

    Due to the international scientific community's concern with the problem of anthropogenic gas-caused depletion of the ozone layer, an international observational program has been established to conduct stratospheric studies for at least a decade. These observations, which will be performed both by the Space Shuttle and the Upper Atmosphere Research Satellite, will encompass the energy input by solar UV irradiance, source and intermediate gases in ozone chemistry, and the global distributions of these ozone-affecting gases by winds.

  20. Hybrid Power Management Program Continued

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2002-01-01

    Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and photovoltaics. HPM has extremely wide potential with applications including power-generation, transportation, biotechnology, and space power systems. It may significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  1. Community United Methodist Church passive solar classroom addition: comparison of predicted and actual energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.H.; Peckham, N.

    1984-01-01

    The Community United Methodist Church of Columbia, Missouri, has recently built a passive solar addition. This building was partially funded by the Department of Energy Passive Solar Commercial Building Demonstration Program (1) and by a grant from the Board of Global Ministries of the United Methodist Church. As part of the design phase, the PASOLE computer code was used to model the thermal characteristics of the building. The building was subsequently completed in September 1981, and one and one-half years of end use energy data has been collected as of March 1983. This paper presents (1) a description of themore » new building and the computer model used to analyze it, (2) a comparison of predicted and actual energy use, (3) a comparison between the new, solar building and conventional portions of the church complex and (4) summarizes other operational experiences.« less

  2. Energy and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loulou, Richard; Waaub, Jean-Philippe; Zaccour, Georges

    2005-07-01

    This volume on energy and environmental modeling describes a broad variety of modeling methodologies. It includes chapters covering: The Sustainability of Economic Growth by Cabo, Martin-Herran & Martinez-Garcia; Abatement Scenarios in the Swiss Housing Sector by L. Drouet and others; Support and Planning for Off-Site Emergency Management, by Geldermann and others; Hybrid Energy-Economy Models, by Jaccard; The World-MARKAL Model and Its Application, by Kanudia and others; Methodology for Evaluating a Market of Tradable CO{sub 2}-Permits, by Kunsch and Springael; MERGE - A Model for Global Climate Change, by Manne and Richels; A Linear Programming Model for Capacity Expansion in anmore » Autonomous Power Generation System, by Mavrotas and Diakoulaki; Transport and Climate Policy Modeling in the Transport Sector, by Paltsev and others; Analysis of Ontario Electricity Capacity Requirements and Emissions, by Pineau and Schott; Environmental Damage in Energy/Environmental Policy Evaluation, by Van Regemorter. 71 figs.« less

  3. Program optimizations: The interplay between power, performance, and energy

    DOE PAGES

    Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; ...

    2016-05-16

    Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less

  4. Earth Experiments in a Virtual World: Introducing Climate & Coding to High School Girls

    NASA Astrophysics Data System (ADS)

    Singh, H. A.; Twedt, J. R.

    2017-12-01

    In our increasingly technologically-driven and information-saturated world, literacy in STEM fields can be crucial for career advancement. Nevertheless, both systemic and interpersonal barriers can prevent individuals, particularly members of under-represented groups, from engaging in these fields. Here, we present a high school-level workshop developed to foster basic understanding of climate science while exposing students to the Python programming language. For the past four years, the workshop has been a part of the annual Expanding Your Horizons conference for high school girls, whose mission is to spark interest in STEM fields. Moving through current events in the realm of global climate policy, the fundamentals of climate, and the mathematical representation of planetary energy balance, the workshop culminates in an under-the-hood exploration of a basic climate model coded in the Python programming language. Students interact directly with the underlying code to run `virtual world' experiments that explore the impact of solar insolation, planetary albedo, the greenhouse effect, and meridional energy transport on global temperatures. Engagement with Python is through the Jupyter Notebook interface, which permits direct interaction with the code but is more user-friendly for beginners than a command-line approach. We conclude with further ideas for providing online access to workshop materials for educators, and additional venues for presenting such workshops to under-represented groups in STEM.

  5. Investments in Fossil Energy Technology: How the Government's Fossil Energy R&D Program Has Made a Difference

    DOE R&D Accomplishments Database

    1997-03-01

    America has the technological capacity to change its energy future. There is no reason, for example, why our nation must continue following a path of rising oil imports when billions of barrels of crude oil remain in domestic oil fields. There is no reason why we cannot continue to use our abundant supplies of high-value, low-cost coal when we have the scientific know-how to remove virtually all of its pollutants and reduce greenhouse gas emissions. There is no reason why we cannot turn increasingly to clean-burning natural gas and tap the huge supplies we know exist within our borders. We remain a nation rich in the fuels that have powered economic growth. Today 85 percent of the energy we use to heat our homes and businesses, generate our electricity, and fuel our vehicles comes from coal, petroleum and natural gas. As we move toward a new century, the contributions of these fuels will grow. By 2015, the United States is likely to require nearly 20 percent more energy than it uses today, and fossil fuels are projected to supply almost 88 percent of the energy Americans will consume. We have the scientific know-how to continue using our fossil fuel wealth without fear of environmental damage or skyrocketing costs. The key is technology - developing cutting edge concepts that are beyond the private sector's current capabilities. Some of the most important innovations in America's energy industry are the results of investments in the Federal government's fossil energy research and development programs. Today, our air and water are cleaner, our economy is stronger, and our industries are more competitive in the global market because these programs have produced results. This booklet summarizes many of these achievements. It is not a comprehensive list by any means. Still, it provides solid evidence that the taxpayers' investment in government fossil energy research has paid real and measurable dividends.

  6. GLOBAL CHANGE MULTI-YEAR PLAN

    EPA Science Inventory

    The Global Change Research Act of 1990 establishes the U.S. Global Change Research Program to coordinate a comprehensive research program on global change. This is an inter-Agency effort, with EPA bearing responsibility to assess the consequences of global change on human health,...

  7. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.

    PubMed

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature 'well below 2°C' and to 'aim to limit the increase to 1.5°C'. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international 'pro-growth' strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve 'sustainable development' goals.

  8. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development

    PubMed Central

    Wagner, Liam; Ross, Ian; Foster, John; Hankamer, Ben

    2016-01-01

    The United Nations Conference on Climate Change (Paris 2015) reached an international agreement to keep the rise in global average temperature ‘well below 2°C’ and to ‘aim to limit the increase to 1.5°C’. These reductions will have to be made in the face of rising global energy demand. Here a thoroughly validated dynamic econometric model (Eq 1) is used to forecast global energy demand growth (International Energy Agency and BP), which is driven by an increase of the global population (UN), energy use per person and real GDP (World Bank and Maddison). Even relatively conservative assumptions put a severe upward pressure on forecast global energy demand and highlight three areas of concern. First, is the potential for an exponential increase of fossil fuel consumption, if renewable energy systems are not rapidly scaled up. Second, implementation of internationally mandated CO2 emission controls are forecast to place serious constraints on fossil fuel use from ~2030 onward, raising energy security implications. Third is the challenge of maintaining the international ‘pro-growth’ strategy being used to meet poverty alleviation targets, while reducing CO2 emissions. Our findings place global economists and environmentalists on the same side as they indicate that the scale up of CO2 neutral renewable energy systems is not only important to protect against climate change, but to enhance global energy security by reducing our dependence of fossil fuels and to provide a sustainable basis for economic development and poverty alleviation. Very hard choices will have to be made to achieve ‘sustainable development’ goals. PMID:26959977

  9. Strengthening the nuclear nonproliferation regime : focus on the civilian nuclear fuel cycle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltiel, David H.; Pregenzer, Arian Leigh

    2005-04-01

    Leaders around the world and across the ideological spectrum agree that the global nonproliferation regime is facing a serious test. The emergence of sophisticated terrorist networks, black markets in nuclear technology, and technological leaps associated with globalization have conspired to threaten one of the most successful examples of international cooperation in history. The rampant proliferation of nuclear weapons that was predicted at the start of the nuclear age has been largely held in check and the use of those weapons avoided. Nonetheless, with the thirty-fifth anniversary of the Treaty on the Nonproliferation of Nuclear Weapons (NPT), the threat of nuclearmore » proliferation seems more serious than ever. Although experts readily concede that there exist many pathways to proliferation, the threat posed by the misuse of the civilian nuclear fuel cycle has received considerable recent attention. While the connection between nuclear energy and nonproliferation has been a topic of discussion since the dawn of the nuclear age, world events have brought the issue to the forefront once again. United States President George W. Bush and International Atomic Energy Agency (IAEA) Director General Mohammad ElBaradei are among those who have highlighted proliferation risks associated with civilian nuclear power programs and called for revitalizing the nuclear nonproliferation regime to address new threats. From the possibility of diversion or theft of nuclear material or technology, to the use of national civilian programs as a cover for weapons programs - what some have called latent proliferation - the fuel cycle appears to many to represent a glaring proliferation vulnerability. Just as recognition of these risks is not new, neither is recognition of the many positive benefits of nuclear energy. In fact, a renewed interest in exploiting these benefits has increased the urgency of addressing the risks. Global energy demand is expected to at least double by the middle of the century and could increase even more quickly. Much of the new demand will come from the rapidly expanding economies in China and India, but much of the developing world stands poised to follow the same path. This growth in demand is paralleled by concerns about global warming and the long-term reliability of carbon-based fuel supplies, concerns which expanded use of nuclear power can help to address. For these reasons and others, many countries in Asia have already clearly signaled that nuclear energy will play a key role for years to come. Numerous proposals have been made in the last two years for reducing the proliferation risk of the civilian nuclear fuel cycle. These range from a ban on export of enrichment and reprocessing technology to countries not already possessing operational capabilities to multinational management of the nuclear fuel cycle and strengthening existing monitoring and security mechanisms. The need for international willingness to enforce nonproliferation commitments and norms has also been emphasized. Some of these proposals could significantly impact the production of nuclear energy. Because the successful strengthening of the nonproliferation regime and the expansion of nuclear energy are so closely related, any successful approach to resolving these issues will require the creative input of experts from both the nuclear energy and nonproliferation communities. Against this backdrop, Sandia National Laboratories organized its 14th International Security Conference (ISC) around the theme: Strengthening the Nuclear Nonproliferation Regime: Focus on the Civilian Nuclear Fuel Cycle. The goal of the conference was to begin a constructive dialogue between the nuclear energy and nuclear nonproliferation communities. The conference was held in Chantilly, Virginia, just outside Washington, D.C. on April 4-6, 2005, and was attended by approximately 125 participants from fifteen countries. The ISC agenda was structured to produce a systematic review of the connection between civilian nuclear energy programs and the proliferation of nuclear weapons and to identify constructive approaches to strengthen the nonproliferation regime. The conference began by reviewing the energy and security context that has, once again, raised the profile of this issue. A discussion of the risks associated with the civilian nuclear fuel cycle was then used to inform the analysis of several potential risk-management tools. The conference concluded by looking for lessons from the past as well as looking forward to future opportunities, with a particular focus on East Asia. In this paper we summarize the debates and ideas that emerged during the conference. Although we have drawn on material presented by speakers and comments made by participants, we do not quote or cite the specific contributions of individuals.« less

  10. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sha; Tan, Qing; Evans, Meredydd

    India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India’s total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, buildingmore » energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.« less

  11. International trade and waste and fuel managment issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: A global solution for clients, by Yves Linz, AREVA NP; A safer, secure and economical plant, by Andy White, GE Hitachi Nuclear; Robust global prospects, by Ken Petrunik, Atomic Energy of Canada Limited; Development of NPPs in China, by Chen Changbing and Li Huiqiang, Huazhong University of Science and Technology; Yucca Mountain update; and, A class of its own, by Tyler Lamberts, Entergy Nuclear. The Industry Innovation articles in this issue are: Fuel assembly inspection program, by Jim Lemons,more » Tennessee Valley Authority; and, Improved in-core fuel shuffle for reduced refueling duration, by James Tusar, Exelon Nuclear.« less

  12. Mapping the global health employment market: an analysis of global health jobs.

    PubMed

    Keralis, Jessica M; Riggin-Pathak, Brianne L; Majeski, Theresa; Pathak, Bogdan A; Foggia, Janine; Cullinen, Kathleen M; Rajagopal, Abbhirami; West, Heidi S

    2018-02-27

    The number of university global health training programs has grown in recent years. However, there is little research on the needs of the global health profession. We therefore set out to characterize the global health employment market by analyzing global health job vacancies. We collected data from advertised, paid positions posted to web-based job boards, email listservs, and global health organization websites from November 2015 to May 2016. Data on requirements for education, language proficiency, technical expertise, physical location, and experience level were analyzed for all vacancies. Descriptive statistics were calculated for the aforementioned job characteristics. Associations between technical specialty area and requirements for non-English language proficiency and overseas experience were calculated using Chi-square statistics. A qualitative thematic analysis was performed on a subset of vacancies. We analyzed the data from 1007 global health job vacancies from 127 employers. Among private and non-profit sector vacancies, 40% (n = 354) were for technical or subject matter experts, 20% (n = 177) for program directors, and 16% (n = 139) for managers, compared to 9.8% (n = 87) for entry-level and 13.6% (n = 120) for mid-level positions. The most common technical focus area was program or project management, followed by HIV/AIDS and quantitative analysis. Thematic analysis demonstrated a common emphasis on program operations, relations, design and planning, communication, and management. Our analysis shows a demand for candidates with several years of experience with global health programs, particularly program managers/directors and technical experts, with very few entry-level positions accessible to recent graduates of global health training programs. It is unlikely that global health training programs equip graduates to be competitive for the majority of positions that are currently available in this field.

  13. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  14. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  15. GLOBAL CHANGE RESEARCH NEWS #37: PUBLICATION OF "OUR CHANGING PLANET: THE FY 2002 U.S. GLOBAL CHANGE RESEARCH PROGRAM"

    EPA Science Inventory

    The EPA Global Change Research Program is pleased to inform you of the publication of the new Our Changing Planet: The FY 2002 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices of the Committee on Environment and Natural Reso...

  16. A population-induced renewable energy timeline in nine world regions

    NASA Astrophysics Data System (ADS)

    Warner, Kevin; Jones, Glenn

    2016-04-01

    Population growth and increasing energy access are incongruous with forecasts of declining non-renewable energy production and climate change concerns. The current world population of 7.3 billion is projected to reach 8.4 billion by 2030 and 11.2 billion by 2100. Currently, 1.2 billion people worldwide do not have access to electricity. The World Bank's Sustainable Energy for All initiative seeks to provide universal global access to energy by the year 2030. Though universal energy access is desirable, a significant reduction in fossil fuel usage is required before mid-century if global warming is to be limited to <2°C. Today, the global energy mix is derived from 91% non-renewable (oil, coal, natural gas, nuclear) and 9% renewable (e.g., hydropower, wind, solar, biofuels) sources. Here we use a nine region model of the world to quantify the changes in the global energy mix necessary to address population and climate change under two energy-use scenarios and find that significant restructuring of the current energy mix will be necessary to support the 2014 UN population projections. We also find that renewable energy production must comprise 87-94% of global energy consumption by 2100. Our study suggests >50% renewable energy needs to occur by 2028 in a <2°C warming scenario, but not until 2054 in an unconstrained energy use scenario. Each of the nine regions faces unique energy-population challenges in the coming decades. We find that global energy demand in 2100 will be more than double that of today; of this demand, 82% will need to be derived from renewable sources. More renewable energy production will be required in 2100 than the 2014 total global energy production. Given the required rate and magnitude of this transition to renewable energy, it is unlikely that the <2°C goal can be met. Focus should be placed on expanding renewable energy as quickly as possible in order to supply the projected world energy demand and to limit warming to 2.5-3°C by 2100.

  17. Global and Regional Evaluation of Energy for Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaling; Hejazi, Mohamad; Kyle, Page

    Despite significant effort to quantify the inter-dependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process, for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 ± 5 EJ of primary energy consumption in 2010, accounting for 1.2–3% of total global primary energy consumption, of which 58% pertains to surface water, 30% to groundwater, and 12% to non-fresh water, assuming medianmore » energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%) and wastewater treatment (18%). While the USA was the largest E4W consumer from the 1970’s until the 2000’s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models.« less

  18. Education Program on Fossil Resources Including Coal

    NASA Astrophysics Data System (ADS)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  19. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement.

