Sample records for program observing platforms

  1. Platform options for the Space Station program

    NASA Technical Reports Server (NTRS)

    Mangano, M. J.; Rowley, R. W.

    1986-01-01

    Platforms for polar and 28.5 deg orbits were studied to determine the platform requirements and characteristics necessary to support the science objectives. Large platforms supporting the Earth-Observing System (EOS) were initially studied. Co-orbiting platforms were derived from these designs. Because cost estimates indicated that the large platform approach was likely to be too expensive, require several launches, and generally be excessively complex, studies of small platforms were undertaken. Results of these studies show the small platform approach to be technically feasible at lower overall cost. All designs maximized hardware inheritance from the Space Station program to reduce costs. Science objectives as defined at the time of these studies are largely achievable.

  2. Feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.

    1973-01-01

    The scientific and engineering findings are presented of the feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse. Included in the report is the computer program documentation of the solar eclipse determination; summary data on SR-71A type aircraft capabilities and limitations as an observing platform for solar eclipses; and the recordings of an informal conference on observations of solar eclipses using SR-71A type aircraft.

  3. Development of a Modular Research Platform to Create Medical Observational Studies for Mobile Devices.

    PubMed

    Zens, Martin; Grotejohann, Birgit; Tassoni, Adrian; Duttenhoefer, Fabian; Südkamp, Norbert P; Niemeyer, Philipp

    2017-05-23

    Observational studies have proven to be a valuable resource in medical research, especially when performed on a large scale. Recently, mobile device-based observational studies have been discovered by an increasing number of researchers as a promising new source of information. However, the development and deployment of app-based studies is not trivial and requires profound programming skills. The aim of this project was to develop a modular online research platform that allows researchers to create medical studies for mobile devices without extensive programming skills. The platform approach for a modular research platform consists of three major components. A Web-based platform forms the researchers' main workplace. This platform communicates via a shared database with a platform independent mobile app. Furthermore, a separate Web-based login platform for physicians and other health care professionals is outlined and completes the concept. A prototype of the research platform has been developed and is currently in beta testing. Simple questionnaire studies can be created within minutes and published for testing purposes. Screenshots of an example study are provided, and the general working principle is displayed. In this project, we have created a basis for a novel research platform. The necessity and implications of a modular approach were displayed and an outline for future development given. International researchers are invited and encouraged to participate in this ongoing project. ©Martin Zens, Birgit Grotejohann, Adrian Tassoni, Fabian Duttenhoefer, Norbert P Südkamp, Philipp Niemeyer. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2017.

  4. Measuring Turbulence Mixing in Indonesian Seas Using Microstructure EM-APEX Floats

    DTIC Science & Technology

    We developed scientific plans for collaborative observational programs with Indonesian,Taiwanese, and Japanese researchers. We worked with Taiwanese...and Japanese researchers to plan and execute turbulence experiments using autonomous platforms in the SCS and Kuroshio Current. Our primary platform...and the Applied Physics Laboratory, University of Washington. We are working closely with Japanese collaborators to develop a turbulence observation

  5. United States Naval Academy Polar Science Program's Visual Arctic Observing Platforms; IceGoat and IceKids

    NASA Astrophysics Data System (ADS)

    Woods, J. E.; Rigor, I. G.; Valentic, T. A.

    2013-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Observing Platforms. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Engineering Departments, and in close collaboration with SRI International, developed the USNA Visual Arctic Observing Platforms. The experience gained through Polar field studies and data derived from these platforms will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 (IG1) off the USCGC HEALY in September, 2012. IG1 suffered a malfunction to its solar powered webcam system upon deployment, but is still reporting via ARGOS SATCOM systems basic weather parameters of air temperature, pressure, and position. USNA PSP attempted to build a less robust, but more economical system integrating similar low power observing platforms housed in heavy duty coolers. This allowed for a streamlined process to get a complete system completed in one academic year. IceKids (IK) are similar observing platforms, just not designed to float once the sea ice melts. IK1 was deployed to Antarctica from October 2012 through January 2013 and captured over 11,000 web cam images in near real time of two remote environmental monitoring stations. IK2A and IK3T were built to be deployed at the Naval Academy Ice Experiment in Barrow, AK in March 2013. IK2A was unique in trying to collect and transmit underwater acoustic signals in near real time. The system integrated a passive hydrophone into the already developed low power data transport system. Unfortunately a malfunction occurred post deployment and only a few hours of data was collected while under the ice. IK3T integrated a Vaisala all in one weather station for very accurate Air Temperature, Pressure, and Wind measurements. IK3T is still operating in Barrow, AK as part of the University of Washington's Arctic Observing Experiment (AOX) where very precise temperature measurements are being collected for validation studies.

  6. Commercial potential of remote sensing data from the Earth observing system

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.; Tomlin, Sandra M.

    1992-01-01

    The purpose was to assess the market potential of remote sensing value-added products from the Earth Observing System (EOS) platform. Sensors on the EOS platform were evaluated to determine which qualities and capabilities could be useful to the commercial user. The approach was to investigate past and future satellite data distribution programs. A questionnaire was developed for use in a telephone survey. Based on the results of the survey of companies that add value to remotely sensed data, conversations with the principal investigators in charge of each EOS sensor, a study of past commercial satellite data ventures, and reading from the commercial remote sensing industry literature, three recommendations were developed: develop a strategic plan for commercialization of EOS data, define a procedure for commercial users within the EOS data stream, and develop an Earth Observations Commercial Applications Program-like demonstration program within NASA using EOS simulated data.

  7. Earth resources instrumentation for the Space Station Polar Platform

    NASA Technical Reports Server (NTRS)

    Donohoe, Martin J.; Vane, Deborah

    1986-01-01

    The spacecraft and payloads of the Space Station Polar Platform program are described in a brief overview. Present plans call for one platform in a descending morning-equator-crossing orbit at 824 km and two or three platforms in ascending afternoon-crossing orbits at 542-824 km. The components of the NASA Earth Observing System (EOS) and NOAA payloads are listed in tables and briefly characterized, and data-distribution requirements and the mission development schedule are discussed. A drawing of the platform, a graph showing the spectral coverage of the EOS instruments, and a glossary of acronyms are provided.

  8. 30 CFR 250.909 - What is the Platform Verification Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What is the Platform Verification Program? 250... Platforms and Structures Platform Verification Program § 250.909 What is the Platform Verification Program? The Platform Verification Program is the MMS approval process for ensuring that floating platforms...

  9. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  10. 30 CFR 250.909 - What is the Platform Verification Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is the Platform Verification Program? 250... Verification Program § 250.909 What is the Platform Verification Program? The Platform Verification Program is the MMS approval process for ensuring that floating platforms; platforms of a new or unique design...

  11. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  12. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.; Presley, B.J.; Biedenbach, J.M.; Robertson, L.; Boothe, P.; Kilada, R.; Wade, T.; Montagna, P.

    1996-01-01

    As part of a multidisciplinary program to assess the potential long-term impacts of offshore oil and gas exploration and production activities in the Gulf of Mexico, sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore platforms. Based on data from sea urchin fertilization and embryological development assays, toxicity was observed near four of the five platforms sampled; the majority of the toxic samples were collected within 150 m of a platform. There was excellent agreement among the results of porewater tests with three different species (sea urchin embryological development, polychaete reproduction, and copepod nauplii survival). The sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations, and good agreement was observed between predicted and observed toxicity. Porewater metal concentrations compared with EC50, LOEC, and NOEC values generated for water-only exposures indicated that the porewater concentrations for several metals were high enough to account for the observed toxicity. Results of these studies utilizing highly sensitive toxicity tests suggest that the contaminant-induced impacts from offshore platforms are limited to a localized area in the immediate vicinity of the platforms. 

  13. Adaptive Observatories for Observing Moving Marine Organisms (Invited)

    NASA Astrophysics Data System (ADS)

    Bellingham, J. G.; Scholin, C.; Zhang, Y.; Godin, M. A.; Hobson, B.; Frolov, S.

    2010-12-01

    The ability to characterize the response of small marine organisms to each other, and to their environment, is a demanding observational challenge. Small organisms live in a water reference frame, while existing cable or mooring-based observatories operate in an Earth reference frame. Thus repeated observations from a fixed system observe different populations as currents sweep organisms by the sensors. In contrast, mobile systems are typically optimized for spatial coverage rather than repeated observations of the same water volume. Lagrangian drifters track water mass, but are unable to find or reposition themselves relative to ocean features. We are developing a system capable of finding, following and observing discrete populations of marine organisms over time, leveraging a decade and a half investment in the Autonomous Ocean Sampling Network (AOSN) program. AOSN undertook the development of platforms to enable multi-platform coordinated measurement of ocean properties in the late 1990s, leading to the development of a variety of autonomous underwater vehicles (AUVs) and associated technologies, notably several glider systems, now in common use. Efforts by a number of research groups have focused on methods to employ these networked systems to observe and predict dynamic physical ocean phenomena. For example, periodic large scale field programs in Monterey Bay have progressively integrated these systems with data systems, predictive models, and web-based collaborative portals. We are adapting these approaches to follow and observe the dynamics of marine organisms. Compared to physical processes, the temporal and spatial variability of small marine organisms, particularly micro-organisms, is typical greater. Consequently, while multi-platform observations of physical processes can be coordinated via intermittent communications links from shore, biological observations require a higher degree of adaptability of the observation system in situ. This talk will describe the platform capabilities developed for such observations, the onboard intelligence for finding and observing discrete populations, and the cyberinfrastructure employed to understand and coordinate observations from shore.

  14. Carbon Dioxide Observational Platform System (CO-OPS), feasibility study

    NASA Technical Reports Server (NTRS)

    Bouquet, D. L.; Hall, D. W.; Mcelveen, R. P.

    1987-01-01

    The Carbon Dioxide Observational Platform System (CO-OPS) is a near-space, geostationary, multi-user, unmanned microwave powered monitoring platform system. This systems engineering feasibility study addressed identified existing requirements such as: carbon dioxide observational data requirements, communications requirements, and eye-in-the-sky requirements of other groups like the Defense Department, the Forestry Service, and the Coast Guard. In addition, potential applications in: earth system science, space system sciences, and test and verification (satellite sensors and data management techniques) were considered. The eleven month effort is summarized. Past work and methods of gathering the required observational data were assessed and rough-order-of magnitude cost estimates have shown the CO-OPS system to be most cost effective (less than $30 million within a 10 year lifetime). It was also concluded that there are no technical, schedule, or obstacles that would prevent achieving the objectives of the total 5-year CO-OPS program.

  15. Earth observations from space: Outlook for the geological sciences

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Lowman, P. D., Jr.

    1973-01-01

    Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.

  16. Ames Research Center SR&T program and earth observations

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.

    1972-01-01

    An overview is presented of the research activities in earth observations at Ames Research Center. Most of the tasks involve the use of research aircraft platforms. The program is also directed toward the use of the Illiac 4 computer for statistical analysis. Most tasks are weighted toward Pacific coast and Pacific basin problems with emphasis on water applications, air applications, animal migration studies, and geophysics.

  17. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  18. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  19. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources BUREAU OF SAFETY AND... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.911 If my platform is subject...

  20. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  1. A Sub-Orbital Platform for Flight Tests of Small Space Capsules

    NASA Astrophysics Data System (ADS)

    Pereira, P. Moraes A. L., Jr.; Silva, C. R.; Villas Bôas, D. J.; Corrêa, F., Jr.; Miyoshi, J. H.; Loures da Costa, L. E.

    2002-01-01

    In the development of a small recoverable space capsule, flight tests using sub-orbital rockets are considered. For this test series, a platform for aerodynamic and thermal measurements as also for qualification tests of onboard sub-systems and equipment was specified and is actually under development. This platform, known as SARA Suborbital, is specified to withstand a sub-orbital flight with the high performance sounding rocket VS40 and to be recovered at the sea. To perform the testing program, a flight trajectory with adequate aeroballistic parameters, as for instance high velocities in dense atmosphere and average re-entry velocity, is considered. The testing program includes measurements of aerodynamic pressures and thermal characteristics, three- axis acceleration, acoustic pressure level inside the platform and vibration environment. Beside this, tests to characterise the performance of the data acquisition and transmission system, the micro-gravity environment and to qualify the recovery system will be carried out. During the return flight, the dynamics of parachutes deployment and platform water impact, as also rescue procedures will also be observed. The present article shows the concept of the platform, describes in detail the experiments, and concludes with a discussion on the flight trajectory and recovery procedure.

  2. Potential applications of a high altitude powered platform in the ocean/coastal zone community

    NASA Technical Reports Server (NTRS)

    Escoe, D.; Rigterink, P.; Oberholtzer, J. D.

    1979-01-01

    The results of a survey of the ocean/coastal zone community conducted for the NASA Wallops Flight Center to identify potential applications of a high altitude powered platform (HAPP) are presented. Such a platform would stationkeep at 70,000 feet for up to a year over a given location and make frequent high resolution observations, or serve as a regional communications link. The survey results indicate user interest among scientific researchers, operational agencies and private industry. It is felt that such a platform would combine the desirable characteristics of both geostationary satellites (wide area, frequent observation) and aircraft (high resolution). As a result a concept for an operational HAPP system in the form of a 'mesoscale geostationary satellite' system evolved. Such a system could employ many of the same technologies used in current NASA and NOAA geostationary satellite programs. A set of generalized instrument requirements for HAPP borne sensors is also presented.

  3. 30 CFR 250.913 - When must I resubmit Platform Verification Program plans?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTINENTAL SHELF Platforms and Structures Platform Verification Program § 250.913 When must I resubmit Platform Verification Program plans? (a) You must resubmit any design verification, fabrication... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I resubmit Platform Verification...

  4. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...

  5. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...

  6. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and major members of concrete-gravity and steel-gravity structures; (2) For jacket and floating... Platforms and Structures Platform Verification Program § 250.912 What plans must I submit under the Platform Verification Program? If your platform, associated structure, or major modification meets the criteria in § 250...

  7. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-03-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most importantly, sounding rockets remain the only way to explore the tenuous regions of the Earth’s atmosphere (the upper stratosphere, mesosphere, and lower ionosphere/thermosphere) above balloon altitudes (˜40km) and below satellite orbits (˜160km). They can lift remote sensing telescope payloads with masses up to 400kg to altitudes of 350km providing observing times of up to 6min above the blocking influence of Earth’s atmosphere. Though a number of sounding rocket research programs exist around the world, this article focuses on the NASA Sounding Rocket Program, and particularly on the astrophysical and solar sounding rocket payloads.

  8. Data relay system specifications for ERTS image interpretation

    NASA Technical Reports Server (NTRS)

    Daniel, J. F.

    1970-01-01

    Experiments with the Data Collection System (DCS) of the Earth Resources Technology Satellites (ERTS) have been developed to stress ERTS applications in the Earth Resources Observation Systems (EROS) Program. Active pursuit of this policy has resulted in the design of eight specific experiments requiring a total of 98 DCS ground-data platforms. Of these eight experiments, six are intended to make use of DCS data as an aid in image interpretation, while two make use of the capability to relay data from remote locations. Preliminary discussions regarding additional experiments indicate a need for at least 150 DCS platforms within the EROS Program for ERTS experimentation. Results from the experiments will be used to assess the DCS suitability for satellites providing on-line, real-time, data relay capability. The rationale of the total DCS network of ground platforms and the relationship of each experiment to that rationale are discussed.

  9. 30 CFR 250.913 - When must I resubmit Platform Verification Program plans?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Structures Platform Verification Program § 250.913 When must I resubmit Platform Verification Program plans? (a) You must resubmit any design verification, fabrication verification, or installation verification... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I resubmit Platform Verification...

  10. SPURS-2: Multi-month and multi-scale observations of upper ocean salinity in a rain-dominated salinity minimum region.

    NASA Astrophysics Data System (ADS)

    Rainville, L.; Farrar, J. T.; Shcherbina, A.; Centurioni, L. R.

    2017-12-01

    The Salinity Processes in the Upper-ocean Regional Study (SPURS) is a program aimed at understanding the patterns and variability of sea surface salinity. Following the first SPURS program in an evaporation-dominated region (2012-2013), the SPURS-2 program targeted wide range of spatial and temporal scales associated with processes controlling salinity in the rain-dominated Eastern Pacific Fresh Pool. Autonomous instruments were delivered in August and September 2016 using research vessels conducted observations over one complete annual cycle. The SPURS-2 field program used coordinated observations from many different autonomous platforms, and a mix of Lagrangian and Eulerian approaches. Here we discuss the motivation, implementation, and the early of SPURS-2.

  11. Feasibility of adapting a classroom balance training program to a video game platform for people with Parkinson's disease.

    PubMed

    Dowling, Glenna A; Hone, Robert; Brown, Charles; Mastick, Judy; Melnick, Marsha

    2013-04-01

    Decreased postural stability in people with Parkinson's disease (PD) is a major component of disability. Rehabilitation interventions are therefore targeted to improve balance, mobility, and strength. Virtual environment and gaming platforms can encourage therapeutic activity in the home and be challenging and fun. The aims of the project were to demonstrate the technical feasibility of adapting a classroom-based gait-and-balance training program to a video game platform. Ease of use, appeal, and safety of the proposed games were tested for both clinic and in-home use. This cross-sectional observational study was carried out in three phases. Modifications in the game platform were made in an iterative fashion based on feedback from subjects and the observations of clinical and design team members. The first two phases of testing were performed in a laboratory setting, and the final phase was carried out in subjects' homes. Subjects (n=20) scored the primary "Rail Runner" game 3.6 for ease of use (1=hard, 5=easy) and 3.9 for appeal (1=did not like at all, 5=liked very much). There were no safety issues encountered, and the games performed without technical flaws in the final phase of testing. A computer-based video game that incorporates therapeutic movements to improve gait and balance for people with PD was appealing to subjects and feasible for home use.

  12. 30 CFR 250.904 - What is the Platform Approval Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... these requirements will satisfy MMS criteria for approval of fixed platforms of a proven design that... approval for a floating platform; a platform of unique design; or a platform being installed in deepwater (> 400 ft.) or a frontier area, you must also meet the requirements of the Platform Verification Program...

  13. Validation of tablet-based evaluation of color fundus images

    PubMed Central

    Christopher, Mark; Moga, Daniela C.; Russell, Stephen R.; Folk, James C.; Scheetz, Todd; Abràmoff, Michael D.

    2012-01-01

    Purpose To compare diabetic retinopathy (DR) referral recommendations made by viewing fundus images using a tablet computer to recommendations made using a standard desktop display. Methods A tablet computer (iPad) and a desktop PC with a high-definition color display were compared. For each platform, two retinal specialists independently rated 1200 color fundus images from patients at risk for DR using an annotation program, Truthseeker. The specialists determined whether each image had referable DR, and also how urgently each patient should be referred for medical examination. Graders viewed and rated the randomly presented images independently and were masked to their ratings on the alternative platform. Tablet- and desktop display-based referral ratings were compared using cross-platform, intra-observer kappa as the primary outcome measure. Additionally, inter-observer kappa, sensitivity, specificity, and area under ROC (AUC) were determined. Results A high level of cross-platform, intra-observer agreement was found for the DR referral ratings between the platforms (κ=0.778), and for the two graders, (κ=0.812). Inter-observer agreement was similar for the two platforms (κ=0.544 and κ=0.625 for tablet and desktop, respectively). The tablet-based ratings achieved a sensitivity of 0.848, a specificity of 0.987, and an AUC of 0.950 compared to desktop display-based ratings. Conclusions In this pilot study, tablet-based rating of color fundus images for subjects at risk for DR was consistent with desktop display-based rating. These results indicate that tablet computers can be reliably used for clinical evaluation of fundus images for DR. PMID:22495326

  14. Automated in situ observations of upper ocean biogeochemistry, bio-optics, and physics and their potential use for global studies

    NASA Technical Reports Server (NTRS)

    Dickey, Tommy D.; Granata, Timothy C.; Taupier-Letage, Isabelle

    1992-01-01

    The processes controlling the flux of carbon in the upper ocean have dynamic ranges in space and time of at least nine orders of magnitude. These processes depend on a broad suite of inter-related biogeochemical, bio-optical, and physical variables. These variables should be sampled on scales matching the relevant phenomena. Traditional ship-based sampling, while critical for detailed and more comprehensive observations, can span only limited portions of these ranges because of logistical and financial constraints. Further, remote observations from satellite platforms enable broad horizontal coverage which is restricted to the upper few meters of the ocean. For these main reasons, automated subsurface measurement systems are important for the fulfillment of research goals related to the regional and global estimation and modeling of time varying biogeochemical fluxes. Within the past few years, new sensors and systems capable of autonomously measuring several of the critical variables have been developed. The platforms for deploying these systems now include moorings and drifters and it is likely that autonomous underwater vehicles (AUV's) will become available for use in the future. Each of these platforms satisfies particular sampling needs and can be used to complement both shipboard and satellite observations. In the present review, (1) sampling considerations will be summarized, (2) examples of data obtained from some of the existing automated in situ sampling systems will be highlighted, (3) future sensors and systems will be discussed, (4) data management issues for present and future automated systems will be considered, and (5) the status of near real-time data telemetry will be outlined. Finally, we wish to make it clear at the outset that the perspectives presented here are those of the authors and are not intended to represent those of the United States JGOFS program, the International JGOFS program, NOAA's C&GC program, or other global ocean programs.

  15. Exploring small bodies in the outer solar system with stellar occultations

    NASA Technical Reports Server (NTRS)

    Elliot, Jim L.; Dunham, Edward W.; Olkin, C. B.

    1995-01-01

    Stellar occultation observations probe the atmospheric structure and extinction of outer solar system bodies with a spatial resolution of a few kilometers, and an airborne platform allows the observation of occultations by small bodies that are not visible from fixed telescopes. Results from occultations by Triton, Pluto, and Chiron observed with KAO are discussed, and future directions for this program are presented.

  16. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  17. Earth observing system. Output data products and input requirements, version 2.0. Volume 1: Instrument data product characteristics

    NASA Technical Reports Server (NTRS)

    Lu, Yun-Chi; Chang, Hyo Duck; Krupp, Brian; Kumar, Ravindra; Swaroop, Anand

    1992-01-01

    Information on Earth Observing System (EOS) output data products and input data requirements that has been compiled by the Science Processing Support Office (SPSO) at GSFC is presented. Since Version 1.0 of the SPSO Report was released in August 1991, there have been significant changes in the EOS program. In anticipation of a likely budget cut for the EOS Project, NASA HQ restructured the EOS program. An initial program consisting of two large platforms was replaced by plans for multiple, smaller platforms, and some EOS instruments were either deselected or descoped. Updated payload information reflecting the restructured EOS program superseding the August 1991 version of the SPSO report is included. This report has been expanded to cover information on non-EOS data products, and consists of three volumes (Volumes 1, 2, and 3). Volume 1 provides information on instrument outputs and input requirements. Volume 2 is devoted to Interdisciplinary Science (IDS) outputs and input requirements, including the 'best' and 'alternative' match analysis. Volume 3 provides information about retrieval algorithms, non-EOS input requirements of instrument teams and IDS investigators, and availability of non-EOS data products at seven primary Distributed Active Archive Centers (DAAC's).

  18. Update on the College of American Pathologists Experience With High-Risk Human Papillomavirus Proficiency Testing for Cytology.

    PubMed

    Ghofrani, Mohiedean; Zhao, Chengquan; Davey, Diane D; Fan, Fang; Husain, Mujtaba; Laser, Alice; Ocal, Idris T; Shen, Rulong Z; Goodrich, Kelly; Souers, Rhona J; Crothers, Barbara A

    2016-12-01

    - Since 2008, the College of American Pathologists has provided the human papillomavirus for cytology laboratories (CHPV) proficiency testing program to help laboratories meet the requirements of the Clinical Laboratory Improvement Amendments of 1988. - To provide an update on trends in proficiency testing performance in the College of American Pathologists CHPV program during the 4-year period from 2011 through 2014 and to compare those trends with the preceding first 3 years of the program. - Responses of laboratories participating in the CHPV program from 2011 through 2014 were analyzed using a nonlinear mixed model to compare different combinations of testing medium and platform. - In total, 818 laboratories participated in the CHPV program at least once during the 4 years, with participation increasing during the study period. Concordance of participant responses with the target result was more than 98% (38 280 of 38 892). Overall performance with all 3 testing media-ThinPrep (Hologic, Bedford, Massachusetts), SurePath (Becton, Dickinson and Company, Franklin Lakes, New Jersey), or Digene (Qiagen, Valencia, California)-was equivalent (P = .51), and all 4 US Food and Drug Administration (FDA)-approved platforms-Hybrid Capture 2 (Qiagen), Cervista (Hologic), Aptima (Hologic), and cobas (Roche Molecular Systems, Pleasanton, California)-outperformed laboratory-developed tests, unspecified commercial kits, and other (noncommercial) methods in ThinPrep medium (P < .001). However, certain off-label combinations of platform and medium, most notably Cervista with SurePath, demonstrated suboptimal performance (P < .001). - Laboratories demonstrated proficiency in using various combinations of testing media and platforms offered in the CHPV program, with statistically significant performance differences in certain combinations. These observations may be relevant in the current discussions about FDA oversight of laboratory-developed tests.

  19. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    NASA Astrophysics Data System (ADS)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  20. 30 CFR 250.904 - What is the Platform Approval Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... criteria for approval of fixed platforms of a proven design that will be placed in the shallow water areas... of unique design; or a platform being installed in deepwater (> 400 ft.) or a frontier area, you must also meet the requirements of the Platform Verification Program. The requirements of the Platform...

  1. SOFIA Update and Science Vision

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly

    2017-01-01

    I will present an overview of the SOFIA program, its science vision and upcoming plans for the observatory. The talk will feature several scientific highlights since full operations, along with summaries of planned science observations for this coming year, platform enhancements and new instrumentation.

  2. Influence of platform and abutment angulation on peri-implant bone. A three-dimensional finite element stress analysis.

    PubMed

    Martini, Ana Paula; Barros, Rosália Moreira; Júnior, Amilcar Chagas Freitas; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Ferraz, Cacilda Cunha; Pellegrin, Maria Cristina Jimenez; Anchieta, Rodolfo Bruniera

    2013-12-01

    The aim of this study was to evaluate stress distribution on the peri-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm × 5 mm) were created varying the platform (R, regular or S, switching) and the abutments (S, straight or A, angulated 15°). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (σmax) and minimum (σmin) principal stress values were obtained. For the cortical bone the highest stress values (σmax) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (σmax) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).

  3. Observing the ocean with different platforms/methods. Advantages, disadvantages and lessons learnt

    NASA Astrophysics Data System (ADS)

    Petihakis, George; Potiris, Manolis; Ntoumas, Manolis; Frangoulis, Kostas; Tsiaras, Kostas; Triantafyllou, George; Pollani, Annika

    2015-04-01

    Methods for observing/measuring the ocean, present remarkable diversity. In situ sampling or remote sensing, automated or not measurements with sensing probes, utilize different measuring principles, sample different parts of the system, are characterized by different accuracy/precision and sample over a large range of spatial and temporal scales with variable resolution. Measurements, quite often are dependent on the platform design and the platform interaction with the highly variable ambient environment. To add to the aforementioned issues that render the combination of data from different sources challenging from a scientific perspective, there are also a number of technical and data issues. These are important for the good operational status of the platforms, the smooth data flow and the collection of appropriate meta-data. Finally the raw data files need to be processed into a user friendly output format so the operator will be able to identify as early as possible sensor drift and failures. In this work, data from different observation platforms/sensors is analysed and compared, while mechanisms and processes responsible for differences are identified. More detailed, temperature, salinity and chlorophyll data from four fixed observing stations, one Ferry Box, satellites and a monthly in situ sampling program, is used. Main results indicate that a) regular calibration according to expected parameter range and well-defined, consistent deployment plan of proven sensors is sufficient for acquiring high quality data in the long term. Better knowledge of site specific response of new instrumentation is required for producing consistent long term data b) duplicate sensors on one platform considerably improve data flow and data quality c) if an area is sampled by multiple platforms, then platform dependent errors can be quantified d) fixed point observatories are efficient tools for assessing regional performance of satellite products. Higher vertical and temporal sampling rate of the upper 20m of the water column increase inter-comparability between the two platforms e) delayed mode, lower processing level data/meta-data should be archived and disseminated in addition to standard formatted files due to analysis artifacts and loss of information during transmission and processing.

  4. Combatting Global Infectious Diseases: A Network Effect of Specimen Referral Systems.

    PubMed

    Fonjungo, Peter N; Alemnji, George A; Kebede, Yenew; Opio, Alex; Mwangi, Christina; Spira, Thomas J; Beard, R Suzanne; Nkengasong, John N

    2017-02-13

    The recent Ebola virus outbreak in West Africa clearly demonstrated the critical role of laboratory systems and networks in responding to epidemics. Because of the huge challenges in establishing functional laboratories at all tiers of health systems in developing countries, strengthening specimen referral networks is critical. In this review article, we propose a platform strategy for developing specimen referral networks based on 2 models: centralized and decentralized laboratory specimen referral networks. These models have been shown to be effective in patient management in programs in resource-limited settings. Both models lead to reduced turnaround time and retain flexibility for integrating different specimen types. In Haiti, decentralized specimen referral systems resulted in a 182% increase in patients enrolling in human immunodeficiency virus treatment programs within 6 months. In Uganda, cost savings of up to 62% were observed with a centralized model. A platform strategy will create a network effect that will benefit multiple disease programs.

  5. An interactive parallel programming environment applied in atmospheric science

    NASA Technical Reports Server (NTRS)

    vonLaszewski, G.

    1996-01-01

    This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.

  6. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    NASA Astrophysics Data System (ADS)

    Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji

    2016-04-01

    There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.

  7. Geosynchronous platform definition study. Volume 6: Geosynchronous program evaluation and recommendations

    NASA Technical Reports Server (NTRS)

    Myers, H. L.

    1973-01-01

    The programmatic analyses conducted to achieve the objectives of the study are presented. The characteristics are examined of alternate geosynchronous programs based on servicing concepts, geosynchronous platform configurations, and equipment definitions which have evolved during the study. The logistics support necessary to carry out programs using these systems is defined considering alternate approaches for on-orbit servicing. The costs of the resultant programs are then determined and the alternate program approaches compared. Conventional programs with expendable satellites are also defined to the extent necessary to permit comparison with on-orbit serviced platform programs.

  8. Linking at-risk South African girls to sexual violence and reproductive health services: A mixed-methods assessment of a soccer-based HIV prevention program and pilot SMS campaign.

    PubMed

    Merrill, Katherine G; Merrill, Jamison C; Hershow, Rebecca B; Barkley, Chris; Rakosa, Boitumelo; DeCelles, Jeff; Harrison, Abigail

    2018-04-30

    Grassroot Soccer developed SKILLZ Street-a soccer-based life skills program with a supplementary SMS platform-to support adolescent girls at risk for HIV, violence, and sexual and reproductive health challenges. We conducted a mixed-methods assessment of preliminary outcomes and implementation processes in three primary schools in Soweto, South Africa, from August to December 2013. Quantitative methods included participant attendance and SMS platform usage tracking, pre/post questionnaires, and structured observation. Qualitative data were collected from program participants, parents, teachers, and a social worker during 6 focus group discussions and 4 in-depth interviews. Of 394 participants enrolled, 97% (n = 382) graduated, and 217 unique users accessed the SMS platform. Questionnaires completed by 213 participants (mean age: 11.9, SD: 3.02 years) alongside qualitative findings showed modest improvements in participants' perceptions of power in relationships and gender equity, self-esteem, self-efficacy to avoid unwanted sex, communication with others about HIV and sex, and HIV-related knowledge and stigma. The coach-participant relationship, safe space, and integration of soccer were raised as key intervention components. Implementation challenges were faced around delivery of soccer-based activities. Findings highlight the relevance and importance of programs like SKILLZ Street in addressing challenges facing adolescent girls in South African townships. Recommendations for future programs are provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a project management timeline, Gantt Chart, that depicts when interim and final reports required by... 30 Mineral Resources 2 2010-07-01 2010-07-01 false If my platform is subject to the Platform Verification Program, what must I do? 250.911 Section 250.911 Mineral Resources MINERALS MANAGEMENT SERVICE...

  10. Solar-terrestrial research for the 1980's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solar-terrestrial system is described. Techniques for observations involving all relevant platforms: spacecraft, the Earth's surface, aircraft, balloons, and rockets are proposed. The need for interagency coordination of programs, efficient data management, theoretical studies and modeling, the continuity of long time series observations, and innovative instrument design is emphasized. Examples of the practical impact of interactions between solar terrestrial phenomena and the environment, including technological systems are presented.

  11. Activity Catalog Tool (ACT) user manual, version 2.0

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.; Andre, Anthony D.

    1994-01-01

    This report comprises the user manual for version 2.0 of the Activity Catalog Tool (ACT) software program, developed by Leon D. Segal and Anthony D. Andre in cooperation with NASA Ames Aerospace Human Factors Research Division, FLR branch. ACT is a software tool for recording and analyzing sequences of activity over time that runs on the Macintosh platform. It was designed as an aid for professionals who are interested in observing and understanding human behavior in field settings, or from video or audio recordings of the same. Specifically, the program is aimed at two primary areas of interest: human-machine interactions and interactions between humans. The program provides a means by which an observer can record an observed sequence of events, logging such parameters as frequency and duration of particular events. The program goes further by providing the user with a quantified description of the observed sequence, through application of a basic set of statistical routines, and enables merging and appending of several files and more extensive analysis of the resultant data.

  12. Inter-agency Working Group for Airborne Data and Telemetry Systems (IWGADTS)

    NASA Technical Reports Server (NTRS)

    Webster, Chris; Freudinger, Lawrence; Sorenson, Carl; Myers, Jeff; Sullivan, Don; Oolman, Larry

    2009-01-01

    The Interagency Coordinating Committee for Airborne Geosciences Research and Applications (ICCAGRA) was established to improve cooperation and communication among agencies sponsoring airborne platforms and instruments for research and applications, and to serve as a resource for senior level management on airborne geosciences issues. The Interagency Working Group for Airborne Data and Telecommunications Systems (IWGADTS) is a subgroup to ICCAGRA for the purpose of developing recommendations leading to increased interoperability among airborne platforms and instrument payloads, producing increased synergy among research programs with similar goals, and enabling the suborbital layer of the Global Earth Observing System of Systems.

  13. Lattice QCD simulations using the OpenACC platform

    NASA Astrophysics Data System (ADS)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  14. Simultaneous application of multiple platforms (Glider, Scanfish, profiling mooring, CTD) to improve detection and quantification of temporal ocean dynamics

    NASA Astrophysics Data System (ADS)

    Meyer, D.; Prien, R. D.; Lips, U.; Naumann, M.; Liblik, T.; Schulz-Bull, D. E.

    2016-02-01

    Ocean dynamics are difficult to observe given the broad spectrum of temporal and spatial scales. Robotic technology can be used to address this issue, and help to investigate the variability of physical and biogeochemical processes. This work focuses on ocean robots and in particular on glider technology which seems to be one of the most promising oceanographic tools for future marine research. In this context, we present the results of an observational program conducted in the Baltic Sea combining a profiling mooring (GODESS - Gotland Deep Environmental Sampling Station) and glider technology (Slocum). The temporal variability is captured by the mooring, while the spatial variability is obtained from the glider sampling the surrounding area. Furthermore, classical CTD-measurements and an underwater vehicle (Scanfish) are used simultaneously by two different research vessels to validate and complement the observing network. The main aim of the study is to identify possible synergies between the different platforms and to get a better understanding of maximizing the information content of the data collected by this network. The value and the quality of the data of each individual platform is analyzed and their contribution to the performance of the network itself evaluated.

  15. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291.

    PubMed

    Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl

    2015-12-01

    To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. The Liege-balloon program. [balloon-borne instruments for high-spectral resolution observations of the sun

    NASA Technical Reports Server (NTRS)

    Zander, R.

    1974-01-01

    The Liege-balloon program is intended to make high-spectral resolution observations of the sun in the near- and intermediate infrared regions not accessible from the ground. A description of the equipment, followed by a summary of the data obtained till now is presented. Except for ozone whose maximum of concentration lies near 25 Km altitude, the residual mass distribution of the other mentioned molecules decreases with altitude. This is a self-explanatory argument for carrying out spectroscopic observations from platforms transcending the densest layers of the earth's atmosphere. The Liege balloon equipment is primarily intended for very high-resolution solar observations from about 27-30 Km altitude, in all spectral regions between 1.5 and 15.0 microns, not accessible from the ground.

  17. EOS Directory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Earth Observing System (EOS) directory is divided into two main sections: white and yellow pages. The white pages list alphabetically the names and addresses -- including e-mail, phone, and fax when available -- of all individuals involved with EOS, from graduate students to panel members to program management and more. The yellow pages list the names, affiliation, and phone number of participants divided by project management, program management, individual project participants, interdisciplinary investigations (listed alphabetically by PI), the Science Executive Committee, various panels, platforms, working groups, fellowships, and contractors.

  18. Data availability and data archeology from the former Soviet Union

    NASA Technical Reports Server (NTRS)

    Sychev, Yuri; Mikhailov, Nickolai N.

    1992-01-01

    Acquisition of data on the ocean is believed to start in 1872, when the Royal Navy ship 'Challenger' performed oceanographic stations in its round-world voyage (1872-1876). The first oceanographic studies of the World Ocean refer to the 80s second half of the 19th century. During its round-world expedition 'Vityaz' (1886-1889) headed by S.O. Markov, performed hydrological measurements in the Baltic Sea, Atlantic and Pacific Oceans. According to information available the regular expedition observations (prototype of future complex international program on the ocean research) started in the second half of 80s last century under the auspice of Kiev commission for exploration of German Seas. Systematic hydrological observations were organized by Hydrographic Department of Russia in 1876-1879 according to the program similar to the Kiev one and observations were regularly made by ships of custom service over the Russian area of the Baltic Sea. The increasing demands in oceanographic data contributed to considerable progress in exploration of the World Ocean during current century whole tendency to increase and become more significant has been observed for the last 30-40 years. Most probably various expeditions which were carried out during International Geophysical Year in different regions of the World Ocean are to be reference point in performing intensive oceanographic observations of Marine environment. In the former USSR oceanographic observations are made by research and hydrographic vessels, commercial and fishery ships as well as oil production platforms, coastal hydrometeorological station and other observing platforms. Oceanographic observations data, available from main sources of information on the ocean-research vessels, are also considered in the report.

  19. 30 CFR 250.910 - Which of my facilities are subject to the Platform Verification Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., production, and pipeline risers, and riser tensioning systems (each platform must be designed to accommodate all the loads imposed by all risers and riser does not have tensioning systems);(ii) Turrets and... are subject to the Platform Verification Program: (i) Drilling, production, and pipeline risers, and...

  20. 30 CFR 250.910 - Which of my facilities are subject to the Platform Verification Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pipeline risers, and riser tensioning systems (each platform must be designed to accommodate all the loads imposed by all risers and riser does not have tensioning systems);(ii) Turrets and turret-and-hull... Platform Verification Program: (i) Drilling, production, and pipeline risers, and riser tensioning systems...

  1. 30 CFR 250.910 - Which of my facilities are subject to the Platform Verification Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., production, and pipeline risers, and riser tensioning systems (each platform must be designed to accommodate all the loads imposed by all risers and riser does not have tensioning systems);(ii) Turrets and... are subject to the Platform Verification Program: (i) Drilling, production, and pipeline risers, and...

  2. 30 CFR 250.910 - Which of my facilities are subject to the Platform Verification Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., production, and pipeline risers, and riser tensioning systems (each platform must be designed to accommodate all the loads imposed by all risers and riser does not have tensioning systems);(ii) Turrets and... are subject to the Platform Verification Program: (i) Drilling, production, and pipeline risers, and...

  3. 30 CFR 250.910 - Which of my facilities are subject to the Platform Verification Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., production, and pipeline risers, and riser tensioning systems (each platform must be designed to accommodate all the loads imposed by all risers and riser does not have tensioning systems);(ii) Turrets and... are subject to the Platform Verification Program: (i) Drilling, production, and pipeline risers, and...

  4. Integrated Platform for Expedited Synthesis–Purification–Testing of Small Molecule Libraries

    PubMed Central

    2017-01-01

    The productivity of medicinal chemistry programs can be significantly increased through the introduction of automation, leading to shortened discovery cycle times. Herein, we describe a platform that consolidates synthesis, purification, quantitation, dissolution, and testing of small molecule libraries. The system was validated through the synthesis and testing of two libraries of binders of polycomb protein EED, and excellent correlation of obtained data with results generated through conventional approaches was observed. The fully automated and integrated platform enables batch-supported compound synthesis based on a broad array of chemical transformations with testing in a variety of biochemical assay formats. A library turnaround time of between 24 and 36 h was achieved, and notably, each library synthesis produces sufficient amounts of compounds for further evaluation in secondary assays thereby contributing significantly to the shortening of medicinal chemistry discovery cycles. PMID:28435537

  5. NASA science utilization plans for the Space Station.

    PubMed

    Reeves, E M; Cressy, P J

    1995-10-01

    The Mir-1 and International Space Station Alpha capabilities present the science community with unique long duration platforms to conduct a wide range of scientific research in the microgravity and life sciences as well as in the observational sciences, NASA is developing plans to use the capabilities of Mir and Space Station as they emerge during the development of the orbital program. In both cases the planned science utilization programs take advantage of the volume, crew, power, microgravity and logistics resupply unique to each phase. The paper will present these utilization plans in the context of an evolving scientific program.

  6. Metrically preserving the USGS aerial film archive

    USGS Publications Warehouse

    Moe, Donald; Longhenry, Ryan

    2013-01-01

    Since 1972, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, has provided fi lm-based products to the public. EROS is home to an archive of 12 million frames of analog photography ranging from 1937 to the present. The archive contains collections from both aerial and satellite platforms including programs such as the National High Altitude Program (NHAP), National Aerial Photography Program (NAPP), U.S. Antarctic Resource Center (USARC), Declass 1(CORONA, ARGON, and LANYARD), Declass 2 (KH-7 and KH-9), and Landsat (1972 – 1992, Landsat 1–5).

  7. The International Space Station: A Unique Platform For Terrestrial Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.

    2012-01-01

    The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.

  8. Creating and Sharing Understanding: GEOSS and ArcGIS Online

    NASA Astrophysics Data System (ADS)

    White, C. E.; Hogeweg, M.; Foust, J.

    2014-12-01

    The GEOSS program brokers various forms of earth observation data and information via its online platform Discovery and Access Broker (DAB). The platform connects relevant information systems and infrastructures through the world. Esri and the National Research Council of Italy Institute of Atmospheric Pollution Research (CNR-IIA) are building two-way technology between DAB framework and ArcGIS Online using the ArcGIS Online API. Developers will engineer Esri and DAB interfaces and build interoperable web services that connect the two systems. This collaboration makes GEOSS earth observation data and services available to the ArcGIS Online community, and ArcGIS Online a significant part of the GEOSS DAB infrastructure. ArcGIS Online subscribers can discover and access the resources published by GEOSS, use GEOSS data services, and build applications. Making GEOSS content available in ArcGIS Online increases opportunities for scientists in other communities to visualize information in greater context. Moreover, because the platform supports authoritative and crowd-sourcing information, GEOSS members can build networks into other disciplines. This talk will discuss the power of interoperable service architectures that make such a collaboration possible, and the results thus far.

  9. High resolution remote sensing missions of a tethered satellite

    NASA Technical Reports Server (NTRS)

    Vetrella, S.; Moccia, A.

