Guise, Jeanne-Marie; Winter, Susan; Fiore, Stephen M; Regensteiner, Judith G; Nagel, Joan
2017-04-01
Research organizations face challenges in creating infrastructures that cultivates and sustains interdisciplinary team science. The objective of this paper is to identify structural elements of organizations and training that promote team science. We qualitatively analyzed the National Institutes of Health's Building Interdisciplinary Research Careers in Women's Health, K12 using organizational psychology and team science theories to identify organizational design factors for successful team science and training. Seven key design elements support team science: (1) semiformal meta-organizational structure, (2) shared context and goals, (3) formal evaluation processes, (4) meetings to promote communication, (5) role clarity in mentoring, (6) building interpersonal competencies among faculty and trainees, and (7) designing promotion and tenure and other organizational processes to support interdisciplinary team science. This application of theory to a long-standing and successful program provides important foundational elements for programs and institutions to consider in promoting team science.
Building the team for team science
Read, Emily K.; O'Rourke, M.; Hong, G. S.; Hanson, P. C.; Winslow, Luke A.; Crowley, S.; Brewer, C. A.; Weathers, K. C.
2016-01-01
The ability to effectively exchange information and develop trusting, collaborative relationships across disciplinary boundaries is essential for 21st century scientists charged with solving complex and large-scale societal and environmental challenges, yet these communication skills are rarely taught. Here, we describe an adaptable training program designed to increase the capacity of scientists to engage in information exchange and relationship development in team science settings. A pilot of the program, developed by a leader in ecological network science, the Global Lake Ecological Observatory Network (GLEON), indicates that the training program resulted in improvement in early career scientists’ confidence in team-based network science collaborations within and outside of the program. Fellows in the program navigated human-network challenges, expanded communication skills, and improved their ability to build professional relationships, all in the context of producing collaborative scientific outcomes. Here, we describe the rationale for key communication training elements and provide evidence that such training is effective in building essential team science skills.
NASA Astrophysics Data System (ADS)
Solomon, S. C.; Stockman, S.; Chapman, C. R.; Leary, J. C.; McNutt, R. L.
2003-12-01
The Education and Public Outreach (EPO) Program of the MESSENGER mission to the planet Mercury, supported by the NASA Discovery Program, is a full partnership between the project's science and engineering teams and a team of professionals from the EPO community. The Challenger Center for Space Science Education (CCSSE) and the Carnegie Academy for Science Education (CASE) are developing sets of MESSENGER Education Modules targeting grade-specific education levels across K-12. These modules are being disseminated through a MESSENGER EPO Website developed at Montana State University, an Educator Fellowship Program managed by CCSSE to train Fellows to conduct educator workshops, additional workshops planned for NASA educators and members of the Minority University - SPace Interdisciplinary Network (MU-SPIN), and existing inner-city science education programs (e.g., the CASE Summer Science Institute in Washington, D.C.). All lessons are mapped to national standards and benchmarks by MESSENGER EPO team members trained by the American Association for the Advancement of Science (AAAS) Project 2061, all involve user input and feedback and quality control by the EPO team, and all are thoroughly screened by members of the project science and engineering teams. At the college level, internships in science and engineering are provided to students at minority institutions through a program managed by MU-SPIN, and additional opportunities for student participation across the country are planned as the mission proceeds. Outreach efforts include radio spots (AAAS), museum displays (National Air and Space Museum), posters and traveling exhibits (CASE), general language books (AAAS), programs targeting underserved communities (AAAS, CCSSE, and MU-SPIN), and a documentary highlighting the scientific and technical challenges involved in exploring Mercury and how the MESSENGER team has been meeting these challenges. As with the educational elements, science and engineering team members are active partners in each of the public outreach efforts. MESSENGER fully leverages other NASA EPO programs, including the Solar System Exploration EPO Forum and the Solar System Ambassadors. The overarching goal of the MESSENGER EPO program is to convey the excitement of planetary exploration to students and the lay public throughout the nation.
Design of a professional development and support program for future photonics industry team leaders
NASA Astrophysics Data System (ADS)
Hall-Wallace, Michelle; Regens, Nancy L.; Pompea, Stephen M.
2002-05-01
The University of Arizona's Collaboration to Advance Teaching Technology and Science (CATTS) program sponsored by the National Science Foundation has found a successful way to unite public and charter school students and teachers, university science outreach programs, graduate and undergraduate students, and university faculty for the betterment of science education. A key aspect of this success has been the ability of the project to assist stakeholders in understanding the different cultural perspectives of all of the participants. The success of this program has led us to create a template for a professional development and support program emphasizing the degree of cross-cultural understanding appropriate for today's multinational photonics industry. This template is designed to give future photonics technical, managerial, and manufacturing leaders training in a variety of areas that can enhance their productivity and ability to lead teams. The design would be appropriate for photonics research and development teams, sales and marketing teams, teams with diverse members new college hires, and newly emplaced managers. This education template would also be appropriate for students in photonics industry technician and graduate- level programs. This type of program is not a substitute for other forms of professional managerial training, but rather augments such programs with material that can aid in a more global perspective.
Site scientific mission plan for the Southern Great Plains CART site, January-June 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.
1994-12-01
The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Teammore » [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.« less
NASA Technical Reports Server (NTRS)
1991-01-01
A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.
Overview of NASA's Microgravity Materials Science Program
NASA Technical Reports Server (NTRS)
Downey, James Patton
2012-01-01
The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.
Exploration of the Moon and Asteroids by Secondary Students
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Bakerman, M. N.; Buxner, S.
2016-12-01
Since 2014, the Exploration of the Moon and Asteroids by Secondary Students, or ExMASS, program provides an opportunity for students to participate in authentic scientific research. The ExMASS program is an effort managed by the Center for Lunar Science and Exploration (CLSE). Led by the Lunar and Planetary Institute and Johnson Space Center, CLSE is one of nine teams comprising NASA's Solar System Exploration Research Virtual Institute (SSERVI). Over the course of one academic year, 10 teams of U.S. high school students conduct their own scientific investigations of Earth's Moon, or asteroids, with guidance from a scientist advisor. The program includes two elements: 1) two guided-inquiry introductory research activities that builds student knowledge of current lunar/asteroid science and lunar/asteroid data, and 2) an open-inquiry research project in which the students apply their knowledge to a self-defined project. Because the research is student-driven, it is not necessarily original research; original research is therefore not required. However, one team's research has been published in a professional journal. At the end of the school year, teams submit an abstract and research poster which are scored by a panel a judges. The top four scoring teams gather virtually to give short presentations to the judges. After presentations and time for Q&A, the judges choose one team to present in person at the Exploration Science Forum (ESF). The posters of all finalist schools are displayed at the ESF. The ExMASS program is evaluated by collecting data on changes in students' lunar/asteroid content knowledge, student attitudes toward science and science careers, and student perceptions of the processes of science in which their team participated. Exit surveys for teachers, students, and advisors are also distributed at the end of each program year to gather general feedback about the program and its impact. Results of this data from the first two years of the ExMASS program (2014 and 2015) will be discussed.
Evaluating the High School Lunar Research Projects Program
NASA Technical Reports Server (NTRS)
Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.
2013-01-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.
The Director's Discretionary Early Release Science Program for JWST
NASA Astrophysics Data System (ADS)
Levenson, Nancy A.; Sembach, Kenneth
2018-06-01
We will introduce the Director's Discretionary Early Release Science (DD-ERS) Program for the James Webb Space Telescope (JWST). These programs will educate and inform the community about JWST's instruments and capabilities, providing open access to early observations, and science-enabling products that the DD-ERS teams produce. During this session, we will provide updates on JWST status, and the 13 selected teams will give an overview of their planned observations and future work.
Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools
NASA Astrophysics Data System (ADS)
Ireton, F.; Owens, A.; Steffen, P. L.
2004-12-01
Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.
Evaluating the High School Lunar Research Projects Program
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.
2012-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.
ERIC Educational Resources Information Center
Pellegrini, John J.; Jansen, Elizabeth
2013-01-01
The Mayo Innovation Scholars Program introduces undergraduates to technology transfer in biomedical sciences by having teams of students from multiple disciplines (e.g., biology, chemistry, economics, and business) analyze inventions in development at the Mayo Clinic. Over 6 months, teams consult with inventors, intellectual property experts, and…
Targeted Research and Technology Within NASA's Living With a Star Program
NASA Technical Reports Server (NTRS)
Hesse, Michael
2003-01-01
NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.
A Program to Prepare Graduate Students for Careers in Climate Adaptation Science
NASA Astrophysics Data System (ADS)
Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.
2017-12-01
We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.
The science of team science: overview of the field and introduction to the supplement.
Stokols, Daniel; Hall, Kara L; Taylor, Brandie K; Moser, Richard P
2008-08-01
The science of team science encompasses an amalgam of conceptual and methodologic strategies aimed at understanding and enhancing the outcomes of large-scale collaborative research and training programs. This field has emerged rapidly in recent years, largely in response to growing concerns about the cost effectiveness of public- and private-sector investments in team-based science and training initiatives. The distinctive boundaries and substantive concerns of this field, however, have remained difficult to discern. An important challenge for the field is to characterize the science of team science more clearly in terms of its major theoretical, methodologic, and translational concerns. The articles in this supplement address this challenge, especially in the context of designing, implementing, and evaluating cross-disciplinary research initiatives. This introductory article summarizes the major goals and organizing themes of the supplement, draws links between the constituent articles, and identifies new areas of study within the science of team science.
A Novel Program Trains Community‐Academic Teams to Build Research and Partnership Capacity
Brown, Jen; LeBailly, Susan; McGee, Richard; Bayldon, Barbara; Huber, Gail; Kaleba, Erin; Lowry, Kelly Walker; Martens, Joseph; Mason, Maryann; Nuñez, Abel
2013-01-01
Abstract The Community‐Engaged Research Team Support (CERTS) program was developed and tested to build research and partnership capacity for community‐engaged research (CEnR) teams. Led by the Northwestern University Clinical and Translational Sciences Institute (NUCATS), the goals of CERTS were: (1) to help community‐academic teams build capacity for conducting rigorous CEnR and (2) to support teams as they prepare federal grant proposal drafts. The program was guided by an advisory committee of community and clinical partners, and representatives from Chicago's Clinical and Translational Science Institutes. Monthly workshops guided teams to write elements of NIH‐style research proposals. Draft reviewing fostered a collaborative learning environment and helped teams develop equal partnerships. The program culminated in a mock‐proposal review. All teams clarified their research and acquired new knowledge about the preparation of NIH‐style proposals. Trust, partnership collaboration, and a structured writing strategy were assets of the CERTS approach. CERTS also uncovered gaps in resources and preparedness for teams to be competitive for federally funded grants. Areas of need include experience as principal investigators, publications on study results, mentoring, institutional infrastructure, and dedicated time for research. PMID:23751028
Targeted Research and Technology Within NASA's Living With a Star Program
NASA Technical Reports Server (NTRS)
Antiochos, Spiro; Baker, Kile; Bellaire, Paul; Blake, Bern; Crowley, Geoff; Eddy, Jack; Goodrich, Charles; Gopalswamy, Nat; Gosling, Jack; Hesse, Michael
2004-01-01
Targeted Research & Technology (TR&T) NASA's Living With a Star (LWS) initiative is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect society. The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Recognizing the central and essential role that TR&T would have for the success of the LWS initiative, the LWS Science Architecture Team (SAT) recommended that a Science Definition Team (SDT), with the same status as a flight mission definition team, be formed to design and coordinate a TR&T program having prioritized goals and objectives that focused on practical societal benefits. This report details the SDT recommendations for the TR&T program.
Mortuary Science Programs: Examination of the External Evaluation Team
ERIC Educational Resources Information Center
Reinhard, D. Elaine
2010-01-01
The purpose of this study is to expand the literature on mortuary science accreditation site visit teams. This study used a mixed methodology design to examine: (1) who serves on the American Board of Funeral Service Education accreditation external site visit teams; (2) reasons for involvement in accreditation; (3) perceptions of important site…
RIS4E Science Journalism Program
NASA Astrophysics Data System (ADS)
Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.
2017-12-01
NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience and confidence with using journalistic equipment in the field and an improved understanding of how scientific research is conducted. Survey results indicate that the majority of participants are more likely to pursue science journalism as a career as a result of participating in this program. Their work is presented at ReportingRIS4E.com.
Programs for Students and Teachers | NREL
competition that tests the brainpower of middle and high school teams on science and math topics. Model Car 8th grade students. Student teams apply math, science, and creativity to construct solar and battery
FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research
NASA Technical Reports Server (NTRS)
Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.
2016-01-01
The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.
Early Career Summer Interdisciplinary Team Experiences and Student Persistence in STEM Fields
NASA Astrophysics Data System (ADS)
Cadavid, A. C.; Pedone, V. A.; Horn, W.; Rich, H.
2015-12-01
STEPS (Students Targeting Engineering and Physical Science) is an NSF-funded program designed to increase the number of California State University Northridge students getting bachelor's degrees in the natural sciences, mathematics, engineering and computer science. The greatest loss of STEM majors occurs between sophomore and junior- years, so we designed Summer Interdisciplinary Team Experience (SITE) as an early career program for these students. Students work closely with a faculty mentor in teams of ten to investigate regionally relevant problems, many of which relate to sustainability efforts on campus or the community. The projects emphasize hands-on activities and team-based learning and decision making. We report data for five years of projects, qualitative assessment through entrance and exit surveys and student interviews, and in initial impact on retention of the participants.
ERIC Educational Resources Information Center
Lemus, Judith D.; Bishop, Kristina; Walters, Howard
2010-01-01
The QuikSCience Challenge science education program combines a cooperative team project emphasizing community service with an academic competition for middle and high school students. The program aims to develop leadership abilities, motivate interest in ocean sciences, engage students in community service and environmental stewardship, and…
NASA Technical Reports Server (NTRS)
Grimaldi, Rebecca; Horvath, Tim; Morris, Denise; Willis, Emily; Stacy, Lamar; Shell, Mike; Faust, Mark; Norwood, Jason
2011-01-01
Payload science operations on the International Space Station (ISS) have been conducted continuously twenty-four hours per day, 365 days a year beginning February, 2001 and continuing through present day. The Payload Operations Integration Center (POIC), located at the Marshall Space Flight Center in Huntsville, Alabama, has been a leader in integrating and managing NASA distributed payload operations. The ability to conduct science operations is a delicate balance of crew time, onboard vehicle resources, hardware up-mass to the vehicle, and ground based flight control team manpower. Over the span of the last ten years, the POIC flight control team size, function, and structure has been modified several times commensurate with the capabilities and limitations of the ISS program. As the ISS vehicle has been expanded and its systems changed throughout the assembly process, the resources available to conduct science and research have also changed. Likewise, as ISS program financial resources have demanded more efficiency from organizations across the program, utilization organizations have also had to adjust their functionality and structure to adapt accordingly. The POIC has responded to these often difficult challenges by adapting our team concept to maximize science research return within the utilization allocations and vehicle limitations that existed at the time. In some cases, the ISS and systems limitations became the limiting factor in conducting science. In other cases, the POIC structure and flight control team size were the limiting factors, so other constraints had to be put into place to assure successful science operations within the capabilities of the POIC. This paper will present the POIC flight control team organizational changes responding to significant events of the ISS and Shuttle programs.
NASA Astrophysics Data System (ADS)
Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.
2016-02-01
How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and education program.
Evolution of a Teacher Professional Development Program that Promotes Teacher and Student Research
NASA Astrophysics Data System (ADS)
Pompea, S. M.; Croft, S. K.; Garmany, C. D.; Walker, C. E.
2005-12-01
The Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory have been evolving for nearly ten years. Our current program is actually a team of programs aiding teachers in doing research with small telescopes, large research-grade telescopes, astronomical data archives, and the Spitzer Space Telescope. Along the way, as these programs evolved, a number of basic questions were continuously discussed by the very talented program team. These questions included: 1) What is real research and why should we encourage it? 2) How can it be successfully brought to the classroom? 3) What is the relative importance of teacher content knowledge versus science process knowledge? 4) How frustrating should an authentic research experience be? 5) How do we measure the success of our professional development program? 6) How should be evaluate and publish student work? 7) How can teachers work together on a team to pursue research? 8) What is the model for interaction of teachers and researchers - equal partners versus the graduate student/apprentice model? 9) What is the ideal mix of skills for a professional development team at NOAO? 10) What role can distance learning play in professional preparation? 11) What tools are needed for data analysis? 12) How can we stay funded? Our evolving program has also been used as a test bed to examine new models of teacher's professional development that may aid our outreach efforts in the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
ERIC Educational Resources Information Center
Rowe, Mary Budd
Ten two-person teams made up the primary target population for the Leadership Training Program (LTP) described in this report. The back home activities of the team members were studied for nearly three years following the LTP. A brief resume of the design and conduct of the LTP is given. Training of the college teams took three weeks and included…
With a New Lens: How Partnering Impacts Teachers' Views of and Approaches to Teaching Science.
ERIC Educational Resources Information Center
Bainer, Deborah L.
The Partnering for Elementary Environmental Science program provides a professional development model to improve elementary science education. The program pairs teachers with science content experts and instructs the partnership teams in the pedagogy essential for effective inquiry science. This paper reports a year-long qualitative study of nine…
Smith college secondary math and science outreach program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.A.; Clark, C.
1994-12-31
The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returningmore » to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.« less
Team Mentoring for Interdisciplinary Team Science: Lessons From K12 Scholars and Directors.
Guise, Jeanne-Marie; Geller, Stacie; Regensteiner, Judith G; Raymond, Nancy; Nagel, Joan
2017-02-01
Mentoring is critical for academic success. As science transitions to a team science model, team mentoring may have advantages. The goal of this study was to understand the process, benefits, and challenges of team mentoring relating to career development and research. A national survey was conducted of Building Interdisciplinary Research Careers in Women's Health (BIRCWH) program directors-current and former scholars from 27 active National Institutes of Health (NIH)-funded BIRCWH NIH K12 programs-to characterize and understand the value and challenges of the team approach to mentoring. Quantitative data were analyzed descriptively, and qualitative data were analyzed thematically. Responses were received from 25/27 (93%) program directors, 78/108 (72%) current scholars, and 91/162 (56%) former scholars. Scholars reported that team mentoring was beneficial to their career development (152/169; 90%) and research (148/169; 88%). Reported advantages included a diversity of opinions, expanded networking, development of stronger study designs, and modeling of different career paths. Challenges included scheduling and managing conflicting opinions. Advice by directors offered to junior faculty entering team mentoring included the following: not to be intimidated by senior mentors, be willing to navigate conflicting advice, be proactive about scheduling and guiding discussions, have an open mind to different approaches, be explicit about expectations and mentors' roles (including importance of having a primary mentor to help navigate discussions), and meet in person as a team. These findings suggest that interdisciplinary/interprofessional team mentoring has many important advantages, but that skills are required to optimally utilize multiple perspectives.
Team Mentoring for Interdisciplinary Team Science: Lessons from K12 Scholars and Directors
Guise, Jeanne-Marie; Geller, Stacie; Regensteiner, Judith G.; Raymond, Nancy; Nagel, Joan
2016-01-01
Purpose Mentoring is critical for academic success. As science transitions to a team science model, team mentoring may have advantages. The goal of this study was to understand the process, benefits, and challenges of team mentoring relating to career development and research. Method A national survey was conducted of Building Interdisciplinary Research Careers in Women’s Health (BIRCWH) program directors, current and former scholars s from 27 active National Institutes of Health (NIH)-funded BIRCWH NIH K12 programs to characterize and understand the value and challenges of the team approach to mentoring. Quantitative data were analyzed descriptively and qualitative thematically. Results Responses were received from 25/27 (93%) of program directors, 78/108 (72%) current scholars, and 91/162 (56%) former scholars. Scholars reported that team mentoring was beneficial to their career development (152/169, 90%) and research (148/169, 88%). Reported advantages included a diversity of opinions, expanded networking, development of stronger study designs, and modeling of different career paths. Challenges included scheduling and managing conflicting opinions. Advice by directors offered to junior faculty entering team mentoring included: not to be intimidated by senior mentors, be willing to navigate conflicting advice, be proactive about scheduling and guiding discussions, have an open mind to different approaches, be explicit about expectations and mentors’ roles (including importance of having a primary mentor to help navigate discussions), and meeting in person as a team. Conclusions These findings suggest that interdisciplinary/interprofessional team mentoring has many important advantages, but that skills are required to optimally utilize multiple perspectives. PMID:27556675
Multiple-Methods Needs Assessment of California 4-H Science Education Programming
ERIC Educational Resources Information Center
Worker, Steven M.; Schmitt-McQuitty, Lynn; Ambrose, Andrea; Brian, Kelley; Schoenfelder, Emily; Smith, Martin H.
2017-01-01
The California 4-H Science Leadership Team conducted a statewide assessment to evaluate the needs of county-based 4-H programs related to the key areas of the 4-H Science Initiative: program development and design, professional development, curricula, evaluation, partnerships, and fund development. The use of multiple qualitative data sources…
NOAA Office of Exploration and Research > Science > Overview
2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Presentations Supporting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, D.H.
1997-01-01
The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours formore » the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.« less
NASA Astrophysics Data System (ADS)
Shipp, S.; Nelson, B.; Stockman, S.; Weir, H.; Carter, B.; Bleacher, L.
2008-07-01
Libraries are vibrant learning places, seeking partners in science programming. LPI's Explore! program offers a model for public engagement in lunar exploration in libraries, as shown by materials created collaboratively with the LRO E/PO team.
Ocean Drilling Program: Drilling Services
Drilling operations team Material services team Development engineering team ODP/TAMU Science Operator Home Services department consists of three team-oriented project groups, which also work to improve the existing team. A member of this team sails with each cruise to provide expertise for the shipboard scientific
NASA Astrophysics Data System (ADS)
Gwinn, Elisabeth; Goodchild, Fiona; Garza, Marilyn
2005-03-01
The NSF-funded GK-12 program at UCSB, ``Let's Explore Applied Physical Science'' (LEAPS), awards full fellowships to competitively selected graduate students in the physical sciences and engineering, to support their engagement in local 8th and 9th grade science classrooms. The Fellows' responsibilities to LEAPS total 15 hours per week during the school year. They join consistently in the same classes to collaborate with teachers on delivery of discovery-oriented science instruction. Fellows work in 3-member, interdisciplinary teams. They benefit from this team approach through interaction with colleagues in other disciplines, validation from peers who share enthusiasm for science and mentoring, increased leadership and teaching skills, and a research safety net provided by teammates who can pick up the slack when one Fellow's research requires undivided attention. For teachers, the disciplinary breadth of the Fellow teams is an enormous asset in covering the broad physical science curriculum in CA. Students benefit from hands-on labs and small-group problem-solving exercises enabled by the Fellows' presence and from mentoring by these young scientists.
Student Participation in Rover Field Trials
NASA Astrophysics Data System (ADS)
Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.
2001-12-01
The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of science, engineering, and technology.
Programming Digital Stories and How-to Animations
ERIC Educational Resources Information Center
Hansen, Alexandria Killian; Iveland, Ashley; Harlow, Danielle Boyd; Dwyer, Hilary; Franklin, Diana
2015-01-01
As science teachers continue preparing for implementation of the "Next Generation Science Standards," one recommendation is to use computer programming as a promising context to efficiently integrate science and engineering. In this article, a interdisciplinary team of educational researchers and computer scientists describe how to use…
NPOESS Preparatory Project (NPP) Science Overview
NASA Technical Reports Server (NTRS)
Butler, James J.
2011-01-01
NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.
Resolving the Milky Way and Nearby Galaxies with WFIRST
NASA Astrophysics Data System (ADS)
Kalirai, Jasonjot
High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations of nearby galaxy halos matched to WFIRST observations; strategies and automated algorithms to find substructure and dwarf galaxies in WFIRST IR data sets; and documentation. Our team will work closely with the WFIRST Science Center to translate our notional programs into inputs that can help achieve readiness for WFIRST science operations. This includes building full observing programs with target definitions, observing sequences, scheduling constraints, data processing needs, and calibration requirements. Our team has been chosen carefully. Team members are leading scientists in stellar population work that will be a core science theme for WFIRST and are also involved in all large future astronomy projects that will operate in the WFIRST era. The team is intentionally small, and each member will "own" significant science projects. The team will aggressively advocate for WFIRST through innovative initiatives. The team is also diverse in geographical location, observers and theorists, and gender.
Multidisciplinary approaches to climate change questions
Middleton, Beth A.; LePage, Ben A.
2011-01-01
Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.
NASA Astrophysics Data System (ADS)
Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.
2002-12-01
Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific content. The value to the scientist lies in deepening the understanding of current science education, increasing exposure to new ways to communicate information, and developing a path to having the research shared with the classroom and community via the TEA teacher's outreach. This long-term interaction between a scientist and a teacher can result in meaningful impact through increasing depth of understanding - not just about science content, but about the process of science. Equipped with this understanding based on experience, the teacher can multiply the impact with colleagues and students.
NASA Astrophysics Data System (ADS)
Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.
2015-12-01
The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.
Ravi, Rohit; Gunjawate, Dhanshree R; Yerraguntla, Krishna; Rajashekhar, Bellur
2018-01-01
The success of newborn hearing screening programs lies in the timely identification, diagnosis, and management of children with hearing loss accomplished via a multidisciplinary newborn hearing screening (NHS) team. The team is typically comprised of various healthcare professionals who act as decision makers as well as facilitators for different stages in the screening process. Team members' knowledge of, attitudes towards, and practices for early hearing detection and intervention programs are critical for success and prevention of loss to follow up. In this context, it becomes crucial to understand their knowledge of, attitudes towards, and practices for towards newborn hearing screening. A systematic review was conducted on the following databases; PubMed/Medline, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, Web of Science, Science Direct and Cochrane Library. This search was carried out using various keywords such as practitioners, newborn hearing screening, knowledge, attitudes, and practices in different combinations. The review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-analyses statement guidelines. A total of 271 hits were obtained of which 20 articles were found suitable for inclusion in the final review. Overall, similar results were found regarding team members' knowledge of NHS programs, regardless of country of origin. Similarly, attitudes toward NHS programs were positive. Team members' experiences with NHS programs varied from country-to-country and across healthcare professionals. Results consistently showed gaps in team members' knowledge suggesting the need for outreach and professional education programs on NHS. NHS teams members from different countries, healthcare systems, and early hearing detection and intervention programs show gaps in critical knowledge warranting outreach and educational programs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.
2014-12-01
NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni administered in 2013 provides information on the program's impact on trainees' career choices and leadership roles as they pursue their employment in planetary science and related fields. Results will be presented during the session, along with highlights of topics and missions covered since the program's inception.
ERIC Educational Resources Information Center
Mullahey, J. Jeffrey
2011-01-01
Budget reductions have severely affected resources available to deliver agriculture and natural resource Extension programs in Florida. University of Florida/Institute of Food and Agricultural Sciences delivers Extension programming through a unique partnership between research and education centers and county Extension. Science-based information…
Does Like Seek Like?: The Formation of Working Groups in a Programming Project
ERIC Educational Resources Information Center
Sanou Gozalo, Eduard; Hernández-Fernández, Antoni; Arias, Marta; Ferrer-i-Cancho, Ramon
2017-01-01
In a course of the degree of computer science, the programming project has changed from individual to teamed work, tentatively in couples (pair programming). Students have full freedom to team up with minimum intervention from teachers. The analysis of the working groups made indicates that students do not tend to associate with students with a…
Educating the Next Generation of Lunar Scientists
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.
2010-12-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of lunar scientists. This panel judges the presentations and selects one team to present their research at the annual NLSI Forum. In addition to research, teams interact with lunar scientists during monthly webcasts in which scientists present information on lunar science and careers. Working with school guidance counselors, the CLSE staff assists interested students in making connections with lunar science faculty across the country. Evaluation data from the pilot program revealed that the program influenced some students to consider a career in science or helped to strengthen their current desire to pursue a career in science. The most common feedback from both teachers and mentors was that they would like more direction from CLSE staff. In light of these findings, a few questions arise when looking ahead. How do we meet the needs of our participants without compromising the program’s open inquiry philosophy? Are our expectations simply not clear? How do we keep students excited once the program ends? Is it feasible, as a community, to support them from the moment the program ends until they enter college? Finally, do we have a responsibility as a community to work together to connect students with university faculty?
ERIC Educational Resources Information Center
Carter, Lorraine Mary; Beattie, Bev; Caswell, Wenda; Fitzgerald, Scott; Nowrouzi, Behdin
2016-01-01
In this study, the perceptions and experiences of an interprofessional team responsible for the development and delivery of the Registered Practical Nurse (RPN) to Bachelor of Science in Nursing (BScN) Blended Learning Program at Nipissing University were examined. In this program, RPNs can acquire a BScN through distance-based part-time study,…
2017 Landsat Science Team Summer Meeting Summary
Crawford, Christopher J.; Loveland, Thomas R.; Wulder, Michael A.; Irons, James R.
2018-01-01
The summer meeting of the U.S. Geological Survey (USGS)-NASA Landsat Science Team (LST) was held June 11-13, 2017, at the USGS’s Earth Resources Observation and Science (EROS) Center near Sioux Falls, SD. This was the final meeting of the Second (2012-2017) LST.1 Frank Kelly [EROS—Center Director] welcomed the attendees and expressed his thanks to the LST members for their contributions. He then introduced video-recorded messages from South Dakota’s U.S. senators, John Thune and Mike Rounds, in which they acknowledged the efforts of the team in advancing the societal impacts of the Landsat Program.
ERIC Educational Resources Information Center
Miele, Eleanor A.; Powell, Wayne G.
2010-01-01
The departments of Geology and Education at Brooklyn College collaborated with five informal educational institutions in the development of a place-based graduate program for Earth science teachers. The team used "backward design" to develop a program of courses that are thematically structured and use a city-as-lab approach that places…
NASA Astrophysics Data System (ADS)
Hodges, Jeanelle Bland
1999-11-01
The purpose of the study was to determine factors associated with staff development processes and the creation of innovative science courses by higher education faculty who have participated in a model staff development project. The staff development program was designed for college faculty interested in creating interdisciplinary, constructivist-based science, mathematics, or engineering courses designed for non-majors. The program includes workshops on incorporating constructivist pedagogy, alternative assessment, and technology into interdisciplinary courses. Staff development interventions used in the program include grant opportunities, distribution of resource materials, and peer mentoring. University teams attending the workshops are comprised of faculty from the sciences, mathematics, or engineering, as well as education, and administration. A purposeful and convenient sample of three university teams were subjects for this qualitative study. Each team had attended a NASA Opportunities for Visionary Academics (NOVA) workshop, received funding for course development, and offered innovative courses. Five questions were addressed in this study: (a) What methods were used by faculty teams in planning the courses? (b) What changes occurred in existing science courses? (c) What factors affected the team collaboration process? (d) What personal characteristics of faculty members were important in successful course development? and (e) What barriers existed for faculty in the course development process? Data was collected at each site through individual faculty interviews (N = 11), student focus group interviews (N = 15), and classroom observations. Secondary data included original funding proposals. The NOVA staff development model incorporated effective K--12 interventions with higher education interventions. Analysis of data revealed that there were four factors of staff development processes that were most beneficial. First, the team collaborative processes were crucial in successful course development. Second, the use of instructional grants to fund course development gave credibility to the faculty involved in course development. Third, the faculty members taking the lead in creating teams actively sought out faculty members in the sciences who had previous experience teaching at the K--12 level or in informal education. In addition, college environments were found to have an impact on the success of the innovative course development projects.
The positive effects of the FIRST high school robotics program
NASA Astrophysics Data System (ADS)
McIntyre, Nancy
The essence of the FIRST Robotics Program comes from the explanation of the acronym, which means For Inspiration and Recognition in Science and Technology. Their vision is to inspire young people, their schools, and communities, an appreciation of science and technology and an understanding that mastering these can enrich the lives of all. Last year I began our school's association with this program. I secured funding from NASA/JPL, attended a workshop and kickoff event, encouraged a team of students, parents, community members, and engineers to come together to design and construct a working, competitive robot in a six week time span. This year I expanded our participation to our 6th grade students. They competed in the FIRST Lego League. As part of my 9th grade science curriculum my students designed and built Panda II in class. The after-school team will submit a 30 second animation, an autocad design, and a team website for competition as well. Our AP art students have been charged with painting our travel crate. I couldn't have been successful without the help and support of a very dedicated JPL engineer who volunteers his time to come to our school to teach our team the technical components.
The Arizona Journey Schools Program: A Strategy for Change. Final Report.
ERIC Educational Resources Information Center
Laughran, Laura J.; Shaw, Jerome M.
The Arizona Journey Schools Program (JSP) was a two-year professional development experience whose stated purpose was to build the leadership capacity of school/community teams and establish a network of professionals to support teams as they bring about systemic change in mathematics and science teaching, learning, and assessment. This report…
Robotics Team Lights Up New Year's Eve
ERIC Educational Resources Information Center
LeBlanc, Cheryl
2011-01-01
A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…
The Geospace Mission Definition Team report
NASA Astrophysics Data System (ADS)
Kintner, P.; Spann, J.
The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.
Assessing Team Leadership in Emergency Medicine: The Milestones and Beyond
Rosenman, Elizabeth D.; Branzetti, Jeremy B.; Fernandez, Rosemarie
2016-01-01
Background Team leadership is a critical skill for emergency medicine physicians that directly affects team performance and the quality of patient care. There exists a robust body of team science research supporting team leadership conceptual models and behavioral skill sets. However, to date, this work has not been widely incorporated into health care team leadership education. Objective This narrative review has 3 aims: (1) to synthesize the team science literature and to translate important concepts and models to health care team leadership; (2) to describe how team leadership is currently represented in the health care literature and in the Accreditation Council for Graduate Medical Education Milestones for emergency medicine; and (3) to propose a novel, evidence-based framework for the assessment of team leadership in emergency medicine. Methods We conducted a narrative review of the team science and health care literature. We summarized our findings and identified a list of team leadership behaviors that were then used to create a framework for team leadership assessment. Results Current health care team leadership measurement tools do not incorporate evidence-based models of leadership concepts from other established domains. The emergency medicine milestones include several team leadership behaviors as part of a larger resident evaluation program. However, they do not offer a comprehensive or cohesive representation of the team leadership construct. Conclusions Despite the importance of team leadership to patient care, there is no standardized approach to team leadership assessment in emergency medicine. Based on the results of our review, we propose a novel team leadership assessment framework that is supported by the team science literature. PMID:27413434
Assessing Team Leadership in Emergency Medicine: The Milestones and Beyond.
Rosenman, Elizabeth D; Branzetti, Jeremy B; Fernandez, Rosemarie
2016-07-01
Team leadership is a critical skill for emergency medicine physicians that directly affects team performance and the quality of patient care. There exists a robust body of team science research supporting team leadership conceptual models and behavioral skill sets. However, to date, this work has not been widely incorporated into health care team leadership education. This narrative review has 3 aims: (1) to synthesize the team science literature and to translate important concepts and models to health care team leadership; (2) to describe how team leadership is currently represented in the health care literature and in the Accreditation Council for Graduate Medical Education Milestones for emergency medicine; and (3) to propose a novel, evidence-based framework for the assessment of team leadership in emergency medicine. We conducted a narrative review of the team science and health care literature. We summarized our findings and identified a list of team leadership behaviors that were then used to create a framework for team leadership assessment. Current health care team leadership measurement tools do not incorporate evidence-based models of leadership concepts from other established domains. The emergency medicine milestones include several team leadership behaviors as part of a larger resident evaluation program. However, they do not offer a comprehensive or cohesive representation of the team leadership construct. Despite the importance of team leadership to patient care, there is no standardized approach to team leadership assessment in emergency medicine. Based on the results of our review, we propose a novel team leadership assessment framework that is supported by the team science literature.
Scientists and Educators Working Together: Everyone Teaches, Everyone Learns
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; Lebofsky, N. R.; McCarthy, D. W.; Canizo, T. L.; Schmitt, W.; Higgins, M. L.
2013-10-01
The primary author has been working with three of the authors (Lebofsky, McCarthy, and Cañizo) for nearly 25 years and Schmitt and Higgins for 17 and 8 years, respectively. This collaboration can be summed up with the phrase: “everyone teaches, everyone learns.” What NASA calls E/PO and educators call STEM/STEAM, requires a team effort. Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. Research scientists with a long-term involvement in science education have come together with science educators, classroom teachers, and informal science educators to create a powerful STEM education team. Scientists provide the science content and act as role models. Science educators provide the pedagogy and are the bridge between the scientists and the teacher. Classroom teachers and informal science educators bring their real-life experiences working in classrooms and in informal settings and can demonstrate scientists’ approaches to problem solving and make curriculum more engaging. Together, we provide activities that are grade-level appropriate, inquiry-based, tied to the literacy, math, and science standards, and connected directly to up-to-date science content and ongoing research. Our programs have included astronomy camps for youth and adults, professional development for teachers, in-school and after-school programs, family science events, and programs in libraries, science centers, and museums. What lessons have we learned? We are all professionals and can learn from each other. By engaging kids and having them participate in activities and ask questions, we can empower them to be the presenters for others, even their families. The activities highlighted on our poster represent programs and collaborations that date back more than two decades: Use models and engage the audience, do not just lecture. Connect the activity with ongoing science and get participants outside to look at the real sky: do a Moon journal, measure shadows, observe constellations, and look through a telescope—the sky is more than just string, balls, or a computer program.
ERIC Educational Resources Information Center
Drossman, Howard; Benedict, Jim; McGrath-Spangler, Erica; Van Roekel, Luke; Wells, Kelley
2011-01-01
This article describes a collaborative mentoring program in which graduate students (fellows) from a university atmospheric science research department team-taught environmental science classes with professors in a liberal arts college. The mentorship allowed fellows to develop and test the effectiveness of curriculum based on the Process Oriented…
BioMaPS: A Roadmap for Success
ERIC Educational Resources Information Center
McCarthy, Maeve L.; Fister, K. Renee
2010-01-01
The manuscript outlines the impact that our National Science Foundation Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences program, BioMaPS, has had on the students and faculty at Murray State University. This interdisciplinary program teams mathematics and biology undergraduate students with mathematics and…
NASA Planetary Science Summer School: Longitudinal Study
NASA Astrophysics Data System (ADS)
Giron, Jennie M.; Sohus, A.
2006-12-01
NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Huntoon, J. E.
2015-12-01
Mi-STAR (Michigan Science Teaching and Assessment Reform, http://mi-star.mtu.edu/) was funded by the Herbert H. and Grace A. Dow Foundation to reform K-12 science education to present science as an integrated body of knowledge that is applied to address societal issues. To achieve this goal, Mi-STAR is developing an integrated science curriculum for the middle grades that will be aligned with the Next Generation Science Standards (NGSS). Similar to the geosciences, the curriculum requires the integration of science, engineering and math content to explore 21st-century issues and demonstrates how these concepts can be used in service of society. The curriculum is based on the Mi-STAR Unit Specification Chart which pairs interdisciplinary themes with bundled NGSS Performance Expectations. Each unit is developed by a collaborative team of K-12 teachers, university STEM content experts and science education experts. Prior to developing a unit, each member on the team attends the on-line Mi-STAR Academy, completing 18+ hours of professional development (PD). This on-line PD program familiarizes teachers and experts with necessary pedagogical and content background knowledge, including NGSS and three-dimensional learning. With this background, teams use a staged, backwards design process to craft a multi-week unit based on a series of performance based tasks, or 'challenges' that engage students in actively doing science and engineering. Each unit includes Disciplinary Core Ideas from multiple disciplines, which focus on local and familiar examples that demonstrate the relevance of science in student's lives. Performance-based assessments are interwoven throughout the unit. Mi-STAR units will go through extensive pilot testing in several school districts across the state of Michigan. Additionally, the Mi-STAR program will develop teacher professional development programs to support implementation of the curriculum and design a pre-service teacher program in integrated science. We will share preliminary results on the collaborative Mi-STAR process of designing integrated science curriculum to address NGSS.
Chaos generation by a hybrid integrated chaotic semiconductor laser
NASA Astrophysics Data System (ADS)
Zhang, Ming-Jiang; Niu, Ya-Nan; Zhao, Tong; Zhang, Jian-Zhong; Liu, Yi; Xu, Yu-Hang; Meng, Jie; Wang, Yun-Cai; Wang, An-Bang
2018-05-01
Not Available Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870), the National Natural Science Foundation of China (Grant Nos. 61377089, 61475111, and 61527819), Shanxi Province Natural Science Foundation, China (Grant No. 2015011049), Shanxi Province Youth Science and Technology Foundation, China (Grant No. 201601D021069), Shanxi Scholarship Council of China (Grant No. 2016-036), Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, and Program for Sanjin Scholar, China.