    PubMed

    Tambo, Ernest; Duo-Quan, Wang; Zhou, Xiao-Nong

    2016-10-01

    China still depends on coal for more than 60% of its power despite big investments in the process of shifting to nuclear, solar and wind power renewable energy resources alignment with Paris climate change agreement (Paris CCA). Chinese government through the Communist Party Central Committee (CPCC) ascribes great importance and commitment to Paris CCA legacy and history landmark implementation at all levels. As the world's biggest carbon dioxide emitter, China has embarked on "SMART" pollution and climate changes programs and measures to reduce coal-fired power plants to less than 50% in the next five years include: new China model of energy policies commitment on CO2 and greenhouse gas emissions reductions to less than 20% non-fossil energy use by 2030 without undermining their economic growth, newly introduced electric vehicles transportation benefits, interactive and sustained air quality index (AQI) monitoring systems, decreasing reliance on fossil fuel economic activities, revision of energy price reforms and renewable energy to less energy efficient technologies development. Furthermore, ongoing CPCC improved environmental initiatives, implemented strict regulations and penalties on local companies and firms' pollution production management, massive infrastructures such as highways to reduce CO2 expansion of seven regional emissions trading markets and programs for CO2 emissions and other pollutants are being documented. Maximizing on the centralized nature of the China's government, implemented Chinese pollution, climate changes mitigation and adaptation initiatives, "SMART" strategies and credible measures are promising. A good and practical example is the interactive and dynamic website and database covering 367 Chinese cities and providing real time information on environmental and pollution emissions AQI. Also, water quality index (WQI), radiation and nuclear safety monitoring and management systems over time and space. These are ongoing Chinese valuable and exemplary leadership in Paris CCA implementation to the global community. Especially to pragmatic and responsible efforts to support pollution and climate changes capacity development, technology transfer and empowerment in emissions surveillance and monitoring systems and "SMART" integrated climate changes mitigation packages in global Sustainable Development Goals (SDGs) context, citizenry health and wellbeing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 75 FR 45167 - Notice of Public Workshop on a Potential Rulemaking for Spent Nuclear Fuel Reprocessing Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... more sophisticated reprocessing technology. During the Bush Administration, the Global Nuclear Energy... Associated with the Global Nuclear Energy Partnership,'' dated June 27, 2007 (ADAMS ML071800084), directed... on some Global Nuclear Energy Partnership (GNEP) initiatives had waned and it appeared appropriate to...

  1. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  2. Global Auroral Energy Deposition during Substorm Onset Compared with Local Time and Solar Wind IMF Conditions

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Brittnacher, M.; Fillingim, M. O.; Germany, G. A.; Parks, G. K.

    1998-01-01

    The global images made by the Ultraviolet Imager (UVI) aboard the IASTP/Polar Satellite are used to derive the global auroral energy deposited in the ionosphere resulting from electron precipitation. During a substorm onset, the energy deposited and its location in local time are compared to the solar wind IMF conditions. Previously, insitu measurements of low orbiting satellites have made precipitating particle measurements along the spacecraft track and global images of the auroral zone, without the ability to quantify energy parameters, have been available. However, usage of the high temporal, spatial, and spectral resolution of consecutive UVI images enables quantitative measurement of the energy deposited in the ionosphere not previously available on a global scale. Data over an extended period beginning in January 1997 will be presented.

  3. Observing changes in atmospheric heat content

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Globally, air temperatures near the surface over land have been rising in recent decades, and this has been presented as solid evidence of global warming. However, some scientists have argued that total heat content (energy), rather than temperature, should be used as a metric of warming trends. Surface air temperature is only one component of the energy content of the surface atmosphere—kinetic energy and latent heat also contribute. Peterson et al. present the first study to use observational data to estimate global changes in surface energy of the atmosphere over time. They include temperature, kinetic energy, and latent heat in their analysis. The authors found that total global surface atmospheric energy and heat content have increased since the 1970s, even though kinetic energy decreased slightly and in some regions latent heat declined while temperature increased.

  4. Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data

    PubMed Central

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621

  5. A theory for protein dynamics: Global anisotropy and a normal mode approach to local complexity

    NASA Astrophysics Data System (ADS)

    Copperman, Jeremy; Romano, Pablo; Guenza, Marina

    2014-03-01

    We propose a novel Langevin equation description for the dynamics of biological macromolecules by projecting the solvent and all atomic degrees of freedom onto a set of coarse-grained sites at the single residue level. We utilize a multi-scale approach where molecular dynamic simulations are performed to obtain equilibrium structural correlations input to a modified Rouse-Zimm description which can be solved analytically. The normal mode solution provides a minimal basis set to account for important properties of biological polymers such as the anisotropic global structure, and internal motion on a complex free-energy surface. This multi-scale modeling method predicts the dynamics of both global rotational diffusion and constrained internal motion from the picosecond to the nanosecond regime, and is quantitative when compared to both simulation trajectory and NMR relaxation times. Utilizing non-equilibrium sampling techniques and an explicit treatment of the free-energy barriers in the mode coordinates, the model is extended to include biologically important fluctuations in the microsecond regime, such as bubble and fork formation in nucleic acids, and protein domain motion. This work supported by the NSF under the Graduate STEM Fellows in K-12 Education (GK-12) program, grant DGE-0742540 and NSF grant DMR-0804145, computational support from XSEDE and ACISS.

  6. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  7. Ambitious U.S. Federal Budget Proposal Strong on Science, Short on Details

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-03-01

    The proposed $3.6 trillion U.S. federal budget for fiscal year (FY) 2010, which the Obama administration released on 26 February, includes significant funding for federal science agencies. The budget also emphasizes the development of a comprehensive energy and climate change plan-including a cap and trade program to reduce greenhouse gas emissions-``to transform our energy supply and slow global warming,'' according to the budget document released by the White House Office of Management and Budget (OMB). However, the 134-page budget document-which also emphasizes a theme of rebuilding environmental and resource agencies-is thin on specifics. Programmatic budget details will be released in April, according to an OMB senior official.

  8. Global energy demand to 2060

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starr, C.

    The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a yearmore » 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.« less

  9. Global and regional drivers of accelerating CO2 emissions

    PubMed Central

    Raupach, Michael R.; Marland, Gregg; Ciais, Philippe; Le Quéré, Corinne; Canadell, Josep G.; Klepper, Gernot; Field, Christopher B.

    2007-01-01

    CO2 emissions from fossil-fuel burning and industrial processes have been accelerating at a global scale, with their growth rate increasing from 1.1% y−1 for 1990–1999 to >3% y−1 for 2000–2004. The emissions growth rate since 2000 was greater than for the most fossil-fuel intensive of the Intergovernmental Panel on Climate Change emissions scenarios developed in the late 1990s. Global emissions growth since 2000 was driven by a cessation or reversal of earlier declining trends in the energy intensity of gross domestic product (GDP) (energy/GDP) and the carbon intensity of energy (emissions/energy), coupled with continuing increases in population and per-capita GDP. Nearly constant or slightly increasing trends in the carbon intensity of energy have been recently observed in both developed and developing regions. No region is decarbonizing its energy supply. The growth rate in emissions is strongest in rapidly developing economies, particularly China. Together, the developing and least-developed economies (forming 80% of the world's population) accounted for 73% of global emissions growth in 2004 but only 41% of global emissions and only 23% of global cumulative emissions since the mid-18th century. The results have implications for global equity. PMID:17519334

  10. Numerical study of elastic turbulence in a 3D curvilinear micro-channel

    NASA Astrophysics Data System (ADS)

    Zhang, Hongna; Kunugi, Tomoaki; Li, Fengchen

    2012-11-01

    Elastic turbulence is an intriguing phenomenon of viscoelastic fluid flow, and dominated by the strong nonlinear elasticity due to the existence of flexible microstructures. It implies the possibility to generate a turbulent state (so-called an elastic turbulence) in the micro-scale devices by introducing the viscoelastic fluids, which could significantly enhance the mixing efficiency therein. Several experiments have been carried out to study its characteristics and underlying physics. However, the difficulty in measuring the flow information and behaviors of the microstructures, especially in the cross section normal to the mean flow direction, limits our current understanding and controlling. In the present study, the nondimensionalization method in which the characteristic velocity is defined as the ratio of the solution viscosity to the width of the channel was adopted to simulate the elastic turbulence in the micro-scale devices. And the elastic turbulent flow was obtained numerically in the 3D curvilinear micro-channel. Therein, the characteristics of the velocity field and polymer's behavior are discussed. Moreover, the energy transfer between the kinetic energy and the polymer's elastic energy is also investigated to understand its physical mechanism. Supported by the Japan Society for the Promotion of Science research fellowship and the Ministry of Education, Culture, Sports, Science and Technology via `Energy Science in the Age of Global Warming' of Global Center of Excellence (G-COE) program (J-051).

  11. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009

    NASA Astrophysics Data System (ADS)

    Frolking, Steve; Milliman, Tom; Seto, Karen C.; Friedl, Mark A.

    2013-06-01

    Urban population now exceeds rural population globally, and 60-80% of global energy consumption by households, businesses, transportation, and industry occurs in urban areas. There is growing evidence that built-up infrastructure contributes to carbon emissions inertia, and that investments in infrastructure today have delayed climate cost in the future. Although the United Nations statistics include data on urban population by country and select urban agglomerations, there are no empirical data on built-up infrastructure for a large sample of cities. Here we present the first study to examine changes in the structure of the world’s largest cities from 1999 to 2009. Combining data from two space-borne sensors—backscatter power (PR) from NASA’s SeaWinds microwave scatterometer, and nighttime lights (NL) from NOAA’s defense meteorological satellite program/operational linescan system (DMSP/OLS)—we report large increases in built-up infrastructure stock worldwide and show that cities are expanding both outward and upward. Our results reveal previously undocumented recent and rapid changes in urban areas worldwide that reflect pronounced shifts in the form and structure of cities. Increases in built-up infrastructure are highest in East Asian cities, with Chinese cities rapidly expanding their material infrastructure stock in both height and extent. In contrast, Indian cities are primarily building out and not increasing in verticality. This new dataset will help characterize the structure and form of cities, and ultimately improve our understanding of how cities affect regional-to-global energy use and greenhouse gas emissions.

  12. Training the next generation of global health experts: experiences and recommendations from Pacific Rim universities.

    PubMed

    Withers, Mellissa; Press, David; Wipfli, Heather; McCool, Judith; Chan, Chang-Chuan; Jimba, Masamine; Tremewan, Christopher; Samet, Jonathan

    2016-06-23

    Finding solutions to global health problems will require a highly-trained, inter-disciplinary workforce. Global health education and research can potentially have long-range impact in addressing the global burden of disease and protecting and improving the health of the global population. We conducted an online survey of twelve higher education institutions in the Pacific Rim that spanned the period 2005-2011. Program administrators provided data on program concentrations, student enrollment and student funding opportunities for 41 public health programs, including those specific to global health. The Master of Public Health (MPH) was the most common degree offered. A growing demand for global health education was evident. Enrollment in global health programs increased over three-fold between 2005-2011. Very few institutions had specific global health programs or offered training to undergraduates. Funding for student scholarships was also lacking. The growing demand for global health education suggests that universities in the Pacific Rim should increase educational and training opportunities in this field. Schools of medicine may not be fully equipped to teach global health-related courses and to mentor students who are interested in global health. Increasing the number of dedicated global health research and training institutions in the Pacific Rim can contribute to building capacity in the region. Faculty from different departments and disciplines should be engaged to provide multi-disciplinary global health educational opportunities for undergraduate and graduate students. New, innovative ways to collaborate in education, such as distance education, can also help universities offer a wider range of global health-related courses. Additional funding of global health is also required.

  13. Introduction to Energy - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Cassedy, Edward S.; Grossman, Peter Z.

    1998-12-01

    Energy issues such as pollution, resource depletion, global warming, nuclear power and waste are problems that demand timely solutions. This book provides a critical examination of the resources, market forces, and social impacts of modern energy production. The book addresses the dilemmas that have arisen due to society's crucial dependence on energy, particularly fossil fuels, and explores the available alternative energy producing technologies. The second edition has increased emphasis on those issues at the forefront of the current energy debate: energy sustainability, climate change, and the radical restructuring of the power industry due to de-regulation. Assuming no prior technical expertise and avoiding complex mathematical formulation, it is directed at a broad readership. The second edition will follow the first in proving especially useful as a textbook for undergraduate programs in Science, Technology and Society (STS), and as a supplementary text in a variety of courses which touch upon energy studies, including environmental and technology policy, environmental, mineral and business law, energy and resource economics. Fully updated second edition of successful first edition that was adopted on Science, Technology and Society courses Provides a critical examination of all aspects of modern energy production for non-technical readers For a broad readership from a variety of backgrounds

  14. Global Precipitation Measurement. Report 1; Summary of the First GPM Partners Planning Workshop

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Mehta, Amita; Smith, Eric A. (Editor); Adams, W. James (Editor)

    2002-01-01

    This report provides a synopsis of the proceedings of the First Global Precipitation Measurement (GPM) Partners Planning Workshop held at the University of Maryland, College Park, from May 16 to 18, 2001. GPM consists of a multi-member global satellite constellation (i.e., an international set of satellite missions) and the accompanying scientific research program, with the main goal of providing frequent, accurate, and globally distributed precipitation measurements essential in understanding several fundamental issues associated with the global water and energy cycle (GWEC). The exchange of scientific and technical information at this and subsequent GPM workshops between representatives from around the world represents a key step in the formulation phase of GPM mission development. The U.S. National Aeronautics and Space Agency (NASA), the National Space Development Agency of Japan (NASDA), and other interested agencies from nations around the world seek to observe, understand, and model the Earth system to learn how it is changing and what consequences these changes have on life, particularly as they pertain to hydrological processes and the availability of fresh water resources. GWEN processes are central to a broader understanding of the Earth system.

  15. Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function.

    PubMed

    Snow, M E; Crippen, G M

    1991-08-01

    The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.

  16. Environmental Measurements Laboratory fiscal year 1998: Accomplishments and technical activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.D.

    1999-01-01

    The Environmental Measurements Laboratory (EML) is government-owned, government-operated, and programmatically under the DOE Office of Environmental Management. The Laboratory is administered by the Chicago Operations Office. EML provides program management, technical assistance and data quality assurance for measurements of radiation and radioactivity relating to environmental restoration, global nuclear nonproliferation, and other priority issues for the Department of Energy, as well as for other government, national, and international organizations. This report presents the technical activities and accomplishments of EML for Fiscal Year 1998.

  17. Clouds and more: ARM climate modeling best estimate data: A new data product for climate studies

    DOE PAGES

    Xie, Shaocheng; McCoy, Renata B.; Klein, Stephen A.; ...

    2010-01-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) was created in 1989 to address scientific uncertainties related to global climate change, with a focus on the crucial role of clouds and their influence on the transfer of radiation atmosphere. Here, a central activity is the acquisition of detailed observations of clouds and radiation, as well as related atmospheric variables for climate model evaluation and improvement.

  18. The global technical potential of bio-energy in 2050 considering sustainability constraints

    PubMed Central

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-01-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets (‘technical potential’). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160–270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization (‘cascade utilization’) of biomass flows. PMID:24069093

  19. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural variability of a fixed rate cycle.

  20. Global Precipitation Measurement (GPM) Ground Validation: Plans and Preparations

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Bidwell, S.; Durning, F. J.; Smith, E.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meteorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept, the planning, and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays an important role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper outlines GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial p d temporal structure of the error and plans for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. This paper discusses NASA locations for GV measurements as well as anticipated locations from international GPM partners. NASA's primary locations for validation measurements are an oceanic site at Kwajalein Atoll in the Republic of the Marshall Islands and a continental site in north-central Oklahoma at the U.S. Department of Energy's Atmospheric Radiation Measurement Program site.

  1. Mission to Planet Earth: A program to understand global environmental change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A description of Mission to Planet Earth, a program to understand global environmental change, is presented. Topics discussed include: changes in the environment; global warming; ozone depletion; deforestation; and NASA's role in global change research.

  2. Creating and Implementing an Offshore Graduate Program: A Case Study of Leadership and Development of the Global Executive MBA Program

    ERIC Educational Resources Information Center

    Herrera, Marisa L.

    2013-01-01

    This study applies the literature on leadership framing to the globalization of higher education to understand the development of the Global Executive MBA program at a large university. The purpose of the study was to provide administrators, educators and university leaders an understanding as to how to respond to globalization and, secondly, to…

  3. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nihar; Wei, Max; Letschert, Virginie

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.« less

  4. National Renewable Energy Policy in a Global World

    NASA Astrophysics Data System (ADS)

    Jeong, Minji

    Increasing trade of renewable energy products has significantly contributed to reducing the costs of renewable energy sources, but at the same time, it has generated protectionist policies, which may negatively affect the trend of the cost reduction. Although a few recent studies examined the rise of renewable energy protectionism and trade disputes, they are limited in addressing the conflict between the original goal of traditional renewable energy policies and the new protectionist policies under the globalized renewable energy industry. To fill this gap, this dissertation explores how the globalized renewable energy industry has changed national renewable energy policies. Through three analyses, three aspects of the globalized renewable energy industry are examined: the rise of multinational corporations, international interactions among actors, and the changes of the global and domestic market conditions. First analysis investigates how multinational renewable energy corporations have affected national policies. A content analysis of the annual reports of 15 solar photovoltaic multinational corporation shows that solar multinationals have been influenced by national policies and have adapted to the changes rather than having attempted to change national policies. Second analysis examines how diverse actors have framed renewable energy trade issues through a network analysis of the Chinese solar panel issue in the United States. The result shows that the Chinese solar panel issue was framed differently from the traditional environmental frame of renewable energy, being dominated by multinational corporations headquartered in other countries. Third analysis explores what has caused the increasing diversity in national renewable energy policies through the case studies of the U.S. and South Korea. The result reveals that the globalization of solar industry has affected the diversification of solar policies in two countries by generating both challenges, which needed to be addressed by new and additional policies, and opportunities, which strengthened the political power of domestic solar industries. The three analyses show that the globalized renewable energy industry has led to the diversification of national renewable energy policies by increasing international interactions between actors and by introducing both challenges and opportunities to domestic renewable energy industries. This research contributes to the literature on trade and the environment by analyzing a new pattern of the conflicts between traditional environmental policies and "green" protectionist policies. It also contributes to the literature on protectionism by adding an empirical case of green protectionism, one of the forms of "murky" protectionism that has risen after the global financial crisis.

