DOT National Transportation Integrated Search
1995-09-01
This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...
DOT National Transportation Integrated Search
1996-09-03
This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...
DOT National Transportation Integrated Search
1994-09-01
This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...
Environmental Report 1996 Volume 2
DOT National Transportation Integrated Search
1997-09-01
This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...
Environmental Report 1996 Volume 1
DOT National Transportation Integrated Search
1997-09-01
This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...
Environmental Report 1995, Volume 2
DOT National Transportation Integrated Search
1996-09-03
This report, prepared by Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy, Oakland Operations Office (DOE/OAK), provides a comprehensive summary of the environmental program activities at Lawrence Livermore National Lab...
Lawrence Livermore National Laboratory Environmental Report 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H. E.; Bertoldo, N. A.; Blake, R. G.
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”
Lawrence Livermore National Laboratory Environmental Report 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosene, C. A.; Jones, H. E.
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”
Science & Technology Review November 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, K
This months issue of Science and Technology Review has the following articles: (1) High-Tech Help for Fighting Wildfires--Commentary by Leland W. Younker; (2) This Model Can Take the Heat--A physics-based simulation program to combat wildfires combines the capabilities and resources of Lawrence Livermore and Los Alamos national laboratories. (3) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory. (4) A view to Kill--Livermore sensors are aimed at the ''kill'' vehicle when it intercepts an incoming ballistic missile. (5) 50th Anniversary Highlight--Biological Research Evolves at Livermore--Livermore's biological research program keepsmore » pace with emerging national issues, from studying the effects of ionizing radiation to detecting agents of biological warfare.« less
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Technical Reports Server (NTRS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-01-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
Precision and manufacturing at the Lawrence Livermore National Laboratory
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Wasley, Richard J.; Stowers, Irving F.; Donaldson, Robert R.; Thompson, Daniel C.
1994-02-01
Precision Engineering is one of the Lawrence Livermore National Laboratory's core strengths. This paper discusses the past and present current technology transfer efforts of LLNL's Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machine Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently, LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition, this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
1994-10-01
This report presents the details of the Lawrence Livermore National Laboratory safeguards and securities program. This program is focused on developing new technology, such as x- and gamma-ray spectrometry, for measurement of special nuclear materials. This program supports the Office of Safeguards and Securities in the following five areas; safeguards technology, safeguards and decision support, computer security, automated physical security, and automated visitor access control systems.
Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauman, B J; Gavel, D T
2003-04-23
Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.
Experimental Studies of Very-High Mach Number Hydrodynamics
1994-02-14
BUCKINGHAM Lawrence Livermore National Laboratory Livermore, California IRA KOHLBERG Kohlberg Associates, Inc. Alexandria, Virginia 9 / 1 321 February 14...34** Lawrence Livermore National Laboratory, Livermore, CA tKohlberg Associates, Inc., Alexandria, VA 12a. DISTRIBUTION/AVAILABlUTY STATEMENT 12b...Kohlberg 3 IPlasma Physics Division, Naval Research Laboratory, Washington DC 20375, USA 2 Lawrence Livermore National Laboratory, Liveraore, Ca. USA 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C. J.; Edwards, M. J.; McCoy, M. G.
2015-07-07
Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.
2003 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
2007-05-23
Annual Illness and Injury Surveillance Program report for 2003 for Lawrence Livermore National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
03-NIF Dedication: Norm Pattiz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norm Pattiz
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Norm Pattiz, the chairman of Lawrence Livermore National Security, which manages Lawrence Livermore National Laboratory for the U.S. Department of Energy.
03-NIF Dedication: Norm Pattiz
Norm Pattiz
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Norm Pattiz, the chairman of Lawrence Livermore National Security, which manages Lawrence Livermore National Laboratory for the U.S. Department of Energy.
Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesuer, D.; McGreevy, T. E.
This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.
Composite Flywheel Development for Energy Storage
2005-01-01
Fiber-Composite Flywheel Program: Quarterly Progress Report; UCRL -50033-76-4; Lawrence Livermore National Laboratory: Livermore, CA, 1976. 2...BEACH DAHLGREN VA 22448 1 WATERWAYS EXPERIMENT D SCOTT 3909 HALLS FERRY RD SC C VICKSBURG MS 39180 1 DARPA B WILCOX 3701 N FAIRFAX DR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutmacher, R.; Crawford, R.
This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweed, J.
1996-10-01
This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
...: Lawrence Livermore National Laboratory. Location: Livermore, California. Job Titles and/or Job Duties: All... L. Hinnefeld, Interim Director, Office of Compensation Analysis and Support, National Institute for...
2015 Cross-Domain Deterrence Seminar Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez, A.
2016-01-11
Lawrence Livermore National Laboratory (LLNL) hosted the 2nd Annual Cross-Domain Deterrence Seminar on November 17th, 2015 in Livermore, CA. The seminar was sponsored by LLNL’s Center for Global Security Research (CGSR), National Security Office (NSO), and Global Security program. This summary covers the seminar’s panels and subsequent discussions.
Physics and Advanced Technologies 2003 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A; Sketchley, J
2005-01-20
The Physics and Advanced Technologies (PAT) Directorate overcame significant challenges in 2003 to deliver a wealth of scientific and programmatic milestones, and move toward closer alignment with programs at Lawrence Livermore National Laboratory. We acted aggressively in enabling the PAT Directorate to contribute to future, growing Lawrence Livermore missions in homeland security and at the National Ignition Facility (NIF). We made heavy investments to bring new capabilities to the Laboratory, to initiate collaborations with major Laboratory programs, and to align with future Laboratory directions. Consistent with our mission, we sought to ensure that Livermore programs have access to the bestmore » science and technology, today and tomorrow. For example, in a move aimed at revitalizing the Laboratory's expertise in nuclear and radiation detection, we brought the talented Measurement Sciences Group to Livermore from Lawrence Berkeley National Laboratory, after its mission there had diminished. The transfer to our I Division entailed significant investment by PAT in equipment and infrastructure required by the group. In addition, the move occurred at a time when homeland security funding was expected, but not yet available. By the end of the year, though, the group was making crucial contributions to the radiation detection program at Livermore, and nearly every member was fully engaged in programmatic activities. Our V Division made a move of a different sort, relocating en masse from Building 121 to the NIF complex. This move was designed to enhance interaction and collaboration among high-energy-density experimental scientists at the Laboratory, a goal that is essential to the effective use of NIF in the future. Since then, V Division has become increasingly integrated with NIF activities. Division scientists are heavily involved in diagnostic development and fielding and are poised to perform equation-of-state and high-temperature hohlraum experiments in 2004 as part of the NIF Early Light program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SAmore » examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.« less
2003-06-01
Albuquerque, NM, 1992. Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory: Livermore, CA, 1981 Geiger, W.; Honcia, G...L.; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL -50422; Lawrence Livermore National Laboratory...ARMAMENT LAB AFATL DLJR J FOSTER D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA
Counter Trafficking System Development "Analysis Training Program"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Dennis C.
This document will detail the training curriculum for the Counter-Trafficking System Development (CTSD) Analysis Modules and Lesson Plans are derived from the United States Military, Department of Energy doctrine and Lawrence Livermore National Laboratory (LLNL), Global Security (GS) S Program.
A Collection of Articles Reprinted from Science & Technology Review on University Relations Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H; Rennie, G; Henke, A
2006-08-23
This month's issue has the following articles: (1) The Power of Partnership--Livermore researchers forge strategic collaborations with colleagues from other University of California campuses to further science and better protect the nation; (2) Collaborative Research Prepares Our Next-Generation Scientists and Engineers--Commentary by Laura R. Gilliom; (3) Next-Generation Scientists and Engineers Tap Lab's Resources--University of California Ph.D. candidates work with Livermore scientists and engineers to conduct fundamental research as part of their theses; (4) The Best and the Brightest Come to Livermore--The Lawrence Fellowship Program attracts the most sought-after postdoctoral researchers to the Laboratory; and (5) Faculty on Sabbatical Find amore » Good Home at Livermore--Faculty members from around the world come to the Laboratory as sabbatical scholars.« less
Numerical Simulations of 3D Seismic Data Final Report CRADA No. TC02095.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, S. J.; Kostov, C.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of Califomia)/Lawrence-Livermore National Laboratory (LLNL) and Schlumberger Cambridge Research (SCR), to develop synthetic seismic data sets and supporting codes.
High-Resolution Regional Phase Attenuation Models of the Iranian Plateau and Zagros (Postprint)
2012-05-12
15 September 2011, Tucson, AZ, Volume I, pp 153-160. Government Purpose Rights. Johann Wolfgang Goethe -Universität 1, and Lawrence Livermore...University of Missouri1, Johann Wolfgang Goethe -Universität 2, and Lawrence Livermore National Laboratory3 Sponsored by the Air Force
360 Video Tour of 3D Printing Labs at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, it’s changing the way our scientists approach research and development. Today we’ll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.
Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how doesmore » this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.« less
Lawrence Livermore National Laboratory environmental report for 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sims, J.M.; Surano, K.A.; Lamson, K.C.
1990-01-01
This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silvermore » concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.« less
Laboratory Directed Research and Development FY 2000 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ayat, R
This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.
Lawrence Livermore National Laboratory two-stage light-gas gun
NASA Astrophysics Data System (ADS)
Mitchell, A. C.; Nellis, W. J.; Trinor, R. J.
1981-10-01
The APS conference on shock waves in condensed matter was held at Menlo Park, Ca, USA on 23 June 1981. The diagnostics and experimental program of a facility used to study condensed matter at high pressures are described.
The Future Role and Need for Nuclear Weapons in the 21st Century
2007-01-01
program, the Manhattan Project : Einstein‘s letter to Roosevelt in 1939 regarding the use of the energy from uranium for bombs, ―the imaginary German...succeed, nuclear weapons were introduced by the US into our world in 1945. The Manhattan Project efforts produced four bombs within its first three...Proceedings‖ (Livermore, CA: Lawrence Livermore National Laboratory, 1991), 14. 6 Ibid. , 12. 7 ― Manhattan Project ,‖ MSN Encarta, 2, http://encarta
HCCI Combustion Engines Final Report CRADA No. TC02032.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S.; Lyford-Pike, E.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.
ERIC Educational Resources Information Center
Khoury, Anne
2006-01-01
Leadership development, a component of HRD, is becoming an area of increasingly important practice for all organizations. When companies such as Lawrence Livermore National Laboratory rely on knowledge workers for success, leadership becomes even more important. This research paper tests the hypothesis that leadership credibility and the courage…
Rapid Assessment of Individual Soldier Operational Readiness Final Report CRADA No. TC02104.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K.; Mapes, J.
This was a collaborative effort between Lawrence Livermore National Security (LLNS) (formerly The Regents of the University of California), Lawrence Livermore National Laboratory (LLNL) and Rules Based Medicine, Inc. {RBM), to identify markers in blood that would be candidates for determining the combat readiness of troops.
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Morse, T.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprisemore » NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).« less
Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoppes, W.; Oster, S.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased watermore » disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
1977-08-15
This report deals with some techniques in applied programming using the Livermore Timesharing System (LTSS) on the CDC 7600 computers at the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network). This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been revised to accommodate differences between LLLCC and NMFECC implementations. Topics include: maintaining programs, debugging, recovering from system crashes, and using the central processing unit, memory, and input/output devices efficiently and economically. Routines that aid in these procedures aremore » mentioned. The companion report, UCID-17556, An LTSS Compendium, discusses the hardware and operating system and should be read before reading this report.« less
Institutional research and development, FY 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, G.L.; Lawler, G.M.; Crawford, R.B.
The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)
360 Video Tour of 3D Printing Labs at LLNL
None
2018-01-16
Additive manufacturing is changing the way the world thinks about manufacturing and design. And here at Lawrence Livermore National Laboratory, itâs changing the way our scientists approach research and development. Today weâll look around three of the additive manufacturing research labs on the Lawrence Livermore campus.
A Uniaxial Nonlinear Thermoviscoelastic Constitutive Model with Damage for M30 Gun Propellant
1994-06-01
Gun Propellants at High Pressure." Lawrence Livermore National Laboratory, UCRL -88521, 1983. n g Design - k _ ao tics of Gum-’ AMCP 706-150, U.S. Army...07806-5000 Bethesda, MD 20054-5000 2 Commander 5 Director DARPA Lawrence Livermore National ATTN: J. Kelly Laboratory B. Wilcox ATTN: R. Christensen 3701
Calorimetry exchange program amendment to 3rd quarter CY92 report LLNL isotopic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, T.M.
1996-08-01
This report is a series of ammendments to the Calorimetry Exchange Quarterly Data Report for third quarter CY1992. The ammendment is needed due to reporting errors encountered in the Lawrence Livermore National Laboratory isotopic data.
Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, S.
1992-01-01
This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)
Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, S.
1992-06-01
This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
2005-09-20
Institutions Lawrence Livermore National Laboratory conduct similar or complementary research often excel through collaboration. Indeed, much of Lawrence Livermore's research involves collaboration with other institutions, including universities, other national laboratories, government agencies, and private industry. In particular, Livermore's strategic collaborations with other University of California (UC) campuses have proven exceptionally successful in combining basic science and applied multidisciplinary research. In joint projects, the collaborating institutions benefit from sharing expertise and resources as they work toward their distinctive missions in education, research, and public service. As Laboratory scientists and engineers identify resources needed to conduct their work, they often turn tomore » university researchers with complementary expertise. Successful projects can expand in scope to include additional scientists and engineers both from the Laboratory and from UC, and these projects may become an important element of the research portfolios of the cognizant Livermore directorate and the university department. Additional funding may be provided to broaden or deepen a research project or perhaps develop it for transfer to the private sector for commercial release. Occasionally, joint projects evolve into a strategic collaboration at the institutional level, attracting the attention of the Laboratory director and the UC chancellor. Government agencies or private industries may contribute funding in recognition of the potential payoff of the joint research, and a center may be established at one of the UC campuses. Livermore scientists and engineers and UC faculty are recruited to these centers to focus on a particular area and achieve goals through interdisciplinary research. Some of these researchers hold multilocation appointments, allowing them to work at Livermore and another UC campus. Such centers also attract postdoctoral researchers and graduate students pursuing careers in the centers specialized areas of science. foster university collaboration is through the Laboratory's institutes, which have been established to focus university outreach efforts in fields of scientific importance to Livermore's programs and missions. Some of these joint projects may grow to the level of a strategic collaboration. Others may assist in Livermore's national security mission; provide a recruiting pipeline from universities to the Laboratory; or enhance university interactions and the vitality of Livermore's science and technology environment through seminars, workshops, and visitor programs.« less
Livermore Site Spill Prevention, Control, and Countermeasures Plan, May 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, D.; Mertesdorf, E.
This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Livermore Site in Livermore, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil.
Algorithms and Architectures for Elastic-Wave Inversion Final Report CRADA No. TC02144.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, S.; Lindtjorn, O.
2017-08-15
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Schlumberger Technology Corporation (STC), to perform a computational feasibility study that investigates hardware platforms and software algorithms applicable to STC for Reverse Time Migration (RTM) / Reverse Time Inversion (RTI) of 3-D seismic data.
Rarefaction Shock Wave Cutter for Offshore Oil-Gas Platform Removal Final Report CRADA No. TC02009.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn, L. A.; Barker, J.
This was a collaborative effort between Lawrence Livermore National Security, LLC/Lawrence Livermore National Laboratory (LLNL) (formerly the University of California) and Jet Research Center, a wholly owned division of Halliburton Energy Services, Inc. to design and prototype an improved explosive cutter for cutting the support legs of offshore oil and gas platforms.
Adaptive Optics at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D T
2003-03-10
Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media andmore » must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taffet, Michael J.; Esser, Bradley K.; Madrid, Victor M.
This report summarizes work performed by Lawrence Livermore National Laboratory (LLNL) under Navajo Nation Services Contract CO9729 in support of the Navajo Abandoned Mine Lands Reclamation Program (NAMLRP). Due to restrictions on access to uranium mine waste sites at Tse Tah, Arizona that developed during the term of the contract, not all of the work scope could be performed. LLNL was able to interpret environmental monitoring data provided by NAMLRP. Summaries of these data evaluation activities are provided in this report. Additionally, during the contract period, LLNL provided technical guidance, instructional meetings, and review of relevant work performed by NAMLRPmore » and its contractors that was not contained in the contract work scope.« less
Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII
NASA Astrophysics Data System (ADS)
Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.
2013-04-01
The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.
Science& Technology Review June 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D
This month's issue has the following articles: (1) Livermore's Three-Pronged Strategy for High-Performance Computing, Commentary by Dona Crawford; (2) Riding the Waves of Supercomputing Technology--Livermore's Computation Directorate is exploiting multiple technologies to ensure high-performance, cost-effective computing; (3) Chromosome 19 and Lawrence Livermore Form a Long-Lasting Bond--Lawrence Livermore biomedical scientists have played an important role in the Human Genome Project through their long-term research on chromosome 19; (4) A New Way to Measure the Mass of Stars--For the first time, scientists have determined the mass of a star in isolation from other celestial bodies; and (5) Flexibly Fueled Storage Tank Bringsmore » Hydrogen-Powered Cars Closer to Reality--Livermore's cryogenic hydrogen fuel storage tank for passenger cars of the future can accommodate three forms of hydrogen fuel separately or in combination.« less
Fixatives Application for Risk Mitigation Following Contamination with a Biological Agent
2011-11-02
PRES- Gruinard Island 5% formaldehyde Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...507816 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011...LL L-PRES-507816 Lawrence Livermore National Laboratory LLNL-PRES- High disinfectant concentrations increase operational costs and risk
Material Modeling for Terminal Ballistic Simulation
1992-09-01
DYNA-3D-a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics- user manual. Technical Report UCRL -MA...Rep. UCRL -50108, Rev. 1, Lawrence Livermore Laboratory, 1977. [34] S. P. Marsh. LASL Shock Hugoniot Data. University of California Press, Berkeley, CA...Steinberg. Equation of state and strength properties of selected ma- teriaJs. Tech. Rep. UCRL -MA-106439, Lawrence Livermore National Labo- ratory, 1991. [371
California Energy Systems for the 21st Century 2016 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Randwyk, J.; Boutelle, A.; McClelland, C.
The California Energy Systems for the 21st Century (CES-21) Program is a public-private collaborative research and development program between the California Joint Utilities1 and Lawrence Livermore National Laboratory (LLNL). The purpose of this annual report is to provide the California Public Utilities Commission (CPUC or Commission) with a summary of the 2016 progress of the CES-21 Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, W.J.; Canada, J.; de Vore, L.
1994-04-01
This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.
2012-01-01
Laboratories Walker Ray Walker Engineering Solutions, LLC Williams Patricia Denver Office of Emergency Management Wood- Zika Annmarie Lawrence Livermore...llnl.gov AnnMarie Wood- Zika woodzika1@llnl.gov Pacific Northwest National Laboratory Ann Lesperance ann.lesperance@pnnl.gov Jessica Sandusky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, C. V.; Mendez, A. J.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.
2011-11-16
Security, LLC 2011 CBD S& T Conference November 16, 2011 LLNL-PRES-508394 Lawrence Livermore National Laboratory LLNL-PRES- Background...PRES- Gruinard Island 5% formaldehyde Sverdlosk Release UNKNOWN: but washing, chloramines , soil disposal believed to have been used...508394 Lawrence Livermore National Laboratory LLNL-PRES- 4 Disinfectant >6 Log Reduction on Materials (EPA, 2010a,b; Wood et al., 2011
Numerical Modeling of Buried Mine Explosions
2001-03-01
Lawrence Livermore Laboratory Report, UCRL -50108, Rev. 1, June 1977. 12. Dobratz, B. M., and P. C. Crawford. “LLNL Explosives Handbook.” Lawrence...Livermore National Laboratory Report, UCRL -52997, January 1985. 13. Kerley, G. I. “Multiphase Equation of State for Iron.” Sandia National Laboratories...BOX 202797 AUSTIN TX 78720-2797 1 DARPA B KASPAR 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 US MILITARY ACADEMY MATH SCI
Final Report Bald and Golden Eagle Territory Surveys for the Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fratanduono, M. L.
2014-11-25
Garcia and Associates (GANDA) was contracted by the Lawrence Livermore National Laboratory (LLNL) to conduct surveys for bald eagles (Haliaeetus leucocephalus) and golden eagles (Aquila chrysaetos) at Site 300 and in the surrounding area out to 10-miles. The survey effort was intended to document the boundaries of eagle territories by careful observation of eagle behavior from selected viewing locations throughout the study area.
Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.
2017-10-01
As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.
Development of a Laser for Landmine Destruction Final Report CRADA No. TC02126.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, R.; Sheppard, C.
2017-08-31
This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system.
1991-07-16
UCRL -51414-REV1, Lawrence Livermore Laboratory, University of California, CA. - 47 - North, R. G. (1977). Station magnitude bias --- its determination...1976 at and near the nuclear testing ground in eastern Kazakhstan, UCRL -52856, Lawrence Livermore Laboratory, University of California, CA. Ryall, A...VA 24061 Dr. Ralph Alewine, I Dr. Stephen Bratt DARPA/NMRO Center for Seismic Studies 3701 North Fairfax Drive 1300 North 17th Street Arlington, VA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, T. W.; Schena, D.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and TroyCap LLC, to develop manufacturing steps for commercial production of nano-structure capacitors. The technical objective of this project was to demonstrate high deposition rates of selected dielectric materials which are 2 to 5 times larger than typical using current technology.
Brian Cox
2017-12-09
The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Cox
2010-01-12
The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.
How to Read an LLNL Energy Flow Chart (Sankey Diagram)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, A. J.
Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNL’s energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilmer, J.
Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided,more » this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.« less
Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messerly, M.; Cunningham, P.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.
1992-03-01
Propagation of Lg Waves Across Eastern Europe and Asia, Lawrence Livermore National Laboratory Report, LLNL Report No. UCRL -52494. Press, F., and M. Ewing...the Nuclear Testing Ground in Eastern Kazakhstan, Lawrence Livermore National Laboratory Report, LLNL Report No. UCRL -52856. Ruzaikin, A., I. Nersesov...Derring Hall University Park, PA 16802 Blacksburg, VA 24061 Dr. Ralph Alewine, III Dr. Stephen Bratt DARPAftMRO Center for Seismic Studies 3701 North Fairax
Lawrence Livermore National Laboratory Environmental Report 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H E; Bertoldo, N A; Campbell, C G
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.« less
Department of Energy Natural Phenomena Hazards Mitigation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.C.
1993-09-01
This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowdermilk, W. H.; Brothers, L. J.
This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.
1992-08-17
01731-5000 UP, No. 1106 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER DARPA/NMRO 3701 North...the peaceful uses of nuclear explosives, UCRL -5414, Lawrence Livermore National Laboratory, 1973. Nordyke, M.D., A review of Soviet data on the peaceful...Lawrence Livermore national Laboratory, UCRL -JC-107941, preprint. Haskell, N. A. (1964). Radiation pattern of surface waves from point sources in a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, Lisa E.; Woollett, Jim S.
2014-01-01
The Lawrence Livermore National Laboratory’s (LLNL’s) Environmental Restoration Department (ERD) is required to conduct an ecological review at least every five years to ensure that biological and contaminant conditions in areas undergoing remediation have not changed such that existing conditions pose an ecological hazard (Dibley et al. 2009a). This biological review is being prepared by the Natural Resources Team within LLNL’s Environmental Functional Area (EFA) to support the 2013 five-year ecological review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupper, L.L.; Setzer, R.W.; Schwartzbaum, J.
1987-07-01
This document reports on a reevaluation of data obtained in a previous report on occupational factors associated with the development of malignant melanomas at Lawrence Livermore National Laboratory. The current report reduces the number of these factors from five to three based on a rigorous statistical analysis of the original data. Recommendations include restructuring the original questionnaire and trying to contact more individuals that worked with volatile photographic chemicals. 17 refs., 7 figs., 22 tabs. (TEM)
Science & Technology Review October/November 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, R. L.; Meissner, C. N.; Kotta, P. R.
At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. The Laboratory is operated by Lawrence Livermore National Security, LLC (LLNS), for the Department of Energy’smore » National Nuclear Security Administration. LLNS is a partnership involving Bechtel National, University of California, Babcock & Wilcox, Washington Division of URS Corporation, and Battelle in affiliation with Texas A&M University. More information about LLNS is available online at www.llnsllc.com. Please address any correspondence (including name and address changes) to S&TR, Mail Stop L-664, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, or telephone (925) 423-3893. Our e-mail address is str-mail@llnl.gov. S&TR is available on the Web at str.llnl.gov.« less
How to Read an LLNL Energy Flow Chart (Sankey Diagram)
Simon, A. J.
2018-01-16
Each year, the Lawrence Livermore National Laboratory releases energy flow charts that illustrate the nation's consumption and use of energy. A.J. Simon, group leader for LLNLâs energy program, breaks the 2015 chart down in this video, describing how to read the chart and what year-to-year trends he sees.
Remote sensing, imaging, and signal engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brase, J.M.
1993-03-01
This report discusses the Remote Sensing, Imaging, and Signal Engineering (RISE) trust area which has been very active in working to define new directions. Signal and image processing have always been important support for existing programs at Lawrence Livermore National Laboratory (LLNL), but now these technologies are becoming central to the formation of new programs. Exciting new applications such as high-resolution telescopes, radar remote sensing, and advanced medical imaging are allowing us to participate in the development of new programs.
US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.
