The 1995 NASA High-Speed Research Program Sonic Boom Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1996-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing the development of viable reduced-boom High-Speed Civil Transport concepts. The Workshop included these sessions: Session 1 - Sonic Boom Propagation (Theoretical); Session 2 - Sonic Boom Propagation (Experimental); and Session 3 - Acceptability Studies - Human and Animal.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Sonic Boom Workshop on September 12-13, 1995. The workshop was designed to bring together NASAs scientists and engineers and their counterparts in industry, other Government agencies, and academia working together in the sonic boom element of NASAs High-Speed Research Program. Specific objectives of this workshop were to: (1) report the progress and status of research in sonic boom propagation, acceptability, and design; (2) promote and disseminate this technology within the appropriate technical communities; (3) help promote synergy among the scientists working in the Program; and (4) identify technology pacing, the development C, of viable reduced-boom High-Speed Civil Transport concepts. The Workshop was organized in four sessions: Sessions 1 Sonic Boom Propagation (Theoretical); Session 2 Sonic Boom Propagation (Experimental); Session 3 Acceptability Studies-Human and Animal; and Session 4 - Configuration Design, Analysis, and Testing.
One of many microphones arrayed under the path of the F-5E SSBE aircraft to record sonic booms
2004-01-13
One of many microphones arrayed under the path of the F-5E SSBE (Shaped Sonic Boom Experiment) aircraft to record sonic booms. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.
Flight test measurements and analysis of sonic boom phenomena near the shock wave extremity
NASA Technical Reports Server (NTRS)
Haglund, G. T.; Kane, E. J.
1973-01-01
The sonic boom flight test program conducted at Jackass Flats, Nevada, during the summer and fall of 1970 consisted of 121 sonic-boom-generating flights over the 1500 ft instrumented BREN tower. This test program was designed to provide information on several aspects of sonic boom, including caustics produced by longitudinal accelerations, caustics produced by steady flight near the threshold Mach number, sonic boom characteristics near lateral cutoff, and the vertical extent of shock waves attached to near-sonic airplanes. The measured test data, except for the near-sonic flight data, were analyzed in detail to determine sonic boom characteristics for these flight conditions and to determine the accuracy and the range of validity of linear sonic boom theory. The caustic phenomena observed during the threshold Mach number flights and during the transonic acceleration flights are documented and analyzed in detail. The theory of geometric acoustics is shown to be capable of predicting shock wave-ground intersections, and current methods for calculating sonic boom pressure signature away from caustics are shown to be reasonably accurate.
Sonic Boom Modeling Technical Challenge
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.
2007-01-01
This viewgraph presentation reviews the technical challenges in modeling sonic booms. The goal of this program is to develop knowledge, capabilities and technologies to enable overland supersonic flight. The specific objectives of the modeling are: (1) Develop and validate sonic boom propagation model through realistic atmospheres, including effects of turbulence (2) Develop methods enabling prediction of response of and acoustic transmission into structures impacted by sonic booms (3) Develop and validate psychoacoustic model of human response to sonic booms under both indoor and outdoor listening conditions, using simulators.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-23
A motorized glider prepares to take off from the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Flying with its engine off, the glider will be positioned above the 14,000-foot level to measure sonic booms created by agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-23
A motorized glider has taken off from the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Flying with its engine off, the glider will be positioned above the 14,000-foot level to measure sonic booms created by agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
A Study of Reflected Sonic Booms Using Airborne Measurements
NASA Technical Reports Server (NTRS)
Kantor, Samuel R.; Cliatt, Larry J.
2017-01-01
In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-22
NASA F-18 jets prepare for takeoff from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-22
An engineer in a control trailer at NASA's Kennedy Space Center in Florida monitors data before flights of agency F-18 jets to measure the effects of sonic booms. Several flights a day have been taking place the week of Aug. 21, 2017 as part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-22
NASA pilots board an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-22
A NASA F-18 jet is prepared for takeoff from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-22
A NASA F-18 jet takes off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Testing
2017-08-22
A NASA pilot boards an F-18 jet prior to take off from the agency's Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Several flights a day have been taking place the week of Aug. 21, 2017 to measure the effects of sonic booms. It is part of NASA's Sonic Booms in Atmospheric Turbulence, or SonicBAT II Program. NASA at Kennedy is partnering with the agency's Armstrong Flight Research Center in California, Langley Research Center in Virginia, and Space Florida for a program in which F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers measure the effects of low-altitude turbulence caused by sonic booms.
High-Speed Research: Sonic Boom, volume 1
NASA Technical Reports Server (NTRS)
Darden, Christine M. (Compiler)
1992-01-01
A High-Speed Sonic Boom Workshop was held at LaRC of Feb. 25-27, 1992. The purpose was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 1 contains papers related to atmospheric effects on the sonic-boom signature during propagation and on acceptability studies.
A Study of Reflected Sonic Booms Using Airborne Measurements
NASA Technical Reports Server (NTRS)
Kantor, Samuel R.; Cliatt, Larry J., II
2017-01-01
In support of ongoing efforts to bring commercial supersonic flight to the public, the Sonic Booms in Atmospheric Turbulence (SonicBAT) flight test was conducted at NASA Armstrong Flight Research Center. During this test, airborne sonic boom measurements were made using an instrumented TG-14 motor glider, called the Airborne Acoustic Measurement Platform (AAMP).During the flight program, the AAMP was consistently able to measure the sonic boom wave that was reflected off of the ground, in addition to the incident wave, resulting in the creation of a completely unique data set of airborne sonic boom reflection measurements. This paper focuses on using this unique data set to investigate the ability of sonic boom modeling software to calculate sonic boom reflections. Because the algorithms used to model sonic boom reflections are also used to model the secondary carpet and over the top booms, the use of actual flight data is vital to improving the understanding of the effects of sonic booms outside of the primary carpet. Understanding these effects becomes especially important as the return of commercial supersonic approaches, as well as ensuring the accuracy of mission planning for future experiments.
Recent Progress on Sonic Boom Research at NASA
NASA Technical Reports Server (NTRS)
Loubeau, Alexandra
2012-01-01
Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.
NASA Technical Reports Server (NTRS)
Hubbard, H. H.; Maglieri, D. J.
1990-01-01
Tables are provided of measured sonic boom signature data derived from supersonic flyover tests of the XB-70, B-58 and F-104 aircraft for ranges of altitude and Mach number. These tables represent a convenient hard copy version of available electronic files and complement preliminary information included in a reference National Sonic Boom Evaluation Office document.
High-Speed Research: Sonic Boom, volume 2
NASA Technical Reports Server (NTRS)
Darden, Christine M. (Compiler)
1992-01-01
A High-Speed Sonic Boom Workshop was held at NASA Langley Research Center on February 25-27, 1992. The purpose of the workshop was to make presentations on current research activities and accomplishments and to assess progress in the area of sonic boom since the program was initiated in FY-90. Twenty-nine papers were presented during the 2-1/2 day workshop. Attendees included representatives from academia, industry, and government who are actively involved in sonic-boom research. Volume 2 contains papers related to low sonic-boom design and analysis using both linear theory and higher order computational fluid dynamics (CFD) methods.
Status of sonic boom methodology and understanding
NASA Technical Reports Server (NTRS)
Darden, Christine M.; Powell, Clemans A.; Hayes, Wallace D.; George, Albert R.; Pierce, Allan D.
1989-01-01
In January 1988, approximately 60 representatives of industry, academia, government, and the military gathered at NASA-Langley for a 2 day workshop on the state-of-the-art of sonic boom physics, methodology, and understanding. The purpose of the workshop was to assess the sonic boom area, to determine areas where additional sonic boom research is needed, and to establish some strategies and priorities in this sonic boom research. Attendees included many internationally recognized sonic boom experts who had been very active in the Supersonic Transport (SST) and Supersonic Cruise Aircraft Research Programs of the 60's and 70's. Summaries of the assessed state-of-the-art and the research needs in theory, minimization, atmospheric effects during propagation, and human response are given.
NASA Technical Reports Server (NTRS)
Page, Juliet A.; Hodgdon, Kathleen K.; Krecker, Peg; Cowart, Robbie; Hobbs, Chris; Wilmer, Clif; Koening, Carrie; Holmes, Theresa; Gaugler, Trent; Shumway, Durland L.;
2014-01-01
The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods.
High-Speed Research: Sonic Boom, Volume 1
NASA Technical Reports Server (NTRS)
Edwards, Thomas A. (Editor)
1994-01-01
The second High-Speed Research Program Sonic Boom Workshop was held at NASA Ames Research Center May 12-14, 1993. The workshop was organized into three sessions dealing with atmospheric propagation, acceptability, and configuration design. Volume 1 includes papers on atmospheric propagation and acceptability studies. Significant progress is noted in these areas in the time since the previous workshop a year earlier. In particular, several papers demonstrate an improved capability to model the effect of atmospheric turbulence on sonic booms. This is a key issue in determining the stability and acceptability of shaped sonic booms. In the area of acceptability, the PLdB metric has withstood considerable scrutiny and is validated as a loudness metric for a wide variety of sonic boom shapes. The differential loudness of asymmetric sonic booms is better understood, too.
2017-08-17
In the Kennedy Space Center's Press Site auditorium, Larry Cliatt, SonicBAT Fluid Mechanics at Armstrong Flight Research Center in California, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.
2017-08-17
In the Kennedy Space Center's Press Site auditorium, Peter Coen, SonicBAT Mission Analysis at NASAโs Langley Research Center in Virginia, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.
2017-08-17
In the Kennedy Space Center's Press Site auditorium, Dale Ketcham chief of Strategic Alliances for Space Florida, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.
2017-08-17
In the Kennedy Space Center's Press Site auditorium, Laura Henning, public information officer for the Canaveral National Seashore, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.
Review of current sonic boom studies.
NASA Technical Reports Server (NTRS)
Kane, E. J.