NASA Astrophysics Data System (ADS)
Ewald, Mary Lou
2002-10-01
As a land-grant institution, Auburn University is committed to serving the citizens of Alabama through extension services and outreach programs. In following this outreach focus, the College of Sciences and Mathematics (COSAM) at AU has dedicated considerable resources to science and math related K-12 outreach programs, including two of our newest student-aimed programs: Youth Experiences in Science (YES) and Alabama BEST. Youth Experiences in Science (YES) is a Saturday enrichment program for middle school students. It includes a Fall and Spring Saturday component and a Summer camp experience. Activities include: LEGO's with Computers; Blood, Diseases & Forensics; Geometry of Models & Games; GPS Mapping; Polymer Chemistry; Electronics; and Genetics. Last year (2001-02), over 400 students attended a YES program on our campus. Alabama BEST (Boosting Engineering, Science & Technology) is a middle and high school robotics competition co-sponsored by COSAM and the College of Engineering at AU. Teams of students design and build robots and compete in a game format, with a new game theme introduced each year. This year, sixty teams from across Alabama and Georgia will have six weeks to design, build and perfect their robots before competition on October 18 and 19.
Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education
NASA Technical Reports Server (NTRS)
Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.
2012-01-01
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.
Correlated Curriculum Program: An Experimental Program. Science Level 1 (9A, 9B, 10A).
ERIC Educational Resources Information Center
Loebl, Stanley, Ed.; And Others
The unit plans in Correlated Science 1 are intended to be of use to the teacher in both lesson and team planning. The course in science was designed for optimum correlation with the work done in business, health, and industrial careers. Behavioral objectives, class routines, time allotments, student evaluation, and the design of the manual are…
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions
NASA Technical Reports Server (NTRS)
Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.
2015-01-01
Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.
Building capacity in implementation science research training at the University of Nairobi.
Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N
2016-03-08
Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.
NASA Astrophysics Data System (ADS)
Anderson, S. P.; Smith, L. K.; Gold, A. U.; Batchelor, R. L.; Monday, B.
2014-12-01
Research Experience for Undergraduates (REU) programs commonly serve students already committed to careers in science. To spark student interest in the sciences early in their college career, the CIRES diversity initiative teamed with the Boulder Creek Critical Zone Observatory to build an REU for Colorado community college students. A group of 7 students was selected from consideration of diversity, prior training, and personal statements. Each student was paired with a research science mentor. Field excursions and team-building exercises filled the first week of the 8-week program. Students received weekly training in science communication, responsible conduct of research, use of spreadsheet and graphing software, and statistical analysis. Each student presented their research in a poster session, an oral presentation, and a written report. Several aspects of this pilot program worked well. The students formed a very supportive cohort, despite the fact that they were not in residence. Cohesion grew out of the immersion in field trips, and was reinforced with weekly check-ins. The trainings were essential for seeing projects through to written and oral presentations. Teaming students for fieldwork was an effective strategy to build support, and reduce mentor fatigue. Each student produced useful data. In the future, we would include a workshop on personal finances to address a clear need. Transportation support will be provided. A residential program might attract some but could preclude participation of students with families or other life-issues. Personal tutoring tailored to research projects would address low math skills. All 7 students completed the program; several elected to submit to the undergraduate virtual poster session at Fall AGU. Students all reported enormous personal and academic growth. Some are discussing transfer and graduate school opportunities with their mentors. The enthusiasm and appreciation of the students was unparalleled.
MRO's High Resolution Imaging Science Experiment (HiRISE): Education and Public Outreach Plans
NASA Technical Reports Server (NTRS)
Gulick, V.; McEwen, A.; Delamere, W. A.; Eliason, E.; Grant, J.; Hansen, C.; Herkenhoff, K.; Keszthelyi, L.; Kirk, R.; Mellon, M.
2003-01-01
The High Resolution Imaging Experiment, described by McEwen et al. and Delamere et al., will fly on the Mars 2005 Orbiter. In conjunction with the NASA Mars E/PO program, the HiRISE team plans an innovative and aggressive E/PO effort to complement the unique high-resolution capabilities of the camera. The team is organizing partnerships with existing educational outreach programs and museums and plans to develop its own educational materials. In addition to other traditional E/PO activities and a strong web presence, opportunities will be provided for the public to participate in image targeting and science analysis. The main aspects of our program are summarized.
The NPOESS Community Collaborative Calibration/Validation Program for the NPOESS Preparatory Project
NASA Astrophysics Data System (ADS)
Kilcoyne, H.; Feeley, J.; Guenther, B.; Hoffman, C. W.; Reed, B.; St. Germain, K.; Zhou, L.; Plonski, M.; Hauss, B.
2009-12-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) Calibration and Validation (Cal/Val) team is currently executing pre-launch activities and planning post-launch activities to efficiently integrate the NPOESS Sensor Data Records (SDRs) and Environmental Data Records (EDRs) into Customer applications to reduce risk in achieving NPOESS Mission Success. The NPP Cal/Val Team, led by the Integrated Program Office (IPO), includes members from the Contractor team producing the data products and subject matter experts from the Customer and User communities, bringing together the expertise with the production algorithms, product use, and science community. This presentation will highlight the progress made in the past year in defining the post-launch activity schedule, involvement of the science and operational data users, and techniques and correlative data used.
Landsat Science Team: 2017 Winter Meeting Summary
Schroeder, Todd A.; Loveland, Thomas; Wulder, Michael A.; Irons, James R.
2017-01-01
The summer meeting of the joint U.S. Geological Survey (USGS)-NASA Landsat Science Team (LST) was held July 26-28, 2016, at South Dakota State University (SDSU) in Brookings, SD. LST co-chair Tom Loveland [USGS’s Earth Resources Observation and Science Center (EROS)] and Kevin Kephart [SDSU] welcomed more than 80 participants to the three-day meeting. That attendance at such meetings continues to increase—likely due to the development of new data products and sensor systems—further highlights the growing interest in the Landsat program. The main objectives of this meeting were to provide a status update on Landsat 7 and 8, review team member research activities, and to begin identifying priorities for future Landsat missions.
GeoLab: A Geological Workstation for Future Missions
NASA Technical Reports Server (NTRS)
Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi
2014-01-01
The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.
NASA Astrophysics Data System (ADS)
Jones, A. P.; Bleacher, L.; Glotch, T. D.; Heldmann, J. L.; Bleacher, J. E.; Young, K. E.; Selvin, B.; Firstman, R.; Lim, D. S. S.; Johnson, S. S.; Kobs-Nawotniak, S. E.; Hughes, S. S.
2015-12-01
The Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) and Field Investigations to Enable Solar System Science and Exploration (FINESSE) teams of NASA's Solar System Exploration Research Virtual Institute conduct research that will help us more safely and effectively explore the Moon, Near Earth Asteroids, and the moons of Mars. These teams are committed to making their scientific research accessible and to using their research as a lens through which students and teachers can better understand the process of science. In partnership with the Alan Alda Center for Communicating Science at Stony Brook University, in spring of 2015 the RIS4E team offered a semester-long course on science journalism that culminated in a 10-day reporting trip to document scientific fieldwork in action during the 2015 RIS4E field campaign on the Big Island of Hawaii. Their work is showcased on ReportingRIS4E.com. The RIS4E science journalism course is helping to prepare the next generation of science journalists to accurately represent scientific research in a way that is appealing and understandable to the public. It will be repeated in 2017. Students and teachers who participate in FINESSE Spaceward Bound, a program offered in collaboration with the Idaho Space Grant Consortium, conduct science and exploration research in Craters of the Moon National Monument and Preserve. Side-by-side with NASA researchers, they hike through lava flows, operate field instruments, participate in science discussions, and contribute to scientific publications. Teachers learn about FINESSE science in the field, and bring it back to their classrooms with support from educational activities and resources. The second season of FINESSE Spaceward Bound is underway in 2015. We will provide more information about the RIS4E and FINESSE education programs and discuss the power of integrating educational programs within scientific programs, the strength institutional partnerships can provide, and the impact participating in immersive field experiences can have on learners.
ERIC Educational Resources Information Center
Abidi, S. A. H.; Moeller, T.
In 1978 a team of three people was formed to survey the existing library training facilities in East Africa and to suggest possibilities as to how the elements of information science could be introduced either into existing programs or into special courses organized for the purpose. The team submitted its report to a joint meeting of the…
ERIC Educational Resources Information Center
Luetmer, Marianne T.; Cloud, Beth A.; Youdas, James W.; Pawlina, Wojciech; Lachman, Nirusha
2018-01-01
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi-disciplinary care team. This study aimed to create a modified team-based learning (TBL)…
NASA Astrophysics Data System (ADS)
Rebull, L. M.; Gorjian, V.; Squires, G.; Nitarp Team
2012-08-01
How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works?" One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Students, which in 2009 was rechristened the NASA/IPAC Teacher Archive Research Program, or NITARP). We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an American Astronomical Society (AAS) meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other similar programs in several important ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters at the AAS, in science sessions (not outreach sessions). The posters are distributed throughout the meeting, in amongst other researchers' work; the participants are not "given a free pass" because they are teachers. Finally, the "product" of this project is the scientific result, not any sort of curriculum packet. The teachers adapt their project to their classroom environment, and we change the way they think about science and scientists.
Approaches to preparing young scholars for careers in interdisciplinary team science.
Begg, Melissa D; Crumley, Gene; Fair, Alecia M; Martina, Camille A; McCormack, Wayne T; Merchant, Carol; Patino-Sutton, Cecilia M; Umans, Jason G
2014-01-01
To succeed as a biomedical researcher, the ability to flourish in interdisciplinary teams of scientists is becoming ever more important. Institutions supported by the Clinical and Translational Science Awards (CTSAs) from the National Institutes of Health have a specific mandate to educate the next generation of clinical and translational researchers. While they strive to advance integrated and interdisciplinary approaches to education and career development in clinical and translational science, general approaches and evaluation strategies may differ, as there is no single, universally accepted or standardized approach. It is important, therefore, to learn about the different approaches used to determine what is effective. We implemented a Web-based survey distributed to education leaders at the 60 funded CTSA institutions; 95% responded to the survey, which included questions on the importance of preparation for interdisciplinary team science careers, methods used to provide such training, and perceived effectiveness of these training programs. The vast majority (86%) of education leaders reported that such training is important, and about half (52%) of the institutions offer such training. Methods of training most often take the form of courses and seminars, both credit bearing and noncredit. These efforts are, by and large, perceived as effective by the training program leaders, although long-term follow-up of trainees would be required to fully evaluate ultimate effectiveness. Results from the survey suggest that CTSA education directors believe that specific training in interdisciplinary team science for young investigators is very important, but few methodologies are universally practiced in CTSA institutions to provide training or to assess performance. Four specific recommendations are suggested to provide measurable strategic goals for education in team science in the context of clinical and translational research.
New initiative links scientists and entertainers
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2009-01-01
The US National Academy of Sciences has teamed up with Hollywood to improve the quality of science portrayed in films, TV shows and video games. The new Science and Entertainment Exchange (SEE) aims to create better links between entertainment-industry professionals and scientists to improve the credibility of programming related to science.
Students Across Borders: A Summer Earth Science Workshop for Hispanic High School Students
NASA Astrophysics Data System (ADS)
Butler, R. F.; Kresan, P.; Baez, A.; Sheppard, P.; Forger, G.; Rendon-Coke, G.; Gray, F.
2003-12-01
Southern Arizona has a high school (HS) population that is 28% Hispanic. However this fast-growing minority group represents only 14% of undergraduate students at the University of Arizona and 11% of science and engineering majors. The Students Across Borders Program was designed to assist Hispanic HS students across borders that often separate them from higher education and careers in science. In June 2003, five person student-teacher teams from Tucson, Yuma, and northern Sonora, Mexico lived in dormitories and participated in a weeklong program based on the University of Arizona campus. Activities included: field trips featuring inquiry-based investigations of geology, water quality, and tree rings; tours of engineering and science laboratories; introduction to student support organizations such as the Society of Hispanic Professional Engineers; and counseling by Career Services and Admissions personnel. Technology training included instruction in web design, digital imaging and online communication tools. Web sites developed by the student teams were presented to participants and families at the conclusion of the on-campus program. Web site development is continuing during the academic year to foster continuing communication between the student teams and presentation of results of follow-on projects assisted by graduate and undergraduate CATTS fellows and university faculty.
Team Teaching in the Saturday Morning Search for Solutions.
ERIC Educational Resources Information Center
Solomon, Pearl G.; And Others
The Marie Curie Mathematics and Science Center at St. Thomas Aquinas College (New York), in a comprehensive effort to improve mathematics and science education, offers the Saturday Morning Search for Solutions enrichment program for area students in grades 7-12. The program is interdisciplinary, connecting technology and the study of societal…
Advancing Pre-college Science and Mathematics Education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Rick
With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less
Teaching the Next Generation of Scientists and Engineers the NASA Design Process
NASA Technical Reports Server (NTRS)
Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.
2011-01-01
The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.
Authentic Research in the Classroom: NITARP Teachers Connect Astronomy with NGSS.
NASA Astrophysics Data System (ADS)
Pruett, Lee; Gibbs, John; Palmer, Robert; Young, Diedre; Gorjian, Varoujan
2016-01-01
The NASA/IPAC Teacher Archive Research Program (NITARP) uses authentic astronomical research to bring the Next Generation Science Standards (NGSS) into the classroom. The creation of the NGSS was a collaborative effort between teams composed of teachers, scientists and other professionals from twenty-six states. These standards provide a framework for the change in how science is taught at all levels from kindergarten to twelfth grade in participating states. Scientific concepts are grouped into broad categories (physical, biological and earth sciences), and call for an interdisciplinary approach to content, along with the integration of engineering practices into the curriculum. This approach to the teaching of science has led educators to place more emphasis on authentic learning and problem-solving in their curricula. Project-based learning is a strategy that can effectively allow students to learn core scientific concepts within the context of a focused and complex scientific problem.The NASA/IPAC Teacher Archive Research Program (NITARP) pairs teams of teachers and students with NASA astronomers. These teams are immersed in an astronomy research project over the course of the year, and are responsible for writing a project proposal, doing original research and presenting that research at a professional conference. The students who are involved in the NITARP research are provided with a rich hands-on experience that both exposes them to a deep understanding of an astronomical problem (and the core physics and math behind it), as well as the process of doing real science. The NITARP program offers a unique opportunity to bring project-based learning into K-12 science classrooms. We will highlight the ways in which this program has been implemented in classrooms across the country, as well as the connections to the NGSS.This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.
NASA Astrophysics Data System (ADS)
Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.
2016-10-01
Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.
2008-07-08
NASA DEVELOP students at Stennis Space Center recently held a midterm review with George Crozier, who serves as a science adviser to the team. The team also was joined by Jamie Favors of the Mobile (Ala.) County Health Department DEVELOP Team; Cheri Miller, the team's NASA adviser; and Kenton Ross, a team science adviser. Students participating in the meeting included: Lauren Childs, Jason Jones, Maddie Brozen, Matt Batina, Jenn Frey, Angie Maki and Aaron Brooks. The primary purpose of the meeting was to update Crozier on the status of the team's work for the summer 2008 term and discuss plans for the fiscal year 2009 project proposal. This included discussion of a possible project to study the effects of hurricanes on the Florida panhandle. DEVELOP is a NASA-sponsored, student-led, student-run program focused on developing projects to help communities.
NASA Technical Reports Server (NTRS)
1988-01-01
Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.
NASA Astrophysics Data System (ADS)
Devore, E.; Gillespie, C.; Hull, G.; Koch, D.
1993-05-01
Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Lee, R. L.
1999-11-01
The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn,N.; White, K.; Stegman, M.
The Faculty and Student Teams (FaST) Program, a cooperative effort between the US Department of Energy (DOE) Office of Science and the National Science Foundation (NSF), brings together collaborative research teams composed of a researcher at Brookhaven National Laboratory, and a faculty member with two or three undergraduate students from a college or university. Begun by the Department of Energy in 2000 with the primary goal of building research capacity at a faculty member's home institution, the FaST Program focuses its recruiting efforts on faculty from colleges and universities with limited research facilities and those institutions that serve populations under-representedmore » in the fields of science, engineering and technology, particularly women and minorities. Once assembled, a FaST team spends a summer engaged in hands-on research working alongside a laboratory scientist. This intensely collaborative environment fosters sustainable relationships between the faulty members and BNL that allow faculty members and their BNL colleagues to submit joint proposals to federal agencies, publish papers in peer-reviewed journals, reform local curriculum, and develop new or expand existing research labs at their home institutions.« less
ERIC Educational Resources Information Center
Marcus, Michael L.; Winters, Dixie L.
2004-01-01
Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…
Linking the GLOBE Program With NASA and NSF Large-Scale Experiments
NASA Astrophysics Data System (ADS)
Filmer, P. E.
2005-12-01
NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component that will collaborate with the Geosciences Education assessment contractor and with the GLOBE Office's evaluation and assessment activities; and - Contact and discussions with the GLOBE Office regarding understandings of roles and responsibilities. The following link is a PDF document with full explanation of the GLOBE Program's new direction.
NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders
NASA Astrophysics Data System (ADS)
Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team
2011-12-01
Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.
Human Exploration Science Office (KX) Overview
NASA Technical Reports Server (NTRS)
Calhoun, Tracy A.
2014-01-01
The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides expertise in the application of engineering imagery to spaceflight. The team links NASA programs and private industry with imagery capabilities developed and honed through decades of human spaceflight, including imagery integration, imaging assets, imagery data management, and photogrammetric analysis. The team is currently supporting several NASA programs, including commercial demonstration missions. The Earth Science and Remote Sensing Team is responsible for integrating the scientific use of Earth-observation assets onboard the ISS, which consist of externally mounted sensors and crew photography capabilities. This team facilitates collaboration on remote sensing and participates in research with academic organizations and other Government agencies, not only in conjunction with ISS science, but also for planetary exploration and regional environmental/geological studies. Human exploration science focuses on science strategies for future human exploration missions to the Moon, Mars, asteroids, and beyond. This function provides communication and coordination between the science community and mission planners. ARES scientists support the operation of robotic missions (i.e., Mars Exploration Rovers and the Mars Science Laboratory), contribute to the interpretation of returned mission data, and translate robotic mission technologies and techniques to human spaceflight.
NASA Astrophysics Data System (ADS)
Kicza, Mary; Bruegge, Richard Vorder
1995-01-01
NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.
The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training
NASA Technical Reports Server (NTRS)
Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.;
2017-01-01
The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.
Flying the Infrared Skies: An Authentic SOFIA Educator Experience
NASA Astrophysics Data System (ADS)
Manning, J. G.
2015-11-01
The NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA) flagship education effort is its Airborne Astronomy Ambassadors (AAA) program. The program flies teams of teachers on SOFIA research flights as part of an educator professional development effort enabling these teachers to experience first-hand the workings of the airborne observatory, to interact with scientists and technologists, to observe research in progress and how scientists use technology—all in support of national STEM goals. The presenter will share his own experience as an EPO escort on a recent SOFIA flight including two educator teams, providing a first-hand account of how an “authentic” science experience can exploit unique NASA assets to improve science teaching, inspire students, inform local communities, and contribute to the elevation of public science literacy.
NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders
NASA Astrophysics Data System (ADS)
Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.
2010-12-01
Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions, during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week’s end, students present their Concept Study to a “proposal review board” of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. The majority of students come from top US universities with planetary science or engineering programs, such as Brown University, MIT, Georgia Tech, University of Colorado, Caltech, Stanford, University of Arizona, UCLA, and University of Michigan. Almost a third of Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL’s Team X Project Design Center.
High-school Student Teams in a National NASA Microgravity Science Competition
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis
2003-01-01
The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. The third year for DIME was conducted during the 2002-2003 school year for teams from the fifty United States, the District of Columbia, and Puerto Rico. An annual national DIME program is planned for the foreseeable future. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first three years, and lessons learned from the first national competition.
Using Interdisciplinary research to enrich teachers and classrooms
NASA Astrophysics Data System (ADS)
Warburton, J.; Timm, K.; Huffman, L. T.; Peart, L. W.; Hammond, J.; McMahon, E.
2011-12-01
Imagine being on the stern of a ship in the Atlantic Ocean off the coast of New England as the crew dumps thousands of scallops on the deck, searching the Greenland ice sheet for a remote weather station, or uncovering secrets to past climates as you join an ocean sediment drilling team in Antarctica. So you ask yourself, what would you be doing in all of these places? What you would be doing is what hundreds of educators from around the world have done for over 20 years, participating in field-based Teacher Research Experience (TRE) programs. Teacher Research Experiences involve educators from varying grade levels and backgrounds in hands-on research as a member of a scientific research team. The teacher works side by side with actual research scientists, often on tasks similar to a field assistant or graduate student. As an important member of the research team teachers learn more about science content and the process of science. Subsequently, the educators play a key role in digesting and communicating the science to their students and the general public. TRE programs vary in many ways. Programs take place in a variety of settings-from laboratories to field camps, and from university campuses to aircraft or ships. The primary commonality of the TRE programs in this presentation-PolarTREC (Teachers and Researchers Exploring and Collaborating), ANDRILL (ANtarctic geological DRILLing) Research Immersion for Science Educators (ARISE); Integrated Ocean Drilling Program (IODP) School of Rock (SOR); and the National Oceanic and Atmospheric Administration Teacher at Sea (TAS) program-is that these programs provide an authentic field-based research experience for teachers outside of a laboratory setting, frequently in harsh, remote, or unusual settings. In addition, each of these programs is federally funded, possess dedicated program management staff, leverage existing scientific and programmatic resources, and are usually national, and sometimes international, in scope. Sharing their unique lessons learned and program results, authors will describe how TRE's improve and enrich interdisciplinary science education by connecting teachers, researchers, students, and the public around the globe for involvement in scientific research and global issues.
Tutor Training in Computer Science: Tutor Opinions and Student Results.
ERIC Educational Resources Information Center
Carbone, Angela; Mitchell, Ian
Edproj, a project team of faculty from the departments of computer science, software development and education at Monash University (Australia) investigated the quality of teaching and student learning and understanding in the computer science and software development departments. Edproj's research led to the development of a training program to…
The Undergraduate ALFALFA Team
NASA Astrophysics Data System (ADS)
Koopmann, Rebecca A.; Higdon, S.; Balonek, T. J.; Haynes, M. P.; Giovanelli, R.
2010-01-01
The Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team is a consortium of 16 institutions engaged in an NSF-sponsored program to promote undergraduate research within the extragalactic ALFALFA HI blind survey project. In the first two years of the program, more than three dozen undergraduate students have been closely involved in ALFALFA science, observing, and data analysis. A total of 34 students have attended the annual undergraduate workshops at Arecibo Observatory, interacting with faculty, their peers, ALFALFA experts, and Arecibo staff in lectures, group activities, tours, and observing runs. Team faculty have supervised 26 summer research projects and 14 academic year (e.g., senior thesis) projects. Students and faculty have traveled to Arecibo Observatory for observing runs and to national meetings to present their results. Eight Team schools have joined to work collaboratively to analyze HI properties of galaxy groups within the ALFALFA volume. (See O'Brien et al., O'Malley et al., and Odekon et al. posters, this meeting.) Students involved in this program are learning how science is accomplished in a large collaboration while contributing to the scientific goals of a major legacy survey. This work has been supported by NSF grants AST-0724918, AST-0725267, and AST-0725380.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Presented is a detailed study of National Science Foundation (NSF) programs in pre-college science education. The development of policies and operational procedures are traced over the past quarter century and their impact on management practice analyzed. The report is presented in two parts: Volume 1, the findings and recommendations, and Volume…
NASA Astrophysics Data System (ADS)
Rebull, L.; NITARP Team
2011-12-01
Since 2004, we have provided authentic astronomy research experiences for teachers using professional astronomical data. (The program used to be called the Spitzer Teacher Program for Teachers and Students, and in 2009 was renamed NITARP--NASA/IPAC Teacher Archive Research Program.) We partner small groups of teachers with a mentor astronomer, the team does research, writes up a poster, and presents it at the major annual meeting for professional US astronomers, the American Astronomical Society (winter meeting). The teachers incorporate this research experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program, to the best of our knowledge, is completely unique in the following three ways: (1) Each team does original research using real astronomical data, not canned labs or reproductions of previously done research. (2) Each team writes up the results of their research and presents it at an AAS meeting. Each team also presents the educational results of their experience. (3) The 'products' of the program are primarily the scientific results, as opposed to curriculum packets. The teachers in the program involve students at their school and incorporate the experience into their teaching in a way that works for them, their environment, and their local/state standards. The educators in the program are selected from a nationwide annual application process, and they get three trips, all reasonable expenses paid. First, they attend a winter AAS meeting to get their bearings as attendees of the largest professional astronomy meetings in the world. We sponsor a kickoff workshop specifically for the NITARP educators on the day before the AAS meeting starts. After the meeting, they work remotely with their team to write a proposal, as well as read background literature. In the summer (at a time convenient to all team members), the educators plus up to two students per teacher come out to visit Caltech for 3-4 days and get started on their project in earnest. They return home and continue to work through the Fall, finish their research, and write their AAS abstracts and posters in preparation for the winter AAS. The educators plus up to two students per teacher then attend the AAS and present their results. Each team presents one science poster and at least one education poster. The science posters are intermingled in science sessions, and must "hold their own" next to other professional astronomer posters. Each teacher finally serves as NASA/NITARP ambassadors in their community, giving at least 12 hours' worth of professional development. Since the original Spitzer program in 2004, news coverage associated with any of these projects has reached more than 6 million people, largely in home-town newspapers from the teachers' cities. More than 200 presentations have been given, reaching over 14,000 people. More than 120 students have traveled for NITARP, and more than 1200 students have used real astronomical data through this program. Almost 60 educators have been trained in real research. Nearly 50 science or education posters have been presented. Four refereed journal articles (in major astronomical journals) have come out of work associated with these teams.
How MESSENGER Meshes Simulations and Games with Citizen Science
NASA Astrophysics Data System (ADS)
Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team
2010-12-01
How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI).
NASA Astrophysics Data System (ADS)
Rhee, Hyang-yon; Choi, Kyunghee
2014-05-01
The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.
Magneto optical properties of self-assembled InAs quantum dots for quantum information processing
NASA Astrophysics Data System (ADS)
Tang, Jing; Xu, Xiu-Lai
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921003), the National Natural Science Foundation of China (Grant Nos. 11721404, 51761145104, and 61675228), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB07030200 and XDPB0803), and the CAS Interdisciplinary Innovation Team.
Finnerty, Celeste C; Capek, Karel D; Voigt, Charles; Hundeshagen, Gabriel; Cambiaso-Daniel, Janos; Porter, Craig; Sousse, Linda E; El Ayadi, Amina; Zapata-Sirvent, Ramon; Guillory, Ashley N; Suman, Oscar E; Herndon, David N
2017-09-01
Since the inception of the P50 Research Center in Injury and Peri-operative Sciences (RCIPS) funding mechanism, the National Institute of General Medical Sciences has supported a team approach to science. Many advances in critical care, particularly burns, have been driven by RCIPS teams. In fact, burns that were fatal in the early 1970s, prior to the inception of the P50 RCIPS program, are now routinely survived as a result of the P50-funded research. The advances in clinical care that led to the reduction in postburn death were made by optimizing resuscitation, incorporating early excision and grafting, bolstering acute care including support for inhalation injury, modulating the hypermetabolic response, augmenting the immune response, incorporating aerobic exercise, and developing antiscarring strategies. The work of the Burn RCIPS programs advanced our understanding of the pathophysiologic response to burn injury. As a result, the effects of a large burn on all organ systems have been studied, leading to the discovery of persistent dysfunction, elucidation of the underlying molecular mechanisms, and identification of potential therapeutic targets. Survival and subsequent patient satisfaction with quality of life have increased. In this review article, we describe the contributions of the Galveston P50 RCIPS that have changed postburn care and have considerably reduced postburn mortality.
2008-09-16
interests are strategic resource management, strategic control, and corporate financial reporting. Joseph G. San Miguel Professor Graduate School of...Missile Defense PEO – Program Executive Officer PM – Program Manager SAIC – Science Applications International Corporation SAP – Systems Applications...International Corporation (SAIC) team (DoD, 2002). In addition to providing important personnel, the LSI team would provide an important advantage in
NASA Astrophysics Data System (ADS)
Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.
2012-12-01
Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today's classrooms is powerful. They serve as role models to these students, and they open students' eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation's next generation of explorers.
NASA Technical Reports Server (NTRS)
Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan
2012-01-01
Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide opportunities for meaningful connections between scientists and classrooms. To do this, EEAB offers multiple opportunities for scientist involvement. One opportunity involves having scientists work as mentors for student teams conducting research. These student teams, ranging from grades 4 through 12, are able to obtain guidance, suggestions, and input from STEM experts as they conduct a research investigation. Another opportunity for scientist involvement is participation in Classroom Connection Distance Learning (DL) events. These DL events entail interactive and engaging presentations that enable STEM experts to share their expertise with students and teachers (grades 3 through 12) from all across the nation. A third opportunity for scientist involvement involves participation in virtual student team science presentations. Student teams have the opportunity to share their research and results by presenting it to science experts through the use of WebEx, an easy-to-use online conferencing tool. The impact STEM experts have on students in today s classrooms is powerful. They serve as role models to these students, and they open students eyes to a potential career path they may not have known existed otherwise. The more scientists and STEM experts we can connect with students, the greater the impact we can make as we strive to inspire and prepare our nation s next generation of explorers.
THE SPACE PUBLIC OUTREACH TEAM (SPOT)
NASA Astrophysics Data System (ADS)
Williamson, Kathryn; National Radio Astronomy Observatory; Montana Space Grant Consortium; West Virginia Space Grant Consortium; NASA Independent Verification and Validation Center
2014-01-01
The Space Public Outreach Team (SPOT) has shown over 17 years of success in bringing astronomy and space science-themed presentations to approximately 10,000 students per year in Montana, and the program is now being piloted in West Virginia through a joint partnership between the National Radio Astronomy Observatory (NRAO), the West Virginia Space Grant Consortium, and NASA Independent Verification and Validation Center. SPOT recruits and trains undergraduate presenters from all over the state to learn interactive slide shows that highlight the state’s on-going and world-class space science research. Presenters then travel to K-12 schools to deliver these presentations and provide teachers additional supplemental information for when the SPOT team leaves. As a large-scale, low-cost, and sustainable program being implemented in both Montana and West Virginia, SPOT has the potential to become a nation-wide effort that institutions in other states can model to increase their education and public outreach presence.
Applications of aerospace technology in biology and medicine
NASA Technical Reports Server (NTRS)
1975-01-01
Results of the medically related activities of the NASA Application Team Program at the Research Triangle Institute are reported. A survey of more than 300 major medical device manufacturers has been initiated for the purpose of determining their interest and opinions in regard to participating in the NASA Technology Utilization Program. Design and construction has been commissioned of a permanent exhibit of NASA Biomedical Application Team accomplishments for the aerospace building of the North Carolina Museum of Life and Science at Durham, North Carolina. The team has also initiated an expansion of its activities into the Northeastern United States.
Report on an interdisciplinary program for allied health.
Peloquin, S M; Cavazos, H; Marion, R; Stephenson, K S; Pearrow, D
2007-11-01
A central recommendation from the Pew Health Commission to educators has been to empower future care providers to function effectively as teams. Administrators and faculty members within a school of allied health sciences thus established an interdisciplinary program where students would learn to function as team members and demonstrate competencies required for practice in diverse, demanding, and continually changing health care environments. Students from five disciplines have participated in featured events, mentored activities and capstone projects, earning credit in an interdisciplinary course of study that complements offerings in their home disciplines. This follow-up article reports on the progress and development since 2002 of an interdisciplinary program known as Team IDEAL. Formative evaluation measures used to assess satisfaction with the program are presented alongside a discussion of new directions. Team IDEAL will move forward in a streamlined form that reflects its central aim. IDEAL leadership will remain cognizant of the effects of discipline-specific curricular changes, complex programming, and student perspectives on the process interdisciplinary education.
NASA Technical Reports Server (NTRS)
Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard
2011-01-01
This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.
NASA Astrophysics Data System (ADS)
Miller, T. N.; Brumbaugh, E. J.; Barker, M.; Ly, V.; Schick, R.; Rogers, L.
2015-12-01
The NASA DEVELOP National Program conducts over eighty Earth science projects every year. Each project applies NASA Earth observations to impact decision-making related to a local or regional community concern. Small, interdisciplinary teams create a methodology to address the specific issue, and then pass on the results to partner organizations, as well as providing them with instruction to continue using remote sensing for future decisions. Many different methods are used by individual teams, and the program as a whole, to communicate results and research accomplishments to decision-makers, stakeholders, alumni, and the general public. These methods vary in scope from formal publications to more informal venues, such as social media. This presentation will highlight the communication techniques used by the DEVELOP program. Audiences, strategies, and outlets will be discussed, including a newsletter, microjournal, video contest, and several others.
NASA Technical Reports Server (NTRS)
Childs, Lauren M.; Miller, Joseph E.
2011-01-01
The DEVELOP National Program was established over a decade ago to provide students with experience in the practical application of NASA Earth science research results. As part of NASA's Applied Sciences Program, DEVELOP focuses on bridging the gap between NASA technology and the public through projects that innovatively use NASA Earth science resources to address environmental issues. Cultivating a diverse and dynamic group of students and young professionals, the program conducts applied science research projects during three terms each year (spring, summer, and fall) that focus on topics ranging from water resource management to natural disasters.
Scientific Participation at the Poles: K-12 Teachers in Polar Science for Careers and Classrooms
NASA Astrophysics Data System (ADS)
Crowley, S.; Warburton, J.
2012-12-01
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a National Science Foundation (NSF) funded program in which K-12 teachers participate in hands-on field research experiences in the polar regions. PolarTREC highlights the importance of involving teachers in scientific research in regards to their careers as educators and their ability to engage students in the direct experience of science. To date, PolarTREC has placed over 90 teachers with research teams in the Arctic and Antarctic. Published results of our program evaluation quantify the effect of the field experience on the teachers' use of the real scientific process in the classroom, the improvement in science content taught in classrooms, and the use of non-fiction texts (real data and science papers) as primary learning tools for students. Teachers and students both report an increase of STEM literacy in the classroom content, confidence in science education, as well as a markedly broadened outlook of science as essential to their future. Research conducted with science teams affirms that they are achieving broader impacts when PolarTREC teachers are involved in their expeditions. Additionally, they reported that these teachers making vital contributions to the success of the scientific project.
NASA Technical Reports Server (NTRS)
Fox, Nicola J.; Goldberg, Richard; Barnes, Robin J.; Sigwarth, John B.; Beisser, Kerri B.; Moore, Thomas E.; Hoffman, Robert A.; Russell, Christopher T.; Scudder, Jack D.; Spann, James F.
2004-01-01
To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth's dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story. Team members also created visualizations using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA's Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.
NASA Astrophysics Data System (ADS)
Turney, D.; Grigsby, B.; Murchie, S. L.; Buczkowski, D.; Seelos, K. D.; Nair, H.; McGovern, A.; Morgan, F.; Viviano, C. E.; Goudge, T. A.; Thompson, D.
2013-12-01
The Mars Exploration Student Data Teams (MESDT) immerses diverse teams of high school and undergraduate students in an authentic research Science, Technology, Engineering and Mathematics (STEM) based experience and allows students to be direct participants in the scientific process by working with scientists to analyze data sets from NASA's Mars program, specifically from the CRISM instrument. MESDT was created by Arizona State University's Mars Education Program, and is funded through NASA's Compact Reconnaissance Imaging Spectrometer for Mars or CRISM, an instrument onboard the Mars Reconnaissance Orbiter (MRO). Students work with teacher mentors and CRISM team members to analyze data, develop hypotheses, conduct research, submit proposals, critique and revise work. All students begin the program with basic Mars curriculum lessons developed by the MESDT education team. This foundation enables the program to be inclusive of all students. Teachers have reported that populations of students with diverse academic needs and abilities have been successful in this program. The use of technology in the classroom allows the MESDT program to successfully reach a nationwide audience and funding provided by NASA's CRISM instrument allows students to participate free of charge. Recent changes to the program incorporate a partnership with United States Geological Survey (USGS) and a CRISM sponsored competitive scholarship for two teams of students to present their work at the annual USGS Planetary Mappers Meeting. Returning MESDT teachers have attributed an increase in student enrollment and interest to this scholarship opportunity. The 2013 USGS Planetary Mappers Meeting was held in Washington DC which provided an opportunity for the students to meet with their Senators at the US Capitol to explain the science work they had done throughout the year as well as the impact that the program had had on their goals for the future. This opportunity extended to the students by the United States Senate was a chance for students to practice high level communication and presentation skills and was reported to have made a strong impression on the participating students. MESDT develops foundational abilities needed by all students such as critical thinking, problem solving, cooperative group work, and communication skills. The implications of having students involved in authentic data analysis from an orbiting spacecraft include increased technical abilities as well as increased confidence to pursue a STEM (Science, Technology, Engineering and Mathematics) major or career. Formative assessments and teacher, parent, and student testimonials show MESDT has had a definite impact on students and their decisions to pursue STEM related majors and careers, in addition to leading to student scholarships and awards.
Progress update on a 2015 USIP interdisciplinary undergraduate student microgravity experiment
NASA Astrophysics Data System (ADS)
Dove, A.; Colwell, J. E.; Brisset, J.; Kirstein, J.; Brightwell, K.; Hayden, R.; Jorges, J.; Schwartzberg, D.; Strange, J.; Yates, A.
2016-12-01
Our team was selected by the 2016 USIP program to build, fly, and analyze the results from a granular dynamics experiment that will fly in 2017 on a suborbital flight. The experiment will be designed to test technology and enable science relevant to low-gravity planetary objects, such as asteroids, comets, and small moons. Following on the success of previous NASA Flight Opportunities Program (FOP) and Undergraduate Student Instrumentation Project (USIP) projects, however, the primary driver of the project is to enable undergraduate student participation in the entire lifetime of a science and technology development project. Our mentoring team consists of faculty, postdoctoral researchers, and graduate students, who have experience with the past USIP program and similar projects, as well as with mentoring undergraduate students. The undergraduate team includes a diversity of major disciplines, including physics, mechanical/aerospace engineering, electrical engineering, business (accounting), and marketing. Each team member has specific project tasks, as outlined in the proposal, and all members will also help develop and participate in outreach events. In additional to their project roles, students will also be responsible for presentations and milestones, such as design reviews. Through these reviews and the outreach events, all team members have the chance to develop their technical and non-technical communication skills. Previous experience with the NASA USIP program demonstrated that students achieve significant growth through these projects -gaining a better understanding of the entire lifecycle of a project, and, likely more importantly, how to work with a diverse team. In this talk, we will discuss the status of the project, and present student impressions and thoughts on the project thus far.
Hands-On Optics: An Informal Education Program for Exploring Light and Color
NASA Astrophysics Data System (ADS)
Pompea, S. M.; Walker, C. E.; Peruta, C. C.; Kinder, B. A.; Aceituno, J. C.; Pena, M. A.
2005-05-01
Hands-On Optics (HOO) is a collaborative four-year program to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. It will reach underrepresented middle school students in after-school programs and at hands-on science centers nationwide. Project partners with NOAO are SPIE-The International Society for Optical Engineering, the Optical Society of America (OSA), and the Mathematics, Engineering, Science Achievement Program (MESA) of California. This program builds on the 2001 National Science Foundation planning grant (number ESI-0136024), Optics Education - A Blueprint for the 21st Century, undertaken to address the disconnect between the ubiquity of optics in everyday life and the noticeable absence of optics education in K-12 curricula and in informal science education. NOAO - with expertise in teaching optics, developing optics kits, and in science-educator partnerships is designing the HOO instructional materials by adapting well-tested formal education activities on light, color, and optical technology for the informal setting. These hands-on, high-interest, standards-connected activities and materials serve as the basis for 6, three-hour-long optics activity modules that will be used in informal education programs at 23 HOO host sites. NOAO also will train the educators, parents, and optics professionals who will work in teams to lead the HOO activities. A key component of the project will be the optics professionals from the two optical societies who currently are engaged in outreach activities and programs. Optics professionals will serve as resource agents teamed with science center and MESA educators, a model very successfully used by the Astronomical Society of the Pacific's Project ASTRO. The six modules and associated challenges and contests address reflection from one or many mirrors, image formation, colors and polarization, ultraviolet and infrared phenomena, and communication over a beam of light. Challenges and contests have also been created to augment the six modules. The Hands On Optics Project is funded by the National Science Foundation ISE program. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.
