Sample records for program los alamos

  1. Regional Economic Development

    Science.gov Websites

    Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation key programs to achieve regional technology commercialization from Los Alamos. The programs below help

  2. Biological assessment for the effluent reduction program, Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.P.

    1996-08-01

    This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.

  3. Stockpile Stewardship: Los Alamos

    ScienceCinema

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2018-01-16

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  4. Civilian Nuclear Program

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. STEM Education Programs

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Applied Energy Program

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mariann R.; Clow, Shandra Deann

    The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.

  8. Engineering Institute

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryEngineering Institute Addressing national needs by fostering specialized recruiting and strategic partnerships Los Alamos National LaboratoryEngineering Institute Menu NSEC Educational Programs Los Alamos Dynamics Summer

  9. 77 FR 13360 - Energy Employees Occupational Illness Compensation Program Act of 2000, as Amended

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Sands Missile Range. 1945. Hangar 481, Kirtland AFB Albuquerque 1989-1996. Kirtland Operations Office, Kirtland Albuquerque 1964-Present. AFB. Los Alamos Medical Center Los Alamos 1952-1963. Los Alamos National.... Institute, Kirtland AFB. Project Gasbuggy Nuclear Explosion Site Farmington 1967-1973; 1978; 1992-Present...

  10. Los Alamos National Laboratory Prepares for Fire Season

    ScienceCinema

    L’Esperance, Manny

    2018-01-16

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  11. Los Alamos National Laboratory Prepares for Fire Season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L’Esperance, Manny

    Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.

  12. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related tomore » the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.« less

  13. Los Alamos Climatology 2016 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).

  14. Los Alamos Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergen, Benjamin Karl

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  15. Seventy Years of Computing in the Nuclear Weapons Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Billy Joe

    Los Alamos has continuously been on the forefront of scientific computing since it helped found the field. This talk will explore the rich history of computing in the Los Alamos weapons program. The current status of computing will be discussed, as will the expectations for the near future.

  16. A review of the Los Alamos effort in the development of nuclear rocket propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, F.P.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

  17. The Origin and Evolution of U.S. Naval Strategic Nuclear Policy to 1960

    DTIC Science & Technology

    1986-12-01

    program at Los Alamos that would actually build the bomb. Groves named Captain William S. Parsons who had graduated in 1922 from Annapolis and later from...the Naval Postgraduate School. Parsons went to Los Alamos after having worked extensively in developing and fleet testing proximity fuses. Upon his...arrival at the security gate of Los Alamos the dearth of naval personnel at work on the project contributed to his arrest by the guard on duty. The

  18. An independent evaluation of plutonium body burdens in populations near Los Alamos Laboratory using human autopsy data.

    PubMed

    Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E

    2013-06-01

    In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Fiscal Year 2013 Trails Management Program Mitigation Action Plan Annual Report, October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pava, Daniel S.

    This Trails Management Program Mitigation Action Plan Annual Report (Trails MAPAR) has been prepared for the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) as part of implementing the 2003 Final Environmental Assessment for the Proposed Los Alamos National Laboratory Trails Management Program (DOE 2003). The Trails Mitigation Action Plan (MAP) is now a part of the Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (DOE/EIS 0380) Mitigation Action Plan (2008 SWEIS MAP) (DOE 2008). The MAP provides guidance for the continued implementation of the Trails Management Program at Los Alamos National Laboratory (LANL) andmore » integration of future mitigation actions into the 2008 SWEIS MAP to decrease impacts associated with recreational trails use at LANL. This eighth MAPAR includes a summary of Trails Management Program activities and actions during Fiscal Year (FY) 2013, from October 2012 through September 2013.« less

  20. Pulsed Discharge in Aerosol for Waste Water Clean-up.

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Gonzales, A.; Olson, T.; Puchkarev, V.; Rosocha, L.; Wessel, F.; Yankelevich, Y.

    1996-11-01

    Aerosol (drop diameter of 10-100 μm) is injected into a discharge reactor with a repetitively pulsed voltage of 40--60 kV, 50--150 ns, 10^2--10^3 Hz. The relatively large water dielectric constant and high degree of atomization result in efficient degradation of organic molecules. Results on the characterization of operational parameters of the device and on degradation performance for a variety of organic pollutants (paranitrophenol, di-Chlorophenol, per-chloro-ethylene) are discussed. Work was supported by the Los Alamos National Laboratories 96 LACOR Program. ^AUniversity of Southern California, Los Angeles, CA 94007 ^BLos Alamos National Laboratory, Los Alamos, NM 87545

  1. User manual for the NTS ground motion data base retrieval program: ntsgm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    App, F.N.; Tunnell, T.W.

    1994-05-01

    The NTS (Nevada Test Site) Ground Motion Data Base is composed of strong motion data recorded during the normal execution of the US underground test program. It contains surface, subsurface, and structure motion data as digitized waveforms. Currently the data base contains information from 148 underground explosions. This represents about 4,200 measurements and nearly 12,000 individual digitized waveforms. Most of the data was acquired by Los Alamos National Laboratory (LANL) in connection with LANL sponsored underground tests. Some was acquired by Los Alamos on tests conducted by the Defense Nuclear Agency (DNA) and Lawrence Livermore National Laboratory (LLNL), and theremore » are some measurements that were acquired by the other test sponsors on their events and provided for inclusion in this data base. Data acquisition, creation of the data base, and development of the data base retrieval program (ntsgm) are the result of work in support of the Los Alamos Field Test Office and the Office of Nonproliferation and Arms Control.« less

  2. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  3. Los Alamos Science Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Living in Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Science and Innovation at Los Alamos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  7. Institutional computing (IC) information session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Kenneth R; Lally, Bryan R

    2011-01-19

    The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

  8. A Handbook for Derivative Classifiers at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkula, Barbara Jean

    The Los Alamos Classification Office (within the SAFE-IP group) prepared this handbook as a resource for the Laboratory’s derivative classifiers (DCs). It contains information about United States Government (USG) classification policy, principles, and authorities as they relate to the LANL Classification Program in general, and to the LANL DC program specifically. At a working level, DCs review Laboratory documents and material that are subject to classification review requirements, while the Classification Office provides the training and resources for DCs to perform that vital function.

  9. Penetrating radiation: applications at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Watson, Scott; Hunter, James; Morris, Christopher

    2013-09-01

    Los Alamos has used penetrating radiography extensively throughout its history dating back to the Manhattan Project where imaging dense, imploding objects was the subject of intense interest. This interest continues today as major facilities like DARHT1 have become the mainstay of the US Stockpile Stewardship Program2 and the cornerstone of nuclear weapons certification. Meanwhile, emerging threats to national security from cargo containers and improvised explosive devices (IEDs) have invigorated inspection efforts using muon tomography, and compact x-ray radiography. Additionally, unusual environmental threats, like those from underwater oil spills and nuclear power plant accidents, have caused renewed interest in fielding radiography in severe operating conditions. We review the history of penetrating radiography at Los Alamos and survey technologies as presently applied to these important problems.

  10. LACED

    Science.gov Websites

    Search Site submit Feynman Center for Innovation Los Alamos National Laboratory Collaboration for Explosives Detection Los Alamos National Laboratory Los Alamos Collaboration for Explosives Detection Menu is built upon Los Alamos' unparalleled explosive detection capabilities derived from the expertise of

  11. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquaticmore » habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.« less

  12. Laboratory and field studies related to the Hydrologic Resources Management Program. Progress report, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Hawkins, W.L.; Mathews, M.

    This report describes research done at Los Alamos in FY 1993 for the Hydrologic Resources Management Program. The US Department of Energy funds this research through two programs at the Nevada Test Site (NTS): defense and groundwater characterization. Los Alamos personnel have continued to study the high-pressure zone created in the aquifer under Yucca Flat. We analyzed data from a hole in this area (U-7cd) and drilled another hole and installed a water monitoring tube at U-4t. We analyzed water from a number of locations on the NTS where we know there are radionuclides in the groundwater and critiqued themore » effectiveness of this monitoring effort. Our program for analyzing postshot debris continued with material from the last nuclear test in September 1992. We supported both the defense program and the groundwater characterization program by analyzing water samples from their wells and by reviewing documents pertaining to future drilling. We helped develop the analytical methodology to be applied to water samples obtained in the environmental restoration and waste management efforts at the NTS. Los Alamos involvement in the Hydrologic Resources Management Program is reflected in the appended list of documents reviewed, presentations given, papers published, and meetings attended.« less

  13. Los Alamos National Lab: National Security Science

    Science.gov Websites

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his

  14. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdsell, Kay Hanson; Stauffer, Philip H.; Atchley, Adam Lee

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis (PA/CA) maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the PA/CA are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2016 annual review for Area G.

  15. A history of the working group to address Los Alamos community health concerns - A case study of community involvement and risk communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry Otway; Jon Johnson

    2000-01-01

    In May 1991, at a Department of Energy (DOE) public hearing at Los Alamos, New Mexico, a local artist claimed there had been a recent brain tumor cluster in a small Los Alamos neighborhood. He suggested the cause was radiation from past operations of Los Alamos National Laboratory. Data from the Laboratory's extensive environmental monitoring program gave no reason to believe this charge to be true but also could not prove it false. These allegations, reported in the local and regional media, alarmed the community and revealed an unsuspected lack of trust in the Laboratory. Having no immediate and definitivemore » response, the Laboratory offered to collaborate with the community to address this concern. The Los Alamos community accepted this offer and a joint Community-Laboratory Working Group met for the first time 29 days later. The working group set as its primary goal the search for possible carcinogens in the local environment. Meanwhile, the DOE announced its intention to fund the New Mexico Department of Health to perform a separate and independent epidemiological study of all Los Alamos cancer rates. In early 1994, after commissioning 17 environmental studies and meeting 34 times, the working group decided that the public health concerns had been resolved to the satisfaction of the community and voted to disband. This paper tells the story of the artist and the working group, and how the media covered their story. It summarizes the environmental studies directed by the working group and briefly reviews the main findings of the epidemiology study. An epilogue records the present-day recollections of some of the key players in this environmental drama.« less

  16. Recommended HSE-7 documents hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.

    1990-12-12

    This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or Laboratory''). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.

  17. Recommended HSE-7 documents hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.B.; Jennrich, E.A.; Lund, D.M.

    1990-12-12

    This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or ``Laboratory``). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.

  18. Los Alamos National Laboratory Meteorology Monitoring Program: 2016 Data Completeness/ Quality Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    This report summarizes data completeness by tower and by instrument for 2016 and compares that data with the Los Alamos National Laboratory (LANL) and American National Standards Institute (ANSI) 2015 standards. This report is designed to make data users aware of data completeness and any data quality issues. LANL meteorology monitoring goals include 95% completeness for all measurements. The ANSI 2015 standard requires 90% completeness for all measurements. This report documents instrument/tower issues as they impact data completeness.

  19. Videos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Publications

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Collaboration

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Business

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Features

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Visitors

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Mission

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Community

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Giving

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility – Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B.; Stauffer, Philip H.; Birdsell, Kay H.

    As a condition to the disposal authorization statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis (PA/CA) are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year (FY) 2015 annual review for Area G.

  9. Safeguards and security research and development: Progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, D.R.; Henriksen, P.W.

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IVmore » is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.« less

  10. Using the Internet in Middle Schools: A Model for Success. A Collaborative Effort between Los Alamos National Laboratory (LANL) and Los Alamos Middle School (LAMS).

    ERIC Educational Resources Information Center

    Addessio, Barbara K.; And Others

    Los Alamos National Laboratory (LANL) developed a model for school networking using Los Alamos Middle School as a testbed. The project was a collaborative effort between the school and the laboratory. The school secured administrative funding for hardware and software; and LANL provided the network architecture, installation, consulting, and…

  11. Web Policies

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. Research Opportunities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. Business opportunities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Emergency Communication

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Radical Supercomputing

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Media Contacts

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Capabilities: Science Pillars

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Social Media

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. Location and Infrastructure

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Dual Career Services

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Science Briefs

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Teachers (K-12)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Career Videos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Students (K-12)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Environmental Management System

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. About Us

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Energy Sustainability

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Energy Security Solutions

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. Reusing Water

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Community Leaders Survey

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Green Purchasing

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. Mission, Vision, Values

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. News Releases

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Office of Science

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Regional Education Partners

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Invoicing, Payments Info

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Obeying Environmental Laws

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Education Office Housing

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. Looking inside plutonium

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Community Videos

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Cultural Preservation

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Speakers Bureau

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Copyright, Legal

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Protecting Wildlife

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Community Feature Stories

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Lab Organizations

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. Economic Development

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Higher Education

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. Leadership, Governance

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. Quantum Institute

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. October 2015

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  12. LANL Contacts

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  13. STEM Education

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  14. Bradbury Science Museum

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. User Facilities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. Our History

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  17. Travel Reimbursement

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  18. Operational Excellence

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  19. New Mexico: Los Alamos

    Atmospheric Science Data Center

    2014-05-15

    article title:  Los Alamos, New Mexico     View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...

  20. Laboratory Directed Research & Development (LDRD)

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  1. Payments to the Lab

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  2. Nuclear Deterrence and Stockpile Stewardship

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  3. Emerging Threats and Opportunities

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  4. Protecting Against Nuclear Threats

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  5. Ion Beam Materials Lab

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  6. Frontiers in Science Lectures

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  7. 70+ Years of Innovations

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  8. Center for Nonlinear Studies

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  9. Taking Care of our Trails

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  10. What We Monitor & Why

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  11. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  12. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less

  13. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less

  14. Tiny plastic lung mimics human pulmonary function

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  15. Public Reading Room: Environmental Documents, Reports

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  16. 2016 Results for Avian Monitoring at the TA-36 Minie Site, TA-39 Point 6, and TA-16 Burn Ground at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Thompson, Brent E.; Berryhill, Jesse Tobias

    Los Alamos National Security, LLC (LANS) biologists in the Environmental Compliance and Protection Division at Los Alamos National Laboratory (LANL) initiated a multi-year program in 2013 to monitor avifauna at two open detonation sites and one open burn site on LANL property. Monitoring results from these efforts are compared among years and with avifauna monitoring conducted at other areas across LANL. The objectives of this study are to determine whether LANL firing site operations impact bird abundance or diversity. LANS biologists completed the fourth year of this effort in 2016. The overall results from 2016 continue to indicate that operationsmore » are not negatively affecting bird populations. Data suggest that community structure may be changing at some sites and this trend will continue to be monitored.« less

  17. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrialmore » safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.« less

  18. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2004-01-22

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery andmore » storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.« less

  19. Panel: If I Only Knew Then What I Know Now

    Science.gov Websites

    Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron

  20. Apply

    Science.gov Websites

    linkedin facebook Twitter YouTube Twitter Content Apply now » Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Laboratory Delivering Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Alamos Collaboration

  1. New MagViz Airport Liquid Analysis System Undergoes Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-12-18

    LOS ALAMOS, New Mexico, December 16, 2008—An innovative application of a technology first used for medical imaging may enhance airport security if Los Alamos National Laboratory scientists are successful. Los Alamos technologists have adapted Magnetic Res

  2. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T.; Murphy, J.

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  3. Deflagration-to-Detonation Transition in Heteorogeneous Solids: A Bibliography.

    DTIC Science & Technology

    1980-11-01

    and Rockets, Vol. 9. No. 6, 1972, pp. 415-419. 1.4 Francois, D., and L. Joly; " La Rupture des Metaux; Ecole d’ete de la Colle sur Loup ," Masson et Cie...Computer Program for Multifield Fluid Flows," Los Alamos Scientific Laboratory, LA -5680, 1974. 5.3, 9 Nnderssen, K. E. B.; "Pressure Drop in Ideal...5.6, 6, 9 Forest, C. A.: "Burning and Detonation," Los Alamos Scientific Laboratory, LA -7245, July 1978. 2, 3, 4 Fox, J.; "Flow Regimes in

  4. The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System

    DTIC Science & Technology

    2007-06-01

    Systems Inc., Stennis Space Center. MS, USA d SHOM/CMO, Toulouse. France € Los Alamos National Laboratory, Los Alamos, NM. USA Received 1 October 2004...Global Ocean Data Assimilation ’U. of Miami, NRL, Los Alamos, NOAA/NCEP, NOAA/AOML, Experiment (GODAE). GODAE is a coordinated inter- NOAA/PMEL, PSI...of Miami, the Naval all three approaches and the optimal distribution is Research Laboratory (NRL), and the Los Alamos chosen at every time step. The

  5. New MagViz Airport Liquid Analysis System Undergoes Testing

    ScienceCinema

    None

    2017-12-09

    LOS ALAMOS, New Mexico, December 16, 2008—An innovative application of a technology first used for medical imaging may enhance airport security if Los Alamos National Laboratory scientists are successful. Los Alamos technologists have adapted Magnetic Res

  6. Bradbury

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  7. Bradbury Science Museum

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  8. Institute for Materials Science

    Science.gov Websites

    Search Site submit National Security Education Center Los Alamos National LaboratoryInstitute for Materials Science Incubate - Innovate - Integrate Los Alamos National Laboratory Institute for Materials educational center in NSEC focused on fostering the advancement of materials science at Los Alamos National

  9. The Effect of Added AL2O3 on the Propagation Behavior of an Al/CuO Nanoscale Thermite

    DTIC Science & Technology

    2008-01-01

    Malchi a, Richard A. Yetter a,*, T. J. Foley b, and Steven F. Son c a The Pennsylvania State University, University Park, PA, USA b Los Alamos National...Laboratory, Los Alamos, NM, USA c Purdue University, West Lafayette, IN, USA U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC...Pennsylvania State University, University Park, PA, USA b Los Alamos National Laboratory, Los Alamos, NM, USA c Purdue University, West Lafayette, IN, USA

  10. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Peter M.; Schultz-Fellenz, Emily S.; Kelley, Richard E.

    This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-eastmore » Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3. Understanding the subtle differences between Tshirege Member cooling units and the nature of the contacts between cooling units is critical to identifying the presence or absence of faults associated with the Pajarito fault system on the Pajarito Plateau. The Los Alamos Seismic Network (LASN) continuously monitors local earthquake activity in the Los Alamos area in support of LANL's Seismic Hazards program. Seismic monitoring of LANL facilities is a requirement of DOE Order 420.1B (Facility Safety). LASN currently consists of nine permanent seismic instrument field stations that telemeter real-time sensitive ground motion data to a central recording facility. Four of these stations are located on LANL property, with three of those within 2.5 miles of TA-63. The other five stations are in remote locations in the Jemez Mountains, Valles Caldera, St Peters Dome, and the Caja del Rio plateau across the Rio Grande from the Los Alamos area. Local earthquakes are defined as those with locations within roughly 100 miles of Los Alamos. Plate 1 shows the current LASN station locations and all local earthquakes recorded from 1973 through 2011. During this time period, LASN has detected and recorded over 850 local earthquakes in north-central New Mexico. Over 650 of these were located within about 50 miles of Los Alamos, and roughly 60 were within 10 miles. The apparent higher density of earthquakes close to Los Alamos, relative to the rest of north-central New Mexico, is due largely to the fact that LASN is a sensitive local seismic network, recording many very small nearby events (magnitude less than 1.0) that are undetectable at greater distances.« less

  12. Research Capabilities

    Science.gov Websites

    Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation . thumbnail of Energy and Subsurface Laura Barber, Business Development Laura Barber Energy: Los Alamos is

  13. From biofuels to predicting the flu

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  14. Climate change and the Arctic

    Science.gov Websites

    Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us

  15. Intense X-ray machine for penetrating radiography

    NASA Astrophysics Data System (ADS)

    Lucht, Roy A.; Eckhouse, Shimon

    Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.

  16. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less

  17. Recovering Radioactive Materials with OSRP team

    ScienceCinema

    None

    2017-12-09

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  18. Statistical analyses of the background distribution of groundwater solutes, Los Alamos National Laboratory, New Mexico.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longmire, Patrick A.; Goff, Fraser; Counce, D. A.

    2004-01-01

    Background or baseline water chemistry data and information are required to distingu ish between contaminated and non-contaminated waters for environmental investigations conducted at Los Alamos National Laboratory (referred to as the Laboratory). The term 'background' refers to natural waters discharged by springs or penetrated by wells that have not been contaminated by LANL or other municipal or industrial activities, and that are representative of groundwater discharging from their respective aquifer material. These investigations are conducted as part of the Environmental Restoration (ER) Project, Groundwater Protection Program (GWPP), Laboratory Surveillance Program, the Hydrogeologic Workplan, and the Site-Wide Environmental Impact Statement (SWEIS).more » This poster provides a comprehensive, validated database of inorganic, organic, stable isotope, and radionuclide analyses of up to 136 groundwater samples collected from 15 baseline springs and wells located in and around Los Alamos National Laboratory, New Mexico. The region considered in this investigation extends from the western edge of the Jemez Mountains eastward to the Rio Grande and from Frijoles Canyon northward to Garcia Canyon. Figure 1 shows the fifteen stations sampled for this investigation. The sampling stations and associated aquifer types are summarized in Table 1.« less

  19. 75 FR 72829 - Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease Control and Prevention... release of the Final Report of the Los Alamos Historical Document Retrieval and Assessment (LAHDRA)Project... information about historical chemical or radionuclide releases from facilities at the Los Alamos National...

  20. Richard P. Feynman Center for Innovation

    Science.gov Websites

    Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation self-healing, self-forming mesh network of long range radios. READ MORE supercomputer Los Alamos

  1. 76 FR 28222 - Extension of the Public Review and Comment Period and Announcement of an Additional Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los Alamos National Laboratory...

  2. Geothermal investigation of spring and well waters of the Los Alamos Region, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, F.E.; Sayer, S.

    1980-04-01

    The chemical and isotopic characters of 20 springs and wells in the Los Alamos area were investigated for indications of geothermal potential. These waters were compared with known hot and mineral springs from adjacent Valles Caldera and San Ysidro. All waters in the Los Alamos area are composed of meteoric water. Isotopic data show that the two primary aquifers beneath the Los Alamos region have different recharge areas. Relatively high concentrations of lithium, arsenic, chlorine, boron, and fluorine in some of the Los Alamos wells suggest these waters may contain a small fraction of thermal/mineral water of deep origin. Thermalmore » water probably rises up high-angle faults associated with a graben of the Rio Grande rift now buried by the Pajarito Plateau.« less

  3. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-01-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  4. Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharirli, M.; Rand, J.L.; Sasser, M.K.