10-NIF Dedication: Ellen Tauscher
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congresswoman Ellen Tauscher
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Ellen Tauscher, of California's 10th district, which includes Livermore.
10-NIF Dedication: Ellen Tauscher
Congresswoman Ellen Tauscher
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Ellen Tauscher, of California's 10th district, which includes Livermore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougan, A; Dreicer, M; Essner, J
2009-11-16
In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship;more » (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.« less
Modeling of Near-Field Blast Performance
2013-11-01
The freeze-out temperature is chosen by comparison of calorimetry experiments (2, 3) and thermoequilibrium calculations using CHEETAH (4). The near...P.; Vitello, P. CHEETAH Users Manual; Lawrence Livermore National Laboratory: Livermore, CA, 2012. 5. Walter, P. Introduction to Air Blast
07-NIF Dedication: Jerry McNerney
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congressman Jerry McNerney
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congressman Jerry McNerney, of California's 11th district, which adjoins Livermore.
07-NIF Dedication: Jerry McNerney
Congressman Jerry McNerney
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congressman Jerry McNerney, of California's 11th district, which adjoins Livermore.
Scientific program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerich, C.
1983-01-01
The Fifth International Conference on High-Power Particle Beams is organized jointly by the Lawrence Livermore National Laboratory and Physics International Company. As in the previous conferences in this series, the program includes the following topics: high-power, electron- and ion-beam acceleration and transport; diode physics; high-power particle beam interaction with plasmas and dense targets; particle beam fusion (inertial confinement); collective ion acceleration; particle beam heating of magnetically confined plasmas; and generation of microwave/free-electron lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dingell, J.D.
1991-02-01
The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secretmore » document control program was also assessed.« less
Environmental sciences information storage and retrieval system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engstrom, D.E.; White, M.G.; Dunaway, P.B.
Reynolds Electrical and Engineering Co., Inc. (REECo), has since 1970 accumulated information relating to the AEC's Nevada Applied Ecology Group (NAEG) programs at the Nevada Test Site (NTS). These programs, involving extensive soil, vegetation, and small-animal studies, have generated informational data concerning the collecting, processing, analyzing, and shipping of sample materials to various program participants and contractors. Future plans include incorporation of Lawrence Livermore Laboratory's resuspension study data, REECo's on-site air data, and EPA's large-animal, off-site air, and off-site soil data. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez, Anthony
In November 2015, the Center for Global Security Research, NSO, and Global Security program jointly sponsored a seminar investigating questions related to cross-domain deterrence at Lawrence Livermore National Laboratory. At the seminar, experts were asked to moderate discussion based on the four topics below. For each of these topics, we have compiled a short list of literature that will help analysts develop a baseline understanding of the issue.
Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels
2006-01-01
Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations
FY2011 Engineering Innovations, Research, and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Kip; Martz, Harry E.; Poyneer, Lisa A.
2012-04-24
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.
2020 Foresight Forging the Future of Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, P.
2000-01-01
The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstratemore » LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.« less
10 CFR 850 Implementation of Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S
2012-01-05
10 CFR 850 defines a contractor as any entity, including affiliated entities, such as a parent corporation, under contract with DOE, including a subcontractor at any tier, with responsibility for performing work at a DOE site in furtherance of a DOE mission. The Chronic Beryllium Disease Prevention Program (CBDPP) applies to beryllium-related activities that are performed at the Lawrence Livermore National Laboratory (LLNL). The CBDPP or Beryllium Safety Program is integrated into the LLNL Worker Safety and Health Program and, thus, implementation documents and responsibilities are integrated in various documents and organizational structures. Program development and management of the CBDPPmore » is delegated to the Environment, Safety and Health (ES&H) Directorate, Worker Safety and Health Functional Area. As per 10 CFR 850, Lawrence Livermore National Security, LLC (LLNS) periodically submits a CBDPP to the National Nuclear Security Administration/Livermore Site Office (NNSA/LSO). The requirements of this plan are communicated to LLNS workers through ES&H Manual Document 14.4, 'Working Safely with Beryllium.' 10 CFR 850 is implemented by the LLNL CBDPP, which integrates the safety and health standards required by the regulation, components of the LLNL Integrated Safety Management System (ISMS), and incorporates other components of the LLNL ES&H Program. As described in the regulation, and to fully comply with the regulation, specific portions of existing programs and additional requirements are identified in the CBDPP. The CBDPP is implemented by documents that interface with the workers, principally through ES&H Manual Document 14.4. This document contains information on how the management practices prescribed by the LLNL ISMS are implemented, how beryllium hazards that are associated with LLNL work activities are controlled, and who is responsible for implementing the controls. Adherence to the requirements and processes described in the ES&H Manual ensures that ES&H practices across LLNL are developed in a consistent manner. Other implementing documents, such as the ES&H Manual, are integral in effectively implementing 10 CFR 850.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, D. K.
2016-12-01
High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, P.; Kamath, H.
Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.
User's manual for a two-dimensional, ground-water flow code on the Octopus computer network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naymik, T.G.
1978-08-30
A ground-water hydrology computer code, programmed by R.L. Taylor (in Proc. American Society of Civil Engineers, Journal of Hydraulics Division, 93(HY2), pp. 25-33 (1967)), has been adapted to the Octopus computer system at Lawrence Livermore Laboratory. Using an example problem, this manual details the input, output, and execution options of the code.
Laser Shot Peening Final Report CRADA No. TC-02059-03
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuart, B. C.; Hackel, L.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Pruneda, J.H.
This issue pays tribute to Roger Batzel, the Laboratory's sixth and longest-tenured direct (1971-1988). The articles in this issue are: (1) ''Roger Batzel--A Leader and a Gentleman''. (2) ''A Career of Distinguished Achievement'' A superb manager with a quiet and self-effacing demeanor. Roger Batzel presided over a period of unprecedented growth and technical diversification at Lawrence Livermore. (3) ''From Dosimetry to Genomics'' Roger Batzel's support of Livermore's relatively new biomedical research program led to its growth into a major contributor to the worldwide Human Genome Project. (4) ''Swords into Plowshares and Beyond'' Under Roger Batzel's leadership, the Laboratory championed numerousmore » long-term, innovative alternative energy technologies to help address challenges not unlike those we are facing today. (5) ''Adapting to a Changing Weapons Program'' Roger Batzel's knowledge of the US weapons program and his much-trusted professional judgment served the Laboratory and the nation well as arms control and deterrence emerged as national priorities.« less
Livermore study says oil leaks not severe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, L.
The Petroleum Marketers Association of America (PMAA), which is working to reform the federal Leaking Underground Storage Tank program, got some strong ammunition last month. A study that the Lawrence Livermore National Laboratory performed for the California State Water Resources Control Board has found that the environmental threat of leaks is not as severe as formerly thought. The study said: such leaks rarely jeopardize drinking water; fuel hydrocarbons have limited impacts on health, the environment, and groundwater; and cleanups often are done contrary to the knowledge and experience gained from prior remediations. As a result of the study, Gov. Petemore » Wilson ordered California cleanups halted at sites more than 250 feet from drinking water supplies.« less
LTSS compendium: an introduction to the CDC 7600 and the Livermore Timesharing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
1977-08-15
This report is an introduction to the CDC 7600 computer and to the Livermore Timesharing System (LTSS) used by the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network) on their 7600's. This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been broadened to point out differences in implementation at LLLCC. It also contains information about LLLCC not relevant to NMFECC. This report is written for computational physicists who want to prepare large production codes to run under LTSSmore » on the 7600's. The generalized discussion of the operating system focuses on creating and executing controllees. This document and its companion, UCID-17557, CDC 7600 LTSS Programming Stratagems, provide a basis for understanding more specialized documents about individual parts of the system.« less
Development of a Landmine Detection Sensor Final Report CRADA No. TC02133.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, C. E.; Sheppard, C.
2017-09-06
This was one of two CRADAs between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and First Alliance Technologies, LLC (First Alliance), to conduct research and development activity toward an integrated system for the detecting, locating, and destroying of landmines and unexploded ordinance using a laser to destroy landmines and unexploded ordinance and First Alliance’s Land Mine Locator (LML) system. The focus of this CRADA was on developing a sensor system that accurately detects landmines, and provides exact location information in a timely manner with extreme reliability.
Earth Sciences annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, L.W.; Donohue, M.L.; Peterson, S.J.
1988-12-01
The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
Final Report on Contract N00014-92-C-0173 (Office of Naval Research)
2001-01-10
PHILPOTTI* t Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550, USA SIBM Research Division, Almaden Research Center...defines the ITP on one electrode and adsorbed hydrated lithium ion defines the OlIP on the second electrode. Ions have been classified according to
Analysis of Proton Transport Experiments.
1980-09-05
which can inhibit transport, may grow . The abrupt loss of transport at higher currents in the small channel suggests this possibility. Future experiments... Unicorn Park Drive Woburn, MA 01801 Attn: H. Linnerud 1 copy Lawrence Livermore Laboratory P. 0. Box 808 Livermore, CA 94550 Attn: R. J. Briggs 1 copy R
2010 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-08-16
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-09-21
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-05-20
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-03-27
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
The electromechanical battery: The new kid on the block
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R.F.
1993-08-01
In a funded program at the Lawrence Livermore National Laboratory new materials and novel designs are being incorporated into a new approach to an old concept -- flywheel energy storage. Modular devices, dubbed ``electromechanical batteries`` (EMB) are being developed that should represent an important alternative to the electrochemical storage battery for use in electric vehicles or for stationary applications, such as computer back-up power or utility load-leveling.
NASA Astrophysics Data System (ADS)
Wuest, Craig R.
2001-03-01
The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Lawrence Livermore National Laboratory Environmental Report 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Henry E.; Armstrong, Dave; Blake, Rick G.
Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the community by soliciting citizens’ input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities. LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as “Site 300,” near Tracy, California, which occupies 10.9 square miles. In 2012 the Laboratory had a staff of approximately 7000.« less
Lawrence Livermore National Laboratory Environmental Report 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H. E.; Bertoldo, N. A.; Blake, R. G.
Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the community by soliciting citizens’ input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities. LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as “Site 300,” near Tracy, California, which occupies 10.9 square miles. In 2013 the Laboratory had a staff of approximately 6,300.« less
2017 LLNL Nuclear Forensics Summer Internship Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik
The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Internship Program (NFSIP) is designed to give graduate students an opportunity to come to LLNL for 8-10 weeks of hands-on research. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students can also meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, MD, J S; II, PhD, D; MD, PhD, M
Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet demonstrated reduction in mortality. We evaluated the education, self examination and targeted screening campaign at the Lawrence Livermore National Laboratory (LLNL) from its beginning in July 1984 through 1996. The thickness and crude incidence of melanoma from the years before the campaign were compared to those obtained during the 13 years of screening. Melanoma mortality during the 13-year period was based on a National Death Index search. Expected yearly deaths from melanoma among LLNL employees were calculated by using California mortality data matched by age,more » sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. After the program began, crude incidence of melanoma thicker than 0.75 mm decreased from 18 to 4 cases per 100,000 person-years (p = 0.02), while melanoma less than 0.75mm remained stable and in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period compared with a calculated 3.39 expected deaths (p = 0.034). Education, self examination and selective screening for melanoma at LLNL significantly decreased incidence of melanoma thicker than 0.75 mm and reduced the melanoma-related mortality rate to zero. This significant decrease in mortality rate persisted for at least 3 yr after employees retired or otherwise left the laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Althouse, P.; McKannay, R. H.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.
LLNL NESHAPs 2015 Annual Report - June 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, K. R.; Gallegos, G. M.; MacQueen, D. H.
2016-06-01
Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) in which radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 μSv) to any member of the public. Using measured and calculated emissions, andmore » building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 4.0.1.17, to calculate the dose to the maximally exposed individual member of the public for the Livermore Site and Site 300.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
East, D. R.; Sexton, J.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and IBM TJ Watson Research Center to research, assess feasibility and develop an implementation plan for a High Performance Computing Innovation Center (HPCIC) in the Livermore Valley Open Campus (LVOC). The ultimate goal of this work was to help advance the State of California and U.S. commercial competitiveness in the arena of High Performance Computing (HPC) by accelerating the adoption of computational science solutions, consistent with recent DOE strategy directives. The desired result of this CRADA was a well-researched,more » carefully analyzed market evaluation that would identify those firms in core sectors of the US economy seeking to adopt or expand their use of HPC to become more competitive globally, and to define how those firms could be helped by the HPCIC with IBM as an integral partner.« less
Emergency Response Capability Baseline Needs Assessment - Compliance Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharry, John A.
This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by LLNL Emergency Management Department Head, James Colson. This document is the second of a two-part analysis on Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2016 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2016more » BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. The 2013 BNA was approved by NNSA’s Livermore Field Office on January 22, 2014.« less
Cross-scale MD simulations of dynamic strength of tantalum
NASA Astrophysics Data System (ADS)
Bulatov, Vasily
2017-06-01
Dislocations are ubiquitous in metals where their motion presents the dominant and often the only mode of plastic response to straining. Over the last 25 years computational prediction of plastic response in metals has relied on Discrete Dislocation Dynamics (DDD) as the most fundamental method to account for collective dynamics of moving dislocations. Here we present first direct atomistic MD simulations of dislocation-mediated plasticity that are sufficiently large and long to compute plasticity response of single crystal tantalum while tracing the underlying dynamics of dislocations in all atomistic details. Where feasible, direct MD simulations sidestep DDD altogether thus reducing uncertainties of strength predictions to those of the interatomic potential. In the specific context of shock-induced material dynamics, the same MD models predict when, under what conditions and how dislocations interact and compete with other fundamental mechanisms of dynamic response, e.g. twinning, phase-transformations, fracture. In collaboration with: Luis Zepeda-Ruiz, Lawrence Livermore National Laboratory; Alexander Stukowski, Technische Universitat Darmstadt; Tomas Oppelstrup, Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
High Peak Power Ka-Band Gyrotron Oscillator Experiments with Slotted and Unslotted Cavities.
1987-11-10
cylindrical graphite cathode by explosive plasma formation. (In order to optimize the compression ratio for these experiments, a graphite cathode was employed...48106 Attn: S.B. Segall I copy Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J
Megavolt, Multi-Kiloamp Ka-Band Gyrotron Oscillator Experiment
1989-03-15
pulseline accelerator with 20 K2 output impedance and 55 nsec voltage pulse was used to generate a multi-kiloamp annular electron beam by explosive plasma...Lawrence Livermore National Laboratory P.O. Box 808 Livermore, California 94550 Attn: Dr. D. Prosnitz 1 copy Dr. T.J. Orzechowski 1 copy Dr. J. Chase 1
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
Medical Isotope Program: O-18, C-13, and Xe-129 Final Report CRADA No. TC-2043-02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheibner, K. F.; Fought, J.
This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Spectra Gases, Inc., to develop new and cheaper sources of Oxgyen-18 (O-18), Carbon-13 (C-13), and Xenon-129 (Xe-129), and to develop new applications of these stable medical isotopes in medicine resulting in a substantial increase in stable isotopes that are important to human health sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard, M.A.; Sommer, S.C.
1995-04-01
AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.
2004-12-01
3701 North Fairfax Drive Arlington, VA 22203-1714 NA NA NA Radar & EM Speech, Voiced Speech Excitations 61 ULUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED...New Ideas for Speech Recognition and Related Technologies”, Lawrence Livermore National Laboratory Report, UCRL -UR-120310 , 1995 . Available from...Livermore Laboratory report UCRL -JC-134775M Holzrichter 2003, Holzrichter J.F., Kobler, J. B., Rosowski, J.J., Burke, G.J., (2003) “EM wave
LLNL: Science in the National Interest
George Miller
2017-12-09
This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A video on computer security is described. Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education and Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1--3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices.
Emergency Response Capability Baseline Needs Assessment Compliance Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharry, John A.
2013-09-16
This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, firemore » department training records, and fire department policies and procedures.« less
Mosaic Transparent Armor System Final Report CRADA No. TC02162.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuntz, J. D.; Breslin, M.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and The Protective Group, Inc. (TPG) to improve the performance of the mosaic transparent armor system (MTAS) for transparent armor applications, military and civilian. LLNL was to provide the unique MTAS technology and designs to TPG for innovative construction and ballistic testing of improvements needed for current and near future application of the armor windows on vehicles and aircraft. The goal of the project was to advance the technology of MTAS to the point that these mosaic transparent windowsmore » would be introduced and commercially manufactured for military vehicles and aircraft.« less
Slurry Coating System Statement of Work and Specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, S. M.
2017-02-06
The Slurry Coating System will be used to coat crystals with a polymer to support Lawrence Livermore National Security, LLC (LLNS) research and development at Lawrence Livermore National Laboratory (LLNL). The crystals will be suspended in water in a kettle. A polymer solution is added, temperature of the kettle is raised and aggregates of the crystals and polymer form. The slurry is heated under vacuum to drive off the solvents and slowly cooled while mixing to room temperature. The resulting aggregates are then filtered and dried. The performance characteristics and fielding constraints define a unique set of requirements for amore » new system. This document presents the specifications and requirements for the system.« less
Transmission mode acoustic time-reversal imaging for nondestructive evaluation
NASA Astrophysics Data System (ADS)
Lehman, Sean K.; Devaney, Anthony J.
2002-11-01
In previous ASA meetings and JASA papers, the extended and formalized theory of transmission mode time reversal in which the transceivers are noncoincident was presented. When combined with the subspace concepts of a generalized MUltiple SIgnal Classification (MUSIC) algorithm, this theory is used to form super-resolution images of scatterers buried in a medium. These techniques are now applied to ultrasonic nondestructive evaluation (NDE) of parts, and shallow subsurface seismic imaging. Results are presented of NDE experiments on metal and epoxy blocks using data collected from an adaptive ultrasonic array, that is, a ''time-reversal machine,'' at Lawrence Livermore National Laboratory. Also presented are the results of seismo-acoustic subsurface probing of buried hazardous waste pits at the Idaho National Engineering and Environmental Laboratory. [Work performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.] [Work supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the NSF (award number EEC-9986821) as well as from Air Force Contracts No. F41624-99-D6002 and No. F49620-99-C0013.
NASA Astrophysics Data System (ADS)
Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.
2017-10-01
In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.
2016 LLNL Nuclear Forensics Summer Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik
The Lawrence Livermore National Laboratory (LLNL) Nuclear Forensics Summer Program is designed to give graduate students an opportunity to come to LLNL for 8–10 weeks for a hands-on research experience. Students conduct research under the supervision of a staff scientist, attend a weekly lecture series, interact with other students, and present their work in poster format at the end of the program. Students also have the opportunity to meet staff scientists one-on-one, participate in LLNL facility tours (e.g., the National Ignition Facility and Center for Accelerator Mass Spectrometry), and gain a better understanding of the various science programs at LLNL.
A Feasibility Experiment for a Soft X-Ray Laser
1976-09-01
has embarked on a large scale laser fusion program initially aimed at achieving sufficient thermometric yield from a single pellet to initiate a...gold, aluminum ). The report suggests that 10 to 20 percent of the incident laser energy can be converted to X rays below 1 keV. A Lawrence Livermore...Computa- tions of the population inversion for the inner shell electrons, as found in 3 I-.--I~ . . AFWL-TR-76-107 aluminum , indicate a favorable
Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program
1979-04-01
34 ME 5-77, Ben Gurlon University of the Negev , Beer- Sheva, Israel. BRANOVER, H., ELBOCHER, A., HOCH, E., UNGER, Y., YAKHOT, A., and ZILBERMAN, I...1978, "Hydrodynamic Investigation of Single and Two-Phase Flow Ill Liquid Metal MHD Generator Channels," ME 4-78, Ben Gurion University o the Negev , Beer...Conducting Fluid Flows in Magnetic Fields," UCRL-51010, Lawrence Radiation Laboratory, Livermore, CA. LAVRENTIEV, I. V., 1967, "Effect of Baffle Location
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R E
This report presents the results of Jones & Stokes special-status plant surveys and vegetation mapping for the University of California, Lawrence Livermore National Laboratory (LLNL). Special-status plant surveys were conducted at Site 300 in April to May 1997 and in March to April 2002. Eight special-status plants were identified at Site 300: large-flowered fiddleneck, big tarplant, diamond-petaled poppy, round-leaved filaree, gypsum-loving larkspur, California androsace, stinkbells, and hogwallow starfish. Maps identifying the locations of these species, a discussion of the occurrence of these species at Site 300, and a checklist of the flora of Site 300 are presented. A reconnaissance surveymore » of the LLNL Livermore Site was conducted in June 2002. This survey concluded that no special-status plants occur at the Livermore Site. Vegetation mapping was conducted in 2001 at Site 300 to update a previous vegetation study done in 1986. The purpose of the vegetation mapping was to update and to delineate more precisely the boundaries between vegetation types and to map vegetation types that previously were not mapped. The vegetation map is presented with a discussion of the vegetation classification used.« less
DOE R&D Accomplishments Database
2002-01-01
For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woollett, J J
2008-09-18
The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portionsmore » of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).« less
Multi-pulse power injection and spheromak sustainment in SSPX
NASA Astrophysics Data System (ADS)
Stallard, B. W.; Hill, D. N.; Hooper, E. B.; Bulmer, R. H.; McLean, H. S.; Wood, R. D.; Woodruff, S.; Sspx Team
2000-10-01
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. Spheromak formation (gun injection phase) and sustainment experiments are now routine in SSPX using a multi-bank power system. Gun voltage, impedance, and power coupling show a clear current threshold dependence on gun flux (I_th~=λ_0φ_gun/μ_0), increasing with current above the threshold, and are compared with CTX results. The characteristic gun inductance, L_gun~=0.6 μH, derived from the gun voltage dependence on di/dt, is larger than expected from Corsica modeling of the spheromak equilibrium. It’s value is consistent with the n=1 ‘doughook’ mode structure reported in SPHEX and believed important for helicity injection and toroidal current drive. Results of helicity and power balance calculations of spheromak poloidal field buildup are compared with experiment and used to project sustainment with a future longer pulse power supply. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Bertoldo, Nicholas A.; Campbell, Christopher G.
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2009 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available atmore » https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL’s compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL’s compliance with environmental regulations; and Chapter 3 is a description of LLNL’s environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL’s environmental monitoring programs and monitoring data for 2009: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL’s groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, James B.
National Security Office (NSO) newsletter's main highlight is on the annual Strategic Weapons in the 21st Century that the Los Alamos and Lawrence Livermore National Laboratories host in Washington, DC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, A. F.; Smith, P. M.
This project was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and FlexICs, Inc. to develop thin film transistor (TFT) electronics for active matrix displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Moses
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, A.; Orgren, A.
This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan formore » the customer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; Arsenlis, T.; Bailey, A.
Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNLmore » capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.« less
Characterization of Jets From Exploding Bridge Wire Detonators
2005-05-01
Laboratories: Albuquerque, NM, 1992. 8. Lee, E. L; Hornig, H. C.; Kury, J. W. Adiabatic Expansion of High Explosive Detonation Products; UCRL ...Dobratz, B. M. LLNL Explosives Handbook; UCRL -5299; Lawrence Livermore Laboratory, University of California: Livermore, CA 1981. 22...ATTN AFATL DLJR D LAMBERT EGLIN AFB FL 32542-6810 2 DARPA ATTN W SNOWDEN S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 2 LOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P; Bonin, TA; Newman, JF
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
Abstracts for student symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, B.
Lawrence Livermore National Laboratory Science and Engineering Research Semester (SERS) students are participants in a national program sponsored by the DOE Office of Energy Research. Presented topics from Fall 1993 include: Laser glass, wiring codes, lead in food and food containers, chromium removal from ground water, fiber optic sensors for ph measurement, CFC replacement, predator/prey simulation, detection of micronuclei in germ cells, DNA conformation, stimulated brillouin scattering, DNA sequencing, evaluation of education programs, neural network analysis of nuclear glass, lithium ion batteries, Indonesian snails, optical switching systems, and photoreceiver design. Individual papers are indexed separately on the Energy Data Base.
Webinar: Delivering Transformational HPC Solutions to Industry
Streitz, Frederick
2018-01-16
Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo, Ruben P.; Bellah, Wendy
The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less
Studies in Seismic Verification
1992-05-01
NTS and Shagan River nuclear explosions, Rep. UCRL -102276, Lawrence Livermore Natl. Lab., Livermore, Calif., 1990. Taylor, S. R., and P. D. Marshall...western U.S. earthquakes and implications for the tectonic stress field, Report UCRL -JC-105880, 36 pp., 1990. Randall, M. J., The spectral theory of...Alewine, III Dr. Stephen Bratt DARPA/NMRO Center for Seismic Studies 3701 North Fairfax Drive 1300 North 17th Street Arlington, VA 22203-1714 Suite 1450
Sending an Instrument to Psyche, the Largest Metal Asteroid in the Solar System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burks, Morgan
In a few years, an instrument designed and built by Lawrence Livermore National Laboratory researchers will be flying hundreds of millions of miles through space to explore a rare, largely metal asteroid. The Livermore gamma ray spectrometer will be built in collaboration with researchers from the Johns Hopkins Applied Physics Laboratory for the first-ever visit to Psyche, the largest metal asteroid in the solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. Themore » spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was critical. The detector is kept cool by an electromechanical cryocooler attached to the outside of the device. However, the cryocooler has a limited cooling capacity because of size and weight constraints. To ensure the cryocooler would sufficiently cool the detector, Livermore scientists used SINDA/FLUINT, a commercial program originally developed by NASA, to model the thermal environments that the spectrometer was expected to encounter--during liftoff, in space while en route to Mercury, and in orbit around the planet. Using the data from the model, scientists from Lawrence Livermore and Lawrence Berkeley developed a design that included three closely spaced and highly reflective thermal shields held in place with DuPont KEVLAR{reg_sign} fiber.« less
Long Distance Reactor Antineutrino Flux Monitoring
NASA Astrophysics Data System (ADS)
Dazeley, Steven; Bergevin, Marc; Bernstein, Adam
2015-10-01
The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
1994-01-01
The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, G.; Mansur, D.L.; Ruhter, W.D.