  5. Setting Goals for Urban Scale Climate Governance

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. K.; Brunner, E.

    2007-12-01

    The impacts of climate change on temperate urban areas may include the increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potential adverse impacts on infrastructure, energy systems, and public health. Warmer average summertime temperatures are also associated with environmental and public health liabilities, such as decreased air quality and increased peak electrical demand. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities and populations currently stressed by poverty, health and economic inequities. In the context of these trends, research at the city scale has sought to understand the social and economic impacts of climate change and variability and to evaluate strategies in the built environment that might serve as adaptive and mitigative responses to climate change. We review the goals and outcomes of several municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., neighborhood watch programs and cooling centers); improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect); and efforts to incentivize the use of non-fossil-fuel based energy sources. Urban initiatives in European and American cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Our concern is to understand the active networked role of urban managers in climate policies and programs in relation to supranational objectives and non-state actors.

  6. A retrospective analysis of funding and focus in US advanced fission innovation

    NASA Astrophysics Data System (ADS)

    Abdulla, A.; Ford, M. J.; Morgan, M. G.; Victor, D. G.

    2017-08-01

    Deep decarbonization of the global energy system will require large investments in energy innovation and the deployment of new technologies. While many studies have focused on the expenditure that will be needed, here we focus on how government has spent public sector resources on innovation for a key carbon-free technology: advanced nuclear. We focus on nuclear power because it has been contributing almost 20% of total US electric generation, and because the US program in this area has historically been the world’s leading effort. Using extensive data acquired through the Freedom of Information Act, we reconstruct the budget history of the Department of Energy’s program to develop advanced, non-light water nuclear reactors. Our analysis shows that—despite spending 2 billion since the late 1990s—no advanced design is ready for deployment. Even if the program had been well designed, it still would have been insufficient to demonstrate even one non-light water technology. It has violated much of the wisdom about the effective execution of innovative programs: annual funding varies fourfold, priorities are ephemeral, incumbent technologies and fuels are prized over innovation, and infrastructure spending consumes half the budget. Absent substantial changes, the possibility of US-designed advanced reactors playing a role in decarbonization by mid-century is low.

  7. Future Impact of Globalism on Programs in Educational Administration.

    ERIC Educational Resources Information Center

    Prickett, R. L.; And Others

    A descriptive analysis addressing the future impact of globalism on programs in educational administration provides perspicacity to professors in the specialty area. Emphasis on internal/global education is usually reserved for programs for individuals going to foreign countries, working with foreign countries, or providing cooperative programs…

  8. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  9. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  10. Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R. Michael; Lewis, Ernie

    2016-09-01

    At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in themore » bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.« less

  11. Hybrid Power Management Program Evaluated Fuel Cell/Ultracapacitor Combinations and Developed Other New Applications

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2004-01-01

    In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.

  12. Cross section measurements at LANSCE for defense, science and applications

    DOE PAGES

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less

  13. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  14. A Data Analysis Toolbox for Modeling the Global Food-Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Sadegh, M.; Mallakpour, I.

    2017-12-01

    Water, Food and energy systems are highly interconnected. More than seventy percent of global water resource is used for food production. Water withdrawal, purification, and transfer systems are energy intensive. Furthermore, energy generation strongly depends on water availability. Therefore, considering the interactions in the nexus of water, food and energy is crucial for sustainable management of available resources. In this presentation, we introduce a user-friendly data analysis toolbox that mines the available global data on food, energy and water, and analyzes their interactions. This toolbox provides estimates of water footprint for a wide range of food types in different countries and also approximates the required energy and water resources. The toolbox also provides estimates of the corresponding emissions and biofuel production of different crops. In summary, this toolbox allows evaluating dependencies of the food, energy, and water systems at the country scale. We present global analysis of the interactions between water, food and energy from different perspectives including efficiency and diversity of resources use.

  15. Global energy regulation in the solar wind-magnetosphere-ionosphere system

    NASA Technical Reports Server (NTRS)

    Sato, T.

    1985-01-01

    Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.

  16. Population Growth. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Jacobsen, Judith E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students…

  17. [Obesity: Current Global and Russian Trends].

    PubMed

    Razina, A O; Runenko, S D; Achkasov, E E

    2016-01-01

    The review of literature presents the results of recent epidemiological studies in obese people in Russia and abroad taking into account gender, age, ethnic, social, and geographicalfactors. The increase of obesity prevalence among different population groups including children and adolescents was registered. The risks of health problems associated with overweight and obesity probably leading to disability and mortality were analyzed. It was shown that the energy imbalance played a key role in the etiopathogenesis of obesity among many other factors. This occurs as a consequence of discrepancy between energy consumption and energy discharge especially under the conditions of hypokinesia in all spheres of modern life. Particular attention was paid to the analysis of environmental factors, increasing urbanization, and socio-economic conditions of modern life. The fundamental importance of a multidisciplinary approach in the development of prevention and treatment and rehabilitation programs was accentuated. The attention was paid to the role of economic factors in the development of carbohydrate metabolism disorders. The important role of the goverment was shown in the development of health improvement programs including improvement of the environmental situation, change in anthropogenic environment due to physical activity. The preferred direction of comprehensive programs ofprevention and treatment of obesity were defined including optimization of the motor regime, diet correction, increasing the motivation to healthy lifestyle, physical education and sports, as well as increasing the individual's personal responsibility for their health.

  18. Energy and environmental policy in a period of transition. Proceedings of the twenty-third annual Illinois energy conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The Twenty-Third Annual Illinois Energy Conference entitled, ``Energy and Environmental Policy in a Period of Transition`` was held in Chicago, Illinois on November 20--21, 1995. The conference program explored how federal policy in energy and environment is changing and how these shifts will impact the economy of the Midwest. The conference was divided in four plenary sessions. Session 1 focused on the national policy scene where speakers discussed proposed legislation to change federal energy and environmental policy. Session 2 looked at the future structure of the energy industry, projecting the roles of natural gas, the electric utility industry, and independentmore » power producers in the overall energy system of the 21st century. Session 3 examined current federal policy in research and development as a baseline for discussing the future role of government and industry in supporting research and development. In particular, it looked at the relationship between energy research and development and global competitiveness. Finally, Session 4 attempted to tie these issues together and consider the impact of national policy change on Illinois and the Midwest.« less

  19. Venezuela Country Analysis Brief

    EIA Publications

    2015-01-01

    Venezuela is one of the world’s largest producers and exporters of crude oil. The country has been one of the largest exporters of crude oil in the Americas. As a founding member of the Organization of the Petroleum Exporting Countries (OPEC), Venezuela is an important player in the global oil market. Although oil production has declined since its peak in the late 1990s, Venezuela has been among the top exporters of crude oil to the United States have been among the largest in the world. In recent years, through significant upfront investment, an increasing share of Venezuela’s exports has been delivered to China. While Venezuela is important to the global oil market, the government’s reinvestment of oil revenues into social programs instead of reinvestment into exploration, production, and refining has led to declines in output. In 2014, Venezuela consumed 3.3 quadrillion British thermal units (Btu) of total energy.1 Oil continues to represent most of the country’s total energy consumed, and natural gas consumption has increased in the past five years. Hydroelectric power meets less than 25% of total demand, and coal represents less than 1%.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William; Rivkin, Carl; Burgess, Robert

    The United Nations Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular fuel cell electric vehicles (FCEV). GTR Number 13 has been formally implemented and will serve as the basis for the national regulatory standards for FCEV safety in North America (Canada, United States), Japan, Korea, and the European Union. The GTR defines safety requirement for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels inmore » vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, in order to be binding, methods to verify compliance to the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance to the hydrogen release requirement as specified in the GTR.« less

  1. Developing Intercultural Competence through Global Link Experiences in Physical Education

    ERIC Educational Resources Information Center

    Ko, Bomna; Boswell, Boni; Yoon, Seok

    2015-01-01

    Background: Recognition of the importance of the development of intercultural competence (ICC) has placed intense pressure on teacher education programs to infuse a global perspective into their programs. Several studies have proposed integration of global elements into teacher education programs. Although the use of online tools for…

  2. Teacher Preparation for the Global Stage: International Student Teaching

    ERIC Educational Resources Information Center

    Chacko, Jacob B.; Lin, Miranda

    2015-01-01

    As globalization lessens the distance between peoples and diversifies the common classroom, teacher education programs lag behind in producing globally-minded educators. One approach used by some teacher education programs to remedy this issue is to offer international student teaching experiences. While the literature related to these programs is…

  3. The Multiplier Effect: The Case for Multi-School, Global Education Programs

    ERIC Educational Resources Information Center

    Dugan, Rik; Nink, Matt

    2010-01-01

    Multi-school and multi-country programs greatly enhance leadership development and global awareness in students and teachers, while creating better problem solvers, stronger relationships, and wider community impact than any single-school program. That's why Global Youth Leadership Institute (GYLI) and National Association of Independent Schools…

  4. International Education: The International Baccalaureate, Montessori and Global Citizenship

    ERIC Educational Resources Information Center

    Brunold-Conesa, Cynthia

    2010-01-01

    The International Baccalaureate (IB) programs and Montessori education both claim to promote values associated with global citizenship in order to help prepare students for new challenges presented by an increasingly globalized world. While the IB's secondary programs are widespread in international schools, Montessori programs at that level are…

  5. Global health training in US graduate psychiatric education.

    PubMed

    Tsai, Alexander C; Fricchione, Gregory L; Walensky, Rochelle P; Ng, Courtney; Bangsberg, David R; Kerry, Vanessa B

    2014-08-01

    Global health training opportunities have figured prominently into medical students' residency program choices across a range of clinical specialties. To date, however, the national scope of global mental health education has not heretofore been systematically assessed. We therefore sought to characterize the distribution of global health training opportunities in US graduate psychiatric education. We examined the web pages of all US psychiatry residency training programs, along with search results from a systematic Google query designed to identify global health training opportunities. Of the 183 accredited US psychiatry residency programs, we identified 17 programs (9.3%) offering 28 global health training opportunities in 64 countries. Ten psychiatry residency programs offered their residents opportunities to participate in one or more elective-based rotations, eight offered research activities, and six offered extended field-based training. Most global health training opportunities occurred within the context of externally administered, institution-wide initiatives generally available to residents from a range of clinical specialties, rather than within internally administered departmental initiatives specifically tailored for psychiatry residents. There are relatively few global health training opportunities in US graduate psychiatric education. These activities have a clear role in enhancing mastery of Accreditation Council for Graduate Medical Education core competencies, but important challenges related to program funding and evaluation remain.

  6. Global Health Training in U.S. Graduate Psychiatric Education

    PubMed Central

    Tsai, Alexander; Fricchione, Gregory; Walensky, Rochelle; Ng, Courtney; Bangsberg, David; Kerry, Vanessa

    2014-01-01

    Objective Global health training opportunities have figured prominently into medical students’ residency program choices across a range of clinical specialties. To date, however, the national scope of global mental health education has not heretofore been systematically assessed. We therefore sought to characterize the distribution of global health training opportunities in U.S. graduate psychiatric education. Methods We examined the web pages of all U.S. psychiatry residency training programs, along with search results from a systematic Google query designed to identify global health training opportunities. Results Of the 183 accredited U.S. psychiatry residency programs, we identified 17 programs (9.3%) offering 28 global health training opportunities in 64 countries. Ten psychiatry residency programs offered their residents opportunities to participate in one or more elective-based rotations, eight offered research activities, and six offered extended field-based training. Most global health training opportunities occurred within the context of externally administered, institution-wide initiatives generally available to residents from a range of clinical specialties, rather than within internally administered departmental initiatives specifically tailored for psychiatry residents. Conclusions There are relatively few global health training opportunities in U.S. graduate psychiatric education. These activities have a clear role in enhancing mastery of Accreditation Council for Graduate Medical Education core competencies, but important challenges related to program funding and evaluation remain. PMID:24664609

  7. Mercury Information Clearinghouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEAmore » quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through analysis and quality assurance programs; and (4) Create and maintain an information clearinghouse to ensure that all parties can keep informed on global mercury research and development activities.« less

  8. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  9. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  10. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    DTIC Science & Technology

    2013-08-26

    Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds

  11. Democratizing Energy Access in a Marketized World: The Cases of Costa Rica and Nicaragua

    NASA Astrophysics Data System (ADS)

    Colbert, M'Lisa Lee

    This thesis explores the experiences, motivations and the imaginary of people who seek to democratize access to energy. Through a survey of the energy democracy movement in Europe and North America and a case study of two participatory and democratically oriented electricity providers in Central America, this thesis examines the differences and similarities between democratizing energy in the Global North and Global South in the context of marketization and the global push to transition to renewable energy. The forces of an expanding global energy economy are increasingly influencing the way that we can access and consume energy in our lives. Local interactions cannot be understood by an isolated analysis without considering the larger structural conditions that implicate them. Today, we are witnessing a global push to transition our energy resources from fossil fuels to renewables due to the emergency of climate change. For the most part, this transition preoccupies itself with changing the technological instruments that source us the energy. Yet few changes are targeting transition from growth focused market-based economic models. Energy Democracy is one new imaginary that people are rallying around to help realize alternatives to drive more equitable and sustainable post-carbon futures. This thesis finds that there are unfounded normative assumptions being made about groups organizing around energy democracy that is causing scatter in the movement. There is an aggressive strand of energy democracy that readily accepts for-profit schemes and risks turning energy democracy into just another space for capital accumulation in the energy sector. This thesis presents two important suggestions for reconciling these problems. Firstly, to look beyond moving the term itself and prioritize connecting on the basis of the underlying principles that define the term. This will ultimately create more meaningful solidarity in the future, and a more grounded and unified movement. Secondly, to increase focus on exploring the experiences and motivations of like-minded groups in the Global South who are heavily implicated by this global energy transition and, necessarily, by any movement that seeks an alternative to it.

  12. GEWEX Radiative Flux Assessment

    Atmospheric Science Data Center

    2016-05-20

    ... The ultimate goal of the Global Energy and Water Cycle Experiment ( GEWEX ) global data analysis projects is to obtain observations of the elements of the global energy and water cycle with sufficient detail and accuracy to diagnose the causes of ...

  13. Global Health Education in Pulmonary and Critical Care Medicine Fellowships.

    PubMed

    Siddharthan, Trishul; North, Crystal M; Attia, Engi F; Christiani, David C; Checkley, William; West, T Eoin

    2016-06-01

    A growing number of pulmonary and critical care medicine fellowship programs in the United States offer global health training opportunities. Formal, integrated global health programs within pulmonary and critical care fellowships are relatively new but are built on principles and ideals of global health that focus on the mutually beneficial exchange of knowledge and social justice. Although core competencies consistent with these overarching themes in global health education have not been formalized for pulmonary and critical care trainees, relevant competency areas include clinical knowledge, international research training, cultural competency, and clinical and research capacity building. Existing global health education in U.S. pulmonary and critical care medicine training programs can generally be classified as one of three different models: integrated global health tracks, global health electives, and additional research years. Successful global health education programs foster partnerships and collaborations with international sites that emphasize bidirectional exchange. This bidirectional exchange includes ongoing, equitable commitments to mutual opportunities for training and professional development, including a focus on the particular knowledge and skill sets critical for addressing the unique priorities of individual countries. However, barriers related to the availability of mentorship, funding, and dedicated time exist to expanding global health education in pulmonary and critical care medicine. The implementation of global health training within pulmonary and critical care medicine programs requires continued optimization, but this training is essential to prepare the next generation of physicians to address the global aspects of respiratory disease and critical illness.

  14. German central solar heating plants with seasonal heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (inmore » Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robyn Ready

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy,more » math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.« less

  16. New Academic Partnerships in Global Health: Innovations at Mount Sinai School of Medicine

    PubMed Central

    Landrigan, Philip J.; Ripp, Jonathan; Murphy, Ramon J. C.; Claudio, Luz; Jao, Jennifer; Hexom, Braden; Bloom, Harrison G.; Shirazian, Taraneh; Elahi, Ebby; Koplan, Jeffrey P.

    2011-01-01

    Global health has become an increasingly important focus of education, research, and clinical service in North American universities and academic health centers. Today there are at least 49 academically based global health programs in the United States and Canada, as compared with only one in 1999. A new academic society, the Consortium of Universities for Global Health, was established in 2008 and has grown significantly. This sharp expansion reflects convergence of 3 factors: (1) rapidly growing student and faculty interest in global health; (2) growing realization–powerfully catalyzed by the acquired immune deficiency syndrome epidemic, the emergence of other new infections, climate change, and globalization–that health problems are interconnected, cross national borders, and are global in nature; and (3) rapid expansion in resources for global health. This article examines the evolution of the concept of global health and describes the driving forces that have accelerated interest in the field. It traces the development of global health programs in academic health centers in the United States. It presents a blueprint for a new school-wide global health program at Mount Sinai School of Medicine. The mission of that program, Mount Sinai Global Health, is to enhance global health as an academic field of study within the Mount Sinai community and to improve the health of people around the world. Mount Sinai Global Health is uniting and building synergies among strong, existing global health programs within Mount Sinai; it is training the next generation of physicians and health scientists to be leaders in global health; it is making novel discoveries that translate into blueprints for improving health worldwide; and it builds on Mount Sinai’s long and proud tradition of providing medical and surgical care in places where need is great and resources few. PMID:21598272

  17. A REVISED SOLAR TRANSFORMITY FOR TIDAL ENERGY RECEIVED BY THE EARTH AND DISSIPATED GLOBALLY: IMPLICATIONS FOR EMERGY ANALYSIS

    EPA Science Inventory

    Solar transformities for the tidal energy received by the earth and the tidal energy dissipated globally can be calculated because both solar energy and the gravitational attraction of the sun and moon drive independent processes that produce an annual flux of geopotential energy...