    1992-12-01

    The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less

  5. Initiative for safe driving and enhanced utilization of crash data

    NASA Astrophysics Data System (ADS)

    Wagner, John F.

    1994-03-01

    This initiative addresses the utilization of current technology to increase the efficiency of police officers to complete required Driving Under the Influence (DUI) forms and to enhance their ability to acquire and record crash and accident information. The project is a cooperative program among the New Mexico Alliance for Transportation Research (ATR), Science Applications International Corporation (SAIC), Los Alamos National Laboratory, and the New Mexico State Highway and Transportation Department. The approach utilizes an in-car computer and associated sensors for information acquisition and recording. Los Alamos artificial intelligence technology is leveraged to ensure ease of data entry and use.

  6. Bradbury science museum: your window to Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deck, Linda Theresa

    The Bradbury Science Museum is the public's window to Los Alamos National Laboratory and supports the Community Program Office's mission to develop community support to accomplish LANL's national security and science mission. It does this by stimulating interest in and increasing basic knowledge of science and technology in northern New Mexico audiences, and increasing public understanding and appreciation of how LANL science and technology solve our global problems. In performing these prime functions, the Museum also preserves the history of scientific accomplishment at the Lab by collecting and preserving artifacts of scientific and historical importance.

  7. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  8. Los Alamos nEDM Experiment and Demonstration of Ramsey's Method on Stored UCNs at the LANL UCN Source

    NASA Astrophysics Data System (ADS)

    Clayton, Steven; Chupp, Tim; Cude-Woods, Christopher; Currie, Scott; Ito, Takeyasu; Liu, Chen-Yu; Long, Joshua; MacDonald, Stephen; Makela, Mark; O'Shaughnessy, Christopher; Plaster, Brad; Ramsey, John; Saunders, Andy; LANL nEDM Collaboration

    2017-09-01

    The Los Alamos National Laboratory ultracold neutron (UCN) source was recently upgraded for a factor of 5 improvement in stored density, providing the statistical precision needed for a room temperature neutron electric dipole moment measurement with sensitivity 3 ×10-27 e . cm, a factor 10 better than the limit set by the Sussex-RAL-ILL experiment. Here, we show results of a demonstration of Ramsey's separated oscillatory fields method on stored UCNs at the LANL UCN source and in a geometry relevant for a nEDM measurement. We argue a world-leading nEDM experiment could be performed at LANL with existing technology and a short lead time, providing a physics result with sensitivity intermediate between the current limit set by Sussex-RAL-ILL, and the anticipated limit from the complex, cryogenic nEDM experiment planned for the next decade at the ORNL Spallation Neutron Source (SNS-nEDM). This work was supported by the Los Alamos LDRD Program, Project 20140015DR.

  9. 75 FR 1793 - Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease... the following meeting. Name: Public Meeting of the Study Team for the Los Alamos Historical Document...

  10. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, N.M.; Vanta, E.B.

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more thanmore » 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.« less

  11. Total electron content (TEC) variability at Los Alamos, New Mexico: A comparative study: FORTE-derived TEC analysis

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Roussel-Dupré, Robert

    2005-12-01

    Data collected from Fast On-Orbit Recording of Transient Events (FORTE) satellite-received Los Alamos Portable Pulser (LAPP) signals during 1997-2002 are used to derive the total electron content (TEC) at Los Alamos, New Mexico. The LAPP-derived TECs at Los Alamos are analyzed for diurnal, seasonal, interannual, and 27-day solar cycle variations. Several aspects in deriving TEC are analyzed, including slant to vertical TEC conversion, quartic effects on transionosperic signals, and geomagnetic storm effects on the TEC variance superimposed on the averaged TEC values.

  12. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  13. A survey of macromycete diversity at Los Alamos National Laboratory, Bandelier National Monument, and Los Alamos County; A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarmie, N.; Rogers, F.J.

    The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intrator, Miranda Huang

    Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52- 06NA25396. Los Alamos is a mission-centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and engineering for both government and private customers. LANS is opening this formal Request for Information (RFI) to gauge interest in engaging as an industry partner to LANS for collaboration in advancing the bio-assessment platform described below. Please see last section for details on submitting a Letter ofmore » Interest.« less

  15. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, Frances

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less

  16. Recovering Radioactive Materials with ORSP Team

    ScienceCinema

    LANL

    2017-12-09

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

  17. Mountain Roads, Lonely Mesas: A Career Program for Northern New Mexico.

    ERIC Educational Resources Information Center

    Strong, Kathryn Ringhand

    Educational outreach programs of Los Alamos National Laboratory assist rural educators in strengthening science curricula; encourage students to take science, math, and English courses; and create a good neighbor policy between the laboratory and rural communities/schools in predominantly Hispanic/American Indian northern New Mexico. The program,…

  18. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair

  19. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less

  20. Los Alamos offers Fellowships

    NASA Astrophysics Data System (ADS)

    Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.

  1. Water Supply at Los Alamos 1998-2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard J. Koch; David B. Rogers

    2003-03-01

    For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mgmore » in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no adverse impacts by production on long-term water supply sustainability at Los Alamos. This report summarizes production data and aquifer conditions for water production and monitor wells in the Los Alamos, New Mexico, and Los Alamos National Laboratory (LANL) area (Figure 1). Water production wells are grouped within the Guaje, Pajarito, and Otowi fields, the locations of which are shown on Figure 1. Wells from these fields supply all the potable water used for municipal and most industrial purposes in Los Alamos County (LAC), at LANL, and at Bandelier National Monument. This report has three primary objectives: (1) Provide a continuing historical record of metered well production and overall water usage; (2) Provide data to the Department of Energy (DOE) and LANL management, and Los Alamos County planners for operation of the water supply system and for long-range water resource planning; and (3) Provide water-level data from regional aquifer production wells, test wells, and monitoring wells.« less

  2. Proceedings, phenomenology and applications of high temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, K.S.

    1991-01-01

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less

  3. Proceedings, phenomenology and applications of high temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, K.S.

    1991-12-31

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less

  4. Critical partnerships: Los Alamos, universities, and industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, C.L.

    1997-04-01

    Los Alamos National Laboratory, situated 35 miles northwest of Santa Fe, NM, is one of the Department of Energy`s three Defense Programs laboratories. It encompasses 43 square miles, employees approximately 10,000 people, and has a budget of approximately $1.1B in FY97. Los Alamos has a strong post-cold war mission, that of reducing the nuclear danger. But even with that key role in maintaining the nation`s security, Los Alamos views partnerships with universities and industry as critical to its future well being. Why is that? As the federal budget for R&D comes under continued scrutiny and certain reduction, we believe thatmore » the triad of science and technology contributors to the national system of R&D must rely on and leverage each others capabilities. For us this means that we will rely on these partners to help us in 5 key ways: We expect that partnerships will help us maintain and enhance our core competencies. In doing so, we will be able to attract the best scientists and engineers. To keep on the cutting edge of research and development, we have found that partnerships maintain the excellence of staff through new and exciting challenges. Additionally, we find that from our university and corporate partners we often learn and incorporate {open_quotes}best practices{close_quotes} in organizational management and operations. Finally, we believe that a strong national system of R&D will ensure and enhance our ability to generate revenues.« less

  5. Examination of the home destruction in Los Alamos associated with the Cerro Grande Fire - July 10, 2000

    Treesearch

    Jack D. Cohen

    2000-01-01

    I arrived at Los Alamos on May 14, 2000 to conduct an examination of the home destruction associated with the Cerro Grande Fire. My examination occurred between the afternoon of 5/14 and late afternoon on 5/16. I had contact with the southern command post incident management team, the Los Alamos Fire Department, and the Santa Fe National Forest.The...

  6. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  7. Pre Incident Planning For The Los Alamos National Laboratory

    DTIC Science & Technology

    2017-12-01

    laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City

  8. The Sound of Freedom. Naval Weapons Technology at Dahlgren, Virginia, 1918-2006

    DTIC Science & Technology

    2006-01-01

    the TRINITY device, before later succeeding J. Robert Oppenheimer as the director of Los Alamos National Laboratory. Other former Dahlgren...and the Computer (Cambridge, Mass.: The MIT Press, 1999); Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE...Minutes of Advisory Council. 3. Ibid. 4. Ibid.; Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE Computer

  9. A progress report on UNICOS misuse detection at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Jackson, K.A.; Stallings, C.A.

    An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component ofmore » NADIR, along with the operational experiences and future plans for the system.« less

  10. Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John Edward; Unal, Cetin

    A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.

  11. Accomplishments in the Trident Laser Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Juan Carlos

    Trident has been an extremely productive laser facility, despite its modest size and operating cost in the firmament of high-energy, high-power laser facilities worldwide. More than 150 peer-reviewed journal articles (in 39 different journals) have been published using Trident experimental data, many in high-impact journals such as Nature, Nature Physics, Nature Communications, and Physical Review Letters. More than 230 oral presentations involving research at Trident have been presented at national and international conferences. Trident publications have over 5000 citations in the literature with an h-index of 38. AT least 23 Los Alamos postdoctoral researchers have worked on Trident. In themore » period since its inception in 1992-2007, despite not issuing formal proposal calls for access nor functioning explicitly as a user facility until later, Trident has 170 unique users from more than 30 unique institutions, such as Los Alamos, Lawrence Livermore, and Sandia national laboratories, various University of California campuses, General Atomic, Imperial College, and Ecole Polytechnique. To reinforce its role as an important Los Alamos point of connection to the external research community, at least 20 PhD students did a significant fraction of their thesis work on Trident. Such PhD students include Mike Dunne (Imperial College, 1995) - now director of LCLS and professor at Stanford; David Hoarty (IC, 1997) - scientist at Atomic Weapons Establishment, UK; Dustin Froula (UC Davis, 2002) - Plasma and Ultrafast Physics Group leader at the Laboratory for Laser Energetics and assistant professor at the Physics and Astronomy Department at the University of Rochester; Tom Tierney (UC Irvine, 2002) - scientist at Los Alamos; Eric Loomis (Arizona State U., 2005) - scientist at Los Alamos; and Eliseo Gamboa (University of Michigan, 2013) - scientist at the Linac Coherent Light Source. The work performed on Trident, besides its scientific impact, has also supported the Inertial Confinement Fusion and Weapons research programs at the Laboratory. It also has advanced technologies and techniques that hold significant promise for Los Alamos initiatives, such as MaRIE (the proposed Matter-Radiation Interactions in Extremes experimental facility), and more generally for important societal applications, such as defense, global security, advanced accelerators, fusion energy, radiotherapy, and laser technology. Specific research contributions based on Trident experiments are listed below.« less

  12. Research Library

    Science.gov Websites

    Los Alamos National Laboratory Research Library Search Site submit Contact Us | Remote Access | Subject Guides Los Alamos National Laboratory Menu Contacts Remote Catalog About Awards Electronic Public Research Library: delivering essential knowledge services for national security sciences since 1947 Los

  13. Photos

    Science.gov Websites

    Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los

  14. Newsroom

    Science.gov Websites

    Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los

  15. Performance of VPIC on Trinity

    NASA Astrophysics Data System (ADS)

    Nystrom, W. D.; Bergen, B.; Bird, R. F.; Bowers, K. J.; Daughton, W. S.; Guo, F.; Li, H.; Nam, H. A.; Pang, X.; Rust, W. N., III; Wohlbier, J.; Yin, L.; Albright, B. J.

    2016-10-01

    Trinity is a new major DOE computing resource which is going through final acceptance testing at Los Alamos National Laboratory. Trinity has several new and unique architectural features including two compute partitions, one with dual socket Intel Haswell Xeon compute nodes and one with Intel Knights Landing (KNL) Xeon Phi compute nodes. Additional unique features include use of on package high bandwidth memory (HBM) for the KNL nodes, the ability to configure the KNL nodes with respect to HBM model and on die network topology in a variety of operational modes at run time, and use of solid state storage via burst buffer technology to reduce time required to perform I/O. An effort is in progress to port and optimize VPIC to Trinity and evaluate its performance. Because VPIC was recently released as Open Source, it is being used as part of acceptance testing for Trinity and is participating in the Trinity Open Science Program which has resulted in excellent collaboration activities with both Cray and Intel. Results of this work will be presented on performance of VPIC on both Haswell and KNL partitions for both single node runs and runs at scale. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  16. Determination of the Shock Properties of Ceramic Corbit 98: 98% Alumina

    DTIC Science & Technology

    2010-06-01

    sapphire or aluminum. A single stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used...stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used a higher performance gun...Gigapascals, one billion pascals of pressure or force per unit area HEL Hugoniot elastic limit LANL Los Alamos National Lab mm Millimeter, or one

  17. The Role of Congress in the Strategic Posture of the United States, 1942-1960, Manhattan Project to the New Look

    DTIC Science & Technology

    2010-05-01

    infrastructure at Los Alamos, Argonne, Oak Ridge, Hanford and elsewhere. But of equal or greater significance for the future strategic posture was the role...nuclear laboratories and defense industrial infrastructure at Los Alamos, Argonne, Oak Ridge, Hanford and elsewhere would design, test, and build...conferences which I attended at Washington, Los Alamos, Argonne, Hanford , and elsewhere, is written in sincere hopes of being helpful to you.... Those

  18. Engineering Design Handbook. Explosions in Air. Part One

    DTIC Science & Technology

    1974-07-15

    Characteristics in the 6. R. E. Shear, Detonation Properties of Calculation of Non-Steady Compressible Pentolite, BRL Rept. No. 1159, 1961. Flows, Los Alamos ...6 (June 1955). Particle-and-Force Method, Los Alamos Sci. Lab., LA 3144, September 1964. 19. H. L Brode, Point Source Explosion in Air, The Rand Corp...RM-1824-AEC, 29. F. H. Harlow and B. D. Meixner, The December 3, 1956. Particle-and-Force Computing Method in Fluid Dynamics, Los Alamos Scientific

  19. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  20. An Analysis on the TEC Variability and Ionospheric Scintillation at Los Alamos, New Mexico Derived from FORTE-Received LAPP Signals

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Roussel-Dupre, R.

    2003-12-01

    The total electron content (TEC) of ionosphere and its electron density irregularities (scintillation) have effects of degradation and disruption on radio signals passed between ground stations and orbiting man-made satellites. With the rapid increase in operational reliance on UHF/VHF satellite communication, it is desirable to obtain understandings of ionosphere TEC variability and scintillation characteristics to improve our ability of predicting satellite communication outages. In this work, data collected from FORTE satellite received LAPP (Los Alamos Portable Pulser) signals during 1998-2002 are used to derive TEC and ionospheric scintillation index at Los Alamos, New Mexico. To characterize in-situ TEC variability at Los Alamos, the FORTE-LAPP derived TECs are analyzed against diurnal, seasonal, solar activity, magnetic storm, and stratospheric warming. The results are also compared with the TEC estimates from the Los Alamos ionospheric transfer function (ITF) implemented with the global ionospheric models (IRI, PIM), and GPS -derived TEC maps. The FORTE-LAPP signals are also analyzed against two important measures of the effect of scintillation on broadband signals, the mean time delay and the time delay jitter. The results are used to examine coherence frequency bandwidth and compared with the predictions from a global scintillation model (WBMOD). The FORTE-LAPP analyzed and WBMOD predicted scintillation characteristics are used to investigate temporal and seasonal behavior of scintillation at Los Alamos.

  1. KiloPower Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, Patrick Ray

    2016-08-04

    These are the slides for a phone interview with Aerospace America magazine of the AIAA. It goes over the KiloPower Program at Los Alamos National Laboratory (LANL), and covers the following: 1 kWe Kilopower, 10 kWe Kilopower, Kilopower Reactor Using Stirling Technology (KRUSTY) Integration Test (DAF), Reactor Configuration, and Platen Positions.

  2. Los Alamos National Laboratory Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Mary

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  3. The role of configuration interaction in the LTE opacity of Fe

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, David; Magee, Norm; Armstrong, Gregory; Abdallah, Joe; Sherrill, Manolo; Fontes, Christopher; Zhang, Honglin; Hakel, Peter

    2013-05-01

    The Los Alamos National Laboratory code ATOMIC has been recently used to generate a series of local-thermodynamic-equilibrium (LTE) light element opacities for the elements H through Ne. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. Recent efforts have resulted in comprehensive new calculations of the opacity of Fe. In this presentation we explore the role of configuration interaction (CI) in the Fe opacity, and show where CI influences the monochromatic opacity. We present such comparisons for conditions of astrophysical interest. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  4. Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAlpine, Bradley

    2015-04-01

    This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less

  5. Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinman, William Scott; Steiner, Robert Ernest; Lamont, Stephen Philip

    Nuclear forensics assists in responding to any event where nuclear material is found outside of regulatory control; a response plan is presented and a nuclear forensics program is undergoing further development so that smugglers are sufficiently deterred.

  6. Resolving Controversies Concerning the Kinetic Structure of Multi-Ion Plasma Shocks

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Simakov, Andrei; Chacon, Luis; Taitano, William

    2017-10-01

    Strong collisional shocks in multi-ion plasmas are featured in several high-energy-density environments, including Inertial Confinement Fusion (ICF) implosions. Yet, basic structural features of these shocks remain poorly understood (e.g., the shock width's dependence on the Mach number and the plasma ion composition, and temperature decoupling between ion species), causing controversies in the literature; even for stationary shocks in planar geometry [cf., Ref. and Ref.]. Using a LANL-developed, high-fidelity, 1D-2V Vlasov-Fokker-Planck code (iFP), as well as direct comparisons to multi-ion hydrodynamic simulations and semi-analytic predictions, we critically examine steady-state, planar shocks in two-ion species plasmas and put forward resolutions to these controversies. This work was supported by the Los Alamos National Laboratory LDRD Program, Metropolis Postdoctoral Fellowship for W.T.T., and used resources provided by the Los Alamos National Laboratory Institutional Computing Program.

  7. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Michael Charles

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  8. Commission on Protecting and Reducing Government Secrecy.

    DTIC Science & Technology

    1997-03-03

    just four years after the first American test. As will be discussed, we had learned of the Los Alamos spies in December 1946-December 20, to be precise...destroyed Nagasaki in August 1945 . Now the stakes were raised. This sequence was described in a lecture by Hans Bethe, "My Road From Los Alamos ," given at...would be episodic successes in the years to come, but none equal to earlier feats. New York of the 1930s. Los Alamos . Some unions. The State Department

  9. History of the Naval Weapons Center, China Lake, California. Volume 2 The Grand Experiment at Inyokern

    DTIC Science & Technology

    1978-01-01

    32. Ibid. 33. Unpublished narrative histories , U.S. Na\\ ii Administration in World War 11, Cominandant, Eleventh Naval District, 1943 - 1945 ...A-bomb inventory arose, there would be no doubt about the substance of the word. "Hnouuhl" THt LOS ALAMOS CONN LCI ION When the histories ol...then known as the Manhattan Project, at Los Alamos . New Mexico. Although Los Alamos was started exactly a year before NO IS tat the end ol l’M2

  10. Electronic Information Management for PfP Nations (La gestion electronique des informations pour les pays du PfP)

    DTIC Science & Technology

    2003-04-01

    such repositories containing electronic information sources that can be used for academic research. The Los Alamos Physics Archive, providing access to...Pinfield, Gardner and MacColl. 2002). The first e-print server was the Los Alamos Physics Archive, presently known as arXiv.org, which was created in 1991...by Ginsparg (Ginsparg 1996; Luce 2001; McKiernan 2000) at the Los Alamos National Laboratory, to give access to pre-prints in the domain of high

  11. New Rad Lab for Los Alamos

    ScienceCinema

    None

    2017-12-09

    The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu...  

  12. Environmental surveillance at Los Alamos during 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David; Gallagher, Pat; Hjeresen, Denny

    2009-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Programs Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at andmore » near the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.« less

  13. Environmental surveillance at Los Alamos during 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (LANL or the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.IA, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory's efforts to ensure public safety and to monitor environmental quality atmore » and near the Laboratory. Chapter 1 provides an overview of the Laboratory's major environmental programs. Chapter 2 reports the Laboratory's compliance status for 2005. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, Air; Chapters 5 and 6, Water and Sediments; Chapter 7, Soils; and Chapter 8, Foodstuffs and Biota) in a format to meet the needs of a general and scientific audience. Chapter 9, new for this year, provides a summary of the status of environmental restoration work around LANL. A glossary and a list ofacronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory's technical areas and their associated programs, and Appendix D provides web links to more information.« less

  14. Recent Performance Results of VPIC on Trinity

    NASA Astrophysics Data System (ADS)

    Nystrom, W. D.; Bergen, B.; Bird, R. F.; Bowers, K. J.; Daughton, W. S.; Guo, F.; Le, A.; Li, H.; Nam, H.; Pang, X.; Stark, D. J.; Rust, W. N., III; Yin, L.; Albright, B. J.

    2017-10-01

    Trinity is a new DOE compute resource now in production at Los Alamos National Laboratory. Trinity has several new and unique features including two compute partitions, one with dual socket Intel Haswell Xeon compute nodes and one with Intel Knights Landing (KNL) Xeon Phi compute nodes, use of on package high bandwidth memory (HBM) for KNL nodes, ability to configure KNL nodes with respect to HBM model and on die network topology in a variety of operational modes at run time, and use of solid state storage via burst buffer technology to reduce time required to perform I/O. An effort is in progress to optimize VPIC on Trinity by taking advantage of these new architectural features. Results of work will be presented on performance of VPIC on Haswell and KNL partitions for single node runs and runs at scale. Results include use of burst buffers at scale to optimize I/O, comparison of strategies for using MPI and threads, performance benefits using HBM and effectiveness of using intrinsics for vectorization. Work performed under auspices of U.S. Dept. of Energy by Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by LANL LDRD program.

  15. Flaws found in Los Alamos safety procedures

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2017-12-01

    A US government panel on nuclear safety has discovered a series of safety issues at the Los Alamos National Laboratory, concluding that government oversight of the lab's emergency preparation has been ineffective.

  16. Smoking patterns among Los Alamos National Laboratory employees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, M.C.; Wilkinson, G.S.