InTeGrate: Transforming the Teaching of Geoscience and Sustainability
NASA Astrophysics Data System (ADS)
Blockstein, D.; Manduca, C. A.; Bralower, T. J.; Castendyk, D.; Egger, A. E.; Gosselin, D. C.; Iverson, E. A.; Matson, P. A.; MacGregor, J.; Mcconnell, D. A.; Mogk, D. W.; Nevle, R. J.; Oches, E. A.; Steer, D. N.; Wiese, K.
2012-12-01
InTeGrate is an NSF-funded community project to improve geoscience literacy and build a workforce that can apply geoscience principles to address societal issues. Three workshops offered this year by InTeGrate and its partner, On the Cutting Edge, addressed strategies for bringing together geoscience and sustainability within geoscience courses and programs, in interdisciplinary courses and programs, and in courses and programs in other disciplines or schools including arts and humanities, health science, and business. Participants in all workshops described the power of teaching geoscience in the context of sustainability and the utility of this approach in engaging students with geoscience, including student populations not traditionally represented in the sciences. Faculty involved in both courses and programs seek to teach important skills including the ability to think about systems and to make connections between local observations and challenges and global phenomena and issues. Better articulation of these skills, including learning outcomes and assessments, as well as documenting the relationship between these skills and employment opportunities were identified as important areas for further work. To support widespread integration of geoscience and sustainability concepts, these workshops initiated collections describing current teaching activities, courses, and programs. InTeGrate will continue to build these collections in collaboration with On the Cutting Edge and Building Strong Geoscience Departments, and through open contributions by individual faculty and programs. In addition, InTeGrate began developing new teaching modules and courses. Materials for use in introductory geoscience and environmental science/studies courses, distance learning courses, and courses for education majors are being developed and tested by teams of faculty drawn from at least three institutions, including several members from two-year colleges. An assessment team is assisting the development teams in incorporation of research-based teaching methods and embedded assessments to document learning. The assessment team will also evaluate the success of these materials in meeting learning outcomes prior to broad dissemination. Additional opportunities for faculty to propose and develop needed materials are currently available.
75 FR 65669 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...
75 FR 54189 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... INFORMATION: I. Abstract DIME & WING are components of a NASA competition program which allows teams to design and build a science experiment which will then be operated in a NASA microgravity drop tower facility. Teams of 4 students are selected to come to GRC and drop their experiment and will be required to...
Using Mentors and Interdisciplinary Teams To "Genderize" Teacher Education.
ERIC Educational Resources Information Center
Sanders, Jo; Campbell, Patricia B.
This paper describes a national project concerning gender equity in teacher education in mathematics, science, and technology. Using a model of external mentors and on-site teams, the Teacher Education Mentor Program (TEMP) worked with seven universities to facilitate the inclusion of gender equity in individual college courses and in college of…
NOAA Office of Exploration and Research > Home
2014 Funding Opportunities Contact Us Program Review Review Panel Final Report Review Team Documents Review Review Panel Final Report Review Team Documents Presentations Supporting Documents Guiding the NOAA Science Advisory Board, a thirteen-member Review Panel conducted the first-ever formal
Designing a CTSA‐Based Social Network Intervention to Foster Cross‐Disciplinary Team Science
McCarty, Christopher; Conlon, Michael; Nelson, David R.
2015-01-01
Abstract This paper explores the application of network intervention strategies to the problem of assembling cross‐disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic‐web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross‐disciplinary scientific teams in CTSA institutions. PMID:25788258
Students Participate in Rocket Launch Project
NASA Technical Reports Server (NTRS)
2002-01-01
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
2002-05-22
Filled with anticipation, students from two local universities, the University of Alabama in Huntsville (UAH), and Alabama Agricultural Mechanical University (AM), counted down to launch the rockets they designed and built at the Army test site on Redstone Arsenal in Huntsville, Alabama. The projected two-mile high launch culminated more than a year's work and demonstrated the student team's ability to meet the challenge set by the Marshall Space Flight Center's (MSFC) Student Launch Initiative (SLI) program to apply science and math to experience, judgment, and common sense, and proved to NASA officials that they have successfully built reusable launch vehicles (RLVs), another challenge set by NASA's SLI program. MSFC's SLI program is an educational effort that aims to motivate students to pursue careers in science, math, and engineering. It provides the students with hands-on, practical aerospace experience. In this picture, a student from AM and his mentor install their payload into the launch vehicle which was built by the team of UAH students. The scientific payload, developed and built by the team of AM students, measured the amount of hydrogen produced during electroplating with nickel in a brief period of micrgravity.
E-Basics: Online Basic Training in Program Evaluation
ERIC Educational Resources Information Center
Silliman, Ben
2016-01-01
E-Basics is an online training in program evaluation concepts and skills designed for youth development professionals, especially those working in nonformal science education. Ten hours of online training in seven modules is designed to prepare participants for mentoring and applied practice, mastery, and/or team leadership in program evaluation.…
Using POGIL to Help Students Learn to Program
ERIC Educational Resources Information Center
Hu, Helen H.; Shepherd, Tricia D.
2013-01-01
POGIL has been successfully implemented in a scientific computing course to teach science students how to program in Python. Following POGIL guidelines, the authors have developed guided inquiry activities that lead student teams to discover and understand programming concepts. With each iteration of the scientific computing course, the authors…
Measuring the Value of AI in Space Science and Exploration
NASA Astrophysics Data System (ADS)
Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.
2017-10-01
FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.
NASA Astrophysics Data System (ADS)
Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.
2004-12-01
The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in existence for over two years and has been used by teachers and students from across the US. The Mars Exploration Student Data Team Program was created and prototyped during the Mars Exploration Rover mission this past January through April. Over 500 students from 25 schools from across the US participated in real-time data analysis using the Mars Odyssey and Mars Global Surveyor infrared instruments -Thermal Emission Spectrometer - TES and THEMIS to monitor the rover landing sites. This program utilized a virtual team format and allowed high school students to collaborate with other teams that were, at times, thousands of miles away to implement real-time observations. This program will be carried forward to several of the upcoming missions. Finally, the Athena Student Intern Program is the higher end of involvement for students and teachers. These students and teachers were competitively selected to spend a week during the mission operations of the rovers at JPL. All of these programs have a common thread..ownership of the experience. By empowering the next generation of learners with the knowledge that they can be part of their future through such immersive experiences before they reach college, they will be ready to take on harder challenges that will reach higher towards new frontiers
Terra Mission Operations: Launch to the Present (and Beyond)
NASA Technical Reports Server (NTRS)
Thome, Kurt; Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren
2014-01-01
The Terra satellite, flagship of NASAs long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASAs international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations.
"NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams
NASA Astrophysics Data System (ADS)
Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.
2014-04-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.
ERIC Educational Resources Information Center
Byars-Winston, Angela; Gutierrez, Belinda; Topp, Sharon; Carnes, Molly
2011-01-01
Few, if any, educational interventions intended to increase underrepresented minority (URM) graduate students in biological and behavioral sciences are informed by theory and research on career persistence. Training and Education to Advance Minority Scholars in Science (TEAM-Science) is a program funded by the National Institute of General Medical…
ERIC Educational Resources Information Center
Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia
2001-01-01
Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasseh, Bizhan
Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry,more » and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.« less
Science beyond the Classroom: Hands-On Optics and the Boys and Girls Club
NASA Astrophysics Data System (ADS)
Dokter, Erin F.; Walker, C.; Peruta, C.; Ubach, C.; Sparks, R.; Pompea, S.
2006-12-01
In Summer and Fall 2006, the Hands-On Optics program of the National Optical Astronomy Observatory (NOAO) teamed up with two local Boys and Girls Clubs in the Tucson area to conduct informal education programs for elementary and middle school aged children. Hands-On Optics (HOO) is a collaborative program funded by NSF to create and sustain a unique, national, informal science education program to excite students about science by actively engaging them in optics activities. The program was designed especially to reach underserved students. In this talk, the successes and challenges of implementing these programs will be discussed, as well as the lessons learned in the process, which may be applied to other partnerships between EPO providers and informal learning venues.
NASA Astrophysics Data System (ADS)
Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team
2018-01-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.
NASA Technical Reports Server (NTRS)
Childs, Lauren M.; Brozen, Madeline W.; Gleason, Jonathan L.; Silcox, Tracey L.; Rea, Mimi; Holley, Sharon D.; Renneboog, Nathan; Underwood, Lauren W.; Ross, Kenton W.
2009-01-01
Satellite remote sensing technology and the science associated with the evaluation of the resulting data are constantly evolving. To meet the growing needs related to this industry, a team of personnel that understands the fundamental science as well as the scientific applications related to remote sensing is essential. Therefore, the workforce that will excel in this field requires individuals who not only have a strong academic background, but who also have practical hands-on experience with remotely sensed data, and have developed knowledge of its real-world applications. NASA's DEVELOP Program has played an integral role in fulfilling this need. DEVELOP is a NASA Science Mission Directorate Applied Sciences training and development program that extends the benefits of NASA Earth science research and technology to society.
Tektite 1, man-in-the-sea project: Marine Science Program
Clifton, H.E.; Mahnken, C.V.W.; Van Derwalker, J. C.; Waller, R.A.
1970-01-01
The Tektite experiment was designed to provide data for a number of behavioral, biomedical, and engineering studies in addition to the marine sciences program. Conditions for some of these studies were not altogether compatible with the program for the marine sciences. For example, isolation imposed by human behavioral studies precluded physical contact with the surface team, even though such contact was physically possible and desirable for the conduct of the marine sciences program. Isolation also imposed on the scientific team the duty of all in-habitat maintenance, both scheduled and unscheduled, thereby taking substantial time from scientific research. In addition, between 10 and 20 percent of the waking time was devoted to performance of psychological tests required for the biomedical studies. Most of the experiments were directed toward detecting potentially adverse changes and thus were accepted as necessary and desirable. The only health problem to affect the scientific program during the dive was a minor external ear infection contracted by all the divers. Nonetheless, the experiment demon. strated, at least to our satisfaction, the advantages of underwater habitation and saturation diving for biological and geological research. A major advantage is the opportunity for continuous monitoring of organisms or processes. In addition, underwater habitation provides for considerably more research time in the water than surface diving or intermittent bottom dwelling, and this advantage increases greatly as the depth of habitation increases. Even in the relatively shallow depths at which Tektite 1 was conducted, the undersea team could spend appreciably more time at work in the water than their colleagues on the surface. Finally, Tektite 1 demonstrated that the scientist who lives in the sea need not have the extensive qualifications of a professional diver. Of the four scientists of the in-habitat team, only Crew Chief Waller was so qualified; the other three had used scuba as a research tool, but on a relatively limited basis. Any healthy, well-conditioned marine scientist with a basic diving background is capable of extending his research into the shallow sea on a full-time basis. It is hoped that many such scientists will in the future be able to utilize the undersea laboratory.
NASA Astrophysics Data System (ADS)
Wu, Xueke; Li, Huidong; Wang, Zhanhui; Feng, Hao; Zhou, Yulin
2017-06-01
Not Available Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 11605143), the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province, China (Grant No. 05020732), the National Natural Science Foundation of China (Grant No. 11575055), the Fund from the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), the National ITER Program of China (Contract No. 2014GB113000), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
ERIC Educational Resources Information Center
Ejiwale, James A.
2014-01-01
Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…
ERIC Educational Resources Information Center
Aschbacher, Pamela; Li, Erika; Hammon, Art
2008-01-01
"Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…
Peer-Led Team Learning in Mathematics Courses for Freshmen Engineering and Computer Science Students
ERIC Educational Resources Information Center
Reisel, John R.; Jablonski, Marissa R.; Munson, Ethan; Hosseini, Hossein
2014-01-01
Peer-led Team Learning (PLTL) is an instructional method reported to increase student learning in STEM courses. As mathematics is a significant hurdle for many freshmen engineering students, a PLTL program was implemented for students to attempt to improve their course performance. Here, an analysis of PLTL for freshmen engineering students in…
NASA IKONOS Radiometric Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Frisbee, Troy; Zanoni, Vicki; Blonski, Slawek; Daehler, Erik; Grant, Brennan; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Smith, Charles
2002-01-01
The objective of this program: Perform radiometric vicarious calibrations of IKQNOS imagery and compare with Space Imaging calibration coefficients The approach taken: utilize multiple well-characterized sites which are widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors; and to Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.
A Mars Exploration Discovery Program
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Paige, D. A.
2000-07-01
The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.
A Mars Exploration Discovery Program
NASA Technical Reports Server (NTRS)
Hansen, C. J.; Paige, D. A.
2000-01-01
The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.
NASA Astrophysics Data System (ADS)
Pearson, J. K.; Noriega, G.; Benthien, M. L.
2017-12-01
The Undergraduate Studies in Earthquake Information Technology (USEIT) is an REU Internship Program focused in multi-disciplinary, collaborative research offered through the Southern California Earthquake Center (SCEC); a research consortium focused on earthquake science. USEIT is an 8-week intensive undergraduate research program. The program is designed for interns to work as a collaborative engine to solve an overarching real-world earthquake problem referred to as the "Grand Challenge". The interns are organized in teams and paired with mentors that have expertise in their specific task in the Grand Challenge. The program is focused around earthquake system science, where students have the opportunity to use super computers, programming platforms, geographic information systems, and internally designed and developed visualization software. The goal of the USEIT program is to motivate undergraduates from diverse backgrounds towards careers in science and engineering through team-based research in the field of earthquake information technology. Efforts are made to recruit students with diverse backgrounds, taking into consideration gender, ethnic background, socioeconomic standing, major, college year, and institution type (2-year and 4-year colleges). USEIT has a partnership with two local community colleges to recruit underserved students. Our emphasis is to attract students that would 1) grow and develop technical skills, soft skills, and confidence from the program, and 2) provide perspective and innovation to the program. USEIT offers on-campus housing to provide a submerged learning environment, recruits diverse majors to foster interdisciplinary collaboration, maintains a full time in lab mentor for day-to-day intern needs, takes students on field trips to provide context to their research, and plans activities and field trips for team building and morale. Each year metrics are collected through exit surveys, personal statements, and intern experience statements. We highlight lessons learned, including a need for pre-program engagement to ensure student success.
The Animal Sciences Academic Quadrathlon: history, current status, and recommendations.
Kauffman, R G; Jobsis, C T; Onan, G; Day, B N
2011-07-01
The Animal Sciences Academic Quadrathlon (AQ) provides opportunities for teams of undergraduate animal and dairy science students to participate in regional American Society of Animal Science (ASAS)/American Dairy Science Association (ADSA) meetings and to collectively exhibit their knowledge and talents competitively in 4 categories: 1) solving practical, hands-on, laboratory-type problems; 2) providing written answers to essay-type questions about principles and concepts; 3) preparing and communicating orally and extemporaneously topics of current animal science interest; and 4) quickly responding to short-answer questions provided in the form of double-elimination quiz bowls. Each team is selected by winning the local AQ at their university. Overall and individual category winning teams are recognized, but team rankings are not emphasized. The ASAS/ADSA members provide leadership for organizing and conducting the AQ, and ASAS and each university provide travel expenses for students. The ultimate purpose is to stimulate academic excellence among undergraduate students and for the students to attend ASAS/ADSA regional scientific meetings to meet faculty and students and to attend scientific research presentations. The purpose of this document was to provide a history of the event and to make recommendations for its improvement. The AQ was conceived in 1967. During the next 10 yr, an ASAS committee developed procedures for a trial AQ held in 1980 at the ASAS Midwestern Section, Kansas State University-Manhattan, and in the next year the first official AQ was held at the ASAS Midwestern Section at the University of Nebraska-Lincoln. Starting in 1985, AQ programs were initiated at the other 3 ASAS sectional meetings, and an estimated 50,000 students representing 60 universities have participated in AQ programs since that time. If the AQ is to continue its improvement over time, it will greatly depend on sustained ASAS/ADSA faculty interest and support, as well as greater adherence to the original AQ procedures. © 2011 American Society of Animal Science. All rights reserved.
NASA Astrophysics Data System (ADS)
Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.
2004-12-01
To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.
CSUNSat-1 Team working on their CubeSat at California State University Northridge
2015-03-02
CSUNSat-1 Team (Adam Kaplan, James Flynn, Donald Eckels) working on their CubeSat at California State University Northridge. The primary mission of CSUNSat1 is to space test an innovative low temperature capable energy storage system developed by the Jet Propulsion Laboratory, raising its TRL level to 7 from 4 to 5. The success of this energy storage system will enable future missions, especially those in deep space to do more science while requiring less energy, mass and volume. This CubeSat was designed, built, programmed, and tested by a team of over 70 engineering and computer science students at CSUN. The primary source of funding for CSUNSat1 comes from NASA’s Smallest Technology Partnership program. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.
ERIC Educational Resources Information Center
Buffie, Edward G.
The Block Program is one of five major options at Indiana University, Bloomington, for students preparing to become elementary teachers. The project emphasizes team approach to instruction; flexibility of program; carefully articulated work with respect to preparation in language arts, mathematics, science, and social studies; carefully…
An Engineering Research Program for High School Science Teachers: Year Two Changes and Results
ERIC Educational Resources Information Center
DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga
2016-01-01
The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…
Tillamook's Learning Disabilities Program for Secondary Students. OSSC Bulletin, Vol. 24, No. 5.
ERIC Educational Resources Information Center
Johnson, Maggie
The Tillamook program provides support to learning disabled students who experience difficulty in science, social studies, and other content areas in the regular class setting, as a result of mainstreaming efforts. The program model includes a professionally staffed resource room, a diagnostic-prescriptive team, and a library of multimedia…
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. U1304111), Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 14HASTIT039), and the Innovation Team of Henan University of Science and Technology, China (Grant No. 2015XTD001)
Invasive Species Science Update (No. 1)
Mee-Sook Kim; Jack Butler
2008-01-01
This electronic newsletter (Invasive Species Science Update) is published by the Rocky Mountain Research Station (RMRS) Cross-Program, Interdisciplinary Project team on Invasive Species. This newsletter will be published 3 times per year and is intended to enhance communication among RMRS scientists, wildland managers, other partners, stakeholders, and customers about...
Virginia's College and Career Readiness Initiative
ERIC Educational Resources Information Center
Virginia Department of Education, 2010
2010-01-01
In 1995, Virginia began a broad educational reform program that resulted in revised, rigorous content standards, the Virginia Standards of Learning (SOL), in the content areas of English, mathematics, science, and history and social science. These grade-by-grade and course-based standards were developed over 14 months with revision teams including…
Interdisciplinary team science and the public: Steps toward a participatory team science.
Tebes, Jacob Kraemer; Thai, Nghi D
2018-01-01
Interdisciplinary team science involves research collaboration among investigators from different disciplines who work interdependently to share leadership and responsibility. Although over the past several decades there has been an increase in knowledge produced by science teams, the public has not been meaningfully engaged in this process. We argue that contemporary changes in how science is understood and practiced offer an opportunity to reconsider engaging the public as active participants on teams and coin the term participatory team science to describe public engagement in team science. We discuss how public engagement can enhance knowledge within the team to address complex problems and suggest a different organizing framework for team science that aligns better with how teams operate and with participatory approaches to research. We also summarize work on public engagement in science, describe opportunities for various types of engagement, and provide an example of participatory team science carried out across research phases. We conclude by discussing implications of participatory team science for psychology, including changing the default when assembling an interdisciplinary science team by identifying meaningful roles for public engagement through participatory team science. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
NASA Astrophysics Data System (ADS)
Pei, Ke; Xia, Wei-Xing; Wang, Bao-Min; Wen, Xing-Cheng; Sheng, Ping; Liu, Jia-Ping; Liu, Xin-Cai; Li, Run-Wei
2018-04-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0201102), the National Natural Science Foundation of China (Grant No. 51571208), the Instrument Developing Project of Chinese Academy of Sciences (Grant No. YZ201536), the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08), the K C Wong Education Foundation (Grant No. rczx0800), and the K C Wong Magna Fund in Ningbo University.
NASA Astrophysics Data System (ADS)
Zhu, Yanchun; Spincemaille, Pascal; Liu, Jing; Li, Shuo; Nguyen, Thanh D.; Prince, Martin R.; Xie, Yaoqin; Wang, Yi
2017-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 81501463, 61671026, 81571669, and 81671853), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310360), Guangdong Innovative Research Team Program of China (Grant No. 2011S013), the Basic Research Project of Shenzhen City, China (Grant Nos. JCYJ20140417113430639 and JCYJ20160429172357751), the High-level Oversea Talent Program of Shenzhen City, China (Grant No. KQJSCX20160301144248), and Beijing Center for Mathematics and Information Interdisciplinary Sciences of China.
Teacher education professionals as partners in health science outreach.
Houtz, Lynne E; Kosoko-Lasaki, Omofolasade; Zardetto-Smith, Andrea M; Mu, Keli; Royeen, Charlotte B
2004-01-01
Medical school and other health science outreach programs to educate and recruit precollege students always have relied on successful collaborative efforts. Creighton University shares the value, significance, and strategies of involving teacher education professionals in several of its current outreach programs, including HPPI, Brains Rule! Neuroscience Expositions, and HHMI Build a Human Project. The education department partner serves as an essential team member in the development, implementation, assessment, and dissemination of these projects to promote science and mathematics achievement and interest in medical careers. Specific examples and mistakes to avoid are included.
2016-10-27
This archival image was released as part of a gallery comparing JPL's past and present, commemorating the 80th anniversary of NASA's Jet Propulsion Laboratory on Oct. 31, 2016. In December 1972, the science steering group for a mission then-known as Mariner Jupiter Saturn 1977 -- later renamed Voyager -- met for the first time at NASA's Jet Propulsion Laboratory in Pasadena, Calif. They are gathered on the steps in front of the administration building (180). The mission was so named because it was planning to send Mariner-class spacecraft to Jupiter and Saturn. It was renamed Voyager a few months before the launch of the twin spacecraft in August and September 1977. This photo shows principal investigators and team leaders for the science experiments and several others from the project and NASA who attended the first meeting. In the first row: Radio Science Subsystem Team Leader Von Eshleman, Project Scientist Edward Stone, Project Manager Harris (Bud) Schurmeier, Mission Analysis and Engineering Manager Ralph Miles, Magnetometer Principal Investigator Norman Ness, NASA Planetary Program Office Deputy Director Ichtiaque Rasool, Robert Soberman (who was proposed to be the principal investigator of the Particulate Matter Investigation, which was not confirmed) and an unidentified member of the NASA Office of Space Science. In the second row: Infrared Interferometer Spectrometer Principal Investigator Rudolf Hanel, Planetary Radio Astronomy Principal Investigator James Warwick, Ultraviolet and Spectrometer Principal Investigator A. Lyle Broadfoot. In the third row: Low-Energy Charged Particles Principal Investigator Stamatios (Tom) Krimigis, Cosmic Ray Subsystem Principal Investigator Rochus (Robbie) Vogt, NASA Outer Planets Missions Program Manager Warren Keller, Imaging Science Subsystem Team Leader Bradford Smith and Photopolarimeter Principal Investigator Charles Lillie. In the fourth row: Plasma Investigation Principal Investigator Herbert Bridge, Spacecraft Systems Manager Raymond Heacock, NASA Outer Planets Missions Program Scientist Milton (Mike) Mitz and Science Manager James Long. http://photojournal.jpl.nasa.gov/catalog/PIA21122
Frontier Fields: A Cost-Effective Approach to Bringing Authentic Science to the Education Community
NASA Astrophysics Data System (ADS)
Eisenhamer, B.; Lawton, B.; Summers, F.; Ryer, H.
2015-11-01
For more than two decades, the Hubble EPO program has sought to bring the wonders of the universe to the education community and the public, and to engage audiences in the adventure of scientific discovery. Program components include standards-based, curriculum-support materials, exhibits and exhibit components, and professional development workshops. The main underpinnings of the program's infrastructure are scientist-educator development teams, partnerships, and an embedded program evaluation component. The Space Telescope Science Institute's Office of Public Outreach is leveraging this existing infrastructure to bring the Frontier Fields science program to the education community in a cost-effective way. Frontier Fields observations and results have been, and will continue to be, embedded into existing product lines and professional development offerings. We also are leveraging our new social media strategy to bring the science program to the public in the form of an ongoing blog.
Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts
NASA Astrophysics Data System (ADS)
Wu, Dong-Xu; Cheng, Hong-Bin; Zheng, Xue-Jun; Wang, Xian-Ying; Wang, Ding; Li, Jia
2015-10-01
Not Available Supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT-14R48, the National Natural Science Foundation of China under Grant No 51272158, the Changjiang Scholar Incentive Program of the Education Ministry of China under Grant No [2009]17, the China Postdoctoral Science Foundation Funded Project under Grant No 2014M551427, and the Hujiang Foundation of China under Grant No B14006.
Single Investigator or Group Projects? Which is the More Successful Model for a REU Site?
NASA Astrophysics Data System (ADS)
Boush, L. P.; Myrbo, A.; Berman, M. J.; Gnivecki, P.; Michelson, A.; Brady, K. L.
2012-12-01
Undergraduate research programs have become popular and effective mechanisms for developing future geoscientists and increasing participation of under-represented groups in the sciences. There are many models for implementing such programs that span different philosophies and goals. Our Research Experience for Undergraduates (REU) program in the Bahamas is in the second of its three year award and has used two different models each year of its operation. In the first year, we used the individual student project model, where students pursued their own research much like an honors or masters thesis approach. Specifically, students did individual projects in four areas: paleobiology, geoarcheology, geobiology and limnogeology. In the second year, we used the team concept model, where students were divided into two teams, coring different lakes. The students combined efforts in both the field and lab, doing basic limnology of the basins, and then collecting and analyzing the cores that they took. While both pedagogy models were successful in teaching basic science skills in the field and lab, each one had different strengths and weaknesses. The single investigator model allowed students to have complete intellectual ownership of their projects, while the group model allowed students to work together in teams and produce a more comprehensive dataset that was higher quality and more likely to be published. In addition, while student knowledge gains were statistically the same for both years, the attitudes towards science scores were higher for the 'team model' year than for the single investigator. Since one of the goals of the REU program is to engage students and foster a desire to continue scientific inquiry or careers in science, the 'team model' could be regarded as more successful. It also allowed higher quality datasets to be produced and a more realistic view of how most science is done—in a collaborative, multidisciplinary way. Each student learned all of the field and lab techniques and helped one another as a cooperative group but was held individually responsible for various aspects of the data collection and analysis. Further, it can be argued that in the short amount of time allotted for REU projects (8-10 weeks), it is difficult for inexperienced students to design a publishable project; and one could question if this is the appropriate venue for having students initiate either projects that are too large to do in the timeframe of the REU or too specific or limited in data and methods to be significant scientific contributions. Thus, we will pursue the 'team model' in our third year of our REU project because it has yielded better scientific outcomes and more satisfying experiences for our students.
Internships in Public Science Education program: a model for informal science education
NASA Astrophysics Data System (ADS)
Zenner, Greta
2005-03-01
The NSF-funded Internships in Public Science Education (IPSE) program provides a unique opportunity for undergraduate and graduate students with varied academic background to experience learning and teaching science--specifically nanotechnology--to the general public and middle-school students. The program is in collaboration with Discovery World Museum of Milwaukee, Wisconsin. IPSE interns have created a number of classroom activities ranging from understanding the scale of a nanometer to experimenting with liquid crystal sensors to critically examining the societal implications of nanotechnology. In a new phase of the program, the interns are developing a museum exhibit on nanotechnology to be housed at the Discovery World Museum. Through this experience, intern teams learn about nanotechnology, brainstorm ideas, present and receive feedback on their ideas, and create an exhibit prototype to explain nanotechnology and related science concepts. The program also focuses on professional development, during which interns learn techniques for presenting to non-technical audiences, strategies for assessing their materials, and work on their skills in teamwork, project design, leadership, and science communication.
SERVIR Science Applications for Capacity Building
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Searby, Nancy D.; Irwin, Daniel
2012-01-01
SERVIR is a regional visualization and monitoring system using Earth observations to support environmental management, climate adaptation, and disaster response in developing countries. SERVIR is jointly sponsored by NASA and the U.S. Agency for International Development (USAID). SERVIR has been instrumental in development of science applications to support the decision-making and capacity building in the developing countries with the help of SERVIR Hubs. In 2011, NASA Research Opportunities in Space and Earth Sciences (ROSES) included a call for proposals to form SERVIR Applied Sciences Team (SERVIR AST) under Applied Sciences Capacity Building Program. Eleven proposals were selected, the Principal Investigators of which comprise the core of the SERVIR AST. The expertise on the Team span several societal benefit areas including agriculture, disasters, public health and air quality, water, climate and terrestrial carbon assessments. This presentation will cover the existing SERVIR science applications, capacity building components, overview of SERVIR AST projects, and anticipated impacts.
NASA Microgravity Science Competition for High-school-aged Student Teams
NASA Technical Reports Server (NTRS)
DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric
2002-01-01
NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.
Ventures in science status report, Summer 1992. [Program description and Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrick, Wayne C.
The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshopsmore » that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.« less
Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.
Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R
2015-08-01
This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.
Wong, Arkers Kwan Ching; Wong, Frances Kam Yuet; Chan, Lap Ki; Chan, Namkiu; Ganotice, Fraide A; Ho, Jacqueline
2017-06-01
Although interprofessional education has received attention in recent years as a means of providing opportunities for health-care professionals to learn with, from and about other disciplines and enhance the quality of patient care, evidence of its effectiveness is limited. Interprofessional team-based learning was introduced to make it possible for students in different healthcare disciplines to interact with each other, and to prepare them to function effectively within a team in their future career. To examine the effects of interprofessional team-based learning for undergraduate nursing students in terms of knowledge level, readiness for interprofessional learning, attitude towards various aspects of team learning, and perceived collective efficacy. The study employed a one-group pretest-posttest quasi-experimental design. An interprofessional education program was given to students from two universities in Hong Kong who were in different healthcare disciplines including medicine, nursing, pharmacy, biomedical science, and Chinese medicine programs. The program was based on four phases of student learning- individual readiness assessment test, ice breaking session, team readiness assessment test, and application exercise. Nursing students involved in the program were invited to complete anonymous questionnaires to evaluate their interprofessional team experience. A total of 40 nursing students (9 male, 31 female) participated in the study. A statistically significant improvement was identified in their knowledge level (p<0.001), attitude towards readiness for interprofessional learning, team learning, and perceived collective efficacy (p<0.001). This study suggests that interprofessional team-based learning can enhance cross-disciplinary learning and outcomes resulting from team efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kusek, K. M.; Freitag, K.; Devey, C.
2005-12-01
The Science Writer-at-Sea program is one small step in a marathon need for improved coverage of science and environmental issues. It targets two significant links in the Earth science communication pipeline: marine scientists and journalists; and attempts to reconnect people with the Earth by boosting their understanding of Earth science and its relevance to society. How it works: Journalism graduate students are invited to participate in oceanographic expeditions affiliated with InterRidge, an international organization dedicated to promoting ocean ridge research. InterRidge's outreach coordinator and science writer prepares each student for the expedition experience using materials she developed based on years of at-sea reporting. The students work side-by-side with the science writer and the scientists to research and write innovative journalistic stories for a general audience that are featured on a uniquely designed multimedia website that includes videos and images. The science, journalism and public communities benefit from this cost-effective program: science research is effectively showcased, scientists benefit from interactions with journalists, science outreach objectives are accomplished; student journalists enjoy a unique hands-on, `boot camp' experience; and the website enhances public understanding of `real' Earth science reported `on scene at sea.' InterRidge completed its first pilot test of the program in August 2005 aboard a Norwegian research cruise. A student writer entering the science journalism program at Columbia University participated. The results exceeded expectations. The team discovered the world's northernmost vent fields on the cruise, which expanded the original scope of the website to include a section specifically designed for the international press. The student was inspired by the cruise, amazed at how much she learned, and said she entered graduate school with much more confidence than she had prior to the program. The site, translated into German, and is being showcased in a museum in Germany. Given the great response from a diverse suite of reviewers, the team is now pursuing long term funding; additional partners in the science, education and journalism communities; and partnerships with marine science and education magazines.
Team Science, Justice, and the Co-Production of Knowledge.
Tebes, Jacob Kraemer
2018-06-08
Science increasingly consists of interdisciplinary team-based research to address complex social, biomedical, public health, and global challenges through a practice known as team science. In this article, I discuss the added value of team science, including participatory team science, for generating scientific knowledge. Participatory team science involves the inclusion of public stakeholders on science teams as co-producers of knowledge. I also discuss how constructivism offers a common philosophical foundation for both community psychology and team science, and how this foundation aligns well with contemporary developments in science that emphasize the co-production of knowledge. I conclude with a discussion of how the co-production of knowledge in team science can promote justice. © Society for Community Research and Action 2018.
Alford, Rebecca F.; Dolan, Erin L.
2017-01-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. PMID:29216185
Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J
2017-12-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.
Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann
2008-01-01
One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect. 7.2 provides a discussion of EOSDIS, its elements and their functions. Sect. 7.3 provides details regarding the move towards more distributed systems for supporting both the core and community needs to be served by NASA Earth science data systems. Sect. 7.4 discusses the use of standards and interfaces and their importance in EOSDIS. Sect. 7.5 provides details about the EOSDIS Evolution Study. Sect. 7.6 presents the implementation of the EOSDIS Evolution plan. Sect. 7.7 briefly outlines the progress that the implementation has made towards the 2015 Vision, followed by a summary in Sect. 7.8.
The Impact of and Lessons Learned from NITARP, the NASA/IPAC Teacher Archive Research Program
NASA Astrophysics Data System (ADS)
Rebull, L. M.; Nitarp Team
2014-07-01
NITARP, the NASA/IPAC Teacher Archive Research Program, gets teachers involved in authentic astronomical research. We partner small groups of educators with a professional astronomer mentor for a year-long original research project. The teams echo the entire research process, from writing a proposal, to doing the research, to presenting the results at an American Astronomical Society (AAS) meeting. The program runs from January through January. Applications are available annually in May and are due in September. The educators' experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other programs we know of that get real astronomy data into the classroom in three ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters in science sessions at an American Astronomical Society meeting alongside other researchers' work (participants are not given a “free pass” because they are educators or students). Third, the “product” is the scientific result, not any sort of curriculum packet. The teachers adapt their project and their experiences to fit in their classroom environment. NITARP changes the way teachers think about science and scientists. More information is available online at http://nitarp.ipac.caltech.edu/.
NASA Astrophysics Data System (ADS)
Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory
2015-08-01
NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.
NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update
NASA Technical Reports Server (NTRS)
Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory
2010-01-01
In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.
Using the Logic Model to Plan Extension and Outreach Program Development and Scholarship
ERIC Educational Resources Information Center
Corbin, Marilyn; Kiernan, Nancy Ellen; Koble, Margaret A.; Watson, Jack; Jackson, Daney
2004-01-01
In searching for a process to help program teams of campus-based faculty and field-based educators develop five-year and annual statewide program plans, cooperative extension administrators and specialists in Penn State's College of Agricultural Sciences discovered that the use of the logic model process can influence the successful design of…
NASA Astrophysics Data System (ADS)
Bleacher, L.; Weir, H. M.; Twu, Y.; Farrell, W. M.; Gross, N. A.
2009-12-01
The Dynamic Response of the Environment at the Moon (DREAM) team is one of seven teams comprising the NASA Lunar Science Institute. DREAM’s goal is to reveal, advance, and test the extremes of the solar-lunar environmental connection. DREAM’s education and outreach (E/PO) program is focused on student and teacher participation with scientists. The primary component of the DREAM E/PO program is two Lunar Extreme Workshops (LEWs) and the supporting materials developed for each LEW. The workshops will bring together scientists and modelers from the DREAM team with advanced high school and/or community college students and their teachers. The LEWs will allow student/teacher participants to interact directly with the scientists and to experience the process of science in action. Participation in LEWs and pre-LEW training will expose students to science, technology, engineering, and math (STEM) careers and engage them in learning new STEM content. During the two LEWs, the new, integrated lunar models developed by the DREAM team will be tested using extreme environmental drivers. These extreme events include: 1) solar storms and human excursion into Shackleton Crater and 2) human activity/lunar excavation and impact cratering. Although the LEWs will be complex in nature, the students and teachers will receive extensive pre-LEW training via access to online curricular resources already in development and Webinars with DREAM science team members, during which the students/teachers will get to know the team members and put their new knowledge into context. The curricular materials will include resources and activities pertaining to space weather, plasma, electricity, circuits, magnetism, magnetospheres, exospheres, impact cratering, and modeling. The activities are being mapped to the National Science Education Standards and the American Association for the Advancement of Science’s Benchmarks for Science Literacy. Students will be encouraged to read and review resources on their own and to meet with their teacher at least every other week as a group for review, instruction, activities, and participation in Webinars with DREAM scientists. Pre-LEW training will begin approximately 6 months prior to each LEW. Students will be required to blog about their experiences during the LEWs and pre-LEW training. Along with the curricular materials and Webinars, these blogs will be made publicly accessible so that other students and the public may share in their experiences. The E/PO team also plans to communicate the excitement of DREAM’s efforts to the general public via the NASA Museum Alliance and social media, such as Facebook.
Rimmer, James H; Vanderbom, Kerri A
2016-01-01
The growing evidence base of childhood obesity prevention and treatment programs do not adequately consider how to adapt these programs for children with disabilities. We propose a Call to Action for health researchers who conduct studies focused on the general population (i.e., without a disability) to work closely with disability researchers to adapt their programs (e.g., obesity management, increased physical activity, and caregiver training in diet and nutrition) to be relevant to both groups. We refer to this approach as inclusion team science. The hope for this Call to Action is that there will be greater synergy between researchers who have high levels of expertise in a specialty area of health (but little or no knowledge of how to adapt their program for children with disabilities) to work more closely with researchers who have a high level of expertise in adapting evidence-based health promotion recommendations and strategies for children with disabilities. Together, these two areas of expertise will lead to inclusive physical activity and nutrition programs for all children.
Models and Materials: Bridging Art and Science in the Secondary Curriculum
NASA Astrophysics Data System (ADS)
Pak, D.; Cavazos, L.
2006-12-01
Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials into their classrooms. Initial results indicate that the participating teachers developed a clearer understanding of the uses and limitations of models the classroom, better understanding of materials science, and strong initial ideas for integrated curricula.
Case Study: Collaborative Creation of an On-Line Degree Program
ERIC Educational Resources Information Center
Stewart, Barbara L.; Norwood, Marcella; Ezell, Shirley; Waight, Consuelo
2006-01-01
Faculty collaboratively developed an on-line Bachelor of Science degree in Consumer Science and Merchandising (CSM). Part-time faculty and technical support services supported the four-member team. Small grants assisted in the creation and redesign of all CSM major courses for on-line delivery. Issues of appropriate learning strategies, student…
A Scientific Framework for Social Work Doctoral Education in the 21st Century
ERIC Educational Resources Information Center
Guerrero, Erick G.; Moore, Hadass; Pitt-Catsouphes, Marcie
2018-01-01
The emerging discourse about the science of social work has urged doctoral social work programs to reexamine assumptions about conducting research and responding to new expectations for scholarship. This article examines three promising models to guide scientific research in social work (evidence-based practice, team science, and multi- and…
Digital collaborative learning: identifying what students value
Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly
2015-01-01
Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls. Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences. Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology. The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations. We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists. By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs. PMID:26097690
Digital collaborative learning: identifying what students value.
Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly
2015-01-01
Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls. Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences. Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology. The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations. We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists. By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs.
Enslow, Electra; Fricke, Suzanne; Vela, Kathryn
2017-01-01
The purpose of this organizational case study is to describe the complexities librarians face when serving a multi-campus institution that supports both a joint-use library and expanding health sciences academic partnerships. In a system without a centralized health science library administration, liaison librarians are identifying dispersed programs and user groups and collaborating to define their unique service and outreach needs within a larger land-grant university. Using a team-based approach, health sciences librarians are communicating to integrate research and teaching support, systems differences across dispersed campuses, and future needs of a new community-based medical program.
NASA’s Universe of Learning: Connecting Scientists, Educators, and Learners
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Lestition, Kathleen; Squires, Gordon K.; Greene, W. M.; Biferno, Anya A.; Cominsky, Lynn R.; Goodman, Irene; Walker, Allyson; Universe of Learning Team
2017-01-01
NASA’s Universe of Learning (UoL) is one of 27 competitively awarded education programs selected by NASA’s Science Mission Directorate (SMD) in its newly restructured education effort. Through these 27 programs, SMD aims to infuse NASA science experts and content more effectively and efficiently into learning environments serving audiences of all ages. UoL is a unique partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University that will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of partners to advance SMD education objectives. External evaluation is provided through a partnership with Goodman Research Group and Cornerstone Evaluation Associates. The multi-institutional team is working to develop and deliver a unified, consolidated and externally evaluated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Cosmic Origins, Physics of the Cosmos, and Exoplanet Exploration themes. Products and programs focus on out-of-school-time learning environments and include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; and producing resources for special needs and underserved/underrepresented audiences. The UoL team also works with a network of partners to provide professional learning experiences for informal educators, pre-service educators, and undergraduate instructors. This presentation will provide an overview of the UoL team’s approach to partnering scientists and educators to engage learners in Astrophysics discoveries and data; progress to date; and pathways for science community involvement.