  18. Valuing and Maintaining Independent Research with Private Sector Funding

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2016-12-01

    Industries have been funding important research programs in the Geosciences at universities for decades. This support has proven to be beneficial to both universities and the private sector. It is of course important that the independence of the researchers in this relationship is maintained. The relationship usually involves a common interest in understanding and solving a particular problem. Some common keys to maintaining independence have been transparency about the relationship, control of the research agenda by the researchers, and no censorship of publications. In addressing this topic, I will draw upon my experience in two programs that have been funded by industry as well as federal agencies. The 25-year-old Joint Program on the Science and Policy of Global Change uses coupled earth system and economic models to quantify risks of climate change and assess affordable ways to evolve to low to zero emission energy in the future, and is funded by DOE and other federal agencies plus a large consortium of industries (globalchange.mit.edu). And the 38-year-old AGAGE global network that measures, and estimates emissions and lifetimes, of greenhouse and ozone-depleting gases, and is funded by NASA but was also supported in its first 6 years by a consortium of CFC manufacturing companies (agage.mit.edu).

  19. Commercial Complexity and Local and Global Involvement in Programs: Effects on Viewer Responses.

    ERIC Educational Resources Information Center

    Oberman, Heiko; Thorson, Esther

    A study investigated the effects of local (momentary) and global (whole program) involvement in program context and the effects of message complexity on the retention of television commercials. Sixteen commercials, categorized as simple video/simple audio through complex video/complex audio were edited into two globally high- and two globally…

  20. Global 4-H Network: Laying the Groundwork for Global Extension Opportunities

    ERIC Educational Resources Information Center

    Major, Jennifer; Miller, Rhonda

    2012-01-01

    A descriptive study examining 4-H programs in Africa, Asia, and Europe was conducted to provide understanding and direction in the establishment of a Global 4-H Network. Information regarding structure, organizational support, funding, and programming areas was gathered. Programs varied greatly by country, and many partnered with other 4-H…

  1. World bank and the environment. Progress report. Banco mundial y el medio ambiente

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    The second annual report describes specific environmental strategies and environmental lending in the Bank's four operational regions: Africa; Asia; Europe, Middle East, and North Africa; and Latin America and the Caribbean. It details the Bank's progress in eight environmental categories: energy and the environment, pollution, urban environment, water resources management, forest and land management, social and cultural, environmental economics, and the global environment. One chapter is devoted exclusively to tropical forests, studying ways in which the Bank is dealing with deforestation as a part of the constant review of its forest policies. Suggestions are made for decreasing the degradation ofmore » tropical forests while meeting demands for forest products. This chapter reflects a shift in Bank emphasis from commercial ventures to conservation measures. The publication reports on other initiatives by the Bank during fiscal 1991, including the launching of the Global Environment Facility (GEF)--a pilot program to oversee reduction of global warming, preservation of biological diversity, protection of international waters, and prevention of ozone depletion.« less

  2. The Community Water Model (CWATM) / Development of a community driven global water model

    NASA Astrophysics Data System (ADS)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In a bigger framework of nexus - water, energy, food, ecosystem - CWATM will be coupled to the existing IIASA models including the Integrated Assessment Model MESSAGE and the global land and ecosystem model GLOBIOM in order to realize an improved assessments of water-energy-food-ecosystem nexus and associated feedback. Our vision for the short to medium term work is to introduce water quality (e.g., salinization in deltas and eutrophication associated with mega cities) into CWATM and to consider qualitative and quantitative measures of transboundary river and groundwater governance into an integrated modelling framework.

  3. Globalizing Agricultural Science and Education Programs for America.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This document proposes an agenda for globalizing agricultural science and education which has implications for higher education, research, and extension programs at land-grant and similar universities. To enhance global competitiveness of U.S. agriculture through human resource development, institutions are urged to: globalize undergraduate and…

  4. Distributed Generation to Support Development-Focused Climate Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sadie; Gagnon, Pieter; Stout, Sherry

    2016-09-01

    This paper explores the role of distributed generation, with a high renewable energy contribution, in supporting low emission climate-resilient development. The paper presents potential impacts on development (via energy access), greenhouse gas emission mitigation, and climate resilience directly associated with distributed generation, as well as specific actions that may enhance or increase the likelihood of climate and development benefits. This paper also seeks to provide practical and timely insights to support distributed generation policymaking and planning within the context of common climate and development goals as the distributed generation landscape rapidly evolves globally. Country-specific distributed generation policy and program examples,more » as well as analytical tools that can inform efforts internationally, are also highlighted throughout the paper.« less

  5. Renewable energy for productive uses in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a linemore » item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.« less

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less

  8. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less

  9. Teaching corner: child family health international : the ethics of asset-based global health education programs.

    PubMed

    Evert, Jessica

    2015-03-01

    Child Family Health International (CFHI) is a U.S.-based nonprofit, nongovernmental organization (NGO) that has more than 25 global health education programs in seven countries annually serving more than 600 interprofessional undergraduate, graduate, and postgraduate participants in programs geared toward individual students and university partners. Recognized by Special Consultative Status with the United Nations Economic and Social Council (ECOSOC), CFHI utilizes an asset-based community engagement model to ensure that CFHI's programs challenge, rather than reinforce, historical power imbalances between the "Global North" and "Global South." CFHI's programs are predicated on ethical principles including reciprocity, sustainability, humility, transparency, nonmaleficence, respect for persons, and social justice.

  10. Preface--Environmental issues related to oil and gas exploration and production

    USGS Publications Warehouse

    Kharaka, Yousif K.; Otton, James K.

    2007-01-01

    Energy is the essential commodity that powers the expanding global economy. Starting in the 1950s, oil and natural gas became the main sources of primary energy for the rapidly increasing world population (Edwards, 1997). In 2003, petroleum was the source for 62.1% of global energy, and projections by energy information administration (EIA) indicate that oil and gas will continue their dominance, supplying 59.5% of global energy in 2030 (EIA, 2007). Unfortunately petroleum and coal consumption carry major detrimental environmental impacts that may be regional or global in scale, including air pollution, global climate change and oil spills. This special volume of Applied Geochemistry, devoted to “Environmental Issues Related to Oil and Gas Exploration and Production”, does not address these major impacts directly because air pollution and global climate change are issues related primarily to the burning of petroleum and coal, and major oil spills generally occur during ocean transport, such as the Exxon Valdez 1989 spill of 42,000 m3 (260,000 bbl) oil into Prince William Sound, Alaska.

  11. Modern Era Retrospective-analysis for Research and Applications (MERRA) Global Water and Energy Budgets

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chen, Junye

    2009-01-01

    In the Summer of 2009, NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) will have completed 28 years of global satellite data analyses. Here, we characterize the global water and energy budgets of MERRA, compared with available observations and the latest reanalyses. In this analysis, the climatology of the global average components are studied as well as the separate land and ocean averages. In addition, the time series of the global averages are evaluated. For example, the global difference of precipitation and evaporation generally shows the influence of water vapor observations on the system. Since the observing systems change in time, especially remotely sensed observations of water, significant temporal variations can occur across the 28 year record. These then are also closely connected to changes in the atmospheric energy and water budgets. The net imbalance of the energy budget at the surface can be large and different signs for different reanalyses. In MERRA, the imbalance of energy at the surface tends to improve with time being the smallest during the most recent and abundant satellite observations.

  12. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  13. Building health systems capacity in global health graduate programs: reflections from Australian educators

    PubMed Central

    2012-01-01

    There has been increasing focus on the role of health systems in low and middle-income countries. Despite this, very little evidence exists on how best to build health systems program and research capacity in educational programs. The current experiences in building capacity in health systems in five of the most prominent global health programs at Australian universities are outlined. The strengths and weaknesses of various approaches and techniques are provided along with examples of global practice in order to provide a foundation for future discussion and thus improvements in global health systems education. PMID:22920502

  14. The Global Energy Budget.

    ERIC Educational Resources Information Center

    Jax, Daniel W.

    1992-01-01

    Presents a lesson plan about greenhouse effect and global warming. Includes diagrams and graphs from which students are asked to make inferences. Provides background information about how energy enters and leaves the earth system, the energy budget, consequences of obstructing the energy balance, and the greenhouse effect. (three references) (MCO)

  15. Global health training among U.S. residency specialties: a systematic literature review.

    PubMed

    Hau, Duncan K; Smart, Luke R; DiPace, Jennifer I; Peck, Robert N

    2017-01-01

    Interest in global health training during residency is increasing. Global health knowledge is also becoming essential for health-care delivery today. Many U.S. residency programs have been incorporating global health training opportunities for their residents. We performed a systematic literature review to evaluate global health training opportunities and challenges among U.S. residency specialties. We searched PubMed from its earliest dates until October 2015. Articles included were survey results of U.S. program directors on global health training opportunities, and web-based searches of U.S. residency program websites on global health training opportunities. Data extracted included percentage of residency programs offering global health training within a specialty and challenges encountered. Studies were found for twelve U.S. residency specialties. Of the survey based studies, the specialties with the highest percentage of their residency programs offering global health training were preventive medicine (83%), emergency medicine (74%), and surgery (71%); and the lowest were orthopaedic surgery (26%), obstetrics and gynecology (28%), and plastic surgery (41%). Of the web-based studies, the specialties with the highest percentage of their residency programs offering global health training were emergency medicine (41%), pediatrics (33%), and family medicine (22%); and the lowest were psychiatry (9%), obstetrics and gynecology (17%), and surgery (18%). The most common challenges were lack of funding, lack of international partnerships, lack of supervision, and scheduling. Among U.S. residency specialties, there are wide disparities for global health training. In general, there are few opportunities in psychiatry and surgical residency specialties, and greater opportunities among medical residency specialties. Further emphasis should be made to scale-up opportunities for psychiatry and surgical residency specialties.

  16. Global health training among U.S. residency specialties: a systematic literature review

    PubMed Central

    Hau, Duncan K.; Smart, Luke R.; DiPace, Jennifer I.; Peck, Robert N.

    2017-01-01

    ABSTRACT Background: Interest in global health training during residency is increasing. Global health knowledge is also becoming essential for health-care delivery today. Many U.S. residency programs have been incorporating global health training opportunities for their residents. We performed a systematic literature review to evaluate global health training opportunities and challenges among U.S. residency specialties. Methods: We searched PubMed from its earliest dates until October 2015. Articles included were survey results of U.S. program directors on global health training opportunities, and web-based searches of U.S. residency program websites on global health training opportunities. Data extracted included percentage of residency programs offering global health training within a specialty and challenges encountered. Results: Studies were found for twelve U.S. residency specialties. Of the survey based studies, the specialties with the highest percentage of their residency programs offering global health training were preventive medicine (83%), emergency medicine (74%), and surgery (71%); and the lowest were orthopaedic surgery (26%), obstetrics and gynecology (28%), and plastic surgery (41%). Of the web-based studies, the specialties with the highest percentage of their residency programs offering global health training were emergency medicine (41%), pediatrics (33%), and family medicine (22%); and the lowest were psychiatry (9%), obstetrics and gynecology (17%), and surgery (18%). The most common challenges were lack of funding, lack of international partnerships, lack of supervision, and scheduling. Conclusion: Among U.S. residency specialties, there are wide disparities for global health training. In general, there are few opportunities in psychiatry and surgical residency specialties, and greater opportunities among medical residency specialties. Further emphasis should be made to scale-up opportunities for psychiatry and surgical residency specialties. PMID:28178918

  17. Identifying interprofessional global health competencies for 21st-century health professionals.

    PubMed

    Jogerst, Kristen; Callender, Brian; Adams, Virginia; Evert, Jessica; Fields, Elise; Hall, Thomas; Olsen, Jody; Rowthorn, Virginia; Rudy, Sharon; Shen, Jiabin; Simon, Lisa; Torres, Herica; Velji, Anvar; Wilson, Lynda L

    2015-01-01

    At the 2008 inaugural meeting of the Consortium of Universities for Global Health (CUGH), participants discussed the rapid expansion of global health programs and the lack of standardized competencies and curricula to guide these programs. In 2013, CUGH appointed a Global Health Competency Subcommittee and charged this subcommittee with identifying broad global health core competencies applicable across disciplines. The purpose of this paper is to describe the Subcommittee's work and proposed list of interprofessional global health competencies. After agreeing on a definition of global health to guide the Subcommittee's work, members conducted an extensive literature review to identify existing competencies in all fields relevant to global health. Subcommittee members initially identified 82 competencies in 12 separate domains, and proposed four different competency levels. The proposed competencies and domains were discussed during multiple conference calls, and subcommittee members voted to determine the final competencies to be included in two of the four proposed competency levels (global citizen and basic operational level - program oriented). The final proposed list included a total of 13 competencies across 8 domains for the Global Citizen Level and 39 competencies across 11 domains for the Basic Operational Program-Oriented Level. There is a need for continued debate and dialog to validate the proposed set of competencies, and a need for further research to identify best strategies for incorporating these competencies into global health educational programs. Future research should focus on implementation and evaluation of these competencies across a range of educational programs, and further delineating the competencies needed across all four proposed competency levels. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Resolutions of the Coulomb operator: VIII. Parallel implementation using the modern programming language X10.

    PubMed

    Limpanuparb, Taweetham; Milthorpe, Josh; Rendell, Alistair P

    2014-10-30

    Use of the modern parallel programming language X10 for computing long-range Coulomb and exchange interactions is presented. By using X10, a partitioned global address space language with support for task parallelism and the explicit representation of data locality, the resolution of the Ewald operator can be parallelized in a straightforward manner including use of both intranode and internode parallelism. We evaluate four different schemes for dynamic load balancing of integral calculation using X10's work stealing runtime, and report performance results for long-range HF energy calculation of large molecule/high quality basis running on up to 1024 cores of a high performance cluster machine. Copyright © 2014 Wiley Periodicals, Inc.

  19. Energy in an Interdependent World: A Global Development Studies Case Study.

    ERIC Educational Resources Information Center

    Collier, Anne B.

    Part of the Global Development Studies Institute series of model curricula, the teacher guide presents strategies for teaching about energy as a global issue. The unit, intended for students in grades 11-14, is designed for one semester. The overall objective is to promote awareness of and responsibility toward the global community through an…

  20. 78 FR 17232 - Meeting of the Global Justice Information Sharing Initiative Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (BJA) Docket No. 1616] Meeting of the Global Justice Information Sharing Initiative Federal Advisory Committee AGENCY: Office of Justice Programs (OJP... Information Sharing Initiative (Global) Federal Advisory Committee (GAC) to discuss the Global Initiative, as...

  1. The Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's OceanThe Global Drifter Program Currents, Sea Surface Temperature, Atmospheric Pressure and Waves in the World's Ocean

    NASA Astrophysics Data System (ADS)

    Centurioni, Luca

    2017-04-01

    The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.

  2. Modeling global macroclimatic constraints on ectotherm energy budgets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, B.W.; Porter, W.P.

    1992-12-31

    The authors describe a mechanistic individual-based model of how global macroclimatic constraints affect the energy budgets of ectothermic animals. The model uses macroclimatic and biophysical characters of the habitat and organism and tenets of heat transfer theory to calculate hourly temperature availabilities over a year. Data on the temperature dependence of activity rate, metabolism, food consumption and food processing capacity are used to estimate the net rate of resource assimilation which is then integrated over time. They present a new test of this model in which they show that the predicted energy budget sizes for 11 populations of the lizardmore » Sceloporus undulates are in close agreement with observed results from previous field studies. This demonstrates that model tests rae feasible and the results are reasonable. Further, since the model represents an upper bound to the size of the energy budget, observed residual deviations form explicit predictions about the effects of environmental constraints on the bioenergetics of the study lizards within each site that may be tested by future field and laboratory studies. Three major new improvements to the modeling are discussed. They present a means to estimate microclimate thermal heterogeneity more realistically and include its effects on field rates of individual activity and food consumption. Second, they describe an improved model of digestive function involving batch processing of consumed food. Third, they show how optimality methods (specifically the methods of stochastic dynamic programming) may be included to model the fitness consequences of energy allocation decisions subject to food consumption and processing constraints which are predicted from the microclimate and physiological modeling.« less

  3. Global Learning and Development as an Engagement Strategy for Christian Higher Education: A Macro Study

    ERIC Educational Resources Information Center

    Decker, Allyn; Hawkins, Greg

    2016-01-01

    The purpose of this research was to better understand the variety of student and faculty global learning and development programs by member institutions of the Council for Christian Colleges & Universities (CCCU), and what motivated the creation of these types of programs. Although various forms of global engagement programming were examined,…

  4. Cross-Cultural and Global Interdependency Development in STEM Undergraduate Students: Results from Singapore Study Abroad Program

    ERIC Educational Resources Information Center

    Alexis, Frank; Casco, M.; Martin, J.; Zhang, G.