1973-01-01
Several aspects of the sonic boom phenomena are currently under investigation at The Boeing Co. This work, supported by the NASA and the FAA, includes an in-depth analysis of sonic boom measurements recorded at the BREN tower, a summary and evaluation of sonic boom investigations done in the last decade and a half, and configuration studies to determine practical lower bound sonic boom limits. The BREN tower test program yielded unique and valuable data because it was the first time that vertical profile measurements were made through caustics produced by maneuvers and atmospheric refraction. The objective of the second effort is to compile in a single reference an annotated abstract, including significant results, for each published sonic boom study and to provide a comprehensive review of the current state of the art to aid future researchers. The configuration work is devoted toward determining the feasibility of supersonic transport type airplanes with a primary design goal of acceptable sonic boom characteristics. Each of these investigations is briefly reviewed and significant results are discussed.
Reactions of Residents to Long-Term Sonic Boom Noise Environments
NASA Technical Reports Server (NTRS)
Fields, James M.
1997-01-01
A combined social survey and noise measurement program has been completed in 14 communities in two regions of the western United States that have been regularly exposed to sonic booms for many years. A total of 1,573 interviews were completed. Three aspects of the sonic booms are most disturbing: being startled, noticing rattles or vibrations, and being concerned about the possibility of damage from the booms. Sonic boom annoyance is greater than that in a conventional aircraft environment with the same continuous equivalent noise exposure. The reactions in the two study regions differ in severity.
Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT
NASA Technical Reports Server (NTRS)
Fouladi, Kamran
1999-01-01
NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.
2017-08-17
In the Kennedy Space Center's Press Site auditorium, Matthew Kamlet of NASA Communications at the Armstrong Flight Research Center in California, speaks to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.
Evaluation of human response to structural vibration induced by sonic boom
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Czech, J.
1992-01-01
This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.
Potential for Sonic Boom Reduction of the Boeing HSCT
NASA Technical Reports Server (NTRS)
Haglund, George T.
1999-01-01
The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.
Quiet Sonic Booms: A NASA and Industry Progress Report
NASA Technical Reports Server (NTRS)
Larson, David Nils; Martin, Roy; Haering, Edward A.
2011-01-01
The purpose of this Oral Presentation is to present a progress report on NASA and Industry efforts related to Quiet Sonic Boom Program activities. This presentation will review changes in aircraft shaping to produce quiet supersonic booms and associated supersonic flight test methods and results. In addition, new flight test profiles have been recently developed that have allowed for the generation of sonic booms of varying intensity. These new flight test profiles have allowed for ground testing of the response of various building structures to sonic booms and the associated public acceptability to various sonic boom intensities. The new flight test profiles and associated ground measurement test methods will be reviewed. Finally, this Oral Presentation will review the International Regulatory requirements that would be involved to change aviation regulation and allow for overland quiet supersonic flight.
Origins and Overview of the Shaped Sonic Boom Demonstration Program
NASA Technical Reports Server (NTRS)
Pawlowski, Joseph W.; Graham, David H.; Boccadoro, Charles H.; Coen, Peter G.; Maglieri, Domenic J.
2005-01-01
The goal of the DARPA Shaped Sonic Boom Demonstration (SSBD) Program was to demonstrate for the first time in flight that sonic booms can be substantially reduced by incorporating specialized aircraft shaping techniques. Although mitigation of the sonic boom via specialized shaping techniques was theorized decades ago, until now, this theory had never been tested with a flight vehicle subjected to actual flight conditions in a real atmosphere. The demonstrative success, which occurred on 27 August 2003 with repeat flights in the supersonic corridor at Edwards Air Force Base, is a critical milestone in the development of next generation supersonic aircraft that could one day fly unrestricted over land and help usher in a new era of time-critical air transport. Pressure measurements obtained on the ground and in the air confirmed that the specific modifications made to a Northrop Grumman F-5E aircraft not only changed the shape of the shock wave signature emanating from the aircraft, but also produced a flat-top signature whose shape persisted, as predicted, as the pressure waves propagated through the atmosphere to the ground. This accomplishment represents a major advance towards reducing the startling and potentially damaging noise of a sonic boom. This paper describes the evolution of the SSBD program, including the rationale for test article selection, and provides an overview of the history making accomplishments achieved during the SSBD effort, as well as, the follow-on NASA Shaped Sonic Boom Experiment (SSBE) Program, whose goal was to further evaluate the characteristics and robustness of shaped boom signatures.
Laboratory study of sonic booms and their scaling laws. [ballistic range simulation
NASA Technical Reports Server (NTRS)
Toong, T. Y.
1974-01-01
This program undertook to seek a basic understanding of non-linear effects associated with caustics, through laboratory simulation experiments of sonic booms in a ballistic range and a coordinated theoretical study of scaling laws. Two cases of superbooms or enhanced sonic booms at caustics have been studied. The first case, referred to as acceleration superbooms, is related to the enhanced sonic booms generated during the acceleration maneuvers of supersonic aircrafts. The second case, referred to as refraction superbooms, involves the superbooms that are generated as a result of atmospheric refraction. Important theoretical and experimental results are briefly reported.
Experimental and Computational Sonic Boom Assessment of Lockheed-Martin N+2 Low Boom Models
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Durston, Donald A.; Elmiligui, Alaa A.; Walker, Eric L.; Carter, Melissa B.
2015-01-01
Flight at speeds greater than the speed of sound is not permitted over land, primarily because of the noise and structural damage caused by sonic boom pressure waves of supersonic aircraft. Mitigation of sonic boom is a key focus area of the High Speed Project under NASA's Fundamental Aeronautics Program. The project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions. A major objective of the project is to improve both computational and experimental capabilities for design of low-boom, high-efficiency aircraft. NASA and industry partners are developing improved wind tunnel testing techniques and new pressure instrumentation to measure the weak sonic boom pressure signatures of modern vehicle concepts. In parallel, computational methods are being developed to provide rapid design and analysis of supersonic aircraft with improved meshing techniques that provide efficient, robust, and accurate on- and off-body pressures at several body lengths from vehicles with very low sonic boom overpressures. The maturity of these critical parallel efforts is necessary before low-boom flight can be demonstrated and commercial supersonic flight can be realized.
Supersonic civil airplane study and design: Performance and sonic boom
NASA Technical Reports Server (NTRS)
Cheung, Samson
1995-01-01
Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.
A comparison of measured and theoretical predictions for STS ascent and entry sonic booms
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.
1983-01-01
Sonic boom measurements have been obtained during the flights of STS-1 through 5. During STS-1, 2, and 4, entry sonic boom measurements were obtained and ascent measurements were made on STS-5. The objectives of this measurement program were (1) to define the sonic boom characteristics of the Space Transportation System (STS), (2) provide a realistic assessment of the validity of xisting theoretical prediction techniques, and (3) establish a level of confidence for predicting future STS configuration sonic boom environments. Detail evaluation and reporting of the results of this program are in progress. This paper will address only the significant results, mainly those data obtained during the entry of STS-1 at Edwards Air Force Base (EAFB), and the ascent of STS-5 from Kennedy Space Center (KSC). The theoretical prediction technique employed in this analysis is the so called Thomas Program. This prediction technique is a semi-empirical method that required definition of the near field signatures, detailed trajectory characteristics, and the prevailing meteorological characteristics as an input. This analytical procedure then extrapolates the near field signatures from the flight altitude to an altitude consistent with each measurement location.
Extrapolation of sonic boom pressure signatures by the waveform parameter method
NASA Technical Reports Server (NTRS)
Thomas, C. L.
1972-01-01
The waveform parameter method of sonic boom extrapolation is derived and shown to be equivalent to the F-function method. A computer program based on the waveform parameter method is presented and discussed, with a sample case demonstrating program input and output.
NASA Technical Reports Server (NTRS)
Coen, Peter G.
1991-01-01
A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.
Summary of the 2008 NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Aftosmis, Michael J.; Campbell, Richard L.; Carter, Melissa B.; Cliff, Susan; Nangert, Linda S.
2013-01-01
The Supersonics Project of the NASA Fundamental Aeronautics Program organized an internal sonic boom workshop to evaluate near- and mid-field sonic boom prediction capability at the Fundamental Aeronautics Annual Meeting in Atlanta, Georgia on October 8, 2008. Workshop participants computed sonic boom signatures for three non-lifting bodies and two lifting configurations. A cone-cylinder, parabolic, and quartic bodies of revolution comprised the non-lifting cases. The lifting configurations were a simple 69-degree delta wing body and a complete low-boom transport configuration designed during the High Speed Research Project in the 1990s with wing, body, tail, nacelle, and boundary layer diverter components. The AIRPLANE, Cart3D, FUN3D, and USM3D ow solvers were employed with the ANET signature propagation tool, output-based adaptation, and a priori adaptation based on freestream Mach number and angle of attack. Results were presented orally at the workshop. This article documents the workshop, results, and provides context on previously available and recently developed methods.
Prediction of sonic boom at a focus
NASA Technical Reports Server (NTRS)
Plotkin, K. J.; Cantril, J. M.
1976-01-01
The behavior of sonic boom at a focus has been reviewed for the purpose of extending present sonic boom computational methods to include focal zones. The geometry of a focal zone - whether a smooth caustic, a cusped caustic, or a perfect focus to a point - determines the character of focused signatures. The seeming contradiction of various experimental data can be resolved by noting these differences. A ray acoustic analysis has been developed for quantitative determination of caustic geometry. The only reliable theory presently available for signatures at a focus is for a smooth caustic. There has been some controversy between theoretical and experimental values of a constant in the scaling law for this case. It has been found that this discrepancy can be resolved by accounting for the finite thickness of real sonic boom shock waves. These findings have been incorporated into an existing sonic boom computer program.