Hawaii's Annual Journey Through the Universe Program
NASA Astrophysics Data System (ADS)
Harvey, J.; Daou, D.; Day, B.; Slater, T. F.; Slater, S. J.
2012-08-01
Hawaii's annual Journey through the Universe program is a flagship Gemini public education and outreach event that engages the public, teachers, astronomers, engineers, thousands of local students and staff from all of the Mauna Kea Observatories. The program inspires, educates, and engages teachers, students, and their families as well as the community. From February 10-18, 2011, fifty-one astronomy educators from observatories on Mauna Kea and across the world visited over 6,500 students in 310 classrooms at 18 schools. Two family science events were held for over 2,500 people at the 'Imiloa Astronomy Education Center and the University of Hawaii at Hilo. The local Chamber of Commerce(s) held an appreciation celebration for the astronomers attended by over 170 members from the local government and business community. Now going into its eighth year in Hawaii, the 2012 Journey Through the Universe program will continue working with the observatories on Mauna Kea and with the NASA Lunar Science Institute (NLSI). As a new partner in our Journey program, NLSI will join the Journey team (Janice Harvey, Gemini Observatory, Journey Team Leader) and give an overview of the successes and future developments of this remarkable program and its growth. The future of America rests on our ability to train the next generation of scientists and engineers. Science education is key and Journey through the Universe opens the doors of scientific discovery for our students. www.gemini.edu/journey
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M
2006-03-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Flying Cassini with Virtual Operations Teams
NASA Technical Reports Server (NTRS)
Dodd, Suzanne; Gustavson, Robert
1998-01-01
The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.
Changing the Face of STEM with Stormwater Research
ERIC Educational Resources Information Center
Musavi, Mohamad; Friess, Wilhelm A.; James, Cary; Isherwood, Jennifer C.
2018-01-01
Background: The University of Maine Stormwater Management and Research Team (SMART) program began in 2014 with the goal of creating a diverse science-technology-engineering-math (STEM) pathway with community water research. The program engages female and underrepresented minority high school students in locally relevant STEM research. It focuses…
ERIC Educational Resources Information Center
Witherspoon, Eben B.; Schunn, Christian D.; Higashi, Ross M.; Baehr, Emily C.
2016-01-01
Background: Robotics competitions are increasingly popular and potentially provide an on-ramp to computer science, which is currently highly gender imbalanced. However, within competitive robotics teams, student participation in programming is not universal. This study gathered surveys from over 500 elementary, middle, and high school robotics…
ERIC Educational Resources Information Center
Kitts, Christopher; Quinn, Neil
2004-01-01
Santa Clara University's Robotic Systems Laboratory conducts an aggressive robotic development and operations program in which interdisciplinary teams of undergraduate students build and deploy a wide range of robotic systems, ranging from underwater vehicles to spacecraft. These year-long projects expose students to the breadth of and…
Creating Nanotechnicians for the 21st Century Workplace
NASA Astrophysics Data System (ADS)
Burke, Michael; Jean, Kristi; Brown, Cheryl; Barrett, Rick; Leopold, Carrie
The North Dakota State College of Science (NDSCS) Nanoscience Technology Training Program was designed and implemented to meet the growing demand for technicians skilled in nanofabrication, surface analysis and production of various micro and nano-scale products. The program emphasizes hands-on training and utilizes a state-of-the-art Applied Science and Advanced Manufacturing Training Laboratory to develop the KSA’s (knowledge, skills, attitudes) needed by industry. Two-year Associate in Applied Science degree, diploma and certificate tracks are offered in four industry focus areas; nanotechnology, microelectronics technology, bio-fuels technology and biotechnology. Students learn to work in multidisciplinary teams on design, prototyping, analysis and manufacturing processes of products. The program also hosts an extensive hands-on outreach program which interacted with over 8000 secondary school science students and 500 teachers in the first 12 months of operation.
NASA Astrophysics Data System (ADS)
Gutierrez, B.; Fordham, M.; Lopes-Pocknett, R.; Wyman, K.; Stringer, C.; Green, G.; Tobey, Q.; Rassman, J.; Mills, E., Jr.
2014-12-01
Over the past three years, we have developed and implemented a collaborative summer science program for Mashpee Wampanoag youth that engages tribal elders, parents, educators, and local scientists to connect tribal youth with the ecology and geology of their traditional homelands. This collaboration, called Native Youth in Science: Preserving our Homeland (POH), involves the Mashpee Wampanoag Education and Natural Resource Departments, an experienced team of tribal elders and scientists from the U.S. Geological Survey's Woods Hole Coastal and Marine Science Center Waquoit Bay National Estuarine Research Reserve, U.S. Forest Service, and NOAA National Marine Fisheries. The team has developed and implemented a curriculum that stresses the ancestral relationships of Wampanoag people to their land. Through hands-on activities at locations of cultural significance, our efforts focus on presenting topics in environmental science from both western science and Wampanoag perspectives to 5th-8th grade students from the Wampanoag Tribe. Overarching themes focus on local land use history and its impact on traditional food sources such as shellfish and herring. Lessons typically address hydrology, water quality, fish and shellfish biology, botany, and local geology. To present these topics, scientists are paired with Wampanoag Tribe culture keepers to develop lessons that present science topics side-by-side with cultural knowledge. The primary goals of POH are to (a) connect and reinforce science concepts learned in conventional school settings for tribal youth; (b) demonstrate the use of science as a tool for understanding and preserving the ecosystems and homelands of the Mashpee Wampanoag Tribe; and (c) how indigenous traditional ecological knowledge (TEK) and western science complement each other. In the long-term, this program begins to prepare tribal students for more advanced programs supporting their pursuit of higher education.
Communication and relationship skills for rapid response teams at hamilton health sciences.
Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan
2008-01-01
Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation.
Usery, E. Lynn
2011-01-01
The U.S. Geological Survey (USGS) produces geospatial databases and topographic maps for the United States of America. A part of that mission includes conducting research in geographic information science (GIScience) and cartography to support mapping and improve the design, quality, delivery, and use of geospatial data and topographic maps. The Center of Excellence for Geospatial Information Science (CEGIS) was established by the USGS in January 2006 as a part of the National Geospatial Program Office. CEGIS (http://cegis.usgs.gov) evolved from a team of cartographic researchers at the Mid-Continent Mapping Center. The team became known as the Cartographic Research group and was supported by the Cooperative Topographic Mapping, Geographic Analysis and Monitoring, and Land Remote Sensing programs of the Geography Discipline of the USGS from 1999-2005. In 2006, the Cartographic Research group and its projects (http://carto-research.er.usgs.gov/) became the core of CEGIS staff and research. In 2006, CEGIS research became focused on The National Map (http://nationalmap.gov).
Byars-Winston, Angela; Gutierrez, Belinda; Topp, Sharon; Carnes, Molly
2011-01-01
Few, if any, educational interventions intended to increase underrepresented minority (URM) graduate students in biological and behavioral sciences are informed by theory and research on career persistence. Training and Education to Advance Minority Scholars in Science (TEAM-Science) is a program funded by the National Institute of General Medical Sciences at the University of Wisconsin-Madison with the twin goals of increasing the number of URM students entering and completing a PhD in BBS and increasing the number of these students who pursue academic careers. A framework for career development in graduate research training is proposed using social cognitive career theory. Based on this framework, TEAM-Science has five core components: 1) mentor training for the research advisor, 2) eight consensus-derived fundamental competencies required for a successful academic career, 3) career coaching by a senior faculty member, 4) an individualized career development plan that aligns students' activities with the eight fundamental competencies, and 5) a strengths, weaknesses, opportunities, and threats personal career analysis. This paper describes the theoretical framework used to guide development of these components, the research and evaluation plan, and early experience implementing the program. We discuss the potential of this framework to increase desired career outcomes for URM graduate trainees in mentored research programs and, thereby, strengthen the effectiveness of such interventions on participants' career behaviors.
Byars-Winston, Angela; Gutierrez, Belinda; Topp, Sharon; Carnes, Molly
2011-01-01
Few, if any, educational interventions intended to increase underrepresented minority (URM) graduate students in biological and behavioral sciences are informed by theory and research on career persistence. Training and Education to Advance Minority Scholars in Science (TEAM-Science) is a program funded by the National Institute of General Medical Sciences at the University of Wisconsin–Madison with the twin goals of increasing the number of URM students entering and completing a PhD in BBS and increasing the number of these students who pursue academic careers. A framework for career development in graduate research training is proposed using social cognitive career theory. Based on this framework, TEAM-Science has five core components: 1) mentor training for the research advisor, 2) eight consensus-derived fundamental competencies required for a successful academic career, 3) career coaching by a senior faculty member, 4) an individualized career development plan that aligns students’ activities with the eight fundamental competencies, and 5) a strengths, weaknesses, opportunities, and threats personal career analysis. This paper describes the theoretical framework used to guide development of these components, the research and evaluation plan, and early experience implementing the program. We discuss the potential of this framework to increase desired career outcomes for URM graduate trainees in mentored research programs and, thereby, strengthen the effectiveness of such interventions on participants’ career behaviors. PMID:22135370
NASA Astrophysics Data System (ADS)
Tinnin, Richard Kinna
The purpose of this research study was to determine the effectiveness of a long-term professional development program on self-efficacy beliefs, science attitudes, skills, and knowledge of elementary teachers. The target school was located in the Lower Rio Grande Valley of Texas. Major elements of the study included the use of thematic science strands, use of the 5E constructivist-oriented instructional model, a focus on the interdisciplinary nature of the science process skills, and guided, inquiry-based learning experiences. These elements mirror the principles identified as being essential components of effective professional development for mathematics, and science education (Fullan, 1985; Sparks & Loucks-Horsley, 1990; Loucks-Horsley, 1997). The research team was actively involved with the participants for a total of 30 days at their school over the 24 months of the study. During each training, the research team modeled the 5E constructivist-oriented instructional strategy, and the interdisciplinary nature of the science process skills, set up a wide variety of activity centers, and provided the teachers with opportunities to improve their attitudes, skills, and knowledge of the science content, and teaching strategies. The 15 participants completed pre-, post-, and post-post-Leadership Team Surreys. Quantitative data analyses of gain scores measuring level of confidence to teach Marine and Earth Science, content knowledge, and teaching strategies were significant, p < .001. The participants' efficacy-beliefs and outcome expectancy were assessed with a pre- and posttest Science Teacher Self-Efficacy Beliefs Instrument that measures both elements. Self-efficacy beliefs were significant at p < .001. Outcome expectancies were not significant, p > .05. Qualitative analysis of reflective journal comments, classroom observations, and the participants understanding, and use of science process skills across the curriculum supported the quantitative data results. The data demonstrate significant improvement in the self-efficacy beliefs, attitudes, skills, and knowledge toward teaching science of the Pre-Kindergarten--2nd -grade teachers who participated in this long-term professional development study.
Sitting with the scientists: a collaborative approach to STEM content development
NASA Astrophysics Data System (ADS)
Mattson, Barbara
2018-01-01
For over two decades, the Goddard Astrophysics Education Team has been an integrated part of NASA Goddard’s Astrophysics Science Division. As part of NASA’s largest astrophysics organization, our team is in a unique position to collaborate with the division’s scientists, engineers, and technical personnel - our subject matter experts (SMEs) - in a variety of capacities. We often seek input from our SMEs to help implement our education programs - to ensure our programs’ scientific accuracy, to help us employ cutting-edge topics, and to promote authentic science processes. At the same time, we act as education experts for our SMEs to help them implement their ideas. We see this as a true partnership, with many opportunities for SME participation. Our current STEM Activation programs, Afterschool Universe and NASA Family Science Night, were created with strong involvement from division scientists, and our latest sessions on galaxies were developed in collaboration with an active researcher. In addition to our own programming, we have been tasked with providing NASA astrophysics content and expertise to the Goddard Office of Education, the Heliophysics Education Consortium (and their cross-division efforts), and the NASA Science Mission Directorate STEM Activation Community. This talk will provide an overview of our team’s current efforts and the ways in which we partner with our division’s SMEs.
Kalbarczyk, Anna; Martin, Nina A; Combs, Emily; Ward, Marie; Winch, Peter J
2018-03-01
Global Health is an inherently interdisciplinary field but overseas training in global health, particularly among health science institutions, has been an 'individual' or 'individual discipline' experience. Team-based training is an approach to global health education which is increasing in popularity; research on team-training demonstrates that teams are more productive than individuals. In 2015, the Johns Hopkins Center for Global Health (CGH) developed the Global Established Multidisciplinary Sites (GEMS) program, an interdisciplinary training program which was designed to establish a new norm in global health training by bringing interdisciplinary teams of faculty and students together to identify and solve complex global health challenges. This research aims to evaluate the program's first year and contribute to the literature on interdisciplinary team training. We conducted 22 in-depth interviews with students, faculty, and local collaborators from 3 GEMS project sites. Findings were analyzed for themes through a framework approach. The program exposed students, faculty, and collaborators to a wide range of disciplines in global health. Students' desire to learn how other disciplines contribute to global health solutions was an important motivator for joining GEMS; many participants including faculty and collaborators valued exposure to multiple disciplines. Mentorship and communication were a challenge across all teams in part due to members having distinct "disciplinary languages". Balancing disciplinary representation on teams and establishing work plans were also key challenges. Based on the data the CGH provides four recommendations for institutions developing global health interdisciplinary teams to optimize team functioning and address challenges in mentorship, language, and roles: 1) address interdisciplinary communication early, 2) develop work plans during group formation, 3) meet as a team prior to travel, and 4) establish regular check ins. This article provides first-hand reflections on interdisciplinary team experiences in a global context and provides a pathway for the development of innovative strategies in global health training.
Sarah M. McCaffrey; Christine S. Olsen
2012-01-01
As part of a Joint Fire Science Program project, a team of social scientists reviewed existing fire social science literature to develop a targeted synthesis of scientific knowledge on the following questions: 1. What is the public's understanding of fire's role in the ecosystem? 2. Who are trusted sources of information about fire? 3. What are the public...
Howard Young Brings Light to the Serious Side of Science | Poster
You know what they say about all work and no play. And without a doubt, science requires constant hard work. But the NCI at Frederick has an antidote to the serious side of science: Howard Young. Young, Ph.D., Senior Investigator, Cancer and Inflammation Program, is a serious scientist in his own right. He was part of the team that characterized and cloned the RAS oncogene, he
NASA Program Office Technology Investments to Enable Future Missions
NASA Astrophysics Data System (ADS)
Thronson, Harley; Pham, Thai; Ganel, Opher
2018-01-01
The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86 PCOS SAT proposals have been received, of which 22 COR and 28 PCOS projects were awarded. For more information, see the Program Annual Technology Reports available through the PO Technology web page at https://apd440.gsfc.nasa.gov/technology.html .
NASA Astrophysics Data System (ADS)
Hunter, Jane
Tenured and tenure-track faculty members at institutions of higher education, especially those at Research I institutions, are being asked to do more than ever before. With rapidly changing technology, significant decreases in public funding, the shift toward privately funded research, and the ever increasing expectations of students for an education that adequately prepares them for professional careers, engineering faculty are particularly challenged by the escalating demands on their time. In 1996, the primary accreditation organization for engineering programs (ABET) adopted new criteria that required, among other things, engineering programs to teach students to function on multidisciplinary teams and to communicate effectively. In response, most engineering programs utilize project teams as a strategy for teaching these skills. The purpose of this qualitative study of tenured and tenure track engineering faculty at a Research I institution in the southwestern United States was to explore the variety of ways in which the engineering faculty responded to the demands placed upon them as a result of the increased emphasis on project teams in undergraduate engineering education. Social role theory and organizational climate theory guided the study. Some faculty viewed project teams as an opportunity for students to learn important professional skills and to benefit from collaborative learning but many questioned the importance and feasibility of teaching teamwork skills and had concerns about taking time away from other essential fundamental material such as mathematics, basic sciences and engineering sciences. Although the administration of the College of Engineering articulated strong support for the use of project teams in undergraduate education, the prevailing climate did little to promote significant efforts related to effective utilization of project teams. Too often, faculty were unwilling to commit sufficient time or effort to make project teamwork a truly valuable learning opportunity because those efforts were not perceived to be valuable and were rarely rewarded. Few formal professional development opportunities were available and few incentives were in place to encourage other informal efforts to develop the necessary skills. Those who committed significant effort to project teams were challenged by concerns about team composition, student accountability and assigning individual grades for group teamwork.
Customizing for clients: developing a library liaison program from need to plan.
Tennant, M R; Butson, L C; Rezeau, M E; Tucker, P J; Boyle, M E; Clayton, G
2001-01-01
Building on the experiences of librarian representatives to curriculum committees in the colleges of dentistry, medicine, and nursing, the Health Science Center Libraries (HSCL) Strategic Plan recommended the formation of a Library Liaison Work Group to create a formal Library Liaison Program to serve the six Health Science Center (HSC) colleges and several affiliated centers and institutes. The work group's charge was to define the purpose and scope of the program, identify models of best practice, and recommend activities for liaisons. The work group gathered background information, performed an environmental scan, and developed a philosophy statement, a program of liaison activities focusing on seven primary areas, and a forum for liaison communication. Hallmarks of the plan included intensive subject specialization (beyond collection development), extensive communication with users, and personal information services. Specialization was expected to promote competence, communication, confidence, comfort, and customization. Development of the program required close coordination with other strategic plan implementation teams, including teams for collection development, education, and marketing. This paper discusses the HSCL's planning process and the resulting Library Liaison Program. Although focusing on an academic health center, the planning process and liaison model may be applied to any library serving diverse, subject-specific user populations.
Customizing for clients: developing a library liaison program from need to plan*
Tennant, Michele R.; Butson, Linda C.; Rezeau, Michelle E.; Tucker, Prudence J.; Boyle, Marian E.; Clayton, Greg
2001-01-01
Building on the experiences of librarian representatives to curriculum committees in the colleges of dentistry, medicine, and nursing, the Health Science Center Libraries (HSCL) Strategic Plan recommended the formation of a Library Liaison Work Group to create a formal Library Liaison Program to serve the six Health Science Center (HSC) colleges and several affiliated centers and institutes. The work group's charge was to define the purpose and scope of the program, identify models of best practice, and recommend activities for liaisons. The work group gathered background information, performed an environmental scan, and developed a philosophy statement, a program of liaison activities focusing on seven |primary areas, and a forum for liaison communication. Hallmarks of the plan included intensive subject specialization (beyond collection development), extensive communication with users, and personal information services. Specialization was expected to promote competence, communication, confidence, comfort, and customization. Development of the program required close coordination with other strategic plan implementation teams, including teams for collection development, education, and marketing. This paper discusses the HSCL's planning process and the resulting Library Liaison Program. Although focusing on an academic health center, the planning process and liaison model may be applied to any library serving diverse, subject-specific user populations. PMID:11209807
BioMaPS: A Roadmap for Success
Fister, K. Renee
2010-01-01
The manuscript outlines the impact that our National Science Foundation Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences program, BioMaPS, has had on the students and faculty at Murray State University. This interdisciplinary program teams mathematics and biology undergraduate students with mathematics and biology faculty and has produced research insights and curriculum developments at the intersection of these two disciplines. The goals, structure, achievements, and curriculum initiatives are described in relation to the effects they have had to enhance the study of biomathematics. PMID:20810948
The New Millenium Program: Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk K.
2000-01-01
NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.
ERIC Educational Resources Information Center
McColskey, Wendy; Parke, Helen; Furtak, Erin; Butler, Susan
This article addresses what was learned through the National Computational Science Leadership Program about involving teachers in planning high quality units of instruction around computational science investigations. Two cohorts of roughly 25 teacher teams nationwide were given opportunities to develop "replacement units." The goal was to support…
Integrating Social Sciences and Intelligence
2008-01-01
considered controversial. The American Anthropological Association has demonstrated disdain for HTTs stating that the Army program violates the AAA...demonstrated the great need for socio-cultural understanding. Human Terrain Teams are aiding brigades and regiments in Iraq and Afghanistan and...Champion 1 Integrating Social Sciences and Intelligence By 2LT Lindsey Champion Army leaders recognize the importance of socio
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana checks out the robot designed by the Bionic Tigers team at the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Cocoa High School and Holy Trinity Episcopal Academy along the Space Coast in Florida. NASA's Launch Services Program based at Kennedy is a sponsor of the team. The Bionic Tigers finished seventh in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
NASA Astrophysics Data System (ADS)
Friedl, L. A.; Cox, L.
2008-12-01
The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.
2011-03-11
ORLANDO, Fla. –The Bionic Tigers robot participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Cocoa High School and Holy Trinity Episcopal Academy along the Space Coast in Florida. NASA's Launch Services Program based at Kennedy is a sponsor of the team. The Bionic Tigers finished seventh in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Dorsey, Susan G.; Schiffman, Rachel; Redeker, Nancy S.; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S.; Grady, Patricia A.
2014-01-01
The NINR Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present a NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR Center Directors’ meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. PMID:25085328
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.
2012-01-01
Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.
NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration
NASA Astrophysics Data System (ADS)
Pendleton, Yvonne J.
2016-10-01
Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary science community and to researchers who want to participate in future opportunities.
A Status Report on the Parachute Development for NASA's Next Manned Spacecraft
NASA Technical Reports Server (NTRS)
Sinclair, Robert
2008-01-01
NASA has determined that the parachute portion of the Landing System for the Crew Exploration Vehicle (CEV) will be Government Furnished Equipment (GFE). The Earth Landing System has been designated CEV Parachute Assembly System (CPAS). Thus a program team was developed consisting of NASA Johnson Space Center (JSC) and Jacobs Engineering through their Engineering and Science Contract Group (ESCG). Following a rigorous competitive phase, Airborne Systems North America was selected to provide the parachute design, testing and manufacturing role to support this team. The development program has begun with some early flight testing of a Generation 1 parachute system. Future testing will continue to refine the design and complete a qualification phase prior to manned flight of the spacecraft. The program team will also support early spacecraft system testing, including a Pad Abort Flight Test in the Fall of 2008
Rocky Mountain Research Station: 2007 Research Accomplishments
Rick Fletcher
2008-01-01
This past year has been a period of transition for the Rocky Mountain Research Station. In 2006, we identified the need to move from an organization of approximately 30 research work units whose work was formed around national Strategic Program Areas, to a more streamlined team-oriented organization composed of Science Programs and Research, Development, and...
Communicating How Water Works: Results from a Community Water Education Program
ERIC Educational Resources Information Center
Cockerill, Kristan
2010-01-01
Based on feedback from attendees at an environmental summit who requested information about regional water sources, a team comprised of a local nonprofit, a state university, and a cooperative extension office created a community water education program. Undergraduate student interns worked with the author to develop a 20-minute science-based…
Developing Enlightened Leaders for Industry and Community: Executive Education and Service-Learning
ERIC Educational Resources Information Center
Rhee, Kenneth S.; Sigler, Tracey Honeycutt
2010-01-01
What does it take to develop enlightened leaders who can transform their organizations and communities? The quest to develop enlightened leaders who are self-aware, learning centered, adaptable, interpersonally competent, and team oriented is a challenge faced by many management programs. The Master of Science program in Executive Leadership and…
Fitting the Framework: The STEM Institute and the 4-H Essential Elements
ERIC Educational Resources Information Center
Sallee, Jeff; Peek, Gina G.
2014-01-01
Extension and 4-H youth development programs are addressing a shortage of scientists, engineers, and other related professionals by promoting science, technology, engineering, and math (STEM). This case study illustrates how the Oklahoma 4-H Youth Development program trained youth-adult teams to design and implement STEM projects. The STEM…
The Reflective Professional Honours Programme of the Dutch Saxion Universities
ERIC Educational Resources Information Center
van Dijk, Trijntje
2012-01-01
The Reflective Professional Honours Programme of the Saxion Universities of Applied Sciences in the Netherlands centers on a profile of what graduates of the program should have accomplished in addition to their regular bachelor's degree program. The development team for our programme first investigated what the profile should be, interviewing…
Rainwater, Julie A.; Chiamvimonvat, Nipavan; Bonham, Ann C.; Robbins, John A.; Henderson, Stuart; Meyers, Frederick J.
2013-01-01
Abstract There is a need for successful models of how to recruit, train, and retain bench scientists at the earliest stages of their careers into translational research. One recent, promising model is the University of California Davis Howard Hughes Medical Institute Integrating Medicine into Basic Science (HHMI‐IMBS) program, part of the HHMI Med into Grad initiative. This paper outlines the HHMI‐IMBS program's logic, design, and curriculum that guide the goal of research that moves from bedside to bench. That is, a curriculum that provides graduate students with guided translational training, clinical exposure, team science competencies, and mentors from diverse disciplines that will advance the students careers in clinical translational research and re‐focusing of research to answer clinical dilemmas. The authors have collected data on 55 HHMI‐IMBS students to date. Many of these students are still completing their graduate work. In the current study the authors compare the initial two cohorts (15 students) with a group of 29 control students to examine the program success and outcomes. The data indicate that this training program provides an effective, adaptable model for training future translational researchers. HHMI‐IMBS students showed improved confidence in conducting translational research, greater interest in a future translational career, and higher levels of research productivity and collaborations than a comparable group of predoctoral students. PMID:24127920
NITARP: Bridging the Gap Between the Traditional Science Classroom and Authentic Research
NASA Astrophysics Data System (ADS)
Stalnaker, Olivia K.; Evans, Sam; Rutherford, Thomas; Taylor, John; Rebull, Luisa
2018-01-01
In this poster, the differences between what occurs in the traditional secondary science classroom and what happens in the actual research world is examined. Secondary classroom teachers generally have limited, if any, research experience beyond what is presented through their undergraduate college lab coursework. A disparity exists between classroom laboratory work and professional research. Opportunities like NITARP provide research elements that bridge this gap. NITARP teams are in a unique situation, joining a small team working alongside Caltech researchers on cutting edge investigations in astrophysics. In this poster it is shown how the NITARP program provides key components and experiences to expand the skill sets that teachers bring to their classrooms, bridging the gap between the typical secondary classroom and the world of the professional researcher. The NASA/IPAC program immerses participating teachers into a year-long training experience via online and face-to-face learning that translates into enhanced instruction at the secondary level. This work was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)
2001-01-01
This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.
John M. Eisenberg Patient Safety Awards. System innovation: Concord Hospital.
Uhlig, Paul N; Brown, Jeffrey; Nason, Anne K; Camelio, Addie; Kendall, Elise
2002-12-01
The Cardiac Surgery Program at Concord Hospital (Concord, NH) restructured clinical teamwork for improved safety and effectiveness on the basis of theory and practice from human factors science, aviation safety, and high-reliability organization theory. A team-based, collaborative rounds process--the Concord Collaborative Care Model--that involved use of a structured communications protocol was conducted daily at each patient's bedside. The entire care team agreed to meet at the same time each day (8:45 AM to 9:30 AM) to share information and develop a plan of care for each patient, with patient and family members as active participants. The cardiac surgery team developed a structured communications protocol adapted from human factors science. To provide a forum for discussion of team goals and progress and to address system-level concerns, a biweekly system rounds process was established. Following implementation of collaborative rounds, mortality of Concord Hospital's cardiac surgery patients declined significantly from expected rates. Satisfaction rates of open heart patients scores were consistently in the 97th-99th percentile nationally. A quality of work life survey indicated that in every category, providers expressed greater satisfaction with the collaborative care process than with the traditional rounds process. Practice patterns in the Cardiac Surgery Program at Concord Hospital have changed to a much more collaborative and participatory process, with improved outcomes, happier patients, and more satisfied practitioners. A culture of continuous program improvement has been implemented that continues to evolve and produce benefits.
Partnering with AVID to create transportation scholars
DOT National Transportation Integrated Search
2010-10-01
The goal of this project was to team with the Advancement Via Individual Determination (AVID) : program in local schools to stimulate student awareness of transportation and engineering careers and to : encourage interest in the science, technology, ...
Arctic Collaboration: Developing a Successful Researcher/Teacher Expedition
NASA Astrophysics Data System (ADS)
Skotnicki, S.; Loranty, M. M.
2016-12-01
Are you a researcher working in the polar regions of the world or a K-12 science teacher who would like to be part of a field research expedition in the polar regions? Researchers and K-12 science teachers can apply for funding from PolarTREC, a program that pairs researchers and teachers to conduct field science in Antarctica and the Arctic. Our poster presentation will offer details of one such successful researcher/teacher partnership. During the summer of 2016, Science Teacher Stan Skotnicki (Cheektowaga Central Middle School in Buffalo, NY) was teamed up with Assistant Professor Mike Loranty (Colgate University) to study vegetation and ecosystem impacts on permafrost vulnerability. Stan joined Mike and his research team in Northeastern Siberia preparing field sites, collecting data, processing samples, discussing methods, and planning daily activities. In order to raise awareness and broaden the impact of the research being conducted, Stan communicated the science through a series of journals on the PolarTREC website with his students, staff, and members of the community. Additionally, Mike and Stan held a live webinar from Siberia discussing the content of the research, the nature of the fieldwork, and why it was important to travel so far for this information. This expedition allowed Stan to experience working with a field research team for an extended period of time. Mike benefited from having a team member dedicated to learning about and communicating project details that also provided valuable field assistance. Stan gets to bring his hands-on experience back to his classroom in Buffalo and Mike has the opportunity to share his research with a new and different audience, including presenting to students at Cheektowaga Central with the help of his undergraduate students. This model of collaboration provides a number of valuable benefits for both teachers and researchers. While the PolarTREC program provides necessary logistics and funding to conduct these types of activities in polar regions, the approach is readily transferable to less remote locations, potentially at lower costs.
NASA Astrophysics Data System (ADS)
Gulick, Ginny
2009-09-01
We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.
NASA Education Recommendation Report - Education Design Team 2011
NASA Technical Reports Server (NTRS)
Pengra, Trish; Stofan, James
2011-01-01
NASA people are passionate about their work. NASA's missions are exciting to learners of all ages. And since its creation in 1958, NASA's people have been passionate about sharing their inspiring discoveries, research and exploration with students and educators. In May 2010, NASA administration chartered an Education Design Team composed of 12 members chosen from the Office of Education, NASA's Mission Directorates and Centers for their depth of knowledge and education expertise, and directed them to evaluate the Agency's program in the context of current trends in education. By improving NASA's educational offerings, he was confident that the Agency can play a leading role in inspiring student interest in science, technology, engineering and mathematics (STEM) as few other organizations can. Through its unique workforce, facilities, research and innovations, NASA can expand its efforts to engage underserved and underrepresented communities in science and mathematics. Through the Agency's STEM education efforts and science and exploration missions, NASA can help the United States successfully compete, prosper and be secure in the 21st century global community. After several months of intense effort, including meeting with education experts; reviewing Administration policies, congressional direction and education research; and seeking input from those passionate about education at NASA, the Education Design Team made six recommendations to improve the impact of NASA's Education Program: (1) Focus the NASA Education Program to improve its impact on areas of greatest national need (2) Identify and strategically manage NASA Education partnerships (3) Participate in National and State STEM Education policy discussions (4) Establish a structure to allow the Office of Education, Centers and Mission Directorates to implement a strategically integrated portfolio (5) Expand the charter of the Education Coordinating Committee to enable deliberate Education Program design (6) Improve communication to inspire learners
Teamwork education improves trauma team performance in undergraduate health professional students.
Baker, Valerie O'Toole; Cuzzola, Ronald; Knox, Carolyn; Liotta, Cynthia; Cornfield, Charles S; Tarkowski, Robert D; Masters, Carolynn; McCarthy, Michael; Sturdivant, Suzanne; Carlson, Jestin N
2015-01-01
Effective trauma resuscitation requires efficient and coordinated care from a team of providers; however, providers are rarely instructed on how to be effective members of trauma teams. Team-based learning using Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS) has been shown to improve team dynamics among practicing professionals, including physicians and nurses. The impact of TeamSTEPPS on students being trained in trauma management in an undergraduate health professional program is currently unknown. We sought to determine the impact of TeamSTEPPS on team dynamics among undergraduate students being trained in trauma resuscitation. We enrolled teams of undergraduate health professional students from four programs: nursing, physician assistant, radiologic science, and respiratory care. After completing an online training on trauma resuscitation principles, the participants completed a trauma resuscitation scenario. The participants then received teamwork training using TeamSTEPPS and completed a second trauma resuscitation scenario identical to the first. All resuscitations were recorded and scored offline by two blinded research assistants using both the Team Emergency Assessment Measure (TEAM) and Trauma Team Performance Observation Tool (TPOT) scoring systems. Pre-test and post-test TEAM and TPOT scores were compared. We enrolled a total of 48 students in 12 teams. Team leadership, situational monitoring, and overall communication improved with TeamSTEPPS training (P=0.04, P=0.02, and P=0.03, respectively), as assessed by the TPOT scoring system. TeamSTEPPS also improved the team's ability to prioritize tasks and work together to complete tasks in a rapid manner (P<0.01 and P=0.02, respectively) as measured by TEAM. Incorporating TeamSTEPPS into trauma team education leads to improved TEAM and TPOT scores among undergraduate health professionals.
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
ERIC Educational Resources Information Center
Shimpi, Priya M.; Paik, Jae H.; Wanerman, Todd; Johnson, Rebecca; Li, Hui; Duh, Shinchieh
2015-01-01
The current English-language research and educational program was driven by an initiative to create a more interactive, theme-based bilingual language education model for preschools in Chengdu, China. During a 2-week teacher education program centered at the Experimental Kindergarten of the Chinese Academy of Sciences in Chengdu, China, a team of…
ERIC Educational Resources Information Center
Johnson, Kelli; Weiss, Iris R.
2011-01-01
In 1995, the National Science Foundation (NSF) contracted with principal investigator Iris Weiss and an evaluation team at Horizon Research, Inc. (HRI) to conduct a national evaluation of the Local Systemic Change for Teacher Enhancement program (LSC). HRI conducted the core evaluation under a $6.25 million contract with NSF. This program…
NASA Technical Reports Server (NTRS)
Lester, Dan
1997-01-01
The Science in the Stratosphere program, first established in 1992, was conceived to introduce K-6 teachers to airborne infrared astronomy through the Kuiper Airborne Observatory (KAO), and to use this venue as a basis for seeing scientists at work in a mission-intensive program. The teachers selected for this program would bring their new perspectives back to their schools and students. Unlike the related FOSTER program, the emphasis of this program was on more intensive exposure of the KAO mission to a small number of teachers. The teachers in the Science in the Stratosphere program essentially lived with the project scientists and staff for almost a week. One related goal was to imbed the KAO project with perspectives of working teachers, thereby sensitizing the project staff and scientists to educational outreach efforts in general, which is an important goal of the NASA airborne astronomy program. A second related goal was to explore the ways in which K-5 educators could participate in airborne astronomy missions. Also unlike FOSTER, the Science in the Stratosphere program was intentionally relatively unstructured, in that the teacher participants were wholly embraced by the science team, and were encouraged to 'sniff out' the flavor of the whole facility by talking with people.
Origins Space Telescope: Science Case and Design Reference Mission for Concept 1
NASA Astrophysics Data System (ADS)
Meixner, Margaret; Cooray, Asantha; Pope, Alexandra; Armus, Lee; Vieira, Joaquin Daniel; Milam, Stefanie N.; Melnick, Gary; Leisawitz, David; Staguhn, Johannes G.; Bergin, Edwin; Origins Space Telescope Science and Technology Definition Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The science case for OST covers four themes: Tracing the Signature of Life and the Ingredients of Habitable Worlds; Charting the Rise of Metals, Dust and the First Galaxies, Unraveling the Co-evolution of Black Holes and Galaxies and Understanding Our Solar System in the Context of Planetary System Formation. Using a set of proposed observing programs from the community, we estimate a design reference mission for OST mission concept 1. The mission will complete significant programs in these four themes and have time for other programs from the community. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at ost_info@lists.ipac.caltech.edu.
Enhanced canopy fuel mapping by integrating lidar data
Peterson, Birgit E.; Nelson, Kurtis J.
2016-10-03
BackgroundThe Wildfire Sciences Team at the U.S. Geological Survey’s Earth Resources Observation and Science Center produces vegetation type, vegetation structure, and fuel products for the United States, primarily through the Landscape Fire and Resource Management Planning Tools (LANDFIRE) program. LANDFIRE products are used across disciplines for a variety of applications. The LANDFIRE data retain their currency and relevancy through periodic updating or remapping. These updating and remapping efforts provide opportunities to improve the LANDFIRE product suite by incorporating data from other sources. Light detection and ranging (lidar) is uniquely suitable for gathering information on vegetation structure and spatial arrangement because it can collect data in three dimensions. The Wildfire Sciences Team has several completed and ongoing studies focused on integrating lidar into vegetation and fuels mapping.
Psychological training of German science astronauts.
Manzey, D; Schiewe, A
1992-07-01
Although the significance of psychosocial issues of manned space flights has been discussed very often in recent literature, up to now, very few attempts have been made in North-America or Europe to provide astronaut candidates or spacecrew members with some kind of psychological training. As a first attempt in this field, a psychological training program for science astronauts is described, which has been developed by the German Aerospace Research Establishment and performed as part of the mission-independent biomedical training of the German astronauts' team. In contrast to other training concepts, this training program focused not only on skills needed to cope with psychosocial issues regarding long-term stays in space, but also on skills needed to cope with the different demands during the long pre-mission phase. Topics covered in the training were "Communication and Cooperation", "Stress-Management", "Coping with Operational Demands", "Effective Problem Solving in Groups", and "Problem-Oriented Team Supervision".
Ultra-broadband and polarization-independent planar absorber based on multilayered graphene
NASA Astrophysics Data System (ADS)
Wang, Jiao; Gao, Chao-Ning; Jiang, Yan-Nan; Nwakanma Akwuruoha, Charles
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, 61361005, and 61561013), the Natural Science Foundation of Guangxi, China (Grant No. 2017JJB160028), the Program for Innovation Research Team of Guilin University of Electronic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.
ERIC Educational Resources Information Center
Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu
2010-01-01
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was…
The Extreme Ultraviolet Explorer science instruments development - Lessons learned
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Battel, S.
1991-01-01
The science instruments development project for the Extreme Ultraviolet Explorer (EUVE) satellite is reviewed. Issues discussed include the philosophical basis of the program, the establishment of a tight development team, the approach to planning and phasing activities, the handling of the most difficult technical problems, and the assessment of the work done during the preimplemntation period of the project.
Terra Mission Operations: Launch to the Present (and Beyond)
NASA Technical Reports Server (NTRS)
Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren
2014-01-01
The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
The School of Ice (SOI) program from the US Ice Drilling Program Office (IDPO) is designed for college faculty who teach at minority-serving institutions or historically black colleges and universities, but lessons learned transfer easily to any science course based on current research. The institute builds participants' background knowledge about ice core science and climate change while also providing experiences with activities and labs for transferring information to their students. After three years of highly successful workshops, our model has provided valuable lessons for creating powerful experiences for participants. This presentation will identify some of the key ideas including pairing researchers and educators as presenters; creating leadership teams capitalizing on partner strengths; building a science community willing to participate in education and outreach; and building participants' science content background knowledge and confidence while providing them with teaching models for transferring the knowledge to their students. Another important element is to demand teacher buy-in to ensure replication and dissemination. Also, IDPO's drilling technologies make it an ideal platform for intertwining engineering concepts and practices with science research to meet new science standards. In this session, we will share results of the institute evaluations including the impact on the educators as well as longitudinal analysis of data from interviews with past participants concerning continued impacts on their teaching, their courses and their students. Faculty who have attended this institute in the last three years have reported increases in their understanding of the content and how to teach it. They also report increased confidence in their ability to teach ice core science and climate change concepts. Elements of these successful workshops can inform both the development of college professional development and student courses, as well as the creation of successful education and outreach programs for science research teams wanting to increase broader impacts of their research results.
Challenge: Reframing, communicating, and finding relevance. Solution: Teachers on the research team
NASA Astrophysics Data System (ADS)
Bartholow, S.; Warburton, J.