The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise.more » These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.« less
NASA Astrophysics Data System (ADS)
Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy
2017-10-01
The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theys, M.
1994-05-06
Beamlet is a high power laser currently being built at Lawrence Livermore National Lab as a proof of concept for the National Ignition Facility (NIF). Beamlet is testing several areas of laser advancements, such as a 37cm Pockels cell, square amplifier, and propagation of a square beam. The diagnostics on beamlet tell the operators how much energy the beam has in different locations, the pulse shape, the energy distribution, and other important information regarding the beam. This information is being used to evaluate new amplifier designs, and extrapolate performance to the NIF laser. In my term at Lawrence Livermore Nationalmore » Laboratory I have designed and built a diagnostic, calibrated instruments used on diagnostics, setup instruments, hooked up communication lines to the instruments, and setup computers to control specific diagnostics.« less
Emission line spectra of S VII ? S XIV in the 20 ? 75 ? wavelength region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepson, J K; Beiersdorfer, P; Behar, E
As part of a larger project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, the authors present observations of sulfur lines in the soft X-ray and extreme ultraviolet regions. The database includes wavelength measurements with standard errors, relative intensities, and line assignments for 127 transitions of S VII through S XIV between 20 and 75 {angstrom}. The experimental data are complemented with a full set of calculations using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). A comparison of the laboratorymore » data with Chandra measurements of Procyon allows them to identify S VII-S XI lines.« less
Commercialization of Ultra-Hard Ceramics for Cutting Tools Final Report CRADA No. TC0279.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landingham, R.; Neumann, T.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Greenleaf Corporation (Greenleaf) to develop the technology for forming unique precursor nano-powders process that can be consolidated into ceramic products for industry. LLNL researchers have developed a solgel process for forming nano-ceramic powders. The nano powders are highly tailorable, allowing the explicit design of desired properties that lead to ultra hard materials with fine grain size. The present CRADA would allow the two parties to continue the development of the sol-gel process and the consolidation process in ordermore » to develop an industrially sound process for the manufacture of these ultra-hard materials.« less
Breast Cancer Diagnostic System Final Report CRADA No. TC02098.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubenchik, A. M.; DaSilva, L. B.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Liver more National Laboratory (LLNL) and BioTelligent, Inc. together with a Russian Institution (BioFil, Ltd.), to develop a new system ( diagnostic device, operating procedures, algorithms and software) to accurately distinguish between benign and malignant breast tissue (Breast Cancer Diagnostic System, BCDS).
Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.
2000-10-01
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
01-NIF Dedication: George Miller
George Miller
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.
09-NIF Dedication: Arnold Schwarzenegger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Governor Arnold Schwarzenegger
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by California Governor Arnold Schwarzenegger.
09-NIF Dedication: Arnold Schwarzenegger
Governor Arnold Schwarzenegger
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by California Governor Arnold Schwarzenegger.
01-NIF Dedication: George Miller
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Miller
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Lab Director George Miller.
02-NIF Dedication: Edward Moses
Edward Moses
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by NIF Director Edward Moses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Moses
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.
Small Optics Laser Damage Test Procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, Justin
2017-10-19
This specification defines the requirements and procedure for laser damage testing of coatings and bare surfaces designated for small optics in the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL).
Progress Toward a Multidimensional Representation of the 5.56-mm Interior Ballistics
2009-08-01
were performed as a check of all the major species formed at one atmosphere pressure. Cheetah (17) thermodynamics calculations were performed under...in impermeable boundaries that only yield to gas-dynamic flow after a prescribed pressure load is reached act as rigid bodies within the chamber... Cheetah Code, version 4.0; Lawrence Livermore National Laboratory: Livermore, CA, 2005. 18. Williams, A. W.; Brant, A. L.; Kaste, P. J.; Colburn, J. W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, D. K.
In April of 2016, the Lawrence Livermore National Laboratory External Dosimetry Program underwent a Department of Energy Laboratory Accreditation Program (DOELAP) on-site assessment. The assessment reported a concern that the study performed in 2013 Angular Dependence Study Panasonic UD-802 and UD-810 Dosimeters LLNL Artificial Intelligence Algorithm was incomplete. Only the responses at ±60° and 0° were evaluated and independent data from dosimeters was not used to evaluate the algorithm. Additionally, other configurations of LLNL dosimeters were not considered in this study. This includes nuclear accident dosimeters (NAD) which are placed in the wells surrounding the TLD in the dosimeter holder.
Improvement of core drill methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatz, J.L.
1975-07-01
This report documents results of a program to evaluate effectiveness of more or less conventional subsurface samplers in obtaining representative and undisturbed samples of noncohesive alluvial materials containing large quantities of gravels and cobbles. This is the first phase of a research program to improve core drill methods. Samplers evaluated consisted of the Lawrence Livermore Laboratory membrane sampler, 4-in. Denison sampler, 6-in. Dension sampler, 5-in. Modified Denison sampler, and 3-in. thinwall drive tube. Small representative samples were obtained with the Dension samplers; no undisturbed samples were obtained. The field work was accomplished in the Rhodes Canyon area, White Sands Misslemore » Range, New Mexico.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, J. F.; Berner, J. K.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, P.B.; Yatabe, M.
1987-01-01
In this report the Nuclear Criticality Safety Analytical Methods Resource Center describes a new interactive version of CESAR, a critical experiments storage and retrieval program available on the Nuclear Criticality Information System (NCIS) database at Lawrence Livermore National Laboratory. The original version of CESAR did not include interactive search capabilities. The CESAR database was developed to provide a convenient, readily accessible means of storing and retrieving code input data for the SCALE Criticality Safety Analytical Sequences and the codes comprising those sequences. The database includes data for both cross section preparation and criticality safety calculations. 3 refs., 1 tab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, P.B.; Yatabe, M.
1987-01-01
The Nuclear Criticality Safety Analytical Methods Resource Center announces the availability of a new interactive version of CESAR, a critical experiments storage and retrieval program available on the Nuclear Criticality Information System (NCIS) data base at Lawrence Livermore National Laboratory. The original version of CESAR did not include interactive search capabilities. The CESAR data base was developed to provide a convenient, readily accessible means of storing and retrieving code input data for the SCALE criticality safety analytical sequences and the codes comprising those sequences. The data base includes data for both cross-section preparation and criticality safety calculations.
Havery Mudd 2014-2015 Computer Science Conduit Clinic Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspesi, G; Bai, J; Deese, R
2015-05-12
Conduit, a new open-source library developed at Lawrence Livermore National Laboratories, provides a C++ application programming interface (API) to describe and access scientific data. Conduit’s primary use is for inmemory data exchange in high performance computing (HPC) applications. Our team tested and improved Conduit to make it more appealing to potential adopters in the HPC community. We extended Conduit’s capabilities by prototyping four libraries: one for parallel communication using MPI, one for I/O functionality, one for aggregating performance data, and one for data visualization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrieling, P. Douglas
2016-01-01
The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattem, M V; Paterson, L; Woollett, J
2008-08-20
65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Ranamore » catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.« less
08-NIF Dedication: Zoe Lofgren
Congresswoman Zoe Lofgren
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Zoe Lofgren, of California's 16th district.
11-NIF Dedication: Dianne Feinstein
U.S. Senator Dianne Feinstein
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by U.S. Senator Dianne Feinstein of California.
08-NIF Dedication: Zoe Lofgren
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congresswoman Zoe Lofgren
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Congresswoman Zoe Lofgren, of California's 16th district.
11-NIF Dedication: Dianne Feinstein
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Senator Dianne Feinstein
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by U.S. Senator Dianne Feinstein of California.
2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, E; Woollett, J
2004-11-16
To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grasslandmore » community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.« less
The next phase of the Axion Dark Matter eXperiment
NASA Astrophysics Data System (ADS)
Carosi, Gianpaolo; Asztalos, S.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hotz, M.; Lyapustin, D.; Rosenberg, L.; Rybka, G.; Wagner, A.; Hoskins, J.; Martin, C.; Sikivie, P.; Sullivan, N.; Tanner, D.; Bradley, R.; Clarke, J.; ADMX Collaboration
2011-04-01
Axions are a well motivated dark matter candidate which may be detected by their resonant conversion to photons in the presence of a large static magnetic field. The Axion Dark Matter eXperiment recently finished a search for DM axions using a new ultralow noise microwave receiver based on a SQUID amplifier. The success of this precursor experiment has paved the way for a definitive axion search which will see the system noise temperature lowered from 1.8 K to 100 mK, dramatically increasing sensitivity to even pessimistic axion models as well as increasing scan speed. Here we discuss the implementation of this next experimental phase. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Elgin, L.; Handy, T.; Malamud, G.; Huntington, C. M.; Trantham, M. R.; Klein, S. R.; Kuranz, C. C.; Drake, R. P.; Shvarts, D.
2017-10-01
Potential flow models predict that a Rayleigh-Taylor unstable system will reach a terminal velocity (and constant Froude number) at low Atwood numbers. Numerical simulations predict a re-acceleration phase of Rayleigh-Taylor Instability (RTI) and higher Froude number at late times. To observe this effect, we are conducting a series of experiments at OMEGA 60 to measure single-mode RTI growth at low and high Atwood numbers and late times. X-ray radiographs spanning 40 + ns capture the evolution of these systems. Experimental design challenges and initial results are discussed here. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagoria, P.; Racoveanu, A.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis of two novel energetic heterocyclic oxidizers as possible replacements for ammonium perchlorate (AP) in rocket propellant formulations. This CRADA resulted from the award of the Phase I Small Business Technology Transfer (STTR) from DOD. The CRADA consisted of two phases. The goal for Phase 1 was to produce a new oxidizer called TNMDNP. Phase 2 is optional (based on the success of Phase 1) and the goal of Phase 2more » (optional) was to produce a new oxidizer called TNMDNT. Phase 2 tasks would be performed based on the successful results of Phase 1.« less
Acha, Robert; Brey, Richard; Capello, Kevin
2013-02-01
A torso phantom was developed by the Lawrence Livermore National Laboratory (LLNL) that serves as a standard for intercomparison and intercalibration of detector systems used to measure low-energy photons from radionuclides, such as americium deposited in the lungs. DICOM images of the second-generation Human Monitoring Laboratory-Lawrence Livermore National Laboratory (HML-LLNL) torso phantom were segmented and converted into three-dimensional (3D) voxel phantoms to simulate the response of high purity germanium (HPGe) detector systems, as found in the HML new lung counter using a Monte Carlo technique. The photon energies of interest in this study were 17.5, 26.4, 45.4, 59.5, 122, 244, and 344 keV. The detection efficiencies at these photon energies were predicted for different chest wall thicknesses (1.49 to 6.35 cm) and compared to measured values obtained with lungs containing (241)Am (34.8 kBq) and (152)Eu (10.4 kBq). It was observed that no statistically significant differences exist at the 95% confidence level between the mean values of simulated and measured detection efficiencies. Comparisons between the simulated and measured detection efficiencies reveal a variation of 20% at 17.5 keV and 1% at 59.5 keV. It was found that small changes in the formulation of the tissue substitute material caused no significant change in the outcome of Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, P.F.
1989-05-16
This paper discusses the basis system. Basis is a program development system for scientific programs. It has been developed over the last five years at Lawrence Livermore National Laboratory (LLNL), where it is now used in about twenty major programming efforts. The Basis System includes two major components, a program development system and a run-time package. The run-time package provides the Basis Language interpreter, through which the user does input, output, plotting, and control of the program's subroutines and functions. Variables in the scientific packages are known to this interpreter, so that the user may arbitrarily print, plot, and calculatemore » with, any major program variables. Also provided are facilities for dynamic memory management, terminal logs, error recovery, text-file i/o, and the attachment of non-Basis-developed packages.« less
A Damage Mechanics Source Model for Underground Nuclear Explosions.
1991-08-01
California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical...ENSCO, Inc. Department of Geological Sciences 445 Pineda Court . , -7’- 9 Meibcurr..e, F 3940 6 William Kikendall Prof. Amos Nur Teledyne Geotech...Teledyne Geotech Lawrence Livermore National Laboratory 3a¢,l Shiloh Road L-205 Garland, TX 75041 P. 0. Box 808 Livermore, CA 94550 Dr. Matthew Sibol
Calculating the Vulnerability of Synthetic Polymers to Autoignition during Nuclear Flash.
1985-03-01
Lawrence Livermore National Laboratory P.O. Box 808 2561C Livermore, California 94550 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE~March...34Low Emissivity and Solar Control Coatings on Architectural Glass," Proc. SPIE 37, 324 (1982). 10. R. C. Weast, Ed., Handbook of Chemistry and Physics...Attn: Michael Frankel Chief of Engineers Washington, D.C. 20305 Department of the Army Attn: DAEN-RDZ-A Command and Control Technical Center Washington
CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruminer, J.J.
1978-07-01
This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.
Star Power on Earth: Path to Clean Energy Future
Ed Moses
2017-12-09
Lawrence Livermore National Laboratory's "Science on Saturday" lecture series presents Ed Moses, Director of the National Ignition Facility, discussing the world's largest laser system and its potential impact on society's upcoming energy needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, C W; Lenderman, J S; Gansemer, J D
This document is an update to the 'ADIS Algorithm Evaluation Project Plan' specified in the Statement of Work for the US-VISIT Identity Matching Algorithm Evaluation Program, as deliverable II.D.1. The original plan was delivered in August 2010. This document modifies the plan to reflect modified deliverables reflecting delays in obtaining a database refresh. This document describes the revised schedule of the program deliverables. The detailed description of the processes used, the statistical analysis processes and the results of the statistical analysis will be described fully in the program deliverables. The US-VISIT Identity Matching Algorithm Evaluation Program is work performed bymore » Lawrence Livermore National Laboratory (LLNL) under IAA HSHQVT-07-X-00002 P00004 from the Department of Homeland Security (DHS).« less
PNNL Results from 2010 CALIBAN Criticality Accident Dosimeter Intercomparison Exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Robin L.; Conrady, Matthew M.
2011-10-28
This document reports the results of the Hanford personnel nuclear accident dosimeter (PNAD) and fixed nuclear accident dosimeter (FNAD) during a criticality accident dosimeter intercomparison exercise at the CEA Valduc Center on September 20-23, 2010. Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimeter intercomparison exercise at the Commissariat a Energie Atomique (CEA) Valduc Center near Dijon, France on September 20-23, 2010. The intercomparison exercise was funded by the U.S. Department of Energy, Nuclear Criticality Safety Program, with Lawrence Livermore National Laboratory as the lead Laboratory. PNNL was one of six invited DOE Laboratory participants. The other participatingmore » Laboratories were: Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 National Security Complex at Oak Ridge, and Sandia National Laboratory (SNL). The goals of PNNL's participation in the intercomparison exercise were to test and validate the procedures and algorithm currently used for the Hanford personnel nuclear accident dosimeters (PNADs) on the metallic reactor, CALIBAN, to test exposures to PNADs from the side and from behind a phantom, and to test PNADs that were taken from a historical batch of Hanford PNADs that had varying degrees of degradation of the bare indium foil. Similar testing of the PNADs was done on the Valduc SILENE test reactor in 2009 (Hill and Conrady, 2010). The CALIBAN results are reported here.« less
Programming for 1.6 Millon cores: Early experiences with IBM's BG/Q SMP architecture
NASA Astrophysics Data System (ADS)
Glosli, James
2013-03-01
With the stall in clock cycle improvements a decade ago, the drive for computational performance has continues along a path of increasing core counts on a processor. The multi-core evolution has been expressed in both a symmetric multi processor (SMP) architecture and cpu/GPU architecture. Debates rage in the high performance computing (HPC) community which architecture best serves HPC. In this talk I will not attempt to resolve that debate but perhaps fuel it. I will discuss the experience of exploiting Sequoia, a 98304 node IBM Blue Gene/Q SMP at Lawrence Livermore National Laboratory. The advantages and challenges of leveraging the computational power BG/Q will be detailed through the discussion of two applications. The first application is a Molecular Dynamics code called ddcMD. This is a code developed over the last decade at LLNL and ported to BG/Q. The second application is a cardiac modeling code called Cardioid. This is a code that was recently designed and developed at LLNL to exploit the fine scale parallelism of BG/Q's SMP architecture. Through the lenses of these efforts I'll illustrate the need to rethink how we express and implement our computational approaches. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Barney, Rebecca; Nourgaliev, Robert; Delplanque, Jean-Pierre; McCallen, Rose
2017-11-01
Heat transfer is quantified and contrasted for the Poiseuille flow of a fluid at both subcritical and supercritical thermodynamic conditions in a circular pipe subject to a uniform wall heat flux. The conditions considered are relevant to Supercritical Water Reactor (SCWR) applications. In the supercritical thermodynamic regime, a fluid can exhibit large density variations of density, thermal conductivity, and viscosity, which will affect flow and heat transfer characteristics significantly. An advanced equation of state for supercritical water was implemented in a 2D and 3D Arbitrary Lagrangian-Eurlerian multi-physics simulation tool called ALE3D developed at Lawrence Livermore National Laboratory. A newly developed, robust, high-order in space and time, fully implicit reconstructed discontinuous Galerkin (rDG) method is used to enable the numerical simulation of convective heat transfer with supercritical water. Results demonstrate the capability of this approach to accurately capture the non-linear behavior and enhanced heat transfer with supercritical water. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-736004. Work is supported by the Integrated University Program Graduate Fellowship. Opinions, findings, conclusions or recommendations expressed are of the authors and do not necessarily reflect the views of DOE office of NE.
Rethinking Approaches to Strategic Stability in the 21st Century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Brian
Lawrence Livermore National Laboratory (LLNL) hosted a two-day conference on rethinking approaches to strategic stability in the 21st century on October 20-21, 2016 in Livermore, CA. The conference was jointly convened by Lawrence Livermore, Los Alamos, and Sandia National Laboratories, and was held in partnership with the United States Department of State’s Bureau of Arms Control, Verification and Compliance. The conference took place at LLNL’s Center for Global Security Research (CGSR) and included a range of representatives from U.S. government, academic, and private institutions, as well as representatives from U.S. allies in Europe and Asia.The following summary covers topics andmore » discussions from each of the panels. It is not intended to capture every point in detail, but seeks to outline the range of views on these complex and inter-related issues while providing a general overview of the panel topics and discussions that took place. The conference was held under the Chatham House rule and does not attribute any remarks to any specific individual or institution. The views reflected in this report do not represent the United States Government, Department of State, or the national laboratories.« less
Sharing values, sharing a vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
Teamwork, partnership and shared values emerged as recurring themes at the Third Technology Transfer/Communications Conference. The program drew about 100 participants who sat through a packed two days to find ways for their laboratories and facilities to better help American business and the economy. Co-hosts were the Lawrence Livermore National Laboratory and the Lawrence Berkeley Laboratory, where most meetings took place. The conference followed traditions established at the First Technology Transfer/Communications Conference, conceived of and hosted by the Pacific Northwest Laboratory in May 1992 in Richmond, Washington, and the second conference, hosted by the National Renewable Energy Laboratory in Januarymore » 1993 in Golden, Colorado. As at the other conferences, participants at the third session represented the fields of technology transfer, public affairs and communications. They came from Department of Energy headquarters and DOE offices, laboratories and production facilities. Continued in this report are keynote address; panel discussion; workshops; and presentations in technology transfer.« less
1991-12-04
ADDRESS(ES) 10. SPONSORING/MONITORING DARPA/NMRO Phillips Laboratory AGENCY REPORT NUMBER (Attn: Dr. A. Ryall) Hanscom AFB, MA 01731-5000 3701 North...areas and media at the USERDA Nevada Test Site, UCRL -51948, Lawrence Livermore La- boratory, Livermore, California. Stead, R. J. and D. V. HeImberger...University Park, PA 16802 Blacksburg, VA 24061 Dr. Ralph Alewine, III Dr. Stephen Bratt DARPA/NMRO Center for Seismic Studies 3701 North Fairfax Drive 1300
PHYSICS: Will Livermore Laser Ever Burn Brightly?
Seife, C; Malakoff, D
2000-08-18
The National Ignition Facility (NIF), a superlaser being built here at Lawrence Livermore National Laboratory in an effort to use lasers rather than nuclear explosions to create a fusion reaction, is supposed to allow weapons makers to preserve the nuclear arsenal--and do nifty fusion science, too. But a new report that examines its troubled past also casts doubt on its future. Even some of NIF's scientific and political allies are beginning to talk openly of a scaled-down version of the original 192-laser design.
The Use of Carbon Aerogel Electrodes for Deionizing Water and Treating Aqueous Process Wastes
1996-01-01
Wastes Joseph C. Farmer, Gregory V. Mack and David V. Fix Lawrence Livermore National Laboratory Livermore, California 94550 Abstract A wide variety of...United States Department of Interior, 190 pages, May (1966). 9. A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne , C. M. Wong, , W. S. Gillam...Dept. Interior Pub. 200 056, 31 pages, March (1970). 10. A. M. Johnson, A. W. Venolia, R. G Wilbourne , J. Newman, "The Electrosorb Process for
1985-04-01
Lawrence Livermore National Laboratory *P.O. Box 808 2431D Livermore, CA 94550 ______ 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE April 1985...administration of drugs is preferred, to give the highest degree of control possible. Specific tumors are to be made more sensitive to radiation, while the...PJlanification c/Evaristo San Miguel, 8 Madrid-8 SPAIN Ministero dell Interno * ~Direzione Generale della -’- - Protezione Civile 00100 Rome ITALY
2010-02-16
Lawrence Livermore National Laboratories media Day for their LLNL project aimed at aerodynamic truck and trailer devices. Tests are being preformed in the Ames Full-Scale Aerodynamic Complex 80x120 foot wind tunnel. Gabriel and Sharon Lozano.
12-NIF Dedication: Concluding remarks and video
Edward Moses
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the concluding remarks by NIF Director Edward Moses, and a brief video presentation.
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
None
2018-01-16
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, T J; Brown, C G; Ong, M M
2006-01-11
Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less
Bullet Impact Safety Study of PBX-9502
NASA Astrophysics Data System (ADS)
Ferranti, Louis
2013-06-01
A new small arms capability for performing bullet impact testing into energetic materials has recently been activated at Lawrence Livermore National Laboratory located in the High Explosives Applications Facility (HEAF). The initial capability includes 0.223, 0.30, and 0.50 testing calibers with the flexibility to add other barrels in the near future. An initial test series has been performed using the 0.50 caliber barrel shooting bullets into targets using the TATB based explosive PBX-9502 and shows an expected non-violent reaction. Future experiments to evaluate the safety of new explosive formulations to bullet impact are planned. A highlight of the new capability along with discussion of the initial experiments to date will be presented including future areas of research. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C. F.; Wood, D.
This project represents a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Rhyolite Technology Group, Inc. (Rhyolite) to develop concepts and designs for a consumer ultraviolet (UV) biodosimeter based on the human biochemistry of Vitamin D synthesis. Rhyolite was established to engage in product development, licensing and consulting for the manufacture and supply of new products worldwide. Rhyolite worked jointly with LLNL and the Kiev Institute of Physics (KIP) in Ukraine to leverage previously developed UV sensor technologies by extending the previous work into commercially viable products. The projectmore » consisted primarily of the scientific, engineering and business activities needed to develop the UV bio-dosimeter for applications that include health and industrial measurement of ultraviolet radiation.« less
Ecology of Lawrence Livermore Laboratoy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIntyre, D.R.
1977-03-10
The ecological impact of the Lawrence Livermore Laboratory on man, plants and animals, soil, water, and air has been on the positive side since the removal of much of the former airbase runway system. Many new trees have been planted, and the total biological energy has been increased. Although there has been destruction of some native plants, many new ecological niches have been formed. Cliff swallows, quail, and other birds have been able to find territories. Even a muskrat has appeared from the overflow storm drains. Opossums, brush rabbits, field mice, and predatory birds (kites, hawks, eagles, and sparrow hawks)more » are numerous. The use of herbicides and insecticides has upset the balance somewhat, but California poppies, owl clover, dragonflies, lacewings, bees, and wasps indicate that the effects are limited and that there is a wealth of animal life in the open areas and around the buildings.« less
In-situ measurement of temperature during rapid thermite deflagrations
NASA Astrophysics Data System (ADS)
Densmore, John; Sullivan, Kyle
Thermites are composite materials that consist of a fuel (metal) and oxidizer (metal oxide), that upon reaction can release a large amount of energy (20.8 kJ/cc for Al:CuO). The time scale for a thermite to release energy (ms) is much longer than a typical detonation (us). In-situ temperature and/or thermal flux measurements can provide fundamental insight into the reaction mechanisms. This information can inform the design and optimization of energy transport during a deflagration, to optimize the energy release rate. To measure the temperature we use a burn tube apparatus and various pyrometry techniques to measure the spatial temperature field as a reaction proceeds towards completion. We show that system properties can be adjusted to achieve custom thermal properties. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallen, R; Salari, K; Ortega, J
2003-05-01
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University,more » and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Robert P.; Miller, Paul; Howley, Kirsten
The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less
Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)2(Te,Se)3
NASA Astrophysics Data System (ADS)
Jeffries, Jason; Butch, N. P.; Vohra, Y. K.; Weir, S. T.