USAF Flight Test Investigation of Focused Sonic Booms: Project Have Bears
NASA Technical Reports Server (NTRS)
Downing, Micah; Zamot, Noel; Moss, Chris; Morin, Daniel; Wolski, Ed; Chung, Sukhwan; Plotkin, Kenneth; Maglieri, Domenic
1996-01-01
Supersonic operations from military aircraft generate sonic booms that can affect people, animals and structures. A substantial experimental data base exists on sonic booms for aircraft in steady flight and confidence in the predictive techniques has been established. All the focus sonic boom data that are in existence today were collected during the 60's and 70's as part of the information base to the US Supersonic Transport program and the French Jericho studies for the Concorde. These experiments formed the data base to develop sonic boom propagation and prediction theories for focusing. There is a renewed interest in high-speed transports for civilian application. Moreover, today's fighter aircraft have better performance capabilities, and supersonic flights ars more common during air combat maneuvers. Most of the existing data on focus booms are related to high-speed civil operations such as transitional linear accelerations and mild turns. However, military aircraft operating in training areas perform more drastic maneuvers such as dives and high-g turns. An update and confirmation of USAF prediction capabilities is required to demonstrate the ability to predict and control sonic boom impacts, especially those produced by air combat maneuvers.
NASA Technical Reports Server (NTRS)
Maglieri, D. J.; Huckel, V.; Henderson, H. R.
1972-01-01
Sonic-boom pressure signatures produced by the SR-71 aircraft at altitudes from 10,668 to 24,384 meters and Mach numbers 1.35 to 3.0 were obtained as an adjunct to the sonic boom evaluation program relating to structural and subjective response which was conducted in 1966-1967 time period. Approximately 2000 sonic-boom signatures from 33 flights of the SR-71 vehicle and two flights of the F-12 vehicle were recorded. Measured ground-pressure signatures for both on-track and lateral measuring station locations are presented and the statistical variations of the overpressure, positive impulse, wave duration, and shock-wave rise time are illustrated.
2017-08-17
In the Kennedy Space Center's Press Site auditorium, NASA and other government leaders speak to members of the media at a news conference to discuss upcoming flight tests to study the effects of sonic booms. Participants from left are: Matthew Kamlet of NASA Communications at the Armstrong Flight Research Center in California; Peter Coen, SonicBAT Mission Analysis at NASAโs Langley Research Center in Virginia; Larry Cliatt, SonicBAT Fluid Mechanics at Armstrong; Dale Ketcham chief of Strategic Alliances for Space Florida; and Laura Henning, public information officer for the Canaveral National Seashore. Kennedy is partnering with Armstrong, Langley and Space Florida for a program called SonicBAT for Sonic Booms in Atmospheric Turbulence. Starting in August, NASA F-18 jets will take off from the Shuttle Landing Facility and fly at supersonic speeds while agency researchers on the ground measure the effects of low-altitude turbulence on sonic booms. The study could lead to technology mitigating the annoying sonic booms making possible supersonic flights over populated areas.
Human Response to Simulated Low-Intensity Sonic Booms
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.
2004-01-01
NASA's High Speed Research (HSR ) program in the 1990s was intended to develop a technology base for a future High-Speed Civil Transport (HSCT). As part of this program, the NASA Langley Research Center sonic boom simulator (SBS) was built and used for a series of tests on subjective response to sonic booms. At the end of the HSR program, an HSCT was deemed impractical, but since then interest in supersonic flight has reawakened, this time focusing on a smaller aircraft suitable for a business jet. To respond to this interest, the Langley sonic boom simulator has been refurbished. The upgraded computer-controlled playback system is based on an SGI O2 computer, in place of the previous DEC MicroVAX. As the frequency response of the booth is not flat, an equalization filter is required. Because of the changes made during the renovation (new loudspeakers), the previous equalization filter no longer performed as well as before, so a new equalization filter has been designed. Booms to be presented in the booth are preprocessed using the filter. When the preprocessed signals are presented into the booth and measured with a microphone, the results are very similar to the intended shapes. Signals with short rise times and sharp "corners" are observed to have a small amount of "ringing" in the response. During the HSR program a considerable number of subjective tests were completed in the SBS. A summary of that research is given in Leatherwood et al. (Individual reports are available at http://techreports.larc.nasa.gov/ltrs/ltrs.html.) Topics of study included shaped sonic booms, asymmetrical booms, realistic (recorded) boom waveforms, indoor and outdoor booms shapes, among other factors. One conclusion of that research was that a loudness metric, like the Stevens Perceived Level (PL), predicted human reaction much more accurately than overpressure or unweighted sound pressure level. Structural vibration and rattle were not included in these studies.
Detection and assessment of secondary sonic booms in New England
DOT National Transportation Integrated Search
1980-05-01
This report documents the results of a secondary sonic boom detection and assessment program conducted by the U.S. Dept. of Transportation, Transportation Systems Center in New England during the summer of 1979. Measurements of both acoustic and infr...
Ground-based sensors for the SR-71 sonic boom propagation experiment
NASA Technical Reports Server (NTRS)
Norris, Stephen R.; Haering, Edward A., Jr.; Murray, James E.
1995-01-01
This paper describes ground-level measurements of sonic boom signatures made as part of the SR-71 sonic boom propagation experiment recently completed at NASA Dryden Flight Research Center, Edwards, California. Ground level measurements were the final stage of this experiment which also included airborne measurements at near and intermediate distances from an SR-71 research aircraft. Three types of sensors were deployed to three station locations near the aircraft ground track. Pressure data were collected for flight conditions from Mach 1.25 to Mach 1.60 at altitudes from 30,000 to 48,000 ft. Ground-level measurement techniques, comparisons of data sets from different ground sensors, and sensor system strengths and weaknesses are discussed. The well-known N-wave structure dominated the sonic boom signatures generated by the SR-71 aircraft at most of these conditions. Variations in boom shape caused by atmospheric turbulence, focusing effects, or both were observed for several flights. Peak pressure and boom event duration showed some dependence on aircraft gross weight. The sonic boom signatures collected in this experiment are being compiled in a data base for distribution in support of the High Speed Research Program.
NASA Technical Reports Server (NTRS)
Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie
2013-01-01
In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.
Residents' reactions to long-term sonic boom exposure: Preliminary results
NASA Technical Reports Server (NTRS)
Fields, James M.; Moulton, Carey; Baumgartner, Robert M.; Thomas, Jeff
1994-01-01
This presentation is about residents' reactions to sonic booms in a long-term sonic boom exposure environment. Although two phases of the data collection have been completed, the analysis of the data has only begun. The results are thus preliminary. The list of four authors reflects the complex multi-disciplinary character of any field study such as this one. Carey Moulton is responsible for Wyle Laboratories' acoustical data collection effort. Robert Baumgartner and Jeff Thomas of HBRS, a social science research firm, are responsible for social survey field work and data processing. The study is supported by the NASA Langley Research Center. The study has several objectives. The preliminary data addresses two of the primary objectives. The first objective is to describe the reactions to sonic booms of people who are living where sonic booms are a routine, recurring feature of the acoustical environment. The second objective is to compare these residents' reactions to the reactions of residents who hear conventional aircraft noise around airports. Here is an overview of the presentation. This study will first be placed in the context of previous community survey research on sonic booms. Next the noise measurement program will be briefly described and part of a social survey interview will be presented. Finally data will be presented on the residents' reactions and these reactions will be compared with reactions to conventional aircraft. Twelve community studies of residents' reactions to sonic booms were conducted in the United States and Europe in the 1960's and early 1970's. None of the 12 studies combined three essential ingredients that are found in the present study. Residents' long-term responses are related to a measured noise environment. Sonic booms are a permanent feature of the residential environment. The respondents' do not live on a military base. The present study is important because it provides the first dose/response relationship for sonic booms that could be expected to apply to residents in civilian residential areas.
MMOC- MODIFIED METHOD OF CHARACTERISTICS SONIC BOOM EXTRAPOLATION
NASA Technical Reports Server (NTRS)
Darden, C. M.
1994-01-01
The Modified Method of Characteristics Sonic Boom Extrapolation program (MMOC) is a sonic boom propagation method which includes shock coalescence and incorporates the effects of asymmetry due to volume and lift. MMOC numerically integrates nonlinear equations from data at a finite distance from an airplane configuration at flight altitude to yield the sonic boom pressure signature at ground level. MMOC accounts for variations in entropy, enthalpy, and gravity for nonlinear effects near the aircraft, allowing extrapolation to begin nearer the body than in previous methods. This feature permits wind tunnel sonic boom models of up to three feet in length, enabling more detailed, realistic models than the previous six-inch sizes. It has been shown that elongated airplanes flying at high altitude and high Mach numbers can produce an acceptably low sonic boom. Shock coalescence in MMOC includes three-dimensional effects. The method is based on an axisymmetric solution with asymmetric effects determined by circumferential derivatives of the standard shock equations. Bow shocks and embedded shocks can be included in the near-field. The method of characteristics approach in MMOC allows large computational steps in the radial direction without loss of accuracy. MMOC is a propagation method rather than a predictive program. Thus input data (the flow field on a cylindrical surface at approximately one body length from the axis) must be supplied from calculations or experimental results. The MMOC package contains a uniform atmosphere pressure field program and interpolation routines for computing the required flow field data. Other user supplied input to MMOC includes Mach number, flow angles, and temperature. MMOC output tabulates locations of bow shocks and embedded shocks. When the calculations reach ground level, the overpressure and distance are printed, allowing the user to plot the pressure signature. MMOC is written in FORTRAN IV for batch execution and has been implemented on a CDC 170 series computer operating under NOS with a central memory requirement of approximately 223K of 60 bit words. This program was developed in 1983.
2004-01-13
A United States Air Force Test Pilot School Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS (Boom Amplitudes Direction System) sensor following flight at an altitude of 10 thousand feet under the path of the F-5E SSBE aircraft. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.
NASA Acting Deputy Chief Technologist Briefed on Operation of Sonic Boom Prediction Algorithms
2017-08-29
NASA Acting Deputy Chief Technologist Vicki Crips being briefed by Tim Cox, Controls Engineer at NASAโs Armstrong Flight Research Center at Edwards, California, on the operation of the sonic boom prediction algorithms being used in engineering simulation for the NASA Supersonic Quest program.
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.