2013-12-01
PolarTREC (Teachers and Researchers Exploring and Collaborating) is a program in which K-12 teachers spend 2-6 weeks participating in hands-on field research experiences in the polar regions. The goal of PolarTREC is to invigorate polar science education and understanding by bringing K-12 educators and polar researchers together. Program data has illuminated a crucial dynamic that increases the potential for a successful climate change science campaign. We contend that the inclusion of a teacher into the field research campaign can tackle challenges such as reframing climate change science to better address the need for a particular campaign, as well as garnering the science project the necessary support through effective, authentic, and tangible communication efforts to policymakers, funders, students, and the public. The program evaluation queried researchers on a.) the teachers' primary roles in the field b.) the impact teachers on the team's field research, and c.) the teachers' role conducting outreach. Additionally, researchers identified the importance of the facilitator, the Arctic Research Consortium of the United States (ARCUS), as an integral component to the challenge of providing a meaningful broader impact statement to the science proposal. Researchers reported the value of explaining their science, in-situ, allowed them to reframe and rework the objectives of the science project to attain meaningful outcomes. More than half of the researchers specifically noted that one of the strengths of the PolarTREC project is its benefit to the scientific process. The researchers also viewed PolarTREC as an essential outreach activity for their research project. Other researchers said that the outreach provided by their teacher also improved the research project's public image and articulated complex ideas to the public at large. This presentation will speak to the practices within the PolarTREC program and how researchers can meet outreach expectations, impact the public, and refine their science with teachers in the field.
Project development teams: a novel mechanism for accelerating translational research.
Sajdyk, Tammy J; Sors, Thomas G; Hunt, Joe D; Murray, Mary E; Deford, Melanie E; Shekhar, Anantha; Denne, Scott C
2015-01-01
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds.
Ivanich, Jerreed D; Mousseau, Alicia C; Walls, Melissa; Whitbeck, Les; Whitesell, Nancy Rumbaugh
2018-06-06
Indigenous communities often face disproportionate challenges across a variety of health domains, and effective prevention strategies are sorely needed. Unfortunately, evidence is scant regarding what approaches are effective for these communities. A common approach is to take an evidence-based practice or program with documented effectiveness in other populations and implement it with Indigenous populations. While a science of intervention adaptation is emerging, there remains little guidance on processes for adaptation that strategically leverage both existing scientific evidence and Indigenous prevention strategies. In this paper, two case studies illustrate promising practices for adaptation, documenting the approaches of two research teams funded under the National Institutes of Health's initiative to support Intervention Research to Improve Native American Health (IRINAH). These teams worked with distinct Indigenous populations in the USA and Canada to culturally adapt the same prevention program, the Iowa Strengthening Families Program for Parents and Youth 10-14. The approaches of these two teams and the programs that resulted are compared and contrasted, and critical elements of adaptation in partnership with Indigenous communities are discussed.
NASA Astrophysics Data System (ADS)
Hasegawa, Makoto; Tokumitsu, Seika
2016-09-01
The out-of-curriculum project team "Rika-Kobo", organized by undergraduate students, has been actively engaged in a variety of continuous outreach activities in the fields of science and technology including optics and photonics. The targets of their activities cover wide ranges of generations from kids to parents and elderly people, with aiming to promote their interests in various fields of science and technologies. This is an out-of-curriculum project team with about 30 to 40 undergraduate students in several grades and majors. The total number of their activities per year tends to reach 80 to 90 in recent years. Typical activities to be performed by the project team include science classes in elementary and/or secondary schools, science classes at other educational facilities such as science museums, and experiment demonstrations at science events. Popular topics cover wide ranges from explanations and demonstrations of nature phenomena, such as rainbow colors, blue sky, sunset color, to demonstration experiments related to engineering applications, such as polarization of light, LEDs, and optical communications. Experimental topics in optics and photonics are especially popular to the audiences. Those activities are very effective to enhance interests of the audiences in learning related knowledges, irrespective of their generations. Those activities are also helpful for the student members to achieve and/or renew scientific knowledges. In addition, each of the activities provides the student members with effective and advantageous Project-Based-Learning (PBL) style experiences including manufacturing experiences, which are advantageous to cultivate their engineering skills.
NASA Astrophysics Data System (ADS)
Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.
2008-07-01
In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.
Communication, and Team-Working Skills in Second-Year Undergraduate Chemistry Students
ERIC Educational Resources Information Center
Mc Goldrick, Niamh B.; Marzec, Bartosz; Scully, P. Noelle; Draper, Sylvia M.
2013-01-01
Since 2002, a multidisciplinary program has been used to encourage science students to build on their chemical knowledge and to appreciate how it applies to the world around them. The program is interactive and instills a new set of core learning skills that are often underrepresented in undergraduate curricula, namely, cooperative learning,…
Field Trip to the Moon. Educator's Guide. EG-2007-09-120-MSFC
ERIC Educational Resources Information Center
National Aeronautics and Space Administration (NASA), 2007
2007-01-01
The Field Trip to the Moon program uses an inquiry-based learning approach that fosters team building and introduces students to careers in science and engineering. The program components include a DVD and classroom investigations. The compelling DVD (not included here) provides essential information about Earth and the Moon. The hands-on…
Field Trip to the Moon. Informal Educator's Guide. EG-2007-09-121-MSFC
ERIC Educational Resources Information Center
National Aeronautics and Space Administration (NASA), 2007
2007-01-01
The Field Trip to the Moon program uses an inquiry-based learning approach that fosters team building and introduces young people to careers in science and engineering. The program components include the Field Trip to the Moon show (either on DVD or presented in a planetarium dome) and workshop investigations. The compelling show provides…
Impact of the Federal School-Based Student Mentoring Program. NCEE Evaluation Brief. NCEE 2009-4074
ERIC Educational Resources Information Center
National Center for Education Evaluation and Regional Assistance, 2009
2009-01-01
The Office of Management and Budget requested that the Institute of Education Sciences (IES) oversee an independent impact evaluation of the federal Student Mentoring Program, and in 2005 IES contracted with Abt Associates and its team of subcontractors (Branch Associates, Moore and Associates, and the Center for Resource Management) to conduct…
ERIC Educational Resources Information Center
Haynes, Ray; And Others
California Polytechnic State University's College of Business and College of Engineering have joined forces to create a joint Engineering Management Program (EMP). Students holding undergraduate engineering or equivalent degrees enter and earn both Masters in Business Administration and Masters of Science in Engineering in 24 months. The program…
A Project-Based Engineering and Leadership Workshop for High School Students
ERIC Educational Resources Information Center
Ryder, Linda Sue; Pegg, Jerine; Wood, Nathan
2012-01-01
Summer outreach programs provide pre-college participants an introduction to college life and exposure to engineering in an effort to raise the level of interest and bring more students into engineering fields. The Junior Engineering, Mathematics, and Science (JEMS) program is a project-based summer workshop in which teams of high school students…
Ventures in science status report, Summer 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshopsmore » that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.« less
NASA Astrophysics Data System (ADS)
Ajhar, Edward A.; Blackwell, E.; Quesada, D.
2010-05-01
In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)
Miller, Jason E; Walston, Timothy
2010-01-01
Inspired by BIO2010 and leveraging institutional and external funding, Truman State University built an undergraduate program in mathematical biology with high-quality, faculty-mentored interdisciplinary research experiences at its core. These experiences taught faculty and students to bridge the epistemological gap between the mathematical and life sciences. Together they created the infrastructure that currently supports several interdisciplinary courses, an innovative minor degree, and long-term interdepartmental research collaborations. This article describes how the program was built with support from the National Science Foundation's Interdisciplinary Training for Undergraduates in Biology and Mathematics program, and it shares lessons learned that will help other undergraduate institutions build their own program.
NASA Astrophysics Data System (ADS)
Crawford, C. J.; Masek, J. G.; Roy, D. P.; Woodcock, C. E.; Wulder, M. A.
2017-12-01
The U.S. Geological Survey (USGS) and NASA are currently prioritizing requirements and investing in technology options for a "Landsat 10 and beyond" mission concept as part of the Sustainable Land Imaging (SLI) architecture. Following the successful February 2013 launch of the Landsat 8, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have now added over 1 million images to the USGS Landsat archive. The USGS and NASA support and co-lead a Landsat Science Team made up largely of university and government experts to offer independent insight and guidance of program activities and directions. The rapid development of Landsat 9 reflects, in part, strong input from the 2012-2017 USGS Landsat Science Team (LST). During the last two years of the LST's tenure, individual LST members and within LST team working groups have made significant contributions to Landsat 10 and beyond's science traceability and future requirements justification. Central to this input, has been an effort to identify a trade space for enhanced measurement capabilities that maintains mission continuity with eight prior multispectral instruments, and will extend the Landsat Earth observation record beyond 55+ years with an approximate launch date of 2027. The trade space is framed by four fundamental principles in remote sensing theory and practice: (1) temporal resolution, (2) spatial resolution, (3) radiometric resolution, and (4) spectral coverage and resolution. The goal of this communication is to provide a synopsis of past and present 2012-2017 LST contributions to Landsat 10 and beyond measurement science and application priorities. A particular focus will be to document the links between new science and societal benefit areas with potential technical enhancements to the Landsat mission.
NASA IceBridge and PolarTREC - Education and Outreach Partnership
NASA Astrophysics Data System (ADS)
Bartholow, S.; Warburton, J.; Beck, J.; Woods, J. E.
2015-12-01
PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. PolarTREC has worked specifically with OIB for 3 years and looking forward to ongoing collaboration. PolarTREC brings U.S. K12 educators and polar researchers together through an innovative teacher research experience model. Participating teachers spend 3-6 weeks in the field with research teams conducting surveys and collecting data on various aspects of polar science. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfill a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Working with OIB has opened up the nature of science for the participating teachers. In developing the long-term relationship with OIB teams, teachers can now share (1) the diversity of training, backgrounds, and interests of OIB scientists, (2) identify the linkages between Greenlandic culture and community and cryospheric science and evidence of climate change, (3) network with Danish and Greenlandic educators on the mission (4) gain access to the full spectrum of a science project - development, implementation, analysis, networking, and dissemination of information. All aspects help these teachers become champions of NASA science and educational leaders in their communities. Evaluation data shows that PolarTREC has clearly achieved it goals with the OIB partnership and suggests that linking teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms.
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.
2017-01-01
The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.
Earth Science Mobile App Development for Non-Programmers
NASA Astrophysics Data System (ADS)
Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.
2012-08-01
A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.
ALCF Data Science Program: Productive Data-centric Supercomputing
NASA Astrophysics Data System (ADS)
Romero, Nichols; Vishwanath, Venkatram
The ALCF Data Science Program (ADSP) is targeted at big data science problems that require leadership computing resources. The goal of the program is to explore and improve a variety of computational methods that will enable data-driven discoveries across all scientific disciplines. The projects will focus on data science techniques covering a wide area of discovery including but not limited to uncertainty quantification, statistics, machine learning, deep learning, databases, pattern recognition, image processing, graph analytics, data mining, real-time data analysis, and complex and interactive workflows. Project teams will be among the first to access Theta, ALCFs forthcoming 8.5 petaflops Intel/Cray system. The program will transition to the 200 petaflop/s Aurora supercomputing system when it becomes available. In 2016, four projects have been selected to kick off the ADSP. The selected projects span experimental and computational sciences and range from modeling the brain to discovering new materials for solar-powered windows to simulating collision events at the Large Hadron Collider (LHC). The program will have a regular call for proposals with the next call expected in Spring 2017.http://www.alcf.anl.gov/alcf-data-science-program This research used resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
Moving the Science of Team Science Forward: Collaboration and Creativity
Hall, Kara L.; Feng, Annie X.; Moser, Richard P.; Stokols, Daniel; Taylor, Brandie K.
2012-01-01
Teams of scientists representing diverse disciplines are often brought together for purposes of better understanding and, ultimately, resolving urgent public health and environmental problems. Likewise, the emerging field of the science of team science draws on diverse disciplinary perspectives to better understand and enhance the processes and outcomes of scientific collaboration. In this supplement to the American Journal of Preventive Medicine, leading scholars in the nascent field of team science have come together with a common goal of advancing the field with new models, methods, and measures. This summary article highlights key themes reflected in the supplement and identifies several promising directions for future research organized around the following broad challenges: (1) operationalizing cross-disciplinary team science and training more clearly; (2) conceptualizing the multiple dimensions of readiness for team science; (3) ensuring the sustainability of transdisciplinary team science; (4) developing more effective models and strategies for training transdisciplinary scientists; (5) creating and validating improved models, methods, and measures for evaluating team science; and (6) fostering transdisciplinary cross-sector partnerships. A call to action is made to leaders from the research, funding, and practice sectors to embrace strategies of creativity and innovation in a collective effort to move the field forward, which may not only advance the science of team science but, ultimately, public health science and practice. PMID:18619406
NASA Astrophysics Data System (ADS)
Pella-Donnelly, M. A.
2009-12-01
Inviting and coordinating a field experience so that a K-12 teacher may participate can create benefits to the school community, the regional community and to a scientific research team. Students are inspired by their teachers’ adventures, are excited to experience real science and begin to consider science careers as possibilities. When a support program is in place; with media outreach mandated, and presentations in the community are encouraged, the greater local community that the teacher lives in becomes more scientifically literate. The community may also become much more aware of the details of the research being done, so that the research itself gains publicity. This educational experience and subsequent outreach may also place the research program in a better position to obtain NSF funding. This presentation will showcase how one teacher provided outreach that directly reached thousands of students and used media contacts to bring the research to more than 100,000 individuals, developed curriculum units based on her research experience, and . The impacts on science teacher retention may also be positive, when science teachers are informed and encouraged by hearing about the potential opportunities that await them. The opportunity for the teachers to grow professionally in content and science process knowledge is also an additional benefit. There have been, in the last few years, national grants available to assist in the retention of science and math teachers, since a high attrition rate also exists. It is opportunities such as those offered by pairing a teacher with a research team, that give teachers some added revitalization to their teaching and renew their drive to involve students in science literacy and understanding.
SPHERES: From Ground Development to Operations on ISS
NASA Technical Reports Server (NTRS)
Katterhagen, A.
2015-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of experts who can guide the Payload Developer (PD) and Principle Investigator (PI) in reaching critical milestones to make their science a reality using the SPHERES platform. From performing integrated safety and verification assessments, to assisting in developing crew procedures and operations products, to organizing, planning, and executing all test sessions, to helping manage data products, the SPHERES team at ARC is available to support microgravity research with the SPEHRES Guest Scientist Program.
NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions
NASA Astrophysics Data System (ADS)
Thronson, Harley A.; Pham, Bruce; Ganel, Opher
2017-01-01
The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects were funded (PCOS awards starting in 2017 have yet to be announced). For more information, see the respective Program Annual Technology Reports under the technology tabs of the COR website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.
Towson University's Professional Science Master's Program in Applied Physics: The first 5 years
NASA Astrophysics Data System (ADS)
Kolagani, Rajeswari
It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.
Investigating the Nature of Dark Energy using Type Ia Supernovae with WFIRST-AFTA Space Mission
NASA Astrophysics Data System (ADS)
Perlmutter, Saul
Scientifically, the WFIRST supernova program is unique: it makes possible a dark energy measurement that no other space mission or ground-based project is addressing, a measurement that will set the standard in determining the expansion history of the universe continuously from low to high redshifts (0.1 < z < 1.7). In the context of the WFIRST Science Definition Team several participants in this proposal have developed a first version of a supernova program, described in the WFIRST SDT Report. While this program was judged to be a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitations of time the analysis was clearly limited in depth on a number of issues. The objective of this proposal is to further develop this program. Technically this is the WFIRST measurement that arguably requires the most advanced project development, since it requires near-real-time analysis and follow-up with WFIRST, and since it is using the IFU spectrograph in the WFI package, the IFU being the WFIRST instrument that does not yet have a completely consistent set of specifications in the design iteration of the SDT report. In this proposal for the WFIRST Scientific Investigation Team, focused primarily on the supernova dark energy measurements, we address these crucial technical needs by bringing the larger supernova community's expertise on the science elements together with a smaller focused team that can produce the specific deliverables. Thus the objectives of this 5 year proposal are the following: 1. Development of scientific performance requirements for the study of Dark Energy using Type Ia supernovae 2. Design an observing strategy using the Wide Field Instrument (WFI) and the Integral Field Spectrometer Unit (IFU) 3. Development of science data analysis techniques and data analysis software 4. Development of ground and space calibration requirements and estimating realistic correlated errors, both statistical and systematic 5. Development of simulations and data challenges to validate the above 6. Development of complete plans in coordination with WFIRST project, for all aspects of science simulations, precursor observations, ground calibration, observational needs, data processing, anciliary data collection/incorporation, analysis, dissemination and documentation of the proposed science investigation. The 5 year program also intends to provide the following deliverables: 1. Documentation describing detailed scientific performance requirements 2. Documentation describing a design of an observing program 3. Documentation of science data analysis techniques 4. Simulations and data challenges to validate the above items 5. Algorithms used to perform processing of science data to serve as a basis for the WFIRST pipeline To achieve these objectives the plan is to set up a Supernova Project Office, seven Supernova Working Groups, and two Supernova Software Deliverables Teams. During the recent years of work with the Science Definition Team, it has been clear that the WFIRST Project Office requires a continuous series of scientific answers to the stream of design and requirements questions that arise in the development of the mission. One of the highest priorities of the Supernova Project Office will be to coordinate with the WFIRST Project Office and be the one-stop-shopping source of answers to such questions. The second topic of this proposal is Weak Lensing (WL). The intrinsic broad wavelength coverage and excellent flux calibration of the IFU spectra will provide an important training for the photometric redshift measurements, beyond what is possible from the ground, required for the WL survey. At this time the IFU design details are not fully developed, and our studies will ensure that the WL photo-z requirements are folded into a realistic final IFU design.
Pre-Launch Evaluation of the NPP VIIRS Land and Cryosphere EDRs to Meet NASA's Science Requirements
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Justice, Chris; Csiszar, Ivan; Key, Jeffrey R.; Devadiga, Sadashiva; Davidson, carol; Wolfe, Robert; Privette, Jeff
2011-01-01
This paper summarizes the NASA Visible Infrared Imaging Radiometer Suite (VIIRS) Land Science team's findings to date with respect to the utility of the VIIRS Land and Cryosphere EDRs to meet NASA's science requirements. Based on previous assessments and results from a recent 51-day global test performed by the Land Product Evaluation and Analysis Tool Element (Land PEATE), the NASA VIIRS Land Science team has determined that, if all the Land and Cryosphere EDRs are to serve the needs of the science community, a number of changes to several products and the Interface Data Processing Segment (IDPS) algorithm processing chain will be needed. In addition, other products will also need to be added to the VIIRS Land product suite to provide continuity for all of the MODIS land data record. As the NASA research program explores new global change research areas, the VIIRS instrument should also provide the polar-orbiting imager data from which new algorithms could be developed, produced, and validated.
How to implement the Science Fair Self-Help Development Program in schools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menicucci, D.
1994-01-01
This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it freesmore » the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.« less
NASA Astrophysics Data System (ADS)
Cox, I. V.; Quirk, M.; Culbert, K. N.; Whitesides, A. S.; Sun, H.; Black, C. J.; Cao, W.; Zhang, T.; Paterson, S. R.; Memeti, V.; Anderson, J. L.
2010-12-01
In 2006, USC Earth Sciences professors Paterson and Anderson created the Undergraduate Team Research (UTR) program, a year-long, multidisciplinary, learner-centered, student research experience. This program is open to all USC undergraduate students, but has also involved a few outstanding undergraduate students from other universities. Since its inception the 47 participants have been a diverse group: 53% women, ~17% minorities, and 43% non-Earth Science majors. To date, 15 abstracts written by UTR participants have been presented at national GSA and AGU meetings and several research papers for publication are in preparation. 12 presentations have been produced at University-sponsored research symposia and culminated in a number of senior theses. The central component of this program is a field-based research experience which involves several weeks of geologic mapping in various locations around the world. During the summer expedition, participants organize themselves into 3-4 person mapping teams consisting of a mix of undergraduate geology majors, non-majors, and mentors (professors and graduate students). At the end of each day, student researchers (with limited mentoring) work together to draft a geologic map while discussing their findings, formulating hypotheses about possible geologic histories, and planning research goals and organizing mapping teams for the next day. Throughout the following academic year, the student researchers continue to work in teams to digitize their geologic map, decide which analyses need to be done, and prepare collected rock samples for various structural, geochemical, and geochronologic studies. Most student researchers agree that they learned more in a few weeks than they often did in an entire semester course. What aspects of the UTR program elicit these high-yield results, even for non-majors that can be applied to other learning environments? We speculate that three critical elements are important: (1) The most notable is the collaborative nature, both in regards to the research itself and meeting the daily demands of living in the backcountry or a foreign country while working together as a research group. Students divided tasks amongst themselves while instructing and helping each other. Students with more geology expertise were able to reinforce their own knowledge by assisting in the teaching process that led to more rapid learning for the newcomers. (2) Student researchers developed a greater feeling of ownership in the program, which led to a greater commitment to learning and to sharing a broad range of ideas about both science and non-science activities. (3) Researchers are rewarded not only through grades, but through the excitement of daily new scientific discoveries, the joint publications of their research, and recognition by their peers. It is intriguing to speculate on what would happen if classrooms and particularly labs were designed to function as collaborative, student- run exercises with the ultimate goal to not only learn a subject, but also produce research papers on the class material.
Enhancing multiple disciplinary teamwork.
Weaver, Terri E
2008-01-01
Multiple disciplinary research provides an opportunity to bring together investigators across disciplines to provide new views and develop innovative approaches to important questions. Through this shared experience, novel paradigms are formed, original frameworks are developed, and new language is generated. Integral to the successful construction of effective cross-disciplinary teams is the recognition of antecedent factors that affect the development of the team such as intrapersonal, social, physical environmental, organizational, and institutional influences. Team functioning is enhanced with well-developed behavioral, affective, interpersonal, and intellectual processes. Outcomes of effective multiple disciplinary research teams include novel ideas, integrative models, new training programs, institutional change, and innovative policies that can also influence the degree to which antecedents and processes contribute to team performance. Ongoing evaluation of team functioning and achievement of designated outcomes ensures the continued development of the multiple disciplinary team and confirmation of this approach as important to the advancement of science.
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
NASA Technical Reports Server (NTRS)
Childs, Lauren; Brozen, Madeline; Hillyer, Nelson
2010-01-01
Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.
Interdisciplinary research training in substance abuse and addictions.
Thompson, Elaine Adams
2013-01-01
Considerable evidence shows that the management of complex problems of and related to substance abuse and addictions require comprehensive approaches based on solid research. Nonetheless, timely and widespread dissemination of research findings remains uncommon, hindering nursing practice, impeding the health of individuals and families, and imposing untoward costs for society. Shifts in science paradigms underscore the need for efficient and effective interdisciplinary research teams to carry out innovative research within a translational science framework. This means that early career investigators will need the knowledge and skills to conduct research as part of an interdisciplinary team and to contribute systematically to translational research in the area of substance abuse and addictions. This brief report describes a nursing research training program sponsored by the National Institute on Drug Abuse that evolved into an interdisciplinary program administrated within a school of nursing. Factors conducive to program development are described, along with the structure and elements of the program and examples of the scholars' projects and accomplishments. The common benefits of interdisciplinary research training for both predoctoral and postdoctoral research scholars include consistent exposure to new and alternative scientific models and methodological approaches as well as endurance of cross-discipline network connections. Benefits and challenges of this program carry implications for the design of future nursing research training programs in the field of substance abuse and addictions.
2011-03-11
ORLANDO, Fla. – Team 3149 participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from McKeel Academy of Technology in Lakeland, Fla. NASA is a sponsor of the team. Team 3149 finished eighth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – The Team 3149 robot participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from McKeel Academy of Technology in Lakeland, Fla. NASA is a sponsor of the team. Team 3149 finished eighth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
MSL Lessons Learned and Knowledge Capture
NASA Technical Reports Server (NTRS)
Buxbaum, Karen L.
2012-01-01
The Mars Program has recently been informed of the Planetary Protection Subcommittee (PPS) recommendation, which was endorsed by the NAC, concerning Mars Science Lab (MSL) lessons learned and knowledge capture. The Mars Program has not had an opportunity to consider any decisions specific to the PPS recommendation. Some of the activities recommended by the PPS would involve members of the MSL flight team who are focused on cruise, entry descent & landing, and early surface operations; those activities would have to wait. Members of the MSL planetary protection team at JPL are still available to support MSL lessons learned and knowledge capture; some of the specifically recommended activities have already begun. The Mars Program shares the PPS/NAC concerns about loss of potential information & expertise in planetary protection practice.
Barnes, Marianne B.; Barnes, Lehman W.; Cooper, Lou Ann; Bokor, Julie R.; Koroly, Mary Jo
2017-01-01
A three-year, National Institutes of Health-funded residential project at a southeastern research university immersed 83 secondary science teachers in a summer institute called “Bench to Bedside.” Teachers were provided with knowledge, skills, experiences, and incentives to improve their science teaching and increase their awareness of scientific processes, technologies, and careers by examining the translational medicine continuum of basic to clinical research. This was done with the help of medical school researchers, clinical personnel, biotechnology entrepreneurs, program mentors, and prior year participants. A critical component of the institute was the preparation and implementation of an action research project that reflected teachers’ newly acquired knowledge and skills. Action research proposals were critiqued by project team members and feedback provided prior to action research implementation in schools during the following year. Teachers shared their action research with colleagues and project team at a symposium and online as a critical step in networking the teachers. Results of a mixed methods program evaluation strategy indicate that the program produced significant gains in teachers’ confidence to explain advanced biosciences topics, development of action research skills, and formation of a statewide biosciences network of key stakeholders. Constraints of time, variation in teacher content and action research background, technology availability, and school-related variables, among others, are discussed. PMID:29733086
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Allen, J. S.; Shipp, S. S.; Kramer, G. Y.; Nahm, A.; Balazs, L.; Fuller, J.; Newland, J.; Snyder, R. D.; Kring, D. A.
2014-12-01
The National Research Council (2012) has expressed a need for participatory science experiences for students. Opportunities are needed for students which 1) allow them to understand how scientific knowledge develops and 2) can heighten their curiosity, capture their interest, and motivate their continued study of science. Studies (e.g., Aydeniz et al., 2011) have also recommend educators provide students with opportunities to do science through extracurricular work with scientists. In addition to being given the opportunity to fully participate in the scientific enterprise, students must also be explicitly guided in their attempts to develop a more appropriate understanding of the nature of the scientific enterprise (McDonald, 2010; Rudge & Howe, 2010; Yacoubian & BouJaoude, 2010). Exploration of the Moon and Asteroids by Secondary Students, or ExMASS, provides such an opportunity for students. The ExMASS program is an education effort managed by the LPI/NASA JSC-led Center for Lunar Science and Exploration (CLSE), one of nine teams comprising NASA's Solar System Exploration Research Virtual Institute (SSERVI). Over the course of one academic year, teams of high school students conduct their own scientific investigations of either Earth's Moon or asteroids, with guidance from a scientist mentor. The program includes two elements: 1) a guided inquiry introductory research activity that builds student knowledge of current lunar/asteroid science and lunar/asteroid data, and 2) an open inquiry research project in which the students apply their knowledge to a self-defined project. Evaluation data collected during the predecessor program to ExMASS revealed many successes, but also room for improvement. In response, an Advisory Group consisting of past teachers and mentors was formed to address the gaps revealed in the evaluation data. The ExMASS program will continue to collect similar evaluation data including assessment of changes in students' lunar/asteroid content knowledge, student attitudes toward science and science careers, and views of the nature of science and scientific inquiry. Exit surveys for teachers, students, and mentors will also be used to gather general feedback about the program and its impact.
SIM PlanetQuest: Science with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Unwin, Stephen (Editor); Turyshev, Slava (Editor)
2004-01-01
SIM - the Space Interferometry Mission - will perform precision optical astrometry on objects as faint as R magnitude 20. It will be the first space-based astrometric interferometer, operating in the optical band with a 10-m baseline. The Project is managed by the Jet Propulsion Laboratory, California Institute of Technology, in close collaboration with two industry partners, Lockheed Martin Missiles and Space, and TRW Inc., Space and Electronics Group. Launch of SIM is currently planned for 2009. In its wide-angle astrometric mode, SIM will yield 4 microarcsecond absolute position and parallax measurements. Astrometric planet searches will be done in a narrow-angle mode, with an accuracy of 4 microarcseconds or better in a single measurement. As a pointed rather than a survey instrument, SIM will maintain.its astrometric accuracy down to the faintest, magnitudes, opening up the opportunity for astrometry of active galactic nuclei to better than 10 pas. SIM will define a new astrometric reference frame, using a grid of approximately 1500 stars with positions accurate to 4 microarcseconds. The SIM Science Team comprises the Principal Investigators of ten Key Projects, and five Mission Scientists contributing their expertise to specific areas of the mission. Their science programs cover a wide range of topics in Galactic and extragalactic astronomy. They include: searches for low-mass planets - including analogs to our own solar system - tlie formation and dynamics of our Galaxy, calibration of the cosmic distance scale, and fundamental stellar astrophysics. All of the science observing on SIM is competitively awarded; the Science Team programs total about 40% of the total available, and the remainder will be assigned via future NASA competitions. This report is a compilation of science summaries by members of the Science Team, and it illustrates the wealth of scientific problems that microarcsecond-precision astrometry can contribute to. More information on SIM, including copies of this report, may be obtained from the project web site, at http://sim. jpl.nasa.gov.
Hall, Kara L; Vogel, Amanda L; Huang, Grace C; Serrano, Katrina J; Rice, Elise L; Tsakraklides, Sophia P; Fiore, Stephen M
2018-01-01
Collaborations among researchers and across disciplinary, organizational, and cultural boundaries are vital to address increasingly complex challenges and opportunities in science and society. In addition, unprecedented technological advances create new opportunities to capitalize on a broader range of expertise and information in scientific collaborations. Yet rapid increases in the demand for scientific collaborations have outpaced changes in the factors needed to support teams in science, such as institutional structures and policies, scientific culture, and funding opportunities. The Science of Team Science (SciTS) field arose with the goal of empirically addressing questions from funding agencies, administrators, and scientists regarding the value of team science (TS) and strategies for successfully leading, engaging in, facilitating, and supporting science teams. Closely related fields have rich histories studying teams, groups, organizations, and management and have built a body of evidence for effective teaming in contexts such as industry and the military. Yet few studies had focused on science teams. Unique contextual factors within the scientific enterprise create an imperative to study these teams in context, and provide opportunities to advance understanding of other complex forms of collaboration. This review summarizes the empirical findings from the SciTS literature, which center around five key themes: the value of TS, team composition and its influence on TS performance, formation of science teams, team processes central to effective team functioning, and institutional influences on TS. Cross-cutting issues are discussed in the context of new research opportunities to further advance SciTS evidence and better inform policies and practices for effective TS. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Lessions learned in WISE image quality
NASA Astrophysics Data System (ADS)
Kendall, Martha; Duval, Valerie G.; Larsen, Mark F.; Heinrichsen, Ingolf H.; Esplin, Roy W.; Shannon, Mark; Wright, Edward L.
2010-08-01
The Wide-Field Infrared Survey Explorer (WISE) mission launched in December of 2009 is a true success story. The mission is performing beyond expectations on-orbit and maintained cost and schedule throughout. How does such a thing happen? A team constantly focused on mission success is a key factor. Mission success is more than a program meeting its ultimate science goals; it is also meeting schedule and cost goals to avoid cancellation. The WISE program can attribute some of its success in achieving the image quality needed to meet science goals to lessons learned along the way. A requirement was missed in early decomposition, the absence of which would have adversely affected end-to-end system image quality. Fortunately, the ability of the cross-organizational team to focus on fixing the problem without pointing fingers or waiting for paperwork was crucial in achieving a timely solution. Asking layman questions early in the program could have revealed requirement flowdown misunderstandings between spacecraft control stability and image processing needs. Such is the lesson learned with the WISE spacecraft Attitude Determination & Control Subsystem (ADCS) jitter control and the image data reductions needs. Spacecraft motion can affect image quality in numerous ways. Something as seemingly benign as different terminology being used by teammates in separate groups working on data reduction, spacecraft ADCS, the instrument, mission operations, and the science proved to be a risk to system image quality. While the spacecraft was meeting the allocated jitter requirement , the drift rate variation need was not being met. This missing need was noticed about a year before launch and with a dedicated team effort, an adjustment was made to the spacecraft ADCS control. WISE is meeting all image quality requirements on-orbit thanks to a diligent team noticing something was missing before it was too late and applying their best effort to find a solution.
NASA Astrophysics Data System (ADS)
Pisa, Carlos Cabañero; López, Enric Serradell
Teamwork is considered one of the most important professional skills in today's business environment. More specifically, the collaborative work between professionals and information technology managers from various functional areas is a strategic key in competitive business. Several university-level programs are focusing on developing these skills. This article presents the case of the course Computer Science Applied to Management (hereafter CSAM) that has been designed with the objective to develop the ability to work cooperatively in interdisciplinary teams. For their design and development have been addressed to the key elements of efficiency that appear in the literature, most notably the establishment of shared objectives and a feedback system, the management of the harmony of the team, their level of autonomy, independence, diversity and level of supervision. The final result is a subject in which, through a working virtual platform, interdisciplinary teams solve a problem raised by a case study.
2003-03-21
KENNEDY SPACE CENTER, FLA. - Lockheed Martin Vice President/Associate Program Manager Brian Duffy (second from left) and NASA/Kennedy Space Center Director Roy Bridges (center) share a laugh with student participants in the 2003 Southeastern Regional FIRST Robotic Competition. The competition is being held at the University of Central Florida (UCF) in Orlando, March 20-23. Forty student teams from around the country are participating in the event that pits team-built gladiator robots against each other in an athletic-style competition. The teams are sponsored by NASA/Kennedy Space Center, The Boeing Company/Brevard Community College, and Lockheed Martin Space Operations/Mission Systems for the nonprofit organization For Inspiration and Recognition of Science and Technology, known as FIRST. The vision of FIRST is to inspire in the youth of our nation an appreciation of science and technology and an understanding that mastering these disciplines can enrich the lives of all mankind.
2017-09-14
SCI2012_0003: SOFIA mid-infrared image of the planetary nebula Minkowski 2-9 (M2-9), also known as the Butterfly Nebula, compared with a visual-wavelength Hubble Space Telescope image at the same scale and orientation. The nebula is composed of two lobes of gas & dust expelled from a dying star with about the mass of our Sun that is seen at the center of the lobes. The HST image shows mostly ionized gas in the lobes whereas the SOFIA image shows mostly solid grains condensing in the gas. The SOFIA data were obtained during SOFIA's Early Science program in 2011 by a Guest Investigator team led by Michael Werner of Caltech/JPL using the FORCAST camera (P.I.Terry Herter, Cornell University). Credit: SOFIA image, RGB = 37, 24, 20 microns; NASA/DLR/USRA/DSI/FORCAST team/M. Werner et al./A. Helton, J. Rho; HST image: NASA/ESA/NSF/AURA/Hubble Heritage Team/STScI/B. Balick, V. Icke, G. Mellema
A Small Fission Power System for NASA Planetary Science Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick;
2011-01-01
In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.
General Atomics Sciences Education Foundation Outreach Programs
NASA Astrophysics Data System (ADS)
Winter, Patricia S.
1997-11-01
Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].
Effects of proton irradiation at different incident angles on InAlAs/InGaAs InP-based HEMTs
NASA Astrophysics Data System (ADS)
Sun, Shu-Xiang; Wei, Zhi-Chao; Xia, Peng-Hui; Wang, Wen-Bin; Duan, Zhi-Yong; Li, Yu-Xiao; Zhong, Ying-Hui; Ding, Peng; Jin, Zhi
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11775191, 61404115, 61434006, and 11475256), the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 18IRTSTHN016), and the Development Fund for Outstanding Young Teachers in Zhengzhou University of China (Grant No. 1521317004).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, C. H.; Ferencz, R. M.; Hoekstra, R. J.
2015-06-08
The review was conducted on March 31 – April 1, 2015 at the University of Utah. Overall the review team was impressed with the work presented and found that the CCMSC had met or exceeded all of their Year 1 milestones. Specific details, comments and recommendations are included in this document.
NASA Technical Reports Server (NTRS)
Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.;
2016-01-01
NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".
School Science Comes Alive. Phase Three
NASA Technical Reports Server (NTRS)
Hartline, Frederick F.
1997-01-01
Phase 3 of the School Science Comes Alive Program (S(sup 2)CAP) created an exciting, science - enrichment experience for third, fourth and fifth graders and their teachers and enhanced the science-teaching skills of teacher teams at each of four participating elementary schools on Virginia's Peninsula. The schools involved enroll a majority of Black students, many of whom are from economically disadvantaged households. Designed to build on the highly successful S(sup 2)CAP program of the preceding two years, this project brought college faculty together with classroom teachers and trained volunteers in a cooperative effort to make a lasting difference in the quality of science education at the four schools. In total, this program touched approximately 1000 the school children, more than half of whom are black, giving them direct and indirect exposure to the spirit of inquiry and adventure of the world-wide science community. In S(sup 2)CAP Phase 3, a large measure of responsibility was placed on the classroom teachers, thus creating a more sustainable partnership between college faculty and grade school teacher. Our college physics professors coached and supported teams of teachers from each school at intensive training workshops. A volunteer program provided each teacher with one or more trained volunteers to assist in class with the hands-on activities that have been central to the S2CAP program. Most of the equipment for these activities was constructed during the workshops by the teachers and volunteers from low cost materials provided by the program. Two types of volunteers were enlisted: science smart black college students and technically trained retirees (many of whom are ex-NASA employees). One goal of this program was to increase the numbers of minority students who see science as an interesting and exciting subject, to make the science period a time which students look forward to in the school day. Such an attitude is expected to translate naturally into a higher interest in science and engineering as a career for these students. A second goal was to create a sustainable improvement in the way science is taught at the elementary level. By the end of the program we expected that our teachers would be significantly more self reliant in using hands-on-activities as a part of their science curricula than they were prior to their involvement with S2CAP. In summary, S2CAP Phase 3 offered intensive training workshops for teachers and supporting volunteers followed by stimulating hands-on activities in the classroom for the children. These components combined to amplify the experience, enthusiasm, and ideas of our scientists in a way that complements the normal elementary school curriculum in each of the two school systems involved.
The SDO Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time
NASA Technical Reports Server (NTRS)
Drobnes, E.; Littleton, A.; Pesnell, W. D.; Buhr, S.; Beck, K.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.;
2011-01-01
The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete efforts implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs. The SDO E/PO team has put forth much effort in the past few years to increase our cohesiveness by adopting common goals and increasing the amount of overlap between our programs. In this paper, we outline the context and overall philosophy for our combined programs, present a brief overview of all SDO E/PO programs along with more detailed highlight of a few key programs, followed by a review of our results up to date. Concluding is a summary of the successes, failures, and lessons learned that future missions can use as a guide, while further incorporating their own content to enhance the public's knowledge and appreciation of NASA?s science and technology as well as its benefit to society.
Vogel, Amanda L; Stipelman, Brooke A; Hall, Kara L; Nebeling, Linda; Stokols, Daniel; Spruijt-Metz, Donna
2014-01-01
The National Cancer Institute has been a leader in supporting transdisciplinary (TD) team science. From 2005-2010, the NCI supported Transdisciplinary Research on Energetic and Cancer I (TREC I), a center initiative fostering the TD integration of social, behavioral, and biological sciences to examine the relationships among obesity, nutrition, physical activity and cancer. In the final year of TREC I, we conducted qualitative in-depth-interviews with 31 participating investigators and trainees to learn more about their experiences with TD team science, including challenges, facilitating factors, strategies for success, and impacts. Five main challenges emerged: (1) limited published guidance for how to engage in TD team science, when TREC I was implemented; (2) conceptual and scientific challenges inherent to efforts to achieve TD integration; (3) discipline-based differences in values, terminology, methods, and work styles; (4) project management challenges involved in TD team science; and (5) traditional incentive and reward systems that do not recognize or reward TD team science. Four main facilitating factors and strategies for success emerged: (1) beneficial attitudes and beliefs about TD research and team science; (2) effective team processes; (3) brokering and bridge-building activities by individuals holding particular roles in a research center; and (4) funding initiative characteristics that support TD team science. Broad impacts of participating in TD team science in the context of TREC I included: (1) new positive attitudes about TD research and team science; (2) new boundary-crossing collaborations; (3) scientific advances related to research approaches, findings, and dissemination; (4) institutional culture change and resource creation in support of TD team science; and (5) career advancement. Funding agencies, academic institutions, and scholarly journals can help to foster TD team science through funding opportunities, institutional policies on extra-departmental and cross-school collaboration, promotion and tenure policies, and publishing opportunities for TD research. PMID:25554748
NASA Astrophysics Data System (ADS)
Kesidou, Sofia; Roseman, Jo Ellen
2002-08-01
The purposes of this study were to examine how well middle school programs support the attainment of key scientific ideas specified in national science standards, and to identify typical strengths and weaknesses of these programs using research-based criteria. Nine widely used programs were examined by teams of teachers and specialists in research on teaching and learning. Reviewers found that whereas key ideas were generally present in the programs, they were typically buried between detailed or even unrelated ideas. Programs only rarely provided students with a sense of purpose for the units of study, took account of student beliefs that interfere with learning, engaged students with relevant phenomena to make abstract scientific ideas plausible, modeled the use of scientific knowledge so that students could apply what they learned in everyday situations, or scaffolded student efforts to make meaning of key phenomena and ideas presented in the programs. New middle school science programs that reflect findings from learning research are needed to support teachers better in helping students learn key ideas in science. The criteria and findings from this study on the inadequacies in existing programs could serve as guidelines in new curriculum development.