    Smoking patterns among 5507 employees at Los Alamos National Laboratory were investigated for those who underwent physical examinations by occupational physicians from 1978 to 1983. More male than female employees smoked, although differences in smoking rates between the sexes were not as large as differences observed for national smoking rates. Employees over 40 were more likely to smoke than younger employees, males consumed more cigarettes than did females, and Anglo employees smoked more cigarettes than did Hispanic employees. Highly educated employees smoked less than did less-educated workers, and staff members exhibited the lowest rates of smoking. Smoking cessation programs formore » Laboratory employees should be directed toward those subpopulations with the highest rates of smoking. 31 refs., 8 figs., 1 tab.« less

  17. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix B: Surface ground motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, T.A.; Baker, D.F.; Edwards, C.L.

    1993-10-01

    Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less

  18. New Generation of Los Alamos Opacity Tables

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.

    2016-05-01

    We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  19. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  20. The Los Alamos National Laboratory precision double crystal spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, D.V.; Stevens, C.J.; Liefield, R.J.

    1994-03-01

    This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.

  1. Space nuclear safety program

    NASA Astrophysics Data System (ADS)

    George, T. G.

    1990-02-01

    This quarterly report describes studies related to the use of Pu(238)O sub 2 in radioisotope power systems, carried out of the Office of Defense Energy Programs and Special Applications of the U.S. Department of Energy by Los Alamos National Laboratory. The studies are ongoing; the results and conclusions described may change as the work progresses.

  2. A Sailor in the Los Alamos Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judd, D. L.; Meade, Roger Allen

    As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. Tomore » meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.« less

  3. Trinity to Trinity 1945-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moniz, Ernest; Carr, Alan; Bethe, Hans

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less

  4. Trinity to Trinity 1945-2015

    ScienceCinema

    Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John

    2018-01-16

    The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.

  5. Environmental surveillance at Los Alamos during 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  6. SEDs at Los Alamos: A Personal Memoir

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2001-03-01

    I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.

  7. Education and Strategic Research Collaborations

    Science.gov Websites

    Los Alamos National Laboratory National Security Education Center Image Search Site submit LaboratoryNational Security Education Center Menu Program Offices Energy Security Council New Mexico Consortium Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student

  8. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less

  9. Publications of Los Alamos Research, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, C.J.; McClary, W.J.; Rich, J.A.

    1984-10-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers releasedmore » as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.« less

  10. Roadmap to MaRIE March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory’s proposed MaRIE facility is slated to introduce the world’s highest energy hard x-ray free electron laser (XFEL). As the light source for the Matter-Radiation Interactions in Extremes experimental facility (MaRIE), the 42-keV XFEL, with bursts of x-ray pulses at gigahertz repetition for studying fast dynamical processes, will help accelerate discovery and design of the advanced materials needed to meet 21st-century national security and energy security challenges. Yet the science of free-electron lasers has a long and distinguished history at Los Alamos National Laboratory (LANL), where for nearly four decades Los Alamos scientists have been performing research,more » design, development, and collaboration work in FEL science. The work at Los Alamos has evolved from low-gain amplifier and oscillator FEL development to highbrightness photoinjector development, and later, self-amplified spontaneous emission (SASE) and high-gain amplifier FEL development.« less

  11. Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier

    1999-03-01

    Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone broadens as follows: about 100 feet at Los Alamos Canyon, about 50 feet at upper Mortandad Canyon, and less than 30 feet at Twomile Canyon. These relations lead us to infer that the Rendija Canyon fault probably dies out just south of Twomile Canyon. In detail, the surface deformation expressed within the fault zones can be large, fairly simple normal faults, broad zones of smaller faults, largely unfaulted monocline, and faulted monocline. Our study indicates that the seismic surface rupture hazard, associated with the faults in the study area, is localized. South of the county landfill and Los Alamos Canyon, displacements on individual faults become very small, less than about 10 feet in the last 1.22 million years. Such small displacements imply that these little faults do not have much continuity along strike and in a worst-case scenario present a mean probabilistic fault displacement hazard of less than 0.67 inches in 10,000 years (Olig et al., 1998). We encourage, however, site-specific fault investigations for new construction in certain zones of our study area and that facility siting on potentially active faults be avoided.« less

  12. LOS ALAMOS NATIONAL LABORATORIES: LASER-INDUCED BREAKDOWN SPECTROMETER FOR METALS-CONTAMINATED SOIL CHARACTERIZATION

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. This report describes ...

  13. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-01-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)

  14. Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, S.

    1992-06-01

    This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)

  15. Respirators: Air Purifying, Self-Study, Course 40723

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chochoms, Michael

    Respirators: Air Purifying Self-Study (COURSE 40723) is designed for Los Alamos National Laboratory (LANL) workers, support services subcontractors, and other LANL subcontractors who work under the LANL Respiratory Protection Program (RPP). This course also meets the air-purifying respirators (APRs) retraining requirement.

  16. A Manual for the Prediction of Blast and Fragment Loadings on Structures

    DTIC Science & Technology

    1981-08-01

    H. and Amsden, A. A., "Fluid Dynamics---An Introductory 4100, Los Alamos Scientific Laboratory, University of California, New Mexico, February 1970...Navy Explosives Safety Board, "The Missile Hazard from Explosions," Technical Paper No. 2, ,December 1945 . Arvidsson, T. and Eriksson, L... Alamos Scientific Laboratory, Los Alamos , New-Mexico, June 1975. "Behavior and Utilization of Explosives in Engineering Design and Biomechda-. ical

  17. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-06-01

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclearmore » Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been corrected; and, (2) A substantial portion of the uncorrected deficiencies, 86 (49 percent) were considered by the walk-down teams to be significant enough to warrant compensatory actions until the deficiency was corrected or was tracked to closure through implementation of corrective actions. Further, we found that 32 of the significant deficiencies had been closed by the previous Los Alamos contractor, prior to LANS assuming responsibility for operation of the Laboratory, even though the deficiencies had not been corrected. A fire protection expert provided technical support during the audit. As an example of uncorrected problems, LANS had not resolved, by performing periodic tests, a deficiency identified in 2006 regarding a kitchen hood fire suppression system in a facility located within the Los Alamos Neutron Science Center. Such systems are required to be tested twice a year by the National Fire Protection Association standard, a standard that had been adopted by Department of Energy under DOE Order 420.1B. Yet, in 2006, the LANS walk-down team recognized that this system had not been inspected since May 2004 and noted that deficient suppression systems could result in significantly high levels of property damage and loss. After we brought this issue to management's attention on February 6, 2009, LANS officials stated that the Laboratory would correct this deficiency. As with the problems involving the fire suppression system, we observed that LANS had not always corrected life safety deficiencies involving building exits at one of its primary facilities. This included providing a secondary emergency exit for a building with occupants on multiple floor levels. LANS had removed personnel from the third floor and improved the sprinkler system of the facility, but it had still not provided a secondary exit for personnel on the second floor by the time we completed our review. NNSA has since stated that this fire protection issue will be completely addressed by relocating personnel from the second floor. Perhaps most serious, our testing revealed that a number of deficiencies were formally closed even though actual corrective action had not been completed. Notably, we observed that action had not been taken to resolve a recommendation to replace a fire alarm panel found to be unreliable. After the walk-down was conducted but prior to contract transition, the former contractor closed the recommendation in its action tracking database even though the panel had not been replaced. The walk-down team had categorized the fire alarm system as requiring replacement since it had been modified many times, was old and obsolete, and had very limited available spare parts. In fact, the walk-down team concluded that the panel 'must be considered to be unreliable and should have a very high priority for replacement'.« less

  18. Environmental surveillance at Los Alamos during 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohen, K.; Stoker, A.; Stone, G.

    1994-07-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory during 1992. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring results to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1992 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Using comparisons with standards, regulations,more » and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, laboratory employees, or the environment.« less

  19. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  20. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  1. 2016 Los Alamos National Laboratory Hazardous Waste Minimization Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzman, Sonja L.; English, Charles Joe

    Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less

  2. 75 FR 24957 - Decision to Evaluate a Petition to Designate a Class of Employees From the Los Alamos National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Laboratory. Location: Los Alamos, New Mexico. Job Titles and/or Job Duties: All employees of the Department.... Hinnefeld, Interim Director, Division of Compensation Analysis and Support, National Institute for...

  3. Los Alamos on Radio Café: Nina Lanza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina; Domandi, Mary-Charlotte

    2017-04-11

    First up in the new series is Los Alamos National Laboratory’s Nina Lanza from the Space and Remote Sensing group. Lanza is a planetary geologist who has been part of the Mars Curiosity Rover “ChemCam” team since 2012.

  4. Total Quality Management and nuclear weapons: A historian`s perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  5. Fifty-one years of Los Alamos Spacecraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  6. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  7. LANL Transfers Glowing Bio Technology to Sandia Biotech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorick, Kevin; Nakhla, Tony; Pino, Tony

    2012-05-21

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  8. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema

    Rorick, Kevin; Nakhla, Tony; Pino, Tony; Hadley, David

    2018-03-02

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

  9. Los Alamos Using Neutrons to Stop Nuclear Smugglers

    ScienceCinema

    Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin

    2018-02-14

    Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.

  10. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignitionmore » points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.« less

  11. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-09

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last knowmore » occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL.« less

  12. LANL Environmental ALARA Program Status Report for CY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Ruedig, Elizabeth

    2017-02-24

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection (LANL2016a). In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residualmore » radioactive material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective in 2014 (LANL 2014a). The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  13. LANL Environmental ALARA Program Status Report for CY 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Gillis, Jessica Mcdonnel

    2016-03-29

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection. In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residual radioactivemore » material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective on September 28, 2011. The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  14. CICE, The Los Alamos Sea Ice Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth; Lipscomb, William; Jones, Philip

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of themore » ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.« less

  15. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  16. Connections: All Issues

    Science.gov Websites

    ; Getting ready for the Northern New Mexico RoboRAVE on March 7; Today's tuberculosis; Lab supercomputer Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale training program; Fighting tuberculosis with better diagnostics; Santa Fe's Fiesta Queen... Connections

  17. Crystalline and Crystalline International Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  18. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidalgo, Stephen P.; Keyser, Richard J.

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  19. The Manhattan Project

    Science.gov Websites

    Short History of Oak Ridge National Laboratory (1943 - 1993) Los Alamos, New Mexico * Selected as Atomic Weapons Laboratory * Site Selection * History @ Los Alamos Hanford, Washington * Selected as Plutonium Production Facility * History of the Hanford Site 1943 - 1990 Chicago, Illinois * Promethean Boldness at

  20. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, J.C.

    1981-09-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.

  1. Stormwater Pollution Prevention Plan TA-60 Asphalt Batch Plant Revision 2: January 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Leonard Frank

    The Stormwater Pollution Prevention Team (PPT) is applicable to operations at the Technical Area (TA)- 60 Asphalt Batch Plant (ABP) located on Eniwetok Drive/Sigma Mesa, in Los Alamos County, New Mexico at Los Alamos National Laboratory (LANL).

  2. A Manual for the Prediction of Blast and Fragment Loadings on Structures

    DTIC Science & Technology

    1981-08-15

    ives , assembles exp los ives components i n t o assemblies , does more i n s p e c t i o n s , and f i n a l l y packages and s h i p s t h...4100, Los Alamos S c i e n t i f i c Laboratory, Un ive r s i ty of C a l i f o r n i a , Los Alamos , New Mexico, February 1970. 4.29 " I n t e...Massachusetts I n s t i t u t e of Technology, 1976. B- 7 Bdzi l , J. B. and Davis, W. C., "Time-Dependent Detonat ions," J.A-5926-MS, Los Alamos S c i

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Donald Rej

    Dr. Donald Rej of Los Alamos National Laboratory presents an overview of issues, needs, and performance gaps related to materials testing and how they are being addressed at their facility. Current projects such as the Los Alamos Neutron Science Center (LANSCE) and Matter-Radiation Interactions in Extremes (MaRIE) are also discussed.

  4. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132,more » and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.« less

  5. Los Alamos, Toshiba probing Fukushima with cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher

    2014-06-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create imagesmore » of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.« less

  6. Los Alamos, Toshiba probing Fukushima with cosmic rays

    ScienceCinema

    Morris, Christopher

    2018-01-16

    Los Alamos National Laboratory has announced an impending partnership with Toshiba Corporation to use a Los Alamos technique called muon tomography to safely peer inside the cores of the Fukushima Daiichi reactors and create high-resolution images of the damaged nuclear material inside without ever breaching the cores themselves. The initiative could reduce the time required to clean up the disabled complex by at least a decade and greatly reduce radiation exposure to personnel working at the plant. Muon radiography (also called cosmic-ray radiography) uses secondary particles generated when cosmic rays collide with upper regions of Earth's atmosphere to create images of the objects that the particles, called muons, penetrate. The process is analogous to an X-ray image, except muons are produced naturally and do not damage the materials they contact. Muon radiography has been used before in imaginative applications such as mapping the interior of the Great Pyramid at Giza, but Los Alamos's muon tomography technique represents a vast improvement over earlier technology.

  7. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  8. Optical velocimetry at the Los Alamos Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Tupa, Dale; Tainter, Amy; Neukirch, Levi; Hollander, Brian; Buttler, William; Holtkamp, David; The Los Alamos Proton Radiography Team Team

    2016-05-01

    The Los Alamos Proton Radiography Facility (pRad) employs a high-energy proton beam to image the properties and behavior of materials driven by high explosives. We will discuss features of pRad and describe some recent experiments, highlighting optical diagnostics for surface velocity measurements.

  9. Los Alamos on Radio Café: Ludmil Alexandrov

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domandi, Mary-Charlotte; Alexandrov, Ludmil

    In a creative breakthrough in cancer research, Ludmil Alexandrov, the J. Robert Oppenheimer Distinguished Postdoctoral Fellow at Los Alamos National Laboratory, combines Big Data, supercomputing and machine-learning to identify the telltale mutations of cancer. Knowing these mutational signatures can help researchers develop new methods of prevention.

  10. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finstad, Casey Charles

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  11. Los Alamos Fires From Landsat 7

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 9, 2000, the Landsat 7 satellite acquired an image of the area around Los Alamos, New Mexico. The Landsat 7 satellite acquired this image from 427 miles in space through its sensor called the Enhanced Thematic Mapper Plus (ETM+). Evident within the imagery is a view of the ongoing Cerro Grande fire near the town of Los Alamos and the Los Alamos National Laboratory. Combining the high-resolution (30 meters per pixel in this scene) imaging capacity of ETM+ with its multi-spectral capabilities allows scientists to penetrate the smoke plume and see the structure of the fire on the surface. Notice the high-level of detail in the infrared image (bottom), in which burn scars are clearly distinguished from the hotter smoldering and flaming parts of the fire. Within this image pair several features are clearly visible, including the Cerro Grande fire and smoke plume, the town of Los Alamos, the Los Alamos National Laboratory and associated property, and Cerro Grande peak. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false color image where vegetation appears as bright to dark green (bottom image). Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. The areas recently burned appear black. Dark red to bright red patches, or linear features within the burned area, are the hottest and possibly actively burning areas of the fire. The fire is spreading downslope and the front of the fire is readily detectable about 2 kilometers to the west and south of Los Alamos. Combining ETM+ channels 3, 2, and 1 provides a true-color image of the greater Los Alamos region (top image). Vegetation is generally dark to medium green. Forested areas are very dark green while herbaceous vegetation is medium green. Rangeland or more open areas appear as tan or light brown. Areas with extensive pavement or urban development appear white to light green. Less densely-developed residential areas appear medium green and golf courses are medium green. The fires and areas recently burned are obscured by smoke plumes which are white to light blue. Landsat 7 data are archived and available from EDC. Image by Rob Simmon, Earth Observatory, NASA Goddard Space Flight Center. Data courtesy Randy McKinley, EROS Data Center (EDC)

  12. Environmental surveillance at Los Alamos during 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-05-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1987. Routine monitoring for radiation and radioactive or chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1987 cover: external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface and ground waters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriatemore » standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are insignificant and do not pose a threat to the public, Laboratory employees, or the environment. 113 refs., 33 figs., 120 tabs.« less

  13. Environmental surveillance at Los Alamos during 1991. Environmental protection group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewart, J.; Kohen, K.L.

    1993-08-01

    This report describes the environmental surveillance program conducted by Los Alamos National Laboratory during 1991. Routine monitoring for radiation and for radioactive and chemical materials is conducted on the Laboratory site as well as in the surrounding region. Monitoring results are used to determine compliance with appropriate standards and to permit early identification of potentially undesirable trends. Results and interpretation of data for 1991 cover external penetrating radiation; quantities of airborne emissions and effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Comparisons with appropriatemore » standards, regulations, and background levels provide the basis for concluding that environmental effects from Laboratory operations are small and do not pose a threat to the public, Laboratory employees, or the environment.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, F.E.; Bolivar, S.L.

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one daymore » are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.« less

  15. Infrasonic observations of large-scale HE events

    NASA Technical Reports Server (NTRS)

    Whitaker, Rodney W.; Mutschlecner, J. Paul; Davidson, Masha B.; Noel, Susan D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given.

  16. Environmental surveillance at Los Alamos during 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report describes the environmental surveillance program at Los Alamos National Laboratory (LANL or the Laboratory) during 1995. The Laboratory routinely monitors for radiation and for radioactive and nonradioactive materials at (or on) Laboratory sites as well as in the surrounding region. LANL uses the monitoring result to determine compliance with appropriate standards and to identify potentially undesirable trends. Data were collected in 1995 to assess external penetrating radiation; quantities of airborne emissions and liquid effluents; concentrations of chemicals and radionuclides in ambient air, surface waters and groundwaters, municipal water supply, soils and sediments, and foodstuffs; and environmental compliance. Usingmore » comparisons with standards, regulations, and background levels, this report concludes that environmental effects from Laboratory operations are small and do not pose a demonstrable threat to the public, Laboratory employees, or the environment.« less

  17. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  18. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.

  19. 75 FR 60745 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos...

  20. 77 FR 3257 - Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... DEPARTMENT OF ENERGY Transfer of Land Tracts Located at Los Alamos National Laboratory, New Mexico AGENCY: National Nuclear Security Administration, U.S. Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is...

  1. Los Alamos high-power proton linac designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.P.

    1995-10-01

    Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.

  2. PAGOSA physics manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weseloh, Wayne N.; Clancy, Sean P.; Painter, James W.

    2010-08-01

    PAGOSA is a computational fluid dynamics computer program developed at Los Alamos National Laboratory (LANL) for the study of high-speed compressible flow and high-rate material deformation. PAGOSA is a three-dimensional Eulerian finite difference code, solving problems with a wide variety of equations of state (EOSs), material strength, and explosive modeling options.

  3. Dual Axis Radiographic Hydrodynamic Test Facility

    Science.gov Websites

    4:17 How DARHT Works The weapons programs at Los Alamos have one principal mission: ensure the safety, security, and effectiveness of nuclear weapons in our nation's enduring stockpile. One critical completed a successful two-axis, multiframe hydrotest. Two additional successful tests-one of which was

  4. Roadmap to MaRIE May 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    Los Alamos National Laboratory (LANL) hosted the Stewardship Science Academic Programs Symposium, which is designed to foster relationships among young scientists, sponsors and the National Nuclear Security Administration national laboratories. The event highlights much of the work done by prominent scientists and allows attendees to view the multiple on site facilities at LANL.

  5. Erosion and Deposition Monitoring Using High-Density Aerial Lidar and Geomorphic Change Detection Software Analysis at Los Alamos National Laboratory, Los Alamos New Mexico, LA-UR-17-26743

    NASA Astrophysics Data System (ADS)

    Walker, T.; Kostrubala, T. L.; Muggleton, S. R.; Veenis, S.; Reid, K. D.; White, A. B.

    2017-12-01

    The Los Alamos National Laboratory storm water program installed sediment transport mitigation structures to reduce the migration of contaminants within the Los Alamos and Pueblo (LA/P) watershed in Los Alamos, NM. The goals of these structures are to minimize storm water runoff and erosion, enhance deposition, and reduce mobility of contaminated sediments. Previous geomorphological monitoring used GPS surveyed cross-sections on a reach scale to interpolate annual geomorphic change in sediment volumes. While monitoring has confirmed the LA/P watershed structures are performing as designed, the cross-section method proved difficult to estimate uncertainty and the coverage area was limited. A new method, using the Geomorphic Change Detection (GCD) plugin for ESRI ArcGIS developed by Wheaton et al. (2010), with high-density aerial lidar data, has been used to provide high confidence uncertainty estimates and greater areal coverage. Following the 2014 monsoon season, airborne lidar data has been collected annually and the resulting DEMs processed using the GCD method. Additionally, a more accurate characterization of low-amplitude geomorphic changes, typical of low-flow/low-rainfall monsoon years, has been documented by applying a spatially variable error to volume change calculations using the GCD based fuzzy inference system (FIS). The FIS method allows for the calculation of uncertainty based on data set quality and density e.g. point cloud density, ground slope, and degree of surface roughness. At the 95% confidence level, propagated uncertainty estimates of the 2015 and 2016 lidar DEM comparisons yielded detectable changes greater than 0.3 m - 0.46 m. Geomorphic processes identified and verified in the field are typified by low-amplitude, within-channel aggradation and incision and out of channel bank collapse that over the course of a monsoon season result in localized and dectetable change. While the resulting reach scale volume change from 2015 - 2016 was often nonsignificant, it is estimated with a higher degree of confidence than the previous cross-section/interpolation method. Results from comparisons of the recent low-intensity rainfalls/storm peak discharges monsoon season DEMs have established the expected amount of geomorphic change to be minor and localized, yet demonstrable.

  6. Monte Carlo: in the beginning and some great expectations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metropolis, N.

    1985-01-01

    The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conferencemore » was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences.« less

  7. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  8. Reactive multiphase flow simulation workshop summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanderHeyden, W.B.

    1995-09-01

    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphasemore » flow with input from workshop participants will be issued separately.« less

  9. Preliminary theoretical acoustic and rf sounding calculations for MILL RACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S.I.; Dubois, P.F.

    1981-11-02

    As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio wavesmore » through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented. (WHK)« less

  10. MW Spallation Neutron Sources for Fusion Materials Testing

    ScienceCinema

    Dr. Donald Rej

    2018-04-18

    Dr. Donald Rej of Los Alamos National Laboratory presents an overview of issues, needs, and performance gaps related to materials testing and how they are being addressed at their facility. Current projects such as the Los Alamos Neutron Science Center (LANSCE) and Matter-Radiation Interactions in Extremes (MaRIE) are also discussed.

  11. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  12. National Educators' Workshop: Update 1996

    NASA Technical Reports Server (NTRS)

    Gardner, James E.; Freeman, Ginger L.; Jacobs, James; Parkin, Don M.