1993-01-01
A study was performed to determine the feasibility of establishing if a 'shaped' sonic boom signature, experimentally shown in wind tunnel models out to about 10 body lengths, will persist out to representative flight conditions of 200 to 300 body lengths. The study focuses on the use of a relatively large supersonic remotely-piloted and recoverable vehicle. Other simulation methods that may accomplish the objective are also addressed and include the use of nonrecoverable target drones, missiles, full-scale drones, very large wind tunnels, ballistic facilities, whirling-arm techniques, rocket sled tracks, and airplane nose probes. In addition, this report will also present a background on the origin of the feasibility study including a brief review of the equivalent body concept, a listing of the basic sonic boom signature characteristics and requirements, identification of candidate vehicles in terms of desirable features/availability, and vehicle characteristics including geometries, area distributions, and resulting sonic boom signatures. A program is developed that includes wind tunnel sonic boom and force models and tests for both a basic and modified vehicles and full-scale flight tests.
Sonic Booms And Building Vibration Revisited
NASA Astrophysics Data System (ADS)
Sutherland, Louis C.; Kryter, Karl D.; Czech, Joseph
2006-05-01
Lessons learned from the 1960's sonic boom tests at St. Louis, Oklahoma City and at Edwards Air Force Base (EAFB) and more recently in communities near EAFB and Nellis AFB are briefly reviewed from the standpoint of building vibration and rattle response induced by the sonic boom signature. Available data on the vibro-acoustic threshold of rattle are considered along with the principal sonic boom signature parameters, peak overpressure and duration, which drive the low frequency vibration response of buildings to sonic booms. Implications for the current effort to develop an acceptable sonic boom signature are considered with this overview of current understanding of building vibration response to sonic booms. Possible gaps in this current knowledge for current technology boom signatures are considered.
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Reiners, S. J.
1975-01-01
A computerized procedure for predicting sonic boom from experimental near-field overpressure data has been developed. The procedure extrapolates near-field pressure signatures for a specified flight condition to the ground by the Thomas method. Near-field pressure signatures are interpolated from a data base of experimental pressure signatures. The program is an independently operated ODIN (Optimal Design Integration) program which obtains flight path information from other ODIN programs or from input.
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Reiners, S. J.; Hague, D. S.
1975-01-01
A computerized method for storing, updating and augmenting experimentally determined overpressure signatures has been developed. A data base of pressure signatures for a shuttle type vehicle has been stored. The data base has been used for the prediction of sonic boom with the program described in Volume I.
NASA Technical Reports Server (NTRS)
Findley, D. S.; Huckel, V.; Henderson, H. R.
1975-01-01
In order to evaluate reaction of people to sonic booms of varying overpressures and time durations, a series of closely controlled and systematic flight test studies were conducted in the vicinity of Edwards AFB, California, from June 3 to June 23, 1966. The dynamic responses of several building structures were measured as a part of these studies, and the measurements made in a one-story residence structure (Edwards test structure No. 1) are presented. Sample acceleration and strain recordings are presented from F-104, B-58, and XB-70 sonic-boom exposures, along with tabulations of the maximum acceleration and strain values measured for each one of about 140 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
Sonic-boom-induced building structure responses including damage.
NASA Technical Reports Server (NTRS)
Clarkson, B. L.; Mayes, W. H.
1972-01-01
Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.
2017-08-24
Teams from NASA's Armstrong Flight Research Center in California, and Langley Research Center in Virginia, are conducting supersonic flight tests to study the ways sonic booms travel. The Sonic Booms in Atmospheric Turbulence flight series, or SonicBAT, features a F/A-18 research aircraft to create sonic booms, flying at supersonic speeds just off the coast of Florida. In order to understand how atmospheric turbulence in a humic climate impacts how sonic booms travel, NASA is flying a TG-14 motorized glider to obtain data on sonic booms before they travel through atmospheric turbulence. That data is compared with similar data captured by two microphone arrays on the ground that hear sonic booms that have traveled through atmospheric turbulence.
High-Quality Seismic Observations of Sonic Booms
NASA Technical Reports Server (NTRS)
Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.
2011-01-01
The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.
Superboom Caustic Analysis and Measurement Program (SCAMP) Final Report
NASA Technical Reports Server (NTRS)
Page, Juliet; Plotkin, Ken; Hobbs, Chris; Sparrow, Vic; Salamone, Joe; Cowart, Robbie; Elmer, Kevin; Welge, H. Robert; Ladd, John; Maglieri, Domenic;
2015-01-01
The objectives of the Superboom Caustic Analysis and Measurement (SCAMP) Program were to develop and validate, via flight-test measurements, analytical models for sonic boom signatures in and around focal zones as they are expected to occur during commercial aircraft transition from subsonic to supersonic flight, and to apply these models to focus boom prediction of low-boom aircraft designs. The SCAMP program has successfully investigated sonic boom focusing both analytically and experimentally, while gathering a comprehensive empirical flight test and acoustic dataset, and developing a suite of focused sonic boom prediction tools. An experimental flight and acoustic measurement test was designed during the initial year of the SCAMP program, with execution of the SCAMP flight test occurring in May 2011. The current SCAMP team, led by Wyle, includes partners from the Boeing Company, Pennsylvania State University, Gulfstream Aerospace, Eagle Aeronautics, and Central Washington University. Numerous collaborators have also participated by supporting the experiment with human and equipment resources at their own expense. The experiment involved precision flight of a McDonnell Douglas (now Boeing) F-18B executing different maneuvers that created focused sonic booms. The maneuvers were designed to center on the flight regime expected for commercial supersonic aircraft transonic transition, and also span a range of caustic curvatures in order to provide a variety of conditions for code validations. The SCAMP experiment was designed to capture concurrent F-18B on-board flight instrumentation data, high-fidelity ground-based and airborne acoustic data, and surface and upper air meteorological data. Close coordination with NASA Dryden resulted in the development of new experimental instrumentation and techniques to facilitate the SCAMP flight-test execution, including the development of an F-18B Mach rate cockpit display, TG-14 powered glider in-flight sonic boom measurement instrumentation and "Where's the Focus?" (WTF) software for near-real time way-point computation accounting for local atmospherics. In May 2011, 13 F-18B flights were conducted during 5 flying days over a 2 week period. A densely populated 10,000 ft-long ground acoustic array with 125-ft microphone spacing was designed to capture pre-, focus, and post-focus regions. The ground-based acoustic array was placed in a nominally east-west orientation in the remote Cuddeback lakebed region, north of Edwards AFB. This area was carefully selected to avoid placing focused booms on populated areas or solar power facilities. For the SCAMP measurement campaign, approvals were obtained to temporarily extend the Black Mountain supersonic corridor northward by three miles. The SCAMP flight tests successfully captured 70 boom events, with 61 focus passes, and 9 calibration passes. Seventeen of the focus passes and three of the calibration passes were laterally offset; with the others being centerline flights. Airborne incoming sonic boom wave measurements were measured by the TG-14 for 10 of the F-18B flight passes including one maximum focus signature, several N-u combinations, several overlapped N-u signatures, and several evanescent waves. During the 27-month program, the SCAMP team developed a suite of integrated computer codes with sonic boom focusing predictive capabilities: PCBoom, Lossy Nonlinear Tricomi Equation Method (LNTE) and the Nonlinear Progressive wave Equation (NPE) method. PCBoom propagates the rays through the atmosphere and, in addition to legacy focus signature prediction based on the Gill-Seebass method, provides input source characteristics and propagation parameters to LNTE and NPE. LNTE, a Tricomi solver that incorporates atmospheric losses, computes the focus signature at the focus, and computes the focus signature in the vicinity of the focal zone, including the evanescent and post-focus zones. LNTE signature auralization from low-boom vehicle designs has been demonstrated in the NASA Langley Interior Effects Room (IER). The NPE has also been validated for use in prediction of focused ground boom signatures in sonic boom focal zones. The NPE formulation has the capability to incorporate atmospheric turbulence in the predictions. This has been applied to sonic boom propagation in the past. Prediction of turbulence effects on focal zone signatures was not, however, explored during the SCAMP program.
The Effect of Sonic Booms on Earthquake Warning Systems
NASA Technical Reports Server (NTRS)
Wurman, Gilead; Haering, Edward A, Jr.; Price, Michael J.
2011-01-01
Several aerospace companies are designing quiet supersonic business jets for service over the United States. These aircraft have the potential to increase the occurrence of mild sonic booms across the country. This leads to interest among earthquake warning (EQW) developers and the general seismological community in characterizing the effect of sonic booms on seismic sensors in the field, their potential impact on EQW systems, and means of discriminating their signatures from those of earthquakes. The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. (SWS) and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on EQW sensors. The study consists of exposing high-sample-rate (1000 sps) triaxial accelerometers to sonic booms with overpressures ranging from 10 to 600 Pa in the free field and the built environment. The accelerometers record the coupling of the sonic boom to the ground and surrounding structures, while microphones record the acoustic wave above ground near the sensor. Sonic booms are broadband signals with more high-frequency content than earthquakes. Even a 1000 sps accelerometer will produce a significantly aliased record. Thus the observed peak ground velocity is strongly dependent on the sampling rate, and increases as the sampling rate is reduced. At 1000 sps we observe ground velocities that exceed those of P-waves from ML 3 earthquakes at local distances, suggesting that sonic booms are not negligible for EQW applications. We present the results of several experiments conducted under SonicBREWS showing the effects of typical-case low amplitude sonic booms and worst-case high amplitude booms. We show the effects of various sensor placements and sensor array geometries. Finally, we suggest possible avenues for discriminating sonic booms from earthquakes for the purposes of EQW.
Sonic-boom research: Selected bibliography with annotation
NASA Technical Reports Server (NTRS)
Hubbard, H. H.; Maglieri, D. J.; Stephens, D. G.
1986-01-01
Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents.