Exploring Mission Concepts with the JPL Innovation Foundry A-Team
NASA Technical Reports Server (NTRS)
Ziemer, John K.; Ervin, Joan; Lang, Jared
2013-01-01
The JPL Innovation Foundry has established a new approach for exploring, developing, and evaluating early concepts called the A-Team. The A-Team combines innovative collaborative methods with subject matter expertise and analysis tools to help mature mission concepts. Science, implementation, and programmatic elements are all considered during an A-Team study. Methods are grouped by Concept Maturity Level (CML), from 1 through 3, including idea generation and capture (CML 1), initial feasibility assessment (CML 2), and trade space exploration (CML 3). Methods used for each CML are presented, and the key team roles are described from two points of view: innovative methods and technical expertise. A-Team roles for providing innovative methods include the facilitator, study lead, and assistant study lead. A-Team roles for providing technical expertise include the architect, lead systems engineer, and integration engineer. In addition to these key roles, each A-Team study is uniquely staffed to match the study topic and scope including subject matter experts, scientists, technologists, flight and instrument systems engineers, and program managers as needed. Advanced analysis and collaborative engineering tools (e.g. cost, science traceability, mission design, knowledge capture, study and analysis support infrastructure) are also under development for use in A-Team studies and will be discussed briefly. The A-Team facilities provide a constructive environment for innovative ideas from all aspects of mission formulation to eliminate isolated studies and come together early in the development cycle when they can provide the biggest impact. This paper provides an overview of the A-Team, its study processes, roles, methods, tools and facilities.
Research and Technology at the John F. Kennedy Space Center 1993
NASA Technical Reports Server (NTRS)
1993-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
2014-01-01
The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.
NASA Astrophysics Data System (ADS)
Obarski, Kelly Josephine
Each year, hundreds of graduate and undergraduate students, participate as Fellows in National Science Foundation GK-12 Grants throughout the U.S. These Fellowships create opportunities for university students to improve their communication skills, teaching proficiencies, and team-building skills, in addition to expanding their interest in educational endeavors in their respective communities while pursuing their college degrees. STEP (Science and Technology Enhancement Project) is one such project. University faculty, public school teachers, and community leaders collaborated together in order to bring scientists into middle and secondary classrooms to focus on increasing student interest and proficiency in science, technology, engineering, and mathematics (STEM) skills. Seventeen Fellows, in the previous four years, designed, developed, and implemented innovative, hands-on lessons in seven local schools. The evaluation team collected a tremendous amount of research evidence focused on the effect of the program on the Fellows while they were participants in the study, but there has been very little data collected about the Fellows after leaving the program. This research study, consisting of two-hour interviews, qualitatively explores how the skills learned while participating in the STEP program affected the Fellows' career and educational choices once leaving the project. This data was analyzed along with historical attitude surveys and yearly tracking documents to determine the effect that participation in the program had on their choices post-STEP. An extensive literature review has been conducted focusing on other GK-12 programs throughout the country, K-16 collaboration, Preparing Future Faculty Programs, as well as on teaching and learning literature. These bodies of literature provide the theoretical basis in which the research is framed in order to assess the impact on Fellow educational and professional choices since leaving the STEP program. This research project sheds new light on how participation in a GK-12 Fellowship impacts career and educational choices after the Fellow leaves the program.
Hamman, William R; Beaudin-Seiler, Beth M; Beaubien, Jeffrey M
2010-09-01
In the report "Five Years After 'To Err is Human' ", it was noted that "the combination of complexity, professional fragmentation, and a tradition of individualism, enhanced by a well-entrenched hierarchical authority structure and diffuse accountability, forms a daunting barrier to creating the habits and beliefs of common purpose, teamwork, and individual accountability for successful interdependence that a safe culture requires". Training physicians, nurses, and other professionals to work in teams is a concept that has been promoted by many patient safety experts. However the model of teamwork in healthcare is diffusely defined, no clear performance metrics have been established, and the use of simulation to train teams has been suboptimal. This paper reports on the first three years of work performed in the Michigan Economic Development Corporation (MEDC) Tri-Corridor life science grant to apply concepts and processes of simulation design that were developed in the air carrier industry to understand and train healthcare teams. This work has been monitored by the American Academy for the Advancement of Science (AAA) and is based on concepts designed in the Advanced Qualification Program (AQP) from the air carrier industry, which trains and assesses teamwork skills in the same manner as technical skills. This grant has formed the foundation for the Center of Excellence for Simulation Education and Research (CESR).
Teachers Are Part of the Team.
ERIC Educational Resources Information Center
Migal, Clifford A.
1984-01-01
Great Oaks Joint Vocational School (Ohio) devised an experimental model for instructional programs in dental assisting, chef's training, electronics, welding, and industrial maintenance. The vocational instructors provide occupational and job-readiness skills and subject-matter specialists provide related instruction in mathematics, science, and…
NASA Technical Reports Server (NTRS)
Bleacher, L. V.; Meinke, B.; Hauck, K.; Soeffing, C.; Spitz, A.
2014-01-01
NASA Science4Girls and Their Families (NS4G) partners NASA Science Mission Directorate (SMD) education programs with public libraries to provide hands-on science, technology, engineering, and math (STEM) activities and career information for girls and their families, along with training for librarians, in conjunction with Women's History Month (March). NS4G is a collaboration among education teams within the four NASA SMD education and public outreach (E/PO) Forums: Planetary, Earth, Astrophysics, and Heliophysics. It began in 2012 as an Astrophysics-led program (Astro4Girls) with 9 events around the country. Upon expanding among the four Forums, over 73 events were held in Spring 2013 (Fig. 1), with preparations underway for events in Spring 2014. All events are individually evaluated by both the student participants and participating librarians to assess their effectiveness in addressing audience needs.
Dorsey, Susan G; Schiffman, Rachel; Redeker, Nancy S; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S; Grady, Patricia A
2014-01-01
The National Institute of Nursing Research (NINR) Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present the NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR center directors' meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. Copyright © 2014 Elsevier Inc. All rights reserved.
Origins Space Telescope: Study Plan
NASA Astrophysics Data System (ADS)
Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.
Origins Space Telescope: Study Plan
NASA Astrophysics Data System (ADS)
Cooray, Asantha R.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.
Design and Impacts of a Youth-Directed Café Scientifique Program
ERIC Educational Resources Information Center
Hall, Michelle K.; Foutz, Susan; Mayhew, Michael A.
2013-01-01
We have modified the popular Cafe Scientifique model for engaging adults in dialog on issues at the nexus of science and society to address the specific needs and interests of high-school age youth. Key elements of the model are Youth Leadership Teams that guide the program design and assist with implementation; a speaker preparation process to…
Research in Information Processing and Computer Science. Final Technical Report.
ERIC Educational Resources Information Center
Carnegie-Mellon Univ., Pittsburgh, PA. Social Studies Curriculum Center.
This is the final scientific research report for the research in programing at Carnegie-Mellon University during 1968-1970. Three team programing efforts during the past two years have been the development of (1) BLISS--a system building language on the PDP-10 computer, (2) LC2--a conversational system on the IBM/360, and L*--a system building…
2015-12-01
Accountability Office reports and recommendations, and ARDEC and the program managers established processes. The research indicated that the...Record. This examination was a direct review and comparison of Department of Defense policies, U.S. Government Accountability Office reports and...Government Accountability Office I&TT Innovation and Technology Transition IPT Integrated Product Team JCIDS Joint Capabilities Integration
NASA Astrophysics Data System (ADS)
Fike, Hildee; Barnhart, Paul; Brevik, Corinne E.; Brevik, Eric C.; Burgess, Cynthia; Chen, Jundong; Egli, Shawna; Harris, Billy; Johanson, Paul J.; Johnson, Naomi; Moe, Marie; Olsen, Reba
2016-04-01
One of the major challenges in recruiting students to careers in STEM (science, technology, engineering, and mathematics) fields is to stimulate enthusiasm about these fields in our youth. BEST (Boosting Engineering Science and Technology) Robotics is a national program in the USA that attempts to recruit junior and senior high school students (ages 13-18) into STEM careers by showing youth how exciting these careers can be by using robotics competitions. The competitions have several aspects, including robot design, software engineering, marketing, public outreach, research into the subject area of the year's tasks, and a set of tasks to be physically performed by the robots that each team builds. The tasks to be performed change every year; therefore, even teams that compete over multiple years must build a new robot each year designed to perform the particular tasks charged to them. Dickinson State University is the home to Blue Hawk BEST, one of the hubs that host the first round of competition for teams hoping to move on to regional, and potentially, national level competition. The tasks for 2015 revolved around a mining theme. The robots needed to be able to replace the filter in an air filtration system, fix broken pipes, mine simulated aggregate, coal, magnetite, bauxite, chalcopyrite, and spodumene, and move core samples. Points were awarded for successful progress toward each task based on the difficulty of the task and the market value of the commodities. While several STEM fields are covered in various aspects of the competition, the 2015 competition includes Earth science in that the students are required to research the history and science of the commodities being mined and learn about ways the commodities are important to their lives and the economy of their particular region. Several awards are handed out to the top performing teams in various categories, including spirit and sportsmanship awards. As teams compete for these awards a raucous environment is created during the competition, with team members who are not actively competing at any given moment enthusiastically supporting their team members who are competing. However, it also generates a sense of community among the competing teams, and it is common to see members from one team assisting another team that is having problems with their robot, even though the two teams are also in direct competition with one another. The end result is an overall experience that is great fun for the competing students, but one in which they also learn about a wide range of STEM fields. In 2015, that education included an important aspect of the Earth sciences. Using similar techniques for general teaching of some Earth science topics may have promise both in terms of student learning and student enthusiasm for the subject material.
Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.
2016-01-01
Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP)1. The TSTP is an intensive 2–3 day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. PMID:27231204
Dubois, Eline Agnès; Franson, Kari Lanette
2009-09-01
Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.
Deal, Alex L; Erickson, Kristen J; Bilsky, Edward J; Hillman, Susan J; Burman, Michael A
2014-01-01
The University of New England's Center for Excellence in the Neurosciences has developed a successful and growing K-12 outreach program that incorporates undergraduate and graduate/professional students. The program has several goals, including raising awareness about fundamental issues in neuroscience, supplementing science education in area schools and enhancing undergraduate and graduate/professional students' academic knowledge and skill set. The outreach curriculum is centered on core neuroscience themes including: Brain Safety, Neuroanatomy, Drugs of Abuse and Addiction, Neurological and Psychiatric Disorders, and Cognition and Brain Function. For each theme, lesson plans were developed based upon interactive, small-group activities. Additionally, we've organized our themes in a "Grow-up, Grow-out" approach. Grow-up refers to returning to a common theme, increasing in complexity as we revisit students from early elementary through high school. Grow-out refers to integrating other scientific fields into our lessons, such as the chemistry of addiction, the physics of brain injury and neuronal imaging. One of the more successful components of our program is our innovative team-based model of curriculum design. By creating a team of undergraduate, graduate/professional students and faculty, we create a unique multi-level mentoring opportunity that appears to be successful in enhancing undergraduate students' skills and knowledge. Preliminary assessments suggest that undergraduates believe they are enhancing their content knowledge and professional skills through our program. Additionally, we're having a significant, short-term impact on K-12 interest in science. Overall, our program appears to be enhancing the academic experience of our undergraduates and exciting K-12 students about the brain and science in general.
Radio-science performance analysis software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1995-02-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
Radio-Science Performance Analysis Software
NASA Astrophysics Data System (ADS)
Morabito, D. D.; Asmar, S. W.
1994-10-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.
Radio-science performance analysis software
NASA Technical Reports Server (NTRS)
Morabito, D. D.; Asmar, S. W.
1995-01-01
The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.
Mapping a research agenda for the science of team science
Falk-Krzesinski, Holly J; Contractor, Noshir; Fiore, Stephen M; Hall, Kara L; Kane, Cathleen; Keyton, Joann; Klein, Julie Thompson; Spring, Bonnie; Stokols, Daniel; Trochim, William
2012-01-01
An increase in cross-disciplinary, collaborative team science initiatives over the last few decades has spurred interest by multiple stakeholder groups in empirical research on scientific teams, giving rise to an emergent field referred to as the science of team science (SciTS). This study employed a collaborative team science concept-mapping evaluation methodology to develop a comprehensive research agenda for the SciTS field. Its integrative mixed-methods approach combined group process with statistical analysis to derive a conceptual framework that identifies research areas of team science and their relative importance to the emerging SciTS field. The findings from this concept-mapping project constitute a lever for moving SciTS forward at theoretical, empirical, and translational levels. PMID:23223093
Project Development Teams: A Novel Mechanism for Accelerating Translational Research
Sajdyk, Tammy J.; Sors, Thomas G.; Hunt, Joe D.; Murray, Mary E.; Deford, Melanie E.; Shekhar, Anantha; Denne, Scott C.
2014-01-01
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) Program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators. Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT Program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds. PMID:25319172
NASA technology utilization applications. [transfer of medical sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.
Using AUTORAD for Cassini File Uplinks: Incorporating Automated Commanding into Mission Operations
NASA Technical Reports Server (NTRS)
Goo, Sherwin
2014-01-01
As the Cassini spacecraft embarked on the Solstice Mission in October 2010, the flight operations team faced a significant challenge in planning and executing the continuing tour of the Saturnian system. Faced with budget cuts that reduced the science and engineering staff by over a third in size, new and streamlined processes had to be developed to allow the Cassini mission to maintain a high level of science data return with a lower amount of available resources while still minimizing the risk. Automation was deemed an important key in enabling mission operations with reduced workforce and the Cassini flight team has made this goal a priority for the Solstice Mission. The operations team learned about a utility called AUTORAD which would give the flight operations team the ability to program selected command files for radiation up to seven days in advance and help minimize the need for off-shift support that could deplete available staffing during the prime shift hours. This paper will describe how AUTORAD is being utilized by the Cassini flight operations team and the processes that were developed or modified to ensure that proper oversight and verification is maintained in the generation and execution of radiated command files.
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
Teacher Research Experience Programs = Increase in Student Achievement
NASA Astrophysics Data System (ADS)
Dubner, J.
2010-12-01
Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
Planetary Science Technology Infusion Study: Findings and Recommendations Status
NASA Technical Reports Server (NTRS)
Anderson, David J.; Sandifer, Carl E., II; Sarver-Verhey, Timothy R.; Vento, Daniel M.; Zakrajsek, June F.
2014-01-01
The Planetary Science Division (PSD) within the National Aeronautics and Space Administrations (NASA) Science Mission Directorate (SMD) at NASA Headquarters sought to understand how to better realize a scientific return on spacecraft system technology investments currently being funded. In order to achieve this objective, a team at NASA Glenn Research Center was tasked with surveying the science and mission communities to collect their insight on technology infusion and additionally sought inputs from industry, universities, and other organizations involved with proposing for future PSD missions. This survey was undertaken by issuing a Request for Information (RFI) activity that requested input from the proposing community on present technology infusion efforts. The Technology Infusion Study was initiated in March 2013 with the release of the RFI request. The evaluation team compiled and assessed this input in order to provide PSD with recommendations on how to effectively infuse new spacecraft systems technologies that it develops into future competed missions enabling increased scientific discoveries, lower mission cost, or both. This team is comprised of personnel from the Radioisotope Power Systems (RPS) Program and the In-Space Propulsion Technology (ISPT) Program staff.The RFI survey covered two aspects of technology infusion: 1) General Insight, including: their assessment of barriers to technology infusion as related to infusion approach; technology readiness; information and documentation products; communication; integration considerations; interaction with technology development areas; cost-capped mission areas; risk considerations; system level impacts and implementation; and mission pull. 2) Specific technologies from the most recent PSD Announcements of Opportunities (AOs): The Advanced Stirling Radioisotope Generator (ASRG), aerocapture and aeroshell hardware technologies, the NASA Evolutionary Xenon Thruster (NEXT) ion propulsion system, and the Advanced Materials Bi-propellant Rocket (AMBR) engine.This report will present the teams Findings from the RFI inputs and the recommendations that arose from these findings. Methodologies on the findings and recommendations development are discussed.
Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division, NASA Headquarters, left, Kent Kellogg, SMAP project manager, NASA Jet Propulsion Laboratory (JPL), second from left, Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, second from right, and Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program, NASA Headquarters, right, are seen during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Summer Research Experiences with a Laboratory Tokamak
NASA Astrophysics Data System (ADS)
Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.
1998-11-01
Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.
Rios-Velazquez, Carlos; Robles-Suarez, Reynaldo; Gonzalez-Negron, Alberto J; Baez-Santos, Ivan
2006-05-01
The Delta Cooperative Model (DCM) is a dynamic and innovative teamwork design created to develop fundamentals in research skills. High school students in the DCM belong to the Upward Bound Science and Math (UBSM) program at the Inter American University, Ponce Campus. After workshops on using the scientific method, students were organized into groups of three students with similar research interests. Each student had to take on a role within the group as either a researcher, data analyst, or research editor. Initially, each research team developed hypothesis-driven ideas on their proposed project. In intrateam research meetings, they emphasized team-specific tasks. Next, interteam meetings were held to present ideas and receive critical input. Finally, oral and poster research presentations were conducted at the UBSM science fair. Several team research projects covered topics in medical, environmental, and general microbiology. The three major assessment areas for the workshop and DCM included: (i) student's perception of the workshops' effectiveness in developing skills, content, and values; (ii) research team self- and group participation evaluation, and (iii) oral and poster presentation during the science fair. More than 91% of the students considered the workshops effective in the presentation of scientific method fundamentals. The combination of the workshop and the DCM increased student's knowledge by 55% from pre- to posttests. Two rubrics were designed to assess the oral presentation and poster set-up. The poster and oral presentation scores averaged 83% and 75% respectively. Finally, we present a team assessment instrument that allows the self- and group evaluation of each research team. While the DCM has educational plasticity and versatility, here we document how the this model has been successfully incorporated in training and engaging students in scientific research in microbiology.
NASA Astrophysics Data System (ADS)
Keller, John; Rebar, Bryan
2012-11-01
The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.
Opportunity to Participate in ESSE 21: The 2003 Call for Participation
NASA Astrophysics Data System (ADS)
Ruzek, M.; Johnson, D. R.
2003-12-01
Earth System Science Education for the 21st Century (ESSE 21), sponsored by NASA through the Universities Space Research Association (USRA), is a collaborative undergraduate/graduate education program offering small grants to colleges and universities to engage a diverse interdisciplinary community of faculty and scientists in the development of courses, curricula and degree programs and sharing of learning resources focused on the fundamental understanding and application of Earth system principles for the classroom and laboratory. Through an expanded focus including partnerships with minority institutions, ESSE 21 is further developing broadly based courses, educational resources, electronic learning materials and degree programs that extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing the fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. The thrust to establish Earth system and global change science within the classrooms of colleges and universities is critical to laying and extending the foundation for knowledge-based decision making in the 21st century by both scientists and society in an effort to achieve sustainability. ESSE 21 released a Call for Participation (CFP) in the Fall of 2002 soliciting proposals from undergraduate institutions to create and adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. In February 2003, twelve college and university teams were competitively selected through the CFP as the Year 1 and Year 2 Program participants. Eight of the participating teams are from minority institutions. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, degree tracks or programs, and departments that are self-sustaining in the coming decades. ESSE 21 offers an expanded infrastructure for an interactive community of educators and researchers including minority participants that develops interdisciplinary Earth system science content. Emphasis is on the utilization of NASA resources involving global change data, models, visualizations and electronic media and networks. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system. The next Call for Participation will be released in late 2003.
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to The Wolverines team at the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from the Foshay Learning Center located in Los Angeles. NASA is a sponsor of the team. About 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. The team took home the Industrial Safety Award sponsored by Underwriters Laboratories. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – NASA Kennedy Space Center Director Bob Cabana talks to The Wolverines team at the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from the Foshay Learning Center located in Los Angeles. NASA is a sponsor of the team. About 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. The team took home the Industrial Safety Award sponsored by Underwriters Laboratories. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
"NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners
NASA Astrophysics Data System (ADS)
Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.
2015-10-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.
NASAs Solar System Exploration Research Virtual Institute- Expanded Goals and More Partners
NASA Technical Reports Server (NTRS)
Schmidt, G. K.; Daou, D.; Pendleton, Y.; Bailey, B. E.
2015-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.
NASA Astrophysics Data System (ADS)
Tuominen, Mark
2013-03-01
Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.
NASA Astrophysics Data System (ADS)
Zhong-Zhen, Wu; Shu, Xiao; Sui-Han, Cui; Ricky, K. Y. Fu; Xiu-Bo, Tian; Paul, K. Chu; Feng, Pan
2016-07-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51301004 and U1330110, the Guangdong Innovative and Entrepreneurial Research Team Program under Grant No 2013N080, the Shenzhen Science and Technology Research Grant under Grant Nos JCYJ20140903102215536 and JCYJ20150828093127698, and the City University of Hong Kong Applied Research Grant under Grant No 9667104.
Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.
2016-01-01
Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students’ engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge problems. During the eight semesters assessed in this study, URM students and those with less preparation attended SGMs with equal or greater frequency than their counterparts. Most agreed that SGMs enhanced their comprehension of biology and ability to articulate solutions. The historical grade gap between URM and non-URM students narrowed slightly in Biology 2, but not in other biology and science, technology, engineering, and mathematics courses. Nonetheless, URM students taking introductory biology after program implementation have graduated with biology majors or minors at the same rates as non-URM students, and have enrolled in postcollege degree programs at equal or greater rates. These results suggest that improved performance as measured by science grade point average may not be necessary to improve the persistence of students from underrepresented groups as life sciences majors. PMID:27496361
MRO's High Resolution Imaging Science Experiment (HiRISE) Education And Public Outreach program
NASA Astrophysics Data System (ADS)
Gulick, V. C.; Davatzes, A.; McEwen, A.
2006-12-01
HiRISE provides an innovative education and public outreach program with a variety of formal and informal educational activities. The centerpiece of HiRISE's E/PO program is it's interactive website called HiWeb (http://marsoweb.nasa.nasa.gov/hirise and http://hirise.lpl.arizona.edu). HiWeb provides an image suggestion facility where the public can submit suggestions for HiRISE images and view HiRISE images in context with other available Mars data. HiRISE EPO has developed K-14 educational materials including activity, coloring and comic books that focus on Mars geology, the image suggestion process, understanding the HiRISE camera and working with digital image data. In addition, we have developed interactive educational games including Mars crosswords, jigsaws, word searches, and flash cards to provide fun ways for students to learn more about Mars. All educational materials and games are aligned with the National Science Standards. HiRISE Clickworkers will provide online opportunities for the public to assist the team in creating geologic feature databases (gullies, boulders, craters, wind streaks, etc.) present in the HiRISE images in addition to other innovative opportunities. Web events (including web chats, casts and forums) with HiRISE team members, will help guide students and educators of HiRISE capabilities and science goals and provide support for submitting good image suggestions. Educator workshops will be held each year at or near the institution of HiRISE team members. Workshop support materials and instructions for all hands-on activities will be placed on HiWeb to facilitate sharing of information with other educators and the general public. Large-scale displays of HiRISE images will be available at several at museums and planetariums.
Aquatic Sciences and Its Appeal for Expeditionary Research Science Education
NASA Astrophysics Data System (ADS)
Aguilar, C.; Cuhel, R. L.
2016-02-01
Our multi-program team studies aim to develop specific "hard" and "soft" STEM skills that integrate, literally, both disciplinary and socio-economic aspects of students lives to include peer mentoring, advisement, enabling, and professional mentorship, as well as honestly productive, career-developing hands-on research. Specifically, we use Interdependent, multidisciplinary research experiences; Development and honing of specific disciplinary skill (you have to have something TO network); Use of skill in a team to produce big picture product; Interaction with varied, often outside professionals; in order to Finish with self-confidence and a marketable skill. In a given year our umbrella projects involve linked aquatic science disciplines: Analytical Chemistry; Geology; Geochemistry; Microbiology; Engineering (Remotely Operated Vehicles); and recently Policy (scientist-public engagement). We especially use expeditionary research activities aboard our research vessel in Lake Michigan, during which (a dozen at a time, from multiple programs) students: Experience ocean-scale research cruise activities; Apply a learned skill in real time to characterize a large lake; Participate in interdisciplinary teamwork; Learn interactions among biology, chemistry, geology, optics, physics for diverse aquatic habitats; and, importantly, Experience leadership as "Chief Scientist-for-a-station". These team efforts achieve beneficial outcomes: Develop self-confidence in application of skills; Enable expression of leadership capabilities; Provide opportunity to assess "love of big water"; Produce invaluable long-term dataset for the studied region (our benefit); and they are Often voted as a top influence for career decisions. These collectively have led to some positive outcomes for "historical" undergraduate participants - more than half in STEM graduate programs, only a few not still involved in a STEM career at some level, or involved as for example a lawyer in environmental policy.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
2011-10-27
public release; distribution is unlimited Dr. Keith Bowman, AFRL, Precision Airdrop ( PAD ) Program Manager Ms. Carol Ventresca, SynGenics Corporation...Presentation Outline Entrance Criteria for PAD Integrated Product Team (IPT) S&T SE Process Steps Initial Project S&T Development Strategy...Entrance Criteria for PAD Integrated Product Team (IPT) S&T SE Process Steps Initial Project S&T Development Strategy User Understanding of
2011-03-11
ORLANDO, Fla. – Teams prepare for the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. About 60 high school teams took part in hopes of advancing to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – Teams prepare for the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. About 60 high school teams took part in hopes of advancing to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
IYPT problems teach high school students about teamwork and the scientific method
NASA Astrophysics Data System (ADS)
Kochanski, K.; Klishin, A.
2015-12-01
Laboratory work is often STEM students' primary exposure to key creative and communicative skills in the sciences, including experimental design, trouble shooting, team work, and oral presentations. The International Young Physicists' Tournament (IYPT) teaches these skills by inviting high school students to investigate simple unsolved systems instead of reproducing familiar results. Students work in teams to form hypotheses, gather data, and present their results orally in a tournament format. The IYPT has published 17 questions yearly since 1988, and its archives are an efficient source of experimental problems for outreach programs and have also been used for first-year undergraduate project classes (Planisic, 2009). We present insights and outcomes from two schools in which we introduced a new extracurricular program based on the IYPT model. Twenty-four students worked in small teams for three hours per day for six weeks. Surprisingly, most teams chose problems in unfamiliar subject areas such as fluid dynamics, and tailored their approaches to take advantage of individual skills including soldering, photography, and theoretical analysis. As the program progressed, students developed an increasingly intuitive understanding of the scientific method. They began to discuss the repeatability of their experiments without prompting, and were increasingly willing to describe alternative hypotheses.
ATLAS 1: Encountering Planet Earth
NASA Technical Reports Server (NTRS)
Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)
1984-01-01
Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.
Ravid, Katya; Seta, Francesca; Center, David; Waters, Gloria; Coleman, David
2017-10-01
Team science has been recognized as critical to solving increasingly complex biomedical problems and advancing discoveries in the prevention, diagnosis, and treatment of human disease. In 2009, the Evans Center for Interdisciplinary Biomedical Research (ECIBR) was established in the Department of Medicine at Boston University School of Medicine as a new organizational paradigm to promote interdisciplinary team science. The ECIBR is made up of affinity research collaboratives (ARCs), consisting of investigators from different departments and disciplines who come together to study biomedical problems that are relevant to human disease and not under interdisciplinary investigation at the university. Importantly, research areas are identified by investigators according to their shared interests. ARC proposals are evaluated by a peer review process, and collaboratives are funded annually for up to three years.Initial outcomes of the first 12 ARCs show the value of this model in fostering successful biomedical collaborations that lead to publications, extramural grants, research networking, and training. The most successful ARCs have been developed into more sustainable organizational entities, including centers, research cores, translational research projects, and training programs.To further expand team science at Boston University, the Interdisciplinary Biomedical Research Office was established in 2015 to more fully engage the entire university, not just the medical campus, in interdisciplinary research using the ARC mechanism. This approach to promoting team science may be useful to other academic organizations seeking to expand interdisciplinary research at their institutions.
NASA Astrophysics Data System (ADS)
Van Dover, C. L.; German, C. R.; Yoerger, D. R.; Kaiser, C. L.; Brothers, L.
2012-12-01
Telepresence and ocean exploration are generally perceived as rich visual experiences informed by streaming video of ocean environments from ship to shore. In an NSF/NOAA-funded partnership, our team of engineers, scientists, and students pushed the boundary of what it means to engage in a telepresence research experience. Instead of using a tethered ROV as our data-gathering platform, we used the autonomous underwater vehicle Sentry on science missions to explore the Blake Ridge and Cape Fear Diapirs off the Carolina coast. The shore-based team included one senior engineer, two senior scientists, the talented support staff of the Inner Space Center at the University of Rhode Island, three PhD students, four undergraduate interns, and one MFA graduate student. The ship-based team included an engineer, a scientist, and extremely capable NOAA personnel. Sentry was deployed nightly on science missions designed from shore with input from shipboard science and engineering. The vehicle was recovered and data was downloaded and sent to shore each morning, where the data was 'attacked' by student teams. Within three days of the start of the field program, the student teams had developed their research questions under the mentorship of the senior scientists and identified the priority data streams required from Sentry. Students initially were audience to science mission planning discussions, but less than halfway through the 11-mission program, student teams were providing key data to inform planning decisions. Their entrepreneurial engagement with the research was so complete that the last two missions were designed by the students in collaboration with the engineers who programmed each mission. This scientific maturation of the students was markedly swift by usual standards and is attributed in large part to the data-sharing and data-processing capacity of the Inner Space Center. Post-cruise analysis of the data by students continued with the same avidity, resulting in new knowledge and new ways of visualizing relationships among bubble flares in the water column, near-bottom sensor signals (e.g., backscatter, dissolved oxygen), high-resolution seafloor bathymetry, side-scan sonar images, sub-bottom profiles, and images of chemosynthetic communities. The scientific success of the cruise would not have been anywhere near as great without the student talent and their analysis of large data files and many 10's of thousands of images. We began this expedition uncertain of whether one could do AUV-based research from shore that would meaningfully entrain the next generation of scientists. The resounding answer, with >6 terabytes of data to explore and >80 person-hours per day to undertake this data exploration, was: ABSOLUTELY.
Climate change science education across schools, campuses, and centers: strategies and successes
NASA Astrophysics Data System (ADS)
Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.
2016-02-01
With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.
NASA Astrophysics Data System (ADS)
Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.
2010-01-01
The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.
2011-03-11
ORLANDO, Fla. – The S.S. Marinerds team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Mariner High School in Cape Coral, Fla. NASA is a sponsor of the team. About 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
NASA Astrophysics Data System (ADS)
Gabrys, R. E.
2007-12-01
Each year since 2000, the NASA Goddard History of Winter (HOW) program has allowed teachers to develop an understanding of the consequences of one segment of the orbit of the tilted Earth in its path around the sun. Scientists from NASA, CRREL, and Michigan Tech, supported by the Whiteface Observatory, and the science program at Northwood School in Lake Placid, New York, use the weather and the stratigraphy in the ice and snow, consequences of the weather changes, as "teachers" in a team study of the winter record. Snow in the air and on the ground, ice, its crystal structure and axial orientation, and the ecosystem consequences of snow and ice constitute the weeklong content package. Teacher Professional Development Standards A, B, C, and D were the guiding principles in developing HOW with a content structure formulated as protocols to serve as inserts into lesson plans and inquiry guides. The concept of HOW within NASA is to provide understanding of the WHY? and WHAT? of satellite remote sensing. The content is appropriate ground validation in that techniques presented in protocols are identical to those used by professionals who study snow pits, evaluate features in snow metamorphism, and study thin sections of ice cores drilled in ice caps and glaciers. The HOW Teacher as scientist (TAS) model is a flexible model. HOW enables teachers who are required to use inquiry-based facilitation in the classroom to experience inquiry themselves. Teachers with little science content background as well as those with Science degrees have participated in HOW working alongside of the science team. Accommodations are made through differentiation of instruction so that each group leaves with a mastery of the content that is appropriate for the transition to presentation in the classroom. Each year builds on the previous year ensuring a time series record of the history of winter-by itself a learning experience. An offshoot of the NASA Goddard Center History of Winter (HOW) Program, the Global Snowflake Network (GSN) launched in the winter of 2006 engages an international audience including both formal and informal education groups. The goal is to provide an interactive online data resource in science and education for the characterization of snowfall and related weather systems. The Global Snowflake Network has been accepted as an education outreach proposal for the International Polar Year. Collaborations with other agencies and universities also with IPY-accepted proposals are now underway. HOW and the GSN are endorsed by the NASA Goddard Education Office and many of the Goddard Snow and Ice Team scientists. Together these programs offer a unique, sustainable, and proven outreach for the Cryosphere research program. Snowflakes are like frozen data points, their shape is a record of atmospheric conditions at the time of their formation. The shapes of snowflakes vary over the winter season, with the source of a weather system and over the course of a given snowfall. The objective of the Global Snowflake Network (GSN) is to create a global ground team of teachers, students, families, and researchers worldwide to identify snowflake types during the progress of snowfalls. The result is a unique and scientifically valid resource useful to meteorology and scientific modeling of Earth's Hydrosphere. The Global Snowflake Network (GSN), simultaneously a science program and an education program is presented as a simple, scientifically valid project that has the potential to spread the IPY message and produce a lasting resource to further scientific understanding of Earth's hydrology through the study of snow.
ERIC Educational Resources Information Center
MacMillan, Mark W.
1997-01-01
Describes a school program in which two sixth-grade science classes researched, created, and put together an ocean museum targeted at kindergarten through eighth graders who are geographically distanced from the ocean. Details the process for investigating topical areas, organizing teams of students, researching, writing, creating displays, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeves, Geoffrey D.
The Space Focus team is tasked with the definition of the Space Focused Science Topics, and with the review and ranking of the CSES proposals received in all the program areas. This is achieved by dedicated meetings or a series of informal discussions and/or e-mail reviews.
Tebes, Jacob Kraemer; Thai, Nghi D; Matlin, Samantha L
2014-06-01
In this paper we maintain that twenty-first century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of twenty-first century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: (1) trends in science show that research is increasingly being conducted in teams; (2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; (3) transdisciplinary scientific teams are part of the larger, twenty-first century transformation in science; (4) the concept of heterarchy is a heuristic for team science aligned with this transformation; (5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance twenty-first century science; and (6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the twenty-first century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are well-prepared to help advance these developments, and thus have much to offer twenty-first century science.
Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.
2014-01-01
In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718
The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program
NASA Technical Reports Server (NTRS)
Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)
1995-01-01
NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.
NASA Astrophysics Data System (ADS)
Cooray, Asantha R.; Origins Space Telescope Study Team
2017-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. I will summarize the OST STDT, mission design and instruments, key science drivers, and the study plan over the next two years.
Carpio, B; Brown, B
1993-01-01
The undergraduate nursing degree program (B.Sc.N.) at McMaster University School of Nursing uses small groups, and is learner-centered and problem-based. A study was conducted during the 1991 admissions cycle to determine the initial reliability and validity of the semi-structured personal interview which constitutes the final component of candidate selection for this program. During the interview, three-member teams assess applicant suitability to the program based on six dimensions: applicant motivation, awareness of the program, problem-solving abilities, ability to relate to others, self-appraisal skills, and career goals. Each interviewer assigns the applicant a global rating using a seven-point scale. For the purposes of this study four interviewer teams were randomly selected from the pool of 31 teams to interview four simulated (preprogrammed) applicants. Using two-factor repeated-measures ANOVA to analyze interview ratings, inter-rater and inter-team intraclass correlation coefficients (ICC) were calculated. Inter-team reliability ranged from .64 to .97 for the individual dimensions, and .66 to .89 on global ratings. Inter-rater ICC for the six dimensions ranged from .81 to .99, and .96 to .99 for the global ratings. The item-to-total correlation coefficients between individual dimensions and global ratings ranged from .8 to 1.0. Pearson correlations between items ranged from .77 to 1.0. The ICC were then calculated for the interview scores of 108 actual applicants to the program. Inter-rater reliability based on global ratings was .79 for the single (1 rater) observation, and .91 for the multiple (3 rater) observation. These findings support the continued use of the interview as a reliable instrument with face validity. Studies of predictive validity will be undertaken.
Science Highlights from the First Year of Advanced Camera for Surveys
NASA Technical Reports Server (NTRS)
Clampin, M.; Ford, H. C.; Illingworth, G. D.; Hartig, G.; Ardila, D. R.; Blakeslee, J. P.; Bouwens, R. J.; Cross, N. J. G.; Feldman, P. D.; Golimowski, D. A.
2003-01-01
The Advanced Camera for Surveys (ACS) is a deep imaging camera installed on the Hubble Space Telescope during the fourth HST servicing mission. ACS recently entered its second year of science operations and continues to perform beyond pre-launch expectations. We present science highlights from the ACS Science Team's GTO program. These highlights include the evolution of Z approx. 6 galaxies from deep imaging observations; deep imaging of strongly lensed clusters which have been used to determine cluster mass, and independently constraint the geometry of the Universe; and coronagraphic observations of debris disks.
Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papka, M.; Messina, P.; Coffey, R.
The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursormore » to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those algorithms. The Data Analytics and Visualization Team lends expertise in tools and methods for high-performance, post-processing of large datasets, interactive data exploration, batch visualization, and production visualization. The Operations Team ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed. The User Services and Outreach Team offers frontline services and support to existing and potential ALCF users. The team also provides marketing and outreach to users, DOE, and the broader community.« less
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
ERIC Educational Resources Information Center
Balajthy, Ernest
A study examined a new collaborative consultation process to enhance the classroom implementation of whole language science units that make use of computers and multimedia resources. The overall program was divided into three projects, two at the fifth-grade level and one at the third grade level. Each project was staffed by a team of one…
Girls on Ice: An Inquiry-Based Wilderness Science Education Program
NASA Astrophysics Data System (ADS)
Pettit, E. C.; Koppes, M. N.
2001-12-01
We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.
A Proposal to Investigate Outstanding Problems in Astronomy
NASA Technical Reports Server (NTRS)
Ford, Holland
2002-01-01
During the period leading up to the spectacular launch of the Space Shuttle Columbia (STS-109) on 1 March 2002 6:22 am EST, the team worked hard on a myriad of tasks to be ready for launch. Our launch support included preparations and rehearsals for the support during the mission, preparation for the SMOV and ERO program, and work to have the science team's data pipeline (APSIS) and data archive (SDA) ready by launch. A core of the team that was at the GSFC during the EVA that installed ACS monitored the turn-on and aliveness tests of ACS. One hour after installation of ACS in the HST George Hartig was showing those of us at Goddard the telemetry which demonstrated that the HRC and WFC CCDs were cooling to their preset temperatures. The TECs had survived launch! After launch, the team had several immediate and demanding tasks. We had to process the ERO observations through our pipeline and understand the limitations of the ground based-based calibrations, and simultaneously prepare the EROs for public release. The ERO images and the SMOV calibrations demonstrated that ACS met or exceeded its specifications for image quality and sensitivity. It is the most sensitive instrument that Hubble has had. The ERO images themselves made the front page of all of the major newspapers in the US. During the months after launch we have worked on the SMOV observations, and are analyzing the data from our science program.
NASA Astrophysics Data System (ADS)
Ross, K. W.; Favors, J. E.; Childs-Gleason, L. M.; Ruiz, M. L.; Rogers, L.; Allsbrook, K. N.