    1997-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 96, held at Los Alamos National Laboratory, Los Alamos, New Mexico on October 27-30, 1996. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  13. Stormwater Pollution Prevention Plan for the TA-03-38 Metals Fabrication Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector AA-Fabricated Metal Products as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Metals Fabrication Shop at Los Alamos National Laboratory. Los Alamos National Laboratorymore » (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Metals Fabrication Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  14. Stormwater Pollution Prevention Plan for the TA-60-01 Heavy Equipment Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Heavy Equipment Shop at Los Alamos National Laboratory. Los Alamos Nationalmore » Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60-01 Heavy Equipment Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  15. History of Los Alamos Participation in Active Experiments in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pongratz, Morris B.

    Beginning with the Teak nuclear test in 1958, Los Alamos has a long history of participation in active experiments in space. The last pertinent nuclear tests were the five explosions as part of the Dominic series in 1962. The Partial Test Ban Treaty signed in August 1963 prohibited all test detonations of nuclear weapons except for those conducted underground. Beginning with the “Apple” thermite barium release in June 1968 Los Alamos has participated in nearly 100 non-nuclear experiments in space, the last being the NASA-sponsored “AA-2” strontium and europium doped barium thermite releases in the Arecibo beam in July ofmore » 1992. The rationale for these experiments ranged from studying basic plasma processes such as gradientdriven structuring and velocity-space instabilities to illuminating the convection of plasmas in the ionosphere and polar cap to ionospheric depletion experiments to the B.E.A.R. 1-MeV neutral particle beam test in 1989. This report reviews the objectives, techniques and diagnostics of Los Alamos participation in active experiments in space.« less

  16. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lowermore » Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.« less

  17. Stormwater Pollution Prevention Plan for the TA-60-02 Salvage Warehouse, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. The applicable stormwater discharge permit is EPA General Permit Registration Number NMR053915 (Los Alamos National Security (LANS) (U.S. EPA, June 2015). Contents of the Junemore » 4, 2015 Multi-sector General Permit can be viewed at: https://www.epa.gov/sites/production/files/2015- 10/documents/msgp2015_finalpermit.pdf This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-02 Salvage and Warehouse facility at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60-02 Salvage/ Warehouse and associated areas. The current permit expires at midnight on June 4, 2020. A copy of the facility NOI and LANS Delegation of Authority Letter are located in Appendix C of this SWPPP.« less

  18. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronowski, D.R.; Madsen, M.M.

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less

  19. The Russian-American high magnetic field collaboration

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Christian, J. M.; Freeman, B. L.

    We report here on a joint experimental shot series with teams from Russia and the United States. The program was based largely upon the MC-1 generator, a high magnetic field explosive flux compressor, developed by the Pavlovskii group at Arzamas-16. The series was of historical interest in that it was carried out in a Los Alamos security area, the first time for such a collaboration. We discuss a number of technical issues involved in matching Russian hardware with Los Alamos explosives, initiation systems and the seed field energy source, as well as comparison of field measuring diagnostics finished by the two teams. We conclude with a discussion of an investigation of the high temperature superconductor YBa2Cu3O7 (YBCO), employing these generators. The low temperature critical magnetic field of this material was found to be 340 +/- 40 T, as determined from a 94 GHz microwave interferometer developed for this purpose.

  20. Accelerator System Model (ASM) user manual with physics and engineering model documentation. ASM version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-07-01

    The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less

  1. Induction Inserts at the Los Alamos PSR

    NASA Astrophysics Data System (ADS)

    Ng, K. Y.

    2002-12-01

    Ferrite-loaded induction tuners installed in the Los Alamos Proton Storage Ring have been successful in compensating space-charge effects. However, the resistive part of the ferrite introduces unacceptable microwave instability and severe bunch lengthening. An effective cure was found by heating the ferrite cores up to ˜ 130°C. An understanding of the instability and cure is presented.

  2. Los Alamos National Laboratory Facility Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Ronald Owen

    2015-06-05

    This series of slides depicts the Los Alamos Neutron Science Center (LANSCE). The Center's 800-MeV linac produces H + and H - beams as well as beams of moderated (cold to 1 MeV) and unmoderated (0.1 to 600 MeV) neutrons. Experimental facilities and their capabilities and characteristics are outlined. Among these are LENZ, SPIDER, and DANCE.

  3. Surface water data at Los Alamos National Laboratory: 2009 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; McCullough, Betsy

    2010-05-01

    The principal investigators collected and computed surface water discharge data from 73 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  4. Surface water data at Los Alamos National Laboratory: 2008 water year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, David; Cata, Betsy; Kuyumjian, Gregory

    2009-09-01

    The principal investigators collected and computed surface water discharge data from 69 stream-gage stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs— two that flow into Cañon de Valle and one that flows into Water Canyon.

  5. Notes on Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    In 1954 an unknown author drafted a report, reprinted below, describing the Laboratory and the community as they existed in late 1953. This report, perhaps intended to be crafted into a public relations document, is valuable because it gives us an autobiographical look at Los Alamos during the first half of the 1950s. It has been edited to enhance readability.

  6. High Peak Power Ka-Band Gyrotron Oscillator Experiment.

    DTIC Science & Technology

    1987-09-21

    edge of a 3.44-cm- diam. cylindrical carbon cathode by means of explosive plasma formation. The diode is immersed in the field of the main solenoidal... Prosnitz Dr. T.J. Orzechowski C ’ ’ Dr. J. Thase 56 ’V Los Alamos Scientific Laboratory P.O. Box 1663, AT5-827 Los Alamos, New Mexico 87545 Attn

  7. SUMO Micrometeorology

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Powers, Heath [Los Alamos National Laboratory; Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Daily average ambient micrometeorological conditions at the SUMO site. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  8. SUMO Leaf Water Potential

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Monthly pre-dawn and midday shoot water potentials for each target tree. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  9. SUMO Maximum Assimilation

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Powers, Heath [Los Alamos National Laboratory; Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Maximum assimilation rate measured monthly for each target tree. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  10. The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group

    2015-01-01

    The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.

  11. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, J.T. III

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.

    This report presents a Hydrogeochemical and Stream Sediment Reconnaissance of the Christian NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sakemore » of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through D describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses.« less

  13. Environmental surveillance at Los Alamos during 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David; Poff, Ben; Hjeresen, Denny

    2010-09-30

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) environmental organization, as required by US Department of Energy Order 5400.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and nearmore » the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2009. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (air in Chapter 4; water and sediments in Chapters 5 and 6; soils in Chapter 7; and foodstuffs and biota in Chapter 8) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. The new Chapter 10 describes the Laboratory’s environmental stewardship efforts and provides an overview of the health of the Rio Grande. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the Laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information.« less

  14. Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos

    NASA Astrophysics Data System (ADS)

    Parsons, D. Kent

    2017-09-01

    Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.

  15. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-31

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  16. LANL robotics site overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beugelsdijk, T.J.

    1990-11-01

    This paper reports on robotics applications at the Los Alamos National Laboratory. The topics of the paper include the ROBOCAL project to assay all nuclear materials entering and leaving the process floor at the Los Alamos Plutonium Facility, the isotope detector fabrication project, a plutonium dissolution robotic system, a safeguards waste automated measurement instrument, and DNA filter array construction. This report consists of overheads only.

  17. Surface Water Data at Los Alamos National Laboratory: 2002 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.A. Shaull; D. Ortiz; M.R. Alexander

    2003-03-03

    The principal investigators collected and computed surface water discharge data from 34 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data from 16 stations.

  18. Surface Water Data at Los Alamos National Laboratory 2006 Water Year

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.P. Romero, D. Ortiz, G. Kuyumjian

    2007-08-01

    The principal investigators collected and computed surface water discharge data from 44 stream-gaging stations that cover most of Los Alamos National Laboratory and one at Bandelier National Monument. Also included are discharge data from three springs--two that flow into Canon de Valle and one that flows into Water Canyon--and peak flow data for 44 stations.

  19. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  20. Los Alamos Team Demonstrates Bottle Scanner Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  1. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2018-02-13

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  2. Analysis of Space Coherent LIDAR Wind Mission

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1997-01-01

    An evaluation of the performance of a coherent Doppler lidar proposed by a team comprising the NASA Marshall Space Flight Center, Lockheed Martin Space Company, University of Wisconsin and Los Alamos National Laboratory to NASA's Earth System Science Pathfinder (ESSP) program was performed. The design went through several iterations and only the performance of the final design is summarized here.

  3. Fire Science Strategy: Resource Conservation and Climate Change

    DTIC Science & Technology

    2014-09-01

    SMOKE MANAGEMENT ISSUES: CONCLUSIONS—KEY RESEARCH/DEMONSTRATION GAPS COVER PHOTO: CHONG, JOEY 2011. USDA FOREST SERVICE. FORT JACKSON...Fire Science Program LiDAR Light Detection and Ranging LANL Los Alamos National Lab NASA National Aeronautics and Space Administration NCAR...entities include the National Aeronautics and Space Administration ( NASA ), EPA, National Center for Atmospheric Research (NCAR), National Institute of

  4. Space nuclear safety program. Progress report, October-December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, T.G.

    1986-05-01

    This quarterly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  5. SUMO Target Tree Info

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)

    2018-01-01

    Information regarding species, plot, treatment, and chamber associated with each Tree_ID for use with all other raw data files. The Los Alamos Survival-Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. The tree community at SUMO is dominated by pinon pine (Pinus edulis Engelm.) and one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) with Gambel oak (Quercus gambelli Nutt.), and the occasional ponderosa pine (Pinus ponderosa Douglas ex C.Lawson). Soils are Hackroy clay loam and range in depth from 40 to 80 cm above a parent material of volcanic tuff. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  6. Geohydrology and simulation of ground-water flow near Los Alamos, north-central New Mexico

    USGS Publications Warehouse

    Frenzel, P.F.

    1995-01-01

    An existing model was modified in recognition of new geohydrologic interpretations and adjusted to simulate hydrographs in well fields in the Los Alamos area. Hydraulic-head drawdowns at the Buckman well field resulting from two projected ground-water-withdrawal alternatives were estimated with the modified model. The Chaquehui formation (informal usage) is the main new feature of recent hydrologic interpretations for the Los Alamos area. The Chaquehui occupies a 'channel' that was eroded or faulted into the Tesuque Formation, and the Chaquehui is more permeable than the Tesuque. The Chaquehui is a major producing zone in the Pajarito Mesa well field and to a lesser extent in the Guaje well field. Model modification included splitting the four layers of the McAda-Wasiolek model (McAda, D.P., and Wasiolek, Maryann, 1988, Simulation of the regional geohydrology of the Tesuque aquifer system near Santa Fe, New Mexico: U.S. Geological Survey Water- Resources Investigations Report 87-4056, 71 p.) into eight layers to better simulate vertical ground-water movement. Other model modifications were limited as much as possible to the area of interest near Los Alamos and consisted mainly of adjusting hydraulic-conductivity values representing the Tesuque Formation, Chaquehui formation (informal usage), and Puye Formation, and adjusting simulated recharge along the Pajarito Fault Zone west of Los Alamos. Adjustments were based mainly on simulation of fluctuations in measured hydraulic heads near Los Alamos. Two possible alternative plans for replacing Guaje well field production were suggested by Los Alamos National Laboratory. In the first plan (Guaje alternative), the Guaje field would be renewed with four new wells replacing the existing production wells in the Guaje field. In the second plan (Pajarito-Otowi alternative), the Guaje well field would be retired and its former production would be made up by additional withdrawals from the Pajarito Mesa and Otowi well fields. A projection for each of these alternatives was made through 2012 using the new eight- layer model. In the Guaje field, projected hydraulic heads at the end of 2012 were as much as 50 feet lower with the Guaje alternative; in the Pajarito Mesa field, hydraulic heads were as much as 12 feet higher with the Guaje alternative. At the western end of the Los Alamos well field, projected hydraulic heads were about 20 feet higher with the Guaje alternative; at the eastern end of the Los Alamos field, the difference between alternatives was much less. At the Buckman field, projected hydraulic heads were about 2 feet higher with the Guaje alternative because the Buckman field is closer to the Pajarito Mesa field than to the Guaje field. Ways of improving the understanding of the flow system include developing a more accurate representation of the structure and extent of the Tesuque Formation, Chaquehui formation, and Puye Formation of the Santa Fe Group and obtaining more detailed geologic and hydrologic data for the Chaquehui and Puye. Data that describe water chemistry, hydraulic head, and degree of saturation would be valuable for determining the location and quantity of recharge on the Pajarito Plateau, especially along the west side of the Plateau and in canyon bottoms. Chloride concentrations in soil at the top of the Bandelier Tuff could be used to verify the concept that evapotranspiration accounts for nearly all precipitation over a large area of the plateau.

  7. Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil,Benny Manuel; Ballance, Robert; Haskell, Karen

    Cielo is a massively parallel supercomputer funded by the DOE/NNSA Advanced Simulation and Computing (ASC) program, and operated by the Alliance for Computing at Extreme Scale (ACES), a partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). The primary Cielo compute platform is physically located at Los Alamos National Laboratory. This Cielo Computational Environment Usage Model documents the capabilities and the environment to be provided for the Q1 FY12 Level 2 Cielo Capability Computing (CCC) Platform Production Readiness Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model ismore » focused on the needs of the ASC user working in the secure computing environments at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, or Sandia National Laboratories, but also addresses the needs of users working in the unclassified environment. The Cielo Computational Environment Usage Model maps the provided capabilities to the tri-Lab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the Production Readiness Milestone user environment capabilities of the ASC community. A description of ACE requirements met, and those requirements that are not met, are included in each section of this document. The Cielo Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the tri-Lab community.« less

  8. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less

  9. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less

  10. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-31

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee.

  11. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2018-04-16

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  12. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  13. Los Alamos Novel Rocket Design Flight Tested

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  14. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  15. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  16. SUMO Chamber Conditions

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Powers, Heath [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Chamber conditions (temperature, relative humidity, vapor pressure deficit) for SUMO Open Top Chambers (OTCs) used to control air temperatures surrounding heated and control chamber trees. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  17. Los Alamos National Laboratory Science Education Programs. Progress report, October 1, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, D.H.

    During the 1994 summer institute NTEP teachers worked in coordination with LANL and the Los Alamos Middle School and Mountain Elementary School to gain experience in communicating on-line, to gain further information from the Internet and in using electronic Bulletin Board Systems (BBSs) to exchange ideas with other teachers. To build on their telecommunications skills, NTEP teachers participated in the International Telecommunications In Education Conference (Tel*ED `94) at the Albuquerque Convention Center on November 11 & 12, 1994. They attended the multimedia keynote address, various workshops highlighting many aspects of educational telecommunications skills, and the Telecomm Rodeo sponsored by Losmore » Alamos National Laboratory. The Rodeo featured many presentations by Laboratory personnel and educational institutions on ways in which telecommunications technologies can be use din the classroom. Many were of the `hands-on` type, so that teachers were able to try out methods and equipment and evaluate their usefulness in their own schools and classrooms. Some of the presentations featured were the Geonet educational BBS system, the Supercomputing Challenge, and the Sunrise Project, all sponsored by LANL; the `CU-seeMe` live video software, various simulation software packages, networking help, and many other interesting and useful exhibits.« less

  18. Visiting Scholars Program to Attract Brightest Minds | Poster

    Cancer.gov

    By Walter G. Hubert, Guest Writer National laboratories have a knack for assembling critical mass … and Frederick National Laboratory for Cancer Research, the newest kid on the block among such recognized research and development (R&D) leaders like Los Alamos, Oakridge, Sandia, and others, is just the place to bring together the brightest minds to take on the toughest

  19. LASL benchmark performance 1978. [CDC STAR-100, 6600, 7600, Cyber 73, and CRAY-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKnight, A.L.

    1979-08-01

    This report presents the results of running several benchmark programs on a CDC STAR-100, a Cray Research CRAY-1, a CDC 6600, a CDC 7600, and a CDC Cyber 73. The benchmark effort included CRAY-1's at several installations running different operating systems and compilers. This benchmark is part of an ongoing program at Los Alamos Scientific Laboratory to collect performance data and monitor the development trend of supercomputers. 3 tables.

  20. A Year of Programming.

    DTIC Science & Technology

    1987-01-01

    ramgopal@im4u.utexas.edu (606)- 262 -0765 30 University of Texas Institute of Encapsulation, Modularization, TEXAS Year of Programming and Reusability Austin...Mathematics University of Maryland White Hall College Park, MD 20742 Ithaca, NY 14853 den@brillig.umd.edu 607-255- 4640 301-454-1516 Mr. Lars W. Ericson Mr...Bedford, MA 01730 Mail Stop B2% farmer%faron@mitre-bedford.ARPA Los Alamos, NM 87545 617- 271 -2749 jhf@lanl.gov 505-667-7158 Ms. Amy Felty Mr. Arthur

  1. Review of Rover fuel element protective coating development at Los Alamos

    NASA Technical Reports Server (NTRS)

    Wallace, Terry C.

    1991-01-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.

  2. Golden hamster: quantitative anatomy with age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, R.G.; London, J.E.; Drake, G.A.

    1979-10-01

    The Syrian (golden) hamster, Mesocricetus auratus, is used widely in biomedical research, particularly in experimental carcinogenesis. The data presented here, a relatively complete addition to data already in print, give standard values for tissues and blood components for the conditions at the Los Alamos Scientific Laboratory (LASL) in Los Alamos, New Mexico. This study delineates median values for the tissues and blood parameters versus the time from weaning through 18 months of age.

  3. Resource Management Technology: Los Alamos Technical Capabilities for Emergency Management,

    DTIC Science & Technology

    1983-07-18

    synthetic fuels from coal (analogous to the Fischer-Tropsch process), olefin polymerization, and flue - gas desulfurization . In order to successfully...world. It has been a major research effort here for decades. Also, in the area of desulfurization of flue gases, Los Alamos scientists have been...Tectonic and Geochemical Controls on Copper-Molybdenum Porphyry Mineralization in the Southwestern United States (M. J. Aldrich and A. W. Laughlin) 1.0.6

  4. Index of Oral Histories Relating to Naval Research, Development, and Acquisition

    DTIC Science & Technology

    1992-07-01

    various backgrounds. At the Manhattan Project- Los Alamos , Parsons contributed "common sense" and was probably second in command. He and Oppenheimer were...Mentioned: Groves, LTG Leslie Oppenheimer , Dr. Robert Parsons, RADM William 5 58 Institutions: Los Alamos Laboratory Naval Ordnance Laboratory... TECHNICAL INFORMATION CENTER 92 1 *" (! 01 9226761 PREFACE In November 1984 my predecessor, Dr. David K. Allison, published an "Index of Oral Histories

  5. Neutron capture cross section of ^243Am

    NASA Astrophysics Data System (ADS)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  6. Saving Water at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Andy

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility thatmore » supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.« less

  7. Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)

    NASA Astrophysics Data System (ADS)

    Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa

    2017-10-01

    The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.

  8. Space Science at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  9. Saving Water at Los Alamos National Laboratory

    ScienceCinema

    Erickson, Andy

    2018-01-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  10. Automated Blazar Light Curves Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Spencer James

    Every night in a remote clearing called Fenton Hill high in the Jemez Mountains of central New Mexico, a bank of robotically controlled telescopes tilt their lenses to the sky for another round of observation through digital imaging. Los Alamos National Laboratory’s Thinking Telescopes project is watching for celestial transients including high-power cosmic flashes called, and like all science, it can be messy work. To keep the project clicking along, Los Alamos scientists routinely install equipment upgrades, maintain the site, and refine the sophisticated machinelearning computer programs that process those images and extract useful data from them. Each week themore » system amasses 100,000 digital images of the heavens, some of which are compromised by clouds, wind gusts, focus problems, and so on. For a graduate student at the Lab taking a year’s break between master’s and Ph.D. studies, working with state-of-the-art autonomous telescopes that can make fundamental discoveries feels light years beyond the classroom.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canistermore » integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair) fouling of o-rings, (B) leakage through simulated cracks in o-rings, and (C) air leakage due to inadequately tightened canister lids. The Los Alamos POC instrument determined pertinent air flow and pressure quantities, and this knowledge was used to specify a customized Isaac® (Z axis, Salt Lake City, UT) leak test module. The final Los Alamos IPFT (incorporating the Isaac® leak test module) was used to repeat the tests in the Instrument Development Plan (with simulated filter clogging tests and canister leak pathway tests). The Los Alamos IPFT instrument is capable of determining filter clogging and leak rate conditions, without requiring removal of the container lid. The IPFT measures pressure decay rate from 1.7E-03 in WC/sec to 1.7E-01 in WC/sec. On the same unit scale, helium leak testing of canisters has a range from 5.7E-07 in WC/sec to 1.9E-03 in WC/sec. For a 5-quart storage canister, the IPFT measures equivalent leak flow rates from 0.03 to 3.0 cc/sec. The IPFT does not provide the same sensitivity as helium leak testing, but is able to gauge the assembled condition of as-found and in-situ canisters.« less

  12. University of New Mexico-Los Alamos National Laboratory Program in Volcanology

    NASA Astrophysics Data System (ADS)

    Goff, F.; Fischer, T.; Baldridge, W.; Wohletz, K.; Smith, G.; Heiken, G.; Valentine, G.; Elston, W.

    2002-05-01

    The UNM-LANL Program in Volcanology was a vision of Wolf Elston in the late 1980s. Finally established in mid-1992, the program takes advantage of the extensive volcanic record preserved in northern New Mexico, and of the unique expertise and exceptional research facilities existing at the two institutions. Courses are directed toward upper division and graduate level students. The Los Alamos participants are adjunct professors and they take an active role in creating courses, advising thesis candidates, and providing research support. The curriculum is flexible but has a core upper division class in Physical Volcanology. Other classes offered in various years have included Volcanology and Human Affairs; Magmatic and Geothermal Systems; Tectonics and Magma Generation; Volcanoes of North America; Instrumentation for Volcanology; and Advanced Igneous Petrology. Perhaps the most renowned class in the program is the Volcanology Summer Field Course offered in even numbered years. This 3.5-week class is based in the Jemez Mountains volcanic field, which contains the famous Valles caldera (1.2 Ma to 50 ka). All types of calc-alkaline to alkalic domes, flows, tuffs, and intrusions, plus derivative sediments, mineralized zones, and thermal fluids are available for instructional purposes. Students are required to complete nine rigorous field exercises starting with basic instruction in pyroclastic fall, flow, and surge, then progressing towards hydrothermally altered, intracaldera resurgent dome and moat deposits in an active hot spring and fumarole system. The class is open to graduate students, advanced undergraduates, and private sector employees with special needs. Enrollment is competitive with limited financial support and limited space for 17 students. Evening lectures, study time, lodging, and meals are provided at the UNM-owned Young's Ranch built in the 1920s, nestled in a canyon flanked by orange cliffs of Bandelier Tuff. About 120 students from 12 countries have taken this class. Former students have pursued advanced degrees in the Geosciences and taken jobs with academia, research laboratories, volcanology observatories and/or the private sector. Although a degree in Volcanology is not granted, the program has supported and/or contributed to the degrees and theses of many UNM and non-UNM students. In some circumstances, thesis research can be conducted at Los Alamos while enrolled at UNM. For more information contact any of the co-authors listed above.