    1986-01-01

    The application of the Tethered Satellite (TS) as an operational remote sensing platform is studied. It represents a new platform capable of covering the altitudes between airplanes and free flying satellites, offering an adequate lifetime, high geometric and radiometric resolution and improved cartographic accuracy. Two operational remote sensing missions are proposed: one using two linear array systems for along track stereoscopic observation and one using a synthetic aperture radar combined with an interferometric technique. These missions are able to improve significantly the accuracy of future real time cartographic systems from space, also allowing, in the case of active microwave systems, the Earth's observation both in adverse weather and at any time, day or night. Furthermore, a simulation program is described in which, in order to examine carefully the potentiality of the TS as a new remote sensing platform, the orbital and attitude dynamics description of the TSS is integrated with the sensor viewing geometry, the Earth's ellipsoid, the atmospheric effects, the Sun illumination and the digital elevation model. A preliminary experiment has been proposed which consist of a metric camera to be deployed downwards during the second Shuttle demonstration flight.

  10. The 1979 Southeastern Virginia Urban Plume Study. Volume 1: Description of experiments and selected aircraft data

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Lee, R. B., III; Mathis, J. J., Jr.

    1981-01-01

    The Southeastern Virginia Urban Plume Study (SEV-UPS) utilizes remote sensors and satellite platforms to monitor the Earth's environment and resources. SEV-UPS focuses on the application of specific remote sensors to the monitoring and study of specific air quality problems. The 1979 SEV-UPS field program was conducted with specific objectives: (1) to provide correlative data to evaluate the Laser Absorption spectrometer ozone remote sensors; (2) to demonstrate the utility of the sensor for the study of urban ozone problems; (3) to provide additional insights into air quality phenomena occuring in Southeastern Virginia; and (4) to compare measurement results of various in situ measurement platforms. The field program included monitoring from 12 surface stations, 4 aircraft, 2 tethered balloons, 2 radiosonde release sites, and numerous surface meteorological observation sites. The aircraft monitored 03, NO, NOX, Bscat, temperature, and dewpoint temperature.

  11. Inflated concepts for the earth science geostationary platform and an associated flight experiment

    NASA Technical Reports Server (NTRS)

    Friese, G.

    1992-01-01

    Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.

  12. Annual Report 1984.

    DTIC Science & Technology

    1985-01-01

    equipped with data collection platforms (DCP) by the end of FY 1985. (b) Communication. The DCP’s transmit the remote gaging station data over the...activated 78 platforms in FY 84 bringing the total number of operating stations to 85. Plans are to activate seven more platforms in FY 85. c. Acoustic... Platforms . The total program cost for FY 1984 is shown in Table VI-3. The total program cost for FY 1985 will be $172,720. (2) National Weather Service

  13. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey

    2018-02-01

    We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  14. Interactive Biophysics with Microswimmers: Education, Cloud Experimentation, Programmed Swarms, and Biotic Games

    NASA Astrophysics Data System (ADS)

    Riedel-Kruse, Ingmar

    Modern biotechnology gets increasingly powerful to manipulate and measure microscopic biophysical processes. Nevertheless, no platform exists to truly interact with these processes, certainly not with the convenience that we are accustomed to from our electronic smart devices. In my talk I will provide the rational for such Interactive Biotechnology and conceptualize its core component, the BPU (biotic processing unit), which is then connected to an according user interface. The biophysical phenomena currently featured on these platforms utilize the phototactic response of motile microorganisms, e.g., Euglena gracilis, resulting in spatio-temporal dynamics from the single cell to the self-organized multi-cellular scale. I will demonstrate multiple platforms, such as scalable biology cloud experimentation labs, tangible museum exhibits, biotic video games, low-cost interactive DIY kits using smartphones, and programming languages for swarm robotics. I will discuss applications for education as well as for professional and citizen science. Hence, we turn traditionally observational microscopy into an interactive experience. I was told that presenting in the educational section does not count against the ''one author - one talk policy'' - so I submit two abstracts. In case of conflict - please contact me: ingmar@stanford.edu.

  15. Comparison of Four PD-L1 Immunohistochemical Assays in Lung Cancer.

    PubMed

    Hendry, Shona; Byrne, David J; Wright, Gavin M; Young, Richard J; Sturrock, Sue; Cooper, Wendy A; Fox, Stephen B

    2018-03-01

    Four different programmed death ligand 1 immunohistochemical assays are approved or in development as companion or complementary diagnostics to different immunotherapeutic agents in lung carcinoma. We sought to determine whether these assays are technically equivalent and whether one antibody can be used on an alternate staining platform. Serial sections of tissue microarrays constructed from 368 cases of resected lung cancer were stained for 22C3 and 28-8 on the Dako Link 48 platform (Dako, Carpinteria, Ca) and for SP142 and SP263 on the Ventana Benchmark Ultra platform (Ventana Medical Systems, Tucson, AZ) strictly as per product insert. A protocol was developed to use the 22C3 antibody on the Ventana Benchmark Ultra platform. Differences in mean tumor cell and immune cell staining were observed between the four assays (p < 0.001). Differences between 22C3 and 28-8 were not statistically significant. Concordance of tumor cell scores was good (intraclass correlation coefficient [ICC] = 0.674), particularly when SP142 was excluded as an outlier (ICC = 0.755). The highest concordance was seen between 22C3 and 28-8 (ICC = 0.812). Concordance was poor for immune cell staining (ICC = 0.212). When dichotomized according to clinically relevant cutoffs, pairwise comparisons showed poor to moderate concordance (κ = 0.196-0.578), with positive percent agreement ranging from 15.1% to 90.0%. The 22C3 antibody performed comparably on the Dako Link 48 platform and the alternate Ventana Benchmark Ultra platform (ICC = 0.921, κ = 0.897). Concordance between the four programmed death ligand 1 immunohistochemical assays when performed and scored as intended show that apart from 28-8 and 22C3, they cannot be used interchangeably in clinical practice. A protocol was successfully developed to use 22C3 on an alternate platform, which may help to overcome some barriers to implementation. Copyright © 2017 International Association for the Study of Lung Cancer. All rights reserved.

  16. NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education

    NASA Astrophysics Data System (ADS)

    Baeuerle, B.; Rockwell, A.

    2012-12-01

    Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft

  17. Overview of the NASA tropospheric environmental quality remote sensing program

    NASA Technical Reports Server (NTRS)

    Allario, F.; Ayers, W. G.; Hoell, J. M.

    1979-01-01

    This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.

  18. The development of a biomimetic acoustic direction finding system for use on multiple platforms

    NASA Astrophysics Data System (ADS)

    Deligeorges, Socrates; Anderson, David; Browning, Cassandra A.; Cohen, Howard; Freedman, David; Gore, Tyler; Karl, Christian; Kelsall, Sarah; Mountain, David; Nourzad, Marianne; Pu, Yirong; Sandifer, Matt; Xue, Shuwan; Ziph-Schatzberg, Leah; Hubbard, Allyn

    2008-04-01

    This paper describes the flow of scientific and technological achievements beginning with a stationary "small, smart, biomimetic acoustic processor" designed for DARPA that led to a program aimed at acoustic characterization and direction finding for multiple, mobile platforms. ARL support and collaboration has allowed us to adapt the core technology to multiple platforms including a Packbot robotic platform, a soldier worn platform, as well as a vehicle platform. Each of these has varying size and power requirements, but miniaturization is an important component of the program for creating practical systems which we address further in companion papers. We have configured the system to detect and localize gunfire and tested system performance with live fire from numerous weapons such as the AK47, the Dragunov, and the AR15. The ARL-sponsored work has led to connections with Natick Labs and the Future Force Warrior program, and in addition, the work has many and obvious applications to homeland defense, police, and civilian needs.

  19. A platform for population-based weight management: description of a health plan-based integrated systems approach.

    PubMed

    Pronk, Nicolaas P; Boucher, Jackie L; Gehling, Eve; Boyle, Raymond G; Jeffery, Robert W

    2002-10-01

    To describe an integrated, operational platform from which mail- and telephone-based health promotion programs are implemented and to specifically relate this approach to weight management programming in a managed care setting. In-depth description of essential systems structures, including people, computer technology, and decision-support protocols. The roles of support staff, counselors, a librarian, and a manager in delivering a weight management program are described. Information availability using computer technology is a critical component in making this system effective and is presented according to its architectural layout and design. Protocols support counselors and administrative support staff in decision making, and a detailed flowchart presents the layout of this part of the system. This platform is described in the context of a weight management program, and we present baseline characteristics of 1801 participants, their behaviors, self-reported medical conditions, and initial pattern of enrollment in the various treatment options. Considering the prevalence and upward trend of overweight and obesity in the United States, a need exists for robust intervention platforms that can systematically support multiple types of programs. Weight management interventions implemented using this platform are scalable to the population level and are sustainable over time despite the limits of defined resources and budgets. The present article describes an innovative approach to reaching a large population with effective programs in an integrated, coordinated, and systematic manner. This comprehensive, robust platform represents an example of how obesity prevention and treatment research may be translated into the applied setting.

  20. The impact of care management information technology model on quality of care after percutaneous coronary intervention: "Bridging the Divides".

    PubMed

    Weintraub, William S; Fanari, Zaher; Elliott, Daniel; Ostertag-Stretch, Jennifer; Muther, Ann; Lynahan, Margaret; Kerzner, Roger; Salam, Tabassum; Scherrer, Herbert; Anderson, Sharon; Russo, Carla A; Kolm, Paul; Steinberg, Terri H

    2017-07-03

    Reducing readmissions and improving metrics of care are a national priority. Supplementing traditional care with care management may improve outcomes. The Bridges program was an initial evaluation of a care management platform (CareLinkHub), supported by information technology (IT) developed to improve the quality and transition of care from hospital to home after percutaneous coronary intervention (PCI) and reduce readmissions. CareLink is comprised of care managers, patient navigators, pharmacists and physicians. Information to guide care management is guided by a middleware layer to gather information, PLR (ColdLight Solutions, LLC) and presented to CareLink staff on a care management platform, Aerial™ (Medecision). An additional analytic engine [Neuron™ (ColdLight Solutions, LLC)] helps, evaluates and guide care. The "Bridges" program enrolled a total of 2054 PCI patients with 2835 admission from April, 1st 2013 through March 1st, 2015. The data of the program was compared with those of 3691 PCI patients with 4414 admissions in the 3years prior to the program. No impact was seen with respect to inpatient and observation readmission, or emergency department visits. Similarly no change was noticed in LDL control. There was minimal improvement in BP control and only in the CTM-3 and SAQ-7 physical limitation scores in the patients' reported outcomes. Patient follow-up with physicians within 1week of discharge improved during the Bridges years. The CareLink hub platform was successfully implemented. Little or no impact on outcome metrics was seen in the short follow-up time. The Bridges program suggests that population health management must be a long-term goal, improving preventive care in the community. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dynamic control of a moving platform using the CAREN system to optimize walking in virtual reality environments.

    PubMed

    Makssoud, Hassan El; Richards, Carol L; Comeau, François

    2009-01-01

    Virtual reality (VR) technology offers the opportunity to expose patients to complex physical environments without physical danger and thus provides a wide range of opportunities for locomotor training or the study of human postural and walking behavior. A VR-based locomotor training system has been developed for gait rehabilitation post-stroke. A clinical study has shown that persons after stroke are able to adapt and benefit from this novel system wherein they walk into virtual environments (VEs) on a self-paced treadmill mounted on a platform with 6 degrees of freedom. This platform is programmed to mimic changes in the terrain encountered in the VEs. While engaging in these VEs, excessive trunk movements and speed alterations have been observed, especially during the pitch perturbations accompanying uphill or downhill terrain changes. An in-depth study of the subject's behavior in relation to the platform movements revealed that the platform rotational axes need to be modified, as previously shown by Barton et al, and in addition did not consider the subject's position on the treadmill. The aim of this study was to determine an optimal solution to simulate walking in real life when engaging in VEs.

  2. GPU-based High-Performance Computing for Radiation Therapy

    PubMed Central

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B.

    2014-01-01

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. Graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past a few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of studies have been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this article, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented. PMID:24486639

  3. Suborbital Platforms as a Tool for a Symbiotic Relationship Between Scientists, Engineers, and Students

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    Sounding rockets started in-situ space experimentation over 60 years ago with scientific experiments replacing warheads on captured V- 2 German rockets. Prior to this, and still today, suborbital platforms such as airplanes and high-altitude balloons have provided advantageous remote sensing observations advancing many areas of Earth and Space science. There is still a place for first-rate science in both stand-alone missions as well as providing complimentary measurements to the larger orbital missions. Along with the aforementioned science, the cost effectiveness and development times provided by sub-orbital platforms allows for perfect hands-on and first rate educational opportunities for undergraduate and graduate students. This talk will give examples and discuss the mutually beneficial opportunities that scientists and students obtain in development of suborbital missions. Also discussed will be how the next generation of space vehicles should help eliminate the number one obstacle to these programs - launch opportunities.

  4. Feasibility of observer system for determining orientation of balloon borne observational platforms

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Gagliardi, J. C.

    1982-01-01

    The instantaneous orientation (i.e., the attitude) of the LACATE instrumentation platform with respect to a local vertical is discussed. An observer model for predicting the orientation of balloon-borne research platforms is described. Determination of the platform orientation as a function of time is addressed.

  5. A Service-Based Program Evaluation Platform for Enhancing Student Engagement in Assignments

    ERIC Educational Resources Information Center

    Wu, Ye-Chi; Ma, Lee Wei; Jiau, Hewijin Christine

    2013-01-01

    Programming assignments are commonly used in computer science education to encourage students to practice target concepts and evaluate their learning status. Ensuring students are engaged in such assignments is critical in attracting and retaining students. To this end, WebHat, a service-based program evaluation platform, is introduced in this…

  6. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  7. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    ERIC Educational Resources Information Center

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  8. A Platform for Gastric Cancer Screening in Low- and Middle-Income Countries

    PubMed Central

    Caprara, Robert; Obstein, Keith L.; Scozzarro, Gabriel; Natali, Christian Di; Beccani, Marco; Morgan, Douglas R.; Valdastri, Pietro

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide and screening programs have had a significant impact on reducing mortality. The majority of cases occur in low- and middle-income countries (LMIC), where endoscopy resources are traditionally limited. In this paper, we introduce a platform designed to enable inexpensive gastric screening to take place in remote areas of LMIC. The system consists of a swallowable endoscopic capsule connected to an external water distribution system by a multi-channel soft tether. Pressurized water is ejected from the capsule to orient the view of the endoscopic camera. After completion of a cancer screening procedure, the outer shell of the capsule and the soft tether can be disposed, while the endoscopic camera is reclaimed without needing further reprocessing. The capsule, measuring 12 mm in diameter and 28 mm in length, is able to visualize the inside of the gastric cavity by combining waterjet actuation and the adjustment of the tether length. Experimental assessment was accomplished through a set of bench trials, ex vivo analysis, and in vivo feasibility validation. During the ex vivo trials, the platform was able to visualize the main landmarks that are typically observed during a gastric cancer screening procedure in less than 8 minutes. Given the compact footprint, the minimal cost of the disposable parts, and the possibility of running on relatively available and inexpensive resources, the proposed platform can potentially widen gastric cancer screening programs in LMIC. PMID:25561586

  9. Common tester platform concept.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurst, Michael James

    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies andmore » operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.« less

  10. A low cost thermal infrared hyperspectral imager for small satellites

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  11. An Analysis of Artificial Reef Fish Community Structure along the Northwestern Gulf of Mexico Shelf: Potential Impacts of “Rigs-to-Reefs” Programs

    PubMed Central

    Ajemian, Matthew J.; Wetz, Jennifer J.; Shipley-Lozano, Brooke; Shively, J. Dale; Stunz, Gregory W.

    2015-01-01

    Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30–84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50–60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper. PMID:25954943

  12. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    PubMed

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient motion was <0.3 mm. The motion platform's range met the need to reproduce clinically relevant translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The range, velocity and acceleration of the motion platform are sufficient to reproduce lung and prostate tumor motion for motion management. Programmable motion platforms are valuable tools in the investigation, quality assurance and commissioning of motion management systems in radiation oncology.

  13. Oil Industry Aids

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The accompanying photos show two types of offshore oil platforms used by Exxon Corporation. In the upper photo is a leg-supported gravity platform; the other structure is a "jackettype" platform, built in sections, towed to sea and assembled on-site. In construction of platforms like these, Exxon Production Research Company, Houston, Texas, conducts extensive structural investigations of decks, supporting members and other platform components, making use of the NASTRAN @ (NASA Structural Analysis) computer program. NASTRAN is a predictive tool which analyzes a computerized design and reports how the structure will react to a great many conditions it will encounter in its operational environment; in this case, NASTRAN studies the effects of waves, winds, ocean storms and other stress-inducing factors. NASTRAN allows Exxon Production Research to perform more complex and more detailed analysis than was possible with previous programs. The same program has also been used by Exxon Research and Engineering Company, Florham Park, New Jersey, in analysis of pressure vessels, turbine components and composite building boards.

  14. A Set of Free Cross-Platform Authoring Programs for Flexible Web-Based CALL Exercises

    ERIC Educational Resources Information Center

    O'Brien, Myles

    2012-01-01

    The Mango Suite is a set of three freely downloadable cross-platform authoring programs for flexible network-based CALL exercises. They are Adobe Air applications, so they can be used on Windows, Macintosh, or Linux computers, provided the freely-available Adobe Air has been installed on the computer. The exercises which the programs generate are…

  15. Progress at Standard Space Platforms Corporation

    NASA Astrophysics Data System (ADS)

    Perkins, Frederick W.

    1992-08-01

    An account is given of a simple program structure with low costs and short schedules for the space R&D community operating outside mission-oriented, government-funded programs. In addition to furnishing launch services into orbit, the program structure furnishes engineering services through its ground station, control room, and 3-year duration 'MMSB' platform. Flights may begin as little as a year after contract signature.

  16. SURA-IOOS Coastal Inundation Testbed Inter-Model Evaluation of Tides, Waves, and Hurricane Surge in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kerr, P. C.; Donahue, A.; Westerink, J. J.; Luettich, R.; Zheng, L.; Weisberg, R. H.; Wang, H. V.; Slinn, D. N.; Davis, J. R.; Huang, Y.; Teng, Y.; Forrest, D.; Haase, A.; Kramer, A.; Rhome, J.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Taylor, A.; Hope, M.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.

    2012-12-01

    The Southeastern Universities Research Association (SURA), in collaboration with the NOAA Integrated Ocean Observing System program and other federal partners, developed a testbed to help accelerate progress in both research and the transition to operational use of models for both coastal and estuarine prediction. This testbed facilitates cyber-based sharing of data and tools, archival of observation data, and the development of cross-platform tools to efficiently access, visualize, skill assess, and evaluate model results. In addition, this testbed enables the modeling community to quantitatively assess the behavior (e.g., skill, robustness, execution speed) and implementation requirements (e.g. resolution, parameterization, computer capacity) that characterize the suitability and performance of selected models from both operational and fundamental science perspectives. This presentation focuses on the tropical coastal inundation component of the testbed and compares a variety of model platforms as well as grids in simulating tides, and the wave and surge environments for two extremely well documented historical hurricanes, Hurricanes Rita (2005) and Ike (2008). Model platforms included are ADCIRC, FVCOM, SELFE, SLOSH, SWAN, and WWMII. Model validation assessments were performed on simulation results using numerous station observation data in the form of decomposed harmonic constituents, water level high water marks and hydrographs of water level and wave data. In addition, execution speed, inundation extents defined by differences in wetting/drying schemes, resolution and parameterization sensitivities are also explored.

  17. radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar.

    PubMed

    Taylor, Philip D; Brzustowski, John M; Matkovich, Carolyn; Peckford, Michael L; Wilson, Dave

    2010-10-26

    Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.

  18. radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar

    PubMed Central

    2010-01-01

    Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets. PMID:20977735

  19. Home-exercise Childhood Obesity Intervention: A Randomized Clinical Trial Comparing Print Versus Web-based (Move It) Platforms.

    PubMed

    Bruñó, Alejandro; Escobar, Patricia; Cebolla, Ausias; Álvarez-Pitti, Julio; Guixeres, Jaime; Lurbe, Empar; Baños, Rosa; Lisón, Juan F

    2018-05-07

    To compare the impact of adhering to a Mediterranean diet plus mixed physical exercise program (Move-It) implemented by means of printed instructions or via a web-platform (with or without e-mail support) on body composition, physical fitness, and blood pressure. Randomized clinical trial. Fifty-two overweight or obese Spanish children and adolescents were randomly assigned to the print-based (n = 18), Move-It (n = 18), or Move-It plus support (n = 16) intervention groups. Two-way mixed ANOVA tests were used to compare any changes between the groups in terms of percentage body fat, physical fitness (VO 2 peak), handgrip strength, and systolic and diastolic blood pressure. The measurements were taken before and after a three-month mixed-exercise (aerobic and resistance) and Mediterranean-diet program which was either implemented by means of printed instructions or via a web-platform (with or without e-mail support). No statistical differences were found between groups. However, the results highlighted significant improvements in body fat percentage metrics over time for all three groups (print-based: -1.8%, 95%CI -3.3% to -0.3%; Move-It: -1.8%, 95%CI -3.3% to -0.3%; Move-It plus support: -2.0%, 95%CI -3.7% to -0.4%, P < 0.05). We also observed a tendency towards improvement in the VO 2 peak, handgrip strength, and blood pressure variable values 10 min after the exercise-stress test in these three groups. The program improved the body composition, regardless of the way it is implemented. A mixed physical exercise program lasting for three months, combined with a Mediterranean diet, improves the body composition of children and adolescents with overweight/obesity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing

    PubMed Central

    Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong

    2014-01-01

    This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931

  1. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs.

    PubMed

    Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F

    2007-07-01

    We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.

  2. Enhancement to Hitran to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1998-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  3. Enhancement to HITRAN to Support the NASA EOS Program

    NASA Technical Reports Server (NTRS)

    Kirby, Kate P.; Rothman, Laurence S.

    1999-01-01

    The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.

  4. Evaluation of nutria (Myocastor coypus) detection methods in Maryland, USA

    USGS Publications Warehouse

    Pepper, Margaret A.; Herrmann, Valentine; Hines, James; Nichols, James D.; Kendrot, Stephen R

    2017-01-01

    Nutria (Myocaster coypus), invasive, semi-aquatic rodents native to South America, were introduced into Maryland near Blackwater National Wildlife Refuge (BNWR) in 1943. Irruptive population growth, expansion, and destructive feeding habits resulted in the destruction of thousands of acres of emergent marshes at and surrounding BNWR. In 2002, a partnership of federal, state and private entities initiated an eradication campaign to protect remaining wetlands from further damage and facilitate the restoration of coastal wetlands throughout the Chesapeake Bay region. Program staff removed nearly 14,000 nutria from five infested watersheds in a systematic trapping and hunting program between 2002 and 2014. As part of ongoing surveillance activities, the Chesapeake Bay Nutria Eradication Project uses a variety of tools to detect and remove nutria. Project staff developed a floating raft, or monitoring platform, to determine site occupancy. These platforms are placed along waterways and checked periodically for evidence of nutria visitation. We evaluated the effectiveness of monitoring platforms and three associated detection methods: hair snares, presence of scat, and trail cameras. Our objectives were to (1) determine if platform placement on land or water influenced nutria visitation rates, (2) determine if the presence of hair snares influenced visitation rates, and (3) determine method-specific detection probabilities. Our analyses indicated that platforms placed on land were 1.5–3.0 times more likely to be visited than those placed in water and that platforms without snares were an estimated 1.7–3.7 times more likely to be visited than those with snares. Although the presence of snares appears to have discouraged visitation, seasonal variation may confound interpretation of these results. Scat was the least effective method of determining nutria visitation, while hair snares were as effective as cameras. Estimated detection probabilities provided by occupancy modeling were 0.73 for hair snares, 0.71 for cameras and 0.40 for scat. We recommend the use of hair snares on monitoring platforms as they are the most cost-effective and reliable detection method available at this time. Future research should focus on determining the cause for the observed decrease in nutria visits after snares were applied.

  5. Experiments with bosonic atoms for quantum gas assembly

    NASA Astrophysics Data System (ADS)

    Brown, Mark; Lin, Yiheng; Lester, Brian; Kaufman, Adam; Ball, Randall; Brossard, Ludovic; Isaev, Leonid; Thiele, Tobias; Lewis-Swan, Robert; Schymik, Kai-Niklas; Rey, Ana Maria; Regal, Cindy

    2017-04-01

    Quantum gas assembly is a promising platform for preparing and observing neutral atom systems on the single-atom level. We have developed a toolbox that includes ground-state laser cooling, high-fidelity loading techniques, addressable spin control, and dynamic spatial control and coupling of atoms. Already, this platform has enabled us to pursue a number of experiments studying entanglement and interference of pairs of bosonic atoms. We discuss our recent work in probabilistically entangling neutral atoms via interference, measurement, and post-selection as well as our future pursuits of interesting spin-motion dynamics of larger arrays of atoms. This work was supported by the David and Lucile Packard Foundation, National Science Foundation Physics Frontier Centers, and the National Defense Science and Engineering Graduate Fellowships program.

  6. Feasibility of observer system for determining orientation of balloon borne observational platforms

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Gagliardi, J. C.

    1982-01-01

    An observer model for predicting the orientation of balloon borne research platforms was developed. The model was employed in conjunction with data from the LACATE mission in order to determine the platform orientation as a function of time.

  7. PERPHECLIM ACCAF Project - Perennial fruit crops and forest phenology evolution facing climatic changes

    NASA Astrophysics Data System (ADS)

    Garcia de Cortazar-Atauri, Iñaki; Audergon, Jean Marc; Bertuzzi, Patrick; Anger, Christel; Bonhomme, Marc; Chuine, Isabelle; Davi, Hendrik; Delzon, Sylvain; Duchêne, Eric; Legave, Jean Michel; Raynal, Hélène; Pichot, Christian; Van Leeuwen, Cornelis; Perpheclim Team

    2015-04-01

    Phenology is a bio-indicator of climate evolutions. Measurements of phenological stages on perennial species provide actually significant illustrations and assessments of the impact of climate change. Phenology is also one of the main key characteristics of the capacity of adaptation of perennial species, generating questions about their consequences on plant growth and development or on fruit quality. Predicting phenology evolution and adaptative capacities of perennial species need to override three main methodological limitations: 1) existing observations and associated databases are scattered and sometimes incomplete, rendering difficult implementation of multi-site study of genotype-environment interaction analyses; 2) there are not common protocols to observe phenological stages; 3) access to generic phenological models platforms is still very limited. In this context, the PERPHECLIM project, which is funded by the Adapting Agriculture and Forestry to Climate Change Meta-Program (ACCAF) from INRA (French National Institute of Agronomic Research), has the objective to develop the necessary infrastructure at INRA level (observatories, information system, modeling tools) to enable partners to study the phenology of various perennial species (grapevine, fruit trees and forest trees). Currently the PERPHECLIM project involves 27 research units in France. The main activities currently developed are: define protocols and observation forms to observe phenology for various species of interest for the project; organizing observation training; develop generic modeling solutions to simulate phenology (Phenological Modelling Platform and modelling platform solutions); support in building research projects at national and international level; develop environment/genotype observation networks for fruit trees species; develop an information system managing data and documentation concerning phenology. Finally, PERPHECLIM project aims to build strong collaborations with public (Observatoire des Saisons) and private sector partners (technical institutes) in order to allow a more direct transfer of knowledge.

  8. The search for other planetary systems - Progress to date and future prospects (The Rudolph Pesek Lecture)

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1991-01-01

    The notion is addressed which links the formation of stars and the existence of planets, and the lack of supporting observational data is discussed in relation to a NASA astrometric project. The program cited is called Towards Other Planetary Systems (TOPS) and includes ground-based astrometric and radial-velocity studies for both direct and indirect scrutiny of unknown planets. The TOPS program also envisages space-based astrometric systems that can operate with an accuracy of not less than 10 microarcseconds, and the possibility is mentioned of a moon-based astrometric platform.

  9. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    NASA Technical Reports Server (NTRS)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  10. An Investigation of a Computer Training Company's Migration to a New Distance Learning Platform and the Implementation of an Online Professional Development Program

    ERIC Educational Resources Information Center

    Rudd, Denis; Bernadowski, Carianne

    2015-01-01

    The purpose of the study was to determine if the Training Partner Program was successful in preparing trainers to use a new distance learning platform. Results indicate the program was a success in improving self-efficacy, engagement, and collaboration among trainers. Additionally, characteristics of online trainers are identified. Online learning…

  11. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education.

    PubMed

    Kim, Honesty; Gerber, Lukas Cyrill; Chiu, Daniel; Lee, Seung Ah; Cira, Nate J; Xia, Sherwin Yuyang; Riedel-Kruse, Ingmar H

    2016-01-01

    For centuries, observational microscopy has greatly facilitated biology education, but we still cannot easily and playfully interact with the microscopic world we see. We therefore developed the LudusScope, an accessible, interactive do-it-yourself smartphone microscopy platform that promotes exploratory stimulation and observation of microscopic organisms, in a design that combines the educational modalities of build, play, and inquire. The LudusScope's touchscreen and joystick allow the selection and stimulation of phototactic microorganisms such as Euglena gracilis with light. Organismal behavior is tracked and displayed in real time, enabling open and structured game play as well as scientific inquiry via quantitative experimentation. Furthermore, we used the Scratch programming language to incorporate biophysical modeling. This platform is designed as an accessible, low-cost educational kit for easy construction and expansion. User testing with both teachers and students demonstrates the educational potential of the LudusScope, and we anticipate additional synergy with the maker movement. Transforming observational microscopy into an interactive experience will make microbiology more tangible to society, and effectively support the interdisciplinary learning required by the Next Generation Science Standards.

  12. LudusScope: Accessible Interactive Smartphone Microscopy for Life-Science Education

    PubMed Central

    Kim, Honesty; Gerber, Lukas Cyrill; Chiu, Daniel; Lee, Seung Ah; Cira, Nate J.; Xia, Sherwin Yuyang; Riedel-Kruse, Ingmar H.

    2016-01-01

    For centuries, observational microscopy has greatly facilitated biology education, but we still cannot easily and playfully interact with the microscopic world we see. We therefore developed the LudusScope, an accessible, interactive do-it-yourself smartphone microscopy platform that promotes exploratory stimulation and observation of microscopic organisms, in a design that combines the educational modalities of build, play, and inquire. The LudusScope’s touchscreen and joystick allow the selection and stimulation of phototactic microorganisms such as Euglena gracilis with light. Organismal behavior is tracked and displayed in real time, enabling open and structured game play as well as scientific inquiry via quantitative experimentation. Furthermore, we used the Scratch programming language to incorporate biophysical modeling. This platform is designed as an accessible, low-cost educational kit for easy construction and expansion. User testing with both teachers and students demonstrates the educational potential of the LudusScope, and we anticipate additional synergy with the maker movement. Transforming observational microscopy into an interactive experience will make microbiology more tangible to society, and effectively support the interdisciplinary learning required by the Next Generation Science Standards. PMID:27706189

  13. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  14. Distributed Processing of Sentinel-2 Products using the BIGEARTH Platform

    NASA Astrophysics Data System (ADS)

    Bacu, Victor; Stefanut, Teodor; Nandra, Constantin; Mihon, Danut; Gorgan, Dorian

    2017-04-01

    The constellation of observational satellites orbiting around Earth is constantly increasing, providing more data that need to be processed in order to extract meaningful information and knowledge from it. Sentinel-2 satellites, part of the Copernicus Earth Observation program, aim to be used in agriculture, forestry and many other land management applications. ESA's SNAP toolbox can be used to process data gathered by Sentinel-2 satellites but is limited to the resources provided by a stand-alone computer. In this paper we present a cloud based software platform that makes use of this toolbox together with other remote sensing software applications to process Sentinel-2 products. The BIGEARTH software platform [1] offers an integrated solution for processing Earth Observation data coming from different sources (such as satellites or on-site sensors). The flow of processing is defined as a chain of tasks based on the WorDeL description language [2]. Each task could rely on a different software technology (such as Grass GIS and ESA's SNAP) in order to process the input data. One important feature of the BIGEARTH platform comes from this possibility of interconnection and integration, throughout the same flow of processing, of the various well known software technologies. All this integration is transparent from the user perspective. The proposed platform extends the SNAP capabilities by enabling specialists to easily scale the processing over distributed architectures, according to their specific needs and resources. The software platform [3] can be used in multiple configurations. In the basic one the software platform runs as a standalone application inside a virtual machine. Obviously in this case the computational resources are limited but it will give an overview of the functionalities of the software platform, and also the possibility to define the flow of processing and later on to execute it on a more complex infrastructure. The most complex and robust configuration is based on cloud computing and allows the installation on a private or public cloud infrastructure. In this configuration, the processing resources can be dynamically allocated and the execution time can be considerably improved by the available virtual resources and the number of parallelizable sequences in the processing flow. The presentation highlights the benefits and issues of the proposed solution by analyzing some significant experimental use cases. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Constantin Nandra, Dorian Gorgan: "Defining Earth data batch processing tasks by means of a flexible workflow description language", ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-4, 59-66, (2016). [3] Victor Bacu, Teodor Stefanut, Dorian Gorgan, "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).

  15. Reconstructing Forty Years of Landsat Observations

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Dwyer, J. L.; Steinwand, D.

    2013-12-01

    In July 1972, NASA launched the Earth Resource Technology Satellite (ERTS), the first of what was to be the series of Earth-observing satellites we now know as the Landsat system. This system, originally conceived in the 1960's within the US Department of the Interior and US Geological Survey (USGS), has continued with little interruption for over 40 years, creating the longest record of satellite-based global land observations. The current USGS archive of Landsat images exceeds 4 million scenes, and the recently launched Landsat 8 platform will extend that archive to nearly 50 years of observations. Clearly, these observations are critical to the study of Earth system processes, and the interaction between these processes and human activities. However, the seven successful Landsat missions represent more of an ad hoc program than a long-term record of consistent observations, due largely to changing Federal policies and challenges finding an operational home for the program. Technologically, these systems evolved from the original Multispectral Scanning System (MSS) through the Thematic Mapper and Enhanced Thematic Mapper Plus (ETM+) systems, to the current Observational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) systems. Landsat data were collected globally by a network of international cooperators having diverse data management policies. Much of the oldest data were stored on archaic media that could not be retrieved using modern media readers. Collecting these data from various sensors and sources, and reconstructing them into coherent Earth observation records, posed numerous challenges. We present here a brief overview of work done to overcome these challenges and create a consistent, long-term Landsat observation record. Much of the current archive was 'repatriated' from international cooperators and often required the reconstruction of (sometimes absent) metadata for geo-location and radiometric calibration. The older MSS data, some of which had been successfully retrieved from outdated wide band video media, required similar metadata reconstruction. TM data from Landsats 4 and 5 relied on questionable on-board lamp data for calibration, thus the calibration history for these missions was reconstructed to account for sensor degradation over time. To improve continuity between platforms, Landsat 7 and 8 missions employed 'under-flight' maneuvers to reduce inter-calibration error. Data from the various sensors, platforms and sources were integrated into a common metadata standard, with quality assurance information, to ensure understandability of the data for long-term preservation. Because of these efforts, the current Landsat archive can now support the creation of the long-term climate data records and essential climate variables required to monitor changes on the Earth's surface quantitatively over decades of observations.

  16. Essential biodiversity variables

    USGS Publications Warehouse

    Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, Robert J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; Coops, N.C.; Dulloo, E.; Faith, D.P.; Freyhof, J.; Gregory, R.D.; Heip, C.; Höft, R.; Hurtt, G.; Jetz, W.; Karp, D.S.; McGeoch, M.A.; Obura, D.; Onada, Y.; Pettorelli, N.; Reyers, B.; Sayre, R.; Scharlemann, J.P.W.; Stuart, S.N.; Turak, E.; Walpole, M.; Wegmann, M.

    2013-01-01

    Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.

  17. Aurorasaurus: Citizen Scientists Experiencing Extremes of Space Weather

    NASA Astrophysics Data System (ADS)

    MacDonald, E.; Hall, M.; Tapia, A.

    2013-12-01

    Aurorasaurus is a new citizen science mapping platform to nowcast the visibility of the Northern Lights for the public in the current solar maximum, the first with social media. As a recently funded NSF INSPIRE program, we have joint goals among three research disciplines: space weather forecasting, the study of human-computer interactions, and informal science education. We will highlight results from the prototype www.aurorasaurus.org and outline future efforts to motivate online participants and crowdsource viable data. Our citizen science effort is unique among space programs as it includes both reporting observations and data analysis activities to engage the broadest participant network possible. In addition, our efforts to improve space weather nowcasting by including real-time mapping of ground truth observers for rare, sporadic events are a first in the field.

  18. Analysis of matters associated with the transferring of object-oriented applications to platform .Net using C# programming language

    NASA Astrophysics Data System (ADS)

    Sarsimbayeva, S. M.; Kospanova, K. K.

    2015-11-01

    The article provides the discussion of matters associated with the problems of transferring of object-oriented Windows applications from C++ programming language to .Net platform using C# programming language. C++ has always been considered to be the best language for the software development, but the implicit mistakes that come along with the tool may lead to infinite memory leaks and other errors. The platform .Net and the C#, made by Microsoft, are the solutions to the issues mentioned above. The world economy and production are highly demanding applications developed by C++, but the new language with its stability and transferability to .Net will bring many advantages. An example can be presented using the applications that imitate the work of queuing systems. Authors solved the problem of transferring of an application, imitating seaport works, from C++ to the platform .Net using C# in the scope of Visual Studio.

  19. Effect of wind gusts on the motion of a balloon-borne observation platform

    NASA Technical Reports Server (NTRS)

    Nigro, N. J.; Johanek, F. M.

    1982-01-01

    The effect of wind gusts on the magnitude of the pendulation angles of a balloon-borne observation platform is determined. A system mathematical model is developed and the solution of this model is used to determine the magnitude of the observation platforms pendulation angles.

  20. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    NASA Astrophysics Data System (ADS)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  1. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  2. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  3. Next generation sensing platforms for extended deployments in large-scale, multidisciplinary, adaptive sampling and observational networks

    NASA Astrophysics Data System (ADS)

    Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.

    2016-12-01

    New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.

  4. Large Space Systems Technology, 1979. [antenna and space platform systems conference

    NASA Technical Reports Server (NTRS)

    Ward, J. C., Jr. (Compiler)

    1980-01-01

    Items of technology and developmental efforts in support of the large space systems technology programs are described. The major areas of interest are large antennas systems, large space platform systems, and activities that support both antennas and platform systems.

  5. Multivariate Gradient Analysis for Evaluating and Visualizing a Learning System Platform for Computer Programming

    ERIC Educational Resources Information Center

    Mather, Richard

    2015-01-01

    This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…

  6. Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project

    NASA Astrophysics Data System (ADS)

    Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.

    2016-12-01

    Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data at Japan, is also reported. Compatibility tests to CYGNSS data and refurbishment of the ground station were completed.

  7. LYMAN - The far ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Moos, Warren; Osantowski, John F.

    1989-01-01

    The LYMAN FUSE mission concept for far ultraviolet astronomy is presented. The wavelength window from 100 to 1200 A provides access to a wide range of important scientific problems in cosmology, galactic structure, stellar evolution, and planetary magnetospheres, which cannot be studied in any other way. The LYMAN FUSE Phase A study is examining in detail mission operations, instrumentation technology, the construction of the instrument module, and the interfaces between the Instrument Module and the Explorer Platform Mission. Most of the mission observing time will be allotted through a competitive Guest Observer program analogous to that in operation for the IUE.

  8. Controls-Structures Interaction (CSI) technology program summary. Earth orbiting platforms program area of the space platforms technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.

    1991-01-01

    Control-Structures Interaction (CSI) technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques, and tools, for enabling the interdisciplinary design of an integrated structure and control system, rather than the integration of a structural design and a control system design. The goal of this program is to develop validated CSI technology for integrated design/analysis and qualification of large flexible space systems and precision space structures. A description of the CSI technology program is presented.

  9. A Facebook-Based Obesity Prevention Program for Korean American Adolescents: Usability Evaluation.

    PubMed

    Park, Bu Kyung; Nahm, Eun-Shim; Rogers, Valerie E; Choi, Mona; Friedmann, Erika; Wilson, Marisa; Koru, Gunes

    Adolescent obesity is one of the most serious global public health challenges. Social networking sites are currently popular among adolescents. Therefore, the obesity prevention program for Korean American adolescents was developed on the most popular social networking site, Facebook. The purpose of this study was to evaluate the usability of a culturally tailored Facebook-based obesity prevention program for Korean American adolescents (Healthy Teens). An explorative descriptive design of usability testing was used. Usability testing employing one-on-one observation, the think-aloud method, audio taping, screen activity capture, and surveys was performed. Twenty participants were recruited from two Korean language schools (mean age, 15.40 ± 1.50 years). Recruitment and user testing was performed between February and April 2014. Content analysis, using the inductive coding approach, was performed by three coders to analyze transcriptions. Descriptive statistics were used to analyze quantitative data including demographic characteristics, perceived usability, eHealth literacy, and health behaviors. Testing revealed several usability issues in content, appearance, and navigation. Participants' comments regarding content were positive. Although the Facebook platform provided limited flexibility with respect to building the site, participants described the program's appearance as appropriate. Most participants did not experience difficulty in navigating the program. Our preliminary findings indicated that participants perceived the Healthy Teens program as usable and useful. This program could be used as a robust platform for the delivery of health education to adolescents. Further research is required to assess the effects of Facebook-based programs on adolescent obesity prevention. Copyright © 2016 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  10. Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revercomb, Henry E.

    1999-12-31

    The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtainmore » measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.« less

  11. Hot air balloons fill gap in atmospheric and sensing platforms

    NASA Astrophysics Data System (ADS)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  12. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability of a Moon-based platform located in the full observation region.

  13. Developing an Intelligent Diagnosis and Assessment E-Learning Tool for Introductory Programming

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Chen, Chun-Hua; Luo, Yun-Cheng; Chen, Hong-Xin; Chuang, Yi-Ta

    2008-01-01

    Recently, a lot of open source e-learning platforms have been offered for free in the Internet. We thus incorporate the intelligent diagnosis and assessment tool into an open software e-learning platform developed for programming language courses, wherein the proposed learning diagnosis assessment tools based on text mining and machine learning…

  14. Biomass Program 2007 Program Peer Review - Full Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.

  15. Principle characteristics of the National Earth Observation Satellite. Project SPOT

    NASA Technical Reports Server (NTRS)

    Cazenave, M.

    1977-01-01

    A recent meeting of the Economic and Social Committee examined the programs and means currently being implemented by France in the field in the field of space research and industry which could bring about fast results. This was prompted by man's desire to insure rational resource management of his planet and by man's awareness of the definite contribution that space observation can make to this field of research. Through discussion, the Economic and Social Committee has approved the plan for creating an earth observation satellite. A detailed discussion of the principle characteristics of this earth observation satellite include the objectives, the orbit, characteristics and operations of the platform, maintenance, attitude measurement, the power available and many other characteristics.