Sonic Boom Ocean Penetration: Noise Metric Comparison and Initial Focusing Results
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1996-01-01
The purpose of the present research is to determine the impact by sonic boom noise penetration into the ocean. Since the 1994 LaRC High Speed Research Program Sonic Boom Workshop several new results have been obtained. This talk reviews these results, and emphasizes the two most important findings. The first major result is an improved understanding of the noise spectra of the penetrating sonic boom. It was determined that weighted sound exposure levels decrease with deeper ocean depths significantly faster than unweighted sound exposure levels. This is because low frequencies penetrate the ocean deeper than high frequencies. Several noise metrics were used including peak, SEL, C-SEL, A-SEL, and PLdB, and results are given for all. These results are important because they show that the sonic boom noise impact on marine life a few meters below the ocean surface may be significantly lower using weighted sound levels than if one were to measure the impact using unweighted levels. The other major finding is the first estimate of the worst case peak levels produced by a penetrating sonic boom being focused by a sinusoidal ocean surface. The method of analysis chosen was computational, a time domain finite difference algorithm. The method is outlined and then example results are presented. For rounded sonic boom waveforms incident on a sinusoidal ocean surface, it is shown that the percentage increase or decrease in pressure is only occasionally larger than 10%, rarely 25%. These fluctuations indicate, under the assumptions already given, that any increase or decrease in sound level underwater due to focusing or defocusing should be small, less than 3 dB.
Display Provides Pilots with Real-Time Sonic-Boom Information
NASA Technical Reports Server (NTRS)
Haering, Ed; Plotkin, Ken
2013-01-01
Supersonic aircraft generate shock waves that move outward and extend to the ground. As a cone of pressurized air spreads across the landscape along the flight path, it creates a continuous sonic boom along the flight track. Several factors can influence sonic booms: weight, size, and shape of the aircraft; its altitude and flight path; and weather and atmospheric conditions. This technology allows pilots to control the impact of sonic booms. A software system displays the location and intensity of shock waves caused by supersonic aircraft. This technology can be integrated into cockpits or flight control rooms to help pilots minimize sonic boom impact in populated areas. The system processes vehicle and flight parameters as well as data regarding current atmospheric conditions. The display provides real-time information regarding sonic boom location and intensity, enabling pilots to make the necessary flight adjustments to control the timing and location of sonic booms. This technology can be used on current-generation supersonic aircraft, which generate loud sonic booms, as well as future- generation, low-boom aircraft, anticipated to be quiet enough for populated areas.
Solution of the lossy nonlinear Tricomi equation with application to sonic boom focusing
NASA Astrophysics Data System (ADS)
Salamone, Joseph A., III
Sonic boom focusing theory has been augmented with new terms that account for mean flow effects in the direction of propagation and also for atmospheric absorption/dispersion due to molecular relaxation due to oxygen and nitrogen. The newly derived model equation was numerically implemented using a computer code. The computer code was numerically validated using a spectral solution for nonlinear propagation of a sinusoid through a lossy homogeneous medium. An additional numerical check was performed to verify the linear diffraction component of the code calculations. The computer code was experimentally validated using measured sonic boom focusing data from the NASA sponsored Superboom Caustic and Analysis Measurement Program (SCAMP) flight test. The computer code was in good agreement with both the numerical and experimental validation. The newly developed code was applied to examine the focusing of a NASA low-boom demonstration vehicle concept. The resulting pressure field was calculated for several supersonic climb profiles. The shaping efforts designed into the signatures were still somewhat evident despite the effects of sonic boom focusing.
Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.
Doebler, William J; Sparrow, Victor W
2017-06-01
The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from sonic booms. Eight N-wave shaped sonic booms from NASA's FaINT experiment and five simulated "low-boom" sonic booms were turbulized by Locey's ten atmospheric filter functions. The B-weighted sound exposure level value changed the least due to the turbulence filters for twelve of thirteen booms. This makes it the most turbulence stable metric which may be useful for quiet supersonic aircraft certification.
[Changes of pulse rate caused by sonic bomms during sleep (author's transl)].
Griefahn, B
1975-12-05
In two experimental series (19 resp. 53 nights, 2 different persons in each series, test-time 10.30 p.m. to 3.00 a.m.) pulse rate after sonic booms had been recorded during sleep. In the first 3 nights the subjects slept undisturbed by noise. In the following 11 resp. 30 nights sonic booms were applied alternately 2 or 4 times. In the main series after 10 more nights without any noise 4 nights with 8 and 16 sonic booms alternately followed. The last 6 undisturbed nights in both series were used as comparison phase. The interval between two sonic booms was 40 min in nights with 2 booms, 20 min in nights with 4 sonic booms and in the nights with 8 and 16 sonic booms 8.6 resp. 4.6 min. Sound level of the sonic booms ranged from 0.48 mbar to 1.45 mbar, 1 mbar [83.5 dB (A)] in the average. The first sonic boom was applied if one of the two subjects had entered the deepest stage of sleep. Sonic booms induced a biphasic reaction in pulse rate. After an initial increase in frequency with a maximum in the 4th sec pulse rate decreased below the value before sonic boom; it was followed by a slow increase towards the baseline value. This reaction was analysed with special regard to the following factors: 1. Intensity. Due to very fast increase of noise intensity there was no significant correlation between the intensity of sonic boom and the pulse reaction. 2. Exogenic variables. There is no significant connection between postboom pulse rate and noiseless time before the sonic boom, the duration of the test series and the ambient temperature. 3. Endogenic variables. No correlation could be found between the stage of sleep and the reaction. On the contrary a very significant correlation was found between the maximum of postboom increase of pulse rate and the pulse rate before boom. With increasing pulse rate the extent of reaction becomes smaller.
2003-08-25
NASA's F-15B research testbed jet from NASA's Dryden Flight Research Center flew in the supersonic shockwave of a Northrop Grumman Corp. modified U.S. Navy F-5E jet in support of the Shaped Sonic Boom Demonstration (SSBD) project, which is part of the DARPA's Quiet Supersonic Platform (QSP) program. On Aug. 27, 2003, the F-5 SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.
Design and Computational/Experimental Analysis of Low Sonic Boom Configurations
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.
1999-01-01
Recent studies have shown that inviscid CFD codes combined with a planar extrapolation method give accurate sonic boom pressure signatures at distances greater than one body length from supersonic configurations if either adapted grids swept at the approximate Mach angle or very dense non-adapted grids are used. The validation of CFD for computing sonic boom pressure signatures provided the confidence needed to undertake the design of new supersonic transport configurations with low sonic boom characteristics. An aircraft synthesis code in combination with CFD and an extrapolation method were used to close the design. The principal configuration of this study is designated LBWT (Low Boom Wing Tail) and has a highly swept cranked arrow wing with conventional tails, and was designed to accommodate either 3 or 4 engines. The complete configuration including nacelles and boundary layer diverters was evaluated using the AIRPLANE code. This computer program solves the Euler equations on an unstructured tetrahedral mesh. Computations and wind tunnel data for the LBWT and two other low boom configurations designed at NASA Ames Research Center are presented. The two additional configurations are included to provide a basis for comparing the performance and sonic boom level of the LBWT with contemporary low boom designs and to give a broader experiment/CFD correlation study. The computational pressure signatures for the three configurations are contrasted with on-ground-track near-field experimental data from the NASA Ames 9x7 Foot Supersonic Wind Tunnel. Computed pressure signatures for the LBWT are also compared with experiment at approximately 15 degrees off ground track.
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.; Gionfriddo, Thomas A.
1994-01-01
In this study there were two primary tasks. The first was to develop an algorithm for quantifying the distortion in a sonic boom. Such an algorithm should be somewhat automatic, with minimal human intervention. Once the algorithm was developed, it was used to test the hypothesis that the cause of a sonic boom distortion was due to atmospheric turbulence. This hypothesis testing was the second task. Using readily available sonic boom data, we statistically tested whether there was a correlation between the sonic boom distortion and the distance a boom traveled through atmospheric turbulence.
Lateral spread of sonic boom measurements from US Air Force boomfile flight tests
NASA Technical Reports Server (NTRS)
Downing, J. Micah
1992-01-01
A series of sonic boom flight tests were conducted by the US Air Force at Edwards AFB in 1987 with current supersonic DOD aircraft. These tests involved 43 flights by various aircraft at different Mach number and altitude combinations. The measured peak overpressures to predicted values as a function of lateral distance are compared. Some of the flights are combined into five groups because of the varying profiles and the limited number of sonic booms obtained during this study. The peak overpressures and the lateral distances are normalized with respect to the Carlson method predicted centerline overpressures and lateral cutoff distances, respectively, to facilitate comparisons between sonic boom data from similar flight profiles. It is demonstrated that the data agrees with sonic boom theory and previous studies and adds to the existing sonic boom database by including sonic boom signatures, tracking, and weather data in a digital format.
Loudness and annoyance response to simulated outdoor and indoor sonic booms
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1993-01-01
The sonic boom simulator of the Langley Research Center was used to quantify subjective loudness and annoyance response to simulated indoor and outdoor sonic boom signatures. The indoor signatures were derived from the outdoor signatures by application of house filters that approximated the noise reduction characteristics of a residential structure. Two indoor listening situations were simulated: one with the windows open and the other with the windows closed. Results were used to assess loudness and annoyance as sonic boom criterion measures and to evaluate several metrics as estimators of loudness and annoyance. The findings indicated that loudness and annoyance were equivalent criterion measures for outdoor booms but not for indoor booms. Annoyance scores for indoor booms were significantly higher than indoor loudness scores. Thus, annoyance was recommended as the criterion measure of choice for general use in assessing sonic boom subjective effects. Perceived level was determined to be the best estimator of annoyance for both indoor and outdoor booms, and of loudness for outdoor booms. It was recommended as the metric of choice for predicting sonic boom subjective effects.
Lateral Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Arnac, Sarah R.; Hill, Michael A.