  13. A Long History of Supercomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grider, Gary

    As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.

  14. Three Species of odonata Observed at TA-3 in September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foy, Bernard R.; Hathcock, Charles Dean

    2016-04-14

    The spatial distribution of odonates (dragonflies and damselflies) in northern New Mexico is only partly known. Information about the occurrence of species is currently being accumulated by professional and amateur biologists. Los Alamos National Laboratory has a considerable amount of suitable habitat for odonates. With effort, it is likely that many species will be discovered in Los Alamos County that have yet to be documented, which would aid in general knowledge about odonate distribution and habitat needs. We report the occurrence of three species of odonates at Los Alamos National Laboratory in the autumn season of 2015. Foy visited themore » location on 2 September 2015 and discovered two Black Meadowhawk dragonflies (Sympetrum danae). The authors returned on 10 September 2015 and photographed one individual. We also photographed a Striped Meadowhawk (Sympetrum pallipes) and a Black-fronted Forktail (Ischnura denticollis), the latter being a damselfly.« less

  15. A New Generation of Los Alamos Opacity Tables

    DOE PAGES

    Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...

    2016-01-26

    We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less

  16. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    DOE PAGES

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. Here, they are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integal cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributionsmore » in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.« less

  17. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T.S.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the streammore » monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.« less

  18. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Leslie A.

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects ofmore » ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.« less

  19. Status and test report on the LANL-Boeing APLE/HPO flying-wire beam-profile monitor. Status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilke, M.; Barlow, D.; Fortgang, C.

    1994-07-01

    The High-Power Oscillator (HPO) demonstration of the Average Power Laser Experiment (APLE) is a collaboration by Los Alamos National Laboratory and Boeing to demonstrate a 10 kW average power, 10 {mu}m free electron laser (FEL). As part of the collaboration, Los Alamos National Laboratory (LANL) is responsible for many of the electron beam diagnostics in the linac, transport, and laser sections. Because of the high duty factor and power of the electron beam, special diagnostics are required. This report describes the flying wire diagnostic required to monitor the beam profile during high-power, high-duty operation. The authors describe the diagnostic andmore » prototype tests on the Los Alamos APLE Prototype Experiment (APEX) FEL. They also describe the current status of the flying wires being built for APLE.« less

  20. Proposed Methodology for Design of Carbon Fiber Reinforced Polymer Spike Anchors into Reinforced Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Eric Robert

    The included methodology, calculations, and drawings support design of Carbon Fiber Reinforced Polymer (CFRP) spike anchors for securing U-wrap CFRP onto reinforced concrete Tbeams. This content pertains to an installation in one of Los Alamos National Laboratory’s facilities. The anchors are part of a seismic rehabilitation to the subject facility. The information contained here is for information purposes only. The reader is encouraged to verify all equations, details, and methodology prior to usage in future projects. However, development of the content contained here complied with Los Alamos National Laboratory’s NQA-1 quality assurance program for nuclear structures. Furthermore, the formulations andmore » details came from the referenced published literature. This literature represents the current state of the art for FRP anchor design. Construction personnel tested the subject anchor design to the required demand level demonstrated in the calculation. The testing demonstrated the ability of the anchors noted to carry loads in excess of 15 kips in direct tension. The anchors were not tested to failure in part because of the hazards associated with testing large-capacity tensile systems to failure. The calculation, methodology, and drawing originator was Eric MacFarlane of Los Alamos National Laboratory’s (LANL) Office of Seismic Hazards and Risk Mitigation (OSHRM). The checker for all components was Mike Salmon of the LANL OSHRM. The independent reviewers of all components were Insung Kim and Loring Wyllie of Degenkolb Engineers. Note that Insung Kim contributed to the initial formulations in the calculations that pertained directly to his Doctoral research.« less

  1. Physics Division progress report, January 1, 1984-September 30, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less

  2. Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.

    1994-08-01

    Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gammamore » spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.« less

  3. National NIF Diagnostic Program Fiscal Year 2002 Second Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGowan, B

    Since October 2001 the development of the facility diagnostics for NIF has been funded by the NIF Director through the National NIF Diagnostic Program (NNDP). The current emphasis of the NNDP is on diagnostics for the early NIF quad scheduled to be available for experiment commissioning in FY03. During the past six months the NNDP has set in place processes for funding diagnostics, developing requirements for diagnostics, design reviews and monthly status reporting. Those processes are described in an interim management plan for diagnostics (''National NIF Diagnostic Program Interim Plan'', NIF-0081315, April 2002) and a draft Program Execution Plan (''Programmore » Execution Plan for the National NlF Diagnostic Program'', NIF-0072083, October 2001) and documents cited therein. Work has been funded at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Naval Research Laboratory (NRL), Sandia National Laboratories (SNL), Bechtel Nevada at Los Alamos and Santa Barbara. There are no major technical risks with the early diagnostics. The main concerns relate to integration of the diagnostics into the facility, all such issues are being worked. This report is organized to show the schedule and budget status and a summary of Change Control Board actions for the past six months. The following sections then provide short descriptions of the status of each diagnostic. Where design reviews or requirements documents are cited, the documents are available on the Diagnostics file server or on request.« less

  4. Computer applications. Annual report, October 1, 1977-September 30, 1978. [LASL data base management activities regarding agricultural phenomena in southwestern US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, W.M.; Campbell, C.L.; Lester, J.V.

    1979-09-01

    The Los Alamos Scientific Laboratory is funded by the US Department of Agriculture to apply scientific and computer technology to solve agricultural problems. This report summarizes work during the period October 1, 1977, through September 30, 1978, on the application of computer technology to three areas: (1) surveillance of slaughterplants in Texas; (2) a pilot study of the New Mexico Brucellosis Eradication Program; and (3) the Market Cattle Identification program in Texas.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.

    As a part of the project “High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation” an Integrated Research Program (IRP) project from the U.S. Department of Energy, Nuclear Energy University Programs (NEUP), TEM geometry samples of ferritic cladding alloys, Ni based super alloys and model alloys were irradiated in the BOR-60 reactor to ~16 dpa at ~370°C and ~400°C. Samples were sent to Los Alamos National Laboratory and subjected to shear punch testing. This report presents the results from this testing.

  6. Visiting Scholars Program to Attract Brightest Minds | Poster

    Cancer.gov

    By Walter G. Hubert, Guest Writer National laboratories have a knack for assembling critical mass … and Frederick National Laboratory for Cancer Research, the newest kid on the block among such recognized research and development (R&D) leaders like Los Alamos, Oakridge, Sandia, and others, is just the place to bring together the brightest minds to take on the toughest challenges in cancer and AIDS research.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    Annual Illness and Injury Surveillance Program report for 2003 for Los Alamos National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  8. PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRAY, DEVIN W.; COSTA, DAVID A.

    2007-02-02

    After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

  9. Environmental Surveillance at Los Alamos during 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Environmental Surveillance at Los Alamos reports are prepared annually by the Los Alamos National Laboratory (the Laboratory) Environmental Directorate, as required by US Department of Energy Order 450.1, General Environmental Protection Program, and US Department of Energy Order 231.1A, Environment, Safety, and Health Reporting. These annual reports summarize environmental data that are used to determine compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and departmental policies. Additional data, beyond the minimum required, are also gathered and reported as part of the Laboratory’s efforts to ensure public safety and to monitor environmental quality at and nearmore » the Laboratory. Chapter 1 provides an overview of the Laboratory’s major environmental programs and explains the risks and the actions taken to reduce risks at the Laboratory from environmental legacies and waste management operations. Chapter 2 reports the Laboratory’s compliance status for 2007. Chapter 3 provides a summary of the maximum radiological dose the public and biota populations could have potentially received from Laboratory operations and discusses chemical exposures. The environmental surveillance and monitoring data are organized by environmental media (Chapter 4, air; Chapters 5 and 6, water and sediments; Chapter 7, soils; and Chapter 8, foodstuffs and biota) in a format to meet the needs of a general and scientific audience. Chapter 9 provides a summary of the status of environmental restoration work around LANL. A glossary and a list of acronyms and abbreviations are in the back of the report. Appendix A explains the standards for environmental contaminants, Appendix B explains the units of measurements used in this report, Appendix C describes the laboratory’s technical areas and their associated programs, and Appendix D provides web links to more information. In printed copies of this report or Executive Summary, we have also enclosed a compact disc with a copy of the full report in Adobe Acrobat (PDF) form and detailed supplemental tables of data from 2007 in Microsoft Excel format. These files are also available for download from the web (http://www.lanl.gov/community-environment/environmental- stewardship/environmental-report.php).« less

  10. The Response of Mid-Latitude Ionospheric TEC to Geomagnetic Storms and Solar Flares

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Roussel-Dupre, R.

    2004-12-01

    The effects of geomagnetic storms and solar flares on the ionosphere are manifested as large magnitude sudden fluctuations in the Total Electron Content (TEC). In this study, the broadband VHF signal (30-100MHz) data from the Los Alamos Portable Pulser (LAPP) received by the FORTE (Fast Onboard Recording of Transient Events) satellite during the period of 1997-2002 are used to investigate the mean TEC variation response to geomagnetic storm. A total of 14 geomagnetic storms are selected where FORTE-LAPP data are available to derive average TECs during extended storm-time and non-storm time for a given storm. The variations in the ionospheric TECs at Los Alamos, New Mexico are investigated for the 14 selected geomagnetic storms. In most cases (12 out of 14), we see overall enhancements in TEC as a result of geomagnetic storm impact at Los Alamos. The relative enhancements in TEC at Los Alamos due to a geomagnetic storm can reach as high as 3-fold of the normal TEC values. The overall absolute enhancements in TEC at Los Alamos are up to about 30 TECU. The magnitude of TEC enhancements is diversified over all storm categories without a clean-cut relationship between the storm intensity and the TEC enhancement. The mean TEC variation response to geomagnetic storm can be complicated when several consecutive storms occurred in a row and a net TEC reduction may be seen. Data of continuous GPS TEC measurements are collected at a 1-minute time resolution during July 2004 when 5 X-class solar flares occurred from two Allen Osborne Associates ICS-4000Z GPS receivers mounted at the Physics Building at Los Alamos National Laboratory. In detecting effects of solar flares on the ionospheric TEC, we apply appropriate filtering to remove the linear trend of TEC and a coherent processing of TEC variations simultaneously for all the visible GPS satellites in a given time interval. The responses of ionospheric TEC at minute time scale to these powerful impulsive solar flares are investigated. The onset time of the ionospheric response and the magnitude of the TEC fluctuations and its time derivative are examined along with their relationships with the solar flux characteristics, duration of the flare and location of the flare on the Sun, X-ray emission variations during the flares, and local time of the flare occurrence.

  11. Laser Hazards Bibliography

    DTIC Science & Technology

    1989-10-31

    Report LA-3204, Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (6 October 1964). 95. Craik , K. J. W., On the effects of...surgery (letter), Am J Opt, 97(5): 658-9,8 (May 1984). 437. Scott, Jennifer , "The computation of temperature rises in the human eye induced by infrared...radiation," Phys Med Biol, 33(2): 243-257 (1988). 438. Scott, Jennifer , "A finite modelof heat transport in the human eye," Phsy Med Biol, 33(2): 227-241

  12. LANL Transfers Glowing Bio Technology to Sandia Biotech

    ScienceCinema

    Nakhla, Tony; Pino, Tony; Hadley, David

    2018-03-02

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

  13. LANL Transfers Glowing Bio Technology to Sandia Biotech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhla, Tony; Pino, Tony; Hadley, David

    2012-05-21

    Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

  14. Amphibians and Reptiles of Los Alamos County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  15. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect tomore » see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.« less

  16. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  17. Theoretical modeling of laser-induced plasmas using the ATOMIC code

    NASA Astrophysics Data System (ADS)

    Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle

    2014-10-01

    We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  18. Stormwater Pollution Prevention Plan for the TA-03-38 Carpenter's Shop, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector A–Timber Products, Subsector A4 (Wood Products Facilities not elsewhere classified) as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-38 Carpenter’s Shop at Los Alamosmore » National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-38 Carpenter’s Shop and associated areas. The current permit expires at midnight on June 4, 2020.« less

  19. Stormwater Pollution Prevention Plan for the TA-03-22 Power and Steam Plant, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector O-Steam Electric Generating Facilities as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-22 Power and Steam Plant at Los Alamos National Laboratory. Los Alamosmore » National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-22 Power and Steam Plant and associated areas. The current permit expires at midnight on June 4, 2020.« less

  20. The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krick, M.S.; Harker, W.C.; Rinard, P.M.

    1998-12-01

    Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows{reg_sign} and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium.

  1. Longitudinal space charge compensation at PSR

    NASA Astrophysics Data System (ADS)

    Neri, Filippo

    1998-11-01

    The longitudinal space-charge force in neutron spallation source compressor ring or other high intensity proton storage rings can be compensated by introducing an insert in the ring. The effect of the inductor is to cancel all or part of the space charge potential, because it is capacitive. The Proton Storage Ring at Los Alamos National Laboratory is a compressor ring used to produce short pulses of spallation neutrons. Inductive inserts design for space charge compensation at the Los Alamos Proton Storage Ring is described.

  2. Electromagnetic Pulse (EMP) from the Magnetic Bubble Source as a Discriminator of Underground Nuclear Explosions, Including Cavity Decoupling

    DTIC Science & Technology

    2011-02-01

    planned shock physics experiments (SPE) 4. Design/develop a very low frequency (VLF)/ELF pulsar to serve as an underground calibration source 5...Carry out underground (in tunnels, etc.) pulsar calibration experiments  A-1 APPENDIX A. ABBREVIATIONS AND ACRONYMS CORRTEX Continuous Reflectometry...Site Office P.O. Box 98521 M/S NLV 101 Las Vegas, NV 89193-8521 ATTN: Ping Lee 1 Los Alamos National Laboratory PO Box 1663 Los Alamos, NM 87545

  3. User Guide for the Plotting Software for the Los Alamos National Laboratory Nuclear Weapons Analysis Tools Version 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleland, Timothy James

    The Los Alamos National Laboratory Plotting Software for the Nuclear Weapons Analysis Tools is a Java™ application based upon the open source library JFreeChart. The software provides a capability for plotting data on graphs with a rich variety of display options while allowing the viewer interaction via graph manipulation and scaling to best view the data. The graph types include XY plots, Date XY plots, Bar plots and Histogram plots.

  4. A Long History of Supercomputing

    ScienceCinema

    Grider, Gary

    2018-06-13

    As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.

  5. Critical Infrastructure Protection- Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.

  6. Los Alamos Canyon Ice Rink Parking Flood Plain Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Keller, David Charles

    2015-02-10

    The project location is in Los Alamos Canyon east of the ice rink facility at the intersection of West and Omega roads (Figure 1). Forty eight parking spaces will be constructed on the north and south side of Omega Road, and a lighted walking path will be constructed to the ice rink. Some trees will be removed during this action. A guardrail of approximately 400 feet will be constructed along the north side of West Road to prevent unsafe parking in that area.

  7. Computational Modeling of Dynamic Failure Mechanisms in Armor/Anti-Armor Materials

    DTIC Science & Technology

    1991-02-01

    June 1983. Xavier, Celio; Da Costa, Carlos R.C. Estudo do Comportamento Mecanico de Placas de Alumina Sob Impacto Balistico. (A Study of the Mechanical...0 40 10 0.0 La 2.0 SUMMARY OF RESULTS The emphasis of the project in the first two years was to evaluate the literature and survey private industry...of Materials of Interest for Lightweight Armor," Report LA -3858-MS, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, January 22, 1968

  8. Science in 60 – The Hunt for Antarctic Meteorites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina

    2015-12-08

    She's the "coolest" thing in science, searching the ice sheets of Antarctica for meteorites from outer space. Los Alamos National Laboratory scientist Nina Lanza has signed up to spend nearly six weeks in a tent on the Antarctic ice sheet. Why would anyone do such a thing? For science, obviously! In the premiere episode of Los Alamos National Laboratory's "Science in 60" video series, Lanza gives us the low-down in 60 seconds on the why and how of hunting meteorites on the ice.

  9. The First Thirty-six Years: A History of the Albuquerque District, 1935-1971

    DTIC Science & Technology

    1973-01-01

    rights of American citizens in the nation’s history . ZIA PROJECT LOS ALAMOS RANCH SCHOOL, FULLER LODGE Late in 1938 German scientists discovered that...explosive components of the atomic bomb were loaded into the rear seat of a sedan at Los Alamos for the journey to Trinity . Further assembly and tests of...TYPE 3. DATES COVERED 00-00-1973 to 00-00-1973 4. TITLE AND SUBTITLE The First Thirty-six Years : A History of the Albuquerque District, 1935

  10. Zapping Rocks on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  11. Science in 60 – The Hunt for Antarctic Meteorites

    ScienceCinema

    Lanza, Nina

    2018-01-16

    She's the "coolest" thing in science, searching the ice sheets of Antarctica for meteorites from outer space. Los Alamos National Laboratory scientist Nina Lanza has signed up to spend nearly six weeks in a tent on the Antarctic ice sheet. Why would anyone do such a thing? For science, obviously! In the premiere episode of Los Alamos National Laboratory's "Science in 60" video series, Lanza gives us the low-down in 60 seconds on the why and how of hunting meteorites on the ice.

  12. Radonuclide concentrations in bees and honey in the vicinity of Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, P.R.; Armstrong, D.R.

    Honeybees are effective monitors of environmental pollution; they forage for P len and nectar over a large area ({congruent}7 km{sup 2}), accumulate contaminants from air, water, plants, and soil, and return to a fixed location (the hive) for sampling. Los Alamos National Laboratory (LANL), in fact, has maintained a network of honeybee colonies within and around LANL for 16 years (1979 to 1994); the objectives for maintaining this honeybee network were to (1) determine the bioavailability of radionuclides in the environment, and (2) the committed effective dose equivalent (CEDE) to people who may consume honey from these beehives (Los Alamosmore » and White Rock/Pajarito Acres lownsites). Of all the radionuclides studied over the years, tritium (314) was consistently picked up by the bees and was most readily transferred to the honey. Tritium in honey collected from hives located within LANL, for example, ranged in concentration from 0.07 Bq mL{sup -1} (1.9 pCi mL{sup -1}) to 27.75 Bq mL{sup -1} (749.9 pCi mL{sup -1}) (LANL Neutron Science Center); the average concentration of {sup 3}H in honey Collected from hives located around the LANL area (perimeter) ranged in concentration from 0.34 Bq mL{sup -1} (9.3 pCi mL{sup -1}) (White Rock/Pajarito Acres townsite) to 3.67 Bq mL{sup -1} (99.3 pCi mL{sup -1}) (Los Alamos townsite). Overall, the CEDE-based on the average concentration of all radionuclides measured over the years-from consuming 5 kg (11 lbs) of honey collected from hives located within the townsites of Los Alamos and White Rock/Pajarito Acres, after regional (background) as been subtracted, was 0.074 {mu}Sv y{sup -1} (0.0074 mrem y{sup -1}) and 0.024 pSv y{sup -1} (0.0024 mrem y{sup -1}), respectively. The highest CEDE, based on the mean + 2 standard deviations (95% confidence level), was 0.334 fiSv y{sup -1} (0.0334 mrem y{sup -1}) (Los Alamos townsitc).« less

  13. 2006 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

    2008-06-13

    The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

  14. TRAC-PF1/MOD1 pretest predictions of MIST experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyack, B.E.; Steiner, J.L.; Siebe, D.A.

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 to provide integral system test data on specific issues and phenomena relevant to post small-break loss-of-coolant accidents (SBLOCAs) in Babcock and Wilcox plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. During Fiscal Year 1986, Los Alamos performed five MIST pretest analyses. The five experiments were chosen on the basis of their potential either to approach the facility limits or to challenge the predictive capability of the TRAC-PF1/MOD1 code. Three SBLOCA tests weremore » examined which included nominal test conditions, throttled auxiliary feedwater and asymmetric steam-generator cooldown, and reduced high-pressure-injection (HPI) capacity, respectively. Also analyzed were two ''feed-and-bleed'' cooling tests with reduced HPI and delayed HPI initiation. Results of the tests showed that the MIST facility limits would not be approached in the five tests considered. Early comparisons with preliminary test data indicate that the TRAC-PF1/MOD1 code is correctly calculating the dominant phenomena occurring in the MIST facility during the tests. Posttest analyses are planned to provide a quantitative assessment of the code's ability to predict MIST transients.« less

  15. Post-Cold War Science and Technology at Los Alamos

    NASA Astrophysics Data System (ADS)

    Browne, John C.

    2002-04-01

    Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances including our national security contributions, and discuss some of challenges for Los Alamos in the future.