2014-03-01
The group V-VI compounds--like Bi2Se3, Sb2Te3, or Bi2Te3--have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and compare that behavior with other binary V-VI compounds under pressure. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2015-10-01
Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less
Chu, Steven [U.S. Energy Secretary
2018-01-12
The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jefferson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffersonmore » National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackwell, Matt; Rodger, Arthur; Kennedy, Tom
When the California Academy of Sciences created the "Earthquake: Evidence of a Restless Planet" exhibit, they called on Lawrence Livermore to help combine seismic research with the latest data-driven visualization techniques. The outcome is a series of striking visualizations of earthquakes, tsunamis and tectonic plate evolution. Seismic-wave research is a core competency at Livermore. While most often associated with earthquakes, the research has many other applications of national interest, such as nuclear explosion monitoring, explosion forensics, energy exploration, and seismic acoustics. For the Academy effort, Livermore researchers simulated the San Andreas and Hayward fault events at high resolutions. Such calculationsmore » require significant computational resources. To simulate the 1906 earthquake, for instance, visualizing 125 seconds of ground motion required over 1 billion grid points, 10,000 time steps, and 7.5 hours of processor time on 2,048 cores of Livermore's Sierra machine.« less
Supercomputing meets seismology in earthquake exhibit
Blackwell, Matt; Rodger, Arthur; Kennedy, Tom
2018-02-14
When the California Academy of Sciences created the "Earthquake: Evidence of a Restless Planet" exhibit, they called on Lawrence Livermore to help combine seismic research with the latest data-driven visualization techniques. The outcome is a series of striking visualizations of earthquakes, tsunamis and tectonic plate evolution. Seismic-wave research is a core competency at Livermore. While most often associated with earthquakes, the research has many other applications of national interest, such as nuclear explosion monitoring, explosion forensics, energy exploration, and seismic acoustics. For the Academy effort, Livermore researchers simulated the San Andreas and Hayward fault events at high resolutions. Such calculations require significant computational resources. To simulate the 1906 earthquake, for instance, visualizing 125 seconds of ground motion required over 1 billion grid points, 10,000 time steps, and 7.5 hours of processor time on 2,048 cores of Livermore's Sierra machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-18
The Department of Energy's (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department's interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department's contract administration of its interest in those pension plans.
Pension fund activities at Department laboratories managed by the University of California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-18
The Department of Energy`s (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department`s interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department`s contract administration of its interest in those pension plans.
Continental Scientific Drilling Program Data Base
NASA Astrophysics Data System (ADS)
Pawloski, Gayle
The Continental Scientific Drilling Program (CSDP) data base at Lawrence Livermore National Laboratory is a central repository, cataloguing information from United States drill holes. Most holes have been drilled or proposed by various federal agencies. Some holes have been commercially funded. This data base is funded by the Office of Basic Energy Sciences of t he Department of Energy (OBES/DOE) to serve the entire scientific community. Through the unrestricted use of the database, it is possible to reduce drilling costs and maximize the scientific value of current and planned efforts of federal agencies and industry by offering the opportunity for add-on experiments and supplementing knowledge with additional information from existing drill holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, Adam; Draeger, Erik; Richards, David
2017-01-12
With Sequoia at Lawrence Livermore National Laboratory, researchers explore grand challenging problems and are generating results at scales never before achieved. Sequoia is the first computer to have more than one million processors and is one of the fastest supercomputers in the world.
06-NIF Dedication: Steven Koonin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Koonin
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Steven Koonin, the undersecretary for science of the U.S. Department of Energy.
Addressing Transportation Energy and Environmental Impacts: Technical and Policy Research Directions
DOT National Transportation Integrated Search
1995-08-10
The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental...
Engineering Research Division publication report, calendar year 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, E.K.; Livingston, P.L.; Rae, D.C.
Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.
Environmental Report 1993-1996
DOT National Transportation Integrated Search
2002-08-16
These reports are prepared for the U.S. Department of Energy (DOE), as required by DOE Order 5400.1 and DOE Order 231.1, by the Environmental Protection Department (EPD) at the Lawrence Livermore National Laboratory (LLNL). The results of LLNL's envi...
Scheduler-Conscious Synchronization.
1994-12-01
SPONSORING I MONITORING Office of Naval Research ARPA AGENCY REPORT NUMBER Information Systems 3701 N. Fairfax Drive TR 550 Arlington VA 22217 Arlington VA...Broughton. A New Approach to Exclusive Data Access in Shared Memory Multiprocessors. Technical Report UCRL -97663, Lawrence Livermore National Laboratory
3-minute diagnosis: Researchers develop new method to recognize pathogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Reg
Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.
Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitland, D.; Metzger, M. F.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.
3-minute diagnosis: Researchers develop new method to recognize pathogens
Beer, Reg
2018-01-16
Imagine knowing precisely why you feel sick ... before the doctor's exam is over. Lawrence Livermore researcher Reg Beer and his engineering colleagues have developed a new method to recognize disease-causing pathogens quicker than ever before.
06-NIF Dedication: Steven Koonin
Steven Koonin
2017-12-09
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Steven Koonin, the undersecretary for science of the U.S. Department of Energy.
1980-12-01
calculated change in 03 at high altitude to statistical detection limits for change as developed from Umkehr data from Arosa , -• Switzerland, and we...from - . Arosa (Penner et al., 1981). The method used to derive these limits is similar to that described for total 03 by Hill et al. (1977). These...N limit, Arosa -10 I I IN. (b) Umkehr, level 8 (-38-43 km) 5-10 C ~~Statistical"/ 7 ’ detection -20- limit, Arosa 1970 1980 1990 2000 2010 2020 2030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2006-04-24
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2007-10-01
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, S; Gallegos, G; Berg, L L
2008-09-24
The purposes of the 'Lawrence Livermore National Laboratory Environmental Report 2007' are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites--the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available atmore » https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2007: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.« less
No Limit: Exploring the Science of the Universe
Meinecke, Jena; Remington, Bruce; Zylstra, Alex; Falcone, Roger; Rinderknecht, Hans; Casner, Alexis
2018-06-13
Scientists who conduct unique, cutting-edge Discovery Science experiments on Lawrence Livermore National Laboratoryâs National Ignition Facility (NIF) describe the excitement of doing research on the worldâs largest and highest-energy laser system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunsberger, Maren; Kirkwood, Bob
The way the Death Star works in the fictional Star Wars universe has long been dismissed by scientists as something that defies our physical reality, but researchers at Lawrence Livermore's National Ignition Facility have found a way to successfully combine laser beams using plasma for the first time ever.
Science and Technology Review June 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H
2006-04-20
This month's issue has the following articles: (1) Maintaining Excellence through Intellectual Vitality--Commentary by Cherry A. Murray; (2) Next-Generation Scientists and Engineers Tap Lab's Resources--University of California Ph.D. candidates work with Livermore scientists and engineers to conduct fundamental research as part of their theses; (3) Adaptive Optics Provide a Clearer View--The Center for Adaptive Optics is sharpening the view of celestial objects and retinal cells; (4) Wired on the Nanoscale--A Lawrence Fellow at Livermore is using genetically engineered viruses to create nanostructures such as tiny gold wires; and (5) Too Hot to Handle--Livermore scientists couple carbon-cycle and climate models tomore » predict the global effects of depleting Earth's fossil-fuel supply.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinn, D J
This month's issue has the following articles: (1) The Edward Teller Centennial--Commentary by George H. Miller; (2) Edward Teller's Century: Celebrating the Man and His Vision--Colleagues at the Laboratory remember Edward Teller, cofounder of Lawrence Livermore, adviser to U.S. presidents, and physicist extraordinaire, on the 100th anniversary of his birth; (3) Quark Theory and Today's Supercomputers: It's a Match--Thanks to the power of BlueGene/L, Livermore has become an epicenter for theoretical advances in particle physics; and (4) The Role of Dentin in Tooth Fracture--Studies on tooth dentin show that its mechanical properties degrade with age.
Improved detonation modeling with CHEETAH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, A.
1997-11-01
A Livermore software program called CHEETAH, an important, even indispensable tool for energetic materials researchers worldwide, was made more powerful in the summer of 1997 with the release of CHEETAH 2.0, an advanced version that simulates a wider variety of detonations. Derived from more than 40 years of experiments on high explosives at Lawrence Livermore and Los Alamos national laboratories, CHEETAH predicts the results from detonating a mixture of specified reactants. It operates by solving thermodynamic equations to predict detonation products and such properties as temperature, pressure, volume, and total energy released. The code is prized by synthesis chemists andmore » other researchers because it allows them to vary the starting molecules and conditions to optimize the desired performance properties. One of the Laboratory`s most popular computer codes, CHEETAH is used at more than 200 sites worldwide, including ones in England, Canada, Sweden, Switzerland, and France. Most sites are defense-related, although a few users, such as Japanese fireworks researchers, are in the civilian sector.« less
The Axion Dark Matter Experiment: Big Science with a (relatively) Small Team
NASA Astrophysics Data System (ADS)
Carosi, Gianpaolo
2016-03-01
The idea of the solitary physicist tinkering alone in a lab was my image of how science was done growing up (mostly influenced by popular culture). Of course this is not generally how experimental physics is done now days with examples of experiments at the LHC now involving thousands of scientists. In this talk I will describe my experience in a relatively modest project, the Axion Dark Matter eXperiment (ADMX), which involves only a few dozen scientists at various universities and national labs. I will outline ADMX's humble beginnings at Lawrence Livermore National Laboratory (LLNL), where it began in the mid-1990s, and describe how the collaboration has evolved and grown throughout the years, as we pursue our elusive quarry: the dark-matter axion. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, and the Livermore LDRD program.
Institute of Geophyics and Planetary Physics. Annual report for FY 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryerson, F.J.
1995-09-29
The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, Riverside, and Irvine and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography andmore » space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the six branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, high-pressure sciences, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and is structured around three research centers. The Center for Geosciences, headed by George Zandt and Frederick Ryerson, focuses on research in geophysics and geochemistry. The Center for High-Pressure Sciences, headed by William Nellis, sponsors research on the properties of planetary materials and on the synthesis and preparation of new materials using high-pressure processing.« less
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-09-04
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun,more » the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.« less
Take a Trip Around a 3D Printing Lab (360)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Additive manufacturing has changed the way the world thinks about manufacture and design. Scientists and researchers at Lawrence Livermore National Lab are using a number of 3D printing processes to experiment with unique combinations of plastic, metal, and ceramics.
05-NIF Dedication: Tom D'Agostino
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom D'Agostino,
2009-07-02
The National Ignition Facility, the world's largest laser system, was dedicated at a ceremony on May 29, 2009 at Lawrence Livermore National Laboratory. These are the remarks by Tom D'Agostino, the administrator of the U.S. Department of Energy's National Nuclear Security Administration.
2004-10-01
MONITORING AGENCY NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency AFRL/IFTC 3701 North Fairfax Drive...Scalable Parallel Libraries for Large-Scale Concurrent Applications," Technical Report UCRL -JC-109251, Lawrence Livermore National Laboratory
Existing decontamination procedures are time-consuming, labor-intensive, and produce low-yielding results, and they have a high risk of personnel exposure and equipment damage. Foster-Miller, Inc., has teamed with Lawrence Livermore National Laboratory and other reagent suppl...
Defect evolution and pore collapse in crystalline energetic materials
NASA Astrophysics Data System (ADS)
Barton, Nathan R.; Winter, Nicholas W.; Reaugh, John E.
2009-04-01
This work examines the use of crystal based continuum mechanics in the context of dynamic loading. In particular, we examine model forms and simulations which are relevant to pore collapse in crystalline energetic materials. Strain localization and the associated generation of heat are important for the initiation of chemical reactions in this context. The crystal mechanics based model serves as a convenient testbed for the interactions among wave motion, slip kinetics, defect generation kinetics and physical length scale. After calibration to available molecular dynamics and single crystal gas gun data for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), the model is used to predict behaviors for the collapse of pores under various conditions. Implications for experimental observations are discussed. This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
Shocked and Stressed, Metals Get Stronger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackel, L
2002-03-12
People who know their way around metalworking are no doubt familiar with peening--using a ball-peen hammer to pound a piece of metal into shape and strengthen it against fatigue failure. For the past 50 years, an industrialized equivalent has been shot peening, in which metal or ceramic beads as large as marbles or as small as salt and pepper grains pneumatically bombard a metal surface. Laser peening, a process based on a superior laser technology developed at Lawrence Livermore, replaces the hammer blows and streams of beads with short blasts of laser light. The end result is a piece ofmore » metal with significantly improved performance. Lawrence Livermore and Metal Improvement Company, Inc., won a coveted R and D 100 Award for their laser-peening process in 1998 (see S and TR, October 1998, pp. 12-13). Since that time, they've been developing uses for the technology with a number of industries, including automotive, medical, and aerospace. They've also developed an offshoot technique--laser peenmarking{trademark}--which provides a way to easily and clearly identify parts with a mark that is extremely difficult to counterfeit. Another outgrowth is a new peen-forming technology that allows complex contouring of problematic thick metal components such as the thick sections of large aircraft wings. There have also been spinback applications to the Department of Energy's programs for stockpile stewardship, fuel-efficient vehicles, and long-term nuclear waste storage.« less
NASA Astrophysics Data System (ADS)
2011-05-01
Among the new members elected to the U.S. National Academy of Sciences in May are five AGU members: Richard Edwards, George and Orpha Gibson Chair of Earth Systems Sciences and Distinguished McKnight University Professor, Department of Geology and Geophysics, University of Minnesota, Minneapolis; T. Mark Harrison, director, Institute of Geophysics and Planetary Physics, and professor of geology, Department of Earth and Space Sciences, University of California, Los Angeles; David Sandwell, professor of geophysics, Institute for Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla (president of the AGU Geodesy section); Benjamin Santer, physicist and atmospheric scientist, Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, Calif.; and Steven Wofsy, Abbott Lawrence Rotch Professor of Atmospheric and Environmental Science, Department of Earth and Planetary Sciences, Harvard University, Cambridge, Mass. Four AGU members are among the 2011 prizewinners announced by the Division for Planetary Sciences (DPS) of the American Astronomical Society on 19 May. The prizes will be presented at the joint meeting of DPS and the European Planetary Science Congress in October. William Ward of the Southwest Research Institute, San Antonio, Tex., is the recipient of the Gerard P. Kuiper Prize for outstanding contributions to the field of planetary science. DPS indicated that Ward originally proposed and evaluated “many dynamical processes that are now cornerstones of current theories of how planets form and evolve” and that his “visionary ideas form the foundation for a significant portion of current work in planetary formation and dynamics.”
Laboratory Astrophysics Using a Spare XRS Microcalorimeter
NASA Technical Reports Server (NTRS)
Audley, M. Damian; Beiersdorfer, Peter; Porter, Frederick Scott; Brown, Gregory; Boyce, Kevin R.; Brekosky, Regis; Brown, Gregory V.; Gendreau, Keith C.; Gygax, John; Kahn, Steve;
2000-01-01
The XRS instrument on Astro-E is a fully self-contained microcalorimeter x-ray instrument capable of acquiring optimally filtering, and characterizing events for 32 independent pixels. With the launch of the Astro-E spacecraft, a full flight spare detector system has been integrated into a laboratory cryostat for use on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory. The detector system contains a microcalorimeter array with 32 instrumented pixels heat sunk to 60 mK using an adiabatic demagnetization refrio,erator. The instrument has a composite resolution of 8eV at 1 keV and 12eV at 6 keV with a minimum of 95% quantum efficiency. This will allow high spectral resolution, broadband observations of collisionally excited plasmas which are produced in the EBIT experiment. Unique to our instrument are exceptionally well characterized 1000 Angstrom thick aluminum on polyimide infrared blocking filters. The detailed transmission function including the edc,e fine structure of these filters has been measured in our laboratory using an erect field grating spectrometer. This will allow the instrument to perform the first broadband absolute flux measurements with the EBIT instrument. The instrument performance as well as the results of preliminary measurements will be discussed. Work performed under the auspices of the U.S. D.o.E. by Lawrence Livermore National Laboratory under contract W-7405-ENG-48 and was supported by the NASA High Energy Astrophysics Supporting Research and Technology Program.
DYNSYL: a general-purpose dynamic simulator for chemical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, G.K.; Rozsa, R.B.
1978-09-05
Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Valerie
Given the significant impact of computing on society, it is important that all cultures, especially underrepresented cultures, are fully engaged in the field of computing to ensure that everyone benefits from the advances in computing. This proposal is focused on the field of high performance computing. The lack of cultural diversity in computing, in particular high performance computing, is especially evident with respect to the following ethnic groups – African Americans, Hispanics, and Native Americans – as well as People with Disabilities. The goal of this proposal is to organize and coordinate a National Laboratory Career Development Workshop focused onmore » underrepresented cultures (ethnic cultures and disability cultures) in high performance computing. It is expected that the proposed workshop will increase the engagement of underrepresented cultures in HPC through increased exposure to the excellent work at the national laboratories. The National Laboratory Workshops are focused on the recruitment of senior graduate students and the retention of junior lab staff through the various panels and discussions at the workshop. Further, the workshop will include a community building component that extends beyond the workshop. The workshop was held was held at the Lawrence Livermore National Laboratory campus in Livermore, CA. from June 14 - 15, 2012. The grant provided funding for 25 participants from underrepresented groups. The workshop also included another 25 local participants in the summer programs at Lawrence Livermore National Laboratory. Below are some key results from the assessment of the workshops: 86% of the participants indicated strongly agree or agree to the statement "I am more likely to consider/continue a career at a national laboratory as a result of participating in this workshop." 77% indicated strongly agree or agree to the statement "I plan to pursue a summer internship at a national laboratory." 100% of the participants indicated strongly agree or agree to the statement "The CMD-IT NLPDEV workshop was a valuable experience."« less
SERS internship: Spring 1994 abstracts and research papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, B.
1994-05-06
This document contains abstracts from the science and engineering research semester from the Lawrence Livermore National Laboratory. Projects cover many areas in the fields of contaminant removal from the environment, physics, and genetics research. Individual projects were processed separately for the Department of Energy databases.
Spherical harmonic results for the 3D Kobayashi Benchmark suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, P N; Chang, B; Hanebutte, U R
1999-03-02
Spherical harmonic solutions are presented for the Kobayashi benchmark suite. The results were obtained with Ardra, a scalable, parallel neutron transport code developed at Lawrence Livermore National Laboratory (LLNL). The calculations were performed on the IBM ASCI Blue-Pacific computer at LLNL.
Development of DNA Pillar Chip Final Report CRADA No. TSB-2035-01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, K. D.; Long, G. W.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Tetracore, to demonstrate a proof of principal device for the capture and controlled release of DNA moving within a flow stream.
physics, astrophysics, and statistical mechanics. Lawrence Livermore [National Laboratory] physicist Mort towering figures of 20th-century physics. ... Although his early training was in chemical physics and spectroscopy, Teller has made substantial contributions to such diverse fields as nuclear physics, plasma
Numerical Simulation of Quarry Blast Sources
1993-01-01
Phillips Laboratory (PL/PKVA) AGENCY REPORT NUMBER 3701 N. Fairfax Dr. #717 3651 Lowry Avenue, SE Arlington, VA 2203-1714 Kirtland, AFB, NM 87117...Freeman and Company, San Francisco. Smith, A. T. (1992), "Discrimination of Explosions from Simultaneous Mining Blasts," Lawrence Livermore Report UCRL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasiero, Francesco
Aiming to protect soldiers from biological and chemical threats, a team of Lawrence Livermore National Laboratory scientists have created a material that is highly breathable yet protective from biological agents. This material is the first key component of futuristic smart uniforms that also will respond to and protect from environmental chemical hazards.
National Ignition Facility under fire over ignition failure
NASA Astrophysics Data System (ADS)
Allen, Michael
2016-08-01
The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).
360 Video Tour of the World’s Largest Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Welcome to the National Ignition Facility at Lawrence Livermore National Laboratory, the world’s largest and most energetic laser system. It draws researchers from around the globe for experiments that can’t be conducted anywhere else on Earth. Let’s take a closer look.
Delineation of Waters of the United States for Lawrence Livermore National Laboratory, Site 300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R E
2006-09-25
This report presents the results of a delineation of waters of the United States, including wetlands, for Lawrence Livermore National Laboratory's Site 300 in Alameda and San Joaquin Counties, California. Jones & Stokes mapped vegetation at Site 300 in August, 2001, using Global Positioning System (GPS) data recorders to collect point locations and to record linear features and map unit polygons. We identified wetlands boundaries in the field on the basis of the plant community present. We returned to collect additional information on wetland soils on July 3, 2002. Forty-six wetlands were identified, with a total area of 3.482 hectaresmore » (8.605 acres). The wetlands include vernal pools, freshwater seeps, and seasonal ponds. Wetlands appearing to meet the criteria for federal jurisdictional total 1.776 hectares (4.388 acres). A delineation map is presented and a table is provided with information on the type, size, characteristic plant species of each wetland, and a preliminary jurisdictional assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vergino, E. S.; Passmore, P. R.
2012-01-23
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Refraction Technology, Inc. (REF TEK), to collaborate on the development of a broadband, competitive low-noise seismometer, rugged and easy to use for field deployments. The work involved collaborative work between LLNL, REF TEK and a group led by Federal State Unitary Enterprise, Research Institute of Pulse Technique (RIPT), Moscow, Russia. The proposed work focused on bringing an improved version of the Russian SDSE seismometer from development phase to production in two versions. The first was a very lowmore » cost, rugged, broadband seismometer for field deployment that would achieve noise levels comparable to the standard earth low noise model (LNM) of the USGS. All three components were integrated into one case, and have sensitivity near 2000 v/m/s, and analog output with bandwidth of .01 to 40 Hz with high coherence.« less
Hyperspectral Sensors Final Report CRADA No. TC02173.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priest, R. E.; Sauvageau, J. E.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Science Applications International Corporation (SAIC), National Security Space Operations/SRBU, to develop longwave infrared (LWIR) hyperspectral imaging (HSI) sensors for airborne and potentially ground and space, platforms. LLNL has designed and developed LWIR HSI sensors since 1995. The current generation of these sensors has applications to users within the U.S. Department of Defense and the Intelligence Community. User needs are for multiple copies provided by commercial industry. To gain the most benefit from the U.S. Government’s prior investments inmore » LWIR HSI sensors developed at LLNL, transfer of technology and know-how from LLNL HSI experts to commercial industry was needed. The overarching purpose of the CRADA project was to facilitate the transfer of the necessary technology from LLNL to SAIC thereby allowing the U.S. Government to procure LWIR HSI sensors from this company.« less
Simulations of the National Ignition Facility Opacity Sample
NASA Astrophysics Data System (ADS)
Martin, M. E.; London, R. A.; Heeter, R. F.; Dodd, E. S.; Devolder, B. G.; Opachich, Y. P.; Liedahl, D. A.; Perry, T. S.
2017-10-01
A platform to study the opacity of high temperature materials at the National Ignition Facility has been developed. Experiments to study the opacity of materials relevant to inertial confinement fusion and stellar astrophysics are being conducted. The initial NIF experiments are focused on reaching the same plasma conditions (T >150 eV and Ne >= 7 ×1021 cm-3) , for iron, as those achieved in previous experiments at Sandia National Laboratories' (SNL) Z-facility which have shown discrepancies between opacity theory and experiment. We developed a methodology, using 1D HYDRA simulations, to study the effects of tamper thickness on the conditions of iron-magnesium samples. We heat the sample using an x-ray drive from 2D LASNEX hohlraum simulations. We also use this methodology to predict sample uniformity and expansion for comparison with experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Religious and Philosophical Justifications for War: A Synthesis of Selected Literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martzen, E
The Critical Issues Forum (CIF) is a cooperative education program supported in part by the Department of Energy's Defense Programs. The Science and Technology Education Program (STEP) at Lawrence Livermore National Laboratory manages one component of this program. CIF engages high school students and teachers regarding issues of the proliferation of weapons of mass destruction, arms control, and international security. These issues are viewed in light of their scientific, economic, socio-cultural, and political/geopolitical influences and implications. This year CIF's focus is on chemical and biological weapons (CBW). CBW is becoming more of a threat today than ever before. Many countriesmore » are developing these weapons. CBW also presents certain ethical dilemmas for many individuals, especially if those individuals feel it is their religious duty to use or avoid the use of such weapons. Religion has become an important determining factor in international security because many cultures, and even governments make decisions based on religious traditions. This paper is an attempt to look at these religions and philosophical traditions with an emphasis on views of ''just war''. The ultimate purpose of this paper is to promote awareness about religion's influence on international security issues. This paper was written by Cadet Ernst ''Mitch'' Martzen, AFROTC. He is an intern with the Lawrence Livermore National Laboratory's Science and Technology Education Program, under the guidance of Dr. Stephen C. Sesko, the director of LLNL's CIF program. Every major religion and ethical system has developed a societal concept of ''just war''. Today, the world's largest religions include Christianity, Islam, Hinduism, and Buddhism. Each faith lays claim to a heritage rich with thousands of years of history, and the power of great minds to support its ethical and moral beliefs. These religions have each developed separate and distinct beliefs regarding warfare. Whether those beliefs were developed through formal theological discourse, or through the dialogue in scriptures, they are valid and necessary today because they affect contemporary political action. Even today, many religious societies base their willingness to fight on the just war ethic that they hold.« less
Livermore Site Spill Prevention, Control, and Countermeasures (SPCC) Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellah, W.; Griffin, D.; Mertesdorf, E.