2016-01-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center (AFRC) and the NASA Langley Research Center (LaRC), in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics near the sonic boom carpet extremity. The FaINT was an effort that collected finely-space sonic boom data across the entire lateral cutoff transition region. A major objective of the effort was to investigate the acoustic phenomena that occur at the audible edge of a sonic boom carpet, including the transition and shadow zones. A NASA F-18B aircraft made supersonic passes such that its sonic boom carpet transition zone would intersect a linear 60-microphone, 7500-ft long array. A TG-14 motor glider equipped with a microphone on its wing also attempted to capture the same sonic boom rays that were measured on the ground, at altitudes of 3000 - 6000 ft above ground level. This paper determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, and established a value of 65 dB as a limit for the acoustic levels defining the lateral extent of a sonic boom's noise region; analyzed the change in sonic boom levels as a function of distance from flight path both on the ground and 4500 ft above the ground; and compared between sonic boom measurements and numerical predictions.
NASA Astrophysics Data System (ADS)
Jung, Timothy Paul
Commercial supersonic travel has strong business potential; however, in order for the Federal Aviation Administration to lift its ban on supersonic flight overland, designers must reduce aircraft sonic boom strength to an acceptable level. An efficient methodology and associated tools for designing aircraft for minimized sonic booms are presented. The computer-based preliminary design tool, RapidF, based on modified linear theory, enables quick assessment of an aircraft's sonic boom with run times less than 30 seconds on a desktop computer. A unique feature of RapidF is that it tracks where on the aircraft each segment of the of the sonic boom came from, enabling precise modifications, speeding the design process. Sonic booms from RapidF are compared to flight test data, showing that it is capability of predicting a sonic boom duration, overpressure, and interior shock locations. After the preliminary design is complete, scaled flight tests should be conducted to validate the low boom design. When conducting such tests, it is insufficient to just scale the length; thus, equations to scale the weight and propagation distance are derived. Using RapidF, a conceptual supersonic business jet design is presented that uses F-function lobe balancing to create a frozen sonic boom using lifting surfaces. The leading shock is reduced from 1.4 to 0.83 psf, and the trailing shock from 1.2 to 0.87 psf, 41% and 28% reductions respectfully. By changing the incidence angle of the surfaces, different sonic boom shapes can be created, and allowing the lobes to be re-balanced for new flight conditions. Computational fluid dynamics is conducted to validate the sonic boom predictions. Off-design analysis is presented that varies weight, altitude, Mach number, and propagation angle, demonstrating that lobe-balance is robust. Finally, the Perceived Level of Loudness metric is analyzed, resulting in a modified design that incorporates other boom minimization techniques to further reduce the sonic boom.
2003-08-04
Northrop Grumman Corporation's modified U.S. Navy F-5E Shaped Sonic Boom Demonstration (SSBD) aircraft flies over Lake Isabella, California on Aug. 4, 2003. NASA Dryden provided range, air and ground data-gathering support for the SSBD project, which is part of DARPA's Quiet Supersonic Platform (QSP) program.
DOT National Transportation Integrated Search
1974-09-01
Two separate studies are reported. The first attempted to determine a sonic boom exposure level below which startle reactions would not occur. Subjects were exposed indoors to six simulated sonic booms having various outside overpressures. In the sec...
Subjective response to sonic booms having different shapes, rise times, and durations
NASA Technical Reports Server (NTRS)
Mccurdy, David A.
1994-01-01
Two laboratory experiments were conducted to quantify the subjective response of people to simulated outdoor sonic booms having different pressure signatures. The specific objectives of the experiments were to compare subjective response to sonic booms when described in terms of 'loudness' and 'annoyance'; to determine the ability of various noise metrics to predict subjective response to sonic booms; to determine the effects on subjective response of rise time, duration, and level; and to compare the subjective response to 'N-wave' sonic boom signatures with the subjective response to 'minimized' sonic boom signatures. The experiments were conducted in a computer-controlled, man-rated sonic boom simulator capable of reproducing user-specified pressure signatures for a wide range of sonic boom parameters. One hundred and fifty sonic booms representing different combinations of two wave shapes, four rise times, seven durations, and three peak overpressures were presented to 36 test subjects in each experiment. The test subjects in the first experiment made judgments of 'loudness' while the test subjects in the second experiment judged 'annoyance.' Subjective response to sonic booms was the same whether expressed in terms of loudness or in terms of annoyance. Analyses of several different noise metrics indicated that A-weighted sound exposure level and Perceived Level were the best predictors of subjective response. Further analyses indicated that, of these two noise metrics, only Perceived Level completely accounted for the effects of wave shape, rise time, and peak overpressure. Neither metric fully accounted for the effect of duration. However, the magnitude of the duration effect was small over the very wide range of durations considered.
Simple atmospheric perturbation models for sonic-boom-signature distortion studies
NASA Technical Reports Server (NTRS)
Ehernberger, L. J.; Wurtele, Morton G.; Sharman, Robert D.
1994-01-01
Sonic-boom propagation from flight level to ground is influenced by wind and speed-of-sound variations resulting from temperature changes in both the mean atmospheric structure and small-scale perturbations. Meteorological behavior generally produces complex combinations of atmospheric perturbations in the form of turbulence, wind shears, up- and down-drafts and various wave behaviors. Differences between the speed of sound at the ground and at flight level will influence the threshold flight Mach number for which the sonic boom first reaches the ground as well as the width of the resulting sonic-boom carpet. Mean atmospheric temperature and wind structure as a function of altitude vary with location and time of year. These average properties of the atmosphere are well-documented and have been used in many sonic-boom propagation assessments. In contrast, smaller scale atmospheric perturbations are also known to modulate the shape and amplitude of sonic-boom signatures reaching the ground, but specific perturbation models have not been established for evaluating their effects on sonic-boom propagation. The purpose of this paper is to present simple examples of atmospheric vertical temperature gradients, wind shears, and wave motions that can guide preliminary assessments of nonturbulent atmospheric perturbation effects on sonic-boom propagation to the ground. The use of simple discrete atmospheric perturbation structures can facilitate the interpretation of the resulting sonic-boom propagation anomalies as well as intercomparisons among varied flight conditions and propagation models.
Subjective response of people to simulated sonic booms in their homes
NASA Technical Reports Server (NTRS)
McCurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David
2004-01-01
In order to determine the effect of the number of sonic boom occurrences on annoyance, a computer-based system was developed for studying the subjective response of people to the occurrence of simulated sonic booms in their homes. The system provided a degree of control over the noise exposure not found in community surveys and a degree of situational realism not available in the laboratory. A system was deployed for eight weeks in each of 33 homes. Each day from 4 to 63 sonic booms were played as the test subject went about his or her normal activities. At the end of the day, the test subjects rated their annoyance to the sonic booms heard during the day. The sonic booms consisted of different combinations of waveforms, levels, and occurrence rates. The experiment confirmed that the increase in annoyance resulting from multiple occurrences can be modeled by the addition of the term "10 * log(number of occurrences)" to the sonic boom level. Of several noise metrics considered, perceived level was the best annoyance predictor. Comparisons of the subjective responses to the different sonic boom waveforms found no differences that were not accounted for by the noise metrics.
Laboratory Headphone Studies of Human Response to Low-Amplitude Sonic Booms and Rattle Heard Indoors
NASA Technical Reports Server (NTRS)
Loubeau, Alexandra; Sullivan, Brenda M.; Klos, Jacob; Rathsam, Jonathan; Gavin, Joseph R.
2013-01-01
Human response to sonic booms heard indoors is affected by the generation of contact-induced rattle noise. The annoyance caused by sonic boom-induced rattle noise was studied in a series of psychoacoustics tests. Stimuli were divided into three categories and presented in three different studies: isolated rattles at the same calculated Perceived Level (PL), sonic booms combined with rattles with the mixed sound at a single PL, and sonic booms combined with rattles with the mixed sound at three different PL. Subjects listened to sounds over headphones and were asked to report their annoyance. Annoyance to different rattles was shown to vary significantly according to rattle object size. In addition, the combination of low-amplitude sonic booms and rattles can be more annoying than the sonic boom alone. Correlations and regression analyses for the combined sonic boom and rattle sounds identified the Moore and Glasberg Stationary Loudness (MGSL) metric as a primary predictor of annoyance for the tested sounds. Multiple linear regression models were developed to describe annoyance to the tested sounds, and simplifications for applicability to a wider range of sounds are presented.
Sonic boom acceptability studies
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.
1992-01-01
The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.
NASA Technical Reports Server (NTRS)
Findley, D. S.; Huckel, V.; Hubbard, H. H.
1975-01-01
In order to evaluate reaction of people to sonic booms of varying overpressures and time durations, a series of closely controlled and systematic flight tests/studies were conducted from June 3 to June 23, 1966. The dynamic responses of several building structures were measured, with emphasis on a two-story residence structure. Sample acceleration and strain recordings from F-104, B-58, and XB-70 sonic boom exposures are included, along with tabulations of the maximum acceleration and strain values measured for each one of about 140 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
A Study in a New Test Facility on Indoor Annoyance Caused by Sonic Booms
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob
2012-01-01
A sonic-boom simulator at NASA Langley Research Center has been constructed to research the indoor human response to low-amplitude sonic booms. The research goal is the development of a psychoacoustic model for individual sonic booms to be validated by future community studies. The study in this report assessed the suitability of existing noise metrics for predicting indoor human annoyance. The test signals included a wide range of synthesized and recorded sonic-boom waveforms. Results indicated that no noise metric predicts indoor annoyance to sonic-boom sounds better than Perceived Level, PL. During the study it became apparent that structural vibrations induced by the test signals were contributing to annoyance, so the relationship between sound and vibration at levels of equivalent annoyance has been quantified.
Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob
2011-01-01
A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.
2003-08-02
Northrop Grumman Corporation's modified U.S. Navy F-5E Shaped Sonic Boom Demonstration (SSBD) aircraft flies over the company's Palmdale, California facilities on Aug. 2, 2003. NASA Dryden provided range, air and ground data-gathering support for the SSBD project, which is part of DARPA's Quiet Supersonic Platform (QSP) program.
NASA Astrophysics Data System (ADS)
Cliatt, Larry J.; Hill, Michael A.; Haering, Edward A.; Arnac, Sarah R.