  16. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goforth, James H; Oona, Henn; Tasker, Douglas G

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclearmore » Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.« less

  17. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  18. SUMO Nitrogen Labeling Experiment and Soil Biogeochemistry

    DOE Data Explorer

    Grossiord, Charlotte [Swiss Federal Research Institute WSL; Gessler, Arthur [Swiss Federal Research Institute WSL; Reed, Sasha [USGS; Borrego, Isaac [USGS; Collins, Adam [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Ryan, Max [Los Alamos National Laboratory; Schönbeck, Leonie [Swiss Federal Research Institute WSL; Sevanto, Sanna [Los Alamos National Laboratory; Villagrosa, Alberto [University of Alicante; McDowell, Nate [Pacific Northwest National Laboratory (PNNL)

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. In a semi-arid woodland, adult trees (piñon and juniper) were exposed to chronic warming (+4 °C) and precipitation reduction (-45 %). After five years of continuous treatment exposure, soil and plant nitrogen isotopic composition were measured to assess plant nitrogen allocation. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  19. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists ofmore » three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.« less

  20. Stormwater Pollution Prevention Plan - TA-60 Asphalt Batch Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Leonard Frank

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector P-Land Transportation and Warehousing as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-60-01 Asphalt Batch Plant at Los Alamos National Laboratory. Los Alamos Nationalmore » Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-60 Asphalt Batch Plant and associated areas. The current permit expires at midnight on June 4, 2020.« less

  1. Light element opacities of astrophysical interest from ATOMIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less

  2. Results of Testing the Relative Oxidizing Hazard of Wipes and KMI Zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ams, Bridget Elaine

    This report includes the results from testing performed on the relative oxidizing hazard of a number of organic sorbing wipe materials, as well as KMI zeolite. These studies were undertaken to address a need by the Los Alamos National Laboratory (LANL) Hazardous Materials Management group, which requires a material that can sorb small spills in a glovebox without creating a disposal hazard due to the potential for oxidation reactions, as requested in Request for Testing of Wipes and Zeolite for Los Alamos National Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-002) and Request for Testing of Chamois Material for Los Alamos Nationalmore » Laboratory Hazardous Materials Group (NPl-7) (NPl-7-17-005). This set oftests is a continuation of previous testing described in Results from Preparation and Testing of Sorbents Mixed with (DWT-RPT-003), which provided data for the Waste Isolation Pilot Plant's Basis of Knowledge. The Basis of Knowledge establishes criteria for evaluating transuranic (TRU) waste that contains oxidizing chemicals.« less

  3. Water Supply at Los Alamos during 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. N. Maes; S. G. McLin; W. D. Purtymun

    1998-12-01

    Production of potable municipal water supplies during 1997 totaled about 1,285.9 million gallons from wells in the Guaje, Pajarito, and Otowi well fields. There was no water used from the spring gallery in Water Canyon or from Guaje Reservoir during 1997. About 2.4 million gallons of water from Los Alamos Reservoir was used to irrigate public parks and recreational lands. The total water usage in 1997 was about 1,288.3 million gallons, or about 135 gallons per day per person living in Los Alamos County. Groundwater pumpage was down about 82.2 million gallons in 1997 compared with the pumpage in 1996.more » Four new replacement wells were drilled and cased in Guaje Canyon between October 1997 and March 1998. These wells are currently being developed and aquifer tests are being performed. A special report summarizing the geological, geophysical, and well construction logs will be issued in the near future for these new wells.« less

  4. Institutional plan FY 1999--FY 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified themore » need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.« less

  5. James L. Tuck Los Alamos ball lightning pioneer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    1999-07-01

    James Tuck was well known for starting the Project Sherwood group at Los Alamos Scientific Laboratory in 1952. This group was formed to study and develop concepts for controlled fusion energy. In his later years after retiring from Controlled Fusion Division, he continued research at Los Alamos on the topic of ball lightning. He traveled widely giving lectures on both observations of others and his own experimental efforts. He collected anecdotal observations obtained from those in his lecture audiences during his travels and from responses from newspaper articles where he asked for specific information from ball lightning observers. He finallymore » cut off this collection of data when the number of responses became overwhelming. The author's primary publication on ball lightning was a short laboratory report. He planned on publishing a book on the subject but this was never completed before his death. Tuck focused his experimental effort on attempting to duplicate the production of plasma balls claimed to be observed in US Navy submarines when a switch was opened under overload conditions with battery power. During lunch breaks he made use of a Los Alamos N-division battery bank facility to mock up a submarine power pack and switch gear. This non-funded effort was abruptly terminated when an explosion occurred in the facility. An overview of Tuck's research and views will be given. The flavor Jim's personality as well as a ball produced with his experimental apparatus will be shown using video chips.« less

  6. Tritium concentrations in bees and honey at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    Los Alamos National Laboratory (LANL) has maintained a network of honey bee colonies at LANL, perimeter (Los Alamos townsite and White Rock/Pajarito Acres) and regional (background) areas for over 15 years; the main objective of this honey bee network was to help determine the bioavailability of certain radionuclides in the environment. Of all the radionuclides studied ({sup 3}H, {sup 57}Co, {sup 7}Be, {sup 22}Na, {sup 54}Mn, {sup 83}Rb, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 90}Sr and total U), tritium was consistently detected in bees and was most readily transferred to the honey. In fact, honey collected from hives locatedmore » at TA-21, TA-33, TA-50, TA-53, and TA-54 and from White Rock/Pajarito Acres contained significantly higher concentrations of {sup 3}H than regional background hives. Based on the average concentration of all radionuclides measured over the years, the effective dose equivalent (EDE) from consuming 5 kg (11 lb) of honey collected from Los Alamos (townsite) and White Rock/Pajarito Acres, after regional background has been subtracted, was 0.0186 ({+-}0.0507) and 0.0016 ({+-}0.0010) mrem/yr, respectively. The highest EDE, based on the mean + 2SD (95% confidence level), was 0.1200 mrem/y; this was <0.2% of the International Commission on Radiological Protection permissible dose limit of 100 mrem/yr from all pathways.« less

  7. OPERATING THE WAND AND HERCULES PROTOTYPE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. GRUETZMACHER; ET AL

    2001-01-01

    Two prototype systems for low-density Green is Clean (GIC) waste at Los Alamos National Laboratory (LANL) have been in operation for three years at the Solid Waste Operation's (SWOs) non-destructive assay (NDA) building. The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) are used to verify the waste generator's acceptable knowledge (AK) that low-density waste is nonradioactive. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAs) that has been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator AK. GIC waste that is verifiedmore » clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from RCAs at LANL might be free of contamination. To date, with pilot programs at five facilities at LANL, 3000 cubic feet of GIC waste has been verified clean by these two prototype systems. Both the WAND and HERCULES systems are highly sensitive measurement systems optimized to detect very small quantities of common LANL radionuclides. Both of the systems use a set of phoswich scintillation detectors in close proximity to the waste, which have the capability of detecting plutonium-239 concentrations below 3 pCi per gram of low density waste. Both systems detect low-energy x-rays and a broad range of gamma rays (10-2000 keV), while the WAND system also detects high energy beta particles (>100 keV). The WAND system consists of a bank of six shielded detectors which screen low density shredded waste or stacked sheets of paper moving under the detectors in a twelve inch swath on a conveyor belt. The WAND system was developed and tested at the Los Alamos Plutonium Facility in conjunction with instrument system designers from the Los Alamos Safeguards Science and Technology group. The HERCULES system consists of a bank of three shielded detectors which screen low-density waste in two cubic foot cardboard boxes or in bags sitting on a turntable. Waste that does not pass the verification process can be examined within the facility to determine the type and quantity of the contamination and its origin within a waste container. The paper discusses lessons learned that have helped generators improve their AK segregation.« less

  8. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keepin, G.R.

    Over the years the Los Alamos safeguards program has developed, tested, and implemented a broad range of passive and active nondestructive analysis (NDA) instruments (based on gamma and x-ray detection and neutron counting) that are now widely employed in safeguarding nuclear materials of all forms. Here very briefly, the major categories of gamma ray and neutron based NDA techniques, give some representative examples of NDA instruments currently in use, and cite a few notable instances of state-of-the-art NDA technique development. Historical aspects and a broad overview of the safeguards program are also presented.

  10. Reconnaissance assessment of erosion and sedimentation in the Canada de los Alamos basin, Los Angeles and Ventura Counties, California

    USGS Publications Warehouse

    Knott, J.M.

    1980-01-01

    An assessment of present erosion and sedimentation conditions in the Ca?ada de los Alamos basin was made to aid in estimating the impact of off-road-vehicle use on the sediment yield of the basin. Impacts of off-road vehicles were evaluated by reconnaissance techniques and by comparing the study area with other offroad-vehicle sites in California. Major-storm sediment yields for the basin were estimated using empirical equations developed for the Transverse Ranges and measurements of gully erosion in a representative off-road-vehicle basin. Normal major-storm yields of 73,200 cubic yards would have to be increased to about 98,000 cubic yards to account for the existing level of accelerated erosion caused by off-road vehicles. Long-term sediment yield of the Ca?ada de los Alamos basin upstream from its confluence with Gorman Creek, under present conditions of off-road-vehicle use, is approximately 420 cubic yards per square mile per year--a rate that is considerably lower than a previous estimate of 1,270 cubic yards per square mile per year for the total catchment area above Pyramid Lake.

  11. Specific Heat of Octahydro - 1,3,5,7 - Tetranitro - 1,3,5,7 - Tetrazocine (HMX).

    DTIC Science & Technology

    1983-01-01

    impurities probably consist of molecules of similar atomic weights as those present in the HMX molecule. Usually the major impurity in HMX is RDX (5...crystal and powdered blend HMX . Data beyond the normal transformation temperature (i.e. 0*6 transition ) were obtained from 472 to 486*K. Also, due to the...Cady, H.H.; Smith, L.C., "Studies on the Polymorphs of HMX ," Los Alamos Scientific Laboratory, Los Alamos, N.M., LAMS-2652, May 1962. (6) Brill, T.B

  12. Norris Bradbury Tribute by J. Robert Oppenheimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    Stored on a reel of microfilm are three faint and barely readable letters written on the occasion of Norris Bradbury’s fifteen-year anniversary as Director of the (then) Los Alamos Science Laboratory. The first letter, written by Los Alamos Public Relations Officer John V. Young, asks Oppenheimer to send a “congratulatory message to be read at a ceremony honoring Bradbury’s tenure as Laboratory Director. The second letter is Oppenheimer’s response to Young, and the third is Oppenheimer’s congratulatory message to Bradbury. The three letters are transcribed below.

  13. Uncovering the Mysteries of Mars Habitability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger; Lanza, Nina; Clegg, Sam

    Los Alamos scientists are uncovering clues about the habitability of ancient Mars using the ChemCam instrument that sits atop NASA’s Mars Curiosity rover. ChemCam has discovered 25 different elements on Mars—including manganese and boron—providing important information about conditions that could potentially have supported life on the Red Planet. Los Alamos is now developing a new instrument called SuperCam that will ride aboard the Mars 2020 rover and provide greater detail about the mineralogy and the presence of compounds related to the possibility of life on the surface of Mars.

  14. Los Alamos National Laboratory Economic Analysis Capability Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boero, Riccardo; Edwards, Brian Keith; Pasqualini, Donatella

    Los Alamos National Laboratory has developed two types of models to compute the economic impact of infrastructure disruptions. FastEcon is a fast running model that estimates first-­order economic impacts of large scale events such as hurricanes and floods and can be used to identify the amount of economic activity that occurs in a specific area. LANL’s Computable General Equilibrium (CGE) model estimates more comprehensive static and dynamic economic impacts of a broader array of events and captures the interactions between sectors and industries when estimating economic impacts.

  15. Los Alamos National Security, LLC Request for Interest (RFI) for Investment Mentors to participate in the Laboratory’s Entrepreneurial Postdoctoral Pilot.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clow, Shandra Deann

    Los Alamos National Laboratory (LANL) is committed to understanding how the role of venture funding, new investment mechanisms, and fostering the development of a culture of entrepreneurship may enhance the Laboratory and bring strength and creativity to its people. LANL, in partnership with the University of California (UC), has created the Entrepreneurial Postdoctoral Fellowship Pilot (Pilot) to provide an immersion-based learning opportunity to post-doctoral researchers to develop and practice skills in entrepreneurship and comercialization.

  16. Welcome to the Manhattan Project National Historical Park!

    NASA Astrophysics Data System (ADS)

    Kelly, Cynthia

    2017-01-01

    The making of the Manhattan Project National Historical Park took more than five times longer than the Manhattan Project itself. The first efforts to preserve some of the Manhattan Project properties at Los Alamos began in 1999. Fifteen years later, Congress enacted legislation to create a Manhattan Project National Historical Park in late 2014. This session will recount the how the park came into being and what to expect when you visit the park at Los Alamos, NM, Oak Ridge, TN, and Hanford, WA. Welcome to the Manhattan Project National Historical Park!

  17. Proceedings of the Near-Earth-Object Interception Workshop

    NASA Technical Reports Server (NTRS)

    Canavan, G. J. (Editor); Solem, J. C. (Editor); Rather, John D. G. (Editor)

    1993-01-01

    The National Aeronautics and Space Administration Headquarters sponsored the Near-Earth-Object Interception Workshop hosted by the Los Alamos National Laboratory on 14-16 Jan. 1992 at the J. Robert Oppenheimer Study Center in Los Alamos, New Mexico. The Workshop evaluated the issues involved in intercepting celestial objects that could hit the Earth. It covered the technologies for acquiring, tracking, and homing, as well as those for sending interceptors to inspect, rendezvous with, land on, irradiate, deflect, or destroy them. This report records the presentations and technical options reviewed.

  18. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.

    2014-12-01

    This last summer we held the 4th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. On average we have accepted ~10 students per year to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving 20 min presentations on their research projects to the research group. Over the past four years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.

  19. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.

    2015-12-01

    This last summer we held the 5th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and one postdoc hire to date.

  20. The Los Alamos Space Weather Summer School: Career and Research Benefits to Students and Mentors

    NASA Astrophysics Data System (ADS)

    Cowee, M.; Woodroffe, J. R.

    2017-12-01

    In 2016 we held the 6th Los Alamos Space Weather Summer School. This 8-week long program is designed for mid-career graduate students in related fields to come to LANL, receive lectures on space physics and space environment topics, and carry out a research project under the mentorship of LANL staff members. We accept typically 6-8 students via competitive admissions to the program, with a strong applicant pool to choose from. This type of summer school program is relatively unique in the space physics community—there are several other summer schools but they are of shorter duration and do not include the mentor-research project aspect which builds a strong one-on-one connection between the summer student and his/her LANL mentor(s). From the LANL perspective, this program was intended to have several benefits including building collaborations between LANL staff and universities and recruitment of potential postdocs. From the student perspective, this program is not only an educational opportunity but a strong networking opportunity and a chance to enhance their professional skills and publication record. Students are permitted to work on projects directly related to their thesis or on projects in areas that are completely new to them. At the end of the summer school, the students also develop their presentation skills by preparing and giving AGU-style presentations on their research projects to the research group. Over the past five years the summer school has increased in popularity, and the feedback from the student participants has been very positive. Alumni of the program have continued collaborations with their mentors, resulting in publications and conference presentations, and three postdoc hires to date.

  1. Technology transfer: Half-way houses. No. 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview andmore » also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.« less

  2. Los Alamos Before and After the Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On May 4, 2000, a prescribed fire was set at Bandelier National Monument, New Mexico, to clear brush and dead and dying undergrowth to prevent a larger, subsequent wildfire. Unfortunately, due to high winds and extremely dry conditions in the surrounding area, the prescribed fire quickly raged out of control and, by May 10, the blaze had spread into the nearby town of Los Alamos. In all, more than 20,000 people were evacuated from their homes and more than 200 houses were destroyed as the flames consumed about 48,000 acres in and around the Los Alamos area. The pair of images above were acquired by the Enhanced Thematic Mapper Plus (ETM+) sensor, flying aboard NASA's Landsat 7 satellite, shortly before the Los Alamos fire (top image, acquired April 14) and shortly after the fire was extinguished (lower image, June 17). The images reveal the extent of the damage caused by the fire. Combining ETM+ channels 7, 4, and 2 (one visible and two infrared channels) results in a false-color image where vegetation appears as bright to dark green. Forested areas are generally dark green while herbaceous vegetation is light green. Rangeland or more open areas appear pink to light purple. Areas with extensive pavement or urban development appear light blue or white to purple. Less densely-developed residential areas appear light green and golf courses are very bright green. In the lower image, the areas recently burned appear bright red. Landsat 7 data courtesy United States Geological Survey EROS DataCenter. Images by Robert Simmon, NASA GSFC.

  3. Fuels Inventories in the Los Alamos National Laboratory Region: 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balice, R.G.; Oswald, B.P.; Martin, C.

    1999-03-01

    Fifty-four sites were surveyed for fuel levels, vegetational structures, and topographic characteristics. Most of the surveyed sites were on Los Alamos National Laboratory property, however, some surveys were also conducted on U.S. Forest Service property. The overall vegetation of these sites ranged from pinon-juniper woodlands to ponderosa pine forests to mixed conifer forests, and the topographic positions included canyons, mesas, and mountains. The results of these surveys indicate that the understory fuels are the greatest in mixed conifer forests and that overstory fuels are greatest in both mixed conifer forests and ponderosa pine forests on mesas. The geographic distribution ofmore » these fuels would suggest a most credible wildfire scenario for the Los Alamos region. Three major fires have occurred since 1954 and these fires behaved in a manner that is consistent with this scenario. The most credible wildfire scenario was also supported by the results of BEHAVE modeling that used the fuels inventory data as inputs. Output from the BEHAVE model suggested that catastrophic wildfires would continue to occur during any season with sufficiently dry, windy weather.« less

  4. Sampling and Analysis Plan for Assessment of LANL-Derived Residual Radionuclides in Soils within Tract A-16-e for Land Conveyance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillis, Jessica; Ruedig, Elizabeth

    2016-08-25

    Public Law 105-119 directs the U.S. Department of Energy (DOE) to convey or transfer parcels of land to the Incorporated County of Los Alamos or their designees and to the Department of Interior, Bureau of Indian Affairs, in trust for the Pueblo de San Ildefonso. Los Alamos National Security is tasked to support DOE in conveyance and/or transfer of identified land parcels no later than September 2022. Under DOE Order 458.1, Radiation Protection of the Public and the Environment (O458.1, 2013), and Los Alamos National Laboratory (LANL) implementing Policy 412 (P412, 2014a), real property with the potential to contain residualmore » radioactive material must meet the criteria for clearance and release to the public. This Sampling and Analysis Plan (SAP) investigates Tract A-16-e and proposes 50 project-specific soil samples for use in radiological clearance decisions consistent with LANL Procedure ENV-ES-TP-238 (2015a) and guidance in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM, 2000).« less

  5. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  6. The furnace in the basement: Part 1, The early days of the Hot Dry Rock Geothermal Energy Program, 1970--1973

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.C.

    1995-09-01

    This report presents the descriptions of the background information and formation of the Los Alamos Scientific Laboratory Geothermal Energy Group. It discusses the organizational, financial, political, public-relations,geologic, hydrologic, physical, and mechanical problems encountered by the group during the period 1970--1973. It reports the failures as well as the successes of this essential first stage in the development of hot dry rock geothermal energy systems.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fresquez, Philip R.

    Field mice are effective indicators of contaminant presence. This paper reports the concentrations of various radionuclides, heavy metals, polychlorinated biphenyls, high explosives, perchlorate, and dioxin/furans in field mice (mostly deer mice) collected from regional background areas in northern New Mexico. These data, represented as the regional statistical reference level (the mean plus three standard deviations = 99% confidence level), are used to compare with data from field mice collected from areas potentially impacted by Laboratory operations, as per the Environmental Surveillance Program at Los Alamos National Laboratory.

  8. Design of the next generation target at Lujan center, LANSCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferres, Laurent

    2016-07-27

    This is a presentation given at Los Alamos National Laboratory (LANL) on the design of the next generation target at Lujan center, LANSCE. The motivation for this design is to enable new nuclear physics experiments (defense program applications (DANCE)) that are currently limited by neutron intensity or energy resolution available at LANSCE. The target is being redesigned so that the Flight Paths in the upper tier provide a higher intensity in the epithermal and medium energy ranges.

  9. Tacit Knowledge Involvement in the Production of Nuclear Weapons: A Critical Component of a Credible US Nuclear Deterrent in the 21st Century

    DTIC Science & Technology

    2013-02-14

    important in sustaining a credible nuclear deterrent without testing. Thinking in the early days of the Manhattan Project was that designing a nuclear...weapon would occur quickly. Renowned physicist Edward Teller recalled being discouraged from joining the Manhattan Project at Los Alamos National...difficulties with their nuclear program in the early years despite involvement with portions of the Manhattan Project . With permission, the British

  10. Ordnance News

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bofman, Ryan K.

    Since July of 2016 I have been assigned as a Guest Scientist at Los Alamos National Laboratory under the Training With Industries (TWI) Program. Los Alamos National Laboratory has proven to be a challenging and rewarding assignment in which I have found myself at the cutting edge of technologies pertinent to the Explosive Ordnance Disposal career field. In the last 7 months I have had the pleasure of working in an applications group that conducts research at the DOE “Q” and SCI levels. The group “uses a broad range of engineering and scientific expertise to support nuclear counter proliferation (NCP),more » nuclear counter terrorism (NCT), and nuclear emergency response (ER) missions. The Group contributes to national programs intended to protect, deter, and respond to weapons of mass destruction through tailored training and by using specialized applied electromagnetic solutions, rapid prototyping, designing/building/testing/delivering tools and trainers along with novel safing technologies, RF solutions, and cyberphysical applications”. While the specifics of the work performed are classified, the groups “core expertise includes pulsed power; EMP effects; nuclear weapons engineering; weapons effects and materials; predictive/hydrodynamic modeling and testing; firing and penalty systems; x-ray and non-destructive evaluation of threat devices; applied physics; advanced RF systems; powerline communications; novel electronics; 3-D printing of specialized components and cyber assessment/response technologies”. (int.lanl.gov/org/padgs/threat-identification-response/analytics-intelligencetechnology/ a-3/index.shtml)« less

  11. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  12. Multipacting on the trailing edge of proton beam bunches in the PSR and SNS

    NASA Astrophysics Data System (ADS)

    Danilov, V.; Aleksandrov, A.; Galambos, J.; Jeon, D.; Holmes, J.; Olsen, D.

    1999-12-01

    The Proton Storage Ring (PSR) in Los Alamos has a fast intensity-limiting instability, which may result from an electron cloud interaction with the circulating proton beam leading to a transverse mode coupling instability. The most probable mechanism of the electron creation is multipacting. Though the effect depends on many parameters, a model is presented which predicts a large electron creation in the vacuum chamber. A comparison of this effect between the PSR in Los Alamos and the Spallation Neutron Source (SNS) in Oak Ridge is given. In addition, several possibilities to reduce multipactor are discussed.

  13. Threatened and Endangered Species Habitat Management Plan for Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean; Keller, David Charles; Thompson, Brent E.