    2017-01-01

    The goal of study abroad programs is to educate and train future global leaders. This article examines the effectiveness of Clemson University's Singapore Study Abroad program in meeting this goal by exposing students to global perspectives of science technology, engineering and math (STEM) research and learning through an international summer…

  5. The interstellar boundary explorer (IBEX): Update at the end of phase B

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Allegrini, F.; Bartolone, L.; Bochsler, P.; Bzowski, M.; Collier, M.; Fahr, H.; Fichtner, H.; Frisch, P.; Funsten, H.; Fuselier, Steve; Gloeckler, G.; Gruntman, M.; Izmodenov, V.; Knappenberger, P.; Lee, M.; Livi, S.; Mitchell, D.; Möbius, E.; Moore, T.; Pope, S.; Reisenfeld, D.; Roelof, E.; Runge, H.; Scherrer, J.; Schwadron, N.; Tyler, R.; Wieser, M.; Witte, M.; Wurz, P.; Zank, G.

    2006-09-01

    The Interstellar Boundary Explorer (IBEX) mission will make the first global observations of the heliosphere's interaction with the interstellar medium. IBEX achieves these breakthrough observations by traveling outside of the Earth's magnetosphere in a highly elliptical orbit and taking global Energetic Neutral Atoms (ENA) images over energies from ~10 eV to 6 keV. IBEX's high-apogee (~50 RE) orbit enables heliospheric ENA measurements by providing viewing from far above the Earth's relatively bright magnetospheric ENA emissions. This high energy orbit is achieved from a Pegasus XL launch vehicle by adding the propulsion from an IBEX-supplied solid rocket motor and the spacecraft's hydrazine propulsion system. IBEX carries two very large-aperture, single-pixel ENA cameras that view perpendicular to the spacecraft's Sun-pointed spin axis. Each six months, the continuous spinning of the spacecraft and periodic re-pointing to maintain the sun-pointing spin axis naturally lead to global, all-sky images. Over the course of our NASA Phase B program, the IBEX team optimized the designs of all subsystems. In this paper we summarize several significant advances in both IBEX sensors, our expected signal to noise (and background), and our groundbreaking approach to achieve a very high-altitude orbit from a Pegasus launch vehicle for the first time. IBEX is in full scale development and on track for launch in June of 2008.

  6. Comparison of Cloud Detection Using the CERES-MODIS Ed4 and LaRC AVHRR Cloud Masks and CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Trepte, Q. Z.; Minnis, P.; Palikonda, R.; Bedka, K. M.; Sun-Mack, S.

    2011-12-01

    Accurate detection of cloud amount and distribution using satellite observations is crucial in determining cloud radiative forcing and earth energy budget. The CERES-MODIS (CM) Edition 4 cloud mask is a global cloud detection algorithm for application to Terra and Aqua MODIS data with the aid of other ancillary data sets. It is used operationally for the NASA's Cloud and Earth's Radiant Energy System (CERES) project. The LaRC AVHRR cloud mask, which uses only five spectral channels, is based on a subset of the CM cloud mask which employs twelve MODIS channels. The LaRC mask is applied to AVHRR data for the NOAA Climate Data Record Program. Comparisons among the CM Ed4, and LaRC AVHRR cloud masks and the CALIPSO Vertical Feature Mask (VFM) constitute a powerful means for validating and improving cloud detection globally. They also help us understand the strengths and limitations of the various cloud retrievals which use either active and passive satellite sensors. In this paper, individual comparisons will be presented for different types of clouds over various surfaces, including daytime and nighttime, and polar and non-polar regions. Additionally, the statistics of the global, regional, and zonal cloud occurrence and amount from the CERES Ed4, AVHRR cloud masks and CALIPSO VFM will be discussed.

  7. ESD practice through global approach -7-year practices of developing science lessen modules and fostering integrated decision making ability-

    NASA Astrophysics Data System (ADS)

    Kajiyama, Kosei

    2016-04-01

    Hiroshima University High School (HUHS) has devised and carried out overseas exchange programs on ESD issues for 7 years. These programs have been carried out as a part of a government-aided project called SSH (Super Science High School) *1. To start with, we had cooperative study program with a school in Germany in 2009, and next year with a school in Korea, and then gradually have expanded the cooperative schools. Since 2013, we have worked with schools in four countries; Korea, Thailand, Czech and Germany. Science lesson modules here refers to an assembly of a set of lessons, newly developed and improved for the project. These modules characteristically require the students to make decisions by themselves on given problems. In the course of the decision making, students learn what kind of data or facts should be presented as evidence and how they can make their decisions known to others. Among several modules we have designed, the one introduced here deals with the use of solar energy, which we carried out with a school in Korea in 2014-2015. It also includes lessons of the fuel cells using energy from hydrogen gas generated by solar cells. It aims to develop global human resources through carefully planned activities. First, the students of both schools make mixed groups and conduct experiments in physics, chemistry or biology on a given problem related to solar energy. Then they discuss in groups using data obtained from the experiments and through the Internet as evidence. After the thorough discussion, each group gives a presentation on their decision. The analysis of the presentations and the questionnaire to the students revealed the following points: 1) Students have come to have multidimensional perspectives on the utilization of solar energy. 2) Students have come to combine the results of different experiments when making decisions. 3) Students have developed flexible attitudes toward other cultures. 4) Students have developed communication skills in English. *1 SSH: Since 2002, the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) have designated schools that focus their education on science and math as Super Science High Schools and our school has been designated as one of SSH schools since 2003

  8. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    NASA Astrophysics Data System (ADS)

    Winslow, Anne

    2011-06-01

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels—particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a "nuclear renaissance", this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  9. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittencymore » of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.« less

  10. Higher order statistical moment application for solar PV potential analysis

    NASA Astrophysics Data System (ADS)

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  11. Building a Sustainable Global Surgical Program in an Academic Department of Surgery.

    PubMed

    Zhang, Linda P; Silverberg, Daniel; Divino, Celia M; Marin, Michael

    Global surgery and volunteerism in surgery has gained significant interest in recent years for general surgery residents across the country. However, there are few well-established long-term surgical programs affiliated with academic institutions. The present report discusses the implementation process and challenges facing an academic institution in building a long-term sustainable global surgery program. As one of the pioneer programs in global surgery for residents, the Icahn School of Medicine at Mount Sinai global surgery rotation has been successfully running for the last 10 years in a small public hospital in the Dominican Republic. The present report details many key components of implementing a sustainable global surgery program and the evolution of this program over time. Since 2005, 80 general surgery residents have rotated through Juan Pablo Pina Hospital in the Dominican Republic. They have performed a total of 1239 major operations and 740 minor operations. They have also participated in 328 emergency cases. More importantly, this rotation helped shape residents' sense of social responsibility and ownership in their surgical training. Residents have also contributed to the training of local residents in laparoscopic skills and through cultural exchange. As interest in global surgery grows among general surgery residents, it is essential that supporting academic institutions create sustainable and capacity-building rotations for their residents. These programs must address many of the barriers that can hinder maintenance of a sustainable global surgery experience for residents. After 10 years of sending our residents to the Dominican Republic, we have found that it is possible and valuable to incorporate a formal global surgery rotation into a general surgery residency. Copyright © 2016. Published by Elsevier Inc.

  12. U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.

  13. Data Center Energy Efficiency Standards in India: Preliminary Findings from Global Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raje, Sanyukta; Maan, Hermant; Ganguly, Suprotim

    Global data center energy consumption is growing rapidly. In India, information technology industry growth, fossil-fuel generation, and rising energy prices add significant operational costs and carbon emissions from energy-intensive data centers. Adoption of energy-efficient practices can improve the global competitiveness and sustainability of data centers in India. Previous studies have concluded that advancement of energy efficiency standards through policy and regulatory mechanisms is the fastest path to accelerate the adoption of energy-efficient practices in the Indian data centers. In this study, we reviewed data center energy efficiency practices in the United States, Europe, and Asia. Using evaluation metrics, we identifiedmore » an initial set of energy efficiency standards applicable to the Indian context using the existing policy mechanisms. These preliminary findings support next steps to recommend energy efficiency standards and inform policy makers on strategies to adopt energy-efficient technologies and practices in Indian data centers.« less

  14. Evaluation of satellite and reanalysis‐based global net surface energy flux and uncertainty estimates

    PubMed Central

    Allan, Richard P.; Mayer, Michael; Hyder, Patrick; Loeb, Norman G.; Roberts, Chris D.; Valdivieso, Maria; Edwards, John M.; Vidale, Pier‐Luigi

    2017-01-01

    Abstract The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite‐derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA‐Interim reanalysis are used to estimate surface energy flux globally. To consider snowmelt and improve regional realism, land surface fluxes are adjusted through a simple energy balance approach at each grid point. This energy adjustment is redistributed over the oceans to ensure energy conservation and maintain realistic global ocean heat uptake, using a weighting function to avoid meridional discontinuities. Calculated surface energy fluxes are evaluated through comparison to ocean reanalyses. Derived turbulent energy flux variability is compared with the Objectively Analyzed air‐sea Fluxes (OAFLUX) product, and inferred meridional energy transports in the global ocean and the Atlantic are also evaluated using observations. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis products. Decadal changes in the global mean and the interhemispheric energy imbalances are quantified, and present day cross‐equator heat transports are reevaluated at 0.22 ± 0.15 PW (petawatts) southward by the atmosphere and 0.32 ± 0.16 PW northward by the ocean considering the observed ocean heat sinks. PMID:28804697

  15. Global drivers, sustainable manufacturing and systems ergonomics.

    PubMed

    Siemieniuch, C E; Sinclair, M A; Henshaw, M J deC

    2015-11-01

    This paper briefly explores the expected impact of the 'Global Drivers' (such as population demographics, food security; energy security; community security and safety), and the role of sustainability engineering in mitigating the potential effects of these Global Drivers. The message of the paper is that sustainability requires a significant input from Ergonomics/Human Factors, but the profession needs some expansion in its thinking in order to make this contribution. Creating a future sustainable world in which people experience an acceptable way of life will not happen without a large input from manufacturing industry into all the Global Drivers, both in delivering products that meet sustainability criteria (such as durability, reliability, minimised material requirement and low energy consumption), and in developing sustainable processes to deliver products for sustainability (such as minimum waste, minimum emissions and low energy consumption). Appropriate changes are already being implemented in manufacturing industry, including new business models, new jobs and new skills. Considerable high-level planning around the world is in progress and is bringing about these changes; for example, there is the US 'Advanced Manufacturing National Program' (AMNP)', the German 'Industrie 4.0' plan, the French plan 'la nouvelle France industrielle' and the UK Foresight publications on the 'Future of Manufacturing'. All of these activities recognise the central part that humans will continue to play in the new manufacturing paradigms; however, they do not discuss many of the issues that systems ergonomics professionals acknowledge. This paper discusses a number of these issues, highlighting the need for some new thinking and knowledge capture by systems ergonomics professionals. Among these are ethical issues, job content and skills issues. Towards the end, there is a summary of knowledge extensions considered necessary in order that systems ergonomists can be fully effective in this new environment, together with suggestions for the means to acquire and disseminate the knowledge extensions. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Privatization and the globalization of energy markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report reviews recent global efforts to privatize energy resources and outlines the opportunities and challenges privatization has presented to U.S. and foreign multinational energy companies. The group of energy companies studied in this report includes the major U.S. petroleum companies and many foreign companies. The foreign companies reviewed include state-run energy enterprises, recently privatized energy enterprises, and foreign multinationals that have been privately held. The privatization of non-petroleum energy industries, such as electricity generation and transmission, natural gas transmission, and coal mining, are also discussed. Overseas investments made by electric companies, natural gas companies, and coal companies are included.more » The report is organized into six chapters: (1) economics of privatization; (2) petroleum privatization efforts among non-U.S. Organization for Economic Cooperation and Development nations; (3) petroleum privatization efforts in Latin America; (4) privatization in socialist and former socialist regimes; (5) privatization efforts in global electric power generation, transmission, and distribution industries; and (6) privatization and globalization of world coal.« less

  17. Global map of solar power production efficiency, considering micro climate factors

    NASA Astrophysics Data System (ADS)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  18. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2017-12-09

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhle, Maria

    These funds were transferred from DOE to NSF as DOE's contribution to the U.S. Global Change Research Program in support of 4 internationalnactivities/programs as approved by the U.S. Global Change Research Program on 14 March 2014. The programs are the International Geosphere-Biosphere Programme, the DIVERSITAS programme, and the World Climate Research Program. All program awards ended as of 09-23-2015.

  20. Implementing the global health security agenda: lessons from global health and security programs.

    PubMed

    Paranjape, Suman M; Franz, David R

    2015-01-01

    The Global Health Security Agenda (GHSA) describes a vision for a world that is safe and secure from infectious disease threats; it underscores the importance of developing the international capacity to prevent, detect, and respond to pandemic agents. In February 2014, the United States committed to support the GHSA by expanding and intensifying ongoing efforts across the US government. Implementing these goals will require interagency coordination and harmonization of diverse health security elements. Lessons learned from the Global Health Initiative (GHI), the President's Emergency Program for AIDS Relief (PEPFAR), and the Cooperative Threat Reduction (CTR) program underscore that centralized political, technical, and fiscal authority will be key to developing robust, sustainable, and integrated global health security efforts across the US government. In this article, we review the strengths and challenges of GHI, PEPFAR, and CTR and develop recommendations for implementing a unified US global health security program.

  1. New Brunswick Laboratory: Progress report, October 1993 through September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards and non-proliferation functions in support of multiple program sponsors. During FY 94 New Brunswick Laboratory (NBL) completed development of a Strategic Plan which will aid in better defining performance oriented laboratory goals and objectives in each functional area consistent with the changing needs of the global nuclear community. This annual report describes accomplishments achieved in carrying out NBL`smore » assigned missions. Details of completed projects are reported in separate topical reports or as open-literature publications. Programs discussed here are: (1) safeguards assistance; (2) reference materials program; (3) measurement evaluation; (4) measurement services; and (5) measurement development.« less

  2. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  3. GLOBAL CHANGE RESEARCH NEWS #8: OUR CHANGING PLANET: THE FY2000 U.S. GLOBAL CHANGE RESEARCH PROGRAM

    EPA Science Inventory

    This edition of Global Change Research News focuses on the publication of the new OurChanging Planet: The FY2000 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices ofthe President's National Science and Technology Council. It...

  4. Emotional Intelligence Outcomes Regarding Empathy and Global Videoconferencing Lessons

    ERIC Educational Resources Information Center

    Pullen, Janet S.

    2013-01-01

    Students are participating in global education programs in schools today. The objectives for these global programs include preparing children intellectually and social-emotionally to be able to communicate and understand others from around the world, as well as encouraging children to develop a global view in their thinking about others in the…

  5. The northern global change research program

    Treesearch

    Richard A. Birdsey; John L. Hom; Marla Emery

    1996-01-01

    The Forest Service goal for global change research is to establish a sound scientific basis for making regional, national, and international resource management and policy decisions in the context of global change issues. The objectives of the Northern Global Change Program (NGCP) are to understand: (1) what processes in forest ecosystems are sensitive to physical and...

  6. Developing Successful Global Leaders

    ERIC Educational Resources Information Center

    Training, 2011

    2011-01-01

    Everyone seems to agree the world desperately needs strong leaders who can manage a global workforce and all the inherent challenges that go with it. That's a big part of the raison d'etre for global leadership development programs. But are today's organizations fully utilizing these programs to develop global leaders, and, if so, are they…

  7. 78 FR 38055 - Building Research Capacity in Global Tobacco Product Regulation Program (U18)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Monitoring Database. Examples of Global Tobacco Research Reports/White Papers: [cir] WHO report on the global...] Building Research Capacity in Global Tobacco Product Regulation Program (U18) AGENCY: Food and Drug... availability of grant funds for the support of the Center for Tobacco Product's (CTP's) Building Research...

  8. Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si

    2018-02-01

    In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.

  9. [Measures to reduce lighting-related energy use and costs at hospital nursing stations].

    PubMed

    Su, Chiu-Ching; Chen, Chen-Hui; Chen, Shu-Hwa; Ping, Tsui-Chu

    2011-06-01

    Hospitals have long been expected to deliver medical services in an environment that is comfortable and bright. This expectation keeps hospital energy demand stubbornly high and energy costs spiraling due to escalating utility fees. Hospitals must identify appropriate strategies to control electricity usage in order to control operating costs effectively. This paper proposes several electricity saving measures that both support government policies aimed at reducing global warming and help reduce energy consumption at the authors' hospital. The authors held educational seminars, established a website teaching energy saving methods, maximized facility and equipment use effectiveness (e.g., adjusting lamp placements, power switch and computer saving modes), posted signs promoting electricity saving, and established a regularized energy saving review mechanism. After implementation, average nursing staff energy saving knowledge had risen from 71.8% to 100% and total nursing station electricity costs fell from NT$16,456 to NT$10,208 per month, representing an effective monthly savings of 37.9% (NT$6,248). This project demonstrated the ability of a program designed to slightly modify nursing staff behavior to achieve effective and meaningful results in reducing overall electricity use.