  16. Establishment and evaluation of a theater influenza monitoring platform.

    PubMed

    Wang, Jian; Yang, Hui-Suo; Deng, Bing; Shi, Meng-Jing; Li, Xiang-Da; Nian, Qing-Gong; Song, Wen-Jing; Bing, Feng; Li, Qing-Feng

    2017-11-20

    Influenza is an acute respiratory infectious disease with a high incidence rate in the Chinese army, which directly disturbs military training and affects soldiers' health. Influenza surveillance systems are widely used around the world and play an important role in influenza epidemic prevention and control. As a theater centers for disease prevention and control, we established an influenza monitoring platform (IMP) in 2014 to strengthen the monitoring of influenza-like illness and influenza virus infection. In this study, we introduced the constitution, influenza virus detection, and quality control for an IMP. The monitoring effect was also evaluated by comparing the monitoring data with data from national influenza surveillance systems. The experiences and problems associated with the platform also were summarized. A theater IMP was established based on 3 levels of medical units, including monitoring sites, testing laboratories and a checking laboratory. A series of measures were taken to guarantee the quality of monitoring, such as technical training, a unified process, sufficient supervision and timely communication. The platform has run smoothly for 3 monitoring years to date. In the 2014-2015 and 2016-2017 monitoring years, sample amount coincided with that obtained from the National Influenza Surveillance program. In the 2015-2016 monitoring year, due to the strict prevention and control measures, an influenza epidemic peak was avoided in monitoring units, and the monitoring data did not coincide with that of the National Influenza Surveillance program. Several problems, including insufficient attention, unreasonable administrative intervention or subordination relationships, and the necessity of detection in monitoring sites were still observed. A theater IMP was established rationally and played a deserved role in the prevention and control of influenza. However, several problems remain to be solved.

  17. Spiral: Automated Computing for Linear Transforms

    NASA Astrophysics Data System (ADS)

    Püschel, Markus

    2010-09-01

    Writing fast software has become extraordinarily difficult. For optimal performance, programs and their underlying algorithms have to be adapted to take full advantage of the platform's parallelism, memory hierarchy, and available instruction set. To make things worse, the best implementations are often platform-dependent and platforms are constantly evolving, which quickly renders libraries obsolete. We present Spiral, a domain-specific program generation system for important functionality used in signal processing and communication including linear transforms, filters, and other functions. Spiral completely replaces the human programmer. For a desired function, Spiral generates alternative algorithms, optimizes them, compiles them into programs, and intelligently searches for the best match to the computing platform. The main idea behind Spiral is a mathematical, declarative, domain-specific framework to represent algorithms and the use of rewriting systems to generate and optimize algorithms at a high level of abstraction. Experimental results show that the code generated by Spiral competes with, and sometimes outperforms, the best available human-written code.

  18. Quantum Stat Mech in a Programmable Spin Chain of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2017-04-01

    Trapped atomic ions are a versatile and very clean platform for the quantum programming of interacting spin models and the study of quantum nonequilibrium phenomena. When spin-dependent optical dipole forces are applied to a collection of trapped ions, an effective long-range quantum magnetic interaction arises, with reconfigurable and tunable graphs. Following earlier work on many-body spectroscopy and quench dynamics, we have recently studied many body non-thermalization processes in this system. Frustrated Hamiltonian dynamics can lead to prethermalization, and by adding programmable disorder between the sites, we have observed the phenomenon of many body localization (MBL). Finally, by applying a periodically driven Floquet Hamiltonian tempered by MBL, we report the observation of a discrete ``time crystal'' in the stable appearance of a subharmonic response of the system to the periodic drive. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, the IARPA LogiQ Program, and the NSF Physics Frontier Center at JQI.

  19. : A Scalable and Transparent System for Simulating MPI Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S

    2010-01-01

    is a scalable, transparent system for experimenting with the execution of parallel programs on simulated computing platforms. The level of simulated detail can be varied for application behavior as well as for machine characteristics. Unique features of are repeatability of execution, scalability to millions of simulated (virtual) MPI ranks, scalability to hundreds of thousands of host (real) MPI ranks, portability of the system to a variety of host supercomputing platforms, and the ability to experiment with scientific applications whose source-code is available. The set of source-code interfaces supported by is being expanded to support a wider set of applications, andmore » MPI-based scientific computing benchmarks are being ported. In proof-of-concept experiments, has been successfully exercised to spawn and sustain very large-scale executions of an MPI test program given in source code form. Low slowdowns are observed, due to its use of purely discrete event style of execution, and due to the scalability and efficiency of the underlying parallel discrete event simulation engine, sik. In the largest runs, has been executed on up to 216,000 cores of a Cray XT5 supercomputer, successfully simulating over 27 million virtual MPI ranks, each virtual rank containing its own thread context, and all ranks fully synchronized by virtual time.« less

  20. Use of Web 2.0 Social Media Platforms to Promote Community-Engaged Research Dialogs: A Preliminary Program Evaluation.

    PubMed

    Valdez Soto, Miguel; Balls-Berry, Joyce E; Bishop, Shawn G; Aase, Lee A; Timimi, Farris K; Montori, Victor M; Patten, Christi A

    2016-09-09

    Community-engaged research is defined by the Institute of Medicine as the process of working collaboratively with groups of people affiliated by geographic proximity, special interests, or similar situations with respect to issues affecting their well-being. Traditional face-to-face community-engaged research is limited by geographic location, limited in resources, and/or uses one-way communications. Web 2.0 technologies including social media are novel communication channels for community-engaged research because these tools can reach a broader audience while promoting bidirectional dialogs. This paper reports on a preliminary program evaluation of the use of social media platforms for promoting engagement of researchers and community representatives in dialogs about community-engaged research. For this pilot program evaluation, the Clinical and Translational Science Office for Community Engagement in Research partnered with the Social Media Network at our institution to create a WordPress blog and Twitter account. Both social media platforms were facilitated by a social media manager. We used descriptive analytics for measuring engagement with WordPress and Twitter over an 18-month implementation period during 2014-2016. For the blog, we examined type of user (researcher, community representative, other) and used content analysis to generate the major themes from blog postings. For use of Twitter, we examined selected demographics and impressions among followers. There were 76 blog postings observed from researchers (48/76, 64%), community representatives (23/76, 32%) and funders (5/76, 8%). The predominant themes of the blog content were research awareness and dissemination of community-engaged research (35/76, 46%) and best practices (23/76, 30%). For Twitter, we obtained 411 followers at the end of the 18-month evaluation period, with an increase of 42% (from 280 to 411) over the final 6 months. Followers reported varied geographic location (321/411, 78%, resided in the United States); 99% (407/411) spoke English; and about half (218/411, 53%) were female. Followers produced 132,000 Twitter impressions. Researchers and community stakeholders use social medial platforms for dialogs related to community-engaged research. This preliminary work is novel because we used Web 2.0 social media platforms to engage these stakeholders whereas prior work used face-to-face formats. Future research is needed to explore additional social media platforms; expanded reach to other diverse stakeholders including patients, providers, and payers; and additional outcomes related to engagement.

  1. Use of Web 2.0 Social Media Platforms to Promote Community-Engaged Research Dialogs: A Preliminary Program Evaluation

    PubMed Central

    Valdez Soto, Miguel; Bishop, Shawn G; Aase, Lee A; Timimi, Farris K; Montori, Victor M; Patten, Christi A

    2016-01-01

    Background Community-engaged research is defined by the Institute of Medicine as the process of working collaboratively with groups of people affiliated by geographic proximity, special interests, or similar situations with respect to issues affecting their well-being. Traditional face-to-face community-engaged research is limited by geographic location, limited in resources, and/or uses one-way communications. Web 2.0 technologies including social media are novel communication channels for community-engaged research because these tools can reach a broader audience while promoting bidirectional dialogs. Objective This paper reports on a preliminary program evaluation of the use of social media platforms for promoting engagement of researchers and community representatives in dialogs about community-engaged research. Methods For this pilot program evaluation, the Clinical and Translational Science Office for Community Engagement in Research partnered with the Social Media Network at our institution to create a WordPress blog and Twitter account. Both social media platforms were facilitated by a social media manager. We used descriptive analytics for measuring engagement with WordPress and Twitter over an 18-month implementation period during 2014-2016. For the blog, we examined type of user (researcher, community representative, other) and used content analysis to generate the major themes from blog postings. For use of Twitter, we examined selected demographics and impressions among followers. Results There were 76 blog postings observed from researchers (48/76, 64%), community representatives (23/76, 32%) and funders (5/76, 8%). The predominant themes of the blog content were research awareness and dissemination of community-engaged research (35/76, 46%) and best practices (23/76, 30%). For Twitter, we obtained 411 followers at the end of the 18-month evaluation period, with an increase of 42% (from 280 to 411) over the final 6 months. Followers reported varied geographic location (321/411, 78%, resided in the United States); 99% (407/411) spoke English; and about half (218/411, 53%) were female. Followers produced 132,000 Twitter impressions. Conclusions Researchers and community stakeholders use social medial platforms for dialogs related to community-engaged research. This preliminary work is novel because we used Web 2.0 social media platforms to engage these stakeholders whereas prior work used face-to-face formats. Future research is needed to explore additional social media platforms; expanded reach to other diverse stakeholders including patients, providers, and payers; and additional outcomes related to engagement. PMID:27613231

  2. Utag for iTAG: Putting the "U and me" in the Integrated Tracking of Aquatic Animals in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Simoniello, C.; Currier, R. D.; Kirkpatrick, B. A.; Kobara, S.

    2016-02-01

    Exciting advances in aquatic animal tracking capabilities are contributing to the development of a national Animal Telemetry Network under the U.S. Integrated Ocean Observing System. Ongoing efforts in this arena with the Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) and partners, have laid the foundation for innovative community engagement that uses the iTAG platform to enhance ocean literacy. Presented will be an example of how the Utag for iTAG campaign was developed as a community service project in a Pinellas County, Florida, elementary school where approximately 70% of the students are underserved and/or underrepresented and more than half are on free or reduced lunch. The project incorporates the integration of telemetry platforms in the Gulf, a student-led visual arts project to develop the program logo, crowdsourcing to raise money to purchase telemetry tags, and a communication network that includes interactions among students, formal and informal educators, and scientists from the United States and Canada. The work is part of a larger effort by the GCOOS-RA to develop its citizen science observing network for the Gulf of Mexico.

  3. Trust and Decision Making: An Empirical Platform

    DTIC Science & Technology

    2008-06-01

    13th ICCRTS “C2 for Complex Endeavors” Trust and Decision Making : An Empirical Platform Topic(s): Cognitive and Social Issues...and Decision Making : An Empirical Platform 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Trust and Decision Making : An Empirical Platform Dr. Joseph B

  4. Exploring the Function of Online Narratives to Develop Critical Thinking and Localisation of Knowledge in an International Science Program

    ERIC Educational Resources Information Center

    Hicks, Marianne; Tham, Melissa; Brookes, Rowan

    2017-01-01

    e-learning practitioners have long recognised the benefits of using online training to achieve knowledge transfer, less is understood about facilitating the sharing of values, attitudes, critical thinking, and localisation using online platforms. In this article an online learning platform in the context of an international scientific program was…

  5. Research about Memory Detection Based on the Embedded Platform

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Chu, Jian

    As is known to us all, the resources of memory detection of the embedded systems are very limited. Taking the Linux-based embedded arm as platform, this article puts forward two efficient memory detection technologies according to the characteristics of the embedded software. Especially for the programs which need specific libraries, the article puts forwards portable memory detection methods to help program designers to reduce human errors,improve programming quality and therefore make better use of the valuable embedded memory resource.

  6. Scoping review and evaluation of SMS/text messaging platforms for mHealth projects or clinical interventions.

    PubMed

    Iribarren, Sarah J; Brown, William; Giguere, Rebecca; Stone, Patricia; Schnall, Rebecca; Staggers, Nancy; Carballo-Diéguez, Alex

    2017-05-01

    Mobile technology supporting text messaging interventions (TMIs) continues to evolve, presenting challenges for researchers and healthcare professionals who need to choose software solutions to best meet their program needs. The objective of this review was to systematically identify and compare text messaging platforms and to summarize their advantages and disadvantages as described in peer-reviewed literature. A scoping review was conducted using four steps: 1) identify currently available platforms through online searches and in mHealth repositories; 2) expand evaluation criteria of an mHealth mobile messaging toolkit and integrate prior user experiences as researchers; 3) evaluate each platform's functions and features based on the expanded criteria and a vendor survey; and 4) assess the documentation of platform use in the peer-review literature. Platforms meeting inclusion criteria were assessed independently by three reviewers and discussed until consensus was reached. The PRISMA guidelines were followed to report findings. Of the 1041 potentially relevant search results, 27 platforms met inclusion criteria. Most were excluded because they were not platforms (e.g., guides, toolkits, reports, or SMS gateways). Of the 27 platforms, only 12 were identified in existing mHealth repositories, 10 from Google searches, while five were found in both. The expanded evaluation criteria included 22 items. Results indicate no uniform presentation of platform features and functions, often making these difficult to discern. Fourteen of the platforms were reported as open source, 10 focused on health care and 16 were tailored to meet needs of low resource settings (not mutually exclusive). Fifteen platforms had do-it-yourself setup (programming not required) while the remainder required coding/programming skills or setups could be built to specification by the vendor. Frequently described features included data security and access to the platform via cloud-based systems. Pay structures and reported targeted end-users varied. Peer-reviewed publications listed only 6 of the 27 platforms across 21 publications. The majority of these articles reported the name of the platform used but did not describe advantages or disadvantages. Searching for and comparing mHealth platforms for TMIs remains a challenge. The results of this review can serve as a resource for researchers and healthcare professionals wanting to integrate TMIs into health interventions. Steps to identify, compare and assess advantages and disadvantages are outlined for consideration. Expanded evaluation criteria can be used by future researchers. Continued and more comprehensive platform tools should be integrated into mHealth repositories. Detailed descriptions of platform advantages and disadvantages are needed when mHealth researchers publish findings to expand the body of research on TMI tools for healthcare. Standardized descriptions and features are recommended for vendor sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.

  8. Planning for Pre-Exascale Platform Environment (Fiscal Year 2015 Level 2 Milestone 5216)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springmeyer, R.; Lang, M.; Noe, J.

    This Plan for ASC Pre-Exascale Platform Environments document constitutes the deliverable for the fiscal year 2015 (FY15) Advanced Simulation and Computing (ASC) Program Level 2 milestone Planning for Pre-Exascale Platform Environment. It acknowledges and quantifies challenges and recognized gaps for moving the ASC Program towards effective use of exascale platforms and recommends strategies to address these gaps. This document also presents an update to the concerns, strategies, and plans presented in the FY08 predecessor document that dealt with the upcoming (at the time) petascale high performance computing (HPC) platforms. With the looming push towards exascale systems, a review of themore » earlier document was appropriate in light of the myriad architectural choices currently under consideration. The ASC Program believes the platforms to be fielded in the 2020s will be fundamentally different systems that stress ASC’s ability to modify codes to take full advantage of new or unique features. In addition, the scale of components will increase the difficulty of maintaining an errorfree system, thus driving new approaches to resilience and error detection/correction. The code revamps of the past, from serial- to vector-centric code to distributed memory to threaded implementations, will be revisited as codes adapt to a new message passing interface (MPI) plus “x” or more advanced and dynamic programming models based on architectural specifics. Development efforts are already underway in some cases, and more difficult or uncertain aspects of the new architectures will require research and analysis that may inform future directions for program choices. In addition, the potential diversity of system architectures may require parallel if not duplicative efforts to analyze and modify environments, codes, subsystems, libraries, debugging tools, and performance analysis techniques as well as exploring new monitoring methodologies. It is difficult if not impossible to selectively eliminate some of these activities until more information is available through simulations of potential architectures, analysis of systems designs, and informed study of commodity technologies that will be the constituent parts of future platforms.« less

  9. INTEX-NA: Intercontinental Chemical Transport Experiment - North America

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    INTEX-NA is an integrated atmospheric chemistry field experiment to be performed over North America using the NASA DC-8 and P-3B aircraft as its primary platforms. It seeks to understand the exchange of chemicals and aerosols between continents and the global troposphere. The constituents of interest are ozone and its precursors (hydrocarbons, NOX and HOX), aerosols, and the major greenhouse gases (CO2, CH4, N2O). INTEX-NA will provide the observational database needed to quantify inflow, outflow, and transformations of chemicals over North America. INTEX-NA is to be performed in two phases. Phase A will take place during the period of May-August 2004 and Phase B during March-June 2006. Phase A is in summer when photochemistry is most intense and climatic issues involving aerosols and carbon cycle are most pressing, and Phase B is in spring when Asian transport to North America is at its peak. INTEX-NA will coordinate its activities with concurrent measurement programs including satellites (e. g. Terra, Aura, Envisat), field activities undertaken by the North American Carbon Program (NACP), and other U.S. and international partners. However, it is being designed as a 'stand alone' mission such that its successful execution is not contingent on other programs. Synthesis of the ensemble of observation from surface, airborne, and space platforms, with the help of global/regional models is an important It is anticipated that approximately 175 flight hours for each of the aircraft (DC-8 and P-3B) will be required for each Phase. Principal operational sites are tentatively selected to be Bangor, ME; Wallops Island, VA; Seattle, WA; Rhinelander, WI; Lancaster, CA; and New Orleans, LA. These coastal and continental sites can support large missions and are suitable for INTEX-NA objectives. The experiment will be supported by forecasts from meteorological and chemical models, satellite observations, surface networks, and enhanced O3,-sonde releases. In addition to characterizing Atlantic-outflow and Pacific-inflow, INTEX-NA will characterize air masses transported between the U.S., Canada, and Mexico. INTEX-NA will be the first continental scale inflow, outflow, and transformation experiment to be performed over North America. It will provide the most comprehensive observational data set to date to understand the O3/NOX/HOX/aerosol photochemical system and the carbon cycle. One of the critical needs of the carbon cycle research is to obtain large-scale vertical and horizontal concentration gradients of CO2, throughout the troposphere over continental source/sink regions. INTEX-NA is ideally suited to perform this role. Coastal and continental operational sites will allow us to develop a curtain profile of greenhouse gases (e. g. CO2,) and other key pollutants across North America. Such information is central to our quantitative understanding of chemical budgets on the continental scale. We expect to provide a number of satellite under-flights over land and water to test and validate observations from the appropriate satellite platform (e. g. Aura). We plan to develop strong collaborations with other national and international observational programs. Results from INTEX-NA should directly benefit the development of environmental policy for air quality and climate change.

  10. Using e-Learning Platforms for Mastery Learning in Developmental Mathematics Courses

    ERIC Educational Resources Information Center

    Boggs, Stacey; Shore, Mark; Shore, JoAnna

    2004-01-01

    Many colleges and universities have adopted e-learning platforms to utilize computers as an instructional tool in developmental (i.e., beginning and intermediate algebra) mathematics courses. An e-learning platform is a computer program used to enhance course instruction via computers and the Internet. Allegany College of Maryland is currently…

  11. Wandering: A Web-Based Platform for the Creation of Location-Based Interactive Learning Objects

    ERIC Educational Resources Information Center

    Barak, Miri; Ziv, Shani

    2013-01-01

    Wandering is an innovative web-based platform that was designed to facilitate outdoor, authentic, and interactive learning via the creation of location-based interactive learning objects (LILOs). Wandering was integrated as part of a novel environmental education program among middle school students. This paper describes the Wandering platform's…

  12. A case study for integrated STEM outreach in an urban setting using a do-it-yourself vertical jump measurement platform.

    PubMed

    Drazan, John F; Danielsen, Heather; Vercelletto, Matthew; Loya, Amy; Davis, James; Eglash, Ron

    2016-08-01

    The purpose of this study was to develop and deploy a low cost vertical jump platform using readily available materials for Science, Technology, Engineering, and Mathematics (STEM) education and outreach in the inner city. The platform was used to measure the jumping ability of participants to introduce students to the collection and analysis of scientific data in an engaging, accessible manner. This system was designed and fabricated by a student team of engineers as part of a socially informed engineering and design class. The vertical jump platform has been utilized in 10 classroom lectures in physics and biology. The system was also used in an after school program in which high school volunteers prepared a basketball based STEM outreach program, and at a community outreach events with over 100 participants. At present, the same group of high school students are now building their own set of vertical jump platform under the mentorship of engineering undergraduates. The construction and usage of the vertical jump platform provides an accessible introduction to the STEM fields within the urban community.

  13. Giant Vehicles

    NASA Technical Reports Server (NTRS)

    Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas

    2004-01-01

    Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.

  14. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  15. Scoping Review and Evaluation of SMS/text Messaging Platforms for mHealth Projects or Clinical Interventions

    PubMed Central

    Iribarren, Sarah; Brown, William; Giguere, Rebecca; Stone, Patricia; Schnall, Rebecca; Staggers, Nancy; Carballo-Diéguez, Alex

    2017-01-01

    Objectives Mobile technology supporting text messaging interventions (TMIs) continues to evolve, presenting challenges for researchers and healthcare professionals who need to choose software solutions to best meet their program needs. The objective of this review was to systematically identify and compare text messaging platforms and to summarize their advantages and disadvantages as described in peer-reviewed literature. Methods A scoping review was conducted using four steps: 1) identify currently available platforms through online searches and in mHealth repositories; 2) expand evaluation criteria of an mHealth mobile messaging toolkit and prior user experiences as researchers; 3) evaluate each platform’s functions and features based on the expanded criteria and a vendor survey; and 4) assess the documentation of platform use in the peer-review literature. Platforms meeting inclusion criteria were assessed independently by three reviewers and discussed until consensus was reached. The PRISMA guidelines were followed to report findings. Results Of the 1041 potentially relevant search results, 27 platforms met inclusion criteria. Most were excluded because they were not platforms (e.g., guides, toolkits, reports, or SMS gateways). Of the 27 platforms, only 12 were identified in existing mHealth repositories, 10 from Google searches, while five were found in both. The expanded evaluation criteria included 22 items. Results indicate no uniform presentation of platform features and functions, often making these difficult to discern. Fourteen of the platforms were reported as open source, 10 focused on health care and 16 were tailored to meet needs of low resource settings (not mutually exclusive). Fifteen platforms had do-it-yourself setup (programming not required) while the remainder required coding/programming skills or setups could be built to specification by the vendor. Frequently described features included data security and access to the platform via cloud-based systems. Pay structures and reported targeted end-users varied. Peer-reviewed publications listed only 6 of the 27 platforms across 21 publications. The majority of these articles reported the name of the platform used but did not describe advantages or disadvantages. Conclusions Searching for and comparing mHealth platforms for TMIs remains a challenge. The results of this review can serve as a resource for researchers and healthcare professionals wanting to integrate TMIs into health interventions. Steps to identify, compare and assess advantages and disadvantages are outlined for consideration. Expanded evaluation criteria can be used by future researchers. Continued and more comprehensive platform tools should be integrated into mHealth repositories. Detailed descriptions of platform advantages and disadvantages are needed when mHealth researchers publish findings to expand the body of research on texting-based tools for healthcare. Standardized descriptions and features are recommended for vendor sites. PMID:28347445

  16. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lowers the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, for installation on the south side of High Bay 3 in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  17. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  18. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabowski, Paul E.

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  19. Global tropospheric chemistry: A plan for action

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Prompted by an increasing awareness of the influence of human activity on the chemistry of the global troposphere, a panel was formed to (1) assess the requirement for a global study of the chemistry of the troposphere; (2) develop a scientific strategy for a comprehensive plan taking into account the existing and projected programs of the government; (3) assess the requirements of a global study in terms of theoretical knowledge, numerical modeling, instrumentation, observing platforms, ground-level observational techniques, and other related needs; and (4) outline the appropriate sequence and coordination required to achieve the most effective utilization of available resources. Part 1 presents a coordinated national blueprint for scientific investigations of biogeochemical cycles in the global troposphere. part 2 presents much of the background information of the present knowledge and gaps in the understanding of tropospheric chemical cycles and processes from which the proposed program was developed.

  20. Global tropospheric chemistry: A plan for action

    NASA Astrophysics Data System (ADS)

    1984-10-01

    Prompted by an increasing awareness of the influence of human activity on the chemistry of the global troposphere, a panel was formed to (1) assess the requirement for a global study of the chemistry of the troposphere; (2) develop a scientific strategy for a comprehensive plan taking into account the existing and projected programs of the government; (3) assess the requirements of a global study in terms of theoretical knowledge, numerical modeling, instrumentation, observing platforms, ground-level observational techniques, and other related needs; and (4) outline the appropriate sequence and coordination required to achieve the most effective utilization of available resources. Part 1 presents a coordinated national blueprint for scientific investigations of biogeochemical cycles in the global troposphere. part 2 presents much of the background information of the present knowledge and gaps in the understanding of tropospheric chemical cycles and processes from which the proposed program was developed.

  1. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sands, M. D.

    1980-01-01

    This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adversemore » environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.« less

  2. 30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTINENTAL SHELF Platforms and Structures Platform Approval Program § 250.905 How do I get approval for the...) Application cover letter Proposed structure designation, lease number, area, name, and block number, and the type of facility your facility (e.g., drilling, production, quarters). The structure designation must...

  3. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, construction workers assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  4. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, has been installed on the south side of the high bay. In view below are several levels of previously installed platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  5. Understanding USGS user needs and Earth observing data use for decision making

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2016-12-01

    US Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) project in the Land Remote Sensing (LRS) program, collaborating with the National Oceanic and Atmospheric Administration (NOAA) to jointly develop the supporting information infrastructure - The Earth Observation Requirements Evaluation Systems (EORES). RCA-EO enables us to collect information on current data products and projects across the USGS and evaluate the impacts of Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. EORES allows users to query, filter, and analyze usage and impacts of Earth observation data at different organizational level within the bureau. We engaged over 500 subject matter experts and evaluated more than 1000 different Earth observing data sources and products. RCA-EO provides a comprehensive way to evaluate impacts of Earth observing data on USGS mission areas and programs through the survey of 345 key USGS products and services. We paid special attention to user feedback about Earth observing data to inform decision making on improving user satisfaction. We believe the approach and philosophy of RCA-EO can be applied in much broader scope to derive comprehensive knowledge of Earth observing systems impacts and usage and inform data products development and remote sensing technology innovation.

  6. PR-PR: Cross-Platform Laboratory Automation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, G; Stawski, N; Goyal, G

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Goldenmore » Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.« less

  7. PR-PR: cross-platform laboratory automation system.

    PubMed

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  8. Developing the concept of a geostationary platform. [for communication services

    NASA Technical Reports Server (NTRS)

    Carey, W. T.; Bowman, R. M.; Stone, G. R.

    1980-01-01

    A geostationary platform concept with a proliferation of low-cost earth stations is discussed. Candidate platform concepts, servicing, life, and Orbital Transfer Vehicle (OTV) options are considered. A Life Cycle Costing model is used to select the minimum cost concept meeting program criteria. It is concluded that the geostationary platform concept is a practical and economical approach to providing expanding communication services within the limitations imposed by the available frequency spectrum and orbital arc.

  9. Geostationary platform systems concepts definition study. Volume 2: Technical, book 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The supporting research and technology, and space demonstrations required to support the 1990s operational geostationary platforms are identified. Also the requirements on and interfaces with the Space Transportation System hardware elements supporting the geostationary platform program, including the shuttle, orbital transfer vehicles, teleoperator, etc., are investigated to provide integrated support requirements. Finally, a preliminary evaluation of the practicability and capabilities of an experimental platform from the standpoint of technology, schedule, and cost is given.

  10. The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.; Springston, S.; Mechoso, C. R.

    2011-01-21

    The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was an international field program designed to make observations of poorly understood but critical components of the coupled climate system of the southeast Pacific. This region is characterized by strong coastal upwelling, the coolest SSTs in the tropical belt, and is home to the largest subtropical stratocumulus deck on Earth. The field intensive phase of VOCALS-REx took place during October and November 2008 and constitutes a critical part of a broader CLIVAR program (VOCALS) designed to develop and promote scientific activities leading to improved understanding, model simulations, and predictions of the southeastern Pacificmore » (SEP) coupled ocean-atmosphere-land system, on diurnal to interannual timescales. The other major components of VOCALS are a modeling program with a model hierarchy ranging from the local to global scales, and a suite of extended observations from regular research cruises, instrumented moorings, and satellites. The two central themes of VOCALS-REx focus upon (a) links between aerosols, clouds and precipitation and their impacts on marine stratocumulus radiative properties, and (b) physical and chemical couplings between the upper ocean and the lower atmosphere, including the role that mesoscale ocean eddies play. A set of hypotheses designed to be tested with the combined field, monitoring and modeling work in VOCALS is presented here. A further goal of VOCALS-REx is to provide datasets for the evaluation and improvement of large-scale numerical models. VOCALS-REx involved five research aircraft, two ships and two surface sites in northern Chile. We describe the instrument payloads and key mission strategies for these platforms and give a summary of the missions conducted.« less

  11. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. In view below Platform C are several of the previously installed platforms. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. Informatics in radiology (infoRAD): free DICOM image viewing and processing software for the Macintosh computer: what's available and what it can do for you.

    PubMed

    Escott, Edward J; Rubinstein, David

    2004-01-01

    It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images. (c) RSNA, 2004.

  13. The impact and importance of intercalibration and intercomparisons for greenhouse gas observational networks

    NASA Astrophysics Data System (ADS)

    Stavert, Ann; O'Doherty, Simon; Rigby, Matthew; Palmer, Paul; Stanley, Kieran; Young, Dickon; Lunt, Mark; Grant, Aoife; Pitt, Joseph; Bauguitte, Stephane; Helfter, Carole; Mullinger, Neil; Robinson, Andrew; Harris, Neil; Riddick, Stuart; Sonderfeld, Hannah; Boesch, Hartmut; Foster, Grant

    2016-04-01

    Motivated by the UK 2008 Climate Change Act, which requires the UK to decrease its greenhouse gas (GHG) emissions by 80% of 1990 levels by 2050, the Greenhouse gAs Uk and Global Emissons (GAUGE) project aims to better quantify UK CO2, CH4 and N2O emissions. As part of this project a UK-focused GHG observational network has been established, drawing together new and existing GHG data streams from regional to global scales. These included high-density regional studies, tall-tower sites, moving platforms (ferry and aircraft) and satellite observations. Under the project these observations will be combined with modelling approaches to better quantify and characterise UK GHG emissions and place them within a global context. This presentation will describe the efforts made to ensure that common calibration scales were used within the GAUGE project and an assessment of the intercomparability of the stationary sites and moving platforms (including 6 near surface regional focused sites, 6 tall tower sites, ferry and aircraft measurements). This assessment was undertaken using both a cylinder intercomparison program (ICP) and a comparison between co-located flask and in situ measurements. The majority of the sites agreed within the WMO comparability guidelines, however, small relative biases in CO2 and CH4 were identified at some sites. These biases generally increased with concentration, with differences up to 0.3ppm in CO2 and 3ppb CH4 observed between tall tower sites and mobile platforms, while larger biases were found at some of the regional study sites. In order to investigate the impact of biases of these types an experiment using pseudo emissions and observations was conducted. To achieve this, sets of emissions estimates for key GHG sources (e.g. for CH4 the sum of anthropogenic, biomass burning, wetlands, rice and oceans and other natural sources) were used to estimate the GHG concentrations at the GAUGE observation sites and mobile platforms via the Met office NAME model. These pseudo observations were then adjusted using a range of biases and simulated calibration offsets. Regional UK emissions were then determined based on inversions performed using the Met office NAME model and hierarchical Bayesian inversion method. Using these emissions estimates we quantified the impact of systematic site biases on derived fluxes, assessing the relevance of the WMO comparability guidelines for our UK study and highlighting the importance of rigorous inter-calibration and comparability of data streams for regional emissions estimation.

  14. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lowers the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, into High Bay 3 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. In view below are several of the previously installed levels of platforms. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  15. CCHDO: Data Management for US and International GO-SHIP and Related Programs

    NASA Astrophysics Data System (ADS)

    Diggs, S. C.

    2016-02-01

    An ever-expanding universe of oceanographic data that includes ship-based measurements (CTD, Nutrients, CFCs, etc.) - as well as the data collected from floats, drifters, gliders and moorings - are continuously gathered, scrutinized, documented and disseminated by the CLIVAR and Carbon Hydrographic Data Office (CCHDO) at Scripps Institution of Oceanography. As the official data assembly center for US GO-SHIP (a decadal global hydrography program) the CCHDO is involved in setting and promoting standards of modern data exchange - from observations at sea to final archive. Established in 1996, the CCHDO has a solid history of curating the highest quality full-depth hydrographic data and associated documentation, metadata and DOIs on an API-based web site that provides data in multiple formats and platforms that have been specifically requested by the hydrographic research community. The CCHDO's website, programming platforms, and documentation standards constantly evolve, based on the feedback we receive from the hydrographic community. Technical convergence and collaboration with organizations that include CDIAC, Princeton, NOAA/NCEI, Argo, OceanSITES, BCO-DMO and GO-SHIP is central to our success. We were early adopters of small crowd-sourcing for quality control, and by being involved in all aspects of data use we reintegrate suggested changes to the data, flags and documentation supplied by the most highly recognized and regarded hydrography researchers and institutions in the world.

  16. Near-field observation platform

    NASA Astrophysics Data System (ADS)

    Schlemmer, Harry; Baeurle, Constantin; Vogel, Holger

    2008-04-01

    A miniaturized near-field observation platform is presented comprising a sensitive daylight camera and an uncooled micro-bolometer thermal imager each equipped with a wide angle lens. Both cameras are optimised for a range between a few meters and 200 m. The platform features a stabilised line of sight and can therefore be used also on a vehicle when it is in motion. The line of sight either can be directed manually or the platform can be used in a panoramic mode. The video output is connected to a control panel where algorithms for moving target indication or tracking can be applied in order to support the observer. The near-field platform also can be netted with the vehicle system and the signals can be utilised, e.g. to designate a new target to the main periscope or the weapon sight.

  17. Development of pile foundation bias factors using observed behavior of platforms during Hurricane Andrew

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, R.K.; Litton, R.W.; Cornell, C.A.

    1996-12-31

    The performance of more than 3,000 offshore platforms in the Gulf of Mexico was observed during the passage of Hurricane Andrew in August 1992. This event provided an opportunity to test the procedures used for platform analysis and design. A global bias was inferred for overall platform capacity and loads in the Andrew Joint Industry Project (JIP) Phase 1. It was predicted that the pile foundations of several platforms should have failed, but did not. These results indicated that the biases specific to foundation failure modes may be higher than those of jacket failure modes. The biases in predictions ofmore » foundation failure modes were therefore investigated further in this study. The work included capacity analysis and calibration of predictions with the observed behavior for 3 jacket platforms and 3 caissons using Bayesian updating. Bias factors for two foundation failure modes, lateral shear and overturning, were determined for each structure. Foundation capacity estimates using conventional methods were found to be conservatively biased overall.« less

  18. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    PubMed Central

    Bosse, Stefan

    2015-01-01

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques. PMID:25690550

  19. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    PubMed

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  20. Flexible, secure agent development framework

    DOEpatents

    Goldsmith,; Steven, Y [Rochester, MN

    2009-04-07

    While an agent generator is generating an intelligent agent, it can also evaluate the data processing platform on which it is executing, in order to assess a risk factor associated with operation of the agent generator on the data processing platform. The agent generator can retrieve from a location external to the data processing platform an open site that is configurable by the user, and load the open site into an agent substrate, thereby creating a development agent with code development capabilities. While an intelligent agent is executing a functional program on a data processing platform, it can also evaluate the data processing platform to assess a risk factor associated with performing the data processing function on the data processing platform.

  1. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  2. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  3. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the south wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  4. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a construction worker assist with the installation of the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket. The large bolts that hold the platform in place on the south wall are being secured. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  5. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be installed on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  6. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north wall. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  7. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  8. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  9. CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier (CVN 78)

    DTIC Science & Technology

    2013-12-01

    Capabil... -Follow-on Ship (CVN 79) DAB Program Review - • Start Construction - • Delivery .-:K IOT &E IOT &E Start .-:41 IOT &E Complete e(41 Follow-on...Ship (CVN 80) DAB Program Review -Platform-Level Integration D ... ....., Milestone C .. EMALS EMALS Delivery (with Ship) .-:o; IOC ..:<! IOT ...E IOT &E Start ..:<! IOT &E Complete -· Platform-Level Integration .. ...:<! CVN 78 Milestones SAR Baseline Dev Est Current APB Development

  10. Deterministic Execution of Ptides Programs

    DTIC Science & Technology

    2013-05-15

    at a time no later than 30+1+5 = 36. Assume the maximum clock synchronization error is . Therefore, the AddSubtract adder must delay processing the...the synchronization of the platform real- time clock to its peers in other system platforms. The portions of PtidyOS code that implement access to the...interesting opportunities for future research. References [1] Y. Zhao, E. A. Lee, and J. Liu, “A programming model for time - synchronized distributed real

  11. Synergistic control center development utilizing commercial technology and industry standards. [NASA space programs

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    1993-01-01

    The development of the Control Center Complex (CCC), a synergistic control center supporting both the Space Station Freedom and the Space Shuttle Program, is described. To provide maximum growth and flexibility, the CCC uses commercial off-the-shelf technology and industry standards. The discussion covers the development philosophy, CCC architecture, data distribution, the software platform concept, workstation platform, commercial tools for the CCC, and benefits of synergy.

  12. KSC-2009-5543

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - With the work platforms retracted, the Ares I-X stands tall inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platforms were retracted in preparation for the rocket's rollout to Launch Pad 39B. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  13. Initial experience with a handheld device digital imaging and communications in medicine viewer: OsiriX mobile on the iPhone.

    PubMed

    Choudhri, Asim F; Radvany, Martin G

    2011-04-01

    Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians.

  14. Breaking Open the Black Box: Isolating the Most Potent Features of a Web and Mobile Phone-Based Intervention for Depression, Anxiety, and Stress.

    PubMed

    Whitton, Alexis E; Proudfoot, Judith; Clarke, Janine; Birch, Mary-Rose; Parker, Gordon; Manicavasagar, Vijaya; Hadzi-Pavlovic, Dusan

    2015-01-01

    Internet-delivered mental health (eMental Health) interventions produce treatment effects similar to those observed in face-to-face treatment. However, there is a large degree of variation in treatment effects observed from program to program, and eMental Health interventions remain somewhat of a black box in terms of the mechanisms by which they exert their therapeutic benefit. Trials of eMental Health interventions typically use large sample sizes and therefore provide an ideal context within which to systematically investigate the therapeutic benefit of specific program features. Furthermore, the growth and impact of mobile phone technology within eMental Health interventions provides an opportunity to examine associations between symptom improvement and the use of program features delivered across computer and mobile phone platforms. The objective of this study was to identify the patterns of program usage associated with treatment outcome in a randomized controlled trial (RCT) of a fully automated, mobile phone- and Web-based self-help program, "myCompass", for individuals with mild-to-moderate symptoms of depression, anxiety, and/or stress. The core features of the program include interactive psychotherapy modules, a symptom tracking feature, short motivational messages, symptom tracking reminders, and a diary, with many of these features accessible via both computer and mobile phone. Patterns of program usage were recorded for 231 participants with mild-to-moderate depression, anxiety, and/or stress, and who were randomly allocated to receive access to myCompass for seven weeks during the RCT. Depression, anxiety, stress, and functional impairment were examined at baseline and at eight weeks. Log data indicated that the most commonly used components were the short motivational messages (used by 68.4%, 158/231 of participants) and the symptom tracking feature (used by 61.5%, 142/231 of participants). Further, after controlling for baseline symptom severity, increased use of these alert features was associated with significant improvements in anxiety and functional impairment. Associations between use of symptom tracking reminders and improved treatment outcome remained significant after controlling for frequency of symptom tracking. Although correlations were not statistically significant, reminders received via SMS (ie, text message) were more strongly associated with symptom reduction than were reminders received via email. These findings indicate that alerts may be an especially potent component of eMental Health interventions, both via their association with enhanced program usage, as well as independently. Although there was evidence of a stronger association between symptom improvement and use of alerts via the mobile phone platform, the degree of overlap between use of email and SMS alerts may have precluded identification of alert delivery modalities that were most strongly associated with symptom reduction. Future research using random assignment to computer and mobile delivery is needed to fully determine the most ideal platform for delivery of this and other features of online interventions. Australian New Zealand Clinical Trials Registry (ACTRN): 12610000625077; http://www.anzctr.org.au/TrialSearch.aspx? (Archived by WebCite http://www.webcitation.org/6WPqHK0mQ).

  15. Breaking Open the Black Box: Isolating the Most Potent Features of a Web and Mobile Phone-Based Intervention for Depression, Anxiety, and Stress

    PubMed Central

    Proudfoot, Judith; Clarke, Janine; Birch, Mary-Rose; Parker, Gordon; Manicavasagar, Vijaya; Hadzi-Pavlovic, Dusan

    2015-01-01

    Background Internet-delivered mental health (eMental Health) interventions produce treatment effects similar to those observed in face-to-face treatment. However, there is a large degree of variation in treatment effects observed from program to program, and eMental Health interventions remain somewhat of a black box in terms of the mechanisms by which they exert their therapeutic benefit. Trials of eMental Health interventions typically use large sample sizes and therefore provide an ideal context within which to systematically investigate the therapeutic benefit of specific program features. Furthermore, the growth and impact of mobile phone technology within eMental Health interventions provides an opportunity to examine associations between symptom improvement and the use of program features delivered across computer and mobile phone platforms. Objective The objective of this study was to identify the patterns of program usage associated with treatment outcome in a randomized controlled trial (RCT) of a fully automated, mobile phone- and Web-based self-help program, “myCompass”, for individuals with mild-to-moderate symptoms of depression, anxiety, and/or stress. The core features of the program include interactive psychotherapy modules, a symptom tracking feature, short motivational messages, symptom tracking reminders, and a diary, with many of these features accessible via both computer and mobile phone. Methods Patterns of program usage were recorded for 231 participants with mild-to-moderate depression, anxiety, and/or stress, and who were randomly allocated to receive access to myCompass for seven weeks during the RCT. Depression, anxiety, stress, and functional impairment were examined at baseline and at eight weeks. Results Log data indicated that the most commonly used components were the short motivational messages (used by 68.4%, 158/231 of participants) and the symptom tracking feature (used by 61.5%, 142/231 of participants). Further, after controlling for baseline symptom severity, increased use of these alert features was associated with significant improvements in anxiety and functional impairment. Associations between use of symptom tracking reminders and improved treatment outcome remained significant after controlling for frequency of symptom tracking. Although correlations were not statistically significant, reminders received via SMS (ie, text message) were more strongly associated with symptom reduction than were reminders received via email. Conclusions These findings indicate that alerts may be an especially potent component of eMental Health interventions, both via their association with enhanced program usage, as well as independently. Although there was evidence of a stronger association between symptom improvement and use of alerts via the mobile phone platform, the degree of overlap between use of email and SMS alerts may have precluded identification of alert delivery modalities that were most strongly associated with symptom reduction. Future research using random assignment to computer and mobile delivery is needed to fully determine the most ideal platform for delivery of this and other features of online interventions. Trial Registration Australian New Zealand Clinical Trials Registry (ACTRN): 12610000625077; http://www.anzctr.org.au/TrialSearch.aspx? (Archived by WebCite http://www.webcitation.org/6WPqHK0mQ). PMID:26543909

  16. Digital image analysis of Ki67 proliferation index in breast cancer using virtual dual staining on whole tissue sections: clinical validation and inter-platform agreement.