    Los Alamos National Laboratory’s (LANL) Threatened and Endangered Species Habitat Management Plan (HMP) fulfills a commitment made to the U.S. Department of Energy (DOE) in the “Final Environmental Impact Statement for the Dual-Axis Radiographic Hydrodynamic Test Facility Mitigation Action Plan” (DOE 1996). The HMP received concurrence from the U.S. Fish and Wildlife Service (USFWS) in 1999 (USFWS consultation numbers 2-22-98-I-336 and 2-22-95-I-108). This 2017 update retains the management guidelines from the 1999 HMP for listed species, and updates some descriptive information.

  14. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  15. Zapping Rocks on Mars

    ScienceCinema

    Wiens, Roger

    2018-01-16

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  16. New facility for ion beam materials characterization and modification at Los Alamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.

    1988-01-01

    The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.

  17. What Do Owls, Salamanders, Flycatchers and Cuckoos Have In Common?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrave, Maria A.

    This is an article from the Los Alamos Living magazine. Los Alamos National Laboratory sits on a beautiful and unique landscape that provides important protected habitat to many species, including a few that are federally-listed as threatened or endangered. These species are the Jemez Mountains Salamander, the Mexican Spotted Owl, the Southwestern Willow Flycatcher, the Yellow-billed Cuckoo, and the New Mexico Meadow Jumping Mouse. Part of the job of the Laboratory's wildlife biologists is to survey for these species each year and determine what actions need to be taken if they are found.

  18. Understanding How Biomass Burning Impacts Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiken, Allison

    2016-09-27

    Biomass burning in Africa is creating a plume that spreads across the Atlantic Ocean all the way to Brazil. Allison Aiken, a research scientist at Los Alamos National Laboratory, collects data about the black carbon aerosols within this plume and their impact on the environment to help improve global climate modeling. A leader in energy science, Los Alamos develops climate models in support of the Laboratory’s mission to strengthen the nation’s energy security. Allison’s work is part of FIDO, a field operations team funded by the Energy Department’s Office of Science’s ARM Climate Research Facility.

  19. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mariann R.

    2015-12-01

    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  20. Designing high speed diagnostics

    NASA Astrophysics Data System (ADS)

    Veliz Carrillo, Gerardo; Martinez, Adam; Mula, Swathi; Prestridge, Kathy; Extreme Fluids Team Team

    2017-11-01

    Timing and firing for shock-driven flows is complex because of jitter in the shock tube mechanical drivers. Consequently, experiments require dynamic triggering of diagnostics from pressure transducers. We explain the design process and criteria for setting up re-shock experiments at the Los Alamos Vertical Shock Tube facility, and the requirements for particle image velocimetry and planar laser induced fluorescence measurements necessary for calculating Richtmeyer-Meshkov variable density turbulent statistics. Dynamic triggering of diagnostics allows for further investigation of the development of the Richtemeyer-Meshkov instability at both initial shock and re-shock. Thanks to the Los Alamos National Laboratory for funding our project.

  1. Annual Report on the Activities and Publications of the DHS-DNDO-NTNFC Sponsored Post-doctoral Fellow at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rim, Jung Ho; Tandon, Lav

    This report is a summary of the projects Jung Rim is working on as a DHS postdoctoral fellow at Los Alamos National Laboratory. These research projects are designed to explore different radioanalytical methods to support nuclear forensics applications. The current projects discussed here include development of alpha spectroscopy method for 240/239Pu Isotopic ratio measurement, non-destructive uranium assay method using gamma spectroscopy, and 236U non-destructive uranium analysis using FRAM code. This report documents the work that has been performed since the start of the postdoctoral appointment.

  2. Obituary: Albert G. Petschek, 1928-2004

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling A.; Petschek, Rolfe G.; Libersky, Larry D.

    2005-12-01

    Albert G. Petschek died suddenly 8 July 2004. He enjoyed good health and was very active professionally and personally until his death. He was highly respected, particularly in theoretical physics, for his deep, broad-ranging analytical powers, which resulted in contributions to nuclear physics, astrophysics, atmospheric physics, quantum mechanics, and quantum computing. Albert was born in Prague, Czechoslovakia in 1928. His extended family left Czechoslovakia when its sovereignty was threatened by Germany in 1938 and settled throughout the Western Hemisphere. Albert's father, a banker, settled in Scarsdale, near New York City. Albert graduated from White Plains High School and obtained his BS from MIT in a program accelerated during World War II. While getting his masters degree at the University of Michigan, Albert met his wife, Marilyn, also a physics masters student. In 1953, Albert obtained his PhD from the University of Rochester working with Robert Marshak on aspects of nuclear theory, and joined Los Alamos National Laboratory (LANL), then Los Alamos Scientific Laboratory. Soon thereafter, Albert's younger brother, Harry, also became a PhD physicist. Harry is now well known in plasma physics for reconnection theory. At Los Alamos, Albert worked closely with Carson Mark, Marshall Rosenbluth, and Conrad Longmire designing the first thermonuclear weapons. His derivation of several radiation diffusion solutions, later published as LAMS 2421, remains a classic in its field, as does work on nuclear theory done with Baird Brandow and Hans Bethe during a sabbatical at Cornell in 1961. Bethe was a frequent visitor to Los Alamos and a close friend. A devoted family man, Albert also valued Los Alamos as a safe, stimulating environment for raising an active family. Like many of the scientists at Los Alamos, Albert enjoyed its ready access to outdoor activities such as hiking and skiing. Albert often combined his passions for intellectual activity and the outdoors - discussing Lie groups around a camp fire or the controversies concerning the origin of lightning in electrical storms while hiking through a high mountain pass, watching a thundercloud form. Albert's son Rolfe was inspired in part by such outings to become a professional physicist. For more than a decade following his PhD, Albert's primary scientific work was secret, contributing to the security of his adopted country, and he published little in the open literature. However, by the time of his death, Albert's broad interests and scientific rigor had resulted in 69 cited papers on such diverse topics as nuclear theory, plasma physics, radiation, numerical hydrodynamics and plastic flow, astrophysics (supernovae, quasars, gamma-ray bursts), chemical kinetics, atmospheric physics (plumes, electrification), geotectonics, nuclear weapons effects, inertial fusion and quantum computing. Even this list understates Albert's intellectual breadth: while his scientific publications are all in physics, he was also very knowledgeable in some aspects of biology and finance, and his broad-ranging analytical powers were appreciated by practitioners of many professions. In an increasingly specialized world, Albert's broad interests, wide knowledge, and willingness to think deeply about many problems are inspiring. In 1966 Albert joined the faculty of New Mexico Institute of Mining and Technology (New Mexico Tech) in Socorro, New Mexico, as a full professor. In 1968 he left Tech to spend three years at Science, Systems and Software, a scientific consulting firm in San Diego California, and then returned to New Mexico Tech. Albert's intellectual leadership, the courses he taught in theoretical physics, and his frequent, insightful questions at seminars will long be remembered by those with whom he interacted at New Mexico Tech. Of his 69 published works, 39 were published in collaboration with Stirling Colgate. Colgate, at that time New Mexico Tech's president, had helped recruit Albert there. Albert's PhD students at New Mexico Tech keenly remember his patience, kindness and availability. His office door was always open, and he was eager to lead them through difficulties in their research. Albert maintained his connection to LANL while at New Mexico Tech, consulting at LANL during many holidays and summers. In 1981 he became one of the first Fellows of Los Alamos National Laboratories. Albert also enjoyed service to the science community, editing a book on supernovae (1990), routinely judging local and regional science fairs, and advising LANL on the recipients of the Los Alamos prize. In 1987, Albert retired from New Mexico Tech and returned full time to Los Alamos in the Physics division. Although he subsequently retired from LANL in 1994, he remained very active at LANL until his death, spending three to four days there most weeks as an emeritus fellow, consultant, and frequent attendee of, and questioner at, seminars and colloquia. During this period his published scientific contributions were primarily to quantum computing and numerical hydrodynamics. While he was retired Albert's part time status allowed him to spend yet more time with his family and he explored many parts of the world with them. Albert was an avid hiker, cross country skier, mushroom gatherer, gardener, and bicyclist. He commuted by bicycle between his home in La Senda and the Lab, an elevation change of 200 meters, in almost any weather, until his death. He is survived by Marilyn, his wife of 55 years, his brother Harry, his four children, Evelyn, Rolfe, Elaine, and Mark and three grandchildren.

  3. Tamper Indicating Device: Initial Training, Course 50112

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonner, Stephen Ray; Sandoval, Dana M.

    Tamper Indicating Device (TID): Initial Training, course #50112, covers Los Alamos National Laboratory (LANL) Material Control & Accountability (MC&A) TID Program procedures for the application and removal of TIDs. LANL’s policy is to comply with Department of Energy (DOE) requirements for the use of TIDs consistent with the graded safeguards described in DOE Manual DOE O 474.2, Nuclear Material Control and Accountability. When you have completed this course, you will: recognize standard practices and procedures of the LANL TID Program; have hands-on experience in the application and removal of LANL TIDs, and; verify the application and removal of LANL TIDs.

  4. Crystalline and Crystalline International Disposal Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, Hari S.; Chu, Shaoping; Dittrich, Timothy M.

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland betweenmore » 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.« less

  5. Environmental Assessment and Finding of No Significant Impact: The Proposed Issuance of an Easement to Public Service Company of New Mexico for the Construction and Operation of a 12-inch Natural Gas Pipeline within Los Alamos National Laboratory, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2002-07-30

    The National Nuclear Security Administration (NNSA) has assigned a continuing role to Los Alamos National Laboratory (LANL) in carrying out NNSAs national security mission. To enable LANL to continue this enduring responsibility requires that NNSA maintain the capabilities and capacities required in support of its national mission assignments at LANL. To carry out its Congressionally assigned mission requirements, NNSA must maintain a safe and reliable infrastructure at LANL. Upgrades to the various utility services at LANL have been ongoing together with routine maintenance activities over the years. However, the replacement of a certain portion of natural gas service transmission pipelinemore » is now necessary as this delivery system element has been operating well beyond its original design life for the past 20 to 30 years and components of the line are suffering from normal stresses, strains, and general failures. The Proposed Action is to grant an easement to the Public Service Company of New Mexico (PNM) to construct, operate, and maintain approximately 15,000 feet (4,500 meters) of 12-inch (in.) (30-centimeter [cm]) coated steel natural gas transmission mainline on NNSA-administered land within LANL along Los Alamos Canyon. The new gas line would begin at the existing valve setting located at the bottom of Los Alamos Canyon near the Los Alamos County water well pump house and adjacent to the existing 12-in. (30-cm) PNM gas transmission mainline. The new gas line (owned by PNM) would then cross the streambed and continue east in a new easement obtained by PNM from the NNSA, paralleling the existing electrical power line along the bottom of the canyon. The gas line would then turn northeast near State Road (SR) 4 and be connected to the existing 12-in. (30-cm) coated steel gas transmission mainline, located within the right-of-way (ROW) of SR 502. The Proposed Action would also involve crossing a streambed twice. PNM would bore under the streambed for pipe installation. PNM would also construct and maintain a service road along the pipeline easement. In addition, when construction is complete, the easement would be reseeded. Portions of the Proposed Action are located within potential roosting and nesting habitat for the Mexican spotted owl (Strix occidentalis lucida), a Federally protected threatened species. Surveys over the last seven years have identified no owls within this area. The Proposed Action would be conducted according to the provisions of the LANL Threatened and Endangered Species Habitat Management Plan. Effects would not be adverse to either individuals or potential critical habitat for protected species. Cultural resources within the vicinity of the proposed easement would be avoided with the exception of an historic trail. However, the original trail has been affected by previous activities and no longer has sufficient historical value to be eligible for listing on the National Register of Historic Places. Minimal undisturbed areas would be involved in the Proposed Action. Most of the proposed easement follows an established ROW for the existing electrical power line. There are several potentially contaminated areas within Los Alamos Canyon; however, these areas would be avoided, where possible, or, if avoidance isn't possible or practicable under the Proposed Action, the contaminated areas would be sampled and remediated in accordance with New Mexico Environment Department requirements before construction.« less

  6. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is usedmore » to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.« less

  7. A Preliminary Survey of Terrestrial Plant Communities in the Sierra de los Valles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randy G. Balice

    To more fully understand the species compositions and environmental relationships of high-elevation terrestrial plant communities in the Los Alamos region, 30 plots in randomly selected, upland locations were sampled for vegetation, topographic, and soils characteristics. The locations of these plots were constrained to be above 2,134 m (7,000 ft) above mean sea level. The field results were summarized, analyzed, and incorporated into a previously developed classification of vegetation and land cover types. The revised and updated discussions of the environmental relationships at these sites and their associated species compositions are included in this report. A key to the major landmore » cover types in the Los Alamos region was also revised in accordance with the new information and included herein its entirety.« less

  8. High Resolution Simulations of Arctic Sea Ice, 1979-1993

    DTIC Science & Technology

    2003-01-01

    William H. Lipscomb * PO[ARISSP To evaluate improvements in modelling Arctic sea ice, we compare results from two regional models at 1/120 horizontal...resolution. The first is a coupled ice-ocean model of the Arctic Ocean, consisting of an ocean model (adapted from the Parallel Ocean Program, Los...Alamos National Laboratory [LANL]) and the "old" sea ice model . The second model uses the same grid but consists of an improved "new" sea ice model (LANL

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    Pressure Safety Orientation (course #769) introduces workers at Los Alamos National Laboratory (LANL) to the Laboratory Pressure Safety Program and to pressure-related hazards. This course also affords a hands-on exercise involving the assembly of a simple pressure system. This course is required for all LANL personnel who work on or near pressure systems and are exposed to pressure-related hazards. These personnel include pressure-system engineers, designers, fabricators, installers, operators, inspectors, maintainers, and others who work with pressurized fluids and may be exposed to pressure-related hazards.

  10. Proceedings of the Antiproton Science and Technology Workshop Held in Santa Monica, California on 6-9 October 1987

    DTIC Science & Technology

    1988-07-01

    I Activities 1. Potential Low Energy Antiproton Sources in the United States 15 D.C. Peaslee (University of Maryland) 2. Low Energy Antiproton...Nieto, R.J. Hughes (Los Alamos National Laboratory) 2. Basic Physics Program for a Low Energy Antiproton Source in North America 245 B.E. Bonner (Rice...J.L. Callas (Jet Propulsioi< Laboratory) 5r> Energy Transfer in Antiproton Annihilation Rockets 577 B.N. Cassenti (United Technologies Research Center

  11. MaRIE 1.0: A briefing to Katherine Richardson-McDaniel, Staff Member for U. S. Senator Martin Heinrich (D-NM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Cris William

    At the request of Katherine Richardson-McDaniel, Staff Member to U.S. Senator Martin Heinrich (D-NM), a high-level briefing was requested about MaRIE 1.0, the Matter-Radiation Interactions in Extremes effort at Los Alamos National Laboratory. What it would be, the mission need motivation, the scientific challenge, and the current favorable impact on both programs and people are shown in viewgraph form.

  12. Quality assurance for health and environmental chemistry: 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.

    1991-10-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1990.

  13. Pajarito Plateau archaeological surveys and excavations. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, C R

    1982-04-01

    Los Alamos National Laboratory continues its archaeological program of data gathering and salvage excavations. Sites recently added to the archaeological survey are described, as well as the results of five excavations. Among the more interesting and important discoveries are (1) the apparently well-established local use of anhydrous lime, and (2) a late pre-Columbian use of earlier house sites and middens for garden plots. Evidence indicated that the local puebloan population was the result of an expansion of upper Rio Grande peoples, not an influx of migrants.

  14. Dexterity test data contribute to reduction in leaded glovebox gloves use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E; Lawton, Cindy M; Castro, Amanda M

    2009-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (T A-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Using an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program. A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management who own glovebox processes through this program make decisions onmore » which type of glovebox gloves (hereafter referred to as gloves), the weakest component of this safety-significant system, would perform best in these aggressive environments. As Low as Reasonably Achievable considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) gloves made from Hypalon(reg.) were the primary glove for programmatic operations at TA55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduce the amount of mixed transuranic waste. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the pros and cons of wearing leaded gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and the pollution prevention benefits of this dramatic change in the glovebox system are presented.« less

  15. Dexterity tests data contribute to reduction in leaded glovebox gloves use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E; Lawton, Cindy M; Castro, Amanda M

    2008-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alphaemitting materials. The spread of radiological contamination on surfaces and airborne contamination and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes. Through an integrated approach, controls have been developed and implemented through an efficient Glovebox Glove Integrity Program (GGJP). A key element of this program is to consider measures that lower the overall risk of glovebox operations. Line management owning glovebox processes through this program make decisions onmore » which type of glovebox gloves (the weakest component of this safety significant system) would perform in these aggressive environments. As Low As Reasonably Achievable (ALARA) considerations must be balanced with glove durability and worker dexterity, both of which affect the final overall risk of the operation. In the past, lead-loaded (leaded) glovebox gloves made from Hypalon(reg.) had been the workhorse of programmatic operations at TA-55. Replacing leaded gloves with unleaded gloves for certain operations would lower the overall risk as well as reduced the amount of mixed TRU waste. This effort contributes to Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations. In the following report, the pros and cons of wearing leaded glovebox gloves, the effect of leaded gloves versus unleaded gloves on task performance using standard dexterity tests, the justification for switching from leaded to unleaded gloves, and pollution prevention benefits of this dramatic change in the glovebox system are presented.« less

  16. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  17. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE PAGES

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick; ...

    2015-08-13

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  18. Neutron and gamma-ray measurements on the LANL Little Boy Comet Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.

    1983-09-01

    We measured the neutron and gamma-ray dose rates at various distances from the Little Boy Comet Assembly at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico on April 28 and 29, 1983. The distances selected varied from 350 ft to 1860 ft from the assembly, with the latter point being located at the edge of the mesa overlooking Pajarito Canyon. We varied the power levels for the various runs but we have normalized all of them to a single power-level. We also made corrections for the variations in the power-level indicators of the assembly using data provided by LANL.

  19. Status of the flora of the Los Alamos National Environmental Research Park: a historical perspective. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foxx, T.S.; Tierney, G.D.

    1984-09-01

    Studies of the flora of the Los Alamos National Environmental Research Park (LA/NERP) are continued in Water and Pajarito Canyons and their extensions to natural boundaries outside the LA/NERP. Six plant communities and sixteen plant habitats are described for the plant communities and sixteen plant habitats are described for the study area. The status of endangered, threatened, and rare plant species in the study area is reviewed, and land-use history of the Pajarito Plateau is related to the levels of apparent anthropogenic disturbance in the study areas' six plant communities. 66 references, 20 figures.

  20. Mach-Zehnder interferometer-based recording system for WACO

    NASA Astrophysics Data System (ADS)

    Woerner, R.

    1988-06-01

    EG and G Energy Measurements, Inc., Los Alamos Operations (LAO) designed and built a Mach-Zehnder-interferometer-based recording system to record low-bandwidth pulses. This work was undertaken at the request of the Los Alamos National Laboratory, P-14 Fast Transient Plasma Measurement group. The system was fielded on WACO and its performance compared with that of a conventional recording system fielded on the same event. The results of the fielding showed that for low bandwidth applications like the WACO experiment, the M-Z-based system provides the same data quality and dynamic range as the conventional oscilloscope system, but it is far less complex and uses fewer recorders.

  1. Los Alamos Science, Number 25 -- 1997: Celebrating the Neutrino

    DOE R&D Accomplishments Database

    Cooper, N. G. ed.

    1997-01-01

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  2. LAFD: TA-15 DARHT Firefighter Facility Familiarization Tour, OJT 53044, Revision 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Victor Stephen; Priestley, Terry B.; Maestas, Marvin Manuel

    The Los Alamos National Laboratory (LANL or the Lab) will conduct familiarization tours for the Los Alamos County Fire Department (LAFD) at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility, TA-15-0312. The purpose of these tours is to orient LAFD firefighters to the DARHT facility layout and hazards. This document provides information and figures to supplement the familiarization tours. The document will be distributed to the trainees at the time of the familiarization tour. A checklist (Attachment A) has also been developed to ensure that all required information is consistently presented to LAFD personnel during the familiarization tours.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    The Los Alamos RP-SVS Radiation Protection Services group designed and constructed a drop tower facility for TA- 55 support work. The drop mechanism was supplied by the Lansmont company in Monterey CA. Los Alamos staffers Murray Moore and Yong Tao have noticed that the system is not dropping loads correctly, and they have photographed aspects of the PDT- 80 model system. The first 10 photos show the platen loaded with a cylindrical steel bar. The next 10 photos are of the roller-cam mechanism in the drop tower, and the last 2 photos indicate the amount of looseness in the platenmore » when it is being pulled by a person.« less

  4. Minutes of the Explosives Safety Seminar (16th), Held at the Diplomat Hotel, Hollywood, Florida on 24-26 September 1974. Volume 2

    DTIC Science & Technology

    1974-09-26

    concrete structi-e at Battelle Memorial Labs are on hand. b, Photos and drawing of 10’ ID X 31’ steel test chamber 𔃻: Los Alamos . c. Tech data or, AEC... Technical Report, Draft. 3. M0TT, R.l., "A Theory of Fuauentation", Army Operational Research Group Ho., 113-AC-3642, Great Britain, 1943 . 4. GUI , R.W., "he...Kansas AAP, Parsons, KSBURCH, Austin AEC, Los Alamos , NMBURKE, E. F. Olin Corp., St. Marks, FLBURNER, M R. DCASR, N.Y., NYBURNS, N.J3. Dept of

  5. National information infrastructure applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forslund, D.; George, J.; Greenfield, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a telemedical application in which medical records are electronically searched and digital signatures of real CT scan data are indexed and used to characterize a range of diseases and are used to compare on-line medical data with archived clinical data rapidly. This system includes multimedia data management, interactive collaboration, data compression and transmission, remote data storage and retrieval, and automated data analysis integrated in a distributed application between Los Alamos and the National Jewishmore » Hospital.« less

  6. The Fermiac or Fermi's Trolley

    NASA Astrophysics Data System (ADS)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  7. LANL Researcher Roger Wiens Discusses ChemCam

    ScienceCinema

    Wiens, Roger

    2018-01-16

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Red Planet on August 5, 2012.