  10. Creating the Global Student: Increasing Student Perception of Global Competency and Skills for International Careers in a University International Certificate Program

    ERIC Educational Resources Information Center

    Wang, Yuanyuan

    2013-01-01

    This study investigates the impact of students' participation in the certificate program offered by the Asian Studies Center (ASC) at the University of Pittsburgh on their perception of global competency and skills development for international careers. Undergraduate and graduate students who were enrolled in the ASC's certificate program as of…

  11. Online and classroom tools for Climate Change Education

    NASA Astrophysics Data System (ADS)

    Samenow, J. P.; Scott, K.

    2004-12-01

    EPA's Office of Atmospheric Programs has developed unique tools for educating students about the science of global warming and on actions that help address the issue. These tools have been highly successful and used in hundreds of classrooms across the country. EPA's Global Warming Kids' Site features interactive web-based animations for educating children, grades 4-8, about climate change. The animations illustrate how human activities likely influence the climate system through processes such as the greenhouse effect and carbon and water cycles. The pages also contain interactive quizzes. See: http://www.epa.gov/globalwarming/kids/animations.html For advanced high school and college students, EPA is nearing completion on the development of interactive visualizations of the emissions and climate scenarios featured in the Intergovernmental Panel on Climate Change's Third Assessment Report. These visualizations allow students to choose a scenario and see how emissions, the climate and the earth's surface change over time. The Global Warming Wheelcard Classroom Activity Kit is designed to help teachers of middle school students introduce the concept of human induced global warming in the context of how rates of energy usage can influence the increase or eventual slowing of climate change. The Climate Change, Wildlife, and Wildlands Toolkit for Teachers and Interpreters was produced in a partnership among three agencies - EPA, US Fish and Wildlife Service and the National Park Service (NPS). Both classroom teachers and outdoor interpreters find it useful in conveying information about climate change science and impacts to their students and visitors. The development of the toolkit led to a larger program between EPA and NPS that assists parks in inventorying their emissions, creating action plans, and talking to the public about what they are doing - a "lead by example" type program that the two agencies hope to replicate in other venues in the coming year.

  12. Application of precise altimetry to the study of precise leveling of the sea surface, the Earth's gravity field, and the rotation of the Earth

    NASA Technical Reports Server (NTRS)

    Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.

    1991-01-01

    Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.

  13. Hybrid Power Management (HPM) Program Resulted in Several New Applications

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential with applications from nanowatts to megawatts. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  14. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    EPA Science Inventory

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG...

  15. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  16. Materials for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2009-03-01

    The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.

  17. Hubble’s Global View of Jupiter During the Juno Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Cosentino, Richard; Tollefson, Joshua; Johnson, Perianne

    2017-10-01

    With two observing programs designed for mapping clouds and hazes in Jupiter's atmosphere during the Juno mission, the Hubble Space Telescope is acquiring an unprecedented set of global maps for study. The Outer Planet Atmospheres Legacy program (OPAL, PI: Simon) and the Wide Field Coverage for Juno program (WFCJ, PI: Wong) are designed to enable frequent multi-wavelength global mapping of Jupiter, with many maps timed specifically for Juno’s perijove passes. Filters span wavelengths from 212 to 894 nm. Besides offering global views for Juno observation context, they also reveal a wealth of information about interesting atmospheric dynamical features. We will summarize the latest findings from these global mapping programs, including changes in the Great Red Spot, zonal wind profile analysis, and persistent cyclone-generated waves in the North Equatorial Belt.

  18. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering and Dept. of Mechanical Engineering

    2018-05-04

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  19. Where High-Tech Meets High-Touch: an example of effective cross-disciplinary collaboration in education

    NASA Astrophysics Data System (ADS)

    Holzhauer, B.; Mooney, M. E.

    2012-12-01

    How can non-formal education programs effectively blend hands-on, place-based field science lessons with technology and digital media to teach abstract global concepts in a local setting? Using climate change as an overarching concept, the Aldo Leopold Nature Center (ALNC) in Madison, WI, is developing exhibits and digital curricula, strengthened through partnerships with local and national experts from scientific and education fields, to effectively increase the public's interest in and understanding of science and technology, how the world works, and what we can do to adapt, mitigate, and innovate sustainable solutions. The exhibits and multimedia content, centered on topics such as climate, energy, weather, and phenology, have been developed in consultation with partners like the National Academy of Sciences and various departments at the University of Wisconsin (UW). Outdoor "high-touch" programs are complemented with "high-tech" exhibits and media, including touchscreen kiosks and the National Oceanic and Atmospheric Administration's (NOAA) Science On a Sphere® global display system, tying together multimedia experiences with peer-reviewed cutting-edge science to ensure maximum comprehension by appealing and connecting to learners of all ages and learning modalities. The curriculum is being developed in alignment with local and national education standards and science and climate literacy frameworks (such as "The Essential Principles of Climate Sciences," U.S. Global Change Research Program / U.S. Climate Change Science Program). Its digital format allows it to be easily adapted to visitors' learning styles and cognitive levels and updated with relevant new content such as real-time climate data or current visualizations from the UW Cooperative Institute for Meteorological Satellite Studies. Drawing upon ALNC's award-winning environmental education experiences, professional development networks such as NOAA's Climate Stewards Education Program, and existing resources for teaching through formal STEM education, ALNC has combined the unique benefits of place-based outdoor citizen-science in the community setting with digital, multimedia, and interactive components to address local, regional, and global scientific concepts with all audiences of all ages. This innovative, replicable and broadly accessible approach, geared towards formal school groups and the general public in a non-formal educational setting, is being piloted, evaluated, and disseminated through a variety of networks and professional development in order to serve as a model of continued collaborative education.;

  20. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-07-01

    We present results of analyses of two-pion interferometry in Au +Au collisions at √{sNN}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the BNL Relativistic Heavy Ion Collider Beam Energy Scan program. The extracted correlation lengths (Hanbury-Brown-Twiss radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.

  1. Resolving Environmental Effects of Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin C; DeGeorge, Elise M; Copping, Andrea E.

    Concerns for potential wildlife impacts resulting from land-based and offshore wind energy have created challenges for wind project development. Research is not always adequately supported, results are neither always readily accessible nor are they satisfactorily disseminated, and so decisions are often made based on the best available information, which may be missing key findings. The potential for high impacts to avian and bat species and marine mammals have been used by wind project opponents to stop, downsize, or severely delay project development. The global nature of the wind industry - combined with the understanding that many affected species cross-national boundaries,more » and in many cases migrate between continents - also points to the need to collaborate on an international level. The International Energy Agency (IEA) Wind Technology Collaborative Programs facilitates coordination on key research issues. IEA Wind Task 34 - WREN: Working Together to Resolve Environmental Effects of Wind Energy-is a collaborative forum to share lessons gained from field research and modeling, including management methods, wildlife monitoring methods, best practices, study results, and successful approaches to mitigating impacts and addressing the cumulative effects of wind energy on wildlife.« less

  2. Hybrid Power Management (HPM)

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  3. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    DOE PAGES

    Adamczyk, L.

    2015-07-10

    In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less

  4. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.

    In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less

  5. Radiation measurements from polar and geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.

    1973-01-01

    During the 1960's, radiation budget measurements from satellites have allowed quantitative study of the global energetics of our atmosphere-ocean system. A continuing program is planned, including independent measurement of the solar constant. Thus far, the measurements returned from two basically different types of satellite experiments are in agreement on the long term global scales where they are most comparable. This fact, together with independent estimates of the accuracy of measurement from each system, shows that the energy exchange between earth and space is now measured better than it can be calculated. Examples of application of the radiation budget data were shown. They can be related to the age-old problem of climate change, to the basic question of the thermal forcing of our circulation systems, and to the contemporary problems of local area energetics and computer modeling of the atmosphere.

  6. The 2nd State of the Carbon Cycle Report (SOCCR-2): Process, Progress and Institutional Context

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Cavallaro, N.; Zhu, Z.; Larson, E. K.; Butler, J. H.

    2017-12-01

    Over 200 scientists and program managers from U.S., Mexican and Canadian government and non-government institutions have been collaborating on SOCCR-2 since 2015. Responding to the U.S. Global Change Research Act (1990) and the U.S. Carbon Cycle Science Plan (2011), this special Sustained National Climate Assessment report covers many of the GCRA mandated sectors such as agriculture, energy, forestry, aquatic systems, coasts, wetlands, atmospheric and human social systems, integrating the scientific uncertainties and analyzing the effects of global change on the carbon cycle and vice versa, including projections for both human- induced and natural changes. This presentation covers the SOCCR-2 process, progress and institutional context, providing a historical perspective on the interagency instruments and mechanisms that have facilitated the last decades of carbon cycle science reflected in SOCCR-2.

  7. Future energy system challenges for Africa: Insights from Integrated Assessment Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Paul; Nielsen, Jens; Calvin, Katherine V.

    Although Africa’s share in the global energy system is only small today, the ongoing population growth and economic development imply that this can change significantly. In this paper, we discuss long-term energy developments in Africa using the results of the LIMITS model inter-comparison study. The analysis focusses on the position of Africa in the wider global energy system and climate mitigation. The results show a considerable spread in model outcomes. Without specific climate policy, Africa’s share in global CO 2 emissions is projected to increase from around 1-4% today to 3-23% by 2100. In all models, emissions only start tomore » become really significant on a global scale after 2050. Furthermore, by 2030 still around 50% of total household energy use is supplied through traditional bio-energy, in contrast to existing ambitions from international organisations to provide access to modern energy for all. After 2050, the energy mix is projected to converge towards a global average energy mix with high shares of fossil fuels and electricity use. Finally, although the continent is now a large net exporter of oil and gas, towards 2050 it most likely needs most of its resources to meet its rapidly growing domestic demand. With respect to climate policy, the rapid expansion of the industrial and the power sector also create large mitigation potential and thereby the possibility to align the investment peak in the energy system with climate policy and potential revenues from international carbon trading.« less

  8. Global Health and Primary Care: Increasing Burden of Chronic Diseases and Need for Integrated Training

    PubMed Central

    Truglio, Joseph; Graziano, Michelle; Vedanthan, Rajesh; Hahn, Sigrid; Rios, Carlos; Hendel-Paterson, Brett; Ripp, Jonathan

    2015-01-01

    Noncommunicable diseases, including cardiovascular disease, chronic respiratory disease, diabetes, cancer, and mental illness, are the leading causes of death and disability worldwide. These diseases are chronic and often mediated predominantly by social determinants of health. Currently there exists a global-health workforce crisis and a subsequent disparity in the distribution of providers able to manage chronic noncommunicable diseases. Clinical competency in global health and primary care could provide practitioners with the knowledge and skills needed to address the global rise of noncommunicable diseases through an emphasis on these social determinants. The past decade has seen substantial growth in the number and quality of US global-health and primary-care training programs, in both undergraduate and graduate medical education. Despite their overlapping competencies, these 2 complementary fields are most often presented as distinct disciplines. Furthermore, many global-health training programs suffer from a lack of a formalized curriculum. At present, there are only a few examples of well-integrated US global-health and primary-care training programs. We call for universal acceptance of global health as a core component of medical education and greater integration of global-health and primary-care training programs in order to improve the quality of each and increase a global workforce prepared to manage noncommunicable diseases and their social mediators. PMID:22786735

  9. Rock climbing: A local-global algorithm to compute minimum energy and minimum free energy pathways.

    PubMed

    Templeton, Clark; Chen, Szu-Hua; Fathizadeh, Arman; Elber, Ron

    2017-10-21

    The calculation of minimum energy or minimum free energy paths is an important step in the quantitative and qualitative studies of chemical and physical processes. The computations of these coordinates present a significant challenge and have attracted considerable theoretical and computational interest. Here we present a new local-global approach to study reaction coordinates, based on a gradual optimization of an action. Like other global algorithms, it provides a path between known reactants and products, but it uses a local algorithm to extend the current path in small steps. The local-global approach does not require an initial guess to the path, a major challenge for global pathway finders. Finally, it provides an exact answer (the steepest descent path) at the end of the calculations. Numerical examples are provided for the Mueller potential and for a conformational transition in a solvated ring system.

  10. A roadmap for nuclear energy technology

    NASA Astrophysics Data System (ADS)

    Sofu, Tanju

    2018-01-01

    The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.

  11. All the coal in China.

    PubMed

    Lenssen, N

    1993-01-01

    China is emerging as a serious producer of carbon emissions from its burning of coal. China contributes 11% of global carbon emissions, which is still less than its population share. Economic reforms are likely to boost emissions. 33% of all fuel burned in China produces useful energy compared to 50-60% in the USA and Japan. Low prices encourage wasteful use. The Chinese government responds to energy shortages by investing scarce capital in building more mines, power plants, and oil wells. It is unlikely that investing in expanding conventional energy supplies will be a viable solution, regardless of the availability of capital to invest, because air pollution threatens life. Particulate suspension is 14 times greater in China than in the USA. 14% of the country is affected by acid rain. Global warming may be affecting the northern drought prone areas. The solutions must involve greater efficiency. Industrial consumption of energy is more than 66% of energy produced. Energy use for a typical steel or cement factory is 7-75% greater per ton than Western countries, i.e., 55-60% efficiency versus 80% in Europe. The inefficiency is due to poor maintenance and operating procedures and old or obsolete technology. The savings in building a compact, fluorescent light bulb factory is compared to the cost of building coal-fired power plants and transmission facilities. Conservation of heat in northern buildings could be accomplished with boiler improvements, insulation, and double- glazed windows. A $3 billion/year investment could yield a cut in energy demand by nearly 50%. The carbon emissions would be reduced from 1.4 billion tons to 1 billion tons in 2025. Between 1980 and 1985 the energy efficiency program was able to reduce growth in energy from 7% to 4% without slowing growth in industrial production. Since 1985, the government has directed expenditures toward expanding the energy supply, which reduced efficiency expenditures from 10% to 6% of total investment. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. Alternatives are natural gas or solar, wind, biomass, and geothermal energy. International lending agencies must now shift their support to renewable resource development and efficiency improvement and education; an example from industrialized countries would also be very persuasive.

  12. Global Visions. Teaching Suggestions and Activity Masters for Unit 1: The Global Marketplace.

    ERIC Educational Resources Information Center

    Procter and Gamble Educational Services, Cincinnati, OH.

    This is a classroom-ready program about the U.S. economy's number one challenge: globalization. Few historical forces have more power to shape students' lives than globalization, the gradual economic integration of all the world's nations. This program is designed to supplement social studies courses in economics, government, U.S. and world…

  13. The Optical Profiling of the Atmospheric Limb (OPAL) CubeSat Experiment

    NASA Astrophysics Data System (ADS)

    Jeppesen, M.; Miller, J.; Cox, W.; Taylor, M. J.; Swenson, C.; Neilsen, T. L.; Fish, C. S.; Scherliess, L.; Christensen, A. B.; Cleave, M.

    2015-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument, CubeSat bus and mission are being designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  14. Optical Profiling of the Atmospheric Limb CubeSat Experiment

    NASA Astrophysics Data System (ADS)

    Jeppesen, M.; Taylor, M. J.; Swenson, C.; Marchant, A.

    2014-12-01

    The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument and mission will be designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.

  15. Sandia National Laboratories: Hydrogen Risk Assessment Models toolkit now

    Science.gov Websites

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  16. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge:

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  17. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov Websites

    Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  18. Research Review: Walter Orr Roberts on the Atmosphere, Global Pollution and Weather Modification

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1973-01-01

    Global Atmospheric Research Program is envisaged to study various aspects of the environment for the whole globe. Describes programs undertaken and the international problems involved in implementing results of such research on a global level. (PS)

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  20. Innovative paths for providing green energy for sustainable global economic growth

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Alapatt, G. F.

    2012-10-01

    According to United Nation, world population may reach 10.1 billion by the year 2100. The fossil fuel based global economy is not sustainable. For sustainable global green energy scenario we must consider free fuel based energy conversion, environmental concerns and conservation of water. Photovoltaics (PV) offers a unique opportunity to solve the 21st century's electricity generation because solar energy is essentially unlimited and PV systems provide electricity without any undesirable impact on the environment. Innovative paths for green energy conversion and storage are proposed in areas of R and D, manufacturing and system integration, energy policy and financing. With existing silicon PV system manufacturing, the implementation of new innovative energy policies and new innovative business model can provide immediately large capacity of electricity generation to developed, emerging and underdeveloped economies.

  1. Research Suggestions in the Design of a Global Graduate Business Program Delivered by Online Learning

    ERIC Educational Resources Information Center

    Puderbaugh, Amy

    2015-01-01

    The purpose of this paper was to examine the unique areas of concern when establishing an eLearning program in the field of global business. A survey of eLearning and a global management subject matter appears. This paper identifies potential challenges in program design and raises practical concerns for future research. [For the full proceedings,…

  2. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  3. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  4. Information Technology Training in India toward Globalization

    NASA Astrophysics Data System (ADS)

    Yamashita, Katsuhiko

    This paper describes Toshiba‧s training program in Information Technology in India. It is not a simple technology training, but a training for globalization of Japanese engineers so that they can cope with people from different culture and business practices. We first describe why such training program became necessary. We then describe how the training courses and contents are developed. The operation of the training program and our effort in continual improvement are explained. The effectiveness of the program is also evaluated. The training program presented is a first in its kind and we believe that it can contribute to changing Toshiba from inside toward more globalized corporation. We also believe that this kind of overseas training is effective in training young students so that they can cope with globalizing society after graduation.