    PubMed

    Koopman, Timco; Buikema, Henk J; Hollema, Harry; de Bock, Geertruida H; van der Vegt, Bert

    2018-05-01

    The Ki67 proliferation index is a prognostic and predictive marker in breast cancer. Manual scoring is prone to inter- and intra-observer variability. The aims of this study were to clinically validate digital image analysis (DIA) of Ki67 using virtual dual staining (VDS) on whole tissue sections and to assess inter-platform agreement between two independent DIA platforms. Serial whole tissue sections of 154 consecutive invasive breast carcinomas were stained for Ki67 and cytokeratin 8/18 with immunohistochemistry in a clinical setting. Ki67 proliferation index was determined using two independent DIA platforms, implementing VDS to identify tumor tissue. Manual Ki67 score was determined using a standardized manual counting protocol. Inter-observer agreement between manual and DIA scores and inter-platform agreement between both DIA platforms were determined and calculated using Spearman's correlation coefficients. Correlations and agreement were assessed with scatterplots and Bland-Altman plots. Spearman's correlation coefficients were 0.94 (p < 0.001) for inter-observer agreement between manual counting and platform A, 0.93 (p < 0.001) between manual counting and platform B, and 0.96 (p < 0.001) for inter-platform agreement. Scatterplots and Bland-Altman plots revealed no skewness within specific data ranges. In the few cases with ≥ 10% difference between manual counting and DIA, results by both platforms were similar. DIA using VDS is an accurate method to determine the Ki67 proliferation index in breast cancer, as an alternative to manual scoring of whole sections in clinical practice. Inter-platform agreement between two different DIA platforms was excellent, suggesting vendor-independent clinical implementability.

  17. Designing and implementing nervous system simulations on LEGO robots.

    PubMed

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  18. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less

  19. Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization

    NASA Astrophysics Data System (ADS)

    Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.

    The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.

  20. Platform C Installation

    NASA Image and Video Library

    2016-10-19

    A heavy-lift crane lifts the first half of the C-level work platforms, C south, for NASA’s Space Launch System (SLS) rocket, up from the transfer aisle floor of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. Large Tandemloc bars have been attached to the platform to keep it level during lifting and installation. The C platform will be installed on the south side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  1. 30 CFR 250.911 - If my platform is subject to the Platform Verification Program, what must I do?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... installation for the Regional Supervisor's approval. You must include a project management timeline, Gantt... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR...

  2. Learning Application of Astronomy Based Augmented Reality using Android Platform

    NASA Astrophysics Data System (ADS)

    Maleke, B.; Paseru, D.; Padang, R.

    2018-02-01

    Astronomy is a branch of science involving observations of celestial bodies such as stars, planets, nebular comets, star clusters, and galaxies as well as natural phenomena occurring outside the Earth’s atmosphere. The way of learning of Astronomy is quite varied, such as by using a book or observe directly with a telescope. But both ways of learning have shortcomings, for example learning through books is only presented in the form of interesting 2D drawings. While learning with a telescope requires a fairly expensive cost to buy the equipment. This study will present a more interesting way of learning from the previous one, namely through Augmented Reality (AR) application using Android platform. Augmented Reality is a combination of virtual world (virtual) and real world (real) made by computer. Virtual objects can be text, animation, 3D models or videos that are combined with the actual environment so that the user feels the virtual object is in his environment. With the use of the Android platform, this application makes the learning method more interesting because it can be used on various Android smartphones so that learning can be done anytime and anywhere. The methodology used in making applications is Multimedia Lifecycle, along with C # language for AR programming and flowchart as a modelling tool. The results of research on some users stated that this application can run well and can be used as an alternative way of learning Astronomy with more interesting.

  3. Innovative approaches to exoplanet detection and characterization: Notes from the Nov 10-13 Keck Institute for Space Studies workshop

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Traub, Wesley; Unwin, Stephen; Stapelfeldt, Karl

    2010-05-01

    A four-day workshop was convened on November 10-13, 2009 by the Keck Institute for Space Studies and JPL to consider innovative approaches to detecting and characterizing exoplanets and planetary systems. The program and many of the presentations can be found online: . We present some of the observational strategies discussed in this workshop and summarize some of the issues associated with them. In particular, we will highlight some of the advantages and shortcomings of suborbital and orbital (e.g., ESPA rings) observing platforms in the context of exoplanet detection and characterization.

  4. Marine communities on oil platforms in Gabon, West Africa: high biodiversity oases in a low biodiversity environment.

    PubMed

    Friedlander, Alan M; Ballesteros, Enric; Fay, Michael; Sala, Enric

    2014-01-01

    The marine biodiversity of Gabon, West Africa has not been well studied and is largely unknown. Our examination of marine communities associated with oil platforms in Gabon is the first scientific investigation of these structures and highlights the unique ecosystems associated with them. A number of species previously unknown to Gabonese waters were recorded during our surveys on these platforms. Clear distinctions in benthic communities were observed between older, larger platforms in the north and newer platforms to the south or closer to shore. The former were dominated by a solitary cup coral, Tubastraea sp., whereas the latter were dominated by the barnacle Megabalanus tintinnabulum, but with more diverse benthic assemblages compared to the northerly platforms. Previous work documented the presence of limited zooxanthellated scleractinian corals on natural rocky substrate in Gabon but none were recorded on platforms. Total estimated fish biomass on these platforms exceeded one ton at some locations and was dominated by barracuda (Sphyraena spp.), jacks (Carangids), and rainbow runner (Elagatis bipinnulata). Thirty-four percent of fish species observed on these platforms are new records for Gabon and 6% are new to tropical West Africa. Fish assemblages closely associated with platforms had distinct amphi-Atlantic affinities and platforms likely extend the distribution of these species into coastal West Africa. At least one potential invasive species, the snowflake coral (Carijoa riisei), was observed on the platforms. Oil platforms may act as stepping stones, increasing regional biodiversity and production but they may also be vectors for invasive species. Gabon is a world leader in terrestrial conservation with a network of protected areas covering >10% of the country. Oil exploration and biodiversity conservation currently co-exist in terrestrial and freshwater ecosystems in Gabon. Efforts to increase marine protection in Gabon may benefit by including oil platforms in the marine protected area design process.

  5. The Drivers of the CH4 Seasonal Cycle in the Arctic and What Long-Term Observations of CH4 Imply About Trends in Arctic CH4 Fluxes

    NASA Astrophysics Data System (ADS)

    Sweeney, C.; Karion, A.; Bruhwiler, L.; Miller, J. B.; Wofsy, S. C.; Miller, C. E.; Chang, R. Y.; Dlugokencky, E. J.; Daube, B.; Pittman, J. V.; Dinardo, S. J.

    2012-12-01

    The large seasonal change in the atmospheric column for CH4 in the Arctic is driven by two dominant processes: transport of CH4 from low latitudes and surface emissions throughout the Arctic region. The NOAA ESRL Carbon Cycle Group Aircraft Program along with the NASA funded Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) have initiated an effort to better understand the factors controlling the seasonal changes in the mole fraction of CH4 in the Arctic with a multi-scale aircraft observing network in Alaska. The backbone of this network is multi-species flask sampling from 500 to 8000 masl that has been conducted every two weeks for the last 10 years over Poker Flat, AK. In addition regular profiles at the interior Alaska site at Poker Flat, NOAA has teamed up with the United States Coast Guard to make profiling flights with continuous observations of CO2, CO, CH4 and Ozone between Kodiak and Barrow every 2 weeks. More recently, CARVE has significantly added to this observational network with targeted flights focused on exploring the variability of CO2, CH4 and CO in the boundary layer both in the interior and the North Slope regions of Alaska. Taken together with the profiling of HIAPER Pole-to-Pole Observations (HIPPO), ground sites at Barrow and a new CARVE interior Alaska surface site just north of Fairbanks, AK, we now have the ability to investigate the full evolution of the seasonal cycle in the Arctic using both the multi-scale sampling offered by the different aircraft platforms as well as the multi-species sampling offered by in-situ and flask sampling. The flasks also provide a valuable tie-point between different platforms so that spatial and temporal gradients can be properly interpreted. In the context of the seasonal cycle observed by the aircraft platforms we will look at long term ground observations over the last 20 years to assess changes in Arctic CH4 emissions which have occurred as a result of 0.6C/decade changes in mean surface temperatures.

  6. Vibration platform training in women at risk for symptomatic knee osteoarthritis.

    PubMed

    Segal, Neil A; Glass, Natalie A; Shakoor, Najia; Wallace, Robert

    2013-03-01

    To determine whether a platform exercise program with vibration is more effective than platform exercise alone for improving lower limb muscle strength and power in women ages 45 to 60 with risk factors for knee osteoarthritis (OA). Randomized, controlled study. Academic center. A total of 48 women ages 45-60 years with risk factors for knee OA (a history of knee injury or surgery or body mass index ≥25 kg/m(2)). Subjects were randomly assigned to a twice-weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises, step-ups, and lunges) on either a vertically vibrating platform (35 Hz, 2 mm) or a nonvibrating platform. Change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. A total of 39 of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly because of a lack of time. No intergroup differences in age, body mass index, or activity level existed. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0 ± 69.7 W in the vibration group (P < .0001) and 58.2 ± 96.2 W in the control group (P = .0499) but did not differ between groups (P = .2262). Stair climb power improved by 53.4 ± 64.7 W in the vibration group (P = .0004) and 55.7 ± 83.3 W in the control group (P = .0329) but did not differ between groups (P = .9272). Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, the addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than did participation in the exercise program without vibration. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. US program in anchored data buoy and the other fixed observation platforms

    NASA Astrophysics Data System (ADS)

    McCall, J. C.

    The NOAA Data Buoy Office (NOBO) develops and operates moored buoys in all U.S. coastal and offshore waters from New England to Hawaii (including the Great Lakes) to provide real-time environmental measurements in data-sparse areas for the National Weather Service and other public and private users. The NOBO also has a program for development, deployment, and operation of drifting buoys, which provide environmental measurements in the South Atlantic and Pacific from Chili to Australia and in the Northern Hemisphere. In addition, NOBO develops, deploys, and operates special purpose environmental measuring systems for other government agencies, particularly for petroleum-related purposes, and has an engineering development effort in procuring new and improved sensor and communications systems.

  8. Platform C North Arrival

    NASA Image and Video Library

    2016-08-30

    A section of the second half of the C-level platforms, C North, for NASA’s Space Launch System (SLS) rocket, arrives at the agency’s Kennedy Space Center in Florida. The platform was offloaded from a heavy lift transport truck and secured in a staging area in the west parking lot of the Vehicle Assembly Building (VAB). The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  9. Integrating Neglected Tropical Disease and Immunization Programs: The Experiences of the Tanzanian Ministry of Health

    PubMed Central

    Mwingira, Upendo John; Means, Arianna Rubin; Chikawe, Maria; Kilembe, Bernard; Lyimo, Dafrossa; Crowley, Kathryn; Rusibamayila, Neema; Nshala, Andreas; Mphuru, Alex

    2016-01-01

    Global health practitioners are increasingly advocating for the integration of community-based health-care platforms as a strategy for increasing the coverage of programs, encouraging program efficiency, and promoting universal health-care goals. To leverage the strengths of compatible programs and avoid geographic and temporal duplications in efforts, the Tanzanian Ministry of Health and Social Welfare coordinated immunization and neglected tropical disease programs for the first time in 2014. Specifically, a measles and rubella supplementary vaccine campaign, mass drug administration (MDA) of ivermectin and albendazole, and Vitamin A were provisionally integrated into a shared community-based delivery platform. Over 21 million people were targeted by the integrated campaign, with the immunization program and MDA program reaching 97% and 93% of targeted individuals, respectively. The purpose of this short report is to share the Tanzanian experience of launching and managing this integrated campaign with key stakeholders. PMID:27246449

  10. Design and control of multifunctional sorting and training platform based on PLC control

    NASA Astrophysics Data System (ADS)

    Wan, Hongqiang; Ge, Shuai; Han, Peiying; Li, Fancong; Zhang, Simiao

    2018-05-01

    Electromechanical integration, as a multi-disciplinary subject, has been paid much attention by universities and is widely used in the automation production of enterprises. Aiming at the problem of the lack of control among enterprises and the lack of training among colleges and universities, this paper presents a design of multifunctional sorting training platform based on PLC control. Firstly, the structure of the platform is determined and three-dimensional modeling is done. Then design the platform's aerodynamic control and electrical control. Finally, realize the platform sorting function through PLC programming and configuration software development. The training platform can be used to design the practical training experiment, which has a strong advance and pertinence in the electromechanical integration teaching. At the same time, the platform makes full use of modular thinking to make the sorting modules more flexible. Compared with the traditional training platform, its teaching effect is more significant.

  11. Platform B North Installation

    NASA Image and Video Library

    2016-12-16

    Construction workers wearing safety harnesses and tethered lines assist with the installation of the second half of the B-level work platforms, B north, for NASA’s Space Launch System (SLS) rocket, high up in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida. They are securing the large bolts that hold the platform securely in place on the north side of High Bay 3. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  12. Platform C North Installation

    NASA Image and Video Library

    2016-11-10

    A heavy-lift crane lifts the second half of the C-level work platforms, C north, for NASA’s Space Launch System (SLS) rocket, high up from the transfer aisle of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The C platform will be moved into High Bay 3 for installation on the north side of High Bay 3. The C platforms are the eighth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  13. Platform B North Installation

    NASA Image and Video Library

    2016-12-16

    A construction worker solders a section of steel during the installation of the second half of the B-level work platforms, B north, for NASA's Space Launch System (SLS) rocket, in High Bay 3 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. Construction workers will secure the large bolts that hold the platform in place on the north wall. The B platforms are the ninth of 10 levels of work platforms that will surround and provide access to the SLS rocket and Orion spacecraft for Exploration Mission 1. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3, including installation of the new work platforms, to prepare for NASA’s Journey to Mars.

  14. Cabana Multi-User Spaceport Tour of KSC

    NASA Image and Video Library

    2017-02-17

    Members of the news media view the 10 levels of new work platforms in High Bay 3 inside the Vehicle Assembly Building (VAB) during a tour of NASA's Kennedy Space Center in Florida with Center Director Bob Cabana. The final platform, A north, was recently installed. The platforms will surround the Space Launch System and Orion spacecraft on the mobile launcher during processing to prepare for the first test flight. The Ground Systems Development and Operations Program is overseeing upgrades to the VAB, including installation of the new work platforms.

  15. Spacelab Accomplishments Forum 4

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennet, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler); Baugher, Charles R. (Technical Monitor)

    1999-01-01

    The Spacelab Module, exposed platforms, and supporting instrumentation were designed and developed by the European Space Agency to house advanced experiments inside the Space Shuttle cargo bay. The Spacelab program has hosted a cross-disciplinary research agenda over a 17-year flight history. Several variations of Spacelab were used to host payloads for almost every space research discipline that NASA pursues-life sciences, microgravity research, space sciences, and earth observation studies. After seventeen years of flight, Spacelab modules, pallets, or variations thereof flew on the Shuttle 36 times for a total of 375 flight days.

  16. Advanced power systems for EOS

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.

  17. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    NASA Astrophysics Data System (ADS)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the impact of each observation on the circulation, and illustrates how observations from some platforms can influence the circulation up to a decade into the future.

  18. Cloudgene: A graphical execution platform for MapReduce programs on private and public clouds

    PubMed Central

    2012-01-01

    Background The MapReduce framework enables a scalable processing and analyzing of large datasets by distributing the computational load on connected computer nodes, referred to as a cluster. In Bioinformatics, MapReduce has already been adopted to various case scenarios such as mapping next generation sequencing data to a reference genome, finding SNPs from short read data or matching strings in genotype files. Nevertheless, tasks like installing and maintaining MapReduce on a cluster system, importing data into its distributed file system or executing MapReduce programs require advanced knowledge in computer science and could thus prevent scientists from usage of currently available and useful software solutions. Results Here we present Cloudgene, a freely available platform to improve the usability of MapReduce programs in Bioinformatics by providing a graphical user interface for the execution, the import and export of data and the reproducibility of workflows on in-house (private clouds) and rented clusters (public clouds). The aim of Cloudgene is to build a standardized graphical execution environment for currently available and future MapReduce programs, which can all be integrated by using its plug-in interface. Since Cloudgene can be executed on private clusters, sensitive datasets can be kept in house at all time and data transfer times are therefore minimized. Conclusions Our results show that MapReduce programs can be integrated into Cloudgene with little effort and without adding any computational overhead to existing programs. This platform gives developers the opportunity to focus on the actual implementation task and provides scientists a platform with the aim to hide the complexity of MapReduce. In addition to MapReduce programs, Cloudgene can also be used to launch predefined systems (e.g. Cloud BioLinux, RStudio) in public clouds. Currently, five different bioinformatic programs using MapReduce and two systems are integrated and have been successfully deployed. Cloudgene is freely available at http://cloudgene.uibk.ac.at. PMID:22888776

  19. Revisiting the concept of growth monitoring and its possible role in community-based nutrition programs.

    PubMed

    Mangasaryan, Nuné; Arabi, Mandana; Schultink, Werner

    2011-03-01

    Community-based growth monitoring (GM) and growth monitoring and promotion (GMP) have been implemented worldwide. The literature provides controversial messages regarding their effectiveness. Numerous countries have GM as their main community-based activity and need guidance for future programming. The notion of GM is usually clear, but the follow-up actions include a range of activities and interventions, all under the heading of "promotion." We suggested definitions, objectives, and outcomes of the GM and GMP. By providing some clarity on these conceptual issues we attempted to provide a basis for consensus building and development of recommendations on when this activity should be promoted or discouraged. We reviewed basic concepts and global experience of GM and GMP using publications about GM and GMP, UNICEF country reports and other publications, field observations, and reports of recent expert consultations. Realistic added benefits are suggested as compared with general counseling that could also be delivered outside the GM session. We provide a narrow definition of "promotion" in GMP, in which actions are tailored to the results of monitoring, as well as suggest quality implementation criteria. GM, even if complemented by a promotional package, can have only a limited impact if it is not part of a comprehensive program. GMP cannot be viewed as a competitor to highly effective interventions, but may serve as a possible platform for their delivery. The decision to build community-based programs on a GMP platform should be based on consideration of benefits, feasibility of quality implementation, and capacity of human resources.

  20. Online learning tools in an M.Ed. in Earth Sciences program

    NASA Astrophysics Data System (ADS)

    Richardson, E.

    2011-12-01

    Penn State's Master of Education in Earth Sciences program is a fully online 30-credit degree program serving mid-career secondary science teachers. Teachers in the program have a diverse background in science and math, are usually many years removed from their most recent degree, and are often deficient in the same geoscience skills as are beginning undergraduates. For example, they habitually assign incorrect causal relationships to concepts that are taught at the same time (such as sea-floor spreading and magnetic field reversals), and they have trouble with both object and spatial visualization. Program faculty also observe anecdotally that many teachers enter the program lacking the ability to describe their mental model of a given Earth science process, making it difficult to identify teachers' knowledge gaps. We have implemented many technical strategies to enhance program content delivery while trying to minimize the inherent barriers to completing quantitative assignments online and at a distance. These barriers include competence with and access to sophisticated data analysis and plotting programs commonly used by scientists. Here, I demonstrate two technical tools I use frequently to strengthen online content delivery and assessment. The first, Jing, is commercially-available, free, and platform-independent. Jing allows the user to make screencasts with narration and embed them into a web page as a flash movie or as an external link. The second is a set of simple sketching tools I have created using the programming language Processing, which is a free, open source, platform-independent language built on Java. The integration of easy-to-use drawing tools into problem sets and other assessments has enabled faculty to appraise a learner's grasp of the material without the steep technical learning curve and expense inherent in most computer graphics packages. A serendipitous benefit of teaching with these tools is that they are easy to learn and freely available and so the teachers in the program learn to use them, too. Qualitative assessment of feedback from the teachers in the program shows that they find the explanations, screencasts, animations, and discussions arising from these tools not only enhance their own learning but also inspire them to try them in their classrooms.

  1. Development of the AuScope Australian Earth Observing System

    NASA Astrophysics Data System (ADS)

    Rawling, T.

    2017-12-01

    Advances in monitoring technology and significant investment in new national research initiatives, will provide significant new opportunities for delivery of novel geoscience data streams from across the Australian continent over the next decade. The AuScope Australian Earth Observing System (AEOS) is linking field and laboratory infrastructure across Australia to form a national sensor array focusing on the Solid Earth. As such AuScope is working with these programs to deploy observational infrastructure, including MT, passive seismic, and GNSS networks across the entire Australian Continent. Where possible the observational grid will be co-located with strategic basement drilling in areas of shallow cover and tied with national reflection seismic and sampling transects. This integrated suite of distributed earth observation and imaging sensors will provide unprecedented imaging fidelity of our crust, across all length and time scales, to fundamental and applied researchers in the earth, environmental and geospatial sciences. The AEOS will the Earth Science community's Square Kilometer Array (SKA) - a distributed telescope that looks INTO the earth rather than away from it - a 10 million SKA. The AEOS is strongly aligned with other community strategic initiatives including the UNCOVER research program as well as other National Collaborative Research Infrastructure programs such as the Terrestrial Environmental Research Network (TERN) and the Integrated Marine Observing System (IMOS) providing an interdisciplinary collaboration platform across the earth and environmental sciences. There is also very close alignment between AuScope and similar international programs such as EPOS, the USArray and EarthCube - potential collaborative linkages we are currently in the process of pursuing more fomally. The AuScope AEOS Infrastructure System is ultimately designed to enable the progressive construction, refinement and ongoing enrichment of a live, "FAIR" four-dimensional Earth Model for the Australian Continent and its immediate environs.

  2. Cross-Platform Development Techniques for Mobile Devices

    DTIC Science & Technology

    2013-09-01

    many other platforms including Windows, Blackberry , and Symbian. Each of these platforms has their own distinct architecture and programming language...sales of iPhones and the increasing use of Android-based devices have forced less successful competitors such as Microsoft, Blackberry , and Symbian... Blackberry and Windows Phone are planned [12] in this tool’s attempt to reuse code with a unified JavaScript API while at the same time supporting unique

  3. MSIX - A general and user-friendly platform for RAM analysis

    NASA Astrophysics Data System (ADS)

    Pan, Z. J.; Blemel, Peter

    The authors present a CAD (computer-aided design) platform supporting RAM (reliability, availability, and maintainability) analysis with efficient system description and alternative evaluation. The design concepts, implementation techniques, and application results are described. This platform is user-friendly because of its graphic environment, drawing facilities, object orientation, self-tutoring, and access to the operating system. The programs' independency and portability make them generally applicable to various analysis tasks.

  4. Reduction of Tribocorrosion Products When using the Platform-Switching Concept.

    PubMed

    Alrabeah, G O; Knowles, J C; Petridis, H

    2018-03-01

    The reduced marginal bone loss observed when using the platform-switching concept may be the result of reduced amounts of tribocorrosion products released to the peri-implant tissues. Therefore, the purpose of this study was to compare the tribocorrosion product release from various platform-matched and platform-switched implant-abutment couplings under cyclic loading. Forty-eight titanium implants were coupled with pure titanium, gold alloy, cobalt-chrome alloy, and zirconia abutments forming either platform-switched or platform-matched groups ( n = 6). The specimens were subjected to cyclic occlusal forces in a wet acidic environment for 24 h followed by static aqueous immersion for 6 d. The amount of metal ions released was measured using inductively coupled plasma mass spectrometry. Microscopic evaluations were performed pre- and postimmersion under scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy X-ray for corrosion assessment at the interface and wear particle characterization. All platform-switched groups showed less metal ion release compared with their platform-matched counterparts within each abutment material group ( P < 0.001). Implants connected to platform-matched cobalt-chrome abutments demonstrated the highest total mean metal ion release (218 ppb), while the least total mean ion release (11 ppb) was observed in the implants connected to platform-switched titanium abutments ( P ≤ 0.001). Titanium was released from all test groups, with its highest mean release (108 ppb) observed in the implants connected to platform-matched gold abutments ( P < 0.001). SEM images showed surface tribocorrosion features such as pitting and bands of fretting scars. Wear particles were mostly titanium, ranging from submicron to 48 µm in length. The platform-matched groups demonstrated a higher amount of metal ion release and more surface damage. These findings highlight the positive effect of the platform-switching concept in the reduction of tribocorrosion products released from dental implants, which consequently may minimize the adverse tissue reactions that lead to peri-implant bone loss.

  5. Interoperable Access to Near Real Time Ocean Observations with the Observing System Monitoring Center

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Hankin, S.; Mendelssohn, R.; Simons, R.; Smith, B.; Kern, K. J.

    2013-12-01

    The Observing System Monitoring Center (OSMC), a project funded by the National Oceanic and Atmospheric Administration's Climate Observations Division (COD), exists to join the discrete 'networks' of In Situ ocean observing platforms -- ships, surface floats, profiling floats, tide gauges, etc. - into a single, integrated system. The OSMC is addressing this goal through capabilities in three areas focusing on the needs of specific user groups: 1) it provides real time monitoring of the integrated observing system assets to assist management in optimizing the cost-effectiveness of the system for the assessment of climate variables; 2) it makes the stream of real time data coming from the observing system available to scientific end users into an easy-to-use form; and 3) in the future, it will unify the delayed-mode data from platform-focused data assembly centers into a standards- based distributed system that is readily accessible to interested users from the science and education communities. In this presentation, we will be focusing on the efforts of the OSMC to provide interoperable access to the near real time data stream that is available via the Global Telecommunications System (GTS). This is a very rich data source, and includes data from nearly all of the oceanographic platforms that are actively observing. We will discuss how the data is being served out using a number of widely used 'web services' (including OPeNDAP and SOS) and downloadable file formats (KML, csv, xls, netCDF), so that it can be accessed in web browsers and popular desktop analysis tools. We will also be discussing our use of the Environmental Research Division's Data Access Program (ERDDAP), available from NOAA/NMFS, which has allowed us to achieve our goals of serving the near real time data. From an interoperability perspective, it's important to note that access to the this stream of data is not just for humans, but also for machine-to-machine requests. We'll also delve into how we configured access to the near real time ocean observations in accordance with the Climate and Forecast (CF) metadata conventions describing the various 'feature types' associated with particular in situ observation types, or discrete sampling geometries (DSG). Wrapping up, we'll discuss some of the ways this data source is already being used.

  6. Prevention validation and accounting platform: a framework for establishing accountability and performance measures of substance abuse prevention programs.

    PubMed

    Kim, S; McLeod, J H; Williams, C; Hepler, N

    2000-01-01

    The field of substance abuse prevention has neither an overarching conceptual framework nor a set of shared terminologies for establishing the accountability and performance outcome measures of substance abuse prevention services rendered. Hence, there is a wide gap between what we currently have as data on one hand and information that are required to meet the performance goals and accountability measures set by the Government Performance and Results Act of 1993 on the other. The task before us is: How can we establish the accountability and performance measures of substance abuse prevention programs and transform the field of prevention into prevention science? The intent of this volume is to serve that purpose and accelerate the processes of this transformation by identifying the requisite components of the transformation (i.e., theory, methodology, convention on terms, and data) and by introducing an open forum called, Prevention Validation and Accounting (PREVA) Platform. The entire PREVA Platform (for short, the Platform) is designed as an analytic framework, which is formulated by a collectivity of common concepts, terminologies, accounting units, protocols for counting the units, data elements, and operationalizations of various constructs, and other summary measures intended to bring about an efficient and effective measurement of process input, program capacity, process output, performance outcome, and societal impact of substance abuse prevention programs. The measurement units and summary data elements are designed to be measured across time and across jurisdictions, i.e., from local to regional to state to national levels. In the Platform, the process input is captured by two dimensions of time and capital. Time is conceptualized in terms of service delivery time and time spent for research and development. Capital is measured by the monies expended for the delivery of program activities during a fiscal or reporting period. Program capacity is captured by fourteen measurement units, tapping into the dimensions of staff resources and community assets. Staff resources are, in turn, operationalized in terms of staff size, staff certification status, staff turnover rate, and the accreditation status of a provider agency. Community assets are operationalized by the number of community centers accessible to the funded agency, number of formalized teams or antidrug coalitions active in the catchment area, and other social/human services providers with whom the prevention agency has formalized networks. The totality of process output from all sources of program activities is reduced to eighteen classes of measures. These are operationalized by thirty-three summary measures. Some of these include: total count of events facilitated; total number of clients served; average number of clients served per event; clients served by single and multiple program sessions; classification of target population in terms of the severity of risk as defined by the Institute of Medicine; age groups and race/ethnicity of clients served; number of program participants retained by recurring programs; number of clients who have completed the program; penetration rates to the target population; client attrition rates; average referral rates per provider per time interval; referral success rates; and so on. All process output measures specified in the Platform are derived from two broad classes of events classified as either products or services. The collectivity of these measures is expected to present a cost-effective, parsimonious, yet comprehensive picture of the entire spectrum of the process output, i.e., "what came out of the program as program activities". For the measurement of performance outcomes, two types of data are incorporated into the Platform: outcome data from individuals and the behavior (or performance) of social indicators from aggregated data bases. Individual data are used to evaluate the outcome of substance abuse programs

  7. Solid state laser technology - A NASA perspective

    NASA Technical Reports Server (NTRS)

    Allario, F.

    1985-01-01

    NASA's program for developing solid-state laser technology and applying it to the Space Shuttle and Space Platform is discussed. Solid-state lasers are required to fulfill the Earth Observation System's requirements. The role of the Office of Aeronautics and Space Technology in developing a NASA tunable solid-state laser program is described. The major goals of the program involve developing a solid-state pump laser in the green, using AlGaAs array technology, pumping a Nd:YAG/SLAB crystal or glass, and fabricating a lidar system, with either a CO2 laser at 10.6 microns or a Nd:YAG laser at 1.06 microns, to measure tropospheric winds to an accuracy of + or - 1 m/s and a vertical resolution of 1 km. The procedures to be followed in order to visualize this technology plan include: (1) material development and characterization, (2) laser development, and (3) implementation of the lasers.

  8. Space and Earth Observations from Stratospheric Balloons

    NASA Astrophysics Data System (ADS)

    Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program

  9. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  10. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  11. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    NASA Technical Reports Server (NTRS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  12. Moon-Based INSAR Geolocation and Baseline Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Ruan, Zhixing; Lv, Mingyang; Dou, Changyong; Chen, Zhaoning

    2016-07-01

    Earth observation platform is a host, the characteristics of the platform in some extent determines the ability for earth observation. Currently most developing platforms are satellite, in contrast carry out systematic observations with moon based Earth observation platform is still a new concept. The Moon is Earth's only natural satellite and is the only one which human has reached, it will give people different perspectives when observe the earth with sensors from the moon. Moon-based InSAR (SAR Interferometry), one of the important earth observation technology, has all-day, all-weather observation ability, but its uniqueness is still a need for analysis. This article will discuss key issues of geometric positioning and baseline parameters of moon-based InSAR. Based on the ephemeris data, the position, liberation and attitude of earth and moon will be obtained, and the position of the moon-base SAR sensor can be obtained by coordinate transformation from fixed seleno-centric coordinate systems to terrestrial coordinate systems, together with the Distance-Doppler equation, the positioning model will be analyzed; after establish of moon-based InSAR baseline equation, the different baseline error will be analyzed, the influence of the moon-based InSAR baseline to earth observation application will be obtained.

  13. Joint Efforts Towards European HF Radar Integration

    NASA Astrophysics Data System (ADS)

    Rubio, A.; Mader, J.; Griffa, A.; Mantovani, C.; Corgnati, L.; Novellino, A.; Schulz-Stellenfleth, J.; Quentin, C.; Wyatt, L.; Ruiz, M. I.; Lorente, P.; Hartnett, M.; Gorringe, P.

    2016-12-01

    During the past two years, significant steps have been made in Europe for achieving the needed accessibility to High Frequency Radar (HFR) data for a pan-European use. Since 2015, EuroGOOS Ocean Observing Task Teams (TT), such as HFR TT, are operational networks of observing platforms. The main goal is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of HFR data access and tools. Particular attention is being paid by HFR TT to converge from different projects and programs toward those common objectives. First, JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatory - Novel European eXpertise for coastal observaTories, H2020 2015 Programme) will contribute on describing the status of the European network, on seeking harmonization through exchange of best practices and standardization, on developing and giving access to quality control procedures and new products, and finally on demonstrating the use of such technology in the general scientific strategy focused by the Coastal Observatory. Then, EMODnet (European Marine Observation and Data Network) Physics started to assemble HF radar metadata and data products within Europe in a uniform way. This long term program is providing a combined array of services and functionalities to users for obtaining free of charge data, meta-data and data products on the physical conditions of European sea basins and oceans. Additionally, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers from 2015 a core information service to any user related to 4 areas of benefits: Maritime Safety, Coastal and Marine Environment, Marine Resources, and Weather, Seasonal Forecasting and Climate activities. INCREASE (Innovation and Networking for the integration of Coastal Radars into EuropeAn marine SErvices - CMEMS Service Evolution 2016) will set the necessary developments towards the integration of existing European HFR operational systems into CMEMS. Finally, these current progresses will contribute to integrate HFR platforms as important operational components of EOOS, the European Ocean Observing System, designed to align and integrate Europe's ocean observing capacity for a truly integrated end-to-end ocean observing in Europe.

  14. Online Platform Support for Sustained, Collaborative and Self-directed Engagement of Teachers in a Blended Professional Development Program

    NASA Astrophysics Data System (ADS)

    Osburg, Thomas; Todorova, Albena

    Professional development of teachers plays a significant role for the success of educational reforms and for student achievement. Programs for developing teachers’ skills to integrate digital media in the classroom have received increased attention, due to the role of technology in today’s world. Recent research and field experiences have identified elements which contribute to the effectiveness of such programs, among them opportunities for sustained, collaborative and self-directed learning. This paper explores how an online platform of a large scale blended program for professional development, Intel® Teach - Advanced Online, supports the implementation of such opportunities in practice and incorporates them in the structure of the program. The positive outcomes from the program as evidenced by its evaluation indicate that professional development based on the design principles identified as effective by recent research is a viable solution for addressing the limitations of traditional teacher training for technology integration.

  15. Platform C South Arrival

    NASA Image and Video Library

    2016-08-05

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying the second section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform will be offloaded in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  16. Platform C South Arrival

    NASA Image and Video Library

    2016-08-04

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C south, for the agency’s Space Launch System (SLS) rocket. The platform will be delivered to the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  17. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    Work is underway to secure the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket in High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being secured into position on tower E, about 86 feet above the floor. The K work platforms will provide access to NASA's Space Launch System (SLS) core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  18. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lower the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket into High Bay 3 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  19. Programmable data collection platform study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of a feasibility study incorporating microprocessors in data collection platforms in described. An introduction to microcomputer hardware and software concepts is provided. The influence of microprocessor technology on the design of programmable data collection platform hardware is discussed. A standard modular PDCP design capable of meeting the design goals is proposed, and the process of developing PDCP programs is examined. A description of design and construction of the UT PDCP development system is given.

  20. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  1. High performance GPU processing for inversion using uniform grid searches

    NASA Astrophysics Data System (ADS)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.

  2. Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies

    NASA Astrophysics Data System (ADS)

    Baranovskiy, N. V.; Zharikova, M. V.

    2016-10-01

    There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).

  3. Weight loss efficacy of a novel mobile Diabetes Prevention Program delivery platform with human coaching

    PubMed Central

    Michaelides, Andreas; Raby, Christine; Wood, Meghan; Farr, Kit

    2016-01-01

    Objective To evaluate the weight loss efficacy of a novel mobile platform delivering the Diabetes Prevention Program. Research Design and Methods 43 overweight or obese adult participants with a diagnosis of prediabetes signed-up to receive a 24-week virtual Diabetes Prevention Program with human coaching, through a mobile platform. Weight loss and engagement were the main outcomes, evaluated by repeated measures analysis of variance, backward regression, and mediation regression. Results Weight loss at 16 and 24 weeks was significant, with 56% of starters and 64% of completers losing over 5% body weight. Mean weight loss at 24 weeks was 6.58% in starters and 7.5% in completers. Participants were highly engaged, with 84% of the sample completing 9 lessons or more. In-app actions related to self-monitoring significantly predicted weight loss. Conclusions Our findings support the effectiveness of a uniquely mobile prediabetes intervention, producing weight loss comparable to studies with high engagement, with potential for scalable population health management. PMID:27651911

  4. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket high above the transfer aisle inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up for transfer into High Bay 3 for installation. The platform will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  5. Flexible Description Language for HPC based Processing of Remote Sense Data

    NASA Astrophysics Data System (ADS)

    Nandra, Constantin; Gorgan, Dorian; Bacu, Victor

    2016-04-01

    When talking about Big Data, the most challenging aspect lays in processing them in order to gain new insight, find new patterns and gain knowledge from them. This problem is likely most apparent in the case of Earth Observation (EO) data. With ever higher numbers of data sources and increasing data acquisition rates, dealing with EO data is indeed a challenge [1]. Geoscientists should address this challenge by using flexible and efficient tools and platforms. To answer this trend, the BigEarth project [2] aims to combine the advantages of high performance computing solutions with flexible processing description methodologies in order to reduce both task execution times and task definition time and effort. As a component of the BigEarth platform, WorDeL (Workflow Description Language) [3] is intended to offer a flexible, compact and modular approach to the task definition process. WorDeL, unlike other description alternatives such as Python or shell scripts, is oriented towards the description topologies, using them as abstractions for the processing programs. This feature is intended to make it an attractive alternative for users lacking in programming experience. By promoting modular designs, WorDeL not only makes the processing descriptions more user-readable and intuitive, but also helps organizing the processing tasks into independent sub-tasks, which can be executed in parallel on multi-processor platforms in order to improve execution times. As a BigEarth platform [4] component, WorDeL represents the means by which the user interacts with the system, describing processing algorithms in terms of existing operators and workflows [5], which are ultimately translated into sets of executable commands. The WorDeL language has been designed to help in the definition of compute-intensive, batch tasks which can be distributed and executed on high-performance, cloud or grid-based architectures in order to improve the processing time. Main references for further information: [1] Gorgan, D., "Flexible and Adaptive Processing of Earth Observation Data over High Performance Computation Architectures", International Conference and Exhibition Satellite 2015, August 17-19, Houston, Texas, USA. [2] Bigearth project - flexible processing of big earth data over high performance computing architectures. http://cgis.utcluj.ro/bigearth, (2014) [3] Nandra, C., Gorgan, D., "Workflow Description Language for Defining Big Earth Data Processing Tasks", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 461-468, (2015). [4] Bacu, V., Stefan, T., Gorgan, D., "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015). [5] Mihon, D., Bacu, V., Colceriu, V., Gorgan, D., "Modeling of Earth Observation Use Cases through the KEOPS System", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 455-460, (2015).

  6. Platform C South Arrival

    NASA Image and Video Library

    2016-08-05

    The second section of the first half of the C-level work platforms, C South, for NASA’s Space Launch System (SLS) rocket was offloaded from a heavy transport truck in a staging area on the west side of the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  7. Wolfram technologies as an integrated scalable platform for interactive learning

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy

    2012-02-01

    We rely on technology profoundly with the prospect of even greater integration in the future. Well known challenges in education are a technology-inadequate curriculum and many software platforms that are difficult to scale or interconnect. We'll review an integrated technology, much of it free, that addresses these issues for individuals and small schools as well as for universities. Topics include: Mathematica, a programming environment that offers a diverse range of functionality; natural language programming for getting started quickly and accessing data from Wolfram|Alpha; quick and easy construction of interactive courseware and scientific applications; partnering with publishers to create interactive e-textbooks; course assistant apps for mobile platforms; the computable document format (CDF); teacher-student and student-student collaboration on interactive projects and web publishing at the Wolfram Demonstrations site.

  8. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  9. Tools for Creating Mobile Applications for Extension

    ERIC Educational Resources Information Center

    Drill, Sabrina L.

    2012-01-01

    Considerations and tools for developing mobile applications for Extension include evaluating the topic, purpose, and audience. Different computing platforms may be used, and apps designed as modified Web pages or implicitly programmed for a particular platform. User privacy is another important consideration, especially for data collection apps.…

  10. Designing and Implementing Nervous System Simulations on LEGO Robots

    PubMed Central

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-01-01

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477

  11. Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Carman, Stephen L.; Cooper, John E.; Miller, James; Harrison, Edwin F.; Barkstrom, Bruce R.

    1992-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) experiment will play a major role in NASA's multi-platform Earth Observing System (EOS) program to observe and study the global climate. The CERES instruments will provide EOS scientists with a consistent data base of accurately known fields of radiation and of clouds. CERES will investigate the important question of cloud forcing and its influence on the radiative energy flow through the Earth's atmosphere. The CERES instrument is an improved version of the ERBE (Earth Radiation Budget Experiment) broadband scanning radiometer flown by NASA from 1984 through 1989. This paper describes the science of CERES, presents an overview of the instrument preliminary design, and outlines the issues related to spacecraft pointing and attitude control.

  12. Study of water masses variability in the Mediterranean Sea using in-situ data / NEMO-Med12 model.

    NASA Astrophysics Data System (ADS)

    Margirier, Félix; Testor, Pierre; Mortier, Laurent; Arsouze, Thomas; Bosse, Anthony; Houpert, Loic; Hayes, Dan

    2016-04-01

    In the past 10 years, numerous observation programs in the Mediterranean deployed autonomous platforms (moorings, argo floats, gliders) and thus considerably increased the number of in-situ observations and the data coverage. In this study, we analyse time series built with profile data on interannual scales. Sorting data in regional boxes, we follow the evolution of different water masses in the basin and generate indexes to characterize their evolution. We then put those indexes in relation with external (atmospheric) forcings and present an intercomparison with the NEMO-Med12 model to estimate both the skill of the model and the relevance of the data-sampling in reproducing the evolution of water masses properties.

  13. New Generation Flask Sampling Technology Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James R.

    Scientists are turning their focus to the Arctic, site of one of the strongest climate change signals. A new generation of technologies is required to function within that harsh environment, chart evolution of its trace gases and provide new kinds of information for models of the atmosphere. Our response to the solicitation tracks how global atmospheric monitoring was launched more than a half century ago; namely, acquisition of discrete samples of air by flask and subsequent analysis in the laboratory. AOS is proposing to develop a new generation of flask sampling technology. It will enable the new Arctic programs tomore » begin with objective high density sampling of the atmosphere by UAS. The Phase I program will build the prototype flask technology and show that it can acquire and store mol fractions of CH4 and CO2 and value of δ13C with good fidelity. A CAD model will be produced for the entire platform including a package with 100 flasks and the airframe with auto-pilot, electronic propulsion and ground-to-air communications. A mobile flask analysis station will be prototyped in Phase I and designed to final form in Phase II. It expends very small sample per analysis and will interface directly to the flask package integrated permanently into the UAS fuselage. Commercial Applications and Other Benefits: • The New Generation Flask Sampling Technology able to provide a hundred or more samples of air per UAS mission. • A mobile analysis station expending far less sample than the existing ones and small enough to be stationed at the remote sites of Arctic operations. • A new form of validation for continuous trace gas observations from all platforms including the small UAS. • Further demonstration to potential customers of the AOS capabilities to invent, build, deploy and exploit entire platforms for observations of Earth’s atmosphere and ocean. Key Words: Flask Sampler, Mobile Analysis Station, Trace Gas, CO2, CH4, δC13, UAS, Baseline Airborne Observatory, Arctic, Climate Change. Summary for Members of Congress: The air, land and sea of the Arctic combine to produce a large climate change signal. AOS is proposing to develop unmanned airborne technologies able to begin prompt, objective observations of the signal’s atmospheric component.« less

  14. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    NASA Astrophysics Data System (ADS)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  15. New Opportunities in Geospace Remote Sensing

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2017-12-01

    This paper will discuss scientific objectives that can be addressed with the serendipitous constellation of thermosphere-ionosphere observations provided by the NASA Ionospheric Connection Explorer (ICON) and Global-scale Observations of the Limb and Disk (GOLD) missions, the international Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2), instruments on the International Space Station and the Defense Meteorological Satellite Program, the European SWARM satellites, the NSF-sponsored AMPERE project, and the ongoing TIMED mission. The confluence of these space-based observations provide opportunities to extend the capabilities of ground-based observational networks, and to exploit opportunities for the development of numerical models and data assimilation methods. A particular focus is the global-scale context provided through GOLD mission measurements, and the challenges presented by their analysis and interpretation. GOLD can be considered a pathfinder for opportunistic instrumentation on commercial vehicles at geostationary orbit, so further speculation will be presented on what other future observations of the thermosphere-ionosphere and exosphere-plasmasphere could be made from these platforms.