This Spill Prevention, Control, and Countermeasure (SPCC) Plan describes the measures that are taken at Lawrence Livermore National Laboratory’s (LLNL) Livermore Site in Livermore, California, to prevent, control, and handle potential spills from aboveground containers that can contain 55 gallons or more of oil. This SPCC Plan complies with the Oil Pollution Prevention regulation in Title 40 of the Code of Federal Regulations (40 CFR), Part 112 (40 CFR 112) and with 40 CFR 761.65(b) and (c), which regulates the temporary storage of polychlorinated biphenyls (PCBs). This Plan has also been prepared in accordance with Division 20, Chapter 6.67 ofmore » the California Health and Safety Code (HSC 6.67) requirements for oil pollution prevention (referred to as the Aboveground Petroleum Storage Act [APSA]), and the United States Department of Energy (DOE) Order No. 436.1. This SPCC Plan establishes procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States or adjoining shorelines for aboveground oil storage and use at the Livermore Site.« less
Materials science and engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesuer, D.R.
1997-02-01
During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliancemore » of Bulk Kel-E.« less
Nuclear Test-Experimental Science: Annual report, fiscal year 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, G.L.; Donohue, M.L.; Bucciarelli, G.
1988-01-01
Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challengesmore » and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.« less
Nuclear winter from gulf war discounted
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, E.
Would a major conflagration in Kuwait's oil fields trigger a climate catastrophe akin to the 'nuclear winter' that got so much attention in the 1980s This question prompted a variety of opinions. The British Meteorological Office and researchers at Lawrence Livermore National Laboratory concluded that the effect of smoke from major oil fires in Kuwait on global temperatures is likely to be small; however, the obscuration of sunlight might significantly reduce surface temperatures locally. Michael MacCracken, leader of the researchers at Livermore, predicts that the worst plausible oil fires in the Gulf would produce a cloud of pollution about asmore » severe as that found on a bad day at the Los Angeles airport. The results of some mathematical modeling by the Livermore research group are reported.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the proceedings of the fourth Contractor-Grantee Workshop for the Department of Energy (DOE) Human Genome Program. Of the 204 abstracts in this book, some 200 describe the genome research of DOE-funded grantees and contractors located at the multidisciplinary centers at Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory; other DOE-supported laboratories; and more than 54 universities, research organizations, and companies in the United States and abroad. Included are 16 abstracts from ongoing projects in the Ethical, Legal, and Social Issues (ELSI) component, an area that continues to attract considerable attention from a widemore » variety of interested parties. Three abstracts summarize work in the new Microbial Genome Initiative launched this year by the Office of Health and Environmental Research (OHER) to provide genome sequence and mapping data on industrially important microorganisms and those that live under extreme conditions. Many of the projects will be discussed at plenary sessions held throughout the workshop, and all are represented in the poster sessions.« less
An Appreciation: Berni Julian Alder
NASA Astrophysics Data System (ADS)
Graham Hoover, William
Berni Alder profoundly influenced my research career at Lawrence Livermore National Laboratory and the Davis Campus' Teller Tech, beginning in 1962 and lasting for over fifty years. I very much appreciate the opportunity provided by his Ninetieth Birthday Celebration to review some of the many high spots along the way.
New design for interfacing computers to the Octopus network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan, L.J.
1977-03-14
The Lawrence Livermore Laboratory has several large-scale computers which are connected to the Octopus network. Several difficulties arise in providing adequate resources along with reliable performance. To alleviate some of these problems a new method of bringing large computers into the Octopus environment is proposed.
Microadaptive Flow Control Applied to a Spinning Projectile
2005-09-01
Finite Element Code for Solid and Structural Mechanics; UCRL -MA-107254, Rev. 1; Lawrence Livermore National Laboratory: Oak Ridge, TN, November 1993...COPIES ORGANIZATION 29 3 DARPA TTO S WALKER (2 CPS) A MORRISH 3701 FAIRFAX DR ARLINGTON VA 22203 1 DARPA ATO D HONEY 3701
Educational Revolution on the Reservation: A Working Model.
ERIC Educational Resources Information Center
Murphy, Pete
1993-01-01
Since 1986, Navajo Community College (NCC) and Lawrence Livermore National Laboratory (LLNL) have collaborated to improve science and technical education on the Navajo Reservation through equipment loans, faculty exchanges, summer student work at LLNL, scholarships for NCC students, summer workshops for elementary science teachers, and classroom…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearinger, J P
This months issue has the following articles: (1) Science Translated for the Greater Good--Commentary by Steven D. Liedle; (2) The New Face of Industrial Partnerships--An entrepreneurial spirit is blossoming at Lawrence Livermore; (3) Monitoring a Nuclear Weapon from the Inside--Livermore researchers are developing tiny sensors to warn of detrimental chemical and physical changes inside nuclear warheads; (4) Simulating the Biomolecular Structure of Nanometer-Size Particles--Grand Challenge simulations reveal the size and structure of nanolipoprotein particles used to study membrane proteins; and (5) Antineutrino Detectors Improve Reactor Safeguards--Antineutrino detectors track the consumption and production of fissile materials inside nuclear reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, J.W.
1983-03-10
A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.
Technical challenges for the future of high energy lasers
NASA Astrophysics Data System (ADS)
LaFortune, K. N.; Hurd, R. L.; Fochs, S. N.; Rotter, M. D.; Pax, P. H.; Combs, R. L.; Olivier, S. S.; Brase, J. M.; Yamamoto, R. M.
2007-02-01
The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multi-generation laser development effort scalable to the megawatt power levels with current performance approaching 100 kilowatts. This program is one of many designed to harness the power of lasers for use as directed energy weapons. There are many hurdles common to all of these programs that must be overcome to make the technology viable. There will be a in-depth discussion of the general issues facing state-of-the-art high energy lasers and paths to their resolution. Despite the relative simplicity of the SSHCL design, many challenges have been uncovered in the implementation of this particular system. An overview of these and their resolution are discussed. The overall system design of the SSHCL, technological strengths and weaknesses, and most recent experimental results will be presented.
"TIS": An Intelligent Gateway Computer for Information and Modeling Networks. Overview.
ERIC Educational Resources Information Center
Hampel, Viktor E.; And Others
TIS (Technology Information System) is being used at the Lawrence Livermore National Laboratory (LLNL) to develop software for Intelligent Gateway Computers (IGC) suitable for the prototyping of advanced, integrated information networks. Dedicated to information management, TIS leads the user to available information resources, on TIS or…
2010-02-10
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.
2010-02-10
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo.
Fiscal Year 2012 United States Air Force Agency Financial Report
2012-01-01
Air Force Research Laboratory (AFRL) and Lawrence Livermore National Laboratory (LLNL) aggressively designed and tested an advanced warhead to...Reaper procurement & RPA capabilities, Light Attack Armed Reconnaissance buys, Joint Strike Fighter, satellites). Research , Development, Test and...Military Personnel Operations, Readiness & Support Procurement Research , Development, Test & Evaluation
Optimal Design of a Two-Layered Elastic Strip Subjected to Transient Loading
2005-05-01
M.J., 1999. GLO––global local optimizer users manual. Report UCRL -MA-133858, Energetic Materials Center, Lawrence Livermore National Laboratory...3 DARPA L CHRISTODOULOU W COBLENZ S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 DIRECTOR US ARMY RESEARCH LAB AMSRL CS
ERIC Educational Resources Information Center
Burton, Hilary D.
TIS (Technology Information System) is an intelligent gateway system capable of performing quantitative evaluation and analysis of bibliographic citations using a set of Process functions. Originally developed by Lawrence Livermore National Laboratory (LLNL) to analyze information retrieved from three major federal databases, DOE/RECON,…
First results of a polychromatic artificial sodium star for the correction of tilt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, H.; Foy, R..; Tallon, M.
1996-03-06
This paper presents the first results of a joint experiment carried out at Lawrence Livermore National Laboratory during January, 1996. Laser and optical systems were tested to provide a polychromatic artificial sodium star for the correction of tilt. This paper presents the results of that experiment.
Waves in Nature, Lasers to Tsumanis and Beyond
LLNL - University of California Television
2017-12-09
Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541
Precision Cleaning and Protection of Coated Optical Components for NIF Small Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, Jim
The purpose of this procedure shall be to define the precision cleaning of finished, coated, small optical components for NIF at Lawrence Livermore National Laboratories. The term “small optical components” includes coated optics that are set into simple mounts, as well as coated, un-mounted optics.
Waves in Nature, Lasers to Tsumanis and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
LLNL - University of California Television
2008-05-01
Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozhdestvenskyy, S.
This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm 2 of active detector area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Bertoldo, N A; Campbell, C G
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2008 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and ismore » available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2008: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary. The report is the responsibility of LLNL's Environmental Protection Department. Monitoring data were obtained through the combined efforts of the Environmental Protection Department; Environmental Restoration Department; Physical and Life Sciences Environmental Monitoring Radiation Laboratory; and the Hazards Control Department.« less
ASC Tri-lab Co-design Level 2 Milestone Report 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornung, Rich; Jones, Holger; Keasler, Jeff
2015-09-23
In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correll, D
The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less
2007 Annual Health Physics Report for the HEU Transparency Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radev, R
2008-04-09
During the 2007 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection and technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2007, there were 172 person-trips that required dose monitoring of the U.S. monitors. Of the 172 person-trips, 160 person-trips were SMVs and 12 person-trips were Transparency Monitoring Office (TMO) trips. There were 12 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. There were two monitoring visits (sourcemore » changes) that were back to back with 14 monitors. LLNL's Hazard Control Division laboratories provided the dosimetry services for the HEU Transparency monitors.« less
Scientists in Gray Flannel Suits: Ernest Lawrence and the Development of Color Television
NASA Astrophysics Data System (ADS)
Roebke, Joshua
Physicists and historians typically remember Ernest Lawrence for one of two activities, his development of the cyclotron or his advocacy for atomic weapons. The two labs that he established in support of such endeavors are still named after him in California: Lawrence Berkeley and Lawrence Livermore. But there was a third accomplishment for which Lawrence believed he would always be remembered: the development of color television. In 1950, he sold a half stake of his company, Chromatic Television Laboratories, to Paramount Pictures for 1 million. That decade, Lawrence and his employees, especially Luis Alvarez and Edwin McMillan, designed cathode-ray tubes for color televisions while they championed hydrogen bombs. Although their commitment to the second was attributed to patriotism and their interest in the first was dismissed as a hobby, it is not so easy to disentangle their motives. Color screens were needed for more than variety shows and sitcoms; they displayed incoming missiles in vivid color. No company has ever been led by three future Nobel Laureates, yet Chromatic Television Laboratories was a failure. Even so, Lawrence had a profound influence on the development of color television, and I will tell this story for the first time.
NASA Astrophysics Data System (ADS)
Martinez, David
2015-11-01
We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Laser program annual report 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.
1984-06-01
In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. Themore » format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report was prepared at the request of the Lawrence Livermore Laboratory (LLL) to provide background information for analyzing soil-structure interaction by the frequency-independent impedance function approach. LLL is conducting such analyses as part of its seismic review of selected operating plants under the Systematic Evaluation Program for the US Nuclear Regulatory Commission. The analytical background and basic assumptionsof the impedance function theory are briefly reviewed, and the role of radiation damping in soil-structure interaction analysis is discussed. The validity of modeling soil-structure interaction by using frequency-independent functions is evaluated based on data from several field tests. Finally, the recommendedmore » procedures for performing soil-structure interaction analyses are discussed with emphasis on the modal superposition method.« less
NASA Astrophysics Data System (ADS)
Maimoni, A.
1988-03-01
The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.
RAPTOR Transmissivity and Cloud Climatology Study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eis, K.E.; Vonder Haar, T.H.; Forsythe, J.
1993-01-01
The RAPTOR Transmissivity Study (RTS) was funded by Lawrence Livermore National Laboratory (LLNL) under a sub contract to support the U.S. Army`s RAPTOR program. The intent of the study is to answer two questions: (1) What are the typical transmission levels of clouds as a function of target altitude for two locations and wavelengths of interest? (2) What is the probability that a cloud will intervene between sensor and target for a given target altitude, range, wavelength and location? This was addressed for Iraq and Korea. Answers to both questions are treated using existing software and data sources where possiblemore » due to the limited funding and scope of the contract.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirk, W.J.; Canada, J.; de Vore, L.
This monthly report of research activities at Lawrence Livermore Laboratory highlights three different research programs. First, the Forensic Science Center supports a broad range of analytical techniques that focus on detecting and analyzing chemical, biological, and nuclear species. Analyses are useful in the areas of nonproliferation, counterterrorism, and law enforcement. Second, starting in 1977, the laboratory initiated a series of studies to understand a high incidence of melanoma among employees. Continued study shows that mortality from this disease has decreased from the levels seen in the 1980`s. Third, to help coordinate the laboratory`s diverse research projects that can provide bettermore » healthcare tools to the public, the lab is creating the new Center for Healthcare Technologies.« less
User's manual for a material transport code on the Octopus Computer Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naymik, T.G.; Mendez, G.D.
1978-09-15
A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.
LLL Octopus network: some lessons and future directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, R.W.
1978-06-27
The Octopus network, designed and developed by the Lawrence Livermore Laboratory, is a pioneering, high-performance, local computer network. Several lessons derived from the 14 years of experience in the evolution of Octopus are described, and some of the directions to be taken in its medium-term future are indicated. 3 figures.
A Computerized Library and Evaluation System for Integral Neutron Experiments.
ERIC Educational Resources Information Center
Hampel, Viktor E.; And Others
A computerized library of references to integral neutron experiments has been developed at the Lawrence Radiation Laboratory at Livermore. This library serves as a data base for the systematic retrieval of documents describing diverse critical and bulk nuclear experiments. The evaluation and reduction of the physical parameters of the experiments…
2010-01-14
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Cab being lifted into the tunnel.
2010-02-03
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Trailer being lifted into the tunnel.
Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1364-96: Phase I SBIR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrobek, A. J.; Dunlay, R. T.
This project was a relationship between Lawrence Livermore National Laboratory (LLNL) and Biological Detection, Inc. (now known as Cellomics, Inc.) It was funded as a Phase I SBIR from the National Institutes of Health (NIH) awarded to Cellomics, Inc. with a subcontract to LLNL.
Automated Acquisition, Cataloging, and Circulation in a Large Research Library.
ERIC Educational Resources Information Center
Boylan, Merle N.; And Others
This report describes automated procedures now in use for book acquisition, and book and document cataloging and circulation, in the library at Lawrence Radiation Laboratory, Livermore. The purpose of the automation is to increase frequency and accuracy of record updatings, decrease the time required to maintain records, improve the formats of the…
2010-02-10
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo with Ron Schoon, Navistar.
2010-02-10
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. Smoke test demo with Ron Schoon, Navistar.
2007-01-01
Lawrence Livermore National Laboratory Report UCRL -MA-107254 Rev. 1. NO. OF COPIES ORGANIZATION 1 DEFENSE TECHNICAL (PDF INFORMATION CTR...AFB FL 32542 3 DARPA L CHRISTODOULOU W COBLENZ S WAX 3701 N FAIRFAX DR ARLINGTON VA 22203-1714 1 DIRECTOR US ARMY ARDEC
DOE Scientists Contribute to 2007 Nobel Peace Prize Research about Climate
and resources were devoted to modeling the interactive effects of consequences, that is to say effects are more immediate and profound than previously anticipated, and old questions (are humans the Lawrence Livermore National Laboratory, DOE Technical Report, May 2005 Climate Effects of Global Land Cover
Robert B. Laughlin and the Fractional Quantum Hall Effect
dropdown arrow Site Map A-Z Index Menu Synopsis Robert B. Laughlin and the Fractional Quantum Hall Effect Tsui discovered the effect. In 1983, Laughlin, then at the Lawrence Livermore National Laboratory , provided the theoretical explanation of the effect in terms of fractionally charged particles. It was a
2010-09-01
latitude-longitude grid. Building a spherical tessellation mesh involves recursive subdivision of triangular facets of an initial polyhedron (in our...of our local database at Lawrence Livermore National Laboratory (Ruppert et al. 2005) and the publicly available Engdahl-van der Hilst-Buland (EHB
Gamma-Ray Effects Testing in Lawrence Livermore National Laboratory’s Nova Upgrade Facility
1992-03-01
However, the distribution of energy between neutrons and photons from the ICF pellet will be different then that from a thermonuclear bomb . In a...of the neutron energy to photons. Photons make up most of the energy released from a thermonuclear bomb (Glasstone, S., 1977:340-342). The neutrons
Waste Isolation Pilot Plant Technical Assessment Team Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).
Rarefaction Wave Eliminator Concepts For A Large Blast/Thermal Simulator.
1985-02-01
hard copies of the pressure-time records. Final data process- ing was completed with the computer, printer , and plotter. Plots of pressure- time records...F ATTN: Prof 0. Zinke Fayetteville, AR 72701 Cdr, CRDC, AMCCOM ATTI: 4O-SPS-IL University of California PM=-J Lawrence Livermore Lab SOM-RSP-A ATTN
Picosecond laser filamentation in air
2016-09-02
experimentsmake use of theComet laser systemwhich is a part of the Jupiter Laser Facility at the Lawrence LivermoreNational Laboratory inCalifornia, USA [24...bottompanels, respectively. 8 New J. Phys. 18 (2016) 093005 A Schmitt-Sody et al FA9550-12-1-0482 and number FA9550-16-1-0013. The use of the Jupiter Laser
The Future of Nonproliferation in a Changed and Changing Environment: A Workshop Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreicer, M.
2016-08-30
The Center for Global Security Research and Global Security Principal Directorate at Lawrence Livermore National Laboratory convened a workshop in July 2016 to consider “The Future of Nonproliferation in a Changed and Changing Security Environment.” We took a broad view of nonproliferation, encompassing not just the treaty regime but also arms control, threat reduction, counter-proliferation, and countering nuclear terrorism. We gathered a group of approximately 60 experts from the technical, academic, political, defense and think tank communities and asked them what—and how much—can reasonably be accomplished in each of these areas in the 5 to 10 years ahead. Discussion wasmore » on a not-for-attribution basis. This document provides a summary of key insights and lessons learned, and is provided to help stimulate broader public discussion of these issues. It is a collection of ideas as informally discussed and debated among a group of experts. The ideas reported here are the personal views of individual experts and should not be attributed to Lawrence Livermore National Laboratory.« less
High Density, Insensitive Oxidizer With RDX Performance Final Report CRADA No. TC02178.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagoria, P.; Preda, D.
2017-08-25
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis and evaluate a novel high density, insensitive oxidizer with RDX performance. This CRADA resulted from the award of a Phase I STTR ("STTR") from DOD. In recent years, the synthesis of new energetic heterocyclic compounds to replace the energetic materials currently in the stockpile has received a great amount of attention. The Office of the Secretary of Defense has identified that there is a need to incorporate new energetic materialsmore » in current and future weapon systems in an effort to increase performance and decrease sensitivity. For many of the future weapon systems, incorporation of energetic compounds currently in the stockpile will not provide the desired performance and sensitivity goals. The success of this CRADA may lead to a Phase I option STTR from DOD and to a Phase II STTR from DOD. The goal of this CRADA was to produce and test a novel oxidizer, 2,5,8-trinitroheptazine (TNH).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Lonnie Moore, the Computer Security Manager, CSSM/CPPM at Lawrence Livermore National Laboratory (LLNL) and Gale Warshawsky, the Coordinator for Computer Security Education & Awareness at LLNL, wanted to share topics such as computer ethics, software piracy, privacy issues, and protecting information in a format that would capture and hold an audience`s attention. Four Computer Security Short Subject videos were produced which ranged from 1-3 minutes each. These videos are very effective education and awareness tools that can be used to generate discussions about computer security concerns and good computing practices. Leaders may incorporate the Short Subjects into presentations. After talkingmore » about a subject area, one of the Short Subjects may be shown to highlight that subject matter. Another method for sharing them could be to show a Short Subject first and then lead a discussion about its topic. The cast of characters and a bit of information about their personalities in the LLNL Computer Security Short Subjects is included in this report.« less
Gold Spectra Measurements from LLNL EBIT Plasmas
NASA Astrophysics Data System (ADS)
May, M.; Brown, G. V.; Chen, H.; Chung, H. K.; Gu, M.; Hansen, S. B.; Schneider, M. B.; Widmann, K.; Beiersdorfer, P.
2008-11-01
Spectra have been recorded from gold that has been injected into the Lawrence Livermore Electron Beam Ion Trap (EBIT-II). Both mono-energetic and experimentally simulated Maxwell-Boltzmann (MB) plasmas were created for these measurements. The beam plasmas had energies of 2.75, 3.0, 3.6, 4.6, 5.5, 6.0, 6.5 keV. The MB plasmas had electron temperatures of 2.0, 2.5 and 3.0 keV. M-band gold spectra (n = 4-3, 5-3, 6-3 and 7-3 transitions) were recorded between 1 - 8 keV from K-like to Kr-like ions in the x-ray. The emission of gold was recorded by crystal spectrometers and a micro-calorimeter from the Goddard Space Flight Center. A full survey of the recorded spectra will be presented along with line emission and charge state modeling from the flexible atomic code (FAC). Some comparisons with laser produced plasmas will be made. *This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon
2013-06-01
Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
ARES Simulations of a Double Shell Surrogate Target
NASA Astrophysics Data System (ADS)
Sacks, Ryan; Tipton, Robert; Graziani, Frank
2015-11-01
Double shell targets provide an alternative path to ignition that allows for a less robust laser profile and non-cryogenic initial temperatures. The target designs call for a high-Z material to abut the gas/liquid DT fuel which is cause for concern due to possible mix of the inner shell with the fuel. This research concentrates on developing a surrogate target for a double shell capsule that can be fielded in a current NIF two-shock hohlraum. Through pressure-density scaling the hydrodynamic behavior of the high-Z pusher of a double shell can be approximated allowing for studies of performance and mix. Use of the ARES code allows for investigation of mix in one and two dimensions and analysis of instabilities in two dimensions. Development of a shell material that will allow for experiments similar to CD Mix is also discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. Information Management release number LLNL-ABS-675098.
322-R2U2 Engineering Assessment - August 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abri, M.; Griffin, D.
This Engineering Assessment and Certification of Integrity of retention tank system 322-R2 has been prepared for tank systems that store and neutralizes hazardous waste and have secondary containment. The regulations require that this assessment be completed periodically and certified by an independent, qualified, California-registered professional engineer. Abri Environmental Engineering performed an inspection of the 322-R2 Tank system at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA. Mr. William W. Moore, P.E., conducted this inspection on March 16, 2015. Mr. Moore is a California Registered Civil Engineer, with extensive experience in civil engineering, and hazardous waste management.
LINCS: Livermore's network architecture. [Octopus computing network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.
1982-01-01
Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessingmore » process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh, K.
The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less
Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices
Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela
2018-01-16
Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.
2010-02-10
Lawrence Livermore National Labs (LLNL), Navistar and the Department of Energy conduct tests in the NASA Ames National Full-scale Aerodynamic Complex 80x120_foot wind tunnel. The LLNL project is aimed at aerodynamic truck and trailer devices that can reduce fuel consumption at highway speed by 10 percent. LLNL's test piece is being installed on truck.
ERIC Educational Resources Information Center
McDonald, Kim
1988-01-01
The question of whether a university is responsible for the technical accuracy of information released by senior administrators of a laboratory it is charged with overseeing is examined in the case involving a dispute at the Lawrence Livermore National Laboratory that is overseen by the University of California. (MLW)
Target Recognition in Ultra-Wideband SAR Imagery
1994-08-01
Poles in a Transfer Function for Real Frequency Informa- tion," Lawrence Livermore Laboratory, UCRL -52050 (April 1974). 24. V. K Jain, T. K. Sarker, and...0.777 Gaussian 0.849 1 5,265 0.978 93 Distribution Adrnnstr ARPAJASTO Defris Techi Info Ctr Attn T DePersia Attn DTIC-DDA (2 copies) 3701 N Fairfax Dr
Breathable âSecond Skinâ for Smart Uniforms
Fornasiero, Francesco
2018-01-16
Aiming to protect soldiers from biological and chemical threats, a team of Lawrence Livermore National Laboratory scientists have created a material that is highly breathable yet protective from biological agents. This material is the first key component of futuristic smart uniforms that also will respond to and protect from environmental chemical hazards.
Wharton, Sonia [Lawrence Livermore National Laboratory
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Dia Diablo. Site Description - The site is on land owned by Lawrence Livermore National Laboratory (Site 300) and has no grazing or management history since the 1950's except for summer-time burning of selected acres for fire management (not included in the tower footprint).
360 Video Tour of the Worldâs Largest Laser
None
2018-01-16
Welcome to the National Ignition Facility at Lawrence Livermore National Laboratory, the worldâs largest and most energetic laser system. It draws researchers from around the globe for experiments that canât be conducted anywhere else on Earth. Letâs take a closer look.