2015-10-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.; Arnac, Sarah R.
2015-01-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, NASA, in partnership with other industry organizations, conducted a flight research experiment to analyze acoustic propagation at the lateral edge of the sonic boom carpet. The name of the effort was the Farfield Investigation of No-boom Thresholds (FaINT). The research from FaINT determined an appropriate metric for sonic boom waveforms in the transition and shadow zones called Perceived Sound Exposure Level, established a value of 65 dB as a limit for the acoustic lateral extent of a sonic boom's noise region, analyzed change in sonic boom levels near lateral cutoff, and compared between real sonic boom measurements and numerical predictions.
An in-home study of subjective response to simulated sonic booms
NASA Technical Reports Server (NTRS)
Mccurdy, David A.; Brown, Sherilyn A.; Hilliard, R. David
1994-01-01
The proposed development of a second-generation supersonic commercial transport has resulted in increased research efforts to provide an environmentally acceptable aircraft. One of the environmental issues is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonically over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public and could possibly permit overland supersonic flight. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' rating and can be placed and operated in individuals' homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment.
Sonic Booms in Atmospheric Turbulence (SonicBAT) Ground Measurements in a Hot Desert Climate
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.
2017-01-01
The Sonic Booms in Atmospheric Turbulence (SonicBAT) Project flew a series of 20 F-18 flights with 69 supersonic passes at Edwards Air Force Base in July 2016 to quantify the effect of atmospheric turbulence on sonic booms. Most of the passes were at a pressure altitude of 32,000 feet and a Mach number of 1.4, yielding a nominal sonic boom overpressure of 1.6 pounds per square foot. Atmospheric sensors such as GPS sondeballoons, Sonic Detection and Ranging (SODAR) acoustic sounders, and ultrasonic anemometers were used to characterize the turbulence state of the atmosphere for each flight. Spiked signatures in excess of 7 pounds per square foot were measured at some locations, as well as rounded sonic-boom signatures with levels much lower than the nominal. This presentation will quantify the range of overpressure and Perceived Level of the sonic boom as a function of turbulence parameters, and also present the spatial variation of these quantities over the array. Comparison with historical data will also be shown.
1988-08-01
the spline coefficients are calculated. 2.2.3.3 GETSEG GETSEG divides the flight into segments where the points are above the critical Mach number. The...first two and the last two points of a segment can be below critical , which is done in order to improve the spline interpolation. There can also be...subcritical points in the track; however, there can be at most only 5.5 seconds between critical points. If there is a 4.5 4 second gap between data
Research on Subjective Response to Simulated Sonic Booms at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.
2005-01-01
Over the past 15 years, NASA Langley Research Center has conducted many tests investigating subjective response to simulated sonic booms. Most tests have used the Sonic Boom Booth, an airtight concrete booth fitted with loudspeakers that play synthesized sonic booms pre-processed to compensate for the response of the booth/loudspeaker system. Tests using the Booth have included investigations of shaped booms, booms with simulated ground reflections, recorded booms, outdoor and indoor booms, booms with differing loudness for bow and tail shocks, and comparisons of aircraft flyover recordings with sonic booms. Another study used loudspeakers placed inside people s houses, so that they could experience the booms while in their own homes. This study investigated the reactions of people to different numbers of booms heard within a 24-hour period. The most recent Booth test used predicted boom shapes from candidate low-boom aircraft. At present, a test to compare the Booth with boom simulators constructed by Gulfstream Aerospace Corporation and Lockheed Martin Aeronautics Company is underway. The Lockheed simulator is an airtight booth similar to the Langley booth; the Gulfstream booth uses a traveling wave method to create the booms. Comparison of "realism" as well as loudness and other descriptors is to be studied.
Low Boom Flight Demonstrator Briefing
2018-04-03
Dr. Ed Waggoner, program director, Integrated Aviation Systems Program, NASA, speaks at a briefing on the Low Boom Flight Demonstrator, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
Handling Qualities Prediction of an F-16XL-Based Reduced Sonic Boom Aircraft
NASA Technical Reports Server (NTRS)
Cogan, Bruce; Yoo, Seung
2010-01-01
A major goal of the Supersonics Project under NASA s Fundamental Aeronautics program is sonic boom reduction of supersonic aircraft. An important part of this effort is development and validation of sonic boom prediction tools used in aircraft design. NASA Dryden s F- 16XL was selected as a potential testbed aircraft to provide flight validation. Part of this task was predicting the handling qualities of the modified aircraft. Due to the high cost of modifying the existing F-16XL control laws, it was desirable to find modifications that reduced the aircraft sonic boom but did not degrade baseline aircraft handling qualities allowing for the potential of flight test without changing the current control laws. This was not a requirement for the initial modification design work, but an important consideration for proceeding to the flight test option. The primary objective of this work was to determine an aerodynamic and mass properties envelope of the F-16XL aircraft. The designers could use this envelope to determine the effect of proposed modifications on aircraft handling qualities.
NASA Technical Reports Server (NTRS)
Henderson, H. R.; Hilton, D. A.
1974-01-01
Sonic-boom pressure signatures recorded during the ascent phase of Apollo 17 are presented. The measurements were obtained onboard six U.S. Navy ships positioned along the ground track of the spacecraft vehicle in the area of expected focus resulting from the flight path and acceleration of the vehicle. Tracings of the measured signatures are presented along with values of the maximum positive overpressure, positive impulse, signature duration, and bowshock rise time. Also included are brief descriptions of the ships and their location, the deployment of the sonic-boom instrumentation, flight profiles and operating conditions for the launch vehicle and spacecraft, surface-weather and sea-state information at the measuring sites, and high-altitude weather information for the general measurement areas. Comparisons of the measured and predicted sonic-boom overpressures for the Apollo 17 mission are presented. The measured data are also compared with data from the Apollo 15 and 16 missions and data from flight test programs of various aircraft.
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Sothcott, Victor E.; Keefer, Thomas N., Jr.; Bobbitt, Percy J.
1992-01-01
Before beginning this presentation, it is appropriate to acknowledge the sincere interest and financial support provided by the NASA LaRC under contract NAS9-17900. An outline of the material to be used in the present paper is given. It begins with a indication of the origin and objectives of the feasibility study. This is followed by a discussion of various simulation methods of establishing the persistence of shaped sonic boom signatures to large distances including the use of recoverable RPV/drones. The desirable features to be sought out in an RPV along with a rationale for the selection of a 'shaped' sonic boom signature will be addressed. Three candidate vehicles are examined as to their suitability with respect to a number of factors, in particular, modifiability. Area distributions and associated sonic boom signatures of the basic and modified Firebee vehicle will also be shown. An indication of the scope of the proposed wind tunnel and flight test programs will be presented including measurement technologies and predicted waveforms. Finally, some remarks will be made summarizing the study and highlighting the key findings.
Unstructured grids for sonic-boom analysis
NASA Technical Reports Server (NTRS)
Fouladi, Kamran
1993-01-01
A fast and efficient unstructured grid scheme is evaluated for sonic-boom applications. The scheme is used to predict the near-field pressure signatures of a body of revolution at several body lengths below the configuration, and those results are compared with experimental data. The introduction of the 'sonic-boom grid topology' to this scheme make it well suited for sonic-boom applications, thus providing an alternative to conventional multiblock structured grid schemes.
A loudness calculation procedure applied to shaped sonic booms
NASA Technical Reports Server (NTRS)
Shepherd, Kevin P.; Sullivan, Brenda M.
1991-01-01
Described here is a procedure that can be used to calculate the loudness of sonic booms. The procedure is applied to a wide range of sonic booms, both classical N-waves and a variety of other shapes of booms. The loudness of N-waves is controlled by overpressure and the associated rise time. The loudness of shaped booms is highly dependent on the characteristics of the initial shock. A comparison of the calculated loudness values indicates that shaped booms may have significantly reduced loudness relative to N-waves having the same peak overpressure. This result implies that a supersonic transport designed to yield minimized sonic booms may be substantially more acceptable than an unconstrained design.
Experimental Sonic Boom Measurements on a Mach 1.6 Cruise Low-Boom Configuration
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.; Elmiligui, Alaa, A.; Wayman, Thomas R.; Waithe, Kenrick A.; Howe, Donald C.; Bangert, Linda S.
2012-01-01
A wind tunnel test has been conducted by Gulfstream Aerospace Corporation (GAC) to measure the sonic boom pressure signature of a low boom Mach 1.6 cruise business jet in the Langley Unitary Plan Wind Tunnel at Mach numbers 1.60 and 1.80. Through a cooperative agreement between GAC and the National Aeronautics and Space Administration (NASA), GAC provided NASA access to some of the experimental data and NASA is publishing these data for the sonic boom research community. On-track and off-track near field sonic boom pressure signatures were acquired at three separation distances (0.5, 1.2, and 1.7 reference body lengths) and three angles of attack (-0.26deg, 0.26deg, and 0.68deg). The model was blade mounted to minimize the sting effects on the sonic boom signatures. Although no extensive data analysis is provided, selected data are plotted to illustrate salient features of the data. All of the experimental sonic boom pressure data are tabulated. Schlieren images of the configuration are also included.
Realism Assessment of Sonic Boom Simulators
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.; Davies, Patrica; Hodgdon, Kthleen K.; Salamone, Joseph A., III; Pilon, Anthony
2008-01-01
Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Cliff, Susan E.; Wilcox, Floyd; Nemec, Marian; Bangert, Linda; Aftosmis, Michael J.; Parlette, Edward
2011-01-01
Accurate analysis of sonic boom pressure signatures using computational fluid dynamics techniques remains quite challenging. Although CFD shows accurate predictions of flow around complex configurations, generating grids that can resolve the sonic boom signature far away from the body is a challenge. The test case chosen for this study corresponds to an experimental wind-tunnel test that was conducted to measure the sonic boom pressure signature of a low boom configuration designed by Gulfstream Aerospace Corporation. Two widely used NASA codes, USM3D and AERO, are examined for their ability to accurately capture sonic boom signature. Numerical simulations are conducted for a free-stream Mach number of 1.6, angle of attack of 0.3 and Reynolds number of 3.85x10(exp 6) based on model reference length. Flow around the low boom configuration in free air and inside the Langley Unitary plan wind tunnel are computed. Results from the numerical simulations are compared with wind tunnel data. The effects of viscous and turbulence modeling along with tunnel walls on the computed sonic boom signature are presented and discussed.