  16. An end-to-end workflow for engineering of biological networks from high-level specifications.

    PubMed

    Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun

    2012-08-17

    We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.

  17. Technology for the future - Long range planning for space technology development

    NASA Technical Reports Server (NTRS)

    Collier, Lisa D.; Breckenridge, Roger A.; Llewellyn, Charles P.

    1992-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) has begun the definition of an Integrated Technology Plan for the civilian space program which guides long-term technology development for space platforms, in light of continuing marker research and other planning data. OAST has conferred particular responsibility for future candidate space mission evaluations and platform performance requirement projections to NASA-Langley. An implementation plan is devised which is amenable to periodic space-platform technology updates.

  18. Methods/Labor Standards Application Program - Phase IV

    DTIC Science & Technology

    1985-01-01

    Engine Platform a. Pressure switch b. Compressor motor c. Voltage regulator d. Open and clean generator exciter and main windings S3 . Main Collector...clean motors b. Slip rings Gantry #3 Annual: S2. Engine Platform a. Pressure switch b. Compressor motor Voltage regulator d. Open and clean generator...Travel Motors Open and clean motorsa. b. Slip rings Gantry #4 S2 . S3. S4 . S5 . Engine Platform a. Pressure switch b. Compressor motor Voltage regulator

  19. (abstract) Tropospheric Emission Spectrometer (TES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    A descope of the EOS program now requires that all EOS platforms after AM1 be launched on DELTA-class vehicles, which results in much smaller platforms (and payloads) than previously envisaged. A major part of the TES hardware design effort has therefore been redirected towards meeting this challenge. The development of the TES concept continues on a schedule to permit flight on the EOS CHEM platform in 2002, where it is planned to be accompanied by HIRDLS and MLS.

  20. Multichannel lens-free CMOS sensors for real-time monitoring of cell growth.

    PubMed

    Chang, Ko-Tung; Chang, Yu-Jen; Chen, Chia-Ling; Wang, Yao-Nan

    2015-02-01

    A low-cost platform is proposed for the growth and real-time monitoring of biological cells. The main components of the platform include a PMMA cell culture microchip and a multichannel lens-free CMOS (complementary metal-oxide-semiconductor) / LED imaging system. The PMMA microchip comprises a three-layer structure and is fabricated using a low-cost CO2 laser ablation technique. The CMOS / LED monitoring system is controlled using a self-written LabVIEW program. The platform has overall dimensions of just 130 × 104 × 115 mm(3) and can therefore be placed within a commercial incubator. The feasibility of the proposed system is demonstrated using HepG2 cancer cell samples with concentrations of 5000, 10 000, 20 000, and 40 000 cells/mL. In addition, cell cytotoxicity tests are performed using 8, 16, and 32 mM cyclophosphamide. For all of the experiments, the cell growth is observed over a period of 48 h. The cell growth rate is found to vary in the range of 44∼52% under normal conditions and from 17.4∼34.5% under cyclophosphamide-treated conditions. In general, the results confirm the long-term cell growth and real-time monitoring ability of the proposed system. Moreover, the magnification provided by the lens-free CMOS / LED observation system is around 40× that provided by a traditional microscope. Consequently, the proposed system has significant potential for long-term cell proliferation and cytotoxicity evaluation investigations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Connected Learning: Evaluating and Refining an Academic Community Blogging Platform

    ERIC Educational Resources Information Center

    Stephens, Michael

    2016-01-01

    This study investigates the benefits of a community blogging platform for students in an online LIS program. Using a web survey and descriptive content analysis methods, this paper empirically addresses how student blogging communities can be effectively foster connections amongst instructors and students, and enhance perceptions of learning…

  2. Transportation and platforms perspective

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1992-01-01

    The topics covered are presented in viewgraph form and include the following: Office of Aeronautics and Space Technology; space research and technology (R&T); space R&T mission statement; Space R&T program development; R&T strategy; Office of Space Science and Applications (OSSA) technology needs; transportation technology; and space platforms technology.

  3. Get Networked and Spy Your Languages

    ERIC Educational Resources Information Center

    Rico, Mercedes; Ferreira, Paula; Dominguez, Eva M.; Coppens, Julian

    2012-01-01

    Our proposal describes ISPY, a multilateral European K2 language project based on the development of an Online Networking Platform for Language Learning (http://www.ispy-project.com/). Supported by the Lifelong Learning European Programme, the platform aims to help young adults across Europe, secondary and vocational school programs, learn a new…

  4. A Digital Teaching Platform to Further and Assess Use of Evidence-Based Practices

    ERIC Educational Resources Information Center

    Bondie, Rhonda

    2015-01-01

    Advances in online learning have benefited rural special education teacher preparation programs through increased recruitment, access, and collaboration. This paper describes how additional challenges, such as monitoring teacher candidate use of evidence-based practices, can be addressed through a digital teaching platform. Project REACH online is…

  5. Platform C South Arrival

    NASA Image and Video Library

    2016-08-04

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C South, for the agency’s Space Launch System (SLS) rocket. The platform is being lifted and transferred onto support stands in the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  6. Cloud Based Earth Observation Data Exploitation Platforms

    NASA Astrophysics Data System (ADS)

    Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.

    2017-12-01

    In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland and the Amazon Web Services cloud. This work will present an overview of the TEPs and the multi-cloud EO data processing platform, and discuss their main achievements and their impacts in the context of distributed Research Infrastructures such as EPOS and EOSC.

  7. LIMAO: Cross-platform software for simulating laser-induced alignment and orientation dynamics of linear-, symmetric- and asymmetric tops

    NASA Astrophysics Data System (ADS)

    Szidarovszky, Tamás; Jono, Maho; Yamanouchi, Kaoru

    2018-07-01

    A user-friendly and cross-platform software called Laser-Induced Molecular Alignment and Orientation simulator (LIMAO) has been developed. The program can be used to simulate within the rigid rotor approximation the rotational dynamics of gas phase molecules induced by linearly polarized intense laser fields at a given temperature. The software is implemented in the Java and Mathematica programming languages. The primary aim of LIMAO is to aid experimental scientists in predicting and analyzing experimental data representing laser-induced spatial alignment and orientation of molecules.

  8. Contribution of space platforms to a ground and airborne remote-sensing programme over active Italian volcanoes

    NASA Technical Reports Server (NTRS)

    Cassinis, R.; Lechi, G. M.; Tonelli, A. M.

    1974-01-01

    ERTS-1 imagery of the volcanic areas of southern Italy was used primarily for the evaluation of space platform capabilties in the domains of regional geology, soil and rock-type classification and, more generally, to study the environment of active volcanoes. The test sites were selected and equipped primarily to monitor thermal emission, but ground truth data was also collected in other domains (reflectance of rocks, soils and vegetation). The test areas were overflown with a two channel thermal scanner, while a thermo camera was used on the ground to monitor the hot spots. The primary goal of this survey was to plot the changes in thermal emission with time in the framework of a research program for the surveillance of active volcanoes. However, another task was an evaluation of emissivity changes by comparing the outputs of the two thermal channels. These results were compared with the reflectance changes observed on multispectral ERTS-1 imagery.

  9. KSC-08pd3502

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is positioned for movement into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  10. KSC-08pd3501

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from the transporter at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  11. KSC-08pd3500

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft arrives at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  12. KSC-08pd3499

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  13. KSC-08pd3503

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – Workers move the NOAA-N Prime spacecraft into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  14. KSC-08pd3498

    NASA Image and Video Library

    2008-11-04

    VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB

  15. Strawman payload data for science and applications space platforms

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The need for a free flying science and applications space platform to host compatible long duration experiment groupings in Earth orbit is discussed. Experiment level information on strawman payload models is presented which serves to identify and quantify the requirements for the space platform system. A description data base on the strawman payload model is presented along with experiment level and group level summaries. Payloads identified in the strawman model include the disciplines of resources observations and environmental observations.

  16. Usefulness of a Novel Mobile Diabetes Prevention Program Delivery Platform With Human Coaching: 65-Week Observational Follow-Up

    PubMed Central

    Michaelides, Andreas; Major, Jennifer; Pienkosz Jr, Edmund; Wood, Meghan; Kim, Youngin

    2018-01-01

    Background It is widely recognized that the prevalence of obesity and comorbidities including prediabetes and type 2 diabetes continue to increase worldwide. Results from a 24-week Diabetes Prevention Program (DPP) fully mobile pilot intervention were previously published showing promising evidence of the usefulness of DPP-based eHealth interventions on weight loss. Objective This pilot study extends previous findings to evaluate weight loss results of core (up to week 16) and maintenance (postcore weeks) DPP interventions at 65 weeks from baseline. Methods Originally, 140 participants were invited and 43 overweight or obese adult participants with a diagnosis of prediabetes signed up to receive a 24-week virtual DPP with human coaching through a mobile platform. At 65 weeks, this pilot study evaluates weight loss and engagement in maintenance participants by means of repeated measures analysis of variances and backward multiple linear regression to examine predictors of weight loss. Last observation carried forward was used for endpoint measurements. Results At 65 weeks, mean weight loss was 6.15% in starters who read 1 or more lessons per week on 4 or more core weeks, 7.36% in completers who read 9 or more lessons per week on core weeks, and 8.98% in maintenance completers who did any action in postcore weeks (all P<.001). Participants were highly engaged, with 80% (47/59) of the sample completing 9 lessons or more and 69% (32/47) of those completing the maintenance phase. In-app actions related to self-monitoring significantly predicted weight loss. Conclusions In comparison to eHealth programs, this pilot study shows that a fully mobile DPP can produce transformative weight loss. A fully mobile DPP intervention resulted in significant weight loss and high engagement during the maintenance phase, providing evidence for long-term potential as an alternative to in-person DPP by removing many of the barriers associated with in-person and other forms of virtual DPP. PMID:29724709

  17. Space station needs, attributes, and architectural options study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The top level, time-phased total space program support system architecture is described including progress from the use of ground-based space shuttle, teleoperator system, extended duration orbiter, and multimission spacecraft, to an initial 4-man crew station at 29 deg inclination in 1991, to a growth station with an 8-man crew with capabilities for OTV high energy orbit payload placement and servicing, assembly, and construction of mission payloads in 1994. System Z, proposed for Earth observation missions in high inclination orbit, can be accommodated in 1993 using a space station derivative platform. Mission definition, system architecture, and benefits are discussed.

  18. A New Effort for Atmospherical Forecast: Meteorological Image Processing Software (MIPS) for Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.

    2016-12-01

    We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.

  19. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  20. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  1. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform.

    PubMed

    Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-06-24

    Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.

  2. X-43A Flight Controls

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  3. Geostationary platform systems concepts definition study. Volume 2: Technical, book 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial selection and definition of operational geostationary platform concepts is discussed. Candidate geostationary platform missions and payloads were identified from COMSAT, Aerospace, and NASA studies. These missions and payloads were cataloged; classified with to communications, military, or scientific uses; screened for application and compatibility with geostationary platforms; and analyzed to identify platform requirements. Two platform locations were then selected (Western Hemisphere - 110 deg W, and Atlantic - 15 deg W), and payloads allocated based on nominal and high traffic models. Trade studies were performed leading to recommendation of selected concepts. Of 30 Orbit Transfer Vehicle (0TV) configuration and operating mode options identified, 18 viable candidates compatible with the operational geostationary platform missions were selected for analysis. Each was considered using four platform operational modes - 8 or 16 year life, and serviced or nonserviced, providing a total of 72 OTV/platform-mode options. For final trade study concept selection, a cost program was developed considering payload and platform costs and weight; transportation unit and total costs for the shuttle and OTV; and operational costs such as assembly or construction time, mating time, and loiter time. Servicing costs were added for final analysis and recommended selection.

  4. Modular Multi-Function Multi-Band Airborne Radio System (MFBARS). Volume II. Detailed Report.

    DTIC Science & Technology

    1981-06-01

    Three Platforms in a Field of Hyperbolic LOP’s.......................... 187 76 Comparison, MFBARS Versus Baseline .......... 190 77 Program Flow Chart...configure, from a set of common modules, a given total CNI capability on specific platforms for a given mission " the ability to take advantage of...X Comm/Nav GPS L-Band; Spread Spectrum Nay X X SEEK TALK UHF Spread; Spectrum Comm X X SINCGARS VHF; Freq. Hop Comm (some platforms ) AFSATCOM UHF

  5. KSC-08pd1246

    NASA Image and Video Library

    2008-05-02

    CAPE CANAVERAL, Fla. -- Artist's rendering of the Constellation Program's Ares V rocket on the mobile launcher platform (left) and the Ares I rocket on the platform (right) with the space shuttle in between for comparison. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.

  6. Experiences with Transitioning Science Data Production from a Symmetric Multiprocessor Platform to a Linux Cluster Environment

    NASA Astrophysics Data System (ADS)

    Walter, R. J.; Protack, S. P.; Harris, C. J.; Caruthers, C.; Kusterer, J. M.

    2008-12-01

    NASA's Atmospheric Science Data Center at the NASA Langley Research Center performs all of the science data processing for the Multi-angle Imaging SpectroRadiometer (MISR) instrument. MISR is one of the five remote sensing instruments flying aboard NASA's Terra spacecraft. From the time of Terra launch in December 1999 until February 2008, all MISR science data processing was performed on a Silicon Graphics, Inc. (SGI) platform. However, dramatic improvements in commodity computing technology coupled with steadily declining project budgets during that period eventually made transitioning MISR processing to a commodity computing environment both feasible and necessary. The Atmospheric Science Data Center has successfully ported the MISR science data processing environment from the SGI platform to a Linux cluster environment. There were a multitude of technical challenges associated with this transition. Even though the core architecture of the production system did not change, the manner in which it interacted with underlying hardware was fundamentally different. In addition, there are more potential throughput bottlenecks in a cluster environment than there are in a symmetric multiprocessor environment like the SGI platform and each of these had to be addressed. Once all the technical issues associated with the transition were resolved, the Atmospheric Science Data Center had a MISR science data processing system with significantly higher throughput than the SGI platform at a fraction of the cost. In addition to the commodity hardware, free and open source software such as S4PM, Sun Grid Engine, PostgreSQL and Ganglia play a significant role in the new system. Details of the technical challenges and resolutions, software systems, performance improvements, and cost savings associated with the transition will be discussed. The Atmospheric Science Data Center in Langley's Science Directorate leads NASA's program for the processing, archival and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov

  7. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the processes involved in observational research. Through EOL's Education and Outreach Program, we strive to inspire and develop the next generation of observational scientists and engineers by offering a range of educational, experiential, and outreach opportunities, including engineering internships.

  8. Drowned carbonate platforms in the Huon Gulf, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Webster, Jody M.; Wallace, Laura; Silver, Eli; Applegate, Bruce; Potts, Donald; Braga, Juan Carlos; Riker-Coleman, Kristin; Gallup, Christina

    2004-11-01

    The western Huon Gulf, Papua New Guinea, is an actively subsiding foreland basin dominated by drowned carbonate platforms. We investigated these platforms using new high-resolution multibeam, side-scan sonar and seismic data, combined with submersible observations and previously published radiometric and sedimentary facies data. The data reveal 14 distinct drowned carbonate platforms and numerous pinnacles/banks that increase in age (˜20-450 kyr) and depth (0.1-2.5 km) NE toward the Ramu-Markham Trench. Superimposed on this overall downward flexing of the platforms toward the trench is a systematic tilting of the deep platforms 15 m/km toward the NW and the shallow platforms 2 m/km toward the SE. This may reflect the encroaching thrust load from the NW (Finisterre Range) and spatial variations in the flexural rigidity of the underlying basement. The drowned platforms form a complex system of promontories and reentrants, with abundant pinnacles and banks preserved at similar depths seaward of the main platforms. This configuration closely mimics the present-day Huon coastline and its seaward islands fringed by modern coral reefs. The platforms retain structural, morphologic, and sedimentary facies evidence of primary platform growth, drowning, and subsequent backstepping, despite some lateral erosion of the platform margins (<100 m slope defacement) by mass wasting. Both platforms and pinnacles are composite features containing multiple terrace levels and notches, corresponding to multiple phases of growth, emergence, and drowning in response to rapid climatic and sea level changes during the evolution of each structure. On the basis of all observational and numerical modeling data, we propose a chronology for the initiation, growth, and drowning of the 14 platforms. Over shorter timescales (≤100 kyr) the rate and amplitude of eustatic sea level changes are critical in controlling initiation, growth, drowning or subaerial exposure, subsequent reinitiation, and final drowning of the platforms. However, continued tectonic subsidence and basement substrate morphology influence the overall backstepping geometry and subsequent tilting of the platforms over longer timescales (≥100-500 kyr).

  9. Earth Science Observations from the International Space Station: An Overview (Invited)

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2013-12-01

    The International Space Station (ISS) provides a unique and valuable platform for observing the Earth. With its mid-inclination (~51 degree) orbit, it provides the opportunity to view most of the Earth, with data acquisition possible over a full range of local times, in an orbit that nicely complements the polar sun-synchronous orbits used for much of space-based Earth observation, and can draw on a heritage of mid-inclination observations from both free flying satellites and the Space Shuttle program. The ISS, including its component observing modules supplied by NASA's international partners, can provide needed resources and viewing opportunities by a broad range of Earth-viewing scientific instruments. In this talk, the overall picture of Earth viewing from ISS will be presented, with examples from a range of past, current, and projected sensors being shared; talks on the ISS implementation for a subset of current and projected payload will be presented in individual talks presented by their their respective teams.

  10. The first ten years of Swift supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.

    2015-09-01

    The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.

  11. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum.

    PubMed

    Joshi, Dinesh C; Singh, Vijaya; Hunt, Colleen; Mace, Emma; van Oosterom, Erik; Sulman, Richard; Jordan, David; Hammer, Graeme

    2017-01-01

    In sorghum, the growth angle of nodal roots is a major component of root system architecture. It strongly influences the spatial distribution of roots of mature plants in the soil profile, which can impact drought adaptation. However, selection for nodal root angle in sorghum breeding programs has been restricted by the absence of a suitable high throughput phenotyping platform. The aim of this study was to develop a phenotyping platform for the rapid, non-destructive and digital measurement of nodal root angle of sorghum at the seedling stage. The phenotyping platform comprises of 500 soil filled root chambers (50 × 45 × 0.3 cm in size), made of transparent perspex sheets that were placed in metal tubs and covered with polycarbonate sheets. Around 3 weeks after sowing, once the first flush of nodal roots was visible, roots were imaged in situ using an imaging box that included two digital cameras that were remotely controlled by two android tablets. Free software ( openGelPhoto.tcl ) allowed precise measurement of nodal root angle from the digital images. The reliability and efficiency of the platform was evaluated by screening a large nested association mapping population of sorghum and a set of hybrids in six independent experimental runs that included up to 500 plants each. The platform revealed extensive genetic variation and high heritability (repeatability) for nodal root angle. High genetic correlations and consistent ranking of genotypes across experimental runs confirmed the reproducibility of the platform. This low cost, high throughput root phenotyping platform requires no sophisticated equipment, is adaptable to most glasshouse environments and is well suited to dissect the genetic control of nodal root angle of sorghum. The platform is suitable for use in sorghum breeding programs aiming to improve drought adaptation through root system architecture manipulation.

  12. Vibration Platform Training in Women at Risk for Symptomatic Knee Osteoarthritis

    PubMed Central

    Segal, Neil A.; Glass, Natalie A.; Shakoor, Najia; Wallace, Robert

    2013-01-01

    Objective To determine whether a platform exercise program with vibration is more effective than the platform exercise alone for improving lower limb muscle strength and power in women age 45-60 with risk factors for knee osteoarthritis (OA). Design Randomized, controlled study Setting Academic center Participants 48 women age 45-60 years old with risk factors for knee OA (history of knee injury or surgery or BMI≥25kg/m2). Interventions Subjects were randomized to a twice weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises) on either a vertically vibrating (35Hz, 2mm), or a non-vibrating platform. Main Outcome Measurements The main outcome measures included change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. Results 39 out of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly due to lack of time. There were no intergroup differences in age, BMI, or activity level. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0±69.7 W in the vibration group (p<.0001) and 58.2±96.2 W in the control group (p=0.0499), but did not differ between groups (p=0.2262). Stair climb power improved by 53.4±64.7 W in the vibration group (p=0.0004) and 55.7±83.3 W in the control group (p=0.0329), but did not differ between groups (p=0.9272). Conclusions Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than participation in the exercise program without vibration. PMID:22981005

  13. How Does Early Feedback in an Online Programming Course Change Problem Solving?

    ERIC Educational Resources Information Center

    Ebrahimi, Alireza

    2012-01-01

    How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…

  14. Exergames vs. traditional exercise: investigating the influencing mechanism of platform effect on subthreshold depression among older adults.

    PubMed

    Li, Jinhui; Theng, Yin-Leng; Foo, Schubert; Xu, Xuexin

    2017-10-06

    This study aimed to examine the influencing mechanism of exercise platform effect on subthreshold depression among older adults by comparing exergames and traditional exercise. One hundred and two Singaporean older adults were assigned to either playing Wii exergames or performing traditional exercise programs once a week, for six weeks. Results confirmed a direct negative platform effect on subthreshold depression and further supported the mediation role of positive emotions in the platform effect. It implied that exergames led to higher positive emotions than traditional exercise, which further reduced the subthreshold depression among older adults. Self-efficacy was not supported to be a significant mediator in the relations between exercise platform and subthreshold depression. A better understanding of the mechanisms behind the antidepressant effects of exercise platform would not only provide additional insight into a possible causal association, but also inspire the future use of exergames in the treatment of subthreshold depression.

  15. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    Preparations are underway to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be lifted up and over the transfer aisle and then lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  16. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform will be lifted up and over the transfer aisle and then lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  17. VAB Platform K(2) Lift & Install into Highbay 3

    NASA Image and Video Library

    2016-03-07

    A 250-ton crane is used to lift the second half of the K-level work platforms for NASA’s Space Launch System (SLS) rocket up from High Bay 4 inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platform is being lifted up and over the transfer aisle and will be lowered into High Bay 3 for installation. It will be secured about 86 feet above the VAB floor, on tower E of the high bay. The K work platforms will provide access to the SLS core stage and solid rocket boosters during processing and stacking operations on the mobile launcher. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft.

  18. Content Management System for Developing a Virtual Platform for Association of Women's Aid with Lack of Resources

    NASA Astrophysics Data System (ADS)

    Sainz de Abajo, Beatriz; Flores García, Alberto; García Salcines, Enrique; Burón Fernández, F. Javier; López Coronado, Miguel; de Castro Lozano, Carlos

    In this paper we show a Virtual Platform for an Association of Women's Aid called Centro Integral de Ayuda a la Mujer (CIAM). After analyzing different Content Management Systems (CMS) and the benefits that its use would contribute to the development of the Virtual Platform, taking into account the needs and requirements set by CIAM, we have opted for the use of Joomla!. This free CMS, for its characteristics, is the most benefits provided us. The virtual platform design has been developed following customer specifications, to have understood the simplicity and easy handling of the resulting platform. This platform will be integrated into the Web portal that has the Amarex Association and it will be able to be administrates from the CIAM without specific knowledge of programming languages. If new services were necessary, they would be easily implemented, adding new modules and components to perform these services.

  19. Data-acquisition system for environmental monitoring aboard a twin-engined aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Bernstein, H.; Brown, R.M.

    A number of experimental platforms have been used in support of the Multistate Atmospheric Power Production Study (MAP3S) and the Coastal Meteorology programs at Brookhaven National Laboratory. These platforms include a twin-engine Britten Norman Islander aircraft, a motorized van, a variety of boats and temporary enclosures set up in the field. Each platform carried a data logger consisting of a multiplexer, an analog to digital (A/D) converter and a four track endless loop magnetic tape for data storage. In recent years it has become increasingly evident that the data loggers in use were no longer adequate. Since the aircraft providedmore » the most constraints on the data acquisition system as well as being the most important research platform, a data system was designed for that platform with the secondary goal that the system would serve as a prototype for systems to be used on other platforms.« less

  20. Online platforms to teach Nutrition Education to children: a non-systematic review.

    PubMed

    Domínguez Rodríguez, Alejandro; Cebolla Marti, Ausiàs Josep; Oliver-Gasch, Elia; Baños-Rivera, Rosa María

    2016-11-29

    Childhood obesity is now considered a worldwide problem. Nutrition Education (NE) has been identified as a key factor in preventing overweight and obesity in children. In recent years, there has been an increase in the interest in innovative ways to teach this knowledge to children, mainly through the use of the Internet. Review and analyze the available evidence about programs focused on NE for children through the use of the Internet. Three different ways were found to deliver NE over the Internet to children: platforms designed to communicate with other peers or professionals; platforms designed to provide NE through the contents included in the web tool; and platforms designed to provide NE through the contents included in the web tool and automated feedback. Most of these programs were effective in achieving the objectives established. Although the use of Internet platforms to teach NE to children has been shown to be effective, the amount of evidence is still scarce. Some of the main advantages the Internet provides are: the opportunity to put the children in contact with education and health professionals; children can keep a record of the food consumed; and it is a more attractive and interesting way for children to learn NE, compared to traditional methods.

  1. A DNAzyme-mediated logic gate for programming molecular capture and release on DNA origami.

    PubMed

    Li, Feiran; Chen, Haorong; Pan, Jing; Cha, Tae-Gon; Medintz, Igor L; Choi, Jong Hyun

    2016-06-28

    Here we design a DNA origami-based site-specific molecular capture and release platform operated by a DNAzyme-mediated logic gate process. We show the programmability and versatility of this platform with small molecules, proteins, and nanoparticles, which may also be controlled by external light signals.

  2. Explaining University Students' Effective Use of E-Learning Platforms

    ERIC Educational Resources Information Center

    Moreno, Valter; Cavazotte, Flavia; Alves, Isabela

    2017-01-01

    Students' success in e-learning programs depends on how they adopt and embed technology into their learning activities. Drawing on the Technology Acceptance Model, we propose a framework to explain students' intention to use e-learning platforms effectively, that is, their intention to fully exploit system's functionalities in leaning processes,…

  3. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  4. 76 FR 47469 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... requirements that have not been approved by the Office of Management and Budget (OMB). The Federal... use, sharing of the ACD platform, or sharing the management of the ACD platform may give providers an... require certified iTRS providers to append to their annual reports any documentary evidence required for...

  5. An airborne robotic platform for mapping thermal structure in surface water bodies

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Chung, M.; Detweiler, C.; Ore, J. P.

    2015-12-01

    The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally resolved observations of the thermal structure of lakes and rivers remains challenging. For relatively shallow water bodies, observations of water temperature from aerial platforms are attractive: they do not require shoreline access, they can be quickly and easily deployed and redeployed, facilitating repeated sampling, and they can rapidly move between measurement locations, allowing multiple measurements to be made during single flights. However, they are also subject to well-known limitations including payload, flight duration and operability, and their effectiveness as a mobile platform for thermal sensing is still poorly characterized. In this talk, I will introduce an aerial thermal sensing platform that enables water temperature measurements to be made and spatially located throughout a water column, and present preliminary results from initial field experiments comparing in-situ temperature observations to those made from the UAS platform. The results highlight the potential scalability of the platform to provide high-resolution 3D thermal mapping of a ~1 ha lake in 2-3 flights (circa 1 hour), sufficient to resolve diurnal variations. Operability constraints and key needs for further development are also identified.

  6. CoMD Implementation Suite in Emerging Programming Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Riyaz; Reeve, Sam; Juallmes, Luc

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecular dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended tomore » support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.« less

  7. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  8. Uses of tethered atmospheric research probes

    NASA Technical Reports Server (NTRS)

    Deloach, Richard

    1991-01-01

    In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.

  9. Pulseq: A rapid and hardware-independent pulse sequence prototyping framework.

    PubMed

    Layton, Kelvin J; Kroboth, Stefan; Jia, Feng; Littin, Sebastian; Yu, Huijun; Leupold, Jochen; Nielsen, Jon-Fredrik; Stöcker, Tony; Zaitsev, Maxim

    2017-04-01

    Implementing new magnetic resonance experiments, or sequences, often involves extensive programming on vendor-specific platforms, which can be time consuming and costly. This situation is exacerbated when research sequences need to be implemented on several platforms simultaneously, for example, at different field strengths. This work presents an alternative programming environment that is hardware-independent, open-source, and promotes rapid sequence prototyping. A novel file format is described to efficiently store the hardware events and timing information required for an MR pulse sequence. Platform-dependent interpreter modules convert the file to appropriate instructions to run the sequence on MR hardware. Sequences can be designed in high-level languages, such as MATLAB, or with a graphical interface. Spin physics simulation tools are incorporated into the framework, allowing for comparison between real and virtual experiments. Minimal effort is required to implement relatively advanced sequences using the tools provided. Sequences are executed on three different MR platforms, demonstrating the flexibility of the approach. A high-level, flexible and hardware-independent approach to sequence programming is ideal for the rapid development of new sequences. The framework is currently not suitable for large patient studies or routine scanning although this would be possible with deeper integration into existing workflows. Magn Reson Med 77:1544-1552, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Programmable Nucleic Acid Based Polygons with Controlled Neuroimmunomodulatory Properties for Predictive QSAR Modeling.

    PubMed

    Johnson, Morgan Brittany; Halman, Justin R; Satterwhite, Emily; Zakharov, Alexey V; Bui, My N; Benkato, Kheiria; Goldsworthy, Victoria; Kim, Taejin; Hong, Enping; Dobrovolskaia, Marina A; Khisamutdinov, Emil F; Marriott, Ian; Afonin, Kirill A

    2017-11-01

    In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UAVSAR Program: Initial Results from New Instrument Capabilities

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Hensley, Scott; Moghaddam, Mahta; Moller, Delwyn; Chapin, Elaine; Chau, Alexandra; Clark, Duane; Hawkins, Brian; Jones, Cathleen; Marks, Phillip; hide

    2013-01-01

    UAVSAR is an imaging radar instrument suite that serves as NASA's airborne facility instrument to acquire scientific data for Principal Investigators as well as a radar test-bed for new radar observation techniques and radar technology demonstration. Since commencing operational science observations in January 2009, the compact, reconfigurable, pod-based radar has been acquiring L-band fully polarimetric SAR (POLSAR) data with repeat-pass interferometric (RPI) observations underneath NASA Dryden's Gulfstream-III jet to provide measurements for science investigations in solid earth and cryospheric studies, vegetation mapping and land use classification, archaeological research, soil moisture mapping, geology and cold land processes. In the past year, we have made significant upgrades to add new instrument capabilities and new platform options to accommodate the increasing demand for UAVSAR to support scientific campaigns to measure subsurface soil moisture, acquire data in the polar regions, and for algorithm development, verification, and cross-calibration with other airborne/spaceborne instruments.

  12. Aurorasaurus: A citizen science platform for viewing and reporting the aurora

    NASA Astrophysics Data System (ADS)

    MacDonald, E. A.; Case, N. A.; Clayton, J. H.; Hall, M. K.; Heavner, M.; Lalone, N.; Patel, K. G.; Tapia, A.

    2015-09-01

    A new, citizen science-based, aurora observing and reporting platform has been developed with the primary aim of collecting auroral observations made by the general public to further improve the modeling of the aurora. In addition, the real-time ability of this platform facilitates the combination of citizen science observations with auroral oval models to improve auroral visibility nowcasting. Aurorasaurus provides easily understandable aurora information, basic gamification, and real-time location-based notification of verified aurora activity to engage citizen scientists. The Aurorasaurus project is one of only a handful of space weather citizen science projects and can provide useful results for the space weather and citizen science communities. Early results are promising with over 2000 registered users submitting over 1000 aurora observations and verifying over 1700 aurora sightings posted on Twitter.

  13. Develop guidelines for pavement preservation treatments and for building a pavement preservation program platform for Alaska.

    DOT National Transportation Integrated Search

    2012-11-01

    This reports summarizes the project findings including the following: : An evaluation of the current pavement preservation program used in Alaska and a roadmap to grow the program : A summary of the best practices in terms of pavement preserv...

  14. Jupyter meets Earth: Creating Comprehensible and Reproducible Scientific Workflows with Jupyter Notebooks and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T.

    2016-12-01

    Deriving actionable information from Earth observation data obtained from sensors or models can be quite complicated, and sharing those insights with others in a form that they can understand, reproduce, and improve upon is equally difficult. Journal articles, even if digital, commonly present just a summary of an analysis that cannot be understood in depth or reproduced without major effort on the part of the reader. Here we show a method of improving scientific literacy by pairing a recently developed scientific presentation technology (Jupyter Notebooks) with a petabyte-scale platform for accessing and analyzing Earth observation and model data (Google Earth Engine). Jupyter Notebooks are interactive web documents that mix live code with annotations such as rich-text markup, equations, images, videos, hyperlinks and dynamic output. Notebooks were first introduced as part of the IPython project in 2011, and have since gained wide acceptance in the scientific programming community, initially among Python programmers but later by a wide range of scientific programming languages. While Jupyter Notebooks have been widely adopted for general data analysis, data visualization, and machine learning, to date there have been relatively few examples of using Jupyter Notebooks to analyze geospatial datasets. Google Earth Engine is cloud-based platform for analyzing geospatial data, such as satellite remote sensing imagery and/or Earth system model output. Through its Python API, Earth Engine makes petabytes of Earth observation data accessible, and provides hundreds of algorithmic building blocks that can be chained together to produce high-level algorithms and outputs in real-time. We anticipate that this technology pairing will facilitate a better way of creating, documenting, and sharing complex analyses that derive information on our Earth that can be used to promote broader understanding of the complex issues that it faces. http://jupyter.orghttps://earthengine.google.com

  15. Origin of Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Lindstrom, David (Technical Monitor)

    2005-01-01

    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.

  16. SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA)

    NASA Astrophysics Data System (ADS)

    Melis, A.; Concu, R.; Trois, A.; Possenti, A.; Bocchinu, A.; Bolli, P.; Burgay, M.; Carretti, E.; Castangia, P.; Casu, S.; Pestellini, C. Cecchi; Corongiu, A.; D’Amico, N.; Egron, E.; Govoni, F.; Iacolina, M. N.; Murgia, M.; Pellizzoni, A.; Perrodin, D.; Pilia, M.; Pisanu, T.; Poddighe, A.; Poppi, S.; Porceddu, I.; Tarchi, A.; Vacca, V.; Aresu, G.; Bachetti, M.; Barbaro, M.; Casula, A.; Ladu, A.; Leurini, S.; Loi, F.; Loru, S.; Marongiu, P.; Maxia, P.; Mazzarella, G.; Migoni, C.; Montisci, G.; Valente, G.; Vargiu, G.

    The Sardinia Radio Telescope (SRT) is a 64-m, fully-steerable single-dish radio telescope that was recently commissioned both technically and scientifically with regard to the basic observing modes. In order to improve the scientific capability and cover all the requirements for an advanced single-dish radio telescope, we developed the SArdinia Roach2-based Digital Architecture for Radio Astronomy (SARDARA), a wide-band, multi-feed, general-purpose, and reconfigurable digital platform, whose preliminary setup was used in the early science program of the SRT in 2016. In this paper, we describe the backend both in terms of its scientific motivation and technical design, how it has been interfaced with the telescope environment during its development and, finally, its scientific commissioning in different observing modes with single-feed receivers.

  17. An Overview of Ecological Modeling and Machine Learning Research Within the U.S. National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2004-01-01

    In the early 1980 s NASA began research to understand global habitability and quantify the processes and fluxes between the Earth's vegetation and the biosphere. This effort evolved into the Earth Observing System Program which current encompasses 18 platforms and 80 sensors. During this time, the global environmental research community has evolved from a data poor to a data rich research area and is challenged to provide timely use of these new data. This talk will outline some of the data mining research NASA has funded in support for the environmental sciences in the Intelligent Systems project and will give a specific example in ecological forecasting, predicting the land surface properties given nowcasts and weather forecasts, using the Terrestrial Observation and Prediction System (TOPS).

  18. High Frequency, Long Time Series Measurements from the Bermuda Testbed Mooring in Support of SIMBIOS. Chapter 8

    NASA Technical Reports Server (NTRS)

    Dickey, Tommy; Dobeck, Laura; Sigurdson, David; Zedler, Sarah; Manov, Derek; Yu, Xuri

    2001-01-01

    It has been recognized that optical moorings are important platforms for the validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). It was recommended that optical moorings be maintained in order to: (1) provide long-term time series comparisons between in situ and SeaWIFS measurements of normalized water-leaving radiance; (2) develop and test algorithms for pigment biomass and phytoplankton primary productivity; and (3) provide long-term, virtually continuous in situ observations which can be used to determine and optimize the accuracy of derived satellite products. These applications require the use of in situ radiometers for long periods of time to evaluate and correct for inherent satellite undersampling (aliasing and biasing) and degradation of satellite color sensors (e.g., drifts as experienced by the Coastal Zone Color Scanner). The Bermuda Testbed Mooring (BTM) program was initiated in 1994 at a site located about 80km southeast of Bermuda in waters of about 4530 m depth. In August 1997, with NASA's support, we started to provide the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) program with large volumes of high frequency, long-term time-series bio-optical data from the BTM for SeaWiFS satellite ocean color groundtruthing and algorithm development. This NASA supported portion of the BTM activity spanned three years and covered five BTM deployments. During these three years, the quality of radiometric data has improved dramatically. Excellent agreement between BTM moored data and both SeaWiFS and nearby ship profile radiometric data demonstrate that technical advances in the moored optical observations have reduced the major difficulties that moored platforms face: biofouling and less frequent calibration.

  19. FHWA LTBP Industry Day

    DOT National Transportation Integrated Search

    2014-02-01

    This TechBrief summarizes Long-Term Bridge Performance (LTBP) Industry Day, held July 16, 2012, a public meeting sponsored by the Federal Highway Administrations (FHWA) LTBP Program. Industry Day provided a platform for the LTBP Program to activel...

  20. KSC-2010-1367

    NASA Image and Video Library

    2010-01-19

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, preparations are under way to install the ninth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, on the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. For information on the Constellation Program, visit http://www.nasa.gov/constellation. Photo credit: NASA/Jack Pfaller

  1. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca; Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca; Tan, Bo, E-mail: tanbo@ryerson.ca

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approachmore » to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel cancer cells while favoring the adhesion of normal cells. - Highlights: • Si platforms with cytophobic/philic patterns were developed to program cell growth. • Both nanotopography and chemistry contributed to the cytophobic property. • Cytophobic zones efficiently repel and drive HeLa cells to migrate to adhesive sites. • The approach enables cell patterning, directionality, channelling, and trapping. • This approach paves the way for developing anti-cancer platforms.« less

  2. Cancer Genomic Resources and Present Needs in the Latin American Region.

    PubMed

    Torres, Ángela; Oliver, Javier; Frecha, Cecilia; Montealegre, Ana Lorena; Quezada-Urbán, Rosalía; Díaz-Velásquez, Clara Estela; Vaca-Paniagua, Felipe; Perdomo, Sandra

    2017-01-01

    In Latin America (LA), cancer is the second leading cause of death, and little is known about the capacities and needs for the development of research in the field of cancer genomics. In order to evaluate the current capacity for and development of cancer genomics in LA, we collected the available information on genomics, including the number of next-generation sequencing (NGS) platforms, the number of cancer research institutions and research groups, publications in the last 10 years, educational programs, and related national cancer control policies. Currently, there are 221 NGS platforms and 118 research groups in LA developing cancer genomics projects. A total of 272 articles in the field of cancer genetics/genomics were published by authors affiliated to Latin American institutions. Educational programs in genomics are scarce, almost exclusive of graduate programs, and only few are concerning cancer. Only 14 countries have national cancer control plans, but all of them consider secondary prevention strategies for early diagnosis, opportune treatment, and decreasing mortality, where genomic analyses could be implemented. Despite recent advances in introducing knowledge about cancer genomics and its application to LA, the region lacks development of integrated genomic research projects, improved use of NGS platforms, implementation of associated educational programs, and health policies that could have an impact on cancer care. © 2017 S. Karger AG, Basel.

  3. Planetary Balloon-Based Science Platform Evaluation and Program Implementation

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Kremic, Tibor; Hibbitts, Karl; Young, Eliot F.; Landis, Rob

    2016-01-01

    This report describes a study evaluating the potential for a balloon-based optical telescope as a planetary science asset to achieve decadal class science. The study considered potential science achievable and science traceability relative to the most recent planetary science decadal survey, potential platform features, and demonstration flights in the evaluation process. Science Potential and Benefits: This study confirms the cost the-benefit value for planetary science purposes. Forty-four (44) important questions of the decadal survey are at least partially addressable through balloon based capabilities. Planetary science through balloon observations can provide significant science through observations in the 300 nm to 5 m range and at longer wavelengths as well. Additionally, balloon missions have demonstrated the ability to progress from concept to observation to publication much faster than a space mission increasing the speed of science return. Planetary science from a balloon-borne platform is a relatively low-cost approach to new science measurements. This is particularly relevant within a cost-constrained planetary science budget. Repeated flights further reduce the cost of the per unit science data. Such flights offer observing time at a very competitive cost. Another advantage for planetary scientists is that a dedicated asset could provide significant new viewing opportunities not possible from the ground and allow unprecedented access to observations that cannot be realized with the time allocation pressures faced by current observing assets. In addition, flight systems that have a relatively short life cycle and where hardware is generally recovered, are excellent opportunities to train early career scientists, engineers, and project managers. The fact that balloon-borne payloads, unlike space missions, are generally recovered offers an excellent tool to test and mature instruments and other space craft systems. Desired Gondola Features: Potential gondola characteristics are assessed in this study and a concept is recommended, the Gondola for High-Altitude Planetary Science (GHAPS). This first generation platform is designed around a 1 m or larger aperture, narrow-field telescope with pointing accuracies better than one arc-second. A classical Cassegrain, or variant like Ritchey-Chretien, telescope is recommended for the primary telescope. The gondola should be designed for multiple flights so it must be robust and readily processed at recovery. It must be light-weighted to the extent possible to allow for long-duration flights on super-pressure balloons. Demonstration Flights: Recent demonstration flights achieved several significant accomplishments that can feed forward to a GHAPS gondola project. Science results included the first ever Earth-based measurements for CO2 in a comet, first measurements for CO2 and H2O in an Oort cloud comet, and the first measurement of 1 Ceres at 2.73 m to refine the shape of the infrared water absorption feature. The performance of the Fine Steering Mirror (FSM) was also demonstrated. The BOPPS platform can continue to be leveraged on future flights even as GHAPS is being developed. The study affirms the planetary decadal recommendations, and shows that a number of Top Priority science questions can be achieved. A combination GHAPS and BOPPS would provide the best value for PSD for realizing that science.

  4. The Lesson Observation On-Line (Evidence Portfolio) Platform

    ERIC Educational Resources Information Center

    Cooper, David G.

    2015-01-01

    At a time when teacher training is being moved to school-based programmes it is important to engage in a research-informed dialogue about creating more distinctive, and cost-effective 21st century models of teacher training. Three years ago I began feasibility field testing the Lesson Observation On-line (Evidence Portfolio) Platform [LOOP]…

  5. Instrumentino: An Open-Source Software for Scientific Instruments.

    PubMed

    Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C

    2015-01-01

    Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.

  6. Cross-platform validation and analysis environment for particle physics

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.

    2017-11-01

    A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.

  7. Sensor deployment on unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Gerhart, Grant R.; Witus, Gary

    2007-10-01

    TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.