Diet and Cancer Are Cooked Meats Involved
LLNL - University of California Television
2017-12-09
Diet has been associated with differences in cancer rates in human populations for many years. Mark Knize presents the latest research on cancer causes including work performed at Lawrence Livermore National Laboratory investigating some interesting chemical products created when meat is cooked and how to reduce them. Series: Science on Saturday [10/2006] [Health and Medicine] [Science] [Show ID: 11542
Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannu, Sat; Shah, Kedar; Tolosa, Vanessa
Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from Lawrence Livermore...
Blast Fragmentation Modeling and Analysis
2010-10-31
weapons device containing a multiphase blast explosive (MBX). 1. INTRODUCTION The ARL Survivability Lethality and Analysis Directorate (SLAD) is...velocity. In order to simulate the highly complex phenomenon, the exploding cylinder is modeled with the hydrodynamics code ALE3D , an arbitrary...Lagrangian-Eulerian multiphysics code, developed at Lawrence Livermore National Laboratory. ALE3D includes physical properties, constitutive models for
Evaluating the ISDN line to deliver interactive multimedia experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, D.K.
1994-05-06
We will use the 128 kilobit/sec ISDN connection from the Lawrence Livermore National Laboratory to the Livermore High School Math Learning Center to provide students there with interactive multimedia educational experiences. These experiences may consist of tutorials, exercises, and interactive puzzles to teach students` course material. We will determine if it is possible to store the multimedia files at LLNL and deliver them to the student machines via FTP as they are needed. An evaluation of the effect of the ISDN data rate is a substantial component of our research and suggestions on how to best use the ISDN linemore » in this capacity will be given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, C G; Mathews, S
2006-09-07
Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take intomore » account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.« less
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
Technical Analysis of SSP-21 Protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberger, S.
As part of the California Energy Systems for the Twenty-First Century (CES-21) program, in December 2016 San Diego Gas and Electric (SDG&E) contracted with Lawrence Livermore National Laboratory (LLNL) to perform an independent verification and validation (IV&V) of a white paper describing their Secure SCADA Protocol for the Twenty-First Century (SSP-21) in order to analyze the effectiveness and propriety of cryptographic protocol use within the SSP-21 specification. SSP-21 is designed to use cryptographic protocols to provide (optional) encryption, authentication, and nonrepudiation, among other capabilities. The cryptographic protocols to be used reflect current industry standards; future versions of SSP-21 will usemore » other advanced technologies to provide a subset of security services.« less
Phase II: Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1554-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrobek, W. J.; Dunlay, R. T.
This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cellomics, Inc. (formerly BioDx and Biological Detection, Inc.) to develop an automated system for detecting human sperm aneuploidy. Aneuploidy (an abnormal number of chromosomes) is one of the major categories of chromosomally abnormal sperm, which results in chromosomally defective pregnancies and babies. An automated system would be used for testing the effects of toxic agents and for other research and clinical applications. This collaborated effort was funded by a National Institutes of Environmental Health Services, Phase II, Small Business Innovation Research Program (SBIR) grantmore » to Cellornics (Contract No. N44-ES-82004).« less
The AMTEX Partnership{trademark} mid year report, fiscal year 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Complex (ITC), the US Department of Energy (DOE), the DOE national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. Three AMTEX projects funded in FY 1997 are Diamond Activated Manufacturing Architecture (DAMA), Computer-Aided Fabric Evaluation (CAFE), and Textile Resource Conservation (TReC). The five sites involved in AMTEX work are Sandia National Laboratory (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), the Oak Ridgemore » Y-12 Plant, and the Oak Ridge National Laboratory (ORNL) (the latter is funded through Y-12).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mok, G.C.; Thomas, G.R.; Gerhard, M.A.
SCANS (Shipping Cask ANalysis System) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent fuel shipping casks. SCANS is an easy-to-use system that calculates the global response to impact loads, pressure loads and thermal conditions, providing reviewers with an independent check on analyses submitted by licensees. SCANS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens thatmore » contain descriptive data requests. Analysis options are based on regulatory cases described in the Code of Federal Regulations 10 CFR 71 and Regulatory Guides published by the US Nuclear Regulatory Commission in 1977 and 1978.« less
Laser Program Annual Report - 1979 Unclassified Excerpts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D
The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.F.; Gerhard, M.A.; Trummer, D.J.
CASKS (Computer Analysis of Storage casKS) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for evaluating safety analysis reports on spent-fuel storage casks. The bulk of the complete program and this user`s manual are based upon the SCANS (Shipping Cask ANalysis System) program previously developed at LLNL. A number of enhancements and improvements were added to the original SCANS program to meet requirements unique to storage casks. CASKS is an easy-to-use system that calculates global response of storage casks to impact loads, pressure loads and thermal conditions. This provides reviewers withmore » a tool for an independent check on analyses submitted by licensees. CASKS is based on microcomputers compatible with the IBM-PC family of computers. The system is composed of a series of menus, input programs, cask analysis programs, and output display programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, P; Walter, K
Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate themore » Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at the National Ignition Facility (NIF), the world's largest laser. They will help us resolve the most important questions we still have about nuclear weapons performance. Future NIF experiments will also explore the promise of an essentially inexhaustible source of clean energy from nuclear fusion. In addition, we have begun the process of eliminating significant quantities of special nuclear materials from the Livermore site. We will carry forward Livermore's tradition of exceptional science and technology. This is the S&T that led to the design and construction of NIF and leadership in an international consortium that is developing the Gemini Planet Imager. When the Imager comes on line in 2010 at an observatory in Chile, the Imager will bring into sharp focus planets that are 30 to 150 light years from our solar system.« less
LINC Modeling of August 19, 2004 Queen City Barrel Company Fire In Cincinnati, OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, M B; Nasstrom, J S; Baskett, R L
This report details the information received, assumptions made, actions taken, and products delivered by the Lawrence Livermore National Laboratory (LLNL) during the August 19, 2004 fire at the Queen City Barrel Company (QCB) in Cincinnati, OH. During the course of the event, LLNL provided four sets of plume model products to various Cincinnati emergency response organizations.
Sperm Scoring Using Multi-Spectral Flow Imaging and FISH-IS Final Report CRADA No. TC02088.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, F.; Morrissey, P. J.
This was to be a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Amnis Corporation, to develop an automated system for scoring sperm interphase cells for the presence of chromosomal abnormalities using fluorescence in situ hybridization and the Amnis ImageStream technology platform.
Methodology for characterizing potential adversaries of Nuclear Material Safeguards Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkwood, C.W.; Pollock, S.M.
1978-11-01
The results are described of a study by Woodward--Clyde Consultants to assist the University of California Lawrence Livermore Laboratory in the development of methods to analyze and evaluate Nuclear Material Safeguards (NMS) Systems. The study concentrated on developing a methodology to assist experts in describing, in quantitative form, their judgments about the characteristics of potential adversaries of NMS Systems.
None
2018-06-12
An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas.
The High-Repetition-Rate Advanced Petawatt Laser System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci
2017-02-02
The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutaleb, T.; Pluschkell, T. P.
The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, D.N.
1997-02-01
The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.
Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, R.; Davis, J. A.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).
Gaining New Military Capability: An Experiment in Concept Development.
1998-01-01
Angeles Police Department ( LAPD ) were invited, at- tended, and made important contributions.1 ORGANIZING COG DISCUSSIONS We sought to structure COG...Terry Covington, RAND; Charles Duke, Los Angeles Police Department ; Gene Gritton, RAND; Thomas Karr, Lawrence Livermore Laboratory; LTC Will Irwin, USA...Munition Joint Requirements Oversight Council Joint Stand-off Weapon Joint Strategic Tracking and Radar System Laser radar Los Angeles Police
Visible Spectrum of Stable Sonoluminescence
1992-12-01
Lawrence Livermore National Laboratory. 9. Interview between Dr. David S. Davis, Physics Department, Naval Postgraduate School, Monterey California, and the...December 1992. 11. B. P. Barber, R. Hiller, K. Arisaka, H. Fetterman , and S. J. Putterman, "Resolving the picosecond characteristics of synchronous...author, 12 November 1992. 14. Interview between Dr. David S. Davis, Physics Department, Naval Postgraduate School, Monterey California, and the author, 14
Controlling material reactivity using architecture
NASA Astrophysics Data System (ADS)
Sullivan, Kyle
2017-06-01
The reactivity of thermites can be tailored through selection of several parameters, and can range from very slow burns to rapid deflagrations. 3D printing is a rapidly emerging field, and offers the potential to build architected parts. Here we sought to explore whether controlling such features could be a suitable path forward for gaining additional control of the reactivity. This talk discusses several new methods for preparing thermite samples with controlled architectures using 3D printing. Additionally, we demonstrate that the architecture can play a role in the reactivity of an object. Our results suggest that architecture can be used to tailor the convective and/or advective energy transport during a deflagration, thus enhancing or retarding the reaction. The results are promising in that they give researchers an additional way of controlling the energy release rate without defaulting to the conventional approach of changing the formulation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-708525. In collaboration with: Cheng Zhu, Eric Duoss, Matt Durban, Alex Gash, Alexandra Golobic, Michael Grapes, David Kolesky, Joshua Kuntz, Jennifer Lewis, Christopher Spadaccini; LAWRENCE LIVERMORE NATIONAL LAB.
Hot spot mix in ICF implosions on the NIF
NASA Astrophysics Data System (ADS)
Ma, Tammy
2016-10-01
In the quest to achieve ignition through the inertial confinement fusion scheme, one of the critical challenges is to drive a symmetric implosion at high velocity without hydrodynamic instabilities becoming detrimental. These instabilities, primarily at the ablation front and the fuel-ablator interface, can cause mix of the higher-Z shell into the hot spot, resulting in increased radiation loss and thus reduced temperature and neutron yield. To quantify the level of mix, we developed a model that infers the level of hot spot contamination using the ratio of the enhanced x-ray production relative to the neutron yield. Applying this methodology to the full ensemble of indirect-drive National Ignition Facility (NIF) cryogenically layered DT implosions provides insight on the sensitivity of performance to the level of ablator-hot spot mix. In particular, the improvement seen with the High Foot design can be primarily attributed to a reduction in ablation-front instability mix that enabled the implosions to be pushed to higher velocity and performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.
NASA Astrophysics Data System (ADS)
Walsh, S. D.; Du Frane, W. L.; Vericella, J. J.; Aines, R. D.
2014-12-01
Smart tracers and smart proppants promise new methods for sensing and manipulating rock fractures. However, the correct use and interpretation of these technologies relies on accurate models of their transport. Even for less exotic particles, the factors controlling particle transport through fractures are poorly understood. In this presentation, we will describe ongoing research at Lawrence Livermore National Laboratory into the transport properties of particles in natural rock fractures. Using three dimensional printing techniques, we create clear-plastic reproductions of real-world fracture surfaces, thereby enabling direct observation of the particle movement. We will also discuss how particle tracking of dense particle packs can be further enhanced by using such specially tailored flow cells in combination with micro-encapsulated tracer particles. Experimental results investigating the transport behavior of smart tracers and proppants close to the neutrally buoyant limit will be presented and we will describe how data from these experiments can be used to improve large-scale models of particle transport in fractures. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
INSAR observations of the DPRK event series
NASA Astrophysics Data System (ADS)
Mellors, R. J.; Ford, S. R.; Walter, W. R.
2017-12-01
Interferometric synthetic aperture radar (INSAR) data have revealed signals associated with the recent DPRK events in 2016 and 2017. These signals include decorrelation and indications of subsidence. Both standard phase differences and amplitude offsets are calculated. We show results of INSAR analysis as conducted using C and L band data and investigate the causes of the decorrelation (e.g. subsidence, landslide, or spall) and compare the observed signal with numerical models of deformation and seismic observations. A time series approach is applied to constrain post-event deformation at the weeks to months' timescale. We compare the INSAR observations of the DPRK tests with previous observations of events at other source regions using ERS archive data, which revealed a variety of post-seismic signatures. The signatures are evaluated with respect to the known geology and causes, including long-term surface relaxation and possible groundwater/thermal effects. Particular focus is on the sites on Pahute and Rainier Mesa, which displayed long-term subsidence signals that extended for several years after the explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barney, B; Shuler, J
2006-08-21
Purple is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Lawrence Livermore National Laboratory (LLNL). The Purple Computational Environment documents the capabilities and the environment provided for the FY06 LLNL Level 1 General Availability Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories, but also documents needs of the LLNL and Alliance users working in the unclassified environment. Additionally,more » the Purple Computational Environment maps the provided capabilities to the Trilab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the General Availability user environment capabilities of the ASC community. Appendix A lists these requirements and includes a description of ACE requirements met and those requirements that are not met for each section of this document. The Purple Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the Tri-lab community.« less
Optical Encoding Technology for Viral Screening Panels Final Report CRADA No TC02132.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenhoff, R.; Haushalter, R.
This was a collaborative effort between Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory (LLNL) and Parallel Synthesis Technologies, Inc. (PSTI), to develop Optical Encoding Technology for Viral Screening Panels. The goal for this effort was to prepare a portable bead reader system that would enable the development of viral and bacterial screening panels which could be used for the detection of any desired set of bacteria or viruses in any location. The main objective was to determine if the combination of a bead-based, PCR suspension array technology, formulated from Parallume encoded beads and PSTI’s multiplex assay reader systemmore » (MARS), could provide advantages in terms of the number of simultaneously measured samples, portability, ruggedness, ease of use, accuracy, precision or cost as compared to the Luminexbased system developed at LLNL. The project underwent several no cost extensions however the overall goal of demonstrating the utility of this new system was achieved. As a result of the project a significant change to the type of bead PSTI used for the suspension system was implemented allowing better performance than the commercial Luminex system.« less
Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments
NASA Astrophysics Data System (ADS)
Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Winterberg, F.
2009-01-01
The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less
Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGowan, B.J.; Kotowski, M.; Schleich, D.
1993-11-01
This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less
2010 Annual Health Physics Report for the HEU Transparency Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radev, Radoslav
2011-05-16
During the 2010 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2010, there were 141 person-trips that required dose monitoring of the U.S. monitors. Of the 141 person-trips, 129 person-trips were Special Monitoring Visits (SMVs) and 12 person-trips were Transparency Monitoring Office (TMO) trips. In 8 of these TMO trips the TMO monitors participated also in the UEIE SMVs and in 2 TMOmore » trips the TMO monitors participated in UEIE and MPA SMVs. There were three monitoring visits (source changes) that were back-to-back SMVs with a total of 25 monitors. LLNL’s Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors.« less
Hazardous-waste analysis plan for LLNL operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R.S.
The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less
EBIT - Electronic Beam Ion Trap: N Divison experimental physics annual report 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, D.
1996-10-01
The multi-faceted research effort of the EBIT (Electron Beam Ion Trap) program in N-Division of the Physics and Space Technology Department at Lawrence Livermore National Laboratory (LLNL) continues to contribute significant results to the physical sciences from studies with low energy very highly charged heavy ions. The EBIT program attracts a number of collaborators from the US and abroad for the different projects. The collaborations are partly carried out through participating graduate students demonstrating the excellent educational capabilities at the LLNL EBIT facilities. Moreover, participants from Historically Black Colleges and Universities are engaged in the EBIT project. This report describesmore » EBIT work for 1995 in atomic structure measurements and radiative transition probabilities, spectral diagnostics for laboratory and astrophysical plasmas, ion/surface interaction studies, electron-ion interactions studies, retrap and ion collisions, and instrumental development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingleton, K. L.
2011-06-15
The Department of Energy (DOE) originally issued Part 10 CFR 835, Occupational Radiation Protection, on January 1, 1994. This regulation, hereafter referred to as “the Rule”, required DOE contractors to develop and maintain a DOE-approved Radiation Protection Program (RPP); DOE approved the initial Lawrence Livermore National Laboratory (LLNL) RPP (Rev 2) on 6/29/95. DOE issued a revision to the Rule on December 4, 1998 and approved LLNL’s revised RPP (Rev 7.1) on 11/18/99. DOE issued a second Rule revision on June 8, 2007 (effective July 9, 2007) and on June 13, 2008 approved LLNL’s RPP (Rev 9.0) which contained plansmore » and measures for coming into compliance with the 2007 Rule changes. DOE issued a correction to the Rule on April 21, 2009.« less
NASA Astrophysics Data System (ADS)
Kirsch, Scott Lawrence
From 1957 to 1973, the United States Atomic Energy Commission (AEC) actively pursued the "peaceful uses of nuclear explosives" through Project Plowshare. Nuclear excavation, the detonation of shallowly buried hydrogen bombs for massive earthmoving projects like harbors and canals, was considered the most promising of the Plowshare applications, and for a time, the most economically and technically "feasible." With a basis in and contributing to theory in critical human geography and science studies, the purpose of this dissertation is to examine the collisions of science, ideology, and politics which kept Plowshare designs alive--but only as "experiments in progress." That is, this research asks how the experimental program persisted in places like the national weapons laboratory in Livermore, California, and how its ideas were tested at the nuclear test site in Nevada, yet Plowshare was kept out of those spaces beyond AEC control. Primary research focuses on AEC-related archival materials collected from the Department of Energy Coordination and Information Center, Las Vegas, Nevada, and from the Lawrence Livermore National Laboratory, as well as the public discourse through which support for and opposition to Plowshare projects was voiced. Through critical analysis of Plowshare's grandiose "geographical engineering" schemes, I thus examine the complex relations between the social construction of science and technology, on one hand, and the social production of space, on the other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less
Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory
NASA Astrophysics Data System (ADS)
Friedman, Alex
2007-07-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.; Minor, J.E.; Mehta, K.C.
1975-11-01
Criteria are prescribed and guidance is provided for professional personnel who are involved with the evaluation of existing buildings and facilities at Site 300 near Livermore, California to resist the possible effects of extreme winds and tornadoes. The development of parameters for the effects of tornadoes and extreme winds and guidelines for evaluation and design of structures are presented. The investigations conducted are summarized and the techniques used for arriving at the combined tornado and extreme wind risk model are discussed. The guidelines for structural design methods for calculating pressure distributions on walls and roofs of structures and methods formore » accommodating impact loads from missiles are also presented. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabayan, H.S.; Bogdan, E.; Zicker, J.
The electromagnetic fields in the immediate vicinity of the Experimental Test Accelerator (ETA) at the Lawrence Livermore Laboratory have been characterized. Various EM sensors that cover the frequency band from the very low frequencies up into the GHz region have been used. The report describes in detail the probes, the test set-up and the data processing techniques.
Climate Change What We Know and What We Need to Learn
DOE Office of Scientific and Technical Information (OSTI.GOV)
LLNL - University of California Television
2008-05-01
How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544
Nellis, William J.; Maple, M. Brian
1992-01-01
Disclosed is a method of improving the physical properties of superconducting materials which comprises: a. applying a high strain rate deformation to said materi The United States Government has rights in this invention pursuant to Contract No. W-7405-ENG-48 between the U.S. Department of Energy and the University of California, for the operation of Lawrence Livermore National Laboratory.
Microstructure and Dynamic Failure Properties of Freeze-Cast Materials for Thermobaric Warhead Cases
2012-12-01
Function LLNL Lawrence Livermore National Laboratory PDF Probability Density Function PMMA Poly(Methyl Methacrylate) RM Reactive Materials SEM...FREEZE CAST MATERIALS Freeze casting technology combines compounds such as aluminum oxide and poly(methyl methacrylate) ( PMMA ) to develop a...Subsequently, the porous structure can be infiltrated with a variety of materials, such as a standard polymer like PMMA . This hybrid material is believed
Multiple Independent File Parallel I/O with HDF5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M. C.
2016-07-13
The HDF5 library has supported the I/O requirements of HPC codes at Lawrence Livermore National Labs (LLNL) since the late 90’s. In particular, HDF5 used in the Multiple Independent File (MIF) parallel I/O paradigm has supported LLNL code’s scalable I/O requirements and has recently been gainfully used at scales as large as O(10 6) parallel tasks.
Climate Change Planning for Military Installations: Findings and Implications
2010-10-01
Meridional Overturning Circulation ARFORGEN Army Force Generation BASH Bird Aircraft Strike Hazard BLM Bureau of Land Management BOR Bureau of Reclamation...Cover and Land Use Change LLNL Lawrence Livermore National Laboratory MOC Meridional Overturning Circulation NASA National Aeronautics and Space...to discern effects of climate change. D.7.9 Bureau of Land Management BLM is responsible for managing much of the federal land affected by
Climate Change What We Know and What We Need to Learn
LLNL - University of California Television
2017-12-09
How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544
The Enhancement of Gas Pressure Diagnostics in the P-ODTX System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Peter C.; Jones, Aaron; Tesillo, Lynda
The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory is a useful tool for thermal safety assessment of energetic material. It has been used since 1970s to measure times to explosion, threshold thermal explosion temperature, thermal explosion violence, and determine decomposition kinetic parameters of energetic materials. ODTX data obtained for the last 40 years can be found elsewhere.
Enhanced verification test suite for physics simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
2017 Air Force Global Strike Command Innovation and Technology Symposium
2017-11-15
and technological changes that may have occurred within American society and therefore may have different expectations, motivations and values...Participate in a discussion on hypersonic technology as a national imperative and what are government, industry and academia doing to accelerate this...USAF Deputy Chief, Weapons Requirements Division HAF/A5RW Mr. Robert B. Addis Defense Technologies Engineering Division, Lawrence Livermore National
NEA Mitigation Studies for Short Warning Time Scenarios
NASA Technical Reports Server (NTRS)
Barbee, Brent; Syal, Megan Bruck; Gisler, Galen
2016-01-01
This talk describes current collaborative research efforts between NASA GSFC and the Department of Energy's National Nuclear Security Administration (NNSA) national labs (Lawrence Livermore, Los Alamos, and Sandia) to design systems and frameworks for robust responses to short warning time near-Earth asteroid (NEA) scenarios, in which we would have less than 10 years to respond to an NEA on its way to impact the Earth.
Adaptive Backoff Synchronization Techniques
1989-07-01
The Simple Code. Technical Report, Lawrence Livermore Laboratory, February 1978. [6] F. Darems-Rogers, D. A. George, V. A. Norton, and G . F. Pfister...Heights, November 1986. 20 [7] Daniel Gajski , David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In International...17] Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE Transactions on Com- puters, C-31(4):296-304, April 1982. [18] G
Historical review of lung counting efficiencies for low energy photon emitters
Jeffers, Karen L.; Hickman, David P.
2014-03-01
This publication reviews the measured efficiency and variability over time of a high purity planar germanium in vivo lung count system for multiple photon energies using increasingly thick overlays with the Lawrence Livermore Torso Phantom. Furthermore, the measured variations in efficiency are compared with the current requirement for in vivo bioassay performance as defined by the American National Standards Institute Standard.
NASA Astrophysics Data System (ADS)
Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.
2015-12-01
Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675707.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Terusaki, Stan H.
2013-12-01
An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC 1996 guidance, the EWTF hazardous waste treatment units exit the ecological risk evaluation process upon completion of the requirements of a scoping-level assessment report. This summary report documents that the requirements of a scoping-level assessment have been met.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, M Analisa; Uribe, Eva C; Sandoval, Marisa N
2009-01-01
In 2008 a joint team from Los Alamos National Laboratory (LANL) and Brookhaven National Laboratory (BNL) consisting of specialists in training of IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S. Doe laboratories for the entry into force of the Additional Protocol. As a major part of the support of the activity, LANL summer interns provided open source information analysis to the LANL-BNL mock inspection team. They were a part of the Next Generation Safeguards Initiative's (NGSI) summer intern program aimed at producing the next generation of safeguards specialists. This paper describesmore » how they used open source information to 'backstop' the LANL-BNL team's effort to construct meaningful Additional Protocol Complementary Access training scenarios for each of the three DOE laboratories, Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory.« less
User manual for the NTS ground motion data base retrieval program: ntsgm
DOE Office of Scientific and Technical Information (OSTI.GOV)
App, F.N.; Tunnell, T.W.
1994-05-01
The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and theremore » are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.« less
NASA Astrophysics Data System (ADS)
Johnson, K. C.
1991-04-01
This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.
A new gated x-ray detector for the Orion laser facility
NASA Astrophysics Data System (ADS)
Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal
2012-10-01
Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.
The impact of SciDAC on US climate change research and the IPCCAR4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael
2005-07-08
SciDAC has invested heavily in climate change research. We offer a candid opinion as to the impact of the DOE laboratories' SciDAC projects on the upcoming Fourth Assessment Report of the Intergovernmental Panel on Climate Change. As a result of the direct importance of climate change to society, climate change research is highly coordinated at the international level. The Intergovernmental Panel on Climate Change (IPCC) is charged with providing regular reports on the state of climate change research to government policymakers. These reports are the product of thousands of scientists efforts. A series of reviews involving both scientists and policymakersmore » make them among the most reviewed documents produced in any scientific field. The high profile of these reports acts a driver to many researchers in the climate sciences. The Fourth Assessment Report (AR4) is scheduled to be released in 2007. SciDAC sponsored research has enabled the United States climate modeling community to make significant contributions to this report. Two large multi-Laboratory SciDAC projects are directly relevant to the activities of the IPCC. The first, entitled ''Collaborative Design and Development of the Community Climate System Model for Terascale Computers'', has made important software contributions to the recently released third version of the Community Climate System Model (CCSM3.0) developed at the National Center for Atmospheric Research. This is a multi-institutional project involving Los Alamos National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The original principal investigators were Robert Malone and John B. Drake. The current principal investigators are Phil Jones and John B. Drake. The second project, entitled ''Earth System Grid II: Turning Climate Datasets into Community Resources'' aims to facilitate the distribution of the copious amounts of data produced by coupled climate model integrations to the general scientific community. This is also a multi-institutional project involving Argonne National Laboratory, Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory and the National Center for Atmospheric Research. The principal investigators are Ian Foster, Don Middleton and Dean Williams. Perhaps most significant among the activities of the ''Collaborative Design'', project was the development of an efficient multi-processor coupling package. CCSM3.0 is an extraordinarily complicated physics code. The fully coupled model consists of separate submodels of the atmosphere, ocean, sea ice and land. In addition, comprehensive biogeochemistry and atmospheric chemistry submodels are under intensive current development. Each of these submodels is a large and sophisticated program in its own right. Furthermore, in the coupled model, each of the submodels, including the coupler, is a separate multiprocessor executable program. The coupler package must efficiently coordinate the communication as well as interpolate or aggregate information between these programs. This regridding function is necessary because each major subsystem (air, water or surface) is allowed to have its own independent grid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juarez, A.