  5. Public Constructs of Energy Values and Behaviors in Implementing Taiwan's "Energy-Conservation/Carbon-Reduction" Declarations

    ERIC Educational Resources Information Center

    Chiu, Mei-Shiu; Yeh, Huei-Ming; Spangler, Jonathan

    2016-01-01

    The emergent crisis of global warming calls for energy education for people of all ages and social groups. The Taiwanese government has publicized 10 declarations on energy conservation and carbon reduction as public behavior guidelines to mitigate global warming. This study uses interviews with quantitative assessment to explore the values and…

  6. A global perspective: training opportunities in Adolescent Medicine for healthcare professionals.

    PubMed

    Golub, Sarah A; Arunakul, Jiraporn; Hassan, Areej

    2016-08-01

    The review briefly describes the current state of adolescent health globally, and highlights current educational and training opportunities in Adolescent Medicine for healthcare providers worldwide. Despite a growing body of literature demonstrating a shift toward recognizing Adolescent Medicine as a subspecialty, there are very few countries that offer nationally recognized Adolescent Medicine training programs. In recent years, several countries have begun to offer educational programming, such as noncredentialed short training programs, conferences, and online courses. Challenges, including cultural barriers, financing, and lack of governmental recognition and support, have hindered progress in the development of accredited training programs globally. It is crucial to support efforts for sustainable training programs, especially within low and middle-income countries where a majority of the world's adolescent population lives. Sharing knowledge of existing curriculums, programs, and systems will increase opportunities globally to build regional capacity, increase access to interdisciplinary services, and to implement health-promoting policies for youth worldwide.

  7. THE CLIMATE-AIR QUALITY SCALE CONTINUUM AND THE GLOBAL EMISSION INVENTORY ACTIVITY

    EPA Science Inventory

    The Global Emissions Inventory Activity (GEIA), a core program activity of the International Global Atmospheric Chemistry (IGAC) Project of the International Geosphere-Biosphere Program, develops data and other related information on key chemical emissions to the atmosphere and...

  8. Planning minimum-energy paths in an off-road environment with anisotropic traversal costs and motion constraints. Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, R.S.

    1989-06-01

    For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less

  9. Air-climate-energy investigations with a state-level Integrated Assessment Model: GCAM-USA

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals.  GCAM includes technology-rich representations of the energy, transportatio...

  10. The APRU Global Health Program: Past and Future.

    PubMed

    Samet, Jonathan; Withers, Mellissa

    2016-01-01

    The Association of Pacific Rim Universities (APRU) is an international consortium of 45 universities in the Pacific Rim, representing 16 economies, 130 000 faculty members and more than two million students. The APRU Global Health Program aims to expand existing collaborative research efforts among universities to address regional and global health issues. Since its launch in 2007-08, the program has covered a significant range of topics including emerging public health threats, ageing and chronic diseases, infectious diseases and health security issues, among others. The Program's activities in research, training, and service around the globe illustrate the diverse dimensions of global health. In this paper, the major activities to date are outlined and future planned activities are discussed.

  11. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    NASA Astrophysics Data System (ADS)

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  12. International Space Education Outreach: Taking Exploration to the Global Classroom

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  13. The IAEA stopping power database, following the trends in stopping power of ions in matter

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Dimitriou, P.

    2017-10-01

    The aim of this work is to present an overview of the state of art of the energy loss of ions in matter, based on the new developments in the stopping power database of the International Atomic Energy Agency (IAEA). This exhaustive collection of experimental data, graphs, programs and comparisons, is the legacy of Helmut Paul, who made it accessible to the global scientific community, and has been extensively employed in theoretical and experimental research during the last 25 years. The field of stopping power in matter is evolving, with new trends in materials of interest, including oxides, nitrides, polymers, and biological targets. Our goal is to identify areas of interest and emerging data needs to meet the requirements of a continuously developing user community.

  14. Green Technology for Smart Cities

    NASA Astrophysics Data System (ADS)

    Casini, M.

    2017-08-01

    In view of the enormous social and environmental changes at the global level, more and more cities worldwide have directed their development strategies towards smart policies aimed at sustainable mobility, energy upgrading of the building stock, increase of energy production from renewable sources, improvement of waste management and implementation of ICT infrastructures. The goal is to turn into Smart Cities, able to improve the quality of life of their inhabitants by offering a lasting opportunity for cultural, economic and social growth within a healthy, safe, stimulating and dynamic environment. After an overview of the role of cities in climate changes and environmental pollution worldwide, the article provides an up to date definition of Smart City and of its main expected features, focussing on technology innovation, smart governance and main financing and support programs. An analysis of the most interesting initiatives at the international level pursued by cities investigating the three main areas of Green Buildings, Smart grid-Smart lighting, and Smart mobility is given, with the objective to offer a broad reference for the identification of development sustainable plans and programs at the urban level within the current legislative framework.

  15. Approaches to local climate action in Colorado

    NASA Astrophysics Data System (ADS)

    Huang, Y. D.

    2011-12-01

    Though climate change is a global problem, the impacts are felt on the local scale; it follows that the solutions must come at the local level. Fortunately, many cities and municipalities are implementing climate mitigation (or climate action) policies and programs. However, they face many procedural and institutional barriers to their efforts, such of lack of expertise or data, limited human and financial resources, and lack of community engagement (Krause 2011). To address the first obstacle, thirteen in-depth case studies were done of successful model practices ("best practices") of climate action programs carried out by various cities, counties, and organizations in Colorado, and one outside Colorado, and developed into "how-to guides" for other municipalities to use. Research was conducted by reading documents (e.g. annual reports, community guides, city websites), email correspondence with program managers and city officials, and via phone interviews. The information gathered was then compiled into a series of reports containing a narrative description of the initiative; an overview of the plan elements (target audience and goals); implementation strategies and any indicators of success to date (e.g. GHG emissions reductions, cost savings); and the adoption or approval process, as well as community engagement efforts and marketing or messaging strategies. The types of programs covered were energy action plans, energy efficiency programs, renewable energy programs, and transportation and land use programs. Between the thirteen case studies, there was a range of approaches to implementing local climate action programs, examined along two dimensions: focus on climate change (whether it was direct/explicit or indirect/implicit) and extent of government authority. This benchmarking exercise affirmed the conventional wisdom propounded by Pitt (2010), that peer pressure (that is, the presence of neighboring jurisdictions with climate initiatives), the level of community engagement and enthusiasm, and most importantly staff members dedicated to the area of climate planning have a significant effect on climate mitigation policy adoption. In addition, it supported the claim asserted by Toly (2008) that an emphasis on economic co-benefits perpetuates the principle that economic growth need not be compromised when addressing climate change and weakens our capacity to shift toward a bolder paradigm in what is politically achievable in climate legislation.

  16. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2017-12-09

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  17. Clouds and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Shaw, Glenn E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of clouds and cloud cover, and explains how clouds form, what they are made of, what roles they play in…

  18. A global map of urban extent from nightlights

    DOE PAGES

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang; ...

    2015-05-13

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  19. Study on generation investment decision-making considering multi-agent benefit for global energy internet

    NASA Astrophysics Data System (ADS)

    Li, Pai; Huang, Yuehui; Jia, Yanbing; Liu, Jichun; Niu, Yi

    2018-02-01

    Abstract . This article has studies on the generation investment decision in the background of global energy interconnection. Generation investment decision model considering the multiagent benefit is proposed. Under the back-ground of global energy Interconnection, generation investors in different clean energy base not only compete with other investors, but also facing being chosen by the power of the central area, therefor, constructing generation investment decision model considering multiagent benefit can be close to meet the interests demands. Using game theory, the complete information game model is adopted to solve the strategies of different subjects in equilibrium state.

  20. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-04-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool through postgraduate. Materials sciences can be a significant magnet in attracting students to STEM areas, and a focused effort is needed to ensure that it is included in STEM programs. From this effort will come the next generation of materials scientists and the innovations that will enable us to overcome the energy challenge.

  1. Forging the Solution to the Energy Challenge: The Role of Materials Science and Materials Scientists

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2010-05-01

    The energy challenge is central to the most important strategic problems facing the United States and the world. It is increasingly clear that even large-scale deployments of the best technologies available today cannot meet the rising energy demands of a growing world population. Achieving a secure and sustainable energy future will require full utilization of, and substantial improvements in, a comprehensive portfolio of energy systems and technologies. This goal is complicated by several factors. First, energy strategies are inextricably linked to national security and health issues. Second, in developing and deploying energy technologies, it is vital to consider not only environmental issues, such as global climate change, but also economic considerations, which strongly influence both public and political views on energy policy. Third, a significant and sustained effort in basic and applied research and development (R&D) will be required to deliver the innovations needed to ensure a desirable energy future. Innovations in materials science and engineering are especially needed to overcome the limits of essentially all energy technologies. A wealth of historical evidence demonstrates that such innovations are also the key to economic prosperity. From the development of the earliest cities around flint-trading centers, to the Industrial Revolution, to today’s silicon-based global economy, the advantage goes to those who lead in exploiting materials. I view our challenge by considering the rate of innovation and the transition of discovery to the marketplace as the relationship among R&D investment, a skilled and talented workforce, business innovations, and the activities of competitors. Most disturbing in analyzing this relationship is the need for trained workers in science, technology, engineering, and mathematics (STEM). To develop the STEM workforce needed for innovation, we need sustainable, positive change in STEM education at all levels from preschool through postgraduate. Materials sciences can be a significant magnet in attracting students to STEM areas, and a focused effort is needed to ensure that it is included in STEM programs. From this effort will come the next generation of materials scientists and the innovations that will enable us to overcome the energy challenge.

  2. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    NASA Astrophysics Data System (ADS)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research questions from local to global scales with both present and future environmental conditions.

  3. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, L.K.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less

  4. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, L.K.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less

  5. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Morcrette, C. J.; Van Weverberg, K.; Zhang, Y.; Lo, M. H.

    2015-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  6. CAUSES: Clouds Above the United States and Errors at the Surface

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, Y.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Lo, M. H.

    2014-12-01

    The Clouds Above the United States and Errors at the Surface (CAUSES) is a new joint Global Atmospheric System Studies/Regional and Global Climate model/Atmospheric System Research (GASS/RGCM/ASR) intercomparison project to evaluate the central U.S. summertime surface warm biases seen in many weather and climate models. The main focus is to identify the role of cloud, radiation, and precipitation processes in contributing to surface air temperature biases. In this project, we use short-term hindcast approach and examine the growth of the error as a function of hindcast lead time. The study period covers from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign. Preliminary results from several models will be presented. (http://portal.nersc.gov/project/capt/CAUSES/) (This study is funded by the RGCM and ASR programs of the U.S. Department of Energy as part of the Cloud-Associated Parameterizations Testbed. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658017)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttner, William; Rivkin, C.; Burgess, R.

    Here, the United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 ( Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditionsmore » and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.« less

  8. Fluid-structure finite-element vibrational analysis

    NASA Technical Reports Server (NTRS)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  9. ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biraud, S. C.; Tom, M. S.; Sweeney, C.

    2016-01-01

    We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO 2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO 2 concentrations over the ARM SGPmore » region, and 3) how greenhouse gases are transported on continental scales.« less

  10. Retrofits Convert Gas Vehicles into Hybrids

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Successful space missions can rarely be attributed to a single thing. Rather, they are the result of a system of systems: integrated elements functioning effectively in their individual roles and together with related components, then those systems interacting with and supporting other systems to form a collaborative whole - from the spacecraft itself to the engineering and research teams that design and build it. An example is found in spacecraft power systems. Unlike a gas-powered car or a battery-powered laptop, most spacecraft are powered by multiple energy sources - such as photovoltaic panels, fuel cells, and batteries - working in tandem to ensure the spacecraft functions throughout the course of a mission. As with any system, the appropriate combination of elements and the method of their management are key to high performance and efficiency. One initiative at Glenn Research Center, the Hybrid Power Management (HPM) program, focused on joining new and mature technologies for optimal power systems applications in space and on Earth, with the goal not only to develop ultra-efficient space power systems, but to advance HPM to address global energy issues. The HPM program emerged from Glenn s long history of electric vehicle research dating back to the 1970s, including the NASA Hybrid Electric Transit Bus (HETB) project in the 1990s, which was the largest vehicle to use supercapacitor energy storage.

  11. Analysis and Optimization of Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Chuah, Jun Wei

    Energy is one of the most important resources required by modern human society. In 2010, energy expenditures represented 10% of global gross domestic product (GDP). By 2035, global energy consumption is expected to increase by more than 50% from current levels. The increased pace of global energy consumption leads to significant environmental and socioeconomic issues: (i) carbon emissions, from the burning of fossil fuels for energy, contribute to global warming, and (ii) increased energy expenditures lead to reduced standard of living. Efficient use of energy, through energy conservation measures, is an important step toward mitigating these effects. Residential and commercial buildings represent a prime target for energy conservation, comprising 21% of global energy consumption and 40% of the total energy consumption in the United States. This thesis describes techniques for the analysis and optimization of building energy consumption. The thesis focuses on building retrofits and building energy simulation as key areas in building energy optimization and analysis. The thesis first discusses and evaluates building-level renewable energy generation as a solution toward building energy optimization. The thesis next describes a novel heating system, called localized heating. Under localized heating, building occupants are heated individually by directed radiant heaters, resulting in a considerably reduced heated space and significant heating energy savings. To support localized heating, a minimally-intrusive indoor occupant positioning system is described. The thesis then discusses occupant-level sensing (OLS) as the next frontier in building energy optimization. OLS captures the exact environmental conditions faced by each building occupant, using sensors that are carried by all building occupants. The information provided by OLS enables fine-grained optimization for unprecedented levels of energy efficiency and occupant comfort. The thesis also describes a retrofit-oriented building energy simulator, ROBESim, that natively supports building retrofits. ROBESim extends existing building energy simulators by providing a platform for the analysis of novel retrofits, in addition to simulating existing retrofits. Using ROBESim, retrofits can be automatically applied to buildings, obviating the need for users to manually update building characteristics for comparisons between different building retrofits. ROBESim also includes several ease-of-use enhancements to support users of all experience levels.

  12. The potential of Fourier transform infrared spectroscopy of milk samples to predict energy intake and efficiency in dairy cows.

    PubMed

    McParland, S; Berry, D P

    2016-05-01

    Knowledge of animal-level and herd-level energy intake, energy balance, and feed efficiency affect day-to-day herd management strategies; information on these traits at an individual animal level is also useful in animal breeding programs. A paucity of data (especially at the individual cow level), of feed intake in particular, hinders the inclusion of such attributes in herd management decision-support tools and breeding programs. Dairy producers have access to an individual cow milk sample at least once daily during lactation, and consequently any low-cost phenotyping strategy should consider exploiting measureable properties in this biological sample, reflecting the physiological status and performance of the cow. Infrared spectroscopy is the study of the interaction of an electromagnetic wave with matter and it is used globally to predict milk quality parameters on routinely acquired individual cow milk samples and bulk tank samples. Thus, exploiting infrared spectroscopy in next-generation phenotyping will ensure potentially rapid application globally with a negligible additional implementation cost as the infrastructure already exists. Fourier-transform infrared spectroscopy (FTIRS) analysis is already used to predict milk fat and protein concentrations, the ratio of which has been proposed as an indicator of energy balance. Milk FTIRS is also able to predict the concentration of various fatty acids in milk, the composition of which is known to change when body tissue is mobilized; that is, when the cow is in negative energy balance. Energy balance is mathematically very similar to residual energy intake (REI), a suggested measure of feed efficiency. Therefore, the prediction of energy intake, energy balance, and feed efficiency (i.e., REI) from milk FTIRS seems logical. In fact, the accuracy of predicting (i.e., correlation between predicted and actual values; root mean square error in parentheses) energy intake, energy balance, and REI from milk FTIRS in dairy cows was 0.88 (20.0MJ), 0.78 (18.6MJ), and 0.63 (22.0MJ), respectively, based on cross-validation. These studies, however, are limited to results from one research group based on data from 2 contrasting production systems in the United Kingdom and Ireland and would need to be replicated, especially in a range of production systems because the prediction equations are not accurate when the variability used in validation is not represented in the calibration data set. Heritable genetic variation exists for all predicted traits. Phenotypic differences in energy intake also exists among animals stratified based on genetic merit for energy intake predicted from milk FTIRS, substantiating the usefulness of such FTIR-predicted phenotypes not only for day-to-day herd management, but also as part of a breeding strategy to improve cow performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Dark Skies Preservation through Responsible Lighting: the IYL2015 Quality Lighting Kit

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2015-01-01

    Poor quality lighting not only impedes astronomy research, but creates safety issues, affects human circadian sensitivities, disrupts ecosystems, and wastes more than a few billion dollars/year of energy in the USA alone. The United Nations-sanctioned the International Year of Light in 2015 (IYL2015) is providing an opportunity to increase public awareness of dark skies preservation, quality lighting and energy conservation. The Education and Public Outreach (EPO) group at the National Optical Astronomy Observatory (NOAO) has received a small grant through the International Astronomical Union (IAU) to produce official 'Quality Lighting Teaching Kits' for the IYL2015 cornerstone theme, 'Cosmic Light'. These kits will emphasize the use of proper optical design in achieving quality lighting that promotes both energy efficiency and energy conservation of an endangered natural resource, our dark skies. The concepts and practice of 'quality lighting' will be explored through demonstrations, hands-on/minds-on activities, formative assessment probes, and engineering design projects that explore basic principles of optics and the physics of light. The impact of the kits will be amplified by providing professional development using tutorial videos created at NOAO and conducting question and answer sessions via Google+ Hangouts for the outreach volunteers. The quality lighting education program will leverage NOAO EPO's work in the last ten years on lighting and optics education (e.g., the IAU 'Dark Skies Africa', APS 'Dark Skies Yuma' and 'Hands-On Optics' programs). NOAO's partners are CIE (International Commission on Illumination), IDA (International Dark-Sky Association) and SPIE (International Society for Optics and Photonics), as well as the IAU Office of Astronomy for Development, Galileo Teacher Training Program, Universe Awareness, and Global Hands-on Universe. Their networks will disseminate the program and kits to formal and informal audiences worldwide. The impact sought is a change in knowledge, attitude, and behavior in each community by learning how to light responsibly, improving the quality of life in 'illuminating' ways.