  8. Remotely Delivered Exercise-Based Cardiac Rehabilitation: Design and Content Development of a Novel mHealth Platform

    PubMed Central

    Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph

    2016-01-01

    Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791

  9. A software platform for continuum modeling of ion channels based on unstructured mesh

    NASA Astrophysics Data System (ADS)

    Tu, B.; Bai, S. Y.; Chen, M. X.; Xie, Y.; Zhang, L. B.; Lu, B. Z.

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson-Nernst-Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels.

  10. Immunohistochemistry practices of cytopathology laboratories: a survey of participants in the College of American Pathologists Nongynecologic Cytopathology Education Program.

    PubMed

    Fischer, Andrew H; Schwartz, Mary R; Moriarty, Ann T; Wilbur, David C; Souers, Rhona; Fatheree, Lisa; Booth, Christine N; Clayton, Amy C; Kurtyz, Daniel F I; Padmanabhan, Vijayalakshmi; Crothers, Barbara A

    2014-09-01

    Immunohistochemistry (IHC) is important for cytology but poses special challenges because preanalytic conditions may differ from the conditions of IHC-positive controls. To broadly survey cytology laboratories to quantify preanalytic platforms for cytology IHC and identify problems with particular platforms or antigens. To discover how validation guidelines for HER2 testing have affected cytology. A voluntary survey of cytology IHC practices was sent to 1899 cytology laboratories participating in the College of American Pathologists Nongynecologic Cytopathology Education Program in the fall of 2009. A total of 818 laboratories (43%) responded to the survey by April 2010. Three hundred fourty-five of 791 respondents (44%) performed IHC on cytology specimens. Seventeen different fixation and processing platforms prior to antibody reaction were reported. A total of 59.2% of laboratories reported differences between the platforms for cytology specimens and positive controls, but most (155 of 184; 84%) did not alter antibody dilutions or antigen retrieval for cytology IHC. When asked to name 2 antibodies for which staining conditions differed between cytology and surgical samples, there were 18 responses listing 14 antibodies. A total of 30.6% of laboratories performing IHC offered HER2 testing before publication of the 2007 College of American Pathologists/American Society of Clinical Oncologists guidelines, compared with 33.6% afterward, with increased performance of testing by reference laboratories. Three laboratories validated a nonformalin HER2 platform. The platforms for cytology IHC and positive controls differ for most laboratories, yet conditions are uncommonly adjusted for cytology specimens. Except for the unsuitability of air-dried smears for HER2 testing, the survey did not reveal evidence of systematic problems with any antibody or platform.

  11. Information technology implementing globalization on strategies for quality care provided to children submitted to cardiac surgery: International Quality Improvement Collaborative Program--IQIC.

    PubMed

    Sciarra, Adilia Maria Pires; Croti, Ulisses Alexandre; Batigalia, Fernando

    2014-01-01

    Congenital heart diseases are the world's most common major birth defect, affecting one in every 120 children. Ninety percent of these children are born in areas where appropriate medical care is inadequate or unavailable. To share knowledge and experience between an international center of excellence in pediatric cardiac surgery and a related program in Brazil. The strategy used by the program was based on long-term technological and educational support models used in that center, contributing to the creation and implementation of new programs. The Telemedicine platform was used for real-time monthly broadcast of themes. A chat software was used for interaction between participating members and the group from the center of excellence. Professionals specialized in care provided to the mentioned population had the opportunity to share to the knowledge conveyed. It was possible to observe that the technological resources that implement the globalization of human knowledge were effective in the dissemination and improvement of the team regarding the care provided to children with congenital heart diseases.

  12. Information technology implementing globalization on strategies for quality care provided to children submitted to cardiac surgery: International Quality Improvement Collaborative Program - IQIC

    PubMed Central

    Sciarra, Adilia Maria Pires; Croti, Ulisses Alexandre; Batigalia, Fernando

    2014-01-01

    Introduction Congenital heart diseases are the world's most common major birth defect, affecting one in every 120 children. Ninety percent of these children are born in areas where appropriate medical care is inadequate or unavailable. Objective To share knowledge and experience between an international center of excellence in pediatric cardiac surgery and a related program in Brazil. Methods The strategy used by the program was based on long-term technological and educational support models used in that center, contributing to the creation and implementation of new programs. The Telemedicine platform was used for real-time monthly broadcast of themes. A chat software was used for interaction between participating members and the group from the center of excellence. Results Professionals specialized in care provided to the mentioned population had the opportunity to share to the knowledge conveyed. Conclusion It was possible to observe that the technological resources that implement the globalization of human knowledge were effective in the dissemination and improvement of the team regarding the care provided to children with congenital heart diseases. PMID:24896168

  13. ENERGY STAR® Retail Products Platform (RPP): Conditions and Considerations in Evaluating Market Transformation Programs and Evaluation Guidance for RPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Banwell, Peter

    2018-01-09

    The purpose of this guide is to provide a resource for state utility regulators, utilities, the evaluation community and regulatory stakeholders on methods to measure energy savings from the ENERGY STAR Retail Products Platform (link is external). The guidelines outlined in this document were developed by evaluation experts.

  14. Assessment of the Effectiveness of Internet-Based Distance Learning through the VClass e-Education Platform

    ERIC Educational Resources Information Center

    Pukkaew, Chadchadaporn

    2013-01-01

    This study assesses the effectiveness of internet-based distance learning (IBDL) through the VClass live e-education platform. The research examines (1) the effectiveness of IBDL for regular and distance students and (2) the distance students' experience of VClass in the IBDL course entitled Computer Programming 1. The study employed the common…

  15. Interplanetary monitoring platform engineering history and achievements

    NASA Technical Reports Server (NTRS)

    Butler, P. M.

    1980-01-01

    In the fall of 1979, last of ten Interplanetary Monitoring Platform Satellite (IMP) missions ended a ten year series of flights dedicated to obtaining new knowledge of the radiation effects in outer space and of solar phenomena during a period of maximum solar flare activity. The technological achievements and scientific accomplishments from the IMP program are described.

  16. Highly Structured ePortfolio Platform for Bachelor of Nursing Students: Lessons Learned in Implementation

    ERIC Educational Resources Information Center

    Collins, Emma; O'Brien, Ray

    2018-01-01

    In 2015, the School of Nursing at Otago Polytechnic, a tertiary institution in Dunedin, New Zealand commenced using an ePortfolio platform with students in the Bachelor of Nursing program. A project was undertaken to evaluate the implementation of this technology and determine its ongoing use. This sequential, exploratory, mixed-methods research…

  17. RunJumpCode: An Educational Game for Educating Programming

    ERIC Educational Resources Information Center

    Hinds, Matthew; Baghaei, Nilufar; Ragon, Pedrito; Lambert, Jonathon; Rajakaruna, Tharindu; Houghton, Travers; Dacey, Simon

    2017-01-01

    Programming promotes critical thinking, problem solving and analytic skills through creating solutions that can solve everyday problems. However, learning programming can be a daunting experience for a lot of students. "RunJumpCode" is an educational 2D platformer video game, designed and developed in Unity, to teach players the…

  18. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.

  19. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  20. Antenna pointing mechanism for ESA ENVISAT polar platform

    NASA Technical Reports Server (NTRS)

    Serrano, J.; SanMillan, J.; Santiago, R.

    1996-01-01

    INTA is currently developing a two-degree-of-freedom antenna pointing mechanism (APM) as part of the ESA ENVISAT POLAR PLATFORM (PPF) program. This mechanism will drive a Ka-band antenna within the Data-Relay Satellite System (DRS) on board the Polar Platform satellite. The first mission using PPF is ENVISAT, which is expected to be flown in 1998. This paper describes the main requirements, design, and test results of this pointing system, as well as the main technical problems from customer requirements and how those have been faced to achieve a final design.

  1. Using a Moodle-Based Professional Development Program to Train Science Teachers to Teach for Creativity and its Effectiveness on their Teaching Practices

    NASA Astrophysics Data System (ADS)

    Al-Balushi, Sulaiman M.; Al-Abdali, Nasser S.

    2015-08-01

    This study describes a distance learning professional development program that we designed for the purpose of training science teachers to teach for creativity. The Moodle platform was used to host the training. To ensure that trainees would benefit from this distance learning program, we designed the instructional activities according to the Community of Inquiry framework, which consists of three main elements: cognitive presence, teaching presence and social presence. Nineteen science teachers in Oman engaged in the training, which lasted for 36 working days. To measure the effectiveness of the training program on science teachers' instructional practices related to teaching for creativity, we used a pre-post one-group quasi-experimental design. An observation form was used to assess and document participants' practices. Paired t test results showed that there was a statistically significant improvement in science teachers' practices related to teaching for creativity. During the implementation of the training program, we observed that cognitive presence and teaching presence were the two most successful elements of the program. The training program involved participants in different instructional activities which were designed to help them understand the role of creativity in science; a wide range of instructional techniques designed to nurture students' creativity was discussed. The program also provided participants with opportunities to relate their practices to teaching for creativity and to design and implement lesson plans geared toward teaching for creativity. However, the social presence element was not satisfying. Participants' virtual interactions with each other and their engagement in online discussion forums were limited. This paper provides some recommendations to overcome such pitfalls.

  2. Geosynchronous platform definition study. Volume 5: Geosynchronous platform synthesis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development is described of the platform configurations, support subsystems, mission equipment, and servicing concepts. A common support module is developed; subsystem concepts are traded off; data relay, TDRS, earth observational, astro-physics, and advanced navigation and traffic control mission equipment concepts are postulated; and ancillary equipment required for delivery and on-orbit servicing interfaces with geosynchronous platforms is grossly defined. The general approach was to develop a platform concept capable of evolving through three on-orbit servicing modes: remote, EVA, and shirtsleeve. The definition of the equipment is to the assembly level. Weight, power, and volumetric data are compiled for all the platforms.

  3. 30 CFR 250.912 - What plans must I submit under the Platform Verification Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... computer programs used in the design process; and (3) A summary of the major design considerations and the...) Structural tolerances; (ii) Welding procedures; (iii) Material (concrete, gravel, or silt) placement methods...

  4. Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-06-01

    In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for itsmore » platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.« less

  5. Millisecond timing on PCs and Macs.

    PubMed

    MacInnes, W J; Taylor, T L

    2001-05-01

    A real-time, object-oriented solution for displaying stimuli on Windows 95/98, MacOS and Linux platforms is presented. The program, written in C++, utilizes a special-purpose window class (GLWindow), OpenGL, and 32-bit graphics acceleration; it avoids display timing uncertainty by substituting the new window class for the default window code for each system. We report the outcome of tests for real-time capability across PC and Mac platforms running a variety of operating systems. The test program, which can be used as a shell for programming real-time experiments and testing specific processors, is available at http://www.cs.dal.ca/~macinnwj. We propose to provide researchers with a sense of the usefulness of our program, highlight the ability of many multitasking environments to achieve real time, as well as caution users about systems that may not achieve real time, even under optimal conditions.

  6. Work Experience Report

    NASA Technical Reports Server (NTRS)

    Guo, Daniel

    2017-01-01

    The NASA Platform for Autonomous Systems (NPAS) toolkit is currently being used at the NASA John C. Stennis Space Center (SSC) to develop the INSIGHT program, which will autonomously monitor and control the Nitrogen System of the High Pressure Gas Facility (HPGF) on site. The INSIGHT program is in need of generic timing capabilities in order to perform timing based actions such as pump usage timing and sequence step timing. The purpose of this project was to develop a timing module that could fulfill these requirements and be adaptable for expanded use in the future. The code was written in Gensym G2 software platform, the same as INSIGHT, and was written generically to ensure compatibility with any G2 program. Currently, the module has two timing capabilities, a stopwatch function and a countdown function. Although the module has gone through some functionality testing, actual integration of the module into NPAS and the INSIGHT program is contingent on the module passing later checks.

  7. A software platform for the analysis of dermatology images

    NASA Astrophysics Data System (ADS)

    Vlassi, Maria; Mavraganis, Vlasios; Asvestas, Panteleimon

    2017-11-01

    The purpose of this paper is to present a software platform developed in Python programming environment that can be used for the processing and analysis of dermatology images. The platform provides the capability for reading a file that contains a dermatology image. The platform supports image formats such as Windows bitmaps, JPEG, JPEG2000, portable network graphics, TIFF. Furthermore, it provides suitable tools for selecting, either manually or automatically, a region of interest (ROI) on the image. The automated selection of a ROI includes filtering for smoothing the image and thresholding. The proposed software platform has a friendly and clear graphical user interface and could be a useful second-opinion tool to a dermatologist. Furthermore, it could be used to classify images including from other anatomical parts such as breast or lung, after proper re-training of the classification algorithms.

  8. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; hide

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  9. Ideas for a future earth observing system from geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Shenk, William E.; Hall, Forrest; Esaias, Wayne; Maxwell, Marvin; Suomi, Verner E.; Von Bun, Fritz

    1986-01-01

    Uses for the proposed geosynchronous platform are described. The geosynchronous satellite could provide good spatial and temporal resolution, a large field-of-view, easier calibration, stereography, and data relay. The limitations of the platform are discussed. The applications of the geosynchronous platform to meteorology, earth surveying, and oceanography are examined.

  10. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    PubMed

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform.

  11. Heliophysical Explorers (HELEX): Solar Orbiter and Sentinels - Report of the Joint Science and Technology Definition Team (JSTDT)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Heliophysical Explorers (HELEX) brings together and augments the unique capabilities of ESA's Solar Orbiter mission (near-Sun and out-of-ecliptic in-situ plus remote-sensing observations) with those of NASA's Inner Heliospheric Sentinels (in-situ observations from multiple platforms arrayed at varying radial distances and azimuthal locations in the near-ecliptic plane)to investigate, characterize, and understand how the Sun determines the environment of the inner solar system and, more broadly, generates the heliosphere itself. This joint ESA-NASA science program offers a unique opportunity for coordinated, correlative measurements, resulting in a combined observational capability and science return that far outweighs that of either mission alone. Building on the knowledge gained from missions like Helios and Ulysses, and STEREO, HELEX will bring to bear the power of multipoint, in-situ measurements using previously unavailable instrumental capabilities in combination with remote-sensing observations from a new, inner heliospheric perspective to answer fundamental questions about the Sun-heliosphere linkage.

  12. [Application of virtual instrumentation technique in toxicological studies].

    PubMed

    Moczko, Jerzy A

    2005-01-01

    Research investigations require frequently direct connection of measuring equipment to the computer. Virtual instrumentation technique considerably facilitates programming of sophisticated acquisition-and-analysis procedures. In standard approach these two steps are performed subsequently with separate software tools. The acquired data are transfered with export / import procedures of particular program to the another one which executes next step of analysis. The described procedure is cumbersome, time consuming and may be potential source of the errors. In 1987 National Instruments Corporation introduced LabVIEW language based on the concept of graphical programming. Contrary to conventional textual languages it allows the researcher to concentrate on the resolved problem and omit all syntactical rules. Programs developed in LabVIEW are called as virtual instruments (VI) and are portable among different computer platforms as PCs, Macintoshes, Sun SPARCstations, Concurrent PowerMAX stations, HP PA/RISK workstations. This flexibility warrants that the programs prepared for one particular platform would be also appropriate to another one. In presented paper basic principles of connection of research equipment to computer systems were described.

  13. System study of the carbon dioxide observational platform system (CO-OPS): Project overview

    NASA Technical Reports Server (NTRS)

    Stephens, J. Briscoe; Thompson, Wilbur E.

    1987-01-01

    The resulting options from a system study for a near-space, geo-stationary, observational monitoring platform system for use in the Department of Energy's (DOE) National Carbon Dioxide Observational Platform System (CO-OPS) on the greenhouse effect are discussed. CO-OPS is being designed to operate continuously for periods of up to 3 months in quasi-fixed position over most global regional targets of interest and could make horizon observations over a land-sea area of circular diameter up to about 600 to 800 statute miles. This affords the scientific and engineering community a low-cost means of operating their payloads for monitoring the regional parameters they deem relevant to their investigations of the carbon dioxide greenhouse effect at one-tenth the cost of most currently utilized comparable remote sensing techniques.

  14. Earth observing system instrument pointing control modeling for polar orbiting platforms

    NASA Technical Reports Server (NTRS)

    Briggs, H. C.; Kia, T.; Mccabe, S. A.; Bell, C. E.

    1987-01-01

    An approach to instrument pointing control performance assessment for large multi-instrument platforms is described. First, instrument pointing requirements and reference platform control systems for the Eos Polar Platforms are reviewed. Performance modeling tools including NASTRAN models of two large platforms, a modal selection procedure utilizing a balanced realization method, and reduced order platform models with core and instrument pointing control loops added are then described. Time history simulations of instrument pointing and stability performance in response to commanded slewing of adjacent instruments demonstrates the limits of tolerable slew activity. Simplified models of rigid body responses are also developed for comparison. Instrument pointing control methods required in addition to the core platform control system to meet instrument pointing requirements are considered.

  15. Rotating Desk for Collaboration by Two Computer Programmers

    NASA Technical Reports Server (NTRS)

    Riley, John Thomas

    2005-01-01

    A special-purpose desk has been designed to facilitate collaboration by two computer programmers sharing one desktop computer or computer terminal. The impetus for the design is a trend toward what is known in the software industry as extreme programming an approach intended to ensure high quality without sacrificing the quantity of computer code produced. Programmers working in pairs is a major feature of extreme programming. The present desk design minimizes the stress of the collaborative work environment. It supports both quality and work flow by making it unnecessary for programmers to get in each other s way. The desk (see figure) includes a rotating platform that supports a computer video monitor, keyboard, and mouse. The desk enables one programmer to work on the keyboard for any amount of time and then the other programmer to take over without breaking the train of thought. The rotating platform is supported by a turntable bearing that, in turn, is supported by a weighted base. The platform contains weights to improve its balance. The base includes a stand for a computer, and is shaped and dimensioned to provide adequate foot clearance for both users. The platform includes an adjustable stand for the monitor, a surface for the keyboard and mouse, and spaces for work papers, drinks, and snacks. The heights of the monitor, keyboard, and mouse are set to minimize stress. The platform can be rotated through an angle of 40 to give either user a straight-on view of the monitor and full access to the keyboard and mouse. Magnetic latches keep the platform preferentially at either of the two extremes of rotation. To switch between users, one simply grabs the edge of the platform and pulls it around. The magnetic latch is easily released, allowing the platform to rotate freely to the position of the other user

  16. Ocean Observing Public-Private Collaboration to Improve Tropical Storm and Hurricane Predictions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.

    2016-02-01

    In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets and the greater Gulf coast communities from storms and hurricanes. Data collected under the collaboration, along with deployment of gliders, will have long-term benefits in helping to understand the ecological and environmental health of the Gulf by monitoring real-time annual and seasonal physical variability.

  17. Blue Guardian: open architecture intelligence, surveillance, and reconnaissance (ISR) demonstrations

    NASA Astrophysics Data System (ADS)

    Shirey, Russell G.; Borntrager, Luke A.; Soine, Andrew T.; Green, David M.

    2017-04-01

    The Air Force Research Laboratory (AFRL) - Sensors Directorate has developed the Blue Guardian program to demonstrate advanced sensing technology utilizing open architectures in operationally relevant environments. Blue Guardian has adopted the core concepts and principles of the Air Force Rapid Capabilities Office (AFRCO) Open Mission Systems (OMS) initiative to implement an open Intelligence, Surveillance and Reconnaissance (ISR) platform architecture. Using this new OMS standard provides a business case to reduce cost and program schedules for industry and the Department of Defense (DoD). Blue Guardian is an early adopting program of OMS and provides much needed science and technology improvements, development, testing, and implementation of OMS for ISR purposes. This paper presents results and lessons learned under the Blue Guardian Project Shepherd program which conducted Multi-INT operational demonstrations in the Joint Interagency Task Force - South (JIATF-S) and USSOUTHCOM area of operations in early 2016. Further, on-going research is discussed to enhance Blue Guardian Multi-INT ISR capabilities to support additional mission sets and platforms, including unmanned operations over line of sight (LOS) and beyond line of sight (BLOS) datalinks. An implementation of additional OMS message sets and services to support off-platform sensor command and control using OMS/UCI data structures and dissemination of sensor product data/metadata is explored. Lastly, the Blue Guardian team is working with the AgilePod program to use OMS in a full Government Data Rights Pod to rapidly swap these sensors to different aircraft. The union of the AgilePod (which uses SOSA compliant standards) and OMS technologies under Blue Guardian programs is discussed.

  18. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  19. NOAA's Role in Sustaining Global Ocean Observations: Future Plans for OAR's Ocean Observing and Monitoring Division

    NASA Astrophysics Data System (ADS)

    Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney

    2017-04-01

    The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.

  20. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  1. Transformation of apparent ocean wave spectra observed from an aircraft sensor platform

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1976-01-01

    The problem considered was transformation of a unidirectional apparent ocean wave spectrum observed from an aircraft sensor platform into the true spectrum that would be observed from a stationary platform. Spectral transformation equations were developed in terms of the linear wave dispersion relationship and the wave group speed. An iterative solution to the equations was outlined and used to transform reference theoretical apparent spectra for several assumed values of average water depth. Results show that changing the average water depth leads to a redistribution of energy density among the various frequency bands of the transformed spectrum. This redistribution is most severe when much of the energy density is expected, a priori, to reside at relatively low true frequencies.

  2. PyEPL: a cross-platform experiment-programming library.

    PubMed

    Geller, Aaron S; Schlefer, Ian K; Sederberg, Per B; Jacobs, Joshua; Kahana, Michael J

    2007-11-01

    PyEPL (the Python Experiment-Programming Library) is a Python library which allows cross-platform and object-oriented coding of behavioral experiments. It provides functions for displaying text and images onscreen, as well as playing and recording sound, and is capable of rendering 3-D virtual environments forspatial-navigation tasks. It is currently tested for Mac OS X and Linux. It interfaces with Activewire USB cards (on Mac OS X) and the parallel port (on Linux) for synchronization of experimental events with physiological recordings. In this article, we first present two sample programs which illustrate core PyEPL features. The examples demonstrate visual stimulus presentation, keyboard input, and simulation and exploration of a simple 3-D environment. We then describe the components and strategies used in implementing PyEPL.

  3. PyEPL: A cross-platform experiment-programming library

    PubMed Central

    Geller, Aaron S.; Schleifer, Ian K.; Sederberg, Per B.; Jacobs, Joshua; Kahana, Michael J.

    2009-01-01

    PyEPL (the Python Experiment-Programming Library) is a Python library which allows cross-platform and object-oriented coding of behavioral experiments. It provides functions for displaying text and images onscreen, as well as playing and recording sound, and is capable of rendering 3-D virtual environments for spatial-navigation tasks. It is currently tested for Mac OS X and Linux. It interfaces with Activewire USB cards (on Mac OS X) and the parallel port (on Linux) for synchronization of experimental events with physiological recordings. In this article, we first present two sample programs which illustrate core PyEPL features. The examples demonstrate visual stimulus presentation, keyboard input, and simulation and exploration of a simple 3-D environment. We then describe the components and strategies used in implementing PyEPL. PMID:18183912

  4. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    NASA Astrophysics Data System (ADS)

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    Virgin Galactic is building the world's first commercial spaceline. Our suborbital spaceflight system, pictured in Figure 1, consists of two vehicles: WhiteKnightTwo (WK2) and SpaceShipTwo (SS2). WhiteKnightTwo is a four-engine, dual-fuselage jet aircraft capable of high-altitude heavy lift missions, including, but not limited to fulfilling its role as a mothership for SpaceShipTwo, an air-launched, suborbital spaceplane capable of routinely reaching an apogee up to 110 kilometers. In conjunction, these two vehicles allow access to space and to regions of the atmosphere ranging from the troposphere to the thermosphere; additionally, they provide extended periods of microgravity in a reliable and affordable way. SpaceShipTwo, with a payload capacity of up to 1,300 lbs. (~600 kg), features payload mounting interfaces that are compatible with standard architectures such as NASA Space Shuttle Middeck Lockers, Cargo Transfer Bags, and server racks, in addition to custom structures. With the standard interface, payloads are allowed access to the large 17 inch diameter cabin windows for external observations. Each dedicated research flight will be accompanied by a Virgin Galactic Flight Test Engineer, providing an opportunity for limited in-flight interaction. In addition, tended payloads - a flight that includes the researcher and his or her payload - are also an option. At a price point that is highly competitive with parabolic aircraft and sounding rockets and significantly cheaper than orbital flights, SpaceShipTwo is a unique platform that can provide frequent and repeatable research opportunities. Suborbital flights on SpaceShipTwo offer researchers several minutes of microgravity time and views of the external environment in the upper atmosphere and in outer space. In addition to serving as an important research platform in and of itself, SpaceShipTwo also offers researchers a means to test, iterate, and calibrate experiments designed for orbital platforms, including the International Space Station as well as LauncherOne, Virgin Galactic's dedicated launch vehicle for small (~500 lbs. / ~225 kg) satellites. Flights on SpaceShipTwo can be booked directly through Virgin Galactic. Various funding sources may be available for the research, including through NASA programs such as the Flight Opportunities Program, Game Changing Development Program, or Research Opportunities in Space and Earth Science (ROSES). More information about the SpaceShipTwo research platform, including a detailed Payload User's Guide, can be found at our website: http://www.virgingalactic.com/research.

  5. Using MHD Models for Context for Multispacecraft Missions

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sazykin, S. Y.; Webster, J.; Daou, A.; Welling, D. T.; Giles, B. L.; Pollock, C.

    2016-12-01

    The use of global MHD models such as BATS-R-US to provide context to data from widely spaced multispacecraft mission platforms is gaining in popularity and in effectiveness. Examples are shown, primarily from the Magnetospheric Multiscale Mission (MMS) program compared to BATS-R-US. We present several examples of large-scale magnetospheric configuration changes such as tail dipolarization events and reconfigurations after a sector boundary crossing which are made much more easily understood by placing the spacecraft in the model fields. In general, the models can reproduce the large-scale changes observed by the various spacecraft but sometimes miss small-scale or rapid time changes.

  6. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  7. D.R.O.P. The Durable Reconnaissance and Observation Platform

    NASA Technical Reports Server (NTRS)

    McKenzie, Clifford; Parness, Aaron

    2012-01-01

    The Durable Reconnaissance and Observation Platform (DROP) is a prototype robotic platform with the ability to climb concrete surfaces up to 85deg at a rate of 25cm/s, make rapid horizontal to vertical transitions, carry an audio/visual reconnaissance payload, and survive impacts from 3 meters. DROP is manufactured using a combination of selective laser sintering (SLS) and shape deposition manufacturing (SDM) techniques. The platform uses a two-wheel, two-motor design that delivers high mobility with low complexity. DROP extends microspine climbing technology from linear to rotary applications, providing improved transition ability, increased speeds, and simpler body mechanics while maintaining microspines ability to opportunistically grip rough surfaces. Various aspects of prototype design and performance are discussed, including the climbing mechanism, body design, and impact survival.

  8. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of end-user training, increase public awareness of NASA's Disasters Program, and facilitate new partnerships with disaster response organizations. Future research and development will foster generation of products that leverage NASA's Earth observations for disaster prediction, preparation and mitigation, response, and recovery.

  9. National preceptor development program (PDP) prototype. The third of a 3-part series.

    PubMed

    Cox, Craig D; Mulherin, Katrina; Walter, Sheila

    2018-03-01

    Preceptor development is critical to successful delivery of experiential learning. Although many preceptor development programs exist, a more individualized approach to training is needed. To accomplish this a national preceptor development program should be considered based on the continuing professional development model. A detailed prototype for this program has been described. In this final installment of the series, the twelve evidence-based recommendations from the first installment were utilized to construct a prototype for a preceptor development program. Over a three-month period, investigators experimented with different designs and models before approving the final prototype. The prototype took the form of an electronic learning platform. Several categories were integral to the design and included sections entitled preceptor spotlight, mentorship, global outreach, choose your own adventure, continuing professional development, feedback, virtual online community, highlights/advertisements, what's new, competency assessment, and frequently asked questions. A graphic was developed to depict the process by which a preceptor would navigate through the web-based learning platform. The authors purposefully maintained a creative and unlimited vision for preceptor development. This conceptual model is intended to spark discussion and augment, refine, or develop entirely innovative ideas to meet preceptor needs. Development of a preceptor development platform could foster improved competency performance, enhanced interest in learning, and promote continuing professional development. With a greater focus on experiential education in pharmacy, the need for a national preceptor development resource is only expected to increase. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Blue guardian: an open architecture for rapid ISR demonstration

    NASA Astrophysics Data System (ADS)

    Barrett, Donald A.; Borntrager, Luke A.; Green, David M.

    2016-05-01

    Throughout the Department of Defense (DoD), acquisition, platform integration, and life cycle costs for weapons systems have continued to rise. Although Open Architecture (OA) interface standards are one of the primary methods being used to reduce these costs, the Air Force Rapid Capabilities Office (AFRCO) has extended the OA concept and chartered the Open Mission System (OMS) initiative with industry to develop and demonstrate a consensus-based, non-proprietary, OA standard for integrating subsystems and services into airborne platforms. The new OMS standard provides the capability to decouple vendor-specific sensors, payloads, and service implementations from platform-specific architectures and is still in the early stages of maturation and demonstration. The Air Force Research Laboratory (AFRL) - Sensors Directorate has developed the Blue Guardian program to demonstrate advanced sensing technology utilizing open architectures in operationally relevant environments. Over the past year, Blue Guardian has developed a platform architecture using the Air Force's OMS reference architecture and conducted a ground and flight test program of multiple payload combinations. Systems tested included a vendor-unique variety of Full Motion Video (FMV) systems, a Wide Area Motion Imagery (WAMI) system, a multi-mode radar system, processing and database functions, multiple decompression algorithms, multiple communications systems, and a suite of software tools. Initial results of the Blue Guardian program show the promise of OA to DoD acquisitions, especially for Intelligence, Surveillance and Reconnaissance (ISR) payload applications. Specifically, the OMS reference architecture was extremely useful in reducing the cost and time required for integrating new systems.

  11. PDEPTH—A computer program for the geophysical interpretation of magnetic and gravity profiles through Fourier filtering, source-depth analysis, and forward modeling

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    2018-01-10

    PDEPTH is an interactive, graphical computer program used to construct interpreted geological source models for observed potential-field geophysical profile data. The current version of PDEPTH has been adapted to the Windows platform from an earlier DOS-based version. The input total-field magnetic anomaly and vertical gravity anomaly profiles can be filtered to produce derivative products such as reduced-to-pole magnetic profiles, pseudogravity profiles, pseudomagnetic profiles, and upward-or-downward-continued profiles. A variety of source-location methods can be applied to the original and filtered profiles to estimate (and display on a cross section) the locations and physical properties of contacts, sheet edges, horizontal line sources, point sources, and interface surfaces. Two-and-a-half-dimensional source bodies having polygonal cross sections can be constructed using a mouse and keyboard. These bodies can then be adjusted until the calculated gravity and magnetic fields of the source bodies are close to the observed profiles. Auxiliary information such as the topographic surface, bathymetric surface, seismic basement, and geologic contact locations can be displayed on the cross section using optional input files. Test data files, used to demonstrate the source location methods in the report, and several utility programs are included.

  12. Factors affecting the abundance of selected fishes near oil and gas platforms in the northern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D.R.; Wilson, C.A.

    1991-01-01

    A logbook program was initiated to determine the relative abundance of selected fish species around oil and gas platforms off the Louisiana coast. Logbooks were maintained by 55 anglers and 10 charterboat operators from March 1987 to March 1988. A total of 36,839 fish were caught representing over 46 different species. Principal component analysis (PCA) grouped the seventeen most abundant species into reef fish, pelagic fish, bluefish-red drum, Atlantic croaker-silver/sand seatrout, and cobia-shark-blue runner associations. Multiple regression analyses were used to compare PCA groupings to physical platform, temporal, geological, and angler characteristic variables and their interactions. Reef fish, Atlantic croaker,more » and silver/sand seatrout abundances were highest near large, structurally complex platforms in relatively deep water. High spotted seatrout abundances were correlated with small, unmanned oil and gas platforms in shallow water. Pelagic fish, bluefish, red drum, cobia, and shark abundances were not related to the physical parameters of the platforms.« less

  13. The Multicultural Café: Enhancing Authentic Interaction for Adult English Language Learners through Service Learning

    ERIC Educational Resources Information Center

    Riley, Tracy; Douglas, Scott Roy

    2016-01-01

    While service learning platforms hold great potential for adult learners of English as an additional language (EAL), there has been little research to date related to the impact of these programs on adult newcomers' linguistic and social development. The Multicultural Café was a food service learning platform for adult EAL learners operated over a…

  14. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances.

    PubMed

    Ran, Xiang; Wang, Zhenzhen; Zhang, Zhijun; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2016-01-11

    We display a nucleic acid controlled AgNC platform for latent fingerprint visualization. The versatile emission of aptamer-modified AgNCs was regulated by the nearby DNA regions. Multi-color images for simultaneous visualization of fingerprints and exogenous components were successfully obtained. A quantitative detection strategy for exogenous substances in fingerprints was also established.

  15. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R. C.; McCarley, T. M.

    2006-05-04

    The overall goal of this project was to establish an education and training program in biobased products at Iowa State University (ISU). In particular, a graduate program in Biorenewable Resources and Technology (BRT) was to be established as a way of offering students advanced study in the use of plant- and crop-based resources in the production of biobased products. The program was to include three fundamental elements: an academic program, a research program, and industrial interactions. The academic program set out to introduce a new graduate major in Biorenewable Resources and Technology. Unlike other schools, which only offer certificates ormore » areas of emphasis in biobased products, Iowa State University offers both M.S. and Ph.D degrees through its graduate program. Core required courses in Biorenewable Resources and Technology include a foundation course entitled Fundamentals of Biorenewable Resources (BRT 501); a seminar course entitled Biobased Products Seminar (BRT 506); a laboratory course, and a special topics laboratory course. The foundation course is a three-credit course introducing students to basic concepts in biorenewable resources and technology. The seminar course provides students with an opportunity to hear from nationally and internationally recognized leaders in the field. The laboratory requirement is a 1-credit laboratory course or a special topics laboratory/research experience (BRT 591L). As part of student recruitment, quarter-time assistantships from DOE funds were offered to supplement assistantships provided by faculty to students. Research was built around platform teams in an effort to encourage interdisciplinary research and collaborative student learning in biorenewable resources. A platform is defined as the convergence of enabling technologies into a highly integrated system for transforming a specific feedstock into desired products. The platform teams parallel the way industry conducts research and product development. Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).« less

  16. ToxCast Profiling in a Human Stem Cell Assay for ...

    EPA Pesticide Factsheets

    Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are observed as one or more apical endpoints including intrauterine death, fetal growth retardation, structural malformations and variations. Alternative approaches to traditional developmental toxicity testing have been proposed in the form of in vitro data (e.g., embryonic stem cells, zebrafish embryos, HTS assays) and in silico models (e.g., computational toxicology). To increase the diversity of assays used to assess developmental toxicity in EPA’s ToxCast program, we tested the chemicals in Stemina’s metabolomics-based platform that utilizes the commecrially available H9 human embryonic stem cell line. The devTOXqP dataset for ToxCast of high-quality based on replicate samples and model performance (82% balanced accuracy, 0.71 sensitivity and 1.00 specificity). To date, 136 ToxCast chemicals (12.8% of 1065 tested) were positive in this platform; 48 triggered the biomarker signal without any change in hESC viability and 88 triggered activity concurrent with effects on cell viability. Work is in progress to complete the STM dataset entry into the TCPL, compare data with results from zFish and mESC platforms, profile bioactivity (ToxCastDB), endpoints (ToxRefDB), chemotypes (DSSTox)

  17. A Low-cost data-logging platform for long-term field sensor deployment in caves

    NASA Astrophysics Data System (ADS)

    Cruz, M. A.; Myre, J. M.; Covington, M. D.

    2014-12-01

    Active karst systems are notoriously inhospitable environments for humans and equipment. Caves require equipment to cope with high humidity, high velocity flows, submersion, sediment loads, and harassment from local fauna. Equipment taken into caves is often considered "consumable" due to the extreme nature of cave environments and the difficulty of transport. Further, because many interesting monitoring locations within caves can be considered remote, it is ideal for electronic monitoring platforms to require minimal maintenance of parts and power supplies. To partially address the challenge of scientifically monitoring such environments, we have developed an arduino based platform for environmental monitoring of cave systems. The arduino is a general purpose open source microcontroller that is easily programmed with only a basic knowledge of the C programming language. The arduino is capable of controlling digital and analog electronics in a modular fashion. Using this capability, we have created a platform for monitoring CO2 levels in cave systems that costs one-tenth of a comparable commercial system while using a fraction of the power. The modular nature of the arduino system allows the incorporation of additional environmental sensors in the future.

  18. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mark P.; Petersen, Walt A.; Bansemer, Aaron

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms-1 supported growth of hail and large rain drops. Data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less

  19. Evaluation of a new eLearning platform for distance teaching of microsurgery.

    PubMed

    Messaoudi, T; Bodin, F; Hidalgo Diaz, J J; Ichihara, S; Fikry, T; Lacreuse, I; Liverneaux, P; Facca, S

    2015-06-01

    Online learning (or eLearning) is in constant evolution in medicine. An analytical survey of the websites of eight academic societies and medical schools was carried out. These sites were evaluated against parameters that define the quality of an eLearning website, as well as the shareable content object reference model (SCORM) technical standards. All studied platforms were maintained by a webmaster and regularly updated. Only two platforms had teleconference opportunities, five had courses in PDF format, and four allowed online testing. Based on SCORM standards, only four platforms allowed direct access without a password. The content of all platforms was adaptable, interoperable and reusable. But their sustainability was difficult to assess. In parallel, we developed the first eLearning platform to be used as part of a university diploma in microsurgery in France. The platform was evaluated by students enrolled this diploma program. A satisfaction survey and platform evaluation showed that students were generally satisfied and had used the platform for microsurgery education, especially the seven students living abroad. ELearning for microsurgery allows the content to be continuously updated, makes for fewer classroom visits, provides easy remote access, and especially better training time management and cost savings in terms of travel and accommodations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Cross-platform validation and analysis environment for particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.

    A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for onlinemore » validation of Monte Carlo event samples through a web interface.« less

  1. Reactions of Standing Bipeds on Moving Platforms to Keep Their Balance May Increase the Amplitude of Oscillations of Platforms Satisfying Hooke’s Law

    PubMed Central

    Goldsztein, Guillermo H.

    2016-01-01

    Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke’s law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them. PMID:27304857

  2. Reactions of Standing Bipeds on Moving Platforms to Keep Their Balance May Increase the Amplitude of Oscillations of Platforms Satisfying Hooke's Law.

    PubMed

    Goldsztein, Guillermo H

    2016-01-01

    Consider a person standing on a platform that oscillates laterally, i.e. to the right and left of the person. Assume the platform satisfies Hooke's law. As the platform moves, the person reacts and moves its body attempting to keep its balance. We develop a simple model to study this phenomenon and show that the person, while attempting to keep its balance, may do positive work on the platform and increase the amplitude of its oscillations. The studies in this article are motivated by the oscillations in pedestrian bridges that are sometimes observed when large crowds cross them.

  3. A user-friendly application for the extraction of kubios hrv output to an optimal format for statistical analysis - biomed 2011.

    PubMed

    Johnsen Lind, Andreas; Helge Johnsen, Bjorn; Hill, Labarron K; Sollers Iii, John J; Thayer, Julian F

    2011-01-01

    The aim of the present manuscript is to present a user-friendly and flexible platform for transforming Kubios HRV output files to an .xls-file format, used by MS Excel. The program utilizes either native or bundled Java and is platform-independent and mobile. This means that it can run without being installed on a computer. It also has an option of continuous transferring of data indicating that it can run in the background while Kubios produces output files. The program checks for changes in the file structure and automatically updates the .xls- output file.

  4. Detection of Lock on Radar System Based on Ultrasonic US 100 Sensor And Arduino Uno R3 With Image Processing GUI

    NASA Astrophysics Data System (ADS)

    Baskoro, F.; Reynaldo, B. R.

    2018-04-01

    The development of electronics technology especially in the field of microcontroller occurs very rapidly. There have been many applications and useful use of microcontroller in everyday life as well as in laboratory research. In this study used Arduino Uno R3 as microcontroller-based platform ATMega328 as a sensor distance meter to know the distance of an object with high accuracy. The method used is to utilize the function Timer / Counter in Arduino UNO R3. On the Arduino Uno R3 platform, there is ATMEL ATmega328 microcontroller which has a frequency generating speed up to 20 MHz, 16-bit enumeration capability and using C language as its programming. With the Arduino Uno R3 platform, the ATmega328 microcontroller can be programmed with Arduino IDE software that is simpler and easier because it has been supported by libraries and many support programs. The result of this research is distance measurement to know the location of an object using US ultrasonic wave sensor US 100 with Arduino Uno R3 based on ATMega328 microcontroller which then the result will be displayed using Image Processing.

  5. TeleMEDiana: telesurgery and telemedicine by satellite and the Internet

    NASA Astrophysics Data System (ADS)

    Dobrosavljevic, Sneja; Welter, Roger

    2002-08-01

    The rapid development of technology and its integration into the spectrum of medical care are creating a pressing need for healthcare professionals to continuously update their knowledge and skills. In view of these needs the European Association of Visceral Surgery (AECV) which had been a platform for medical congresses in Luxembourg (1988, 1992, 1995, 1998) has developed TeleMEDiana a new broadband communication service introducing standards of excellence in Continuous Medical Education.TeleMEDiana broadcast a daily program with pedagogically enhanced video content in a number of therapeutic areas to MD's, professors and students in hospitals, universities and research centers. The educational programs are provided by leading European hospitals which have joined the TeleMEDiana Scientific Network TSN. The scientific integrity is certified by an international committee composed of recognized pioneers. Committed to deliver high resolution video streaming, TeleMEDiana has set up and successfully tested a new platform built on secure and cost-efficient satellite operator SES-ASTRA complemented by the Internet and can deliver programs to any workplace equipped with satellite dishes and high-quality set-top boxes. Telemediana offers herewith an optimal collaboration and dissemination platform to decisive players involved in Continuing Medical Education.

  6. E-learning for grass-roots emergency public health personnel: Preliminary lessons from a national program in China.

    PubMed

    Xu, Wangquan; Jiang, Qicheng; Qin, Xia; Fang, Guixia; Hu, Zhi

    2016-07-19

    In China, grass-roots emergency public health personnel have relatively limited emergency response capabilities and they are constantly required to update their professional knowledge and skills due to recurring and new public health emergencies. However, professional training, a principal solution to this problem, is inadequate because of limitations in manpower and financial resources at grass-roots public health agencies. In order to provide a cost-effective and easily expandable way for grass-roots personnel to acquire knowledge and skills, the National Health Planning Commission of China developed an emergency response information platform and provided trial access to this platform in Anhui and Heilongjiang provinces in China. E-learning was one of the modules of the platform and this paper has focused on an e-learning pilot program. Results indicated that e-learning had satisfactorily improved the knowledge and ability of grass-roots emergency public health personnel, and the program provided an opportunity to gain experience in e-course design and implementing e-learning. Issues such as the lack of personalized e-courses and the difficulty of evaluating the effectiveness of e-learning are topics for further study.

  7. Raspberry Pi-powered imaging for plant phenotyping.

    PubMed

    Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A

    2018-03-01

    Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.