  8. Lattice modeling and application of independent component analysis to high power, long bunch beams in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Kolski, Jeffrey

    The linear lattice properties of the Proton Storage Ring (PSR) at the Los Alamos Neutron Science Center (LANSCE) in Los Alamos, NM were measured and applied to determine a better linear accelerator model. We found that the initial model was deficient in predicting the vertical focusing strength. The additional vertical focusing was located through fundamental understanding of experiment and statistically rigorous analysis. An improved model was constructed and compared against the initial model and measurement at operation set points and set points far away from nominal and was shown to indeed be an enhanced model. Independent component analysis (ICA) is a tool for data mining in many fields of science. Traditionally, ICA is applied to turn-by-turn beam position data as a means to measure the lattice functions of the real machine. Due to the diagnostic setup for the PSR, this method is not applicable. A new application method for ICA is derived, ICA applied along the length of the bunch. The ICA modes represent motions within the beam pulse. Several of the dominate ICA modes are experimentally identified.

  9. Los Alamos County Fire Department LAFD: TA-55 PF-4 Facility Familiarization Tour, OJT 55260

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Victor Stephen

    Los Alamos National Laboratory (LANL) will conduct familiarization tours for Los Alamos County Fire Department (LAFD) personnel at the Plutonium Facility (PF-4) at Technical Area (TA)-55. These familiarization tours are official LANL business; the purpose of these tours is to orient the firefighters to the facility so that they can respond efficiently and quickly to a variety of emergency situations. This orientation includes the ingress and egress of the area and buildings, layout and organization of the facility, evacuation procedures and assembly points, and areas of concern within the various buildings at the facility. LAFD firefighters have the skills andmore » abilities to perform firefighting operations and other emergency response tasks that cannot be provided by other LANL personnel who have the required clearance level. This handout provides details of the information, along with maps and diagrams, to be presented during the familiarization tours. The handout will be distributed to the trainees at the time of the tour. A corresponding checklist will also be used as guidance during the familiarization tours to ensure that all required information is presented to LAFD personnel.« less

  10. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on U235 and Pu239 using the double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Bélier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-03-01

    Prompt fission neutron spectra from U235 and Pu239 were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg U235 and 90 mg Pu239 detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  11. Global warming accelerates drought-induced forest death

    ScienceCinema

    McDowell, Nathan; Pockman, William

    2018-05-16

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.

  12. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles D.; Hansen, Leslie A.

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed atmore » the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.« less

  13. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema

    LANL

    2017-12-09

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  14. LANL Multiyear Strategy Performance Improvement (MYSPI), Fiscal Years 2017–2021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leasure, Craig Scott

    2016-05-03

    Los Alamos National Laboratory (LANL) protects the nation and the world using innovative science, technology, and engineering through an integrated approach that harnesses the strength of our people, capabilities, and operations. The Laboratory’s Strategic Plan and Purpose statement provide the framework for scientific excellence and operational excellence now and in the future. Our Strategic Plan and Purpose help position Los Alamos for continuing mission success that ensures the safety, security, and effectiveness of the nation’s deterrent; protects the nation from nuclear and emerging threats through our larger global security missions; provides energy security to the nation; and ensures that themore » nation’s scientific reputation and capabilities remain robust enough to assure our allies and deter our adversaries. Moreover, we use these principles and guidance to ensure that Los Alamos is successful in attracting, recruiting, and retaining the next generation of world-class talent, while creating an efficient, environmentally responsible workplace that provides our employees with access to modern scientific tools and resources. Using this guidance and its underlying principles, we are continuing to restore credibility and operational effectiveness to the Laboratory, deliver mission success and continuing scientific excellence, and protect our employees and the nation’s secrets.« less

  15. LANL Multiyear Strategy Performance Improvement (MYSPI), Fiscal Years 2018-2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leasure, Craig Scott

    Los Alamos National Laboratory (LANL) protects the nation and the world using innovative science, technology, and engineering through an integrated approach that harnesses the strength of our people, capabilities, and operations. The Laboratory’s Strategic Plan and Purpose statement provide the framework for scientific excellence and operational excellence now and in the future. Our Strategic Plan and Purpose help position Los Alamos for continuing mission success that ensures the safety, security, and effectiveness of the nation’s deterrent; protects the nation from nuclear and emerging threats through our larger global security missions; provides energy security to the nation; and ensures that themore » nation’s scientific reputation and capabilities remain robust enough to assure our allies and deter our adversaries. Moreover, we use these principles and guidance to ensure that Los Alamos is successful in attracting, recruiting, and retaining the next generation of excellent talent, while creating an efficient, environmentally responsible workplace that provides our employees with access to modern scientific tools and resources. Using this guidance and its underlying principles, we are continuing to restore credibility and operational effectiveness to the Laboratory, deliver mission success and continuing scientific excellence, and protect our employees and the nation’s secrets.« less

  16. Status summary of chemical processing development in plutonium-238 supply program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D.; Benker, Dennis; Wham, Robert M.

    This document summarizes the status of development of chemical processing in the Plutonium-238 Supply Program (PSP) near the end of Demonstration 1. The objective of the PSP is “to develop, demonstrate, and document a production process that meets program objectives and to prepare for its operation” (Frazier et al. 2016). Success in the effort includes establishing capability using the current infrastructure to produce Np targets for irradiation in Department of Energy research reactors, chemically processing the irradiated targets to separate and purify the produced Pu and transferring the PuO 2 product to Los Alamos National Laboratory (LANL) at an averagemore » rate of 1.5 kg/y.« less

  17. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  18. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  19. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  20. Numerical studies of unsteady two dimensional subsonic flows using the ICE method. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Wieber, P. R.

    1973-01-01

    A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.

  1. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Plum, M.

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

  2. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retentionmore » issues, and more.« less

  3. LA-UR-14-27684, Analysis of Wildland Fire Hazard to the TWF at Los Alamos National Labs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, Sarah

    Wildfires represent an Anticipated Natural Phenomena Hazard for LANL and the surrounding area. The TWF facility is located in a cleared area and is surrounded on three sides by roadway pavement. Therefore, direct propagation of flames to the facility is not considered the most credible means of ignition. Rather, fires started by airborne transport of burning brands constitute the most significant wildland fire threat to the TWF. The purpose of this document is to update LA-UR-13-24529, Airborne Projection of Burning Embers – Planning and Controls for Los Alamos National Laboratory Facilities, to be specific to the TWF site and operations.

  4. Publications of LASL research, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, J.K.; Salazar, C.A.

    1980-11-01

    This bibliography is a compilation of unclassified publications of work done at the Los Alamos Scientific Laboratory for 1979. Papers published in 1979 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-LASL reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressionalmore » hearings, theses, and US patents. The entries are arranged in sections by broad subject categories. (RWR)« less

  5. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eeckhout, E.; Pope, P.; Becker, N.

    1996-04-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Lasmore » Cruces, New Mexico.« less

  6. LANL Researcher Roger Wiens Discusses ChemCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Roger

    2012-02-15

    Discussion of the ChemCam instrument on the Curiosity Rover that occurred during the NASA press conference prior to launch of the Mars Science Laboratory. The ChemCam instrument was developed by Los Alamos National Laboratory and the French Space Institute. Los Alamos National Laboratory researcher Roger Wiens discusses the instrument on this video. ChemCam uses a laser to "zap" features of the Martian landscape and then uses a spectrometer to gather information about the composition of the sample. ChemCam will help the Curiosity Rover determine whether Mars is or was habitable. The Rover is expected to touch down on the Redmore » Planet on August 5, 2012.« less

  7. Understanding How Biomass Burning Impacts Climate Change

    ScienceCinema

    Aiken, Allison

    2018-06-12

    Biomass burning in Africa is creating a plume that spreads across the Atlantic Ocean all the way to Brazil. Allison Aiken, a research scientist at Los Alamos National Laboratory, collects data about the black carbon aerosols within this plume and their impact on the environment to help improve global climate modeling. A leader in energy science, Los Alamos develops climate models in support of the Laboratory’s mission to strengthen the nation’s energy security. Allison’s work is part of FIDO, a field operations team funded by the Energy Department’s Office of Science’s ARM Climate Research Facility.

  8. Mach-Zehnder interferometer-based recording system for WACO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woerner, R.

    1988-06-01

    EG and G Energy Measurements, Inc., Los Alamos Operations (LAO) designed and built a Mach-Zehnder-interferometer-based recording system to record low-bandwidth pulses. This work was undertaken at the request of the Los Alamos National Laboratory, P-14 Fast Transient Plasma Measurement group. The system was fielded on WACO and its performance compared with that of a conventional recording system fielded on the same event. The results of the fielding showed that for low bandwidth applications like the WACO experiment, the M-Z-based system provides the same data quality and dynamic range as the conventional oscilloscope system, but it is far less complex andmore » uses fewer recorders. 4 figs.« less

  9. Performance of the New Los Alamos UCN Source and Implications for Future Experiments

    NASA Astrophysics Data System (ADS)

    Makela, Mark; LANL UCN Team

    2017-01-01

    The Los Alamos Ultracold Neutron (UCN) source was replaced during this past summer and has been commissioned during the last few months. The new source is the result of lessons learned during the 10 year operation of the first UCN source and extensive Monte Carlo analysis. The new source is a spallation driven source based on a solid deuterium UCN moderator similar the previous one. This talk will present an overview of the new source design and the results of commissioning tests. The talk will conclude with a brief overview of the implications of source performance on the neutron lifetime and LANL nEDM experiments. This work was funded by LANL LDRD.

  10. Evaluation of the Likelihood for Thermal Runaway for Nitrate Salt Containers in Storage at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Gunderson, Jake Alfred; Parker, Gary Robert

    2016-03-25

    In order to handle and process the existing Los Alamos National Laboratory (LANL) Nitrate Salt drums it is necessary to quantify the risk. One of the most obvious dangers is a repeat of the original violent reaction (2015), which would endanger nearby workers, not only with radioactive contamination, but also with large amounts of heat, dangerous corrosive gases and the physical dangers associated with a bursting drum. If there still existed a high probability of violent reaction, then these drums should only be accessed remotely. The objective of the work reported herein is to determine the likelihood of a similarmore » violent event occurring.« less

  11. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solarmore » neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.« less

  12. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  13. Code Modernization of VPIC

    NASA Astrophysics Data System (ADS)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    Recent discussion of project policy has met with a widespread feeling that important alternatives were not being properly considered. These alternatives will be discussed here from the point of view of research personnel concerned with formulation a laboratory policy based on the wartime experience of Los Alamos. This policy is discussed on the primary assumption that the national investment here in facilities, in tradition, and in the existence of an going research and development laboratory organization ought not to be lightly discarded, but also ought not to be wholly continued without reexamination under the new conditions of peace. Others willmore » discuss this policy more broadly, and others will make the decision of continuation; but the purpose of the present document is to suggest a policy which might help answer the question of what to do with Los Alamos.It is the thesis of this document that fundamental research in fields underlying the military utilization of atomic energy ought to be separated from all development testing and production. It still remains to argue which of these separate functions this mesa should carry out. In the next sections it is proposed to describe what this laboratory can do and what it should stop trying to do, and on this detailed basis a general program is proposed.« less

  15. Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma

    DTIC Science & Technology

    2016-08-04

    Killian1 1Department of Physics and Astronomy , Rice University, Houston, Texas 77005, USA 2Theoretical Division, Los Alamos National Laboratory, Los...2] L. Spitzer, Physics of Fully Ionized Gases, Interscience Tracts on Physics and Astronomy (Interscience Publishers, New York, 1962), Vol. 3. [3] L

  16. Hearing Conservation Self-Study #12350

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chochoms, Michael

    Occupational hearing loss is one of the most common work-related illnesses in the United States (US). From 22 to 30 million US workers are exposed to hazardous noise levels at work, and 25% of these workers will develop permanent hearing loss. Hearing loss from noise is slow and painless, and you can have a disability before you notice it. This course presents the hazards associated with workplace noise, the purpose and elements of the Los Alamos National Laboratory (LANL) Hearing Conservation Program (HCP), and controls that are available to reduce your exposure to hazardous levels of noise.

  17. Hearing Conservation Live #2430

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chochoms, Michael

    Occupational hearing loss is one of the most common work-related illnesses in the United States (US). From 22 to 30 million US workers are exposed to hazardous noise levels at work, and 25% of these workers will develop permanent hearing loss. Hearing loss from noise is slow and painless, and you can have a disability before you notice it. This course presents the hazards associated with workplace noise, the purpose and elements of the Los Alamos National Laboratory (LANL) Hearing Conservation Program (HCP), and controls that are available to reduce your exposure to hazardous levels of noise.

  18. Neutron Physics. A Revision of I. Halpern's notes on E. Fermi's lectures in 1945

    DOE R&D Accomplishments Database

    Beckerley, J.G.

    1951-10-16

    In the Fall of 1945 a course in Neutron Physics was given by Professor Fermi as part of the program of the Los Alamos University. The course consisted of thirty lectures most of which were given by Fermi. In his absence R.F. Christy and E. Segre gave several lectures. The present revision is based upon class notes prepared by I. Halpern with some assistance by B.T. Feld and issued first as document LADC 255 and later with wider circulation as MDDC 320.

  19. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory's Source Region Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  20. Detecting errors and anomalies in computerized materials control and accountability databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Hench, K.; Yarbro, T.

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines thesemore » large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results.« less

  1. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  2. Optimization of etching and reading procedures for the Autoscan 60 track etch system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeever, R.; Devine, R.; Coennen, C.

    1997-02-11

    The Los Alamos National Laboratory is charged with measuring the occupational exposure to radiological workers and contractors throughout the Laboratory, which includes many different sites with multiple and varied radiation fields. Of concern here are the high energy neutrons such as those generated during accelerator operations at Los Alamos Neutron Science Center (LANSCE). In 1993, the Los Alamos National Laboratory purchased an Autoscan 60 automated reader for use with chemically etched CR39 detectors. The dosimeter design employed at LANL uses a plastic, hemispherical case, encompassing a polystyrene pyramidal detector holder. The pyramidal holder supports three detectors at a 35{degree} angle.more » Averaging the results of the three detectors minimizes the angular dependence normally associated with a planar dosimeter. The Autoscan 60 is an automated reading system for use with CR39 chemical etch detectors. The detectors are immersed in an etch solution to enhance the visibility of the damage sites caused by recoil proton impact with the hydrogen atoms in the detector. The authors decided to increase the etch time from six hours to 15 hours, while retaining the 70 C temperature. The reason for the change in the etch is to enhance the sensitivity and precision of the CR39 detector as indicated by this study.« less

  3. The Rock that Hit New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen; Keksis, August Lawrence

    On January 12, 1975, a rock seemed to fall from the sky over New York State’s Schoharie County hitting the tractor of a local farmer, who was “preparing his fields for spring planting.” As the farmer later described the event to a reporter from the UFO INVESTIGATOR, the object glanced off the tractor, fell to the ground, and melted its way through a patch of ice that was two and one half inches thick. The farmer, Leonard Tillapaugh, called the county sheriff, Harvey Stoddard, who recovered the rock, noting that it “was still warm.” Why and how a sample ofmore » the rock came to Los Alamos is not known. However, it captivated a wide Laboratory audience, was subjected to rigorous testing and evaluation. Los Alamos used the scientific method in the manner promoted by Hynek. Did Los Alamos solve the mystery of the rock’s origin? Not definitively. Although the exact origin could not be determined, it was shown conclusively that the rock was not from outer space. With that said, the saga of Rock that hit New York came to an end. Nothing more was said or written about it. The principals involved have long since passed from the scene. The NICAP ceased operations in 1980. And, the rock, itself, has disappeared.« less

  4. Global warming accelerates drought-induced forest death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Nathan; Pockman, William

    2013-07-09

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it withmore » much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.« less

  5. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling andmore » remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.« less

  6. Curiosity ChemCam Finds High-Silica Mars Rocks

    ScienceCinema

    Frydenvang, Jens

    2018-01-16

    A team of scientists, including one from Los Alamos National Laboratory, has found much higher concentrations of silica at some sites the Curiosity rover has investigated in the past seven months than anywhere else it has visited since landing on Mars 40 months ago. The first discovery was as Curiosity approached the area “Marias Pass,” where a lower geological unit contacts an overlying one. ChemCam, the rover’s laser-firing instrument for checking rock composition from a distance, detected bountiful silica in some targets the rover passed along the way to the contact zone. The ChemCam instrument was developed at Los Alamos in partnership with the French IRAP laboratory in Toulouse and the French Space Agency. “The high silica was a surprise,” said Jens Frydenvang of Los Alamos National Laboratory and the University of Copenhagen, also a Curiosity science team member. “While we’re still working with multiple hypotheses on how the silica got so enriched, these hypotheses all require considerable water activity, and on Earth high silica deposits are often associated with environments that provide excellent support for microbial life. Because of this, the science team agreed to make a rare backtrack to investigate it more.”

  7. Automated System Calibration and Verification of the Position Measurements for the Los Alamos Isotope Production Facility and the Switchyard Kicker Facilities

    NASA Astrophysics Data System (ADS)

    Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.

    2004-11-01

    The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.

  8. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipman, Galen M.

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematicmore » approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.« less

  10. PAA, WSH, and CIS Overview Self-Study #47656

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, Rachel Anne

    This course presents an overview of the Department of Energy’s (DOE’s) regulatory requirements relevant to the Price-Anderson Amendments Act (PAAA, also referred to as nuclear safety), worker safety and health (WSH), and classified information security (CIS) that are enforceable under the DOE enforcement program; describes the DOE enforcement process; and provides an overview of Los Alamos National Laboratory’s (LANL’s) internal compliance program relative to these DOE regulatory requirements. The LANL PAAA Program is responsible for maintaining LANL’s internal compliance program, which ensures the prompt identification, screening, and reporting of noncompliances to DOE regulatory requirements pertaining to nuclear safety, WSH, andmore » CIS to build the strongest mitigation position for the Laboratory with respect to civil or other penalties.« less

  11. A report documenting the completion of the Los Alamos National Laboratory portion of the ASC level II milestone ""Visualization on the supercomputing platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, James P; Patchett, John M; Lo, Li - Ta

    2011-01-24

    This report provides documentation for the completion of the Los Alamos portion of the ASC Level II 'Visualization on the Supercomputing Platform' milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is the most computationally intensive portion of the visualization process. Formore » terascale platforms, commodity clusters with graphics processors (GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the perfromance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our tests. In addition, we evaluated CPU and CPU-based rendering performance. We encourage production visualization experts to consider using CPU-based rendering solutions when it is appropriate. For example, on remote supercomputers CPU-based rendering can offer a means of viewing data without having to offload the data or geometry onto a CPU-based visualization system. In terms of comparative performance of the CPU and CPU we believe that further optimizations of the performance of both CPU or CPU-based rendering are possible. The simulation community is currently confronting this reality as they work to port their simulations to different hardware architectures. What is interesting about CPU rendering of massive datasets is that for part two decades CPU performance has significantly outperformed CPU-based systems. Based on our advancements, evaluations and explorations we believe that CPU-based rendering has returned as one viable option for the visualization of massive datasets.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, James B.

    National Security Office (NSO) newsletter's main highlight is on the annual Strategic Weapons in the 21st Century that the Los Alamos and Lawrence Livermore National Laboratories host in Washington, DC.

  13. University of Texas Safeguards by Design Problem Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauch, Eric Benton; Scherer, Carolynn P.; Ruggiero, Christy E.

    This document describes the problem statement that students at the University of Texas will use for their senior level capstone design class. The purpose of this project is to introduce students to Safeguards by Design concepts as part of their capstone design course at the culmination of their degree program. This work is supported by Los Alamos National Laboratory with FY17 and FY18 programmatic funding from the U. S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA), through the Office of Defense Nuclear Nonproliferation (DNN), Office of International Nuclear Safeguards (INS), Next Generation Safeguards Initiative (NGSI), Human Resource Developmentmore » Program, Safeguards by Design Project.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, T.M.

    This report presents the objectives, organization, policies, and essential rules and procedures that have been adopted by MP Division and that form the basis of the Health and Safety Program of the Clinton P. Anderson Meson Physics Facility (LAMPF). The facility includes the beam-delivery systems for the Los Alamos Neutron Scattering Center and the Weapons Neutron Research Facility (LANSCE/WNR). The program is designed not only to assure the health and safety of all personnel, including users, in their work at LAMPF, and of MP-Division staff in their work on the LANSCE/WNR beam lines, but also to protect the facility (buildingsmore » and equipment) and the environment. 33 refs., 18 figs., 2 tabs.« less

  15. EPRR

    Science.gov Websites

    Electronic Public Reading Room Operational Reading Room & Environmental Cleanup through April 2018 Los Alamos Legacy Cleanup Electronic Public Reading Room Environmental Cleanup from May 2018

  16. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickermann, Thomas

    2012-08-01

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergencymore » situations; and (3) Plan recovery and keep squirrels out.« less

  17. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Morris, C. L.; Brown, E. N.; Agee, C.; ...

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  18. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema

    Chu, Steven [U.S. Energy Secretary

    2018-01-12

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jefferson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  19. Los Alamos Guns Take Aim at Material's Mysteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byers, Mark; Moore, David; Dimarino, Steve

    Los Alamos National Laboratory scientists and technicians conduct thousands of experiments a year, delving into the fundamental nature of everything from supernovas to subatomic particles. One set of instruments used to better understand the fundamental nature of various materials are 10 scientific gun systems that fire various projectiles at high-tech targets to create enormous velocities, pressures, and temperatures - and using laser, x-ray, and other diagnostics - explore the very nature of metals and other materials. The hundreds of gun-based experiments conducted every year at the Laboratory require a highly-skilled staff of scientists and technicians, and has given rise tomore » a special organization called the "gun working group" to foster open communications, cooperation, problem-solving, and a healthy safety culture.« less

  20. A thesis on the Development of an Automated SWIFT Edge Detection Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trujillo, Christopher J.

    Throughout the world, scientists and engineers such as those at Los Alamos National Laboratory, perform research and testing unique only to applications aimed towards advancing technology, and understanding the nature of materials. With this testing, comes a need for advanced methods of data acquisition and most importantly, a means of analyzing and extracting the necessary information from such acquired data. In this thesis, I aim to produce an automated method implementing advanced image processing techniques and tools to analyze SWIFT image datasets for Detonator Technology at Los Alamos National Laboratory. Such an effective method for edge detection and point extractionmore » can prove to be advantageous in analyzing such unique datasets and provide for consistency in producing results.« less

Top