2013-12-01
The NASA DEVELOP National Program takes a unique approach to cultivating the next generation of geoscientists through interdisciplinary research projects that address environmental and public policy issues through the application of NASA Earth observations. Competitively selected teams of students, recent graduates, and early career professionals take ownership of project proposals outlining basic application concepts and have ten weeks to research core scientific challenges, engage partners and end-users, demonstrate prototypical solutions, and finalize and document their results and outcomes. In this high pressure, results-driven environment emerging geoscience professionals build strong networks, hone effective communication skills, and learn how to call on the varied strengths of a multidisciplinary team to achieve difficult objectives. The DEVELOP approach to workforce development has a variety of advantages over classic apprenticeship-style internship systems. Foremost is the experiential learning of grappling with real-world applied science challenges as a primary actor instead of as an observer or minor player. DEVELOP participants gain experience that fosters personal strengths and service to others, promoting a balance of leadership and teamwork in order to successfully address community needs. The program also advances understanding of Earth science data and technology amongst participants and partner organizations to cultivate skills in managing schedules, risks and resources to best optimize outcomes. Individuals who come through the program gain experience and networking opportunities working within NASA and partner organizations that other internship and academic activities cannot replicate providing not only skill development but an introduction to future STEM-related career paths. With the competitive nature and growing societal role of science and technology in today's global community, DEVELOP fosters collaboration and advances environmental understanding by promoting and improving the ability of the future geoscience workforce to recognize, understand, and address environmental issues facing the Earth.
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; NuSTAR Science Team
2011-09-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team under the direction of CalTech Professor Fiona Harrison. NuSTAR is a pathfinder mission that will open the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at energies up to 79 keV, NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission's objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission's science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We will also develop printed materials that describe the mission, and help develop the STEM pipeline through local after-school programs.
Students, Teachers, and Scientists Partner to Explore Mars
NASA Astrophysics Data System (ADS)
Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.
2003-12-01
The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they gain through the ASIP program and their participation in the empowerment evaluation, ASIP members will help refine the current program and provide a model for student-scientist research partnerships associated with future space missions to Mars and beyond. Arvidson, R.E., et al. \\(2000\\) Students participate in Mars Sample Return Rover field tests. Eos, 81(11). Crisp, J.A., et al. \\(in press\\) The Mars Exploration Rover Mission. J. Geophys. Research-Planets. Fetterman, D. and C.D. Bowman. \\(2002\\) Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example. J. Experiential Education, 25(2).
Teaming to Teach the Information Problem-Solving Process.
ERIC Educational Resources Information Center
Sine, Lynn; Murphy, Becky
1992-01-01
Explains a problem-solving format developed by a school media specialist and first grade teacher that used the framework of Eisenberg and Berkowitz's "Big Six Skills" for library media programs. The application of the format to a science unit on the senses is described. (two references) (MES)
Adventuresports and Economic Development Team Up.
ERIC Educational Resources Information Center
Baldwin, Fred
1994-01-01
Adventuresports Institute offers a two-year degree program at Garrett Community College (McHenry, Maryland) that combines courses in adventure sports with economics, marketing, environmental science, and events management. The goal is to develop an infrastructure for the adventure sport industry and promote economic development in Appalachia based…
Deal, Alex L.; Erickson, Kristen J.; Bilsky, Edward J.; Hillman, Susan J.; Burman, Michael A.
2014-01-01
The University of New England’s Center for Excellence in the Neurosciences has developed a successful and growing K-12 outreach program that incorporates undergraduate and graduate/professional students. The program has several goals, including raising awareness about fundamental issues in neuroscience, supplementing science education in area schools and enhancing undergraduate and graduate/professional students’ academic knowledge and skill set. The outreach curriculum is centered on core neuroscience themes including: Brain Safety, Neuroanatomy, Drugs of Abuse and Addiction, Neurological and Psychiatric Disorders, and Cognition and Brain Function. For each theme, lesson plans were developed based upon interactive, small-group activities. Additionally, we’ve organized our themes in a “Grow-up, Grow-out” approach. Grow-up refers to returning to a common theme, increasing in complexity as we revisit students from early elementary through high school. Grow-out refers to integrating other scientific fields into our lessons, such as the chemistry of addiction, the physics of brain injury and neuronal imaging. One of the more successful components of our program is our innovative team-based model of curriculum design. By creating a team of undergraduate, graduate/professional students and faculty, we create a unique multi-level mentoring opportunity that appears to be successful in enhancing undergraduate students’ skills and knowledge. Preliminary assessments suggest that undergraduates believe they are enhancing their content knowledge and professional skills through our program. Additionally, we’re having a significant, short-term impact on K-12 interest in science. Overall, our program appears to be enhancing the academic experience of our undergraduates and exciting K-12 students about the brain and science in general. PMID:25565921
Space Interferometry Science Working Group
NASA Astrophysics Data System (ADS)
Ridgway, Stephen T.
1992-12-01
Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.
Nash, Whitney A; Hall, Lynne A; Lee Ridner, S; Hayden, Dedra; Mayfield, Theresa; Firriolo, John; Hupp, Wendy; Weathers, Chandra; Crawford, Timothy N
2018-07-01
In response to the growing body of evidence supporting the need for expanded interprofessional education among health professions, an interprofessional education program, based on the Interprofessional Education Collaborative Core Competencies, was piloted with nurse practitioner and dental students. The purpose of this pilot study was to evaluate a technology enhanced interprofessional education program focused on the oral-systemic health connection for nurse practitioner and dental students. A two-group comparative study using cross-sectional data and a quasi-experimental one-group pre-test/post-test design were used to evaluate students' knowledge of IPE core competencies, attitudes toward interprofessional education and interdisciplinary teamwork, and self-efficacy in functioning as a member of an interdisciplinary team. This program was implemented with master of science in nursing students pursuing a primary care nurse practitioner (NP) degree and dental students at a large urban academic health sciences center. Cohort 1 (N = 75) consisted of NP (n = 34) and dental students (n = 41) at the end of their degree program who participated in a one-time survey. Cohort 2 (N = 116) was comprised of second-year NP students (n = 22) and first-year dental students (n = 94) who participated in the IPE program. Students participated in a multi-faceted educational program consisting of technology- enhanced delivery as well as interactive exercises in the joint health assessment course. Data were collected prior to the initiation and at the conclusion of the program. Nurse practitioner and dental students who participated in the program had better self-efficacy in functioning as a member of an interdisciplinary team than graduating students who did not participate. Students from both nursing and dentistry who participated in the program had significantly improved self-efficacy in functioning in interprofessional teams from pre- to post-test. An interprofessional education program can be a valuable addition to the health professions curriculum of nurse practitioner and dental students. Care must be taken to address logistical issues when working with students in different academic programs. Copyright © 2018. Published by Elsevier Ltd.
2001-04-26
The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.
The RITES Way for NGSS Success
NASA Astrophysics Data System (ADS)
Murray, D. P.; De Oliveira, G.; Caulkins, J. L.; Veeger, A. I.; McLaren, P. J.
2012-12-01
The NRC's Framework for Science Education describes a new vision for science education: practical experience, thought process, and connecting ideas are not lost in a sea of endless information. That is because the Framework does not emphasize broad coverage of all subfields of science. Instead, they identify ideas in three dimensions that lend themselves to the creation of opportunities for a deeper understanding of science, namely, Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts. Developed with fidelity to the Framework the K-12 Next Generation Science Standards (NGSS) will provide a rich, cohesive set of standards in all disciplines designed to engage all students in the practices and apply crosscutting concepts to deepen their understanding of the core ideas within these discipline. In Rhode Island, for the last four years, the Rhode Island Technology Enhanced Science Project (RITES) has aimed to transform the quality of science teaching and learning at all secondary schools, with a similar vision to the Framework and NGSS. RITES was initially developed to closely align with existing state standards (Grade Span Expectations). As the work of developing new standards progresses, Rhode Island, as a NGSS Lead State Partner, established the RI-NGSS State Leadership Team, which was charged with providing feedback to the NGSS Writing Team. The inclusion of nine RITES personnel in this state team ensures that this project will quickly adjust to the new standards, even as they are being developed and refined. A main component of RITES is a professional development program for teachers, framed around summer workshops and projects during the school year. At the heart of the PD are Investigations, modules developed by scientist/teacher teams designed to engage students through science practices while presenting core ideas and crosscutting concepts. Around fifty investigations, drawn from the life, physical, and earth & space sciences (ESS), employ a web-based platform to explore models and analyze data collected by students. Formative and summative assessment tools are built into the investigations. Investigation topics include: rock cycle; measurements in astronomy; plate tectonics; seasons; nuclear decay; and phases of the moon. We will showcase at least two ESS investigations that exemplify the three dimensional components envisioned by the Framework.
Collaboration and Team Science Field Guide - Center for Research Strategy
Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.
NASA Astrophysics Data System (ADS)
Sjoberg, W.; McWilliams, G.
2017-12-01
This presentation will focus on the continuity of the NOAA Joint Polar Satellite System (JPSS) Program's Proving Ground and Risk Reduction (PGRR) and key activities of the PGRR Initiatives. The PGRR Program was established in 2012, following the launch of the Suomi National Polar Partnership (SNPP) satellite. The JPSS Program Office has used two PGRR Project Proposals to establish an effective approach to managing its science and algorithm teams in order to focus on key NOAA missions. The presenter will provide details of the Initiatives and the processes used by the initiatives that have proven so successful. Details of the new 2017 PGRR Call-for-Proposals and the status of project selections will be discussed.
Team-Based Development of Medical Devices: An Engineering–Business Collaborative
Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.
2016-01-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869
Team-Based Development of Medical Devices: An Engineering-Business Collaborative.
Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G
2016-07-01
There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In this project, three production home builders—K. Hovnanian Homes, David Weekley Homes, and Transformations, Inc.—partnered with Building America team Building Science Corporation to evaluate the certification of five test homes to the new DOE Challenge Home program performance standard (now DOE Zero Energy Ready Home program). The builders identified key benefits and barriers that impacted the certification of the test homes, and the likelihood of whether DOE Challenge Home certification would be pursued in future homes
MESSENGER Education and Public Outreach Arranges a Ride to the Innermost Planet
NASA Astrophysics Data System (ADS)
Weir, H. M.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Hirshon, B.; Vanhala, H.; Solomon, S. C.; Messenger Education; Public Outreach Team
2010-12-01
Exploration of the mysterious planet Mercury offers an unprecedented opportunity for teachers, students, and citizens to tag along for the ride, and the Education and Public Outreach (EPO) Team for MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is making sure the public gets quite a show. Since 2004, when MESSENGER was launched, MESSENGER has been gathering intriguing data and information about the Solar System's innermost planet. That journey will continue at a quickened pace after March 18, 2011, when MESSENGER enters into orbit around Mercury for one year of observations of the planet and its environment. The EPO Team - an extensive network of individuals and institutions - has sought to convey the excitement and complexity of the mission as MESSENGER's team overcomes challenges, achieves triumphs, and shares the adventure of space exploration with the American and global public. The EPO Team has developed a broad and comprehensive set of educational and outreach activities, ranging from curricular materials, teacher training, and unique mission-related student investigations to museum displays and special outreach to underserved communities and minority students. One of the most visible aspects of this effort is the MESSENGER Educator Fellows program: master science educators who conduct teacher training workshops throughout the nation for pre-K-12 educators. Educator Fellows train teachers on the EPO Team's MESSENGER Education Modules, which are also relevant to other NASA missions reaching important milestones this year (see http://www.messenger-education.org/teachers/educ_modules.php). By the time MESSENGER goes into orbit, Educator Fellows will have trained an estimated 18,000 teachers, who in turn, facilitate classroom experiences to over 1.8 million students. The EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI).
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 233, "The Pink Team," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. Kennedy is a sponsor of the team. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with a member of Team 233, "The Pink Team," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. Kennedy is a sponsor of the team. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- "The Pink Team," Team 233, tinkers with its robot during the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
Attracting Students to Space Science Fields: Mission to Mars
NASA Astrophysics Data System (ADS)
Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.
Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.
NASA Astrophysics Data System (ADS)
Brunt, M. R.; Ellins, K. K.; Frohlich, C. A.
2011-12-01
In 2008, during my participation in the NSF-sponsored Texas Earth & Space Science (TXESS) Revolution professional development program, I was awarded an AS-1 seismograph through IRIS's Seismographs in Schools Program. This program serves to create an international educational seismic network that allows teachers across the country and around the world to share seismic data in real-time using online tools, classroom activities, and technical support documents for seismic instruments. Soon after receiving my AS-1, I founded and began sponsoring the Eagle Pass Jr. High Seismology Team which consists of selected 7th and 8th grade students. Eagle Pass Jr. High is a Title 1 school that serves a predominantly "at-risk" Hispanic population. We meet after school once a week to learn about earthquakes, seismic waves, analyze recorded seismic event data using computer software programming, and correspond with other students from schools around the country. This team approach has been well received by fellow TXESS Revolution teachers with AS-1 seismographs and will be implemented by David Boyd, STEM coordinator for Williams Preparatory Academy in Dallas, Texas this fall 2011. All earthquakes recorded by our seismograph station (EPTX), which has remained online and actively recording seismic data since 2008, are catalogued and then plotted on a large world map displayed on my classroom wall. A real-time seismogram image updates every five minutes and along with all earthquakes recorded since installation can be viewed on our webpage http://www.iris.edu/hq/ssn/schools/view/eptx. During the 2010-2011 school year, my seismology team and I participated in an earthquake research study led by Dr. Cliff Frohlich at the Institute for Geophysics. The study examined seismograms and felt reports for the 25 April 2010 Alice, Texas, earthquake, in order to investigate its possible connection to oil and gas production in the Stratton oil and gas field. A research paper detailing our findings has been submitted for publication in the Bulletin of the Seismological Society of America. Most recently, I was one of 15 teachers selected for a summer seismic methods workshop at UT-Austin offered by Dr. Clark Wilson. We conducted field seismic imaging, field shear wave velocity measurements for geotechnical earthquake engineering design, data reduction, and science curriculum design. I plan to incorporate these seismic methods concepts into my school seismology team program. Since my participation in the TXESS Revolution I have been blessed with opportunities that I never could have imagined. As a teacher, these experiences increased my knowledge and skills, provided tools and resources, and enabled me to create authentic research experiences for my students that promote teamwork and teach the nature of science.
Interprofessional collaboration: three best practice models of interprofessional education
Bridges, Diane R.; Davidson, Richard A.; Odegard, Peggy Soule; Maki, Ian V.; Tomkowiak, John
2011-01-01
Interprofessional education is a collaborative approach to develop healthcare students as future interprofessional team members and a recommendation suggested by the Institute of Medicine. Complex medical issues can be best addressed by interprofessional teams. Training future healthcare providers to work in such teams will help facilitate this model resulting in improved healthcare outcomes for patients. In this paper, three universities, the Rosalind Franklin University of Medicine and Science, the University of Florida and the University of Washington describe their training curricula models of collaborative and interprofessional education. The models represent a didactic program, a community-based experience and an interprofessional-simulation experience. The didactic program emphasizes interprofessional team building skills, knowledge of professions, patient centered care, service learning, the impact of culture on healthcare delivery and an interprofessional clinical component. The community-based experience demonstrates how interprofessional collaborations provide service to patients and how the environment and availability of resources impact one's health status. The interprofessional-simulation experience describes clinical team skills training in both formative and summative simulations used to develop skills in communication and leadership. One common theme leading to a successful experience among these three interprofessional models included helping students to understand their own professional identity while gaining an understanding of other professional's roles on the health care team. Commitment from departments and colleges, diverse calendar agreements, curricular mapping, mentor and faculty training, a sense of community, adequate physical space, technology, and community relationships were all identified as critical resources for a successful program. Summary recommendations for best practices included the need for administrative support, interprofessional programmatic infrastructure, committed faculty, and the recognition of student participation as key components to success for anyone developing an IPE centered program. PMID:21519399
Interprofessional collaboration: three best practice models of interprofessional education.
Bridges, Diane R; Davidson, Richard A; Odegard, Peggy Soule; Maki, Ian V; Tomkowiak, John
2011-04-08
Interprofessional education is a collaborative approach to develop healthcare students as future interprofessional team members and a recommendation suggested by the Institute of Medicine. Complex medical issues can be best addressed by interprofessional teams. Training future healthcare providers to work in such teams will help facilitate this model resulting in improved healthcare outcomes for patients. In this paper, three universities, the Rosalind Franklin University of Medicine and Science, the University of Florida and the University of Washington describe their training curricula models of collaborative and interprofessional education.The models represent a didactic program, a community-based experience and an interprofessional-simulation experience. The didactic program emphasizes interprofessional team building skills, knowledge of professions, patient centered care, service learning, the impact of culture on healthcare delivery and an interprofessional clinical component. The community-based experience demonstrates how interprofessional collaborations provide service to patients and how the environment and availability of resources impact one's health status. The interprofessional-simulation experience describes clinical team skills training in both formative and summative simulations used to develop skills in communication and leadership.One common theme leading to a successful experience among these three interprofessional models included helping students to understand their own professional identity while gaining an understanding of other professional's roles on the health care team. Commitment from departments and colleges, diverse calendar agreements, curricular mapping, mentor and faculty training, a sense of community, adequate physical space, technology, and community relationships were all identified as critical resources for a successful program. Summary recommendations for best practices included the need for administrative support, interprofessional programmatic infrastructure, committed faculty, and the recognition of student participation as key components to success for anyone developing an IPE centered program.
Mediating the Message: The Team Approach to Developing Interdisciplinary Science Exhibitions
NASA Astrophysics Data System (ADS)
Stauffer, B. W.; Starrs, S. K.
2005-05-01
Museum exhibition developers can take advantage of a wide range of methods and media for delivering scientific information to a general audience. But, determining what information to convey and which medium is the best means of conveying it can be an arduous process. How do you design an exhibition so a visiting fifth grade school group learns basic scientific concepts while an amateur naturalist finds enough rich content to warrant coming back in a few months? How much or how little media should be included? What forms of media are most appropriate? Answering these questions requires intensive and iterative collaboration and compromise among a team of educators, scientists and designers. The National Museum of Natural History's Forces of Change Program uses a unique team approach that includes scientific, exhibit design, and education experts to create interdisciplinary science exhibitions. Exhibit topics have explored the dynamics of a grasslands ecosystem, global impacts of El Nino, climate change in the Arctic, the functions of the atmosphere, and soil composition. Exhibition-related products include publications, scavenger hunts, interactive computer kiosks, educational CD-ROMs, animated cartoons, web sites, and school group activities. Team members will describe the team process and the iterative discussions involved in developing these products so they are as scientifically sound and engaging as possible.
February 2017 - NIF Highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B.
2017-03-13
February was a very productive month with only 20 shot days on the calendar. There were 41 target shots performed for the HED, ICF, and the Discovery Science (DS) program. The DS program had a week dedicated to their experiments that was extraordinarily fruitful: 14 target shots were performed for five independent teams, each of whom had a unique experimental platform to field. The teams and the facility worked extraordinarily well to pull off this feat! Additionally, the facility developed high-energy laser operations on a demonstration quad to investigate taking NIF to a new level of performance, and the ICFmore » program demonstrated a 40% increase in the yield from a capsule that had a new, 5-μm-diameter fill tube that apparently mitigates some of the issues that have affected implosions to date. Details follow below.« less
Improving Care Teams' Functioning: Recommendations from Team Science.
Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo
2017-07-01
Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
Leadership Workshops for Adult Girl Scout Leaders
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; McCarthy, Donald; DeVore, Edna; Harman, Pamela; Reaching Stars Team
2016-10-01
This year, the University of Arizona is conducting its first two Leadership Workshops for Girl Scout adult leaders. These workshops are being supported by a five-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the University of Arizona, Girl Scouts of the USA (GSUSA), the Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. These workshops are an outgrowth of Astronomy Camp for Girl Scout Leaders, a 14-year "Train the Trainer" program funded by NASA through the James Webb Space Telescope's Near Infrared Camera (NIRCam) education and outreach team. We are continuing our long-term relationship with all Girl Scout Councils to engage girls and young women not only in science and math education, but also in the astronomical and technological concepts relating to NASA's scientific mission. Our training aligns with the GSUSA Journey: It's Your Planet-Love It! and introduces participants to some of the activities that are being developed by the Girl Scout Stars team for GSUSA's new space science badges for all Girl Scout levels being developed as a part of Reaching for the Stars: NASA Science for Girl Scouts.The workshops include hands-on activities in basic astronomy (night sky, stars, galaxies, optics, telescopes, etc.) as well as some more advanced concepts such as lookback time and the expansion of the Universe. Since the inception of our original Astronomy Camp in 2003, our team has grown to include nearly 280 adult leaders, staff, and volunteers from over 79 Councils in 43 states and the District of Columbia so they can, in turn, teach young women essential concepts in astronomy, the night sky environment, applied math, and engineering. Our workshops model what astronomers do by engaging participants in the process of science inquiry, while equipping adults to host astronomy-related programs with local Girl Scouts.Reaching for the Stars: NASA Science for Girl Scouts is supported by NASA Science Mission Directorate's Education Cooperative Agreement # NNX16AB90.
2012-03-09
ORLANDO, Fla. -- High school teams compete in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams compete in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams compete in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams compete in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams compete in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams tinker with their robots during the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams tinker with their robots during the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 50 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams compete in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- High school teams tinker with their robots during the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. More than 60 teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year ,the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
Case-based Long-term Professional Development of Science Teachers
NASA Astrophysics Data System (ADS)
Dori, Yehudit J.; Herscovitz, Orit
2005-10-01
Reform efforts are often unsuccessful because they failed to understand that teachers play a key role in making educational reforms successful. This paper describes a long-term teacher professional development (PD) program aimed at educating and training teachers to teach interdisciplinary topics using case-based method in science. The research objective was to identify, follow and document the processes that science teachers went through as they assimilated the interdisciplinary, case-based science teaching approach. The research accompanied the PD program throughout its 3-year period. About 50 teachers, who took part in the PD program, were exposed to an interdisciplinary case-based teaching method. The research instruments included teacher portfolios, which contained projects and reflection questionnaires, classroom observations, teacher interviews, and student feedback questionnaires. The portfolios contained the projects that the teachers had carried out during the PD program, which included case studies and accompanying student activities. We found that the teachers gradually moved from exposure to new teaching methods and subject matter, through active learning and preparing case-based team projects, to interdisciplinary, active classroom teaching using the case studies they developed.
Grace under Fire: Sociocultural Competency Training.
ERIC Educational Resources Information Center
Avery, Wayne W.; Bawtenheimer, Pat; Pearson, Hilary; Westwood, Dianne
2001-01-01
Employers want employees who can communicate effectively, work as part of a team, and think on their feet. To help students acquire these qualities, the faculty of health sciences and counseling at Vancouver Community College integrated a sociocultural training model into their human relations programs. Evaluations indicate that students'…
Creating Educational Pathways: A Montana University Teams Up with Tribal Colleges.
ERIC Educational Resources Information Center
Trinity, Annette
1990-01-01
Describes programs at Montana State University, Bozeman, that cooperate with tribally controlled community colleges to provide opportunities for American Indian transfer students. Focuses on training in health sciences, engineering, public service, and educational administration and on efforts to ease students' transition to university life. (SV)
Building Bridges Symposium: Linking the Disciplines during Pre-Service Teacher Education.
ERIC Educational Resources Information Center
McBride, Lawrence, Ed.
This program presents units of instruction by inter-disciplinary teams of preservice teacher education students showcasing student developed curriculum integration ideas. Lessons integrate the areas of social studies, language arts, business, science, industrial technology, and health. Presented in four sessions, Session 1 includes the following:…
Local Assessment Moderation in SEPUP.
ERIC Educational Resources Information Center
Roberts, Lily; And Others
Assessment moderation is a procedure in which scorers or raters meet to achieve a consensus on scores assigned to student work. In the Science Education for Public Understanding Program (SEPUP), local teams of teachers met regularly at six sites nationwide to score student work, review methods of assigning scores, discuss and resolve discrepancies…
UW Team Reaches Out to Grade- and High-School Students.
ERIC Educational Resources Information Center
Hood, Leroy
1994-01-01
Describes an outreach program designed to expose high school students to cutting-edge science. High school students are provided with hands-on experience in molecular biology (polymerase chain reaction, restriction mapping, chromatography, gel electrophoresis, human DNA sequencing, etc.) and may have an opportunity to participate in the Human…
Voyager 2 to make closest encounter with Saturn in August
NASA Technical Reports Server (NTRS)
1981-01-01
The planned Voyager 2 Saturn mission is described. Information about Saturn obtained from the Voyager 1 encounter is summarized. Data on the satellites and rings of Saturn are tabulated. The video programming schedule for the Voyager 2 Saturn encounter is given. The Voyager science team is listed.
Kernel Ada Programming Support Environment (KAPSE) Interface Team. Public Report. Volume 3.
1983-10-25
NWC MYERS, Gil NOSC MYERS, Philip NAVELEX NELSON, Eldred TRW OBERNDORF, Tricia NOSC P E, Shirley FCDSSA 2A-10 PURRIER, Lee FCDSSA OTB ROBERTSON...Sciences Corp. GRIESHEIMER, Eric McDonnel Douglas Astronautics JOHNSON, Ron Boeing Aerospace Co. KERNER, Judy Norden Systems KOTLER , Reed Lockheed Missiles
Success of Solar Dynamics Observatory (SDO) Education & Public Outreach (E/PO) in Montana
NASA Astrophysics Data System (ADS)
Freed, M. S.; Lowder, S. C.; McKenzie, D. E.
2013-03-01
The Space Public Outreach Team (SPOT) program at Montana State University (MSU) is the main component of SDO E/PO efforts in Montana. SPOT brings energetic presentations of recent science & NASA missions to students in primary & secondary schools. Presenters are university undergraduates that visit a diverse group of K-12 students from both rural & urban areas of Montana. This program is extremely cost effective, a valuable service-learning experience for undergraduates at MSU and has repeatedly received praise from both teachers and students. A complementary effort for training schoolteachers entitled NASA Education Activity Training (NEAT) is also employed. NEAT illustrates to teachers inexpensive and highly effective methods for demonstrating difficult science concepts to their students. We will highlight the successes and lessons learned from SPOT & NEAT, so that other E/PO programs can use it as a template to further science literacy in our nation's schools.
Research and technology 1995 annual report
NASA Technical Reports Server (NTRS)
1995-01-01
As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1995 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as technology transfer activities. Major areas of research include environmental engineering, automation, robotics, advanced software, materials science, life sciences, mechanical engineering, nondestructive evaluation, and industrial engineering.
2011-03-11
ORLANDO, Fla. – The Pink Team participates in the regional FIRST robotics competition at the University of Central Florida in Orlando. The team is made up of students from Rockledge, Cocoa Beach and Viera high schools along the Space Coast of Florida. NASA’s Kennedy Space Center is a sponsor of the team. The Pink Team finished sixth in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, among about 60 high school teams hoping to advance to the national robotics championship. The team also took home the Industrial Design Award sponsored by General Motors. Kennedy's Deputy Director Janet Petro and Engineering Director Pat Simpkins also stopped by the competition to encourage the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Duffy, Pamela Ann; Ronnebaum, Julie A; Stumbo, Teri A; Smith, Kari Nies; Reimer, Rachel A
2017-04-01
Interprofessional education (IPE) creates dynamic experiential learning that can address social determinants of health that influence health outcomes. To examine the effects of including public health students on IPE teams on the interprofessional practice domain constructs (values/ethics, roles/responsibilities, interprofessional communication, and teams and teamwork). This single-case, mixed-methods study was performed using a grounded theory approach. Students from 8 graduate health sciences programs participated in an asynchronous, 6-week, online IPE learning activity. Three of the 4 interprofessional practice domain constructs were examined as outcome variables: participants' biomedical vs biopsychosocial patient approach (values/ethics); reported change in attitudes, beliefs, or values about other health professions (roles/responsibilities); and anticipated changes in future professional behaviors/interactions/approaches (teams and teamwork). Predictor variables were having an MPH participant on the IPE team, participants' enrollment in a clinical or nonclinical program, and student perception of the online format (interprofessional communication). Three hundred nineteen students were included, 261 from clinical and 58 from nonclinical programs. A significant association was found between having an MPH participant on the IPE teams and participants' awareness of the influence of social determinants of health (OR, 2.04; 95% CI, 1.13-3.66; P<.05). Program type was also significantly associated with awareness of the influence of social determinants of health, such that participants in nonclinical programs were significantly more likely to report the importance of social determinants of health in the care plan (OR, 3.68; 95% CI, 1.38-9.84; P<.01). Participants were significantly less likely to report future behavior change if they were in clinical programs (OR, 0.44; 95% CI, 0.23-0.86; P<.05) or if they disliked the online format (OR, 0.25; 95% CI, 0.14-0.42; P<.01). The model fit the data well (χ23=30.80; P<.001). Inclusion of MPH students on IPE teams has the potential to increase clinical participants' awareness of the influence of social determinants of health and interest in incorporating a biopsychosocial approach to health care.
MPS Internships in Public Science Education: Sensing the Radio Sky
NASA Astrophysics Data System (ADS)
Blake, Melvin; Castelaz, M. W.; Moffett, D.; Walsh, L.; LaFratta, M.
2006-12-01
The intent of the “Sensing the Radio Sky” program is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year program began in the summer of 2004 and was completed in December 2006. The program involved a team of 12 undergraduate physics and multimedia majors and four faculty mentors from Furman University, University of North Carolina-Asheville and Pisgah Astronomical Research Institute (PARI). One component of the program is the development and production of a projection cylinder for the portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The final draft is complete and will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.
2013-02-08
VANDENBERG AIR FORCE BASE, Calif. -- Media attend a mission science briefing at Vandenberg Air Force Base in California in preparation for the launch of the Landsat Data Continuity Mission LDCM. From left are Rani Gran of NASA Public Affairs, LDCM project scientist Dr. Jim Irons from NASA's Goddard Space Flight Center, senior scientist and co-chair of the Landsat Science Team U.S. Geological Survey Earth Resources Observation and Science EROS Center Dr. Thomas Loveland, Landsat scientist and president of Kass Green and Associates Kass Green, and senior research scientist Dr. Mike Wulder of the Landsat Science Team Canadian Forest Service, Natural Resources Canada. Launch of LDCM aboard a United Launch Alliance Atlas V rocket from Vandenberg's Space Launch Complex-3E is planned for Feb. 11 during a 48-minute launch window that opens at 10:02 a.m. PST, or 1:02 p.m. EST. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions and will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment, such as food, water and forests. NASA's Goddard Space Flight Center in Greenbelt, Md., is responsible for LDCM project management. Orbital Sciences Corp. built the LDCM satellite. NASA's Launch Services Program at the Kennedy Space Center in Florida provides launch management. After launch and the initial checkout phase, the U. S. Geological Survey will take operational control of LDCM, and it will be renamed Landsat 8. Photo credit: NASA/Kim Shiflett
Whelan, Jessica J; Spencer, Judy F; Rooney, Kim
2008-01-01
Attending to the shortage and sustainability of health care professionals and resources in rural areas in Australia is a continuing challenge. In response, there is a heightened focus on new models of healthcare delivery and collaboration that optimise the quality of patient care, respond to complex health needs and increase professional job satisfaction. Interprofessional rural health education within universities has been proposed as one way of addressing these challenges. This article reports on the development, design, implementation and evaluation of the RIPPER initiative (Rural Interprofessional Program Education Retreat). RIPPER is an interprofessional rural health education initiative developed by a team at the University of Tasmania's Faculty of Health Science. The objective of the program was to develop a rural interprofessional learning module for final year undergraduate health science students at the University of Tasmania. The program was first piloted in a rural Tasmanian community in 2006, with a second iteration in 2007. Participants in the program included approximately 60 students from the disciplines of Medicine, Nursing and Pharmacy. The format and educational design of the RIPPER program was focussed on a multi-station learning circuit using interprofessional case-based scenarios. Each learning station employed experiential and interactive educational strategies that included high and low fidelity simulation, role play and reflection. The learning stations required students to work collaboratively in small interprofessional teams to respond to a series of rural emergency healthcare scenarios. Qualitative and quantitative evaluation data was collected from student participants over two years utilising a pre- and post-test quasi experimental design. Results demonstrated a positive shift in students' understanding of interprofessional practice and the roles and skills of other health professions. There was also an increase in the value ascribed by students to collaboration and team work as a way of problem solving and improving patient outcomes. The project evaluation indicated the importance of developing a sustainable and embedded interprofessional rural module within the undergraduate health science curriculum. The project evaluation findings also point to some of the strengths and limitations of implementing interprofessional education activities in a rural setting.
2017-02-21
How hard would it be to keep track of your stuff if it could literally float away—which does happen on the International Space Station. Well, the crews in space have help, in the form of the Stowage team at NASA’s Marshall Space Flight Center in Huntsville, Alabama. From tools to trash, learn how the team keeps track of everything the astronauts need as they conduct groundbreaking science research on orbit. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/arEf05Yf5IY
Icarus Institute for Interstellar Sciences (IIS)
NASA Astrophysics Data System (ADS)
Cress, B.
2012-09-01
In this paper, a vision for a proposed interstellar research center, to be developed in the United States, will be presented. The major focus will be on an innovative approach to the planning and achieving a new sustainable world class facility devoted to the technologies and various science missions of multi-disciplined teams reaching for the stars. The project will provide the personnel, feature sets, facilities and equipment needed to initiate and support an aggressive program of advanced interstellar vehicle and propulsion design and implementation. Also shared will be personal insights and economic considerations gained during prior planning for a private research institute in Nevada, home to more than 300 international scientists. The views expressed in this discussion paper are the personal views of the author and not necessarily representing the entire Icarus team.
2011-03-11
ORLANDO, Fla. – About 60 high school teams take part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
2011-03-11
ORLANDO, Fla. – About 60 high school teams take part in the "For Inspiration and Recognition of Science and Technology," or FIRST, competition at the University of Central Florida in Orlando. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. Photo credit: NASA/Glenn Benson
Teacher Research Programs = Increased Student Achievement
NASA Astrophysics Data System (ADS)
Dubner, J.
2011-12-01
Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.
Inquiring Informationists: A Qualitative Exploration of Our Role.
Robison, Rex R; Ryan, Mary E; Cooper, I Diane
2009-01-01
OBJECTIVE: The goal of this study is to explore the impact of an informationist program at the National Institutes of Health (NIH) Library and to provide a basis for further program assessment. In 2001 the NIH Library began its informationist program, where librarians with training in both biomedicine and information science work alongside researchers. The goal of the program is to facilitate researchers' access to and usage of information resources. METHODS: The researchers used qualitative interviews with key informants to characterize the current informationist services of user groups. Subjects were selected to capture a variety of activities that would show patterns of how the program assists the researchers of various NIH groups. Following the interviews, the authors extracted recurring and significant themes from the subjects' comments. RESULTS: Interview subjects provided their views on the informationists' skills, impact, and team participation. Research results documented that informationists helped find resources, provided instruction, and worked as part of the research team. The NIH groups currently using this service value their informationists' knowledge of library resources and their ability to access information needs quickly. The informationists' skills in finding information save the researchers time, increase the efficiency of the research team, and complement the contributions of other team members. Training by informationists was found useful. Informationist services led to increased self-reported library use, albeit in some cases this use was entirely via the informationist. CONCLUSIONS: Informationists saved researchers time by obtaining requested information, finding esoteric or unfamiliar resources, and providing related training. These activities appeared to be facilitated by the acceptance of the informationist as part of the research team. This exploratory study provides background that should be useful in future, more extensive evaluations.
2017-04-10
Natick Soldier Research , Development and Engineering Center’s Sustainability/Logistics- Basing -Science and Technology Objective – Demonstration to...CERDEC) Tank Automotive Research , Development, and Engineering Center (TARDEC) Product Director Contingency Basing Infrastructure (PdD – CBI...assessed using the QoL (O) tool, developed for the SLB-STO-D program by the Consumer Research Team (NSRDEC), based upon the assumptions documented within
NASA Astrophysics Data System (ADS)
Shipman, J. S.; Chalmers, R.; Buntaine, J.
2017-12-01
Cross-disciplinary programs create the opportunity to explore new realms for scientists and artists alike. Through the collaborative process, artistic insights enable innovative approaches to emotionally connect to and visualize the world around us. Likewise, engagement across the art-science spectrum can lead to shifts in scientific thinking that create new connections in data and drive discoveries in research. The SciArt Center "The Bridge Residency Program" is a four-month long virtual residency open internationally for professionals in the arts and sciences to facilitate cross-disciplinary work and to bring together like-minded participants. The SciArt Center provides a virtual space to record and showcase the process and products of each collaboration. The work is facilitated with biweekly Skype calls and documented with weekly blog posts. Residents create either digital or physical products and share via video, images, or direct mailing with their collaborators. Past projects have produced call and response discussion, websites, skills and conference presentations, science-art studies, virtual exhibits, art shows, dance performances, and research exchange. Here we present the creative process and outcomes of one of the four collaborative teams selected for the 2017 residency. Jill Shipman, a Ph.D. Candidate in Volcanology who is also active in filmmaking and theatrical productions and Rosemary Chalmers, a UK-based lecturer, concept artist, and illustrator with a specialty in creature design. They were paired together for their shared interest in storytelling, illustration, and unique geological and environmental habitats and the life that occupies them. We will discuss the collaborative project developed by this team during their recent residency and illustrate how a virtual program can bridge the distance between geographical location to foster science and art collaboration. To follow the progress of the residency please visit: http://www.sciartcenter.org/the-bridge.html
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III
2014-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.
Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †
Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.
2018-01-01
The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536
Educational Outreach for Astrobiology
NASA Astrophysics Data System (ADS)
Kadooka, M.; Meech, K.
2009-12-01
Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.
Report of the SSME assessment team
NASA Technical Reports Server (NTRS)
1993-01-01
In response to a request from the House of Representatives Committee on Science, Space, and Technology in its Report No. 102-500 of April 22, 1992, the Aerospace Safety Advisory Panel (ASAP) created an ad hoc task force to conduct a thorough assessment of the Space Shuttle Main Engine (SSME). The membership was drawn mostly from organizations other than ASAP, and this report represents the views of that task force. Its task was to assess the risk that the SSME poses to the safe operation of the Space Shuttle, to identify and evaluate improvements to the engine that would reduce the risk, and to recommend a set of priorities for the implementation of these improvements. The SSME Assessment Team, as it opted to call itself, convened in mid-1992 and, subsequently, met with and gathered information from all the principal organizations involved in the SSME program. These included the Rocketdyne Division of Rockwell International, the Marshall Space Flight Center of NASA, and the Pratt & Whitney Division of United Technologies Corporation. The information in this report reflects the program status as of October 1992. From the information received, the Team formed its conclusions and recommendations. Changes in the program status have, of course, occurred since that time; however, they did not affect the Team's conclusions and recommendations.
Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yu, Jin-song; Huang, Jun; Chen, Guang-liang; Liu, Xin; Chen, Wei; Wang, Xing-quan; Li, Chao-rong
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11665005, 11505032, 11547139, 51672249, and 11565003), the Zhejiang Natural Science Foundation of China (Grant No. LY16A050002), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20161BAB211026, 20171ACB21049, and 20171BAB211012), the Science and Technology Project of Jiangxi Provincial Department of Education, China (Grant No. GJJ150981), the Program for Innovative Research Team of Zhejiang Sci-Tech University, China, and the Opening Foundation of Insititue of Textile Technology, Wuhan Texitle Universitiy, China (Grant No. GCZX201702).
Developing Flexible Discrete Event Simulation Models in an Uncertain Policy Environment
NASA Technical Reports Server (NTRS)
Miranda, David J.; Fayez, Sam; Steele, Martin J.
2011-01-01
On February 1st, 2010 U.S. President Barack Obama submitted to Congress his proposed budget request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be controversial and Congressional approval of the program's official cancellation would take many months to complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, while at the same time remain prepared for possible changes to the program. This required the team to rethink how it would develop it's model and make it flexible enough to support possible future vehicles while at the same time be specific enough to support the program-of-record. This challenge was compounded by the fact that this model was being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the model's structure by identifying what was generic, finding natural logic break points, and the standardization of interlogic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to support any future rocket programs, but also a model that was extremely structured and organized in a way that facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the many advantages this method provides builders of traditional process-oriented discrete event simulations.
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; Boggs, S.; Christensen, F.; Craig, W.; Hailey, C. J.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team
2013-01-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that is opening the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission’s objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and/or Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission’s science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We are also developing printed materials that describe the mission and special workshops for girls at public libraries in order to improve the STEM pipeline.