  8. Teaching smartphone and microcontroller systems using "Android Java"

    NASA Astrophysics Data System (ADS)

    Tigrek, Seyitriza

    Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing technology and communication. The purpose of this thesis is to develop a framework to incorporate the new mobile platform with robust embedded systems into the engineering curriculum. For this purpose a course material is developed "Introduction to Programming Java on a Mobile Platform" to teach novice programmers how to create applications, specifically on Android. Combining an introductory level programming class with the Android platform can appeal to non-programming individuals in multiple disciplines. The proposed course curriculum reduces the learning time, and allows senior engineering students to use the new framework for their specific needs in the labs such as mobile data acquisition and control projects. This work provides techniques for instructors with modest programming background to teach cutting edge technology, which is smartphone programming. Techniques developed in this work minimize unnecessary information carried into current teaching approaches with hands-on practice. It also helps the students with minimal background requirements overcome the barriers that have evolved around computer programming. The motivation of this thesis is to create a tailored programming introductory course to teach Java programming on Android by incorporating selected efficient methods from extant literature. The mechanism proposed in this thesis is to keep students motivated by an active approach based on student-centered learning with collaborative work. Teamwork through pair programming is adapted in this teaching process. Bloom's taxonomy, along with a knowledge survey, is used as a guide to classify the information and exercise problems. A prototype curriculum is a deliverable of this research that is suitable for novice programmers-such as engineering freshmen students. It also contains advanced material that allows senior students to use mobile phone and a microcontroller system to enhance engineering laboratories.

  9. Seasat data applications in ocean industries

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1985-01-01

    It is pointed out that the world population expansion and resulting shortages of food, minerals, and fuel have focused additional attention on the world's oceans. In this context, aspects of weather prediction and the monitoring/prediction of long-range climatic anomalies become more important. In spite of technological advances, the commercial ocean industry and the naval forces suffer now from inadequate data and forecast products related to the oceans. The Seasat Program and the planned Navy-Remote Oceanographic Satellite System (N-ROSS) represent major contributions to improved observational coverage and the processing needed to achieve better forecasts. The Seasat Program was initiated to evaluate the effectiveness of the remote sensing of oceanographic phenomena from a satellite platform. Possible oceanographic satellite applications are presented in a table, and the impact of Seasat data on industry sectors is discussed. Attention is given to offshore oil development, deep-ocean mining, fishing, and marine transportation.

  10. Tunable solid-state laser technology for applications to scientific and technological experiments from space

    NASA Technical Reports Server (NTRS)

    Allario, F.; Taylor, L. V.

    1986-01-01

    Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.

  11. Parallel transformation of K-SVD solar image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Youwen; Tian, Yu; Li, Mei

    2017-02-01

    The images obtained by observing the sun through a large telescope always suffered with noise due to the low SNR. K-SVD denoising algorithm can effectively remove Gauss white noise. Training dictionaries for sparse representations is a time consuming task, due to the large size of the data involved and to the complexity of the training algorithms. In this paper, an OpenMP parallel programming language is proposed to transform the serial algorithm to the parallel version. Data parallelism model is used to transform the algorithm. Not one atom but multiple atoms updated simultaneously is the biggest change. The denoising effect and acceleration performance are tested after completion of the parallel algorithm. Speedup of the program is 13.563 in condition of using 16 cores. This parallel version can fully utilize the multi-core CPU hardware resources, greatly reduce running time and easily to transplant in multi-core platform.

  12. The debate over robotics in benign gynecology.

    PubMed

    Rardin, Charles R

    2014-05-01

    The debate over the role of the da Vinci surgical robotic platform in benign gynecology is raging with increasing fervor and, as product liability issues arise, greater financial stakes. Although the best currently available science suggests that, in the hands of experts, robotics offers little in surgical advantage over laparoscopy, at increased expense, the observed decrease in laparotomy for hysterectomy is almost certainly, at least in part, attributable to the availability of the robot. In this author's opinion, the issue is not whether the robot has any role but rather to define the role in an institutional environment that also supports the safe use of vaginal and laparoscopic approaches in an integrated minimally invasive surgery program. Programs engaging robotic surgery should have a clear and self-determined regulatory process and should resist pressures in place that may preferentially support robotics over other forms of minimally invasive surgery. Copyright © 2014 Mosby, Inc. All rights reserved.

  13. Imaging flow cytometry for the screening of compounds that disrupt the Plasmodium falciparum digestive vacuole.

    PubMed

    Chia, Wan Ni; Lee, Yan Quan; Tan, Kevin Shyong-Wei

    2017-01-01

    Malaria, despite being one of the world's oldest infectious diseases, remains difficult to eradicate because the parasite is rapidly developing resistance to frontline chemotherapies. Previous studies have shown that the parasite exhibits features resembling programmed cell death upon treatment with drugs that disrupt its digestive vacuole (DV), providing a phenotypic readout that can be detected using the imaging flow cytometer. Large compound collections can thus be screened to identify drugs that are able to disrupt the DV of the malaria parasite using this high-content high-throughput screening platform. As a proof-of-concept, 4440 compounds were screened using this platform in 4months and 254 hits (5.7% hit rate) were obtained. Additionally, 25 compounds (0.6% top hit rate) were observed to retain potent DV disruption activity that was comparable to the canonical DV disruptive drug chloroquine when tested at a ten-fold lower concentration from the original screen. This pilot study demonstrates the robustness and high-throughput capability of the imaging flow cytometer and we report herein the methodology of this screening assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Moon-based visibility analysis for the observation of “The Belt and Road”

    NASA Astrophysics Data System (ADS)

    REN, Yuanzhen; GUO, Huadong; LIU, Guang; YE, Hanlin; DING, Yixing; RUAN, Zhixing; LV, Mingyang

    2016-11-01

    Aiming at promoting the economic prosperity and regional economic cooperation, the “Silk Road Economic Belt” and the “21st Century Maritime Silk Road” (hereinafter referred to as the Belt and Road) was raised. To get a better understanding of “the Belt and Road” whole region, considering the large-scale characteristic, the Moon platform is a good choice. In this paper, the ephemeris is taken as data source and the positions and attitudes of Sun, Earth and Moon are obtained based on the reference systems transformation. Then we construct a simplified observation model and calculate the spatial and angular visibility of the Moon platform for “the Belt and Road” region. It turns out that Moon-based observation of this region shows a good performance of spatial visibility and variable angular visibility, indicating the Moon being a new potential platform for large-scale Earth observation.

  15. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.

  16. Adjusting an Available Online Peer Support Platform in a Program to Supplement the Treatment of Perinatal Depression and Anxiety

    PubMed Central

    Schueller, Stephen M

    2016-01-01

    Background Perinatal depression and anxiety are common and debilitating conditions. Novel, cost effective services could improve the uptake and the impact of mental health resources among women who suffer from these conditions. E-mental health products are one example of such services. Many publically available e-mental health products exist, but these products lack validation and are not designed to be integrated into existing health care settings. Objective The objective of the study was to present a program to use 7 Cups of Tea (7Cups), an available technological platform that provides online peer (ie, listener) based emotional support, to supplement treatment for women experiencing perinatal depression or anxiety and to summarize patient’s feedback on the resultant program. Methods This study consisted of two stages. First, five clinicians specializing in the treatment of perinatal mood disorders received an overview of 7Cups. They provided feedback on the 7Cups platform and ways it could complement the existing treatment efforts to inform further adjustments. In the second stage, nine women with perinatal depression or anxiety used the platform for a single session and provided feedback. Results In response to clinicians’ feedback, guidelines for referring patients to use 7Cups as a supplement for treatment were created, and a training program for listeners was developed. Patients found the platform usable and useful and their attitudes toward the trained listeners were positive. Overall, patients noted a need for support outside the scheduled therapy time and believed that freely available online emotional support could help meet this need. Most patients were interested in receiving support from first time mothers and those who suffered in the past from perinatal mood disorders. Conclusions The study results highlight the use of 7Cups as a tool to introduce accessible and available support into existing treatment for women who suffer from perinatal mood disorders. Further research should focus on the benefits accrued from such a service. However, this article highlights how a publicly available eHealth product can be leveraged to create new services in a health care setting. PMID:27001373

  17. Pulseq-Graphical Programming Interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development.

    PubMed

    Ravi, Keerthi Sravan; Potdar, Sneha; Poojar, Pavan; Reddy, Ashok Kumar; Kroboth, Stefan; Nielsen, Jon-Fredrik; Zaitsev, Maxim; Venkatesan, Ramesh; Geethanath, Sairam

    2018-03-11

    To provide a single open-source platform for comprehensive MR algorithm development inclusive of simulations, pulse sequence design and deployment, reconstruction, and image analysis. We integrated the "Pulseq" platform for vendor-independent pulse programming with Graphical Programming Interface (GPI), a scientific development environment based on Python. Our integrated platform, Pulseq-GPI, permits sequences to be defined visually and exported to the Pulseq file format for execution on an MR scanner. For comparison, Pulseq files using either MATLAB only ("MATLAB-Pulseq") or Python only ("Python-Pulseq") were generated. We demonstrated three fundamental sequences on a 1.5 T scanner. Execution times of the three variants of implementation were compared on two operating systems. In vitro phantom images indicate equivalence with the vendor supplied implementations and MATLAB-Pulseq. The examples demonstrated in this work illustrate the unifying capability of Pulseq-GPI. The execution times of all the three implementations were fast (a few seconds). The software is capable of user-interface based development and/or command line programming. The tool demonstrated here, Pulseq-GPI, integrates the open-source simulation, reconstruction and analysis capabilities of GPI Lab with the pulse sequence design and deployment features of Pulseq. Current and future work includes providing an ISMRMRD interface and incorporating Specific Absorption Ratio and Peripheral Nerve Stimulation computations. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. National Utility Rate Database: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  19. The Early Nutrition Programming Project (EARNEST): 5 y of successful multidisciplinary collaborative research.

    PubMed

    Koletzko, Berthold; Brands, Brigitte; Demmelmair, Hans

    2011-12-01

    Differences in nutritional experiences during sensitive periods in early life, both before and after birth, can program a person's future development, metabolism, and health. A better scientific understanding of early nutrition programming holds enormous potential for implementing preventive strategies to enhance individuals' long-term health, well-being, and performance. This understanding could reduce costs of health care and social services and may enhance the wealth of societies. The Early Nutrition Programming Project (EARNEST) brought together a multidisciplinary team of international scientists and leaders in key areas of the early nutrition programming field from 40 major research centers across 16 European countries. The project had a total budget of 16.5 million Euros and was funded by the European Communities under the Sixth Framework Program for Research and Technical Development and coordinated by the Children's Hospital at Ludwig-Maximilians-University of Munich. The integrated program of work combined experimental studies in humans, prospective observational studies, and mechanistic animal work, including physiologic studies, cell culture models, and molecular biology techniques. The project lasted from April 2005 to October 2010. After the end of the project, the Early Nutrition Academy (http://www.early-nutrition.org) continues to serve as a platform for the exchange of information, scientific collaboration, and training activities in the area of programming. This article highlights some of the scientific results, achievements, and efforts of EARNEST.

  20. [Construction of the study platform for Meridians and Acupoints and the application in the flipped classroom].

    PubMed

    Hu, Rong

    2016-11-12

    To construct the study platform for meridians and acupoints by analyzing the status and current problems of teaching Meridians and Acupoints and in accordance with the principles as "knowledge fragmentation, game breakthrough and overall assessment" and observe the application effect in the flipped classroom. Totally two hundred and five 2014 grade bachelor candidates from four classes of the department of acupuncture-moxibustion and tuina were selected from Hunan Junior College of TCM. They were randomized into an observation group (102 cases) and a control group (103 cases). in the observation group, the flipped classroom was performed by adopting the study platform of meridians and acupoints. Additionally, the team cooperation learning and overall assessment were conducted. In the control group, the traditional teaching system was adopted, in which, the mode of "teacher's demonstration-to-discussion in group-to-teachers' assessment" and the operation check at the end of the semester were applied. The learning effect and the self-learning ability were evaluated at the end of semester in the two groups. The satisfaction survey was conducted in the observation group. In the observation group, the drawing of meridian running course and locating the acupoints, as well as the self-learning ability were better than those in the control group, indicating the significant differences (all P <0.05). The interests in platform, interaction, contribution to knowledge learning and the improvement of the self-learning ability were much more obvious and the satisfaction was quite high, accounting for over 90%. The acceptance to the flipped classroom and the satisfaction of participation were slightly low. The study platform of learning Meridians and Acupoints was applied in the flipped classroom and has effectively improved the practical manipulation results and self-learning ability. However, the interestingness and interactivity of the platform are expected to be improved. The effective teaching design should be adopted in the flipped classroom to improve the students' desire of participation.

  1. The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms

    NASA Astrophysics Data System (ADS)

    Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert

    2018-01-01

    We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.

  2. Stability of benzocaine formulated in commercial oral disintegrating tablet platforms.

    PubMed

    Köllmer, Melanie; Popescu, Carmen; Manda, Prashanth; Zhou, Leon; Gemeinhart, Richard A

    2013-12-01

    Pharmaceutical excipients contain reactive groups and impurities due to manufacturing processes that can cause decomposition of active drug compounds. The aim of this investigation was to determine if commercially available oral disintegrating tablet (ODT) platforms induce active pharmaceutical ingredient (API) degradation. Benzocaine was selected as the model API due to known degradation through ester and primary amino groups. Benzocaine was either compressed at a constant pressure, 20 kN, or at pressure necessary to produce a set hardness, i.e., where a series of tablets were produced at different compression forces until an average hardness of approximately 100 N was achieved. Tablets were then stored for 6 months under International Conference on Harmonization recommended conditions, 25°C and 60% relative humidity (RH), or under accelerated conditions, 40°C and 75% RH. Benzocaine degradation was monitored by liquid chromatography-mass spectrometry. Regardless of the ODT platform, no degradation of benzocaine was observed in tablets that were kept for 6 months at 25°C and 60% RH. After storage for 30 days under accelerated conditions, benzocaine degradation was observed in a single platform. Qualitative differences in ODT platform behavior were observed in physical appearance of the tablets after storage under different temperature and humidity conditions.

  3. Earth Observation-Supported Service Platform for the Development and Provision of Thematic Information on the Built Environment - the Tep-Urban Project

    NASA Astrophysics Data System (ADS)

    Esch, T.; Asamer, H.; Boettcher, M.; Brito, F.; Hirner, A.; Marconcini, M.; Mathot, E.; Metz, A.; Permana, H.; Soukop, T.; Stanek, F.; Kuchar, S.; Zeidler, J.; Balhar, J.

    2016-06-01

    The Sentinel fleet will provide a so-far unique coverage with Earth observation data and therewith new opportunities for the implementation of methodologies to generate innovative geo-information products and services. It is here where the TEP Urban project is supposed to initiate a step change by providing an open and participatory platform based on modern ICT technologies and services that enables any interested user to easily exploit Earth observation data pools, in particular those of the Sentinel missions, and derive thematic information on the status and development of the built environment from these data. Key component of TEP Urban project is the implementation of a web-based platform employing distributed high-level computing infrastructures and providing key functionalities for i) high-performance access to satellite imagery and derived thematic data, ii) modular and generic state-of-the art pre-processing, analysis, and visualization techniques, iii) customized development and dissemination of algorithms, products and services, and iv) networking and communication. This contribution introduces the main facts about the TEP Urban project, including a description of the general objectives, the platform systems design and functionalities, and the preliminary portfolio products and services available at the TEP Urban platform.

  4. Smart Phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing

    DTIC Science & Technology

    2013-07-01

    Smart phones: Platform Enabling Modular, Chemical, Biological, and Explosives Sensing by Amethist S. Finch , Matthew Coppock, Justin R...Chemical, Biological, and Explosives Sensing Amethist S. Finch , Matthew Coppock, Justin R. Bickford, Marvin A. Conn, Thomas J. Proctor, and...Explosives Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Amethist S. Finch , Matthew Coppock, Justin R

  5. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  6. SIG Contribution in the Making of Geotechnical Maps in Urban Areas

    NASA Astrophysics Data System (ADS)

    Monteiro, António; Pais, Luís Andrade; Rodrigues, Carlos; Carvalho, Paulo

    2017-10-01

    The use of Geographic Information Systems (GIS) has spread to several science areas, from oceanography to geotechnics. Its application in the urban mapping was intensified in the last century, which allowed a great development, due to the use of geographic database, new analysis tools and, more recently, free open source software. Geotechnical cartography struggle with a permanent and large environment re-organization in urban area, due to new building construction, trenching and the drilling of sampling wells and holes. This creates an extra important and largest volume of data at any pre-existence geological map. The main problem results on the fact that the natural environment is covered with buildings and communications system. The purpose of this work is to create a viable geographic information base for geotechnical mapping through a free GIS computer program and open source, with non-traditional cartographic sources, giving preference to open platforms. QGIS was used as software and “Google Maps”, “Bing Maps” and “OpenStreetMap” were applied as cartographic sources using the “OpenLayers plugin” module. Finally, we also pretend to identify and delimit the degree of granite’s change and fracturing areas using a “Streetview” platform. This model has cartographic input which are a geological map study area, open cartographic web archives and the use of “Streetview” platform. The output has several layouts, such as topography intersection (roads, borders, etc.), with geological map and the bordering area of Guarda Urban Zone. The use of this platform types decrease the collect data time and, sometimes, a careful observation of pictures that were taken during excavations may reveal important details for geological mapping in the study area.

  7. EOS Terra Validation Program

    NASA Technical Reports Server (NTRS)

    Starr, David

    1999-01-01

    The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program homepage i/e.: http://ospso.gsfc.nasa.gov/validation/valpage.html).

  8. The Bering Sea Project Archive: a Prototype for Improved Discovery and Access

    NASA Astrophysics Data System (ADS)

    Stott, D.; Mayernik, M. S.; Daniels, M. D.; Moore, J. A.; Williams, S. F.; Allison, J.

    2015-12-01

    The Bering Sea Project was a research program from 2007 through 2012 that sought to understand the impacts of climate change and dynamic sea ice cover on the eastern Bering Sea ecosystem. More than 100 scientists engaged in field data collection, original research, and ecosystem modeling to link climate, physical oceanography, plankton, fishes, seabirds, marine mammals, humans, traditional knowledge and economic outcomes. Over the six-year period of the program hundreds of multidisciplinary datasets coming from a variety of instrumentation and measurement platforms within thirty-one categories of research were processed and curated by the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL). For the investigator proposing a field project, the researcher performing synthesis, or the modeler seeking data for verification, the easy discovery and access to the most relevant data is of prime importance. The heterogeneous products of oceanographic field programs such as the Bering Sea Project challenge the ability of researchers to identify which data sets, people, or tools might be relevant to their research, and to understand how certain data, instruments, or methods were used to produce particular results.EOL, as a partner in the NSF funded EarthCollab project, is using linked open data to permit the direct interlinking of information and data across platforms and projects. We are leveraging an existing open-source semantic web application, VIVO, to address connectivity gaps across distributed networks of researchers and resources and identify relevant content, independent of location. We will present our approach in connecting ontologies and integrating them within the VIVO system, using the Bering Sea Project datasets as a case study, and will provide insight into how the geosciences can leverage linked data to produce more coherent methods of information and data discovery across large multi-disciplinary projects.

  9. An Innovative, No-cost, Evidence-Based Smartphone Platform for Resident Evaluation.

    PubMed

    Green, John M

    Timely performance evaluation and feedback are critical to resident development. However, formulating and delivering this information disrupts physician workflow, leading to low participation. This study was designed to determine if a locally developed smartphone platform would integrate regular evaluation into daily processes and thus increase faculty participation in timely resident evaluation. Formal, documented resident operative and patient interaction evaluations were compiled over an 8-month study period. The study was divided into two 4-month phases. No changes to the existing evaluation methods were made during Phase 1. Phase 2 began after a washout period of 2 weeks and coincided with the launch of a smartphone-based platform. The platform uses a combination of Likert scale questions and the Dreyfus model of skill acquisition to describe competence levels in technical and nontechnical skills. The instrument inflicts minimal effect on surgeon workflow, with the aim of integrating resident evaluation into daily processes. The number of different faculty members performing evaluations, resident level (postgraduate year), type of interaction or procedure, and competency data were compiled. All evaluations were tracked by the program director as they were automatically uploaded into a database. Faculty members were introduced to the new platform at the beginning of Phase 2, and previous methods of evaluation continued to be encouraged and were considered valid throughout both phases of the study. Data were analyzed using Fisher exact test for specific PGY level, and chi-square test was used for overall program analysis. Statistical significance was set at p < 0.05. Total faculty engagement, that is, number of faculty members completing evaluations, increased from 13% (5/38) in Phase 1 to 53% (20/38) in Phase 2. During Phase 1, all evaluations consisted of online forms through the department's established system or e-mails to the program director. Evaluations were completed in 0.9% (15/1599) of cases residents completed in Phase 1 versus 12% (217/1812) of those in Phase 2. During Phase 2, evaluations were conducted exclusively using the new platform. This was done based on participant's choice. Total numbers of residents and core faculty members did not change between Phases 1 and 2. A smartphone-based platform can be created with existing technology at no cost. It is adaptable and can be updated in real-time and can employ validated scales to build an evaluation portfolio for learners assessing technical and nontechnical skills. Furthermore, and perhaps most importantly, it can be designed to integrate into existing workflow patterns to increase faculty participation. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  10. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    PubMed

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  11. Java: A New Brew for Educators, Administrators and Students.

    ERIC Educational Resources Information Center

    Gordon, Barbara

    1996-01-01

    Java is an object-oriented programming language developed by Sun Microsystems; its benefits include platform independence, security, and interactivity. Within the college community, Java is being used in programming courses, collaborative technology research projects, computer graphics instruction, and distance education. (AEF)

  12. Java Mission Evaluation Workstation System

    NASA Technical Reports Server (NTRS)

    Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff

    2006-01-01

    The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.

  13. KSC-2009-5541

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - Inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the 327-foot-tall Ares I-X rocket stands on its mobile launcher platform. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  14. Induced Superconductivity in the Quantum Spin Hall Edge

    NASA Astrophysics Data System (ADS)

    Ren, Hechen; Hart, Sean; Wagner, Timo; Leubner, Philipp; Muehlbauer, Mathias; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; Yacoby, Amir

    2014-03-01

    Two-dimensional topological insulators have a gapped bulk and helical edge states, making it a quantum spin Hall insulator. Combining such edge states with superconductivity can be an excellent platform for observing and manipulating localized Majorana fermions. In the context of condensed matter, these are emergent electronic states that obey non-Abelian statistics and hence support fault-tolerant quantum computing. To realize such theoretical constructions, an essential step is to show these edge channels are capable of carrying coherent supercurrent. In our experiment, we fabricate Josephson junctions with HgTe/HgCdTe quantum wells, a two-dimensional material that becomes a quantum spin Hall insulator when the quantum well is thicker than 6.3 nm and the bulk density is depleted. In this regime, we observe supercurrents whose densities are confined to the edges of the junctions, with edge widths ranging from 180 nm to 408 nm. To verify the topological nature of these edges, we measure identical junctions with HgTe/HgCdTe quantum wells thinner than 6.3 nm and observe only uniform supercurrent density across the junctions. This research is supported by Microsoft Corporation Project Q, the NSF DMR-1206016, the DOE SCGF Program, the German Research Foundation, and EU ERC-AG program.

  15. Ship-based Observations of Turbulence and Stratocumulus Cloud Microphysics in the SE Pacific Ocean from the VOCALS Field Program

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Williams, C.; Grachev, A. A.; Brewer, A.; Choukulkar, A.

    2013-12-01

    The VAMOS (VOCALS) field program involved deployment of several measurement systems based on ships, land and aircraft over the SE Pacific Ocean. The NOAA Ship Ronald H. Brown was the primary platform for surface based measurements which included the High Resolution Doppler Lidar (HRDL) and the motion-stabilized 94-GHz cloud Doppler radar (W-band radar). In this paper, the data from the W-band radar will be used to study the turbulent and microphysical structure of the stratocumulus clouds prevalent in the region. The radar data consists of a 3 Hz time series of radar parameters (backscatter coefficient, mean Doppler shift, and Doppler width) at 175 range gates (25-m spacing). Several statistical methods to de-convolve the turbulent velocity and gravitational settling velocity are examined and an optimized algorithm is developed. 20 days of observations are processed to examine in-cloud profiles of mean turbulent statistics (vertical velocity variance, skewness, dissipation rate) in terms of surface fluxes and estimates of entrainment and cloudtop radiative cooling. The clean separation of turbulent and fall velocities will allow us to compute time-averaged drizzle-drop size spectra within and below the cloud that are significantly superior to previous attempts with surface-based marine cloud radar observations.

  16. Hybrid Spanish Programs: A Challenging and Successful Endeavor

    ERIC Educational Resources Information Center

    Hermosilla, Luis

    2014-01-01

    Several types of hybrid Spanish programs have been developed in US colleges and universities for more than ten years, but the most common structure consists of a course in which the instruction combines face-to-face time with an instructor and the use of an online platform. Studies have demonstrated that a well-developed hybrid Spanish program can…

  17. Pyro: A Python-Based Versatile Programming Environment for Teaching Robotics

    ERIC Educational Resources Information Center

    Blank, Douglas; Kumar, Deepak; Meeden, Lisa; Yanco, Holly

    2004-01-01

    In this article we describe a programming framework called Pyro, which provides a set of abstractions that allows students to write platform-independent robot programs. This project is unique because of its focus on the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the background of the project, its…

  18. Exploring Teaching Programming Online through Web Conferencing System: The Lens of Activity Theory

    ERIC Educational Resources Information Center

    Çakiroglu, Ünal; Kokoç, Mehmet; Kol, Elvan; Turan, Ebru

    2016-01-01

    The purpose of this qualitative study was to understand activities and behaviors of learners and instructor in an online programming course. Adobe Connect web conferencing system was used as a delivery platform. A total of fifty-six sophomore students attending a computer education and instructional technology program (online) participated in this…

  19. The National Shipbuilding Research Program: Report on a Shipyard Surface Preparation and Quality Program

    DTIC Science & Technology

    1998-07-23

    laser writer print-outs • As electronic copies using the FrameMaker  file format for duplication and printing by a service bureau, the FrameMaker ...The software platform used to develop the written and visual texts for the program ( FrameMaker ) provides this facility for creating on-line

  20. Teaching and Learning Logic Programming in Virtual Worlds Using Interactive Microworld Representations

    ERIC Educational Resources Information Center

    Vosinakis, Spyros; Anastassakis, George; Koutsabasis, Panayiotis

    2018-01-01

    Logic Programming (LP) follows the declarative programming paradigm, which novice students often find hard to grasp. The limited availability of visual teaching aids for LP can lead to low motivation for learning. In this paper, we present a platform for teaching and learning Prolog in Virtual Worlds, which enables the visual interpretation and…

  1. Designing the RiverCare knowledge base and web-collaborative platform to exchange knowledge in river management

    NASA Astrophysics Data System (ADS)

    Cortes Arevalo, Juliette; den Haan, Robert-Jan; van der Voort, Mascha; Hulscher, Suzanne

    2016-04-01

    Effective communication strategies are necessary between different scientific disciplines, practitioners and non-experts for a shared understanding and better implementation of river management measures. In that context, the RiverCare program aims to get a better understanding of riverine measures that are being implemented towards self-sustaining multifunctional rivers in the Netherlands. During the RiverCare program, user committees are organized between the researchers and practitioners to discuss the aim and value of RiverCare outputs, related assumptions and uncertainties behind scientific results. Beyond the RiverCare program end, knowledge about river interventions, integrated effects, management and self-sustaining applications will be available to experts and non-experts by means of River Care communication tools: A web-collaborative platform and a serious gaming environment. As part of the communication project of RiverCare, we are designing the RiverCare web-collaborative platform and the knowledge-base behind that platform. We aim at promoting collaborative efforts and knowledge exchange in river management. However, knowledge exchange does not magically happen. Consultation and discussion of RiverCare outputs as well as elicitation of perspectives and preferences from different actors about the effects of riverine measures has to be facilitated. During the RiverCare research activities, the platform will support the user committees or collaborative sessions that are regularly held with the organizations directly benefiting from our research, at project level or in study areas. The design process of the collaborative platform follows an user centred approach to identify user requirements, co-create a conceptual design and iterative develop and evaluate prototypes of the platform. The envisioned web-collaborative platform opens with an explanation and visualisation of the RiverCare outputs that are available in the knowledge base. Collaborative sessions are initiated by one facilitator that invites other users to contribute by agreeing on an objective for the session and ways and period of collaboration. Upon login, users can join the different sessions that they are invited or will be willing to participate. Within these sessions, users collaboratively engage on the topic at hand, acquiring knowledge about the ongoing results of RiverCare, sharing knowledge between actors and co-constructing new knowledge in the process as input for RiverCare research activities. An overview of each session will be presented to registered and non-registered users to document collaboration efforts and promote interaction with actors outside RiverCare. At the user requirements analysis stage of the collaborative platform, a questionnaire and workshop session was launched to uncover the end user's preferences and expectations about the tool to be designed. Results comprised insights about design criteria of the collaborative platform. The user requirements will be followed by interview sessions with RiverCare researchers and user committee members to identify considerations for data management, objectives of collaboration, expected outputs and indicators to evaluate the collaborative platform. On one side, considerations of intended users are important for co-designing tools that effectively communicate and promote a shared understanding of scientific outputs. On the other one, active involvement of end-users is important for the establishment of measurable indicators to evaluate the tool and the collaborative process.

  2. IVAG: An Integrative Visualization Application for Various Types of Genomic Data Based on R-Shiny and the Docker Platform.

    PubMed

    Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo

    2017-12-01

    Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.

  3. THE DECADE OF THE RABiT (2005–15)

    PubMed Central

    Garty, G.; Turner, H. C.; Salerno, A.; Bertucci, A.; Zhang, J.; Chen, Y.; Dutta, A.; Sharma, P.; Bian, D.; Taveras, M.; Wang, H.; Bhatla, A.; Balajee, A.; Bigelow, A. W.; Repin, M.; Lyulko, O. V.; Simaan, N.; Yao, Y. L.; Brenner, D. J.

    2016-01-01

    The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with ‘off the shelf’ systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell::explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies. PMID:27412510

  4. Long Duration Balloon flights development. (Italian Space Agency)

    NASA Astrophysics Data System (ADS)

    Peterzen, S.; Masi, S.; Dragoy, P.; Ibba, R.; Spoto, D.

    Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, earth observations, near space research and commercial component testing, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78º N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennial oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultra-light payloads and TM systems ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program. This paper discusses the development of the launch facilities and international LDB development.

  5. Infrared calibration for climate: a perspective on present and future high-spectral resolution instruments

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Anderson, James G.; Best, Fred A.; Tobin, David C.; Knuteson, Robert O.; LaPorte, Daniel D.; Taylor, Joe K.

    2006-12-01

    The new era of high spectral resolution infrared instruments for atmospheric sounding offers great opportunities for climate change applications. A major issue with most of our existing IR observations from space is spectral sampling uncertainty and the lack of standardization in spectral sampling. The new ultra resolution observing capabilities from the AIRS grating spectrometer on the NASA Aqua platform and from new operational FTS instruments (IASI on Metop, CrIS for NPP/NPOESS, and the GIFTS for a GOES demonstration) will go a long way toward improving this situation. These new observations offer the following improvements: 1. Absolute accuracy, moving from issues of order 1 K to <0.2-0.4 K brightness temperature, 2. More complete spectral coverage, with Nyquist sampling for scale standardization, and 3. Capabilities for unifying IR calibration among different instruments and platforms. However, more needs to be done to meet the immediate needs for climate and to effectively leverage these new operational weather systems, including 1. Place special emphasis on making new instruments as accurate as they can be to realize the potential of technological investments already made, 2. Maintain a careful validation program for establishing the best possible direct radiance check of long-term accuracy--specifically, continuing to use aircraft-or balloon-borne instruments that are periodically checked directly with NIST, and 3. Commit to a simple, new IR mission that will provide an ongoing backbone for the climate observing system. The new mission would make use of Fourier Transform Spectrometer measurements to fill in spectral and diurnal sampling gaps of the operational systems and provide a benchmark with better than 0.1K 3-sigma accuracy based on standards that are verifiable in-flight.

  6. Introduction of the Mobile Platform for the Meteorological Observations in Seoul Metropolitan City of Korea

    NASA Astrophysics Data System (ADS)

    Baek, K. T.; Lee, S.; Kang, M.; Lee, G.

    2016-12-01

    Traffic accidents due to adverse weather such as fog, heavy rainfall, flooding and road surface freezing have been increasing in Korea. To reduce damages caused by the severe weather on the road, a forecast service of combined real-time road-wise weather and the traffic situation is required. Conventional stationary meteorological observations in sparse location system are limited to observe the detailed road environment. For this reason, a mobile meteorological observation platform has been coupled in Weather Information Service Engine (WISE) which is the prototype of urban-scale high resolution weather prediction system in Seoul metropolitan area of Korea in early August 2016. The instruments onboard are designed to measure 15 meteorological parameters; pressure, temperature, relative humidity, precipitation, up/down net radiation, up/down longwave radiation, up/down shortwave radiation, road surface condition, friction coefficient, water depth, wind direction and speed. The observations from mobile platform show a distinctive advantage of data collection in need for road conditions and inputs for the numerical forecast model. In this study, we introduce and examine the feasibility of mobile observations in urban weather prediction and applications.

  7. Resolving carbonate platform geometries on the Island of Bonaire, Caribbean Netherlands through semi-automatic GPR facies classification

    NASA Astrophysics Data System (ADS)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-07-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometre length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which support the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  8. Resolving Carbonate Platform Geometries on the Island of Bonaire, Caribbean Netherlands through Semi-Automatic GPR Facies Classification

    NASA Astrophysics Data System (ADS)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-05-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  9. Development of an IHE MRRT-compliant open-source web-based reporting platform.

    PubMed

    Pinto Dos Santos, Daniel; Klos, G; Kloeckner, R; Oberle, R; Dueber, C; Mildenberger, P

    2017-01-01

    To develop a platform that uses structured reporting templates according to the IHE Management of Radiology Report Templates (MRRT) profile, and to implement this platform into clinical routine. The reporting platform uses standard web technologies (HTML / JavaScript and PHP / MySQL) only. Several freely available external libraries were used to simplify the programming. The platform runs on a standard web server, connects with the radiology information system (RIS) and PACS, and is easily accessible via a standard web browser. A prototype platform that allows structured reporting to be easily incorporated into the clinical routine was developed and successfully tested. To date, 797 reports were generated using IHE MRRT-compliant templates (many of them downloaded from the RSNA's radreport.org website). Reports are stored in a MySQL database and are easily accessible for further analyses. Development of an IHE MRRT-compliant platform for structured reporting is feasible using only standard web technologies. All source code will be made available upon request under a free license, and the participation of other institutions in further development is welcome. • A platform for structured reporting using IHE MRRT-compliant templates is presented. • Incorporating structured reporting into clinical routine is feasible. • Full source code will be provided upon request under a free license.

  10. Usefulness of a Novel Mobile Diabetes Prevention Program Delivery Platform With Human Coaching: 65-Week Observational Follow-Up.

    PubMed

    Michaelides, Andreas; Major, Jennifer; Pienkosz, Edmund; Wood, Meghan; Kim, Youngin; Toro-Ramos, Tatiana

    2018-05-03

    It is widely recognized that the prevalence of obesity and comorbidities including prediabetes and type 2 diabetes continue to increase worldwide. Results from a 24-week Diabetes Prevention Program (DPP) fully mobile pilot intervention were previously published showing promising evidence of the usefulness of DPP-based eHealth interventions on weight loss. This pilot study extends previous findings to evaluate weight loss results of core (up to week 16) and maintenance (postcore weeks) DPP interventions at 65 weeks from baseline. Originally, 140 participants were invited and 43 overweight or obese adult participants with a diagnosis of prediabetes signed up to receive a 24-week virtual DPP with human coaching through a mobile platform. At 65 weeks, this pilot study evaluates weight loss and engagement in maintenance participants by means of repeated measures analysis of variances and backward multiple linear regression to examine predictors of weight loss. Last observation carried forward was used for endpoint measurements. At 65 weeks, mean weight loss was 6.15% in starters who read 1 or more lessons per week on 4 or more core weeks, 7.36% in completers who read 9 or more lessons per week on core weeks, and 8.98% in maintenance completers who did any action in postcore weeks (all P<.001). Participants were highly engaged, with 80% (47/59) of the sample completing 9 lessons or more and 69% (32/47) of those completing the maintenance phase. In-app actions related to self-monitoring significantly predicted weight loss. In comparison to eHealth programs, this pilot study shows that a fully mobile DPP can produce transformative weight loss. A fully mobile DPP intervention resulted in significant weight loss and high engagement during the maintenance phase, providing evidence for long-term potential as an alternative to in-person DPP by removing many of the barriers associated with in-person and other forms of virtual DPP. ©Andreas Michaelides, Jennifer Major, Edmund Pienkosz Jr, Meghan Wood, Youngin Kim, Tatiana Toro-Ramos. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 03.05.2018.

  11. Analyzing the effectiveness of flare dispensing programs against pulse width modulation seekers using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Şahingil, Mehmet C.; Aslan, Murat Š.

    2013-10-01

    Infrared guided missile seekers utilizing pulse width modulation in target tracking is one of the threats against air platforms. To be able to achieve a "soft-kill" protection of own platform against these type of threats, one needs to examine carefully the seeker operating principle with its special electronic counter-counter measure (ECCM) capability. One of the cost-effective ways of soft kill protection is to use flare decoys in accordance with an optimized dispensing program. Such an optimization requires a good understanding of the threat seeker, capabilities of the air platform and engagement scenario information between them. Modeling and simulation is very powerful tool to achieve a valuable insight and understand the underlying phenomenology. A careful interpretation of simulation results is crucial to infer valuable conclusions from the data. In such an interpretation there are lots of factors (features) which affect the results. Therefore, powerful statistical tools and pattern recognition algorithms are of special interest in the analysis. In this paper, we show how self-organizing maps (SOMs), which is one of those powerful tools, can be used in analyzing the effectiveness of various flare dispensing programs against a PWM seeker. We perform several Monte Carlo runs for a typical engagement scenario in a MATLAB-based simulation environment. In each run, we randomly change the flare dispending program and obtain corresponding class: "successful" or "unsuccessful", depending on whether the corresponding flare dispensing program deceives the seeker or not, respectively. Then, in the analysis phase, we use SOMs to interpret and visualize the results.

  12. ARV robotic technologies (ART): a risk reduction effort for future unmanned systems

    NASA Astrophysics Data System (ADS)

    Jaster, Jeffrey F.

    2006-05-01

    The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.

  13. Automatic Compilation from High-Level Biologically-Oriented Programming Language to Genetic Regulatory Networks

    PubMed Central

    Beal, Jacob; Lu, Ting; Weiss, Ron

    2011-01-01

    Background The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. Methodology/Principal Findings To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks. Conclusions/Significance Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems. PMID:21850228

  14. Automatic compilation from high-level biologically-oriented programming language to genetic regulatory networks.

    PubMed

    Beal, Jacob; Lu, Ting; Weiss, Ron

    2011-01-01

    The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50%) and latency of the optimized engineered gene networks. Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.

  15. The ESA Geohazard Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Bally, Philippe; Laur, Henri; Mathieu, Pierre-Philippe; Pinto, Salvatore

    2015-04-01

    Earthquakes represent one of the world's most significant hazards in terms both of loss of life and damages. In the first decade of the 21st century, earthquakes accounted for 60 percent of fatalities from natural disasters, according to the United Nations International Strategy for Disaster Reduction (UNISDR). To support mitigation activities designed to assess and reduce risks and improve response in emergency situations, satellite EO can be used to provide a broad range of geo-information services. This includes for instance crustal block boundary mapping to better characterize active faults, strain rate mapping to assess how rapidly faults are deforming, soil vulnerability mapping to help estimate how the soil is behaving in reaction to seismic phenomena, geo-information to assess the extent and intensity of the earthquake impact on man-made structures and formulate assumptions on the evolution of the seismic sequence, i.e. where local aftershocks or future main shocks (on nearby faults) are most likely to occur. In May 2012, the European Space Agency and the GEO Secretariat convened the International Forum on Satellite EO for Geohazards now known as the Santorini Conference. The event was the continuation of a series of international workshops such as those organized by the Geohazards Theme of the Integrated Global Observing Strategy Partnership. In Santorini the seismic community has set out a vision of the EO contribution to an operational global seismic risk program, which lead to the Geohazard Supersites and Natural Laboratories (GSNL) initiative. The initial contribution of ESA to suuport the GSNL was the first Supersites Exploitation Platform (SSEP) system in the framework of Grid Processing On Demand (GPOD), now followed by the Geohazard Exploitation Platform (GEP). In this presentation, we will describe the contribution of the GEP for exploiting satellite EO for geohazard risk assessment. It is supporting the GEO Supersites and has been further expanded to address broader objectives of the geohazards community. In particular it is a contribution to the CEOS WG Disasters and its Seismic Hazards Pilot and terrain deformation applications of its Volcano Pilot. The geohazards platform is sourced with elements - data, tools, and processing- relevant to the geohazards theme and related exploitation scenarios. For example, platform provides access to large SAR data collections and services to support SAR Interferometry (InSAR), in particular the Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques, to provide precise terrain deformation. The GEP includes data coming from the ENVISAT ASAR and ERS archives, already hosted in the ESA clusters and in ESA's Virtual Archive and further extended to cover the requirements of the CEOS Pilot on Seismic Hazards. The GEP is gradually accessing Sentinel-1A data alongside with EO data from other space agencies with an interest in the geohazard exploitation platform. Further to this, the platform is intended to be available in the framework of the European Plate Observing System (EPOS) initiative, in order to help its users exploit EO data to support solid Earth monitoring and geophysical and geological analysis.

  16. MS PHD'S: A successful model for reaching underrepresented minorities (URM) students through virtual platforms

    NASA Astrophysics Data System (ADS)

    Scott, O.; Johnson, A.; Williamson, V.; Ricciardi, L.; Jearld, A., Jr.; Guzman, W. I.

    2014-12-01

    To successfully recruit and retain underrepresented minority (URM) students and early career scientists, many programs supplement traditional curricular activities with multiple online platforms, establishing "virtual communities" that are free and easily accessible. These virtual communities offer readily sustainable opportunities to facilitate communication across a wide range of cultural lines and socioeconomic levels thereby broadening participation and inclusivity in STEM. Established in 2003, the Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Earth System Science Professional Development Program has successfully used virtual community tools such as a listserv, community forum, social media, and VoIP technologies, to extend the face-to-face activities of the program and support the advancement of URM students and early career scientists in STEM. The use of multiple facets of virtual community by MS PHD'S participants supports and encourages "real life" interactions and mentorship, facilitates networking and professional development, and maintains continuity of shared networks. The program is now in its ninth cohort and supports 213 participants. To date, 54 participants have completed their PhD and another 61 are currently enrolled in doctoral programs.

  17. Update on PISCES

    NASA Technical Reports Server (NTRS)

    Pearson, Don; Hamm, Dustin; Kubena, Brian; Weaver, Jonathan K.

    2010-01-01

    An updated version of the Platform Independent Software Components for the Exploration of Space (PISCES) software library is available. A previous version was reported in Library for Developing Spacecraft-Mission-Planning Software (MSC-22983), NASA Tech Briefs, Vol. 25, No. 7 (July 2001), page 52. To recapitulate: This software provides for Web-based, collaborative development of computer programs for planning trajectories and trajectory- related aspects of spacecraft-mission design. The library was built using state-of-the-art object-oriented concepts and software-development methodologies. The components of PISCES include Java-language application programs arranged in a hierarchy of classes that facilitates the reuse of the components. As its full name suggests, the PISCES library affords platform-independence: The Java language makes it possible to use the classes and application programs with a Java virtual machine, which is available in most Web-browser programs. Another advantage is expandability: Object orientation facilitates expansion of the library through creation of a new class. Improvements in the library since the previous version include development of orbital-maneuver- planning and rendezvous-launch-window application programs, enhancement of capabilities for propagation of orbits, and development of a desktop user interface.