Los Alamos and Lawrence Livermore National Laboratories hosted the tenth annual Strategic Weapons in the 21st Century Conference (SW21) on 21 January 2016 to reinforce the national commitment to leadership and institutional excellence for nuclear deterrence. The event has been successful over the years in drawing together a diverse, high-level group of policy makers and experts from multiple disciplines to engage in informed dialogue on topics related to strategic weapons in national and international security.
Assessment of DEMN-based IM Formulations for Octol Replacement
2012-08-01
experimentally for performance in this study. The performance was first assessed numerically using the thermochemical equilibrium code Cheetah , v5.0...Fine Grain Octol (FGO). The Cheetah estimates suggest that the proposed formulations will have lower detonation pressure than Octol level performance...Materials Technology Symposium. 3. Fried, L.E., Howard, W.M., Souers, P.C., and Vitello, P.A. Cheetah 5.0, Energetic Materials Center, Lawrence Livermore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Konynenburg, R.A.
In response to a request for the Director of the Los Alamos national Laboratory, several members of the staff of the Lawrence Livermore National Laboratory participated in a technical review of a draft paper by CD Bowman and F. Venneri dealing with the potential for nuclear criticality in the geologic disposal of fissile materials. This review consisted of a consideration of the technical issues raised in the draft paper, and did not include discussions with the authors.
Annihilation of Antiprotons in Heavy Nuclei.
1986-04-01
Scattering Models, Acta Physica Polonica 1311, 425 (1980). T.E. Kalogeropoalos, L. Gray, A . Nandy, and J. Roy, Antiproton-nucleon Annihilation into...I th a Rpor Annihilation of AntiprotonsI the period ,- tpril 1985 to in Heavy Nuclei December 1985 April 1986 Author: Lawrence Livermore National...will be available to the general public, including foreign nationals. A ~AY 2 - >i K2U~ prepared for the: Air Force Rocket Propulsion Laboratory Air
Case Studies of Seismic Discrimination Problems and Regional Discriminant Transportability.
1995-07-31
UCRL -JC- 118551 Part 1, Lawrence Livermore National Laboratory, September 1994. Wuster, J. (1993). Discrimination of chemical explosions and...Steven Bratt Dr. Jeffrey W. Given ARPA/NMRO SAIC 3701 North Fairfax Drive 10260 Campus Point Drive Arlington, VA 22203-1714 San Diego, CA 92121 Dale...5007 BERGEN NORWAY Newington, VA 22122 ARPA, OASB/Library David Jepsen 3701 North Fairfax Drive Acting Head, Nuclear Monitoring Section Arlington, VA
The Shock and Vibration Bulletin. Part 2. Fluid-Structure Dynamics and Dynamic Analysis
1983-05-01
0.060041-03 1 ~~~COLUMN 13701010 ý41 44 13 3.483001-03 2499 T2 8.377715-02 2491 13 2.323511-02 3701 73 1.700031-03 5702 12 3.36397E-03 572 133.792&31-03...plausible, there is no theoretical basis Finite-Element Method", UCRL -52066, to assure the convergence of either Lawrence Livermore Laboratory, calculations
1976-11-01
protec- tion and will require additional measures, such as the application of conductive filter-loaded plastic resins to each joint connection...Lawrence Liver- more Laboratory, Livermore CA, 1974 31. Whitson, A. L., "DCA HEMP Hardness Certification Methodology Status", Stanford Research...of Chief of Engineers, Depot of the Army, December 1971 34. "Development of HEMP Assessment Methodology for Satellite Terminals", Intelcom Rad Tech
Computer Aided Self-Forging Fragment Design,
1978-06-01
This value is reached so quickly that HEMP solutions using work hardening and those using only elastic—perfectly plastic formulations are quite...Elastic— Plastic Flow, UCRL—7322 , Lawrence Radiation Laboratory , Livermore , California (1969) . 4. Giroux , E. D . , HEMP Users Manual, UCRL—5l079...Laboratory, the HEMP computer code has been developed to serve as an effective design tool to simplify this task considerably. Using this code, warheads 78 06
Precision Guided Munitions: Constructing a Bomb More Potent Than the A-Bomb
2002-06-01
prototypes, cannibalization for spare parts throughout testing made it increasingly difficult to assemble an entire set of working hardware by the...individual American city finds itself under sporadic attack by a lone urban guerilla. Indeed, such an individual might well feel invulnerable as a...sniper in a crowded urban environment. In fact, law enforcement officers, using advanced technologies such as Lawrence Livermore’s Lifeguard system
Ultra-Low Density Aerogel Mirror Substrates
1993-04-01
Silica aerogel materials were fabricated by both the high temperature and low temperature methods at the Lawrence Livermore National Laboratory in...evaporation techniques were used to planarize the silica aerogel with SiO 2 prior to metalization. The PECVD was performed at the Cornell University...incident hv. Defect Physics Silica aerogel is an amorphous SiO, matrix of high porosity (or a low density disordered material). The amorphous r~ature of
Adaptive Backoff Synchronization Techniques
1989-06-01
The Simple Code. Technical Report, Lawrence Livermore Laboratory, February 1978. [6J F. Darems-Rogers, D. A. George, V. A. Norton, and G . F. Pfister...Heights, November 1986. 20 [7] Daniel Gajski , David Kuck, Duncan Lawrie, and Ahmed Saleh. Cedar - A Large Scale Multiprocessor. In International Conference...17] Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories. IEEE Transactions on Com- puters, C-31(4):296-304, April 1982. [18] G
NASA Astrophysics Data System (ADS)
Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried
2006-10-01
X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2009-05-01
The recently proposed Super Marx pure deuterium micro-detonation ignition concept [1] is compared to the Lawrence Livermore National Ignition Facility (NIF) laser DT fusion-fission hybrid concept (LIFE) [2]. A typical example of the LIFE concept is a fusion gain 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation gains of the same magnitude can in theory be reached. If the theoretical prediction can be supported by more elaborate calculations, the Super Marx approach is likely to make lasers obsolete as a means for the ignition of thermonuclear micro-explosions. [1] ``Ignition of a Deuterium Micro-Detonation with a Gigavolt Super Marx Generator,'' Winterberg, F., Journal of Fusion Energy, Springer, 2008. http://www.springerlink.com/content/r2j046177j331241/fulltext.pdf. [2] ``LIFE: Clean Energy from Nuclear Waste,'' https://lasers.llnl.gov/missions/energy&_slash;for&_slash;the&_slash;future/life/
Injection of externally produced kinetic electrons into a self-guided laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Pollock, Bradley; Ralph, Joseph; Albert, Felicie; Shaw, Jessica; Clayton, Christopher; Marsh, Ken; Joshi, Chan; Mori, Warren; Kesler, Leigh; Mills, Sarah; Severson, Brian; Rigby, Alexandra; Glenzer, Siegfried
2012-10-01
A two-stage laser wakefield accelerator is being developed at the Lawrence Livermore National Laboratory using the Callisto laser system. The first stage is a high density (˜10^19 cm-3), 5 mm He gas jet plasma which is driven by 30 TW of 800 nm laser light focused to an a0˜ 2. The <100 MeV electrons produced in this stage are deflected by a 0.5 T dipole magnet onto the axis of the second stage, which is a low density (˜10^18 cm-3), 15 mm He gas cell driven by 200 TW of 800 nm light also focused to an a0˜ 2; no additional electrons are trapped in this stage. Electrons injected into the second stage can then be further accelerated to higher energy without increasing the energy spread. Measurements of the transmitted laser profile and spectrum from the second stage indicate that the laser pulse is self-guided throughout the gas cell and that a strong wake is driven. These results compare well with particle-in-cell (PIC) simulations performed with the code OSIRIS. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA-27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, L; Kato, T; Van Hattem, M
2007-06-28
The purpose of this biological assessment is to review the proposed Arroyo Mocho Boulder Removal Project in sufficient detail to determine to what extent the proposed action may affect any of the threatened, endangered, proposed, or sensitive species and designated or proposed critical habitats listed below. In addition, the following information is provided to comply with statutory requirements to use the best scientific and commercial information available when assessing the risks posed to listed and/or proposed species and designated and/or proposed critical habitat by proposed federal actions. This biological assessment is prepared in accordance with legal requirements set forth undermore » regulations implementing Section 7 of the Endangered Species Act (50 CFR 402; 16 U.S.C 1536 (c)). It is our desire for the Arroyo Mocho Boulder Removal Project to receive incidental take coverage for listed species and critical habitat within the greater project area by means of amending the previous formal Section 7 consultation (1-1-04-F-0086) conducted a few hundred meters downstream by Lawrence Livermore National Laboratory (LLNL) in 2002. All conservation measures, terms and conditions, and reporting requirements from the previous Biological Opinion (1-1-04-F-0086) have been adopted for this Biological Assessment and/or amendment.« less
Creation of ultra-high energy density matter using nanostructured targets
NASA Astrophysics Data System (ADS)
Tommasini, Riccardo; Park, J.; London, R.; Chen, H.; Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V.; Capeluto, M.; Keiss, D.; Townsend, A.; Rocca, J. J.; Kaymak, V.; Pukhov, A.; Hill, M.
2015-11-01
Recent experiments have demonstrated that trapping of 60 femtosecond laser pulses of relativistic intensity deep within ordered nanowire arrays can create a new ultra-hot plasma regime. Here we report on the experiments at the Titan laser at the Lawrence Livermore National Laboratory that aim to scale these results by two orders of magnitude in laser energy. Preliminary analysis of the Titan results show that sub-picosecond laser irradiation of vertically aligned nanostructures of Au, Ag and Ni produces an increase of a factor greater than 1.6 in the suprathermal electron temperatures and an increase by a factor of 3 in the conversion efficiency into continuum x-rays, both with respect to flat targets of the same composition. Kα radiation from nanowire array targets also shows an increase between 3x and 5x over flat targets. The nanowire array targets reflected a 5x smaller fraction of the laser energy, indicating significantly larger absorption of the laser pulse. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the Office of Fusion Energy Sciences, U.S Department of Energy, and by the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, L; Woollett, J
In January 2007, the Department of Energy (DOE) released the final Environmental Assessment for the Proposed Environmental Remediation at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. At the same time, the Department of Toxic Substances Control (DTSC) released the final Negative Declaration and Initial Study covering the Pit 7 remediation. No substantial adverse effect on wildlife species of concern was anticipated from the project. However, it was proposed that wildlife surveys should be conducted prior to construction because species locations and breeding areas could potentially change by the time construction activities began. Although no known populationsmore » of rare or endangered/threatened plant species were known to occur within the project impact area at the time these documents were released, rare plants listed by the California Native Plant Society had been observed in the vicinity. As such, both DOE and DTSC proposed that plant surveys would be undertaken at the appropriate time of year to determine if rare plants would be impacted by project construction. This document provides the results of wildlife and rare plant surveys taken prior to the start of construction at the Pit 7 Complex.« less
Neutron capture cross section of ^243Am
NASA Astrophysics Data System (ADS)
Jandel, M.
2009-10-01
The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)
Fe moments in the pressure-induced collapsed tetragonal phase of (Ca0.67Sr0.33) Fe2As2
NASA Astrophysics Data System (ADS)
Jeffries, Jason; Butch, Nicha; Bradley, Joseph; Xiao, Yuming; Chow, Paul; Saha, Shanta; Kirshenbaum, Kevin; Paglione, Johnpierre
2013-06-01
The tetragonal AEFe2As2 (AE =alkaline earth element) family of iron-based superconductors exhibits magnetic order at ambient pressure and low temperature. Under pressure, the magnetic order is suppressed, and an isostructural volume collapse is induced due to increased As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase has been shown to support superconductivity under some conditions, and theoretical calculations suggest an unconventional origin. Theoretical calculations also reveal that enhanced As-As bonding and the magnitude of the Fe moments are correlated, suggesting that the Fe moments can be quenched in the collapsed tetragonal phase. Whether the Fe moments persist in the collapsed tetragonal phase has implications for the pairing mechanism of the observed, pressure-induced superconductivity in these compounds. We will present pressure- dependent x-ray emission spectroscopy (XES) measurements that probe the Fe moments through the volume collapse transition of (Ca0.67Sr0.33) Fe2As2. These measurements will be compared with previously reported phase diagrams that include superconductivity. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy (DOE), National Nuclear Security Administration under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith
2013-06-01
Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
Proceedings of the 3rd US-Japan Workshop on Plasma Polarization Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P; Flyimoto, T
The third US-Japan Workshop on Plasma Polarization Spectroscopy was held at the Lawrence Livermore National Laboratory in Livermore, California, on June 18-21, 2001. The talks presented at this workshop are summarized in these proceedings. The papers cover both experimental investigation and applications of plasma polarization spectroscopy as well as the theoretical foundation and formalisms to understand and describe the polarization phenomena. The papers give an overview of the history of plasma polarization spectroscopy, derive the formal aspects of polarization spectroscopy, including the effects of electric and magnetic fields, discuss spectra perturbed by intense microwave fields, charge exchange, and dielectronic recombination,more » and present calculations of various collisional excitation and ionization cross sections and the modeling of plasma polarization spectroscopy phenomena. Experimental results are given from the WT-3 tokamak, the MST reverse field pinch, the Large Helical Device, the GAMMA 10 mirror machine, the Nevada Terrawatt Facility, the Livermore EBIT-II electron beam ion trap, and beam-foil spectroscopy. In addition, results were presented from studies of several laser-produced plasma experiments and new instrumental techniques were demonstrated.« less
Science & Technology Review: September 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, Ramona L.; Meissner, Caryn N.; Chinn, Ken B.
2016-09-30
This is the September issue of the Lawrence Livermore National Laboratory's Science & Technology Review, which communicates, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. This month, there are features on "Laboratory Investments Drive Computational Advances" and "Laying the Groundwork for Extreme-Scale Computing." Research highlights include "Nuclear Data Moves into the 21st Century", "Peering into the Future of Lick Observatory", and "Facility Drives Hydrogen Vehicle Innovations."
Testing a potential national strategy for cost-effective medical technology
NASA Astrophysics Data System (ADS)
Fitch, J. Patrick
1995-10-01
The Center for Healthcare Technologies at Lawrence Livermore National Laboratory is a partnership among government, industry, and universities that focuses on improving healthcare through development of cost-effective technology. With the guidance of healthcare providers, medical institutions, and medical instrument manufacturers, technology can be harnessed to reduce healthcare costs. The partnership is a miniature test case for a potential national strategy for development and adoption of technology specifically to reduce costs.
Progress report on Nuclear Density project with Lawrence Livermore National Lab Year 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C W; Krastev, P; Ormand, W E
2011-03-11
The main goal for year 2010 was to improve parallelization of the configuration interaction code BIGSTICK, co-written by W. Erich Ormand (LLNL) and Calvin W. Johnson (SDSU), with the parallelization carried out primarily by Plamen Krastev, a postdoc at SDSU and funded in part by this grant. The central computational algorithm is the Lanczos algorithm, which consists of a matrix-vector multiplication (matvec), followed by a Gram-Schmidt reorthogonalization.
Conceptual design considerations and neutronics of lithium fall laser fusion target chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Thomson, W.B.
1978-05-31
Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.
Electron-Beam Vapor Deposition of Mold Inserts Final Report CRADA No. TSB-777-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepp, T.; Feeley, T.
Lawrence Livermore National Laboratory and H.G.G. Laser Fare, Inc. studied the application of electron-beam vapor deposition technology to the production of mold inserts for use in an injection molding machine by Laser Fare. Laser Fare provided LLNL with the requirements of the mold inserts as well as sample inserts. LLNL replicated the mold insert(s) to Laser Fare for testing by Laser Fare.
Calculations of the Performance of Explosive Impulse Generators
1979-08-01
low impedance material such as lexan or some other plastic between the tungsten and the titanium, the stress is reduced even further. As we said...codes modeled after the HEMP family of codes^ cur- rently in use at the Lawrence Livermore Laboratory. The codes have a broad range of capabilities...for problems involving the dynamics of fluid and solid continua. They contain a full range of material property models including elastic- plastic flow
’Do-It-Yourself’ Fallout/Blast Shelter Evaluation
1984-03-01
N4AME & AOORIESS(I! dittvrevI !M’", Controlling Olif~t) IS. SEC’.JRITY CL-ASS. (GO this report) Lawrence Livermore National Laboratory Unclassified P...the data from the transient recorder iemory tirough the Computer Automated Measurement and Control (CAMAC) data busa und stores them on an $-inch...Command and Control Technical Center Emergency Technology Division Department of Defense 0a& Ridge Natioual Laboratory The Pentagon Attn: Librarian
Needs Differing: Personality Dynamics for Peer Ombuds in a Research Setting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolford, Jr., J K
The peer ombuds program at University of California's Lawrence Livermore National Laboratory (LLNL) is unique in many respects, and the challenges it poses for its practitioners are likewise unique. The ombuds themselves are members of the workforce they serve, and must constantly fulfill a dual role. Cases range from conflict with supervisors or co-workers to medical leave issues. Mismatched expectations and poor communication skills obviously underlie many problems. The interplay of personality type affects conflict (and its resolution) more subtly, principally through its role in shaping client needs. Through a hypothetical case description, the author highlights the dynamics of personalitymore » type involved in the ombuds process at LLNL. The implications of temperamental difference argue for an awareness of, and sensitivity to, type differences in the population served.« less
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Greenaugh, Kevin C.; Seery, Bernard D.; Bambacus, Myra; Leung, Ronald Y.; Finewood, Lee; Dearborn, David S. P.; Miller, Paul L.; Weaver, Robert P.; Plesko, Catherine;
2017-01-01
NASA's Goddard Space Flight Center (GSFC) and the National Nuclear Security Administration (NNSA), Department of Energy (DOE) National Laboratories, Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory(LANL), and Sandia National Laboratory (SNL) are collaborating on Planetary Defense Research. The research program is organized around three case studies: 1. Deflection of the Potentially Hazardous Asteroid (PHA) 101955 Bennu (1999 RQ36)[OSIRIS-REx mission target], 2. Deflection of the secondary member of the PHA 65803 Didymos (1996 GT) [DART mission target], 3. Deflection of a scaled-down version of the comet 67PChuryumov-Gerasimenko [Rosetta mission target]. NASAGSFC is providing astrodynamics and spacecraft mission design expertise, while NNSA, DOE, LLNL, LANL and SNL are providing expertise in modeling the effects of kinetic impactor spacecraft and nuclear explosive devices on the target objects.
The National Ignition Facility: The world's largest optical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2007-10-15
The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less
The Autonomous Pathogen Detection System (APDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J; Dzenitis, J
2004-09-22
Shaped like a mailbox on wheels, it's been called a bioterrorism ''smoke detector.'' It can be found in transportation hubs such as airports and subways, and it may be coming to a location near you. Formally known as the Autonomous Pathogen Detection System, or APDS, this latest tool in the war on bioterrorism was developed at Lawrence Livermore National Laboratory to continuously sniff the air for airborne pathogens and toxins such as anthrax or plague. The APDS is the modern day equivalent of the canaries miners took underground with them to test for deadly carbon dioxide gas. But this canarymore » can test for numerous bacteria, viruses, and toxins simultaneously, report results every hour, and confirm positive samples and guard against false positive results by using two different tests. The fully automated system collects and prepares air samples around the clock, does the analysis, and interprets the results. It requires no servicing or human intervention for an entire week. Unlike its feathered counterpart, when an APDS unit encounters something deadly in the air, that's when it begins singing, quietly. The APDS unit transmits a silent alert and sends detailed data to public health authorities, who can order evacuation and begin treatment of anyone exposed to toxic or biological agents. It is the latest in a series of biodefense detectors developed at DOE/NNSA national laboratories. The manual predecessor to APDS, called BASIS (for Biological Aerosol Sentry and Information System), was developed jointly by Los Alamos and Lawrence Livermore national laboratories. That system was modified to become BioWatch, the Department of Homeland Security's biological urban monitoring program. A related laboratory instrument, the Handheld Advanced Nucleic Acid Analyzer (HANAA), was first tested successfully at LLNL in September 1997. Successful partnering with private industry has been a key factor in the rapid advancement and deployment of biodefense instruments such as these. The APDS technology has been licensed and is currently undergoing commercialization.« less
Laser Programs, the first 25 years, 1972-1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, E.M.
1998-03-04
Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Lasermore » Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.« less
Double-shell target fabrication workshop-2016 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. Morris; Oertel, John; Farrell, Michael
On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Hattem, M; Paterson, L
2006-01-12
In 2000, the Lawrence Livermore National Laboratory's (LLNL) Environmental Protection Department, in coordination with Plant Engineering (PE), began dredging sections of the Arroyo Las Positas (ALP) to alleviate concerns about flooding of sensitive facilities within the mainsite of Lawrence Livermore National Laboratory. In order to reduce potential impacts on the federally threatened California red-legged frog (Rana aurora draytonii), LLNL proposed to dredge sections of the ALP in a ''checkerboard pattern'', resulting in a mosaic of open water habitat and vegetated sections (Figure 1). The Arroyo Las Positas Management Plan (Plan) was coordinated with both state and federal agencies including themore » U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDF&G), San Francisco Regional Water Quality Control Board (SFRWQCB), and the Army Corp of Engineers (ACOE). Water Discharge Requirements (WDRs) were issued for this project on December 30, 1999 (Order No. 99-086) by the SFRWQCB. Provision 19 of the WDRs outlined a five-year (2000 through 2004) Maintenance Impact Study (MIS) that LLNL began in coordination with dredging work that was conducted as part of the Arroyo Las Positas Management Plan. Provision 20 of these WDRs requires LLNL to submit a final report of the results of the Maintenance Impact Study for this project to the SFRWQCB. The purpose of this report is to present the results of the Maintenance Impact Study for Arroyo Las Positas and meet the requirements of Provision 20. A description of the annual monitoring included in this Maintenance Impact Study is included in the methods section of this report. Initially the Plan called for dredging the entire length of the Arroyo Las Positas (approximately 6,981 linear feet) over a 5-year period to minimize temporal impacts on the California red-legged frog. Dredging occurred in 2000 ({approx}1,300 ft.), 2001 ({approx}800 ft.), and 2002 ({approx}1,200 ft.), which constituted approximately 3,300 ft., or roughly half of the entire Plan (Figure 2). Logistical challenges and unanticipated cost influenced the decision to terminate the project prior to completion, and re-evaluate the long-term management goals for the ALP. No dredging was conducted in the final two years of the plan (2003 and 2004).« less
2009 Annual Health Physics Report for the HEU Transparency Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radev, R
2010-04-14
During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Departmentmore » laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less
HLYWD: a program for post-processing data files to generate selected plots or time-lapse graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, J.K. Jr.
1980-05-01
The program HLYWD is a post-processor of output files generated by large plasma simulation computations or of data files containing a time sequence of plasma diagnostics. It is intended to be used in a production mode for either type of application; i.e., it allows one to generate along with the graphics sequence, segments containing title, credits to those who performed the work, text to describe the graphics, and acknowledgement of funding agency. The current version is designed to generate 3D plots and allows one to select type of display (linear or semi-log scales), choice of normalization of function values formore » display purposes, viewing perspective, and an option to allow continuous rotations of surfaces. This program was developed with the intention of being relatively easy to use, reasonably flexible, and requiring a minimum investment of the user's time. It uses the TV80 library of graphics software and ORDERLIB system software on the CDC 7600 at the National Magnetic Fusion Energy Computing Center at Lawrence Livermore Laboratory in California.« less
Nonthermal plasma reactors for treatment of NO{sub x} and other hazardous gas emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.S.
1994-05-06
The 1990 Clean Air Act Amendments passed by the United States government has prompted a great deal of interest in reducing the amount of hazardous pollutants released into the air. Of particular interest to Lawrence Livermore National Laboratory is the reduction of NO{sub x} produced by mobile diesel engines. The use of nonthermal plasma technologies is employed in the effort to reduce the amount of toxins present in diesel exhaust.
Unstructured Polyhedral Mesh Thermal Radiation Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, T.S.; Zika, M.R.; Madsen, N.K.
2000-07-27
Unstructured mesh particle transport and diffusion methods are gaining wider acceptance as mesh generation, scientific visualization and linear solvers improve. This paper describes an algorithm that is currently being used in the KULL code at Lawrence Livermore National Laboratory to solve the radiative transfer equations. The algorithm employs a point-centered diffusion discretization on arbitrary polyhedral meshes in 3D. We present the results of a few test problems to illustrate the capabilities of the radiation diffusion module.