The NuSTAR Education and Public Outreach Program
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; Boggs, S. E.; Christensen, F.; Hailey, C. J.; Harrison, F.; Stern, D.; Zhang, W.; NuSTAR Team
2013-04-01
NuSTAR is a NASA Small Explorer mission led by Caltech, managed by JPL, and implemented by an international team of scientists and engineers, under the direction of CalTech Professor Fiona Harrison, principal investigator. NuSTAR is a pathfinder mission that is opening the high-energy X-ray sky for sensitive study for the first time. By focusing X-rays at higher energies (up to 79 keV) NuSTAR will answer fundamental questions about the Universe: How are black holes distributed through the cosmos? How were the elements that compose our bodies and the Earth forged in the explosions of massive stars? What powers the most extreme active galaxies? Perhaps most exciting is the opportunity to fill a blank map with wonders we have not yet dreamed of: NuSTAR offers the opportunity to explore our Universe in an entirely new way. The purpose of the NuSTAR E/PO program is to increase understanding of the science of the high-energy Universe, by capitalizing on the synergy of existing high-energy astrophysics E/PO programs to support the mission’s objectives. Our goals are to: facilitate understanding of the nature of collapsed objects, develop awareness of the role of supernovae in creating the chemical elements and to facilitate understanding of the physical properties of the extreme Universe. We will do this through a program that includes educator workshops through NASA's Astrophysics Educator Ambassador program, a technology education unit for formal educators, articles for Physics Teacher and/or Science Scope magazines, and work with informal educators on a museum exhibit that includes a model of NuSTAR and describes the mission’s science objectives. Extensive outreach is also underway by members of the Science Team, who are working with high school students, undergraduates and graduate students. We are also developing printed materials that describe the mission and special workshops for girls at public libraries in order to improve the STEM pipeline.
Translational Educational Research
Issenberg, S. Barry; Cohen, Elaine R.; Barsuk, Jeffrey H.; Wayne, Diane B.
2012-01-01
Medical education research contributes to translational science (TS) when its outcomes not only impact educational settings, but also downstream results, including better patient-care practices and improved patient outcomes. Simulation-based medical education (SBME) has demonstrated its role in achieving such distal results. Effective TS also encompasses implementation science, the science of health-care delivery. Educational, clinical, quality, and safety goals can only be achieved by thematic, sustained, and cumulative research programs, not isolated studies. Components of an SBME TS research program include motivated learners, curriculum grounded in evidence-based learning theory, educational resources, evaluation of downstream results, a productive research team, rigorous research methods, research resources, and health-care system acceptance and implementation. National research priorities are served from translational educational research. National funding priorities should endorse the contribution and value of translational education research. PMID:23138127
Telescience testbed pilot program, volume 3: Experiment summaries
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth science, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, presents summaries of the experiments. This experiment involves the evaluation of the current Internet for the use of file and image transfer between SIRTF instrument teams. The main issue addressed was current network response times.
Roster of NSAP (Navy Science Assistance Program) Field Team Members, Fiscal Years 1971-1986
1985-08-05
CAPTOR Evaluation Program, NSWC. Current Job/Position: Operational Requirements Analyst for a new generation of mines. Current Address: Officer in...to NSAP Field Assignment: General Engineer; combat systems engineering on new ship design concepts, NSWC. Current Job/Position: Electronic Engineer...ADDRESS 12. REPORT DATE Naval Surface Weapons Center (Code D23) 5 August 1985 10901 New Hampshire Avenue 13. NUMBER OF PAGES Silver Spring, MD 20910
`INCLUDING' Partnerships to Build Authentic Research Into K-12 Science Education
NASA Astrophysics Data System (ADS)
Turrin, M.; Lev, E.; Newton, R.; Xu, C.
2017-12-01
Opportunities for authentic research experiences have been shown effective for recruiting and retaining students in STEM fields. Meaningful research experiences entail significant time in project design, modeling ethical practice, providing training, instruction, and ongoing guidance. We propose that in order to be sustainable, a new instructional paradigm is needed, one that shifts from being top-weighted in instruction to a distributed weight model. This model relies on partnerships where everyone has buy-in and reaps rewards, establishing broadened networks for support, and adjusting the mentoring model. We use our successful Secondary School Field Research Program as a model for this new paradigm. For over a decade this program has provided authentic geoscience field research for an expanding group of predominantly inner city high school youth from communities underrepresented in the sciences. The program has shifted the balance with returning participants now serving as undergraduate mentors for the high school student `researchers', providing much of the ongoing training, instruction, guidance and feedback needed. But in order to be sustainable and impactful we need to broaden our base. A recent NSF-INCLUDES pilot project has allowed us to expand this model, linking schools, informal education non-profits, other academic institutions, community partners and private funding agencies into geographically organized `clusters'. Starting with a tiered mentoring model with scientists as consultants, teachers as team members, undergraduates as team leaders and high school students as researchers, each cluster will customize its program to reflect the needs and strengths of the team. To be successful each organization must identify how the program fits their organizational goals, the resources they can contribute and what they need back. Widening the partnership base spreads institutional commitments for research scientists, research locations and lab space, meaningful projects and undergraduate mentors. Representatives from the clusters formed working groups to turn best practices in areas such as mentoring, recruitment, assessment and funding into a flexible structure for the clusters. These working groups will provide the outline to expand a successful authentic research program.
Train Like an Astronaut Educational Outreach
NASA Technical Reports Server (NTRS)
Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.
2012-01-01
In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".
Life Sciences Data Archive (LSDA)
NASA Technical Reports Server (NTRS)
Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.
2008-01-01
In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.
NASA Technical Reports Server (NTRS)
Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.
1973-01-01
The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.
NASA Astrophysics Data System (ADS)
Arteaga, Veronica Hernandez
The purpose of this study was to examine the relationship between vertical teaming in science and student achievement. This study compared student achievement of campuses implementing vertical teaming with schools that do not practice vertical teaming. In addition, this study explored the relationship between selected demographic variables and vertical teaming using Grade 5 Science TAKS results in the Academic Excellence Indicator System (AEIS). Campus demographic variables such as economically disadvantaged, minority students, English language learners, student mobility, and experienced teachers were researched. A call-out yielded 168 responses. With the exclusion of the 12 campuses, a total of 156 participating campuses from 18 traditional school districts remained. Campuses employing vertical teaming were self-identified on the basis of having implemented the process for two or more years. The gain in percent mastered for Science TAKS scores from 2004 to 2007 was used as the Science TAKS score variable. Results indicated that there was no significant difference in student achievement in science for campuses practicing vertical teaming and campuses that did not. The two-way ANOVA was used to measure the relationship between the independent variables (vertical teaming and campus demographic variables) on the dependent variable (student achievement on Science TAKS). The results suggested that campuses having low percentages of economically disadvantaged students statistically gained more on the Science TAKS than campuses that have high percentages of economically disadvantaged students irrespective of vertical teaming practices. In addition, campuses that have low percentages of minority students statistically gained more on the Science TAKS than campuses that have high percentages of minority students despite vertical teaming participation. Recommendations include districts, state, and federal agencies providing campuses with a high percent of economically disadvantaged students with more resources and more flexibility in using those resources. Recommendations for further study included a replication of the study that takes into account the degree of implementation of vertical teaming.
NASA Astrophysics Data System (ADS)
Young, K. E.; Bleacher, J. E.; Rogers, D.; Garry, W. B.; McAdam, A.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.
2015-12-01
The Remote, In Situ, and Synchrotron Studies for Science (RIS4E) team represents one node of the Solar System Exploration Research Virtual Institute (SSERVI) program. While the RIS4E team consists of four themes, each dedicated to a different aspect of airless body exploration, this submission details the RIS4E work underway to maximize an astronaut's effectiveness while conducting surface science. The next generation of surface science operations will look quite different than the EVAs (extravehicular activities) conducted during Apollo. Astronauts will possess data of much higher resolution than the Apollo reconnaissance data, and the EVAs will thus be designed to answer targeted science questions. Additionally, technological advancements over the last several decades have made it possible to conduct in situ analyses of a caliber much greater than was achievable during Apollo. For example, lab techniques such as x-ray fluorescence, x-ray diffraction, and multi-spectral imaging are now available in field portable formats, meaning that astronauts can gain real-time geochemical awareness during sample collection. The integration of these instruments into EVA operations, however, has not been widely tested. While these instruments will provide the astronaut with a high-resolution look at regional geochemistry and structure, their implementation could prove costly to the already constrained astronaut EVA timeline. The RIS4E team, through fieldwork at the December 1974 lava flow at Kilauea Volcano, HI, investigates the incorporation of portable technologies into planetary surface exploration and explores the relationship between science value added from these instruments and the cost associated with integrating them into an EVA timeline. We also consider what an appropriate instrumentation suite would be for the exploration of a volcanic terrain using this ideal terrestrial analog (see Rogers et al., Young et al., Bleacher et al., and Yant et al., this meeting).
NASA Technical Reports Server (NTRS)
Bowman, C. D.; Bebak, M.; Bollen, D. M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.
2004-01-01
The exceptional imagery and data acquired by the Mars Exploration Rovers since their January 2004 landing have captured the attention of scientists, the public, and students and teachers worldwide. One aspect of particular interest lies with a group of high school teachers and students actively engaged in the Athena Student Interns Program. The Athena Student Interns Program (ASIP) is a joint effort between NASA s Mars Public Engagement Office and the Athena Science Investigation that began in early 1999 as a pilot student-scientist research partnership program associated with the FIDO prototype Mars rover field test . The program is designed to actively engage high school students and their teachers in Mars exploration and scientific inquiry. In ASIP, groups of students and teachers from around the country work with mentors from the mission s Athena Science Team to carry out an aspect of the mission.
Perry, Cary
2008-01-01
This article is the third article in the Human Resources for Health journal's feature on the theme of leadership and management in public health. The series of six articles has been contributed by Management Sciences for Health (MSH) and will be published article-by-article over the next few weeks. The third article presents a successful application in Mozambique of a leadership development program created by Management Sciences for Health (MSH). Through this program, managers from 40 countries have learned to work in teams to identify their priority challenges and act to implement effective responses. From 2003 to 2004, 11 health units in Nampula Province, participated in a leadership and management development program called the Challenges Program. This was following an assessment which found that the quality of health services was poor, and senior officials determined that the underlying cause was the lack of human resource capacity in leadership and management in a rapidly decentralizing health care system. The program was funded by the US Agency for International Development (USAID) and implemented in partnership between the Mozambican Ministry of Health (MOH) Provincial Directorate in Nampula and Management Sciences for Health (MSH). The Challenges Program used simple management and leadership tools to assist the health units and their communities to address health service challenges. An evaluation of the program in 2005 showed that 10 of 11 health centers improved health services over the year of the program. The Challenges Program used several strategies that contributed to successful outcomes. It integrated leadership strengthening into the day-to-day challenges that staff were facing in the health units. The second success factor in the Challenges Program was the creation of participatory teams. After the program, people no longer waited passively to be trained but instead proactively requested training in needed areas. MOH workers in Nampula reported that the program's approach to improving management and leadership capacity at all levels promoted the efficient use of resources and empowered staff to make a difference. PMID:18651973
NASA Technical Reports Server (NTRS)
1996-01-01
This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.
Bringing the Science of Team Training to School-Based Teams
ERIC Educational Resources Information Center
Benishek, Lauren E.; Gregory, Megan E.; Hodges, Karin; Newell, Markeda; Hughes, Ashley M.; Marlow, Shannon; Lacerenza, Christina; Rosenfield, Sylvia; Salas, Eduardo
2016-01-01
Teams are ubiquitous in schools in the 21st Century; yet training for effective teaming within these settings has lagged behind. The authors of this article developed 5 modules, grounded in the science of team training and adapted from an evidence-based curriculum used in medical settings called TeamSTEPPS®, to prepare instructional and…
NASA Astrophysics Data System (ADS)
Williamson, V. A.; Pyrtle, A. J.
2004-12-01
How did the 2003 Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) in Ocean Sciences Program customize evaluative methodology and instruments to align with program goals and processes? How is data captured to document cognitive and affective impact? How are words and numbers utilized to accurately illustrate programmatic outcomes? How is compliance with implicit and explicit funding regulations demonstrated? The 2003 MS PHD'S in Ocean Sciences Program case study provides insightful responses to each of these questions. MS PHD'S was developed by and for underrepresented minorities to facilitate increased and sustained participation in Earth system science. Key components of this initiative include development of a community of scholars sustained by face-to-face and virtual mentoring partnerships; establishment of networking activities between and among undergraduate, graduate, postgraduate students, scientists, faculty, professional organization representatives, and federal program officers; and provision of forums to address real world issues as identified by each constituent group. The evaluative case study of the 2003 MS PHD'S in Ocean Sciences Program consists of an analysis of four data sets. Each data set was aligned to document progress in the achievement of the following program goals: Goal 1: The MS PHD'S Ocean Sciences Program will successfully market, recruit, select, and engage underrepresented student and non-student participants with interest/ involvement in Ocean Sciences; Goal 2: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by quantitative analysis of user-feedback; Goal 3: The MS PHD'S Ocean Sciences Program will provide meaningful engagement for participants as determined by qualitative analysis of user-feedback, and; Goal 4: The MS PHD'S Ocean Sciences Program will develop a constituent base adequate to demonstrate evidence of interest, value, need and sustainability in its vision, mission, goals and activities. In addition to the documentation of evaluative process, the case study also provides insight on the establishment of mutually supportive principal investigator and evaluator partnerships as necessary foundations for building effective teams. The study addresses frequently asked questions (FAQ's) on the formation and sustenance of partnerships among visionaries and evaluators and the impact of this partnership on the achievement of program outcomes.
Using Mars Mission Analogs and Authentic Experiences to Stimulate STEM Learning in K-14 Students
NASA Astrophysics Data System (ADS)
Klug, S. L.; Grigsby, B.; Valderrama, P.; Watt, K.
2005-12-01
Today, in many of the classrooms across our nation, K-12 educators are finding it more difficult to engage their students in the subjects that will help them to succeed to a more productive way of life - science, technology, engineering, and math (STEM). Finally, add to this formidable task a diverse set of learners (demographically and skill level) of an average classroom and the constraints of high stakes testing. Quite a challenge, indeed! The Arizona State University (ASU) Mars Education Program, in partnership with the Jet Propulsion Laboratory Mars Public Engagement Team have created programming, curriculum, and activities that help to bridge the gap between STEM learning and student interest. Starting with the Standards in the STEM areas - the areas which teachers are tasked to teach already, our team has modeled the STEM-based curriculum after the way that NASA's Mars team conducts their work and research. There is much challenge in the statement "Science for All Americans" when it comes to applying it equally to all classrooms across the U.S. To make sure that these curricular materials and hands-on experiences are available to any teacher and student, the ASU Mars Education Program has adopted a "high-tech, low-tech, and no-tech" approach. In other words, materials and programming have to be available and doable with whatever capabilities a classroom might possess. Using this approach, successful examples of Mars-based educational materials include Marsbound and the Mars Student Imaging Project. The Marsbound simulation is based on National Technology Standards and seemingly low tech. However, the simplicity of this simulation is quickly forgotten as it follows the familiar NASA scenario of building a mission to Mars with engineering constraints. Student teams use a set of equipment cards and a playmat (both available at no cost) to build their mission and balance it according to the constraints given. Students soon realize there is a lot of complexity to achieve science goals, populate a spacecraft with a meaningful payload for science return, not exceed mass margins, and stay within budget. A full set of Standards-based activities and curriculum are also available for the teacher at the same website. The Mars Student Imaging Project (MSIP) is an authentic research experience available to 5th grade - early college student teams across the U.S. During this program, students formulate a question about Mars, write a proposal, and target an image at Mars using the Thermal Emission Imaging System camera (THEMIS) onboard the Mars Odyssey spacecraft. The students then analyze the image and report their findings to NASA. As of June 2005, over 10,000 students have participated in MSIP. The data gathered on this program shows a high rate of interest in students of all ages, demographics, skill levels, and diverse audiences. To sustain our country and the ability to be a nation that will continue to lead and move forward educationally, technologically, and scientifically, we as educators and trainers of educators must persevere to reach diverse audiences in ways that will resonate with our customers - the students. We must pay attention to important issues such as accessibility, cost, Standards, teacher concerns and student interest.
Next-generation Strategies for Human Lunar Sorties
NASA Technical Reports Server (NTRS)
Cohen, B. A.
2013-01-01
The science community has had success in remote field experiences using two distinctly different models for humans-in-the-loop: the Apollo Science Support team (science backroom), and the robotic exploration of Mars. In the Apollo experience, the science team helped train the crew, designed geologic traverses, and made real-time decisions by reviewing audio and video transmissions and providing recommendations for geologic sampling. In contrast, the Mars Exploration Rover (MER) and Mars Science Lab (MSL) missions have been conducted entirely robotically, with significant time delays between science- driven decisions and remote field activities. Distinctive operations methods and field methodologies were developed for MER/MSL [1,2] because of the reliance on the "backroom" science team (rather than astronaut crew members) to understand the surroundings. Additionally, data are relayed to the team once per day, giving the team many hours or even days to assimilate the data and decide on a plan of action.
Width-Dependent Optical Properties for Zigzag-Edge Silicene Nanoribbons
NASA Astrophysics Data System (ADS)
Bao, Hai-Rui; Liao, Wen-Hu; Zhang, Xin-Cheng; Zuo, Min
2018-01-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11664010 and 11264013, the Hunan Provincial Natural Science Foundation of China under Grant Nos 2017JJ2217 and 12JJ4003, the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No 14B148, the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Innovation Project for Postgraduate of Hunan Province under Grant No CX2015B549, and the Research Program of Jishou University under Grant Nos 15JDY026 and Jdy16021.
Magnetometer instrument team studies for the definition phase of the outer planets grand tour
NASA Technical Reports Server (NTRS)
Coleman, P. J., Jr.
1972-01-01
The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.
Establishing a successful clinical research program.
Scoglio, Daniele; Fichera, Alessandro
2014-06-01
Clinical research (CR) is a natural corollary to clinical surgery. It gives an investigator the opportunity to critically review their results and develop new strategies. This article covers the critical factors and the important components of a successful CR program. The first and most important step is to build a dedicated research team to overcome time constraints and enable a surgical practice to make CR a priority. With the research team in place, the next step is to create a program on the basis of an original idea and new clinical hypotheses. This often comes from personal experience supported by a review of the available evidence. Randomized controlled (clinical) trials are the most stringent way of determining whether a cause-effect relationship exists between the intervention and the outcome. In the proper setting, translational research may offer additional avenues allowing clinical application of basic science discoveries.
FCS Tackles Shortage of Healthcare Workers in Nebraska
ERIC Educational Resources Information Center
Gifford, Kathy; Kropp, Karen
2004-01-01
Nebraska, like many states, is facing a shortage of healthcare workers. As a result of this shortage, the Area Health Education Center was formed and the cities of Kearney and Grand Island were selected to develop and implement a Health Care Sciences program for Nebraska. A team of professionals from government agencies, businesses, and secondary…
ERIC Educational Resources Information Center
Foster, W. Tad; Shahhosseini, A. Mehran; Maughan, George
2016-01-01
Facilitating student growth and development in diagnosing and solving technical problems remains a challenge for technology and engineering educators. With funding from the National Science Foundation, this team of researchers developed a self-guided, computer-based instructional program to experiment with conceptual mapping as a treatment to…
The NASA Astrobiology Institute: early history and organization.
Blumberg, Baruch S
2003-01-01
The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.
The NASA Astrobiology Institute: early history and organization
NASA Technical Reports Server (NTRS)
Blumberg, Baruch S.
2003-01-01
The NASA Astrobiology Institute (NAI) was established as a means to advance the field of astrobiology by providing a multidisciplinary, multi-institution, science-directed program, executed by universities, research institutes, and NASA and other government laboratories. The scientific community and NASA defined the science content at several workshops as summarized in the NASA Astrobiology Roadmap. Teams were chosen nationwide, following the recommendations of external review groups, and the research program began in 1998. There are now 16 national Teams and five international affiliated and associated astrobiology institutions. The NAI has attracted an outstanding group of scientific groups and individuals. The Institute facilitates the involvement of the scientists in its scientific and management vision. Its goal is to support basic research and allow the scientists the freedom to select their projects and alter them as indicated by new research. Additional missions include the education of the public, the involvement of students who will be the astrobiologists of future generations, and the development of a culture of collaboration in NAI, a "virtual institute," spread across many sites nationally and internationally.
ARES Education and Public Outreach
NASA Technical Reports Server (NTRS)
Allen, Jaclyn; Galindo, Charles; Graff, Paige; Willis, Kim
2014-01-01
The ARES Directorate education team is charged with translating the work of ARES scientists into content that can be used in formal and informal K-12 education settings and assisting with public outreach. This is accomplished through local efforts and national partnerships. Local efforts include partnerships with universities, school districts, museums, and the Lunar and Planetary Institute (LPI) to share the content and excitement of space science research. Sharing astromaterials and exploration science with the public is an essential part of the Directorate's work. As a small enclave of physical scientists at a NASA Center that otherwise emphasizes human space operations and engineering, the ARES staff is frequently called upon by the JSC Public Affairs and Education offices to provide presentations and interviews. Scientists and staff actively volunteer with the JSC Speaker's Bureau, Digital Learning Network, and National Engineers Week programs as well as at Space Center Houston activities and events. The education team also participates in many JSC educator and student workshops, including the Pre-Service Teacher Institute and the Texas Aerospace Scholars program, with workshop presentations, speakers, and printed materials.
Kennedy Space Center ITC-1 Internship Overview
NASA Technical Reports Server (NTRS)
Ni, Marcus
2011-01-01
As an intern for Priscilla Elfrey in the ITC-1 department, I was involved in many activities that have helped me to develop many new skills. I supported four different projects during my internship, which included the Center for Life Cycle Design (CfLCD), SISO Space Interoperability Smackdown, RTI Teacher Mentor Program, and the Discrete Event Simulation Integrated Visualization Environment Team (DIVE). I provided the CfLCD with web based research on cyber security initiatives involving simulation, education for young children, cloud computing, Otronicon, and Science, Technology, Engineering, and Mathematics (STEM) education initiatives. I also attended STEM meetings regarding simulation courses, and educational course enhancements. To further improve the SISO Simulation event, I provided observation feedback to the technical advisory board. I also helped to set up a chat federation for HLA. The third project involved the RTI Teacher Mentor program, which I helped to organize. Last, but not least, I worked with the DIVE team to develop new software to help visualize discrete event simulations. All of these projects have provided experience on an interdisciplinary level ranging from speech and communication to solving complex problems using math and science.
NASA Technical Reports Server (NTRS)
Kirsch, Paul J.; Hayes, Jane; Zelinski, Lillian
2000-01-01
This special case study report presents the Science and Engineering Technical Assessments (SETA) team's findings for exploring the correlation between the underlying models of Advanced Risk Reduction Tool (ARRT) relative to how it identifies, estimates, and integrates Independent Verification & Validation (IV&V) activities. The special case study was conducted under the provisions of SETA Contract Task Order (CTO) 15 and the approved technical approach documented in the CTO-15 Modification #1 Task Project Plan.
The planned Alaska SAR Facility - An overview
NASA Technical Reports Server (NTRS)
Carsey, Frank; Weeks, Wilford
1987-01-01
The Alaska SAR Facility (ASF) is described in an overview fashion. The facility consists of three major components, a Receiving Ground System, a SAR Processing System and an Analysis and Archiving System; the ASF Program also has a Science Working Team and the requisite management and operations systems. The ASF is now an approved and fully funded activity; detailed requirements and science background are presented for the facility to be implemented for data from the European ERS-1, the Japanese ERS-1 and Radarsat.
NASA Astrophysics Data System (ADS)
Liu, Ye; Gao, Qingqing; Liu, Yijun; Zhao, Chuang; Mao, Zongliang; Hu, Lin; Liu, Yanhui
2017-12-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11047022, 11204045, and 11464004), the Tracking Key Program of Social Development of Guizhou Province, China (Grant Nos. SY20123089 and SZ20113069), the General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2014M562341), the Research Foundation for Young University Teachers from Guizhou University (Grant No. 201311), and the College Innovation Talent Team of Guizhou Province, China (Grant No. (2014)32).
Maintaining and Expanding the Hands-On Optics Program
NASA Astrophysics Data System (ADS)
Pompea, Stephen M.; Sparks, R. T.; Walker, C. E.
2008-05-01
Hands-On Optics (HOO) was funded by the National Science Foundation Informal Science Education program to bring optics education to traditionally underserved middle school students. We developed a series of six optics modules each covering a different topic in optics. During the four-year grant, we brought the program to the Mathematics, Science and Engineering Achievement (MESA) programs in seven states as well as 8 major science centers. We continue to support our established sites as well as expand our program. One of our expansion efforts involves continuing our partnership with the International Society for Optical Engineering (SPIE). We have been working closely with SPIE to present workshops for student chapter leaders at SPIE meetings. The student chapter leaders use HOO materials in their outreach activities. SPIE has teamed with us to bring HOO to Europe. We have received a grant from the Science Foundation of Arizona to expand HOO in Arizona. This program builds on our successful programs at the South Tucson Boys and Girls Club as well as the Sells Boys and Girls Club by expanding HOO to other sites around the state with an emphasis on rural locations such as Bisbee, Safford, Prescott Valley and the Tohon O'odham Nation. We have been working with a variety of Boys and Girls Clubs around the state. Several programs are underway and we hope to add more sites in the coming year. We continue to host local events at Kitt Peak National Observatory as well as special events for the community and students in the Tucson area. Our events include science nights at local schools, optics festivals and competitions, career days and teacher fairs. We will describe the current state of the program as well as lessons learned as we expand the program in a variety of settings.
Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E
2017-01-02
Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III
2015-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.
NASA Astrophysics Data System (ADS)
Cooray, Asantha; Origins Space Telescope Study Team
2018-01-01
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.
Earth, Meet Pluto: The New Horizons Education and Communications Partnership
NASA Astrophysics Data System (ADS)
Buckley, M.
2015-12-01
The unique partnership between the NASA New Horizons education/communications and public affairs programs tapped into the excitement of visiting an unexplored planet in a new region of the solar system - resulting in unprecedented public participation in and coverage of a planetary mission. With a range of hands-on learning experiences, Web materials and online , the program provided opportunities for students, educators, museums, science centers, the media, Web surfers and other members of the public to ride along on the first mission to Pluto and the Kuiper Belt. The programs leveraged resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on this historic NASA endeavor. The E/C program included a variety of formal lesson plans and learning materials — based on New Horizons science and engineering goals, and aligned with National Research Council's National Science Education Standards — that continue to help students in grades K-12 learn more about science, technology, engineering and mathematics. College students designed and built an actual flight instrument on New Horizons and held internships with the spacecraft integration and test team. New Horizons E/C programs went well beyond the classroom, from a chance for people to send their names to Pluto on board the New Horizons spacecraft before launch, to opportunities for the public to access milestone events and the first-ever close-up views of Pluto in places such as museums, science centers and libraries, TV and the Web — as well as thousands who attended interactive "Plutopalooza" road shows across the country. Teamed with E/C was the public affairs strategy to communicate New Horizons news and messages to media, mission stakeholders, the scientific community and the public. These messages include various aspects of New Horizons, including the progress of the mission and key milestones and achievements; the unique, long-distance operation of the spacecraft and its instruments; and the release of scientific data and results from New Horizons' historic Pluto encounter. Through traditional and social media channels the mission reached billions of people worldwide - and likely inspired millions among the next generation of STEM professionals.
A quantitative perspective on ethics in large team science.
Petersen, Alexander M; Pavlidis, Ioannis; Semendeferi, Ioanna
2014-12-01
The gradual crowding out of singleton and small team science by large team endeavors is challenging key features of research culture. It is therefore important for the future of scientific practice to reflect upon the individual scientist's ethical responsibilities within teams. To facilitate this reflection we show labor force trends in the US revealing a skewed growth in academic ranks and increased levels of competition for promotion within the system; we analyze teaming trends across disciplines and national borders demonstrating why it is becoming difficult to distribute credit and to avoid conflicts of interest; and we use more than a century of Nobel prize data to show how science is outgrowing its old institutions of singleton awards. Of particular concern within the large team environment is the weakening of the mentor-mentee relation, which undermines the cultivation of virtue ethics across scientific generations. These trends and emerging organizational complexities call for a universal set of behavioral norms that transcend team heterogeneity and hierarchy. To this end, our expository analysis provides a survey of ethical issues in team settings to inform science ethics education and science policy.
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
Dropping In a Microgravity Environment (DIME) contest
NASA Technical Reports Server (NTRS)
2001-01-01
The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 1056 "The Moose," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is from Kissimmee, Fla., and consists of students from Osceola High School. More than 60 high school teams from took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 3132, called "Thunder Down Under," which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Sydney, Australia. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 4024, which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Trinity Preparatory School in Winter Park, Fla. More than 60 high school teams took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year, the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
2012-03-09
ORLANDO, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks with members of Team 4064, which is participating in the regional FIRST robotics competition at the University of Central Florida in Orlando, Fla. The team is made up of students from Vanguard High School in Ocala, Fla. More than 60 high school teams from throughout the country took part in the competition called "For Inspiration and Recognition of Science and Technology," or FIRST, in hopes of advancing to the national robotics championship. This year the competition resembled a basketball game and was dubbed "Rebound Rumble." The game measured the effectiveness of each robot, the power of collaboration and the determination of the teams. FIRST, founded in 1989, is a non-profit organization that designs accessible, innovative programs to build self-confidence, knowledge and life skills while motivating young people to pursue academic opportunities. The robotics competition challenges teams of high school students and their mentors to solve a common problem in a six-week timeframe using a standard kit of parts and a common set of rules. NASA is the largest sponsor of the international program. Kennedy Space Center is a sponsor of the regional event. For more information on Kennedy's education events and initiatives, go to http://www.nasa.gov/offices/education/centers/kennedy/home/index.html. Photo credit: NASA/Kim Shiflett
Dogba, Maman Joyce; Menear, Matthew; Stacey, Dawn; Brière, Nathalie; Légaré, France
2016-07-19
Healthcare research increasingly focuses on interprofessional collaboration and on shared decision making, but knowledge gaps remain about effective strategies for implementing interprofessional collaboration and shared decision-making together in clinical practice. We used Kuhn's theory of scientific revolutions to reflect on how an integrated interprofessional shared decision-making approach was developed and implemented over time. In 2007, an interdisciplinary team initiated a new research program to promote the implementation of an interprofessional shared decision-making approach in clinical settings. For this reflective case study, two new team members analyzed the team's four projects, six research publications, one unpublished and two published protocols and organized them into recognizable phases according to Kuhn's theory. The merging of two young disciplines led to challenges characteristic of emerging paradigms. Implementation of interprofessional shared-decision making was hindered by a lack of conceptual clarity, a dearth of theories and models, little methodological guidance, and insufficient evaluation instruments. The team developed a new model, identified new tools, and engaged knowledge users in a theory-based approach to implementation. However, several unresolved challenges remain. This reflective case study sheds light on the evolution of interdisciplinary team science. It offers new approaches to implementing emerging knowledge in the clinical context.
Monajati, Alireza; Larumbe-Zabala, Eneko; Goss-Sampson, Mark; Naclerio, Fernando
2016-01-01
Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors.
NASA Technical Reports Server (NTRS)
1973-01-01
The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.
Little, Meg M; St Hill, Catherine A; Ware, Kenric B; Swanoski, Michael T; Chapman, Scott A; Lutfiyya, M Nawal; Cerra, Frank B
2017-01-01
The National Institute of Health's concept of team science is a means of addressing complex clinical problems by applying conceptual and methodological approaches from multiple disciplines and health professions. The ultimate goal is the improved quality of care of patients with an emphasis on better population health outcomes. Collaborative research practice occurs when researchers from >1 health-related profession engage in scientific inquiry to jointly create and disseminate new knowledge to clinical and research health professionals in order to provide the highest quality of patient care to improve population health outcomes. Training of clinicians and researchers is necessary to produce clinically relevant evidence upon which to base patient care for disease management and empirically guided team-based patient care. In this study, we hypothesized that team science is an example of effective and impactful interprofessional collaborative research practice. To assess this hypothesis, we examined the contemporary literature on the science of team science (SciTS) produced in the past 10 years (2005–2015) and related the SciTS to the overall field of interprofessional collaborative practice, of which collaborative research practice is a subset. A modified preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach was employed to analyze the SciTS literature in light of the general question: Is team science an example of interprofessional collaborative research practice? After completing a systematic review of the SciTS literature, the posed hypothesis was accepted, concluding that team science is a dimension of interprofessional collaborative practice. PMID:27619555
Little, Meg M; St Hill, Catherine A; Ware, Kenric B; Swanoski, Michael T; Chapman, Scott A; Lutfiyya, M Nawal; Cerra, Frank B
2017-01-01
The National Institute of Health's concept of team science is a means of addressing complex clinical problems by applying conceptual and methodological approaches from multiple disciplines and health professions. The ultimate goal is the improved quality of care of patients with an emphasis on better population health outcomes. Collaborative research practice occurs when researchers from >1 health-related profession engage in scientific inquiry to jointly create and disseminate new knowledge to clinical and research health professionals in order to provide the highest quality of patient care to improve population health outcomes. Training of clinicians and researchers is necessary to produce clinically relevant evidence upon which to base patient care for disease management and empirically guided team-based patient care. In this study, we hypothesized that team science is an example of effective and impactful interprofessional collaborative research practice. To assess this hypothesis, we examined the contemporary literature on the science of team science (SciTS) produced in the past 10 years (2005-2015) and related the SciTS to the overall field of interprofessional collaborative practice, of which collaborative research practice is a subset. A modified preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach was employed to analyze the SciTS literature in light of the general question: Is team science an example of interprofessional collaborative research practice? After completing a systematic review of the SciTS literature, the posed hypothesis was accepted, concluding that team science is a dimension of interprofessional collaborative practice. Copyright © 2016 American Federation for Medical Research.
Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development
NASA Astrophysics Data System (ADS)
Hamilton, C.
2009-12-01
Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.
NASA's Universe of Learning: Engaging Learners in Discovery
NASA Astrophysics Data System (ADS)
Cominsky, L.; Smith, D. A.; Lestition, K.; Greene, M.; Squires, G.
2016-12-01
NASA's Universe of Learning is one of 27 competitively awarded education programs selected by NASA's Science Mission Directorate (SMD) to enable scientists and engineers to more effectively engage with learners of all ages. The NASA's Universe of Learning program is created through a partnership between the Space Telescope Science Institute, Chandra X-ray Center, IPAC at Caltech, Jet Propulsion Laboratory Exoplanet Exploration Program, and Sonoma State University. The program will connect the scientists, engineers, science, technology and adventure of NASA Astrophysics with audience needs, proven infrastructure, and a network of over 500 partners to advance the objectives of SMD's newly restructured education program. The multi-institutional team will develop and deliver a unified, consolidated suite of education products, programs, and professional development offerings that spans the full spectrum of NASA Astrophysics, including the Exoplanet Exploration theme. Program elements include enabling educational use of Astrophysics mission data and offering participatory experiences; creating multimedia and immersive experiences; designing exhibits and community programs; providing professional development for pre-service educators, undergraduate instructors, and informal educators; and, producing resources for special needs and underserved/underrepresented audiences. This presentation will provide an overview of the program and process for mapping discoveries to products and programs for informal, lifelong, and self-directed learning environments.
Strategies for effective collaborative manuscript development in interdisciplinary science teams
Oliver, Samantha K.; Fergus, C. Emi; Skaff, Nicholas K.; Wagner, Tyler; Tan, Pang-Ning; Cheruvelil, Kendra Spence; Soranno, Patricia A.
2018-01-01
Science is increasingly being conducted in large, interdisciplinary teams. As team size increases, challenges can arise during manuscript development, where achieving one team goal (e.g., inclusivity) may be in direct conflict with other goals (e.g., efficiency). Here, we present strategies for effective collaborative manuscript development that draw from our experiences in an interdisciplinary science team writing collaborative manuscripts for six years. These strategies are rooted in six guiding principles that were important to our team: to create a transparent, inclusive, and accountable research team that promotes and protects team members who have less power to influence decision‐making while fostering creativity and productivity. To help alleviate the conflicts that can arise in collaborative manuscript development, we present the following strategies: understand your team composition, create an authorship policy and discuss authorship early and often, openly announce manuscript ideas, identify and communicate the type of manuscript and lead author management style, and document and describe authorship contributions. These strategies can help reduce the probability of group conflict, uphold individual and team values, achieve fair authorship practices, and increase science productivity.
The Extended Duration Sounding Rocket (EDSR): Low Cost Science and Technology Missions
NASA Astrophysics Data System (ADS)
Cruddace, R. G.; Chakrabarti, S.; Cash, W.; Eberspeaker, P.; Figer, D.; Figueroa, O.; Harris, W.; Kowalski, M.; Maddox, R.; Martin, C.; McCammon, D.; Nordsieck, K.; Polidan, R.; Sanders, W.; Wilkinson, E.; Asrat
2011-12-01
The 50-year old NASA sounding rocket (SR) program has been successful in launching scientific payloads into space frequently and at low cost with a 85% success rate. In 2008 the NASA Astrophysics Sounding Rocket Assessment Team (ASRAT), set up to review the future course of the SR program, made four major recommendations, one of which now called Extended Duration Sounding Rocket (EDSR). ASRAT recommended a system capable of launching science payloads (up to 420 kg) into low Earth orbit frequently (1/yr) at low cost, with a mission duration of approximately 30 days. Payload selection would be based on meritorious high-value science that can be performed by migrating sub-orbital payloads to orbit. Establishment of this capability is a essential for NASA as it strives to advance technical readiness and lower costs for risk averse Explorers and flagship missions in its pursuit of a balanced and sustainable program and achieve big science goals within a limited fiscal environment. The development of a new generation of small, low-cost launch vehicles (SLV), primarily the SpaceX Falcon 1 and the Orbital Sciences Minotaur I has made this concept conceivable. The NASA Wallops Flight Facility (WFF)conducted a detailed engineering concept study, aimed at defining the technical characteristics of all phases of a mission, from design, procurement, assembly, test, integration and mission operations. The work was led by Dr. Raymond Cruddace, a veteran of the SR program and the prime mover of the EDSR concept. The team investigated details such as, the "FAA licensed contract" for launch service procurement, with WFF and NASA SMD being responsible for mission assurance which results in a factor of two cost savings over the current approach. These and other creative solutions resulted in a proof-of-concept Class D mission design that could have a sustained launch rate of at least 1/yr, a mission duration of up to about 3 months, and a total cost of $25-30 million for each mission. The payload includes a pointing system with arc second precision, a command and data system which can be configured to meet the unique requirements of a particular mission, and a solar cell-battery power system. Anticipating the tremendous need of access to space, Cruddace and his team included a capability of inclusion of a number of smaller secondary instruments, ranging in size from CubeSats to instruments weighing up to 100 lb. These secondary payloads could be ejected as needed by P-PODs. In this talk, we will summarize EDSR, a legacy of Ray Cruddace.
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, at left, executive director of the Center for the Advancement of Science in Space, and NASA Kennedy Space Center Director Bob Cabana, visit with Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
The Community Mentoring REU: A Novel Paradigm for Research Experiences for Undergraduates Programs
NASA Astrophysics Data System (ADS)
Kobulnicky, Henry; Maierhofer, Lara; Kobulnicky, Carol; Dale, Daniel A.
2018-01-01
Research Experience for Undergraduates programs were conceived to promote entry of college students into STEM disciplines. Evidence suggests that participating in REUs increases interest in STEM, conveys skills leading to STEM jobs and graduate study, increases science self-efficacy, builds professional networks for young scientists, and cultivates identity as a scientist. Nevertheless, the factors that mediate desired outcomes are still poorly understood, and persistence of negative mentoring experiences among REU participants motivates the design and study of novel approaches to preparing future STEM professionals. During five summers spanning 2012-2016 we implemented a "Community Mentoring" paradigm at the University of Wyoming's 10-week Astronomy REU program. In contrast to "traditional model (TM)" REUs that pair a single senior scientist mentor with a single junior mentee, community mentoring (CM) unites 6-8 undergraduates with 3-5 faculty (perhaps assisted by a graduate student or postdoc) on a collaborative team addressing a single science goal. In CM, students have access to a pool of mentors and a peer group reading the same literature, working in a common location, sharing equipment (in this case the WIRO 2.3 meter telescope), sharing data, and learning the same analysis skills. The community interacts daily, modeling the highly collaborative nature of modern scientific teams. Our study used an electronic survey consisting of 24 questions to compare a cohort of 28 CM students to a national control group of 77 students who conducted REUs elsewhere during the same period, typically under the TM. CM students report a significantly higher level of "learning from their peers", "learning to work on a science team", and "sense of community" compared to the TM cohort. The CM cohort also reports a higher overall level of satisfaction with the REU and a lower level of negative experiences, such as finding it difficult to get time with a mentor. This talk will review other lessons learned in five years of community mentoring as it describes an alternative paradigm for REUs.