  14. Insights into Global Health Practice from the Agile Software Development Movement

    PubMed Central

    Flood, David; Chary, Anita; Austad, Kirsten; Diaz, Anne Kraemer; García, Pablo; Martinez, Boris; Canú, Waleska López; Rohloff, Peter

    2016-01-01

    Global health practitioners may feel frustration that current models of global health research, delivery, and implementation are overly focused on specific interventions, slow to provide health services in the field, and relatively ill-equipped to adapt to local contexts. Adapting design principles from the agile software development movement, we propose an analogous approach to designing global health programs that emphasizes tight integration between research and implementation, early involvement of ground-level health workers and program beneficiaries, and rapid cycles of iterative program improvement. Using examples from our own fieldwork, we illustrate the potential of ‘agile global health’ and reflect on the limitations, trade-offs, and implications of this approach. PMID:27134081

  15. Insights into Global Health Practice from the Agile Software Development Movement.

    PubMed

    Flood, David; Chary, Anita; Austad, Kirsten; Diaz, Anne Kraemer; García, Pablo; Martinez, Boris; Canú, Waleska López; Rohloff, Peter

    2016-01-01

    Global health practitioners may feel frustration that current models of global health research, delivery, and implementation are overly focused on specific interventions, slow to provide health services in the field, and relatively ill-equipped to adapt to local contexts. Adapting design principles from the agile software development movement, we propose an analogous approach to designing global health programs that emphasizes tight integration between research and implementation, early involvement of ground-level health workers and program beneficiaries, and rapid cycles of iterative program improvement. Using examples from our own fieldwork, we illustrate the potential of 'agile global health' and reflect on the limitations, trade-offs, and implications of this approach.

  16. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Raul Subia

    GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less

  17. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    USDA-ARS?s Scientific Manuscript database

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  18. 76 FR 31638 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Global Climate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Global Climate and Energy Project Notice is hereby given that, on April 8, 2011... seq. (``the Act''), Global Climate and Energy Project (``GCEP'') has filed written notifications...

  19. 77 FR 17095 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Global Climate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Global Climate and Energy Project Notice is hereby given that, on February 17, 2012... seq. (``the Act''), Global Climate and Energy Project (``GCEP'') has filed written notifications...

  20. Energy balance and stability. [in stellar coronae

    NASA Technical Reports Server (NTRS)

    Hammer, R.

    1982-01-01

    The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained.

  1. Particle Mass in Deep-Water Benthic Nepheloid Layers: a Global Synthesis

    NASA Astrophysics Data System (ADS)

    Mishonov, A. V.; Gardner, W. D.; Richardson, M. J.

    2016-12-01

    The mass of particles in benthic nepheloid layers in the deep ocean is mapped using profiles of beam attenuation coefficient obtained with transmissometers interfaced with CTDs during WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and other programs during the last four decades using data from over 8000 profiles from >70 cruises. We map the maximum concentration of particle mass near the seafloor and integrate the particle mass throughout the benthic nepheloid layer. In the Atlantic Ocean particle mass is greater in areas where eddy kinetic energy is high in overlying waters. Areas of high bottom particle concentrations and integrated benthic nepheloid layer particle loads include the western North Atlantic beneath the Gulf Stream meanders and eddies, Argentine Basin, parts of the Southern Ocean and areas around South Africa. Particle concentrations are low in most of the Pacific and tropical and subtropical Atlantic away from margins. This synthesis is useful for GEOTRACES and other global programs where knowing particle distribution is critical for understanding trace metal absorption, sediment-water exchange and near-bottom processes. Additionally, our synthesis provides baseline data to identify where mining of metal-rich nodules and metal sulfides on the seafloor may impact the benthic environment.

  2. "The era of single disease cowboys is out": evaluating the experiences of students, faculty, and collaborators in an interdisciplinary global health training program.

    PubMed

    Kalbarczyk, Anna; Martin, Nina A; Combs, Emily; Ward, Marie; Winch, Peter J

    2018-03-01

    Global Health is an inherently interdisciplinary field but overseas training in global health, particularly among health science institutions, has been an 'individual' or 'individual discipline' experience. Team-based training is an approach to global health education which is increasing in popularity; research on team-training demonstrates that teams are more productive than individuals. In 2015, the Johns Hopkins Center for Global Health (CGH) developed the Global Established Multidisciplinary Sites (GEMS) program, an interdisciplinary training program which was designed to establish a new norm in global health training by bringing interdisciplinary teams of faculty and students together to identify and solve complex global health challenges. This research aims to evaluate the program's first year and contribute to the literature on interdisciplinary team training. We conducted 22 in-depth interviews with students, faculty, and local collaborators from 3 GEMS project sites. Findings were analyzed for themes through a framework approach. The program exposed students, faculty, and collaborators to a wide range of disciplines in global health. Students' desire to learn how other disciplines contribute to global health solutions was an important motivator for joining GEMS; many participants including faculty and collaborators valued exposure to multiple disciplines. Mentorship and communication were a challenge across all teams in part due to members having distinct "disciplinary languages". Balancing disciplinary representation on teams and establishing work plans were also key challenges. Based on the data the CGH provides four recommendations for institutions developing global health interdisciplinary teams to optimize team functioning and address challenges in mentorship, language, and roles: 1) address interdisciplinary communication early, 2) develop work plans during group formation, 3) meet as a team prior to travel, and 4) establish regular check ins. This article provides first-hand reflections on interdisciplinary team experiences in a global context and provides a pathway for the development of innovative strategies in global health training.

  3. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  4. Technology in the high entropy world.

    PubMed

    Tambo, N

    2006-01-01

    Modern growing society is mainly driven by oils and may be designated "petroleum civilisation". However, the basic energy used to drive the global ecosystem is solar radiation. The amount of fossil energy consumption is minimal in the whole global energy balance. Economic growth is mainly controlled by the fossil (commercial) energy consumption rate in urban areas. Water and sanitation systems are bridging economical activities and global ecosystems. Therefore, vast amounts of high entropy solar energy should always be taken into account in the water industry. Only in urban/industrial areas where most of the GDP is earned, are commercial energy driven systems inevitably introduced with maximum effort for energy saving. A water district concept to ensure appropriate quality use with the least deterioration of the environment is proposed. In other areas, decentralised water and sanitation systems driven on soft energy paths would be recommended. A process and system designed on a high entropy energy system would be the foundation for a future urban metabolic system revolution for when oil-based energy become scarce.

  5. A Multicomponent Library Resource Model to Enhance Academic Global Health Education Among Residency Programs.

    PubMed

    Patel, Rupa R; Ravichandran, Sandhiya; Doering, Michelle M; Hardi, Angela C

    2017-01-01

    Global health is becoming an increasingly important component of medical education. Medical libraries have an opportunity to assist global health residents with their information needs, but first it is important to identify what those needs are and how best they can be addressed. This article reports a collaboration between global health faculty and an academic medical librarian to assess the information needs of global health pathway residents and how assessment data are used to create a multicomponent program designed to enhance global health education.

  6. Primary Energy of the District city and Suburb

    NASA Astrophysics Data System (ADS)

    Pitonak, Anton; Lopusniak, Martin; Bagona, Miloslav

    2017-10-01

    In member states of the European Union, portion of buildings in the total consumption of energy represents 40 %, and their share in CO2 emissions represents 35 %. Taking into account the dependence of the European Union on import of energy, this represents a large quantity of energy and CO2 in spite of the fact that effective solutions for the reduction of energy demand of buildings exist. The European Union adopted three main commitments for fulfilment of criteria by year 2020 in the 20-20-20 Directive. Based on this Directive Slovakia declares support for renovating the building stock. The goal of the paper was to prove that renovation of the building stock is environmentally and energy preferably as construction of new buildings. In the paper, the settlement unit with the suburban one were compared. Both territories are dealt with in Kosice city, in Slovakia. The settlement units include apartment dwelling houses, amenities, parking areas and green. Suburban part contains family houses. The decisive factor for the final assessment of the buildings was global indicator. Global indicator of the energy performance is primary energy. The new building must meet minimum requirements for energy performance and it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses the effects of the use of different resources of heat considering the global indicator. Primary energy was calculated and based on comparable unit. The primary energy was accounted for on the built-up area, area corresponding to district city and suburb, number of inhabitants. The study shows that the lowest values of global indicator are achieved by using wood. The highest values of global indicator are achieved by using electricity or district heating as an energy source. The difference between the highest and lowest value is 87 %. Primary energy based on inhabitant is 98 % lower in settlement unit compared to the suburban one.

  7. Interviewing Key Informants: Strategic Planning for a Global Public Health Management Program

    ERIC Educational Resources Information Center

    Kun, Karen E.; Kassim, Anisa; Howze, Elizabeth; MacDonald, Goldie

    2013-01-01

    The Centers for Disease Control and Prevention's Sustainable Management Development Program (SMDP) partners with low- and middle-resource countries to develop management capacity so that effective global public health programs can be implemented and better health outcomes can be achieved. The program's impact however, was variable. Hence, there…

  8. Global Rural Autism Asperger Information Network: A Distance Learning Inservice Training Program.

    ERIC Educational Resources Information Center

    Bock, Marjorie A.; Swinney, Lori; Smart, Kathy

    The University of North Dakota's Global Rural Autism Asperger Information Network (GRAAIN) provides a special graduate certificate program in Autistic Spectrum Disorder (ASD) consisting of six online courses. The program started over 4 years ago as a pilot program to provide specialized ASD training to educators and personnel serving children with…

  9. 75 FR 54086 - Global Intellectual Property Academy Program Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Survey ACTION: Proposed collection; comment request. SUMMARY: The United States Patent and Trademark... Global Intellectual Property Academy Program Survey comment'' in the subject line of the message. Fax... INFORMATION I. Abstract The U.S. Patent and Trademark Office plans to survey participants of the Global...

  10. Global Studies: Hurdles to Program Development

    ERIC Educational Resources Information Center

    Campbell, Patricia J.; Masters, Paul E.; Goolsby, Amy

    2004-01-01

    In this article, we examine a new global studies program that departs from the traditional state-centric approach and uses a geocentric, or earth-centered, approach that emphasizes the roles of individuals, grassroots organizations, cultural groups, and international organizations in an attempt to help students conceptualize global events and…

  11. GEWEX Water and Energy Budget Study

    NASA Technical Reports Server (NTRS)

    Roads, J.; Bainto, E.; Masuda, K.; Rodell, Matthew; Rossow, W. B.

    2008-01-01

    Closing the global water and energy budgets has been an elusive Global Energy and Water-cycle Experiment (GEWEX) goal. It has been difficult to gather many of the needed global water and energy variables and processes, although, because of GEWEX, we now have globally gridded observational estimates for precipitation and radiation and many other relevant variables such as clouds and aerosols. Still, constrained models are required to fill in many of the process and variable gaps. At least there are now several atmospheric reanalyses ranging from the early National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and NCEP/Department of Energy (DOE) reanalyses to the more recent ERA40 and JRA-25 reanalyses. Atmospheric constraints include requirements that the models state variables remain close to in situ observations or observed satellite radiances. This is usually done by making short-term forecasts from an analyzed initial state; these short-term forecasts provide the next guess, which is corrected by comparison to available observations. While this analysis procedure is likely to result in useful global descriptions of atmospheric temperature, wind and humidity, there is no guarantee that relevant hydroclimate processes like precipitation, which we can observe and evaluate, and evaporation over land, which we cannot, have similar verisimilitude. Alternatively, the Global Land Data Assimilation System (GLDAS), drives uncoupled land surface models with precipitation, surface solar radiation, and surface meteorology (from bias-corrected reanalyses during the study period) to simulate terrestrial states and surface fluxes. Further constraints are made when a tuned water balance model is used to characterize the global runoff observational estimates. We use this disparate mix of observational estimates, reanalyses, GLDAS and calibrated water balance simulations to try to characterize and close global and terrestrial atmospheric and surface water and energy budgets to within 10-20% for long term (1986-1995), large-scale global to regional annual means.

  12. Application of an Integrated Assessment Model with state-level resolution for examining strategies for addressing air, climate and energy goals

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals. GCAM includes technology-rich representations of the energy, transportati...

  13. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Dixon

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less

  14. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  15. The National Institutes of Health Fogarty International Center Global Health Scholars and Fellows Program: Collaborating across Five Consortia to Strengthen Research Training

    PubMed Central

    Zunt, Joseph R.; Chi, Benjamin H.; Heimburger, Douglas C.; Cohen, Craig R.; Strathdee, Steffanie; Hobbs, Nicole; Thomas, Yolanda; Bale, Kimberly; Salisbury, Kathryn; Hernandez, Maria T.; Riley, Lee W.; Vermund, Sten H.; van der Horst, Charles

    2016-01-01

    As demand for global health research training continues to grow, many universities are striving to meet the needs of trainees in a manner complementary to research priorities of the institutions hosting trainees, while also increasing capacity for conducting research. We provide an overview of the first 4 years of the Global Health Program for Fellows and Scholars, a collaboration of 20 U.S. universities and institutions spread across 36 low- and middle-income countries funded through the National Institutes of Health Fogarty International Center. We highlight many aspects of our program development that may be of interest to other multinational consortia developing global health research training programs. PMID:27382074

  16. Energy Consumption Trends in Energy Scarce and Rich Countries: Comparative Study for Pakistan and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Gazder, Uneb

    2017-11-01

    Energy crisis is raising serious concerns throughout the world. There has been constant rise in energy consumption corresponding to the increase in global population. This sector affects the other pillars of national economy including industries and transportation. Because of these reasons, the traditional fossil-based energy sources are depleting rapidly, resulting in high and unstable energy prices. Saudi Arabia and Pakistan, although different from each other in terms of their economic stability and political systems, still rely heavily on the traditional fossil fuels. This paper presents the comparison of these two countries in terms of their energy consumption and factors affecting it. These factors include, but not limited to, economic development, and growth in population and other sectors such as; industries, transportation, etc. The comparison is also made with the regional and global energy consumption trends and these countries. Moreover, regression models were built to predict energy consumption till 2040 and compare the growth in this sector and share in global energy demand. Energy consumption in oil-rich countries (Saudi Arabia) has been driven through its economic development, while for energy insecure country (Pakistan) it is mainly because of population growth. It was also found that in the next two decades the share of Pakistan in the global energy demand will increase. This concludes that population growth will have more impact on energy consumption than economic growth. It could mean that the shift in energy sector would shift towards sustenance instead of using energy for commercial or industrial usage. Conference Track: Policy and Finance and Strategies

  17. Tropical Ocean and Global Atmosphere (TOGA) heat exchange project: A summary report

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Niiler, P. P.

    1985-01-01

    A pilot data center to compute ocean atmosphere heat exchange over the tropical ocean is prposed at the Jet Propulsion Laboratory (JPL) in response to the scientific needs of the Tropical Ocean and Global Atmosphere (TOGA) Program. Optimal methods will be used to estimate sea surface temperature (SET), surface wind speed, and humidity from spaceborne observations. A monthly summary of these parameters will be used to compute ocean atmosphere latent heat exchanges. Monthly fields of surface heat flux over tropical oceans will be constructed using estimations of latent heat exchanges and short wave radiation from satellite data. Verification of all satellite data sets with in situ measurements at a few locations will be provided. The data center will be an experimental active archive where the quality and quantity of data required for TOGA flux computation are managed. The center is essential to facilitate the construction of composite data sets from global measurements taken from different sensors on various satellites. It will provide efficient utilization and easy access to the large volume of satellite data available for studies of ocean atmosphere energy exchanges.

  18. Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics

    NASA Astrophysics Data System (ADS)

    Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.

    2018-01-01

    Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.

  19. Innovation management in renewable energy sector

    NASA Astrophysics Data System (ADS)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  20. Increasing Understanding of Cultural Differences

    ERIC Educational Resources Information Center

    Creeden, Jack; Kelly-Aguirre, Eileen; Visser, Aric

    2016-01-01

    Many high school and university students return home from global programs and often report they have changed as a result of the experience. Global educators assume the act of participating in global education programs (such as high school study abroad) will open students' eyes to the complexities of another culture because students have been…

Top