Consolidated Canadian Results to the HEU Round Robin Exercise
2004-11-01
Niemeyer S, Dudder GB. "Model action plan for nuclear forensics and nuclear attribution." Lawrence Livermore National Laboratory Report UCRL -TR...section 8.) including special warning terms if applicable) Defence R&D Canada - Ottawa 3701 Carling Avenue UNCLASSIFIED Ottawa, ON K IA 0Z4 3. TITLE (the...development. Include the address.) DRDC Ottawa 3701 Carling Avenue K I AOZ4 9a. PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, Harry
Each time you step on a commercial flight, you can feel safer because of a researcher you've probably never heard of. His name is Harry Martz. He's a veteran scientist at the Lawrence Livermore National Laboratory (LLNL) who wakes up every day thinking how his research can advance X-ray imaging technology to thwart the next terrorist attack. "My job is to improve national security" Martz said. "That's why my research team exists. We have to outsmart the terrorists. It's a constant battle."
Computational Methods for Crashworthiness
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Carden, Huey D. (Compiler)
1993-01-01
Presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Crashworthiness held at Langley Research Center on 2-3 Sep. 1992 are included. The presentations addressed activities in the area of impact dynamics. Workshop attendees represented NASA, the Army and Air Force, the Lawrence Livermore and Sandia National Laboratories, the aircraft and automotive industries, and academia. The workshop objectives were to assess the state-of-technology in the numerical simulation of crash and to provide guidelines for future research.
Feasibility study of a microwave radar system for agricultural inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okelo-Odongo, S.
1994-10-03
The feasibility of an impulse radar system for agricultural inspection is investigated. This system would be able to quickly determine the quality of foodstuffs that are passed through the system. A prototype was designed at the Lawrence Livermore National Laboratory and this report discusses it`s evaluation. A variety of apples were used to test the system and preliminary data suggests that this technology holds promise for successful application on a large scale in food processing plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, J. E.; Summa, L.
This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Exxon Production Research Company (EPR) to develop improved techniques for extracting, concentrating, and measuring iodine from large volumes of source rock and oil. The purpose of this project was to develop a technique for measuring total iodine extracted from rock, obtain isotopic ratios, and develop age models for samples provided by EPR.
Tech Transfer Webinar: Amoeba Cysts as Natural Containers for the Transport and Storage of Pathogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Etr, Sahar
2014-10-08
Sahar El-Etr, Biomedical Scientist at the Lawrence Livermore National Laboratory, shares a unique method for transporting clinical samples from the field to a laboratory. The use of amoeba as “natural” containers for pathogens was utilized to develop the first living system for the transport and storage of pathogens. The amoeba system works at ambient temperature for extended periods of time—capabilities currently not available for biological sample transport.
Urban Turbulence Velocity Spectra From JU2003 Observation
2014-12-01
55.8(F), 69.7(G), and 83.2(H) m above ground level (AGL). The sonic anemometers (R.M. Young model 81000) measured 3 wind components and temperature at a... Sonic anemometer data taken using Lawrence Livermore National Laboratory’s 83 m pseudo tower from JU2003 are analyzed. We present the results of...atmospheric boundary layer over flat terrains have been well studied (Busch and Panofsky, 1968; Panofsky and Dutton, 1984; Kaimal and Finnigan
Dynamic Fracture Simulations of Explosively Loaded Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Carly W.; Goto, D. M.
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
LLNL Experimental Test Site (Site 300) Potable Water System Operations Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo, R. P.; Bellah, W.
The existing Lawrence Livermore National Laboratory (LLNL) Site 300 drinking water system operation schematic is shown in Figures 1 and 2 below. The sources of water are from two Site 300 wells (Well #18 and Well #20) and San Francisco Public Utilities Commission (SFPUC) Hetch-Hetchy water through the Thomas shaft pumping station. Currently, Well #20 with 300 gallons per minute (gpm) pump capacity is the primary source of well water used during the months of September through July, while Well #18 with 225 gpm pump capacity is the source of well water for the month of August. The well watermore » is chlorinated using sodium hypochlorite to provide required residual chlorine throughout Site 300. Well water chlorination is covered in the Lawrence Livermore National Laboratory Experimental Test Site (Site 300) Chlorination Plan (“the Chlorination Plan”; LLNL-TR-642903; current version dated August 2013). The third source of water is the SFPUC Hetch-Hetchy Water System through the Thomas shaft facility with a 150 gpm pump capacity. At the Thomas shaft station the pumped water is treated through SFPUC-owned and operated ultraviolet (UV) reactor disinfection units on its way to Site 300. The Thomas Shaft Hetch- Hetchy water line is connected to the Site 300 water system through the line common to Well pumps #18 and #20 at valve box #1.« less
NASA Astrophysics Data System (ADS)
Beiersdorfer, Peter; Scofield, J. H.; Lepson, J. K.; Osten, R.; Smith, R. K.
2006-09-01
We will discuss a class of lines from highly charged ions that are sensitive to the strength of the ambient magnetic field. Calculations show that the magnitude of field strengths that can be measured ranges from a few hundred gauss to several tens of kilogauss depending on the particular ion emitting the line. These calculations have been verified in the laboratory by studying the spectra of S VII, Ar IX, and Fe XVII. As an example of the diagnostic utility, the possibility of using these lines to determine the coronal magnetic field strength of Prox Cen will be presented. This work was supported by NASA Astronomy and Physics Research and Analysis program work order NNH04AA751, and was performed under the auspices of the Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Neutron and gamma dose and spectra measurements on the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoots, S.; Wadsworth, D.
1984-06-01
The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C C
The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less
X ray imaging microscope for cancer research
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.
1991-01-01
The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.
Department of Homeland Security Summer Internship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Erika J.
2010-07-30
My time at Lawrence Livermore National Laboratory (LLNL) has been one of the most rewarding and exciting experiences of my life. When I first applied for a Department of Homeland Security (DHS) internship I was concerned that my major in Mass Communications and Emergency Management would not be suited for the hard science environment. Thankfully DHS and my mentor, Brooke Buddemeier, demonstrated that the skills and knowledge I possess are critical for the successful integration of good science into Homeland Security and emergency response, and allowed me the opportunity to work on an exciting project. This paper intends to givemore » an overview of my experiences while at LLNL, explain the project I have been a part of, explain my specific role within that project, discuss my achievements, explain how my internship has changed where I plan to take my career path, and, finally, discuss how I believe DHS can enhance their future internship programs.« less
Behavior of magnesium at high pressures and high temperatures
NASA Astrophysics Data System (ADS)
Cynn, H.; Evans, W.; Yoo, C. S.; Ohishi, Y.; Sata, N.; Shimomura, O.
2004-03-01
Structural stability relationship manifested by 3-, 4-, 5d-electron transition metals also appears in so-called nearly free electron metal, magnesium as exampled by HCP to BCC structure change at high pressures. This transition has been examined by theory and confirmed by experiment. Recently, HCP to DHCP crystal structure change has been reported at high temperatures below 20 GPa. However, this type of structure change is rather common in 4f-electron lanthanides. In this study, we used synchrotron x-ray diffraction to find out the relationship between BCC and DHCP employing a diamond anvil cell technique coupled with external and laser heating methods. We also examined pressure gradient effects in relation with the existence of DHCP. This work has been supported by PDRP program at the Lawrence Livermore National Laboratory, University of California under the auspices of the U.S. Department of Energy under Contract No. W-7405-ENG-48
The total flow concept for geothermal energy conversion
NASA Technical Reports Server (NTRS)
Austin, A. L.
1974-01-01
A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A.; Reisman, D. B.; Bastea, M.
2006-02-13
Isentropic compression experiments and numerical simulations on metals are performed at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope, associated Hugoniot and phase changes of these metals. 3D configurations have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shots 1511 and 1555. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using amore » Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A.; Hare, D.; L'Eplattenier, P.
2006-02-13
Isentropic compression experiments and numerical simulations on LX-04 (HMX / Viton 85/15) were performed respectively at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope and associated Hugoniot of this HE. 2D and 3D configurations have been calculated here to test the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shot 1067 on LX 04. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. Themore » Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less
Second user workshop on high-power lasers at the Linac Coherent Light Source
Heimann, Phil; Glenzer, Siegfried
2015-05-28
The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepson, J K; Beiersdorfer, P; Behar, E
Atomic structure codes have a difficult time accurately calculating the wavelengths of many-electron ions without the benefit of laboratory measurements. This is especially true for wavelengths of lines in the extreme ultraviolet and soft x-ray regions. We are using the low-energy capability of the Livermore electron beam ion traps to compile a comprehensive catalog of astrophysically relevant emission lines in support of satellite x-ray observations. Our database includes wavelength measurements, relative intensities, and line assignments, and is compared to a full set of calculations using the Hebrew University - Lawrence Livermore Atomic Code (HULLAC). Mean deviation of HULLAC calculations frommore » our measured wavelength values is highest for L-shell transitions of neon-like ions and lowest for lithium-like ions, ranging from a mean deviation of over 0.5 {angstrom} for Si V to 12 m{angstrom} in Ar XVI.« less
LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, M. H.
2016-11-07
A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, whichmore » released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.« less
An Expert System For Tuning Particle-Beam Accelerators
NASA Astrophysics Data System (ADS)
Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.
1989-03-01
We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.
Tech Transfer Webinar: Amoeba Cysts as Natural Containers for the Transport and Storage of Pathogens
El-Etr, Sahar
2018-01-16
Sahar El-Etr, Biomedical Scientist at the Lawrence Livermore National Laboratory, shares a unique method for transporting clinical samples from the field to a laboratory. The use of amoeba as ânaturalâ containers for pathogens was utilized to develop the first living system for the transport and storage of pathogens. The amoeba system works at ambient temperature for extended periods of timeâcapabilities currently not available for biological sample transport.
Science & Technology Review October/November 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orme, C.; Meissner, C.; Kotta, P. A.
At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.
Annotated bibliography of human factors applications literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCafferty, D.B.
1984-09-30
This bibliography was prepared as part of the Human Factors Technology Project, FY 1984, sponsored by the Office of Nuclear Safety, US Department of Energy. The project was conducted by Lawrence Livermore National Laboratory, with Essex Corporation as a subcontractor. The material presented here is a revision and expansion of the bibliographic material developed in FY 1982 as part of a previous Human Factors Technology Project. The previous bibliography was published September 30, 1982, as Attachment 1 to the FY 1982 Project Status Report.
Modeling of the jack rabbit series of experiments with a temperature based reactive burn model
NASA Astrophysics Data System (ADS)
Desbiens, Nicolas
2017-01-01
The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.
1976-08-01
SHOCK-TO-DETONATION TRANSITION AND DETONATION STUDIES Chairmen: Joseph Hershkowitz Picatinny Arsenal Paul A. Urtiew Lawrence Livermore Laboratory I. -[-1...explosive-hotspots whose growth is sup- pressed. We are unaware of chemical kinetic evidence 2. B. D. Trott and R. G. Jung, "Effect of Pulse for the...proportional to the particle ve- years ago. However, Gittings (4), Trott and Jung (5), locity change at the shock front, thus the hot-spotand
Deconvolution of noisy transient signals: a Kalman filtering application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Zicker, J.E.
The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roseman, Mallory; Zikry, Fareeda
Lawrence Livermore National Laboratory’s Center for Global Security Research hosted a workshop to investigate why some consistently predicted threats from science and technology (S&T) have not manifested with the impacts to international security as forecasted. During the workshop, “Dogs That Haven’t Barked: Towards an Understanding of the Absence of Expected Technological Threats,” participants used two specific cases to focus the discussion: biotechnology and man-portable air defense systems (MANPADS).
Science & Technology Review January/February 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duoss, E. B.; Meissner, C. N.; Kotta, P. R.
At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.
Inertial Confinement Fusion as an Extreme Example of Dynamic Compression
NASA Astrophysics Data System (ADS)
Moses, E.
2013-06-01
Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
Uncrackable code for nuclear weapons
Hart, Mark
2018-05-11
Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "Youâd have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."
Uncrackable code for nuclear weapons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Mark
Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."
1991-09-30
DTIC NO. ADA 060212. Taplin, D., N. Zaias, and G. Rebell (1965), " Environmental Influences on the Microbiology of the Skin," Arch. Environ . Health 11...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Environmental Sciences Division REPORT NUMBER Lawrence Livermore National...military personnel deployed in the field, particularly in hot, humid environments , have suffered disabling microbial infections of the skin severe enough
Science & Technology Review January/February 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orme, C. A.; Meissner, C. N.; Kotta, P. R.
2016-01-18
At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.
Sscience & technology review; Science Technology Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.
Breaux, Justin H. S.
2017-03-15
The US Department of Energy (DOE) has partnered with the National Cancer Institute (NCI) to use DOE supercomputers to aid in the fight against cancer by building sophisticated models based on data available at the population, patient, and molecular levels. Here, through a three-year pilot project called the Joint Design of Advanced Computing Solutions for Cancer (JDACSC), four participating national laboratories--Argonne, Lawrence Livermore, Los Alamos, and Oak Ridge--will focus on three problems singled out by the NCI as the biggest bottlenecks to advancing cancer research.
Precision Robotic Assembly Machine
None
2017-12-09
The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breaux, Justin H. S.
The US Department of Energy (DOE) has partnered with the National Cancer Institute (NCI) to use DOE supercomputers to aid in the fight against cancer by building sophisticated models based on data available at the population, patient, and molecular levels. Here, through a three-year pilot project called the Joint Design of Advanced Computing Solutions for Cancer (JDACSC), four participating national laboratories--Argonne, Lawrence Livermore, Los Alamos, and Oak Ridge--will focus on three problems singled out by the NCI as the biggest bottlenecks to advancing cancer research.
Science & Technology Review June 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, Ramona L.; Chinn, Ken B.; Kotta, Paul
At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askin, A.; Buddemeier, B.; Alai, M.
In support of the Department of Energy (DOE) National nuclear Security Administration (NNSA) and the Centers for Disease Control and Prevention (CDC), Lawrence Livermore National Laboratory (LLNL) assisted in the development of new data templates for disseminating and communicating FRMAC1 data products using the CDC Radiation Hazard Scale communication tool. To ensure these data products will be useful to stakeholders during a radiological emergency, LLNL facilitated opportunities for product socialization and review.
Science and technology review, July-August 1998 issue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, J
On the occasion of Edward Teller's 90th birthday, S&TR has the pleasure of honoring Lawrence Livermore's co-founder and most influential scientist. Teller is known for his inventive work in physics, his concepts leading to thermonuclear explosions, and his strong stands on such issues as science education, the nation's strategic defense, the needs for science in the future, and sharing scientific information. The articles in this issue also show him, as always, tirelessly moving forward with his new and changing interests.
Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charge Exchange Recombination
NASA Technical Reports Server (NTRS)
Wargelin, B.
2003-01-01
The proposed research uses the electron beam ion trap at the Lawrence Livermore National Laboratory to study the X-ray emission from charge-exchange recombination of highly charged ions with neutral gases. The resulting data fill a void in the existing experimental and theoretical data and are needed to explain all or part of the observed X-ray emission from the Galactic Ridge, solar and stellar winds, the Galactic Center, supernova ejecta, and photoionized nebulae.
Science & Technology Review January/February 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, R. L.; Meissner, C. N.; Kotta, P. R.
At Lawrence Livermore National Laboratory, we focus on science and technology research to ensure our nation’s security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight times a year to communicate, to a broad audience, the Laboratory’s scientific and technological accomplishments in fulfilling its primary missions. The publication’s goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.
High Energy Solid State and Free Electron Laser Systems in Tactical Aviation
2005-06-01
specifically neodymium and ytterbium doped yttrium aluminum garnet (Nd:YAG and Yb:YAG) have been shown to produce pump absorption efficiencies (i.e...Search Radar Dish Aluminum Alloy 2.71 10.0 0.91 321 932 300 22.1 SAM nosecone Ceramic* 3.0 1.0 0.9 1600 3300 250 12.1 T-72 Tank Armor Steel...development at Lawrence Livermore National Laboratory, is the solid-state heat capacity laser, which is an array of diode- pumped neodymium-doped gadolinium
Requirements Doc for Refurb of JASPER Facility in B131HB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knittel, Kenn M.
The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less
A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, S.; Zhou, P.
The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cellmore » maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ullrich, R. A.; Sullivan, M. A.
2007-09-14
This document was prepared to support u.s. Department of Energy / National Nuclear Security Agency (DOE/NNSA) compliance with Sections 106 and 110 of the National Historic Preservation Act (NHPA). Lawrence Livermore National Laboratory (LLNL) is a DOE/NNSA laboratory and is engaged in determining the historic status of its properties at both its main site in Livermore, California, and Site 300, its test site located eleven miles from the main site. LLNL contracted with the authors via Sandia National Laboratories (SNL) to prepare a historic context statement for properties at both sites and to provide assessments of those properties of potentialmore » historic interest. The report contains an extensive historic context statement and the assessments of individual properties and groups of properties determined, via criteria established in the context statement, to be of potential interest. The historic context statement addresses the four contexts within which LLNL falls: Local History, World War II History (WWII), Cold War History, and Post-Cold War History. Appropriate historic preservation themes relevant to LLNL's history are delineated within each context. In addition, thresholds are identified for historic significance within each of the contexts based on the explication and understanding of the Secretary of the Interior's Guidelines for determining eligibility for the National Register of Historic Places. The report identifies specific research areas and events in LLNL's history that are of interest and the portions of the built environment in which they occurred. Based on that discussion, properties of potential interest are identified and assessments of them are provided. Twenty individual buildings and three areas of potential historic interest were assessed. The final recommendation is that, of these, LLNL has five individual historic buildings, two sets of historic objects, and two historic districts eligible for the National Register. All are eligible within the Cold War History context. They are listed in the table below, along with the Cold War preservation theme, period of significance, and criterion under which they are eligible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rector, J.; Bainer, R.; Milligan, P.
1997-01-30
One of the major problems associated with ground water contaminant remediation is well placement. Optimal-placement of wells requires an accurate knowledge of geologic structure and stratigraphy in the near surface sediments and rock (0 to 100 m). Without the development of remote imaging provided by geophysical techniques, the required spacing between treatment wells may be less than 2 m in order to be confident that all contaminant reservoirs had been remediated. One method for characterizing geologic structure and stratigraphy in the near surface is vertical seismic profiling (VSP), a technique often used on deep exploration wells to calibrate surface seismicmore » reflection data. For near-surface applications, VSP data can be acquired efficiently using an array of hydrophones lowered into a fluid-filled borehole (Milligan et al, 1997). In this paper we discuss the acquisition and processing of a 3-D VSP collected at a shallow remediation site located on the grounds of the Lawrence Livermore National Laboratory (LLNL) near Livermore, California. The site was used by the United States Navy as an air training base. At this time, initial releases of hazardous materials to the environment occurred in the form of solvents [volatile organic compounds (VOCs)] that were used for the cleaning of airplanes and their parts. Gasoline, diesel and other petroleum-based compounds are also known to have leaked into the ground. California Research and Development Company, a subsidy of Standard Oil, occupied the southeastern portion of the site from 1950 to 1954. The first releases of radioactive materials to the environment occurred at this time, with the beginning of testing of radioactive materials at the site. In 1952, LLNL acquired the site. Additional releases of VOCS, polychlorinated biphenyls (PCBs), metals, radionuclides (primarily tritium), gasoline and pesticides have occurred since. These releases were due to localized spills, landfills, surface impoundments, disposal pits, broken sewer lines and pipes, and leaking tanks.« less
Overview of the National Ignition Campaign (NIC)
NASA Astrophysics Data System (ADS)
Moses, Edward
2010-11-01
The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.
Active and passive computed tomography mixed waste focus area final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberson, G P
1998-08-19
The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are basedmore » in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or mixed, which contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs the principles of computed tomography and gamma-ray spectral analysis to identify and quantify all of the detectable radioisotopes. Once this and other applicable technologies are developed, waste drums can be non- destructively and accurately characterized to satisfy repository and regulatory guidelines prior to disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, C
2009-11-24
The area subject to this investigation is the existing Lawrence Livermore Laboratory Site 300, located in the region north of Corral Hollow; approximately eight and one half miles southwest of Tracy, San Joaquin County, California. Cartographic location can be determined from the Tracy and Midway USGS 7.5 minute topographic quadrangles, the appropriate portions of which are herein reproduced as Maps 1 and 2. The majority of the approximate 7000 acres of the location lies within San Joaquin County. This includes all of the area arbitrarily designated the 'Eastern Portion' on Map 2 and the majority of the area designated themore » 'Western Portion' on Map 1. The remaining acreage, along the western boundary of the location, lies within Alameda County. The area is located in the region of open rolling hills immediately north of Corral Hollow, and ranges in elevation from approximately 600 feet, on the flood plain of Corral Hollow Creek, to approximately 1700 feet in the northwest portion of the project location. Proposed for the area under investigation are various, unspecified improvements or modifications to the existing Site 300 facilities. Present facilities consist of scattered buildings, bunkers and magazines, utilized for testing and research purposes, including the necessary water, power, and transportation improvements to support them. The vast majority of the 7000 acres location is presently open space, utilized as buffer zones between test locations and as firing ranges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Ph.D., R A; Woollett, J
2004-11-16
This report describes the results of an entomological survey in 2002 to determine the presence of the federally-listed, threatened Valley Elderberry Longhorn Beetle or ''VELB'' (Desmocerus culifornicus dimorphus: Coleoptera, Cerambycidae) and its elderberry food plant (Sumbucus mexicana: Caprifoliaceae) on the Lawrence Livermore National Laboratory's (LLNL) Experimental Test Site, known as Site 300. In addition, an area located immediately southeast of Site 300, which is owned and managed by the California Department of Fish and Game (CDFG), but secured by LLNL, was also included in this survey. This report will refer to the survey areas as the LLNL-Site 300 and themore » CDFG site. The 2002 survey included mapping the locations of elderberry plants that were observed using a global positioning system (GPS) to obtain positional coordinates for every elderberry plant at Site 300. In addition, observations of VELB adults and signs of their infestation on elderberry plants were also mapped using GPS technology. LLNL requested information on the VELB and its elderberry food plants to update earlier information that had been collected in 1991 (Arnold 1991) as part of the 1992 EIS/EIR for continued operation of LLNL. No VELB adults were observed as part of this prior survey. The findings of the 2002 survey reported herein will be used by LLNL as it updates the expected 2004 Environmental Impact Statement for ongoing operations at LLNL, including Site 300.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.« less
Hydrodynamical and Spectral Simulations of HMXB Winds
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Liedahl, D. A.; Plewa, T.
2006-09-01
We describe the results of a research program to develop improved models of the X-ray spectra of cosmic sources such as X-ray binaries, CVs, and AGN in which UV line-driven mass flows are photoionized by an X-ray source. Work to date has focused on high-mass X-ray binaries (HMXBs) and on Vela X-1 in particular, for which there are high-quality Chandra HETG spectra in the archive. Our research program combines FLASH hydrodynamic calculations, XSTAR photoionization calculations, HULLAC atomic data, improved calculations of the line force multiplier, X-ray emission models appropriate to X-ray photoionized plasmas, and Monte Carlo radiation transport. We will present movies of the relevant physical quantities (density, temperature, ionization parameter, velocity) from a FLASH two-dimensional time-dependent simulation of Vela X-1, maps showing the emissivity distributions of the X-ray emission lines, and a preliminary comparison of the resulting synthetic spectra to the Chandra HETG spectra. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Career Planning Workshop offers advice on landing a job
NASA Astrophysics Data System (ADS)
Fiske, Peter S.
As part of a continuing program on career planning and job hunting skills for geoscientists, AGU sponsored a career workshop at the Fall 1994 meeting in San Francisco. Over 100 attended the 2-hour seminar led by Peter Fiske, a post-doc at Lawrence Livermore National Laboratory, and Al Levin, assistant director of graduate counseling and programs at Stanford University's Career Planning and Placement Center. The purpose of the seminar was to help Ph.D.s identify the transferable skills they possess and to outline the basic steps in making the often difficult transition to a new career outside of research science. According to Fiske and Levin, scientists tend to start their career change by searching for specific jobs and organizations they think might be a good match for their technical training and tend to assume that a technical position is the only good match for them. In fact, research-trained scientists possess a number of transferable skills that are valued in a wide variety of work environments, such as good communication, organizational, and team work skills, and independence.
The Nova Upgrade Facility for ICF ignition and gain
NASA Astrophysics Data System (ADS)
Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.
1992-01-01
Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.
NASA Astrophysics Data System (ADS)
Hartmann Siantar, Christine L.; Moses, Edward I.
1998-11-01
When using radiation to treat cancer, doctors rely on physics and computer technology to predict where the radiation dose will be deposited in the patient. The accuracy of computerized treatment planning plays a critical role in the ultimate success or failure of the radiation treatment. Inaccurate dose calculations can result in either insufficient radiation for cure, or excessive radiation to nearby healthy tissue, which can reduce the patient's quality of life. This paper describes how advanced physics, computer, and engineering techniques originally developed for nuclear weapons and high-energy physics research are being used to predict radiation dose in cancer patients. Results for radiation therapy planning, achieved in the Lawrence Livermore National Laboratory (LLNL) 0143-0807/19/6/005/img2 program show that these tools can give doctors new insights into their patients' treatments by providing substantially more accurate dose distributions than have been available in the past. It is believed that greater accuracy in radiation therapy treatment planning will save lives by improving doctors' ability to target radiation to the tumour and reduce suffering by reducing the incidence of radiation-induced complications.