An Analysis of Measured Pressure Signatures From Two Theory-Validation Low-Boom Models
NASA Technical Reports Server (NTRS)
Mack, Robert J.
2003-01-01
Two wing/fuselage/nacelle/fin concepts were designed to check the validity and the applicability of sonic-boom minimization theory, sonic-boom analysis methods, and low-boom design methodology in use at the end of the 1980is. Models of these concepts were built, and the pressure signatures they generated were measured in the wind-tunnel. The results of these measurements lead to three conclusions: (1) the existing methods could adequately predict sonic-boom characteristics of wing/fuselage/fin(s) configurations if the equivalent area distributions of each component were smooth and continuous; (2) these methods needed revision so the engine-nacelle volume and the nacelle-wing interference lift disturbances could be accurately predicted; and (3) current nacelle-configuration integration methods had to be updated. With these changes in place, the existing sonic-boom analysis and minimization methods could be effectively applied to supersonic-cruise concepts for acceptable/tolerable sonic-boom overpressures during cruise.
Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section
NASA Technical Reports Server (NTRS)
Caster, Raymond S.
2010-01-01
NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.
1995-02-15
NASA's single-seat F-16XL makes a drag chute landing on the runway at Edwards Air Force Base in California's Mojave Desert. The aircraft was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity.
1995-02-15
NASA's single-seat F-16XL makes a drag chute landing at the Dryden Flight Research Center, Edwards, California. The aircraft was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity.
Flight Testing of the Gulfstream Quiet Spike(TradeMark) on a NASA F-15B
NASA Technical Reports Server (NTRS)
Smolka, James W.; Cowert, Robert A.; Molzahn, Leslie M.
2007-01-01
Gulfstream Aerospace has long been interested in the development of an economically viable supersonic business jet (SBJ). A design requirement for such an aircraft is the ability for unrestricted supersonic flight over land. Although independent studies continue to substantiate that a market for a SBJ exists, regulatory and public acceptance challenges still remain for supersonic operation over land. The largest technical barrier to achieving this goal is sonic boom attenuation. Gulfstream's attention has been focused on fundamental research into sonic boom suppression for several years. This research was conducted in partnership with the NASA Aeronautics Research Mission Directorate (ARMD) supersonic airframe cruise efficiency technical challenge. The Quiet Spike, a multi-stage telescopic nose boom and a Gulfstream-patented design (references 1 and 2), was developed to address the sonic boom attenuation challenge and validate the technical feasibility of a morphing fuselage. The Quiet Spike Flight Test Program represents a major step into supersonic technology development for sonic boom suppression. The Gulfstream Aerospace Quiet Spike was designed to reduce the sonic boom signature of the forward fuselage for an aircraft flying at supersonic speeds. In 2004, the Quiet Spike Flight Test Program was conceived by Gulfstream and NASA to demonstrate the feasibility of sonic boom mitigation and centered on the structural and mechanical viability of the translating test article design. Research testing of the Quiet Spike consisted of numerous ground and flight operations. Each step in the process had unique objectives, and involved numerous test team members from the NASA Dryden Flight Research Center (DFRC) and Gulfstream Aerospace. Flight testing of the Quiet Spike was conducted at the NASA Dryden Flight Research Center on an F-15B aircraft from August, 2006, to February, 2007. During this period, the Quiet Spike was flown at supersonic speeds up to Mach 1.8 at the maximum design dynamic pressure of 685 pounds per square foot. Extension and retraction tests were conducted at speeds up to Mach 1.4. The design of the Quiet Spike to shape the forward shock wave environment of the aircraft was confirmed during near-field shock wave probing at Mach 1.4. Thirty-two flights were performed without incident and all project objectives were achieved. The success of the Quiet Spike Flight Test Program represents an important step towards developing commercial aircraft capable of supersonic flight over land within the continental United States and in international airspace.
Evaluation of human response to structural vibrations induced by sonic booms
NASA Technical Reports Server (NTRS)
Sutherland, Louis C.; Czech, J.
1992-01-01
The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.
Preliminary airborne measurements for the SR-71 sonic boom propagation experiment
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Ehernberger, L. J.; Whitmore, Stephen A.
1995-01-01
SR-71 sonic boom signatures were measured to validate sonic boom propagation prediction codes. An SR-71 aircraft generated sonic booms from Mach 1.25 to Mach 1.6, at altitudes of 31,000 to 48,000 ft, and at various gross weights. An F-16XL aircraft measured the SR-71 near-field shock waves from close to the aircraft to more than 8,000 ft below, gathering 105 signatures. A YO-3A aircraft measured the SR-71 sonic booms from 21,000 to 38,000 feet below, recording 17 passes. The sonic booms at ground level and atmospheric data were recorded for each flight. Data analysis is underway. Preliminary results show that shock wave patterns and coalescence vary with SR-71 gross weight, Mach number, and altitude. For example, noncoalesced shock wave signatures were measured by the YO-3A at 21,000 ft below the SR-71 aircraft while at a low gross weight, Mach 1.25, and 31,000-ft altitude. This paper describes the design and execution of the flight research experiment. Instrumentation and flight maneuvers of the SR-71, F-16XL, and YO-3A aircraft and sample sonic boom signatures are included.
Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Klos, Jacob
2016-01-01
Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.
Comparisons of Methods for Predicting Community Annoyance Due to Sonic Booms
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.; Shepherd, Kevin P.
1996-01-01
Two approaches to the prediction of community response to sonic boom exposure are examined and compared. The first approach is based on the wealth of data concerning community response to common transportation noises coupled with results of a sonic boom/aircraft noise comparison study. The second approach is based on limited field studies of community response to sonic booms. Substantial differences between indoor and outdoor listening conditions are observed. Reasonable agreement is observed between predicted community responses and available measured responses.
NASA's High Speed Research Program - An introduction and status report
NASA Technical Reports Server (NTRS)
Wesoky, Howard L.; Prather, Michael J.; Kayten, Gerald G.
1990-01-01
NASA's High Speed Research Program (HSRP) gives attention to the potential environmental effects of a next-generation SST in three areas of concern: atmospheric pollution, airport community noise, and sonic boom. Research has accordingly been undertaken in such fields as the validation of ozone depletion predictions, the feasibility a 90-percent NO(x) emissions reduction to minimize ozone-layer impacts, economically viable compliance with FAR 36 Stage 3 airport community noise levels, and the comparative advantages of efficient subsonic flight over land masses or low-sonic-boom-optimized configurations. Interim HSRP milestones for 1991 and 1992 are noted.
Low Boom Flight Demonstrator Briefing
2018-04-03
Panelists Peter Iosifidis, program manager, Low-Boom Flight Demonstrator, Lockheed Martin Skunk Works, left, Peter Coen, project manager, Commercial Supersonics Technology Project, Langley Research Center, NASA, center, and Dr. Ed Waggoner, program director, Integrated Aviation Systems Program, NASA, right, are seen behind a model of the Low Boom Flight Demonstrator at a briefing, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
Low Boom Flight Demonstrator Briefing
2018-04-03
Dr. Ed Waggoner, program director, Integrated Aviation Systems Program, NASA, right, speaks on a panel with Peter Iosifidis, program manager, Low-Boom Flight Demonstrator, Lockheed Martin Skunk Works, left, and Peter Coen, project manager, Commercial Supersonics Technology Project, Langley Research Center, NASA, center, at a briefing on the Low Boom Flight Demonstrator, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft
2006-04-17
Gulfstream's Quiet Spike sonic boom mitigator being installed on NASA DFRC's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
Subjective Response to Simulated Sonic Booms in Homes
NASA Technical Reports Server (NTRS)
McCurdy, David A.; Brown, Sherilyn A.
1996-01-01
One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic booms during the first few days of exposure. The first eight days of each testing period consisted of eight introductory exposures that were repeated on randomly selected days later in the testing period. Comparison of the introductory exposures with their repeats indicated that the test subjects adapted to the new sonic boom noise environment during the first days of the testing period. Because of the adaptation occurring, the introductory days were deleted from the ds set and the analyses redone. This paper presents the updated analyses. Elimination of the introductory days did not significantly affect the results and conclusions of the initial analyses. This paper also presents analyses of the effects on annoyance of additional factors in the study not previously examined.
NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms
2016-07-20
NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the SonicBAT flight series at NASAโs Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.
A Compilation of Space Shuttle Sonic Boom Measurements
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.
2011-01-01
Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.
Evaluation of outdoor-to-indoor response to minimized sonic booms
NASA Technical Reports Server (NTRS)
Brown, David; Sutherland, Louis C.
1992-01-01
Various studies were conducted by NASA and others on the practical limitations of sonic boom signature shaping/minimization for the High-Speed Civil Transport (HSCT) and on the effects of these shaped boom signatures on perceived loudness. This current effort is a further part of this research with emphasis on examining shaped boom signatures which are representative of the most recent investigations of practical limitations on sonic boom minimization, and on examining and comparing the expected response to these signatures when experienced indoors and outdoors.
Sonic Boom Minimization Efforts on Boeing HSCT Baseline
NASA Technical Reports Server (NTRS)
Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene
1999-01-01
A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.
Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott
2012-01-01
A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.
Assessment of Near-Field Sonic Boom Simulation Tools
NASA Technical Reports Server (NTRS)
Casper, J. H.; Cliff, S. E.; Thomas, S. D.; Park, M. A.; McMullen, M. S.; Melton, J. E.; Durston, D. A.
2008-01-01
A recent study for the Supersonics Project, within the National Aeronautics and Space Administration, has been conducted