  18. New Tools for New Missions - Unmanned Aircraft Systems Offer Exciting Capabilities

    NASA Astrophysics Data System (ADS)

    Bland, G.; Miles, T.; Pieri, D. C.; Coronado, P. L.; Fladeland, M. M.; Diaz, J. A.; Cione, J.; Maslanik, J. A.; Roman, M. O.; de Boer, G.; Argrow, B. M.; Novara, J.; Stachura, M.; Neal, D.; Moisan, J. R.

    2015-12-01

    There are numerous emerging possibilities for utilizing unmanned aircraft systems (UAS) to investigate a variety of natural hazards, both for prediction and analysis of specific events. Additionally, quick response capabilities will provide affordable, low risk support for emergency management teams. NASA's partnerships with commercial, university and other government agency teams are bringing new capabilities to research and emergency management communities. New technology platforms and instrument systems are gaining momentum for stand-off remote sensing observations, as well as penetration and detailed in-situ examination of natural and anthropogenic phenomena. Several pioneering investigations have provided the foundation for this development, including NASA projects with Aerosonde, Dragon Eye, and SIERRA platforms. With miniaturized instrument and platform technologies, these experiments demonstrated that previously unobtainable observations may significantly aid in the understanding, prediction, and assessment of natural hazards such as storms, volcanic eruptions, floods, and the potential impact of environmental changes. Remote sensing observations of storms and fires have also been successfully demonstrated through NASA's efforts with larger UAS such as the Global Hawk and Ikhana platforms. The future may unfold with new high altitude and/or long endurance capabilities, in some cases with less size and costs as payload capacity requirements are reduced through further miniaturization, and alternatively with expanded instrumentation and mission profiles. Several new platforms and instrument development projects are underway that will enable affordable, quick response observations. Additionally, distributed measurements that will provide near-simultaneous coverage at multiple locations will be possible - an exciting new mission concept that will greatly aid many observation scenarios. Partnerships with industry, academia, and other government agencies are all making significant contributions to these new capabilities.

  19. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal.

    PubMed

    Joshi, Varun; Srinivasan, Manoj

    2015-02-08

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.

  20. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal

    PubMed Central

    Joshi, Varun; Srinivasan, Manoj

    2015-01-01

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations. PMID:25663810

  1. The geomorphic effect of recent storms - Quantifying meso scale abrasion across a shore platform

    NASA Astrophysics Data System (ADS)

    Cullen, Niamh; Bourke, Mary; Naylor, Larissa

    2017-04-01

    Boulder abrasion trails (BATs) are lineations on the surface of rock platforms formed by the movement of traction-load clasts by waves. They have been observed on a variety of platform lithologies, including limestone, granite and basalt. Despite previous reporting of these features, the abrasion styles and geomorphic work done by boulder transport has not been quantified. We present the first quantitative measurement of shore platform erosion by boulder transport during extreme storms that occurred in the winter of 2015-2016. Following two storm events in 2016 we mapped and measured 33 individual BATs on a sandstone platform on the west coast of Ireland. The total (minimum) abraded surface area was 10m2. The total (minimum) volume of material abraded was 0.2m3. In order to test the efficacy of this process during non-storm conditions we conducted field experiments on the same platform. We identified two sites on the platform that were similar, but differed in their intertidal roughness. We installed an RBR solo wave pressure transducer (PT) at 0m OD at both locations to record wave data. We measured platform roughness, determined as the fractal dimension of the platform profiles at both sites. We deployed an array of boulders of known dimensions and mass, parallel to the shoreline at 0.5m intervals from the PTs. The experiments were conducted 1. during relatively calm conditions and 2. during higher energy conditions. Data was collected for one tidal cycle. Any boulder displacement distance and direction was measured and geomorphic effects were documented. We find that BATs are formed under a range of wave energy conditions. Our observations indicate that along the North Atlantic coastline, BATs can occur at a high frequency, only limited by sediment supply. Our data show that abrasion by boulder transport is a potentially significant geomorphological process acting to abrade platforms under contemporary climate conditions. In addition, our preliminary findings suggest that platform roughness exerts a strong influence on wave energy and potential boulder transport. We find that abrasion of the platform surface is a fundamentally important process which contributes to lowering of the platform surface over time.

  2. Using "The Big Bang Theory's" World in Young High-Potentials Education

    NASA Astrophysics Data System (ADS)

    Leitner, J. J.; Taubner, R.-S.; Firneis, M. G.; Hitzenberger, R.

    2014-04-01

    One of the corner stones of the Research Platform: ExoLife, University of Vienna, Austria, is public outreach and education with respect to astrobology, exoplanets, and planetary sciences. Since 2009, several initiatives have been started by the Research Platform to concentrate the interest of students inside and outside the University onto natural sciences. Additionally, there are two special programs - one in adult education and one in training/education of young high-potentials. In these programs, astrobiology (and within this context also planetary sciences) as a very interdisciplinary scientific discipline, which fascinates youngsters and junior scientists, is utilized to direct their thirst for knowledge and their curiosity to natural science topics (see [1, 2]).

  3. Defining the Canary Islands Oceanic Platform (PLOCAN) Observing System mission

    NASA Astrophysics Data System (ADS)

    Delory, Eric; Hernández-Brito, Joaquín.; Llínas, Octavio

    2010-05-01

    A permanent multidisciplinary ocean observing system is planned as both a technological and scientific infrastructure for the Canary Islands Oceanic Platform (PLOCAN). The first component of its two-fold mission is to respond to systems and processes' in-situ environmental testing, certification and benchmarking requirements. This will generally take place in dedicated oceanic experimental areas, from the vicinity of the platform to the deep ocean. While these areas and related infrastructures still are at definition stage, an anticipated prerequisite is that testbed observing assets will have to provide a broad range of measurements in agreement with, as well as in contribution to, current and upcoming environmental and technical standards. The second component is to contribute to the global effort towards continuous and real-time multidisciplinary ocean observations. Related activities will encompass climate change parameters characterization as well as important regional specificities like the preservation and study of the region's unique marine biodiversity and sparsely explored seabed. Continuous sampling is planned to progressively expand from the platform vicinity down to the end of the continental slope - to about 3000m depth, the surrounding seabed and water column, then scale up to the region, through mobile systems and fixed open-ocean stations. Such a large and diverse spectrum of observing activities stems from the fact that the PLOCAN observing system is at the center of a long-term strategy, thus granting the opportunity to plan its mission by way of an ambitious set of ocean measurement methods and technologies.

  4. A comparison of measured radiances from AIRS and HIRS across different cloud types

    NASA Astrophysics Data System (ADS)

    Schreier, M. M.; Kahn, B. H.; Staten, P.

    2015-12-01

    The observation of Earth's atmosphere with passive remote sensing instruments is ongoing for decades and resulting in a long-term global dataset. Two prominent examples are operational satellite platforms from the National Oceanic and Atmospheric Administration (NOAA) or research platforms like NASA's Earth Observing System (EOS). The observed spectral ranges of these observations are often similar among the different platforms, but have large differences when it comes to resolution, accuracy and quality control. Our approach is to combine different kinds of instruments at the pixel-scale to improve the characterization of infrared radiances. We focus on data from the High-resolution Infrared Radiation Sounder (HIRS) and compare the observations to radiances from the Atmospheric Infrared Sounder (AIRS) on Aqua. The high spectral resolution of AIRS is used to characterize and possibly recalibrate the observed radiances from HIRS. Our approach is unique in that we use additional information from other passive instruments on the same platforms including the Advanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Imaging Spectroradiometer (MODIS). We will present comparisons of radiances from HIRS and AIRS within different types of clouds that are determined from the imagers. In this way, we can analyze and select the most homogeneous conditions for radiance comparisons and a possible re-calibration of HIRS. We hope to achieve a cloud-type-dependent calibration and quality control for HIRS, which can be extrapolated into the past via inter-calibration of the different HIRS instruments beyond the time of AIRS.

  5. An Analysis of Fish Communities on Structured Habitat in the Northwestern Gulf of Mexico: Potential Impacts of "Rigs-to-Reefs" Programs and a Comparison with Natural Banks

    NASA Astrophysics Data System (ADS)

    Wetz, J. J.; Ajemian, M. J.; Streich, M.; Stunz, G. W.

    2016-02-01

    Artificial habitat in the northwestern Gulf of Mexico is predominantly comprised of both active and reefed oil and gas platforms. In the last few decades, Texas alone has converted over 140 decommissioned oil and gas platforms into permitted artificial reefs. Despite the predominance of this habitat type, the associated fish communities remain poorly studied and few comparisons with natural habitat have been done. Using remotely operated vehicles in 2012 and 2013, we documented fish assemblages surrounding 15 artificial structures and several natural banks located on the Texas shelf. Artificial sites were variable in depth (30-84 m), number of structures, and vertical relief. Both structure type and relief influenced species richness and community structure at these sites. However, bottom depth was most influential with a shift in community composition and high diversity observed at approximately 60 m depth. In this same region, drowned coralgal reefs (the South Texas Banks) provide natural hard substrate with relief up to 20 m. Comparisons between these natural habitats and artificial reefs with similar depths and relief clearly demonstrate fish community differences, perhaps indicating differences in habitat function. To attain species-specific management goals, reefing programs should carefully consider the ambient environmental conditions (i.e., depth) and proximity of natural habitats, as these will most certainly affect the fish assemblage and characteristics of exploited fisheries species.

  6. Remote sensing image segmentation based on Hadoop cloud platform

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  7. Life prediction and constitutive models for engine hot section anisotropic materials program

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Meyer, T. G.

    1992-01-01

    This report presents the results from a 35 month period of a program designed to develop generic constitutive and life prediction approaches and models for nickel-based single crystal gas turbine airfoils. The program is composed of a base program and an optional program. The base program addresses the high temperature coated single crystal regime above the airfoil root platform. The optional program investigates the low temperature uncoated single crystal regime below the airfoil root platform including the notched conditions of the airfoil attachment. Both base and option programs involve experimental and analytical efforts. Results from uniaxial constitutive and fatigue life experiments of coated and uncoated PWA 1480 single crystal material form the basis for the analytical modeling effort. Four single crystal primary orientations were used in the experiments: (001), (011), (111), and (213). Specific secondary orientations were also selected for the notched experiments in the optional program. Constitutive models for an overlay coating and PWA 1480 single crystal material were developed based on isothermal hysteresis loop data and verified using thermomechanical (TMF) hysteresis loop data. A fatigue life approach and life models were selected for TMF crack initiation of coated PWA 1480. An initial life model used to correlate smooth and notched fatigue data obtained in the option program shows promise. Computer software incorporating the overlay coating and PWA 1480 constitutive models was developed.

  8. Agent-based Modeling Methodology for Analyzing Weapons Systems

    DTIC Science & Technology

    2015-03-26

    like programming language that allows access to AFSIM library objects. Figure 10 depicts the various objects that make up a platform within...AFSIM and can be accessed through the scripting language (Zeh & Birkmire, 2014). 29 Figure 10: AFSIM Platform Components (AFSIM Overview, 2014...defined, accessible , and has all the elements of both air-to-air and air-to-ground combat that allow sufficient exploration of the main factors of

  9. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    DTIC Science & Technology

    2015-11-04

    concentration of β- catenin owing to induction of the Wnt signaling pathway. We also extended the ribozyme -based device platform to respond to protein...magnesium concentrations. Localization studies with the ligand demonstrate that ribozyme switches respond to ligands present in the nucleus and/or...based regulatory components by developing a platform that combines a ligand-responsive ribozyme switch and synthetic miRNA regulators to create an

  10. [Applications of the hospital statistics management system].

    PubMed

    Zhai, Hong; Ren, Yong; Liu, Jing; Li, You-Zhang; Ma, Xiao-Long; Jiao, Tao-Tao

    2008-01-01

    The Hospital Statistics Management System is built on an Office Automation Platform of Shandong provincial hospital system. Its workflow, role and popedom technologies are used to standardize and optimize the management program of statistics in the total quality control of hospital statistics. The system's applications have combined the office automation platform with the statistics management in a hospital and this provides a practical example of a modern hospital statistics management model.

  11. KSC-08pd1244

    NASA Image and Video Library

    2008-05-02

    CAPE CANAVERAL, Fla. -- Artist's rendering of the empty Constellation Program's mobile launcher platform planned for the Ares I rocket. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.

  12. KSC-08pd1245

    NASA Image and Video Library

    2008-05-02

    CAPE CANAVERAL, Fla. -- Artist's rendering of the Constellation Program's mobile launcher platform with an Ares I rocket attached. The tower of the mobile launcher will have multiple platforms for personnel access and will be approximately 390 feet tall. The tower will be used in the assembly, testing and servicing of the Ares rockets at Kennedy and will also transport the Ares rockets to the launch pad and provide ground support for launches.

  13. The use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers, volume 2

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Martinez-Sanchez, M.; Arnold, D.

    1982-01-01

    The SKYHOOK program was used to do simulations of two cases of the use of the tether for payload orbital transfer. The transport of a payload along the tether from a heavy lower platform to an upper launching platform is considered. A numerical example of the Shuttle launching a payload using an orbital tether facility is described.

  14. Small- Geo Solar Array: New Generation Of Solar Arrays For Commercial Telecom Satellites For Power Ranges Between 2,5 KW And 7,5 KW

    NASA Astrophysics Data System (ADS)

    Paarmann, Carola; Muller, Jens; Mende, Thomas; Borner, Carsten; Mascher, Rolf

    2011-10-01

    In the frame of the ESA supported Artes 11 program a new generation of GEO telecommunication satellites is under development. This platform will cover the power range from 2 to 5 kW. ASTRIUM GmbH is contracted to develop and design the Solar Array for this platform. Furthermore the manufacturing and the qualification of a PFM wing for the first flight model is foreseen. The satellite platform, called Small-GEO, is developed under the responsibility of OHB System. This first Small-GEO satellite is designated to be delivered to HISPASAT for operation. The concept of ASTRIUM GmbH is to use all the experiences from the very successful EUROSTAR 2000+, EUROSTAR-3000 and the ALPHABUS platform and to adapt the technologies to the Small- GEO Solar Array. With the benefit of the huge in-orbit heritage of these programs, the remaining risks for the Small-GEO Solar Array can be minimized. The development of the Small-GEO Solar Array extends the ASTRIUM GmbH product portfolio by covering now the complete power range between 2 kW and 31 kW. This paper provides an overview of the different configurations, their main design features and parameters.

  15. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2009-03-01

    a field experiment , but program officials report that it will take additional efforts to transition the waveform to an operational platform. The...successfully demonstrated during a field experiment ending in October 2008 that included a multi-subnet test by Future Combat Systems personnel. The...Individual Programs 29 Advanced Extremely High Frequency (AEHF) Satellites 31 Advanced Threat Infrared Countermeasure/Common Missile Warning System

  16. An Evaluation with Respect to e-Learning and Economic Analysis of the Graduate Program Offered in Anadolu University's Institute of Educational Sciences

    ERIC Educational Resources Information Center

    Bayrak, Coskun; Kesim, Eren

    2005-01-01

    In this study, an e-learning platform was formed to enable school teachers and administrators to attend graduate programs in the field of educational administration, supervision, planning and economics. In this framework, for the non-thesis educational administration, supervision, planning and economics graduate programs to be conducted in the…

  17. Need for expanded environmental measurement capabilities in geosynchronous Earth orbit

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico P.

    1991-01-01

    The proliferation of environmental satellites in low altitude earth orbit (LEO) has demonstrated the usefulness of earth remote sensing from space. As use of the technology grows, the limitations of LEO missions become more apparent. Many inadequacies can be met by remote sensing from geosynchronous earth orbits (GEO) that can provide high temporal resolution, consistent viewing of specific earth targets, long sensing dwell times with varying sun angles, stereoscopic coverage, and correlative measurements with ground and LEO observations. An environmental platform in GEO is being studied by NASA. Small research satellite missions in GEO were studied (1990) at GSFC. Some recent independent assessments of NASA Earth Science Programs recommend accelerating the earlier deployment of smaller missions.

  18. Guidelines for the aerosol climatic effects special study: An element of the NASA climate research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.

  19. Electronic screen media for persons with autism spectrum disorders: results of a survey.

    PubMed

    Shane, Howard C; Albert, Patti Ducoff

    2008-09-01

    Social and anecdotal reports suggest a predilection for visual media among individuals on the autism spectrum, yet no formal investigation has explored the extent of that use. Using a distributed questionnaire design, parents and caregivers report on time allotted toward media, including observable behaviors and communicative responses. More time was spent engaged with electronic screen media (ESM) than any other leisure activity. Television and movie viewing was more popular than computer usage. Across media platforms, animated programs were more highly preferred. Prevalent verbal and physical imitation was reported to occur during and following exposure to ESM. Clinical implications to strategically incorporate ESM into learning approaches for children with autism spectrum disorders (ASD) are provided.

  20. Measuring the RC time constant with Arduino

    NASA Astrophysics Data System (ADS)

    Pereira, N. S. A.

    2016-11-01

    In this work we use the Arduino UNO R3 open source hardware platform to assemble an experimental apparatus for the measurement of the time constant of an RC circuit. With adequate programming, the Arduino is used as a signal generator, a data acquisition system and a basic signal visualisation tool. Theoretical calculations are compared with direct observations from an analogue oscilloscope. Data processing and curve fitting is performed on a spreadsheet. The results obtained for the six RC test circuits are within the expected interval of values defined by the tolerance of the components. The hardware and software prove to be adequate to the proposed measurements and therefore adaptable to a laboratorial teaching and learning context.

  1. Communication Platform Payload Definition (CPPD) study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 2 (Technical Report) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  2. Communication Platform Payload Definition (CPPD) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.

    1986-01-01

    This is Volume 1 (Executive Summary) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  3. Simulation of cooperating robot manipulators on a mobile platform

    NASA Technical Reports Server (NTRS)

    Murphy, Steve H.; Wen, John T.; Saridis, George N.

    1990-01-01

    The dynamic equations of motion for two manipulators holding a common object on a freely moving mobile platform are developed. The full dynamic interactions from arms to platform and arm-tip to arm-tip are included in the formulation. The development of the closed chain dynamics allows for the use of any solution for the open topological tree of base and manipulator links. In particular, because the system has 18 degrees of freedom, recursive solutions for the dynamic simulation become more promising for efficient calculations of the motion. Simulation of the system is accomplished through a MATLAB program, and the response is visualized graphically using the SILMA Cimstation.

  4. Communication Platform Payload Definition (CPPD) study. Volume 3: Addendum

    NASA Technical Reports Server (NTRS)

    Hunter, E. M.; Driggers, T.; Jorasch, R.

    1986-01-01

    This is Volume 3 (Addendum) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study Program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services.

  5. Acoustic Sensing of Ocean Turbulence

    DTIC Science & Technology

    1991-12-01

    quantities and of fast varying quantities, requiring high spatial resolution, fast response sensors and stable observation platforms. A classical approach to...with this type of sensor . Moum et.al. [Ref.l0] performed upper ocean observations with this instrument where they were able to 60 characterize the fine...platform orientation using the 3 axis accelerometer as tiltmeters . E. NON-ACOUSTIC DATA The non-acoustic channels on the CDV package are: 3 component

  6. Dealing with Disengagement through Diversity: An Electronic Curriculum for Cultural Relevance.

    ERIC Educational Resources Information Center

    Gabbard, David A.; L'Esperance, Mark; Perez, Theresa; Atkinson, Terry

    2002-01-01

    Examines specific features of the online Blackboard distance learning platform that enhance the advantages of alternative teacher certification programs, especially with regard to helping teachers develop a culturally relevant pedagogy. Focuses on North Carolina's NCTeach program, which provides an accelerated certification process for people…

  7. UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.

    PubMed

    Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun

    2017-11-14

    With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.

  8. CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling

    PubMed Central

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H.; Lau, Ching C.; Behl, Sanjiv; Man, Tsz-Kwong

    2007-01-01

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License. PMID:19936083

  9. CGI: Java software for mapping and visualizing data from array-based comparative genomic hybridization and expression profiling.

    PubMed

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong

    2007-10-06

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  10. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  11. KSC-2009-5546

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - The towering 327-foot-tall Ares I-X rocket rides aboard a crawler-transporter as it exits the massive Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The rocket is bolted to its mobile launcher platform for the move to the launch pad. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  12. ELT-572(v)2 DIRCM: simulation, system design and DTE process to protect ItAF platforms against ManPADS

    NASA Astrophysics Data System (ADS)

    Borriello, G.; Bonori, V.; Cresti, M.; Dente, E.; Ideo, L.; Mazzi, G.; Usai, A.; Tafuto, A.; Togna, F.

    2014-10-01

    In this paper authors provide a description of the currently deployed Man Portable Air Defense System (ManPADS) heat-seeking missiles. Principles of IR seeking and Aircraft signatures are shortly described. Basic information are listed on currently designed Infra-Red Counter Measure Systems, intended to protect Aircrafts against ManPADS. Authors provide an overview on ELT-572(v)2 DIRCM Program, funded by Italian Air Force, currently in low rate production phase. Description of the Design and Development phase, completed in Elettronica SpA in 2013, is reported. Development Test and Evaluation (DTE) Activities on ELT-572(v)2 DIRCM, jointly performed by Elettronica Spa and Italian Air Force Flight Test Centre, are shortly described. A summary of tests and some results are also discussed. Platform Installation Programs, using the low rate production units from ELT-572(v)2 DIRCM Program, are finally listed.

  13. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.

    PubMed

    Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo; Bathe, Mark; Shih, William M; Ke, Yonggang

    2016-06-22

    Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries.

  14. Multifunctional Web Enabled Ocean Sensor Systems for the Monitoring of a Changing Ocean

    NASA Astrophysics Data System (ADS)

    Pearlman, Jay; Castro, Ayoze; Corrandino, Luigi; del Rio, Joaquin; Delory, Eric; Garello, Rene; Heuermann, Rudinger; Martinez, Enoc; Pearlman, Francoise; Rolin, Jean-Francois; Toma, Daniel; Waldmann, Christoph; Zielinski, Oliver

    2016-04-01

    As stated in the 2010 "Ostend Declaration", a major challenge in the coming years is the development of a truly integrated and sustainably funded European Ocean Observing System for supporting major policy initiatives such as the Integrated Maritime Policy and the Marine Strategy Framework Directive. This will be achieved with more long-term measurements of key parameters supported by a new generation of sensors whose costs and reliability will enable broad and consistent observations. Within the NeXOS project, a framework including new sensors capabilities and interface software has been put together that embraces the key technical aspects needed to improve the temporal and spatial coverage, resolution and quality of marine observations. The developments include new, low-cost, compact and integrated sensors with multiple functionalities that will allow for the measurements useful for a number of objectives, ranging from more precise monitoring and modeling of the marine environment to an improved assessment of fisheries. The project is entering its third year and will be demonstrating initial capabilities of optical and acoustic sensor prototypes that will become available for a number of platforms. For fisheries management, there is also a series of sensors that support an Ecosystem Approach to Fisheries (EAF). The greatest capabilities for comprehensive operations will occur when these sensors can be integrated into a multisensory capability on a single platform or multiply interconnected and coordinated platforms. Within NeXOS the full processing steps starting from the sensor signal all the way up to distributing collected environmental information will be encapsulated into standardized new state of the art Smart Sensor Interface and Web components to provide both improved integration and a flexible interface for scientists to control sensor operation. The use of the OGC SWE (Sensor Web Enablement) set of standards like OGC PUCK and SensorML at the instrument to platform integration phase will provide standard mechanisms for a truly plug'n'work connection. Through this, NeXOS Instruments will maintain within themselves specific information about how a platform (buoy controller, AUV controller, Observatory controller) has to configure and communicate with the instrument without the platform needing previous knowledge about the instrument. This mechanism is now being evaluated in real platforms like a Slocum Glider from Teledyne Web research, SeaExplorer Glider from Alseamar, Provor Float from NKE, and others including non commercial platforms like Obsea seafloor cabled observatory. The latest developments in the NeXOS sensors and the integration into an observation system will be discussed, addressing demonstration plans both for a variety of platforms and scientific objectives supporting marine management.

  15. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  16. The SMART Platform: early experience enabling substitutable applications for electronic health records.

    PubMed

    Mandl, Kenneth D; Mandel, Joshua C; Murphy, Shawn N; Bernstam, Elmer Victor; Ramoni, Rachel L; Kreda, David A; McCoy, J Michael; Adida, Ben; Kohane, Isaac S

    2012-01-01

    The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project seeks to develop a health information technology platform with substitutable applications (apps) constructed around core services. The authors believe this is a promising approach to driving down healthcare costs, supporting standards evolution, accommodating differences in care workflow, fostering competition in the market, and accelerating innovation. The Office of the National Coordinator for Health Information Technology, through the Strategic Health IT Advanced Research Projects (SHARP) Program, funds the project. The SMART team has focused on enabling the property of substitutability through an app programming interface leveraging web standards, presenting predictable data payloads, and abstracting away many details of enterprise health information technology systems. Containers--health information technology systems, such as electronic health records (EHR), personally controlled health records, and health information exchanges that use the SMART app programming interface or a portion of it--marshal data sources and present data simply, reliably, and consistently to apps. The SMART team has completed the first phase of the project (a) defining an app programming interface, (b) developing containers, and (c) producing a set of charter apps that showcase the system capabilities. A focal point of this phase was the SMART Apps Challenge, publicized by the White House, using http://www.challenge.gov website, and generating 15 app submissions with diverse functionality. Key strategic decisions must be made about the most effective market for further disseminating SMART: existing market-leading EHR vendors, new entrants into the EHR market, or other stakeholders such as health information exchanges.

  17. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    DOE PAGES

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.; ...

    2015-12-18

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms -1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less

  18. The Midlatitude Continental Convective Clouds Experiment (MC3E)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, M. P.; Petersen, W. A.; Bansemer, A.

    The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission, was conducted in south-central Oklahoma during April – May 2011. MC3E science objectives were motivated by the need to improve understanding of midlatitude continental convective cloud system lifecycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives a multi-scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during the MC3E, of which results from three deepmore » convective events are highlighted. Vertical structure, air motions, precipitation drop-size distributions and ice properties were retrieved from multi-wavelength radar, profiler, and aircraft observations for an MCS on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multi-platform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 ms -1 supported growth of hail and large rain drops. As a result, data collected during the MC3E campaign is being used in a number of current and ongoing research projects and is available through the DOE ARM and NASA data archives.« less

  19. The virtual mission approach: Empowering earth and space science missions

    NASA Astrophysics Data System (ADS)

    Hansen, Elaine

    1993-08-01

    Future Earth and Space Science missions will address increasingly broad and complex scientific issues. To accomplish this task, we will need to acquire and coordinate data sets from a number of different instrumetns, to make coordinated observations of a given phenomenon, and to coordinate the operation of the many individual instruments making these observations. These instruments will need to be used together as a single ``Virtual Mission.'' This coordinated approach is complicated in that these scientific instruments will generally be on different platforms, in different orbits, from different control centers, at different institutions, and report to different user groups. Before this Virtual Mission approach can be implemented, techniques need to be developed to enable separate instruments to work together harmoniously, to execute observing sequences in a synchronized manner, and to be managed by the Virtual Mission authority during times of these coordinated activities. Enabling technologies include object-oriented designed approaches, extended operations management concepts and distributed computing techniques. Once these technologies are developed and the Virtual Mission concept is available, we believe the concept will provide NASA's Science Program with a new, ``go-as-you-pay,'' flexible, and resilient way of accomplishing its science observing program. The concept will foster the use of smaller and lower cost satellites. It will enable the fleet of scientific satellites to evolve in directions that best meet prevailing science needs. It will empower scientists by enabling them to mix and match various combinations of in-space, ground, and suborbital instruments - combinations which can be called up quickly in response to new events or discoveries. And, it will enable small groups such as universities, Space Grant colleges, and small businesses to participate significantly in the program by developing small components of this evolving scientific fleet.

  20. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  1. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio

    2016-08-01

    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  2. NAOMI instrument: a product line of compact and versatile cameras designed for HR and VHR missions in Earth observation

    NASA Astrophysics Data System (ADS)

    Luquet, Ph.; Brouard, L.; Chinal, E.

    2017-11-01

    Astrium has developed a product line of compact and versatile instruments for HR and VHR missions in Earth Observation. These cameras consist on a Silicon Carbide Korsch-type telescope, a focal plane with one or several retina modules - including five lines CCD, optical filters and front end electronics - and the instrument main electronics. Several versions have been developed with a telescope pupil diameter from 200 mm up to 650 mm, covering a large range of GSD (from 2.5 m down to sub-metric) and swath (from 10km up to 30 km) and compatible with different types of platform. Nine cameras have already been manufactured for five different programs: ALSAT2 (Algeria), SSOT (Chile), SPOT6 & SPOT7 (France), KRS (Kazakhstan) and VNREDSat (Vietnam). Two of them have already been launched and are delivering high quality images.

  3. KSC-04pd1588

    NASA Image and Video Library

    2004-07-29

    KENNEDY SPACE CENTER, FLA. - Inside Hangar AE at Cape Canaveral Air Force Station (CCAFS), workers attach straps from an overhead crane onto the platform under the Swift spacecraft, which is enclosed in a protective cover. Swift will be raised to vertical and placed on a work stand. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. It will be launched no earlier than Oct. 7 into a low-Earth orbit on a Boeing Delta 7320 rocket from pad 17-A at CCAFS. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date.

  4. Synchronization of Coupled Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kennedy, Linda; Andereck, Barbara

    2007-10-01

    The Kuramoto model is used to describe synchronization of non-linear oscillators in biological, chemical, and physics systems. Using identical metronomes with similar frequencies on a movable platform, as per J. Pantaleone Am. J. Phys. 70, 992 (2002), we hope to realize a mechanical example of this model. A variety of materials were used for the movable platforms that coupled the metronomes. Platforms were either allowed to roll on cylindrical supports or suspended in pendulum fashion from the ceiling. Metronomes were started out of phase and allowed to synchronize. Measurements by PASCO photogates monitored by a LabView program were used to determine the phase difference between the two metronomes as a function of time. The dynamics of the metronome coupling was described by two second-order differential equations involving four key parameters: platform coupling, oscillation angle, damping/driving strength, and intrinsic frequency difference. Outstanding agreement between theory and experiment was achieved when the vertical motion of the platform and metronomes was included in the governing equations.

  5. C to VHDL compiler

    NASA Astrophysics Data System (ADS)

    Berdychowski, Piotr P.; Zabolotny, Wojciech M.

    2010-09-01

    The main goal of C to VHDL compiler project is to make FPGA platform more accessible for scientists and software developers. FPGA platform offers unique ability to configure the hardware to implement virtually any dedicated architecture, and modern devices provide sufficient number of hardware resources to implement parallel execution platforms with complex processing units. All this makes the FPGA platform very attractive for those looking for efficient heterogeneous, computing environment. Current industry standard in development of digital systems on FPGA platform is based on HDLs. Although very effective and expressive in hands of hardware development specialists, these languages require specific knowledge and experience, unreachable for most scientists and software programmers. C to VHDL compiler project attempts to remedy that by creating an application, that derives initial VHDL description of a digital system (for further compilation and synthesis), from purely algorithmic description in C programming language. This idea itself is not new, and the C to VHDL compiler combines the best approaches from existing solutions developed over many previous years, with the introduction of some new unique improvements.

  6. The SCEC Broadband Platform: A Collaborative Open-Source Software Package for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Silva, F.; Maechling, P. J.; Goulet, C.; Somerville, P.; Jordan, T. H.

    2013-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform is a collaborative software development project involving SCEC researchers, graduate students, and the SCEC Community Modeling Environment. The SCEC Broadband Platform is open-source scientific software that can generate broadband (0-100Hz) ground motions for earthquakes, integrating complex scientific modules that implement rupture generation, low and high-frequency seismogram synthesis, non-linear site effects calculation, and visualization into a software system that supports easy on-demand computation of seismograms. The Broadband Platform operates in two primary modes: validation simulations and scenario simulations. In validation mode, the Broadband Platform runs earthquake rupture and wave propagation modeling software to calculate seismograms of a historical earthquake for which observed strong ground motion data is available. Also in validation mode, the Broadband Platform calculates a number of goodness of fit measurements that quantify how well the model-based broadband seismograms match the observed seismograms for a certain event. Based on these results, the Platform can be used to tune and validate different numerical modeling techniques. During the past year, we have modified the software to enable the addition of a large number of historical events, and we are now adding validation simulation inputs and observational data for 23 historical events covering the Eastern and Western United States, Japan, Taiwan, Turkey, and Italy. In scenario mode, the Broadband Platform can run simulations for hypothetical (scenario) earthquakes. In this mode, users input an earthquake description, a list of station names and locations, and a 1D velocity model for their region of interest, and the Broadband Platform software then calculates ground motions for the specified stations. By establishing an interface between scientific modules with a common set of input and output files, the Broadband Platform facilitates the addition of new scientific methods, which are written by earth scientists in a number of languages such as C, C++, Fortran, and Python. The Broadband Platform's modular design also supports the reuse of existing software modules as building blocks to create new scientific methods. Additionally, the Platform implements a wrapper around each scientific module, converting input and output files to and from the specific formats required (or produced) by individual scientific codes. Working in close collaboration with scientists and research engineers, the SCEC software development group continues to add new capabilities to the Broadband Platform and to release new versions as open-source scientific software distributions that can be compiled and run on many Linux computer systems. Our latest release includes the addition of 3 new simulation methods and several new data products, such as map and distance-based goodness of fit plots. Finally, as the number and complexity of scenarios simulated using the Broadband Platform increase, we have added batching utilities to substantially improve support for running large-scale simulations on computing clusters.

  7. HELIPLAT: design of high altitude very-long endurance solar powered platform for telecommunication and earth observation

    NASA Astrophysics Data System (ADS)

    Romeo, Giulio; Frulla, Giacomo

    2002-07-01

    A research is being carried out at the Turin Polytechnic University aiming at the design of an HAVE/UAV (High Altitude Very-long Endurance/Uninhabited Air Vehicle) and manufacturing of a scale-sized solar-powered prototype. The vehicle should climg to 17-20 km by taking advantage, mainly, of direct sun radiation and maintaining; electric energy not requeired for propulsion and payload operation is pumped back into the fuel cells energy storage system for the night. A computer program has been developed for carrying out a parametric study for the platform design, by taking into account the solar radiation change over one year, the altitude, masses and efficiencies of solar cells and fuel cells, aerodynamic performances, etc. A parametric study shows as fuel cells and solar cells efficiency and mass give the most influence on the platform dimensions. A wide use of high modulus CFRP has been made in designing the structure in order to minimise the airframe weight. The whole mass resulted of 70 kg. The classical hydraulic loading rig was designed for applying the ultimate shear-bending-torsion load to the structure and to verify the theoretical behaviour. A finite element analysis has been carried out by using the MSC/PATRAN/NASTRAN code in order to predict th static and dynamic behaviour. A good correlation has been obtained between the theoretical, numerical and experimental results up to a load corresponding to 5g.

  8. Designing, testing, and implementing a sustainable nurse home visiting program: right@home.

    PubMed

    Goldfeld, Sharon; Price, Anna; Kemp, Lynn

    2018-05-01

    Nurse home visiting (NHV) offers a potential platform to both address the factors that limit access to services for families experiencing adversity and provide effective interventions. Currently, the ability to examine program implementation is hampered by a lack of detailed description of actual, rather than expected, program development and delivery in published studies. Home visiting implementation remains a black box in relation to quality and sustainability. However, previous literature would suggest that efforts to both report and improve program implementation are vital for NHV to have population impact and policy sustainability. In this paper, we provide a case study of the design, testing, and implementation of the right@home program, an Australian NHV program and randomized controlled trial. We address existing gaps related to implementation of NHV programs by describing the processes used to develop the program to be trialed, summarizing its effectiveness, and detailing the quality processes and implementation evaluation. The weight of our evidence suggests that NHV can be a powerful and sustainable platform for addressing inequitable outcomes, particularly when the program focuses on parent engagement and partnership, delivers evidence-based strategies shown to improve outcomes, includes fidelity monitoring, and is adapted to and embedded within existing service delivery systems. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of The New York Academy of Sciences.

  9. Watch what happens: using a web-based multimedia platform to enhance intraoperative learning and development of clinical reasoning.

    PubMed

    Fingeret, Abbey L; Martinez, Rebecca H; Hsieh, Christine; Downey, Peter; Nowygrod, Roman

    2016-02-01

    We aim to determine whether observed operations or internet-based video review predict improved performance in the surgery clerkship. A retrospective review of students' usage of surgical videos, observed operations, evaluations, and examination scores were used to construct an exploratory principal component analysis. Multivariate regression was used to determine factors predictive of clerkship performance. Case log data for 231 students revealed a median of 25 observed cases. Students accessed the web-based video platform a median of 15 times. Principal component analysis yielded 4 factors contributing 74% of the variability with a Kaiser-Meyer-Olkin coefficient of .83. Multivariate regression predicted shelf score (P < .0001), internal clinical skills examination score (P < .0001), subjective evaluations (P < .001), and video website utilization (P < .001) but not observed cases to be significantly associated with overall performance. Utilization of a web-based operative video platform during a surgical clerkship is an independently associated with improved clinical reasoning, fund of knowledge, and overall evaluation. Thus, this modality can serve as a useful adjunct to live observation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  11. CSDC: a nationwide screening platform for stroke control and prevention in China.

    PubMed

    Jinghui Yu; Huajian Mao; Mei Li; Dan Ye; Dongsheng Zhao

    2016-08-01

    As a leading cause of severe disability and death, stroke places an enormous burden on Chinese society. A nationwide stroke screening platform called CSDC (China Stoke Data Center) has been built to support the national stroke prevention program and stroke clinical research since 2011. This platform is composed of a data integration system and a big data analysis system. The data integration system is used to collect information on risk factors, diagnosis history, treatment, and sociodemographic characteristics and stroke patients' EMR. The big data analysis system support decision making of stroke control and prevention, clinical evaluation and research. In this paper, the design and implementation of CSDC are illustrated, and some application results are presented. This platform is expected to provide rich data and powerful tool support for stroke control and prevention in China.

  12. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry

    NASA Astrophysics Data System (ADS)

    Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.

    An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper air soundings from a 4-day field campaign conducted in February of 1999. The CALMET meteorological output and the generated EI drove the transport and dispersion model, CALPUFF. Model results were compared with SO 2 measurements taken from the monitoring network at Dos Bocas.

  13. Evaluating Student Perceptions of Course Delivery Platforms

    ERIC Educational Resources Information Center

    Bramorski, Tom; Madan, Manu S.

    2016-01-01

    In this paper we evaluate effectiveness of course delivery mode on three dimensions: values, networking opportunities and learning. While students and their future employers are two important customers for the business program, we focus on the perception of students regarding the effectiveness of course delivery mode on program performance. The…

  14. VoiceThread: A Useful Program Evaluation Tool

    ERIC Educational Resources Information Center

    Mott, Rebecca

    2018-01-01

    With today's technology, Extension professionals have a variety of tools available for program evaluation. This article describes an innovative platform called VoiceThread that has been used in many classrooms but also is useful for conducting virtual focus group research. I explain how this tool can be used to collect qualitative participant…

  15. DARPA Antibody Technology Program. Standardized Test Bed for Antibody Characterization: Characterization of an MS2 ScFv Antibody Produced by Illumina

    DTIC Science & Technology

    2016-08-01

    platforms. 15. SUBJECT TERMS Antibody Antibody Technology Program (ATP) Quality Enzyme-linked immunosorbent assay ( ELISA ) Biosurveillance Single-chain...2.6 Thermal Stress Test............................................................................................4 2.7 ELISA ...3.5 ELISA Results .................................................................................................11 3.6 SPR Results

  16. VISUAL PLUMES CONCEPTS TO POTENTIALLY ADAPT OR ADOPT IN MODELING PLATFORMS SUCH AS VISJET

    EPA Science Inventory

    Windows-based programs share many familiar features and components. For example, file dialogue windows are familiar to most Windows-based personal computer users. Such program elements are desirable because the user is already familiar with how they function, obviating the need f...

  17. Marine Program Annual Report 1973.

    ERIC Educational Resources Information Center

    New Hampshire Univ., Durham. Marine Program.

    This report describes the activities of a program designed to develop the information and systems necessary for managing the Continental Shelf and Coastal Zone of Northern New England. Ten research areas or projects are discussed: aquaculture, biology and ecology, coastal oceanography, buoy systems studies, man in the sea, marine platforms and…

  18. TEODOOR, a blueprint for distributed terrestrial observation data infrastructures

    NASA Astrophysics Data System (ADS)

    Kunkel, Ralf; Sorg, Jürgen; Abbrent, Martin; Borg, Erik; Gasche, Rainer; Kolditz, Olaf; Neidl, Frank; Priesack, Eckart; Stender, Vivien

    2017-04-01

    TERENO (TERrestrial ENvironmental Observatories) is an initiative funded by the large research infrastructure program of the Helmholtz Association of Germany. Four observation platforms to facilitate the investigation of consequences of global change for terrestrial ecosys-tems and the socioeconomic implications of these have been implemented and equipped from 2007 until 2013. Data collection, however, is planned to be performed for at least 30 years. TERENO provides series of system variables (e.g. precipitation, runoff, groundwater level, soil moisture, water vapor and trace gases fluxes) for the analysis and prognosis of global change consequences using integrated model systems, which will be used to derive efficient prevention, mitigation and adaptation strategies. Each platform is operated by a different Helmholtz-Institution, which maintains its local data infrastructure. Within the individual observatories, areas with intensive measurement programs have been implemented. Different sensors provide information on various physical parameters like soil moisture, temperatures, ground water levels or gas fluxes. Sensor data from more than 900 stations are collected automatically with a frequency of 20 s-1 up to 2 h-1, summing up to about 2,500,000 data values per day. In addition, three weather radar devices create raster data with a frequency of 12 to 60 h-1. The data are automatically imported into local relational database systems using a common data quality assessment framework, used to handle processing and assessment of heterogeneous environmental observation data. Starting with the way data are imported into the data infrastructure, custom workflows are developed. Data levels implying the underlying data processing, stages of quality assessment and data ac-cessibility are defined. In order to facilitate the acquisition, provision, integration, management and exchange of heterogeneous geospatial resources within a scientific and non-scientific environment the dis-tributed spatial data infrastructure TEODOOR (TEreno Online Data RepOsitORry) has been build-up. The individual observatories are connected via OGC-compliant web-services, while the TERENO Data Discovery Portal (DDP) enables data discovery, visualization and data ac-cess. Currently, free access to data from more than 900 monitoring stations is provided.

  19. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Stephanie G.; Yan, Leo L. W.; Silver, Pamela A.

    In this study, microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyadsmore » reveals general design principles for the construction of robust autotroph/heterotroph consortia. As a result, we observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. In conclusion, enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i.e., increased efficiency growing on sucrose) could improve these communities as production platforms.« less

  20. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction

    DOE PAGES

    Hays, Stephanie G.; Yan, Leo L. W.; Silver, Pamela A.; ...

    2017-01-23

    In this study, microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyadsmore » reveals general design principles for the construction of robust autotroph/heterotroph consortia. As a result, we observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. In conclusion, enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i.e., increased efficiency growing on sucrose) could improve these communities as production platforms.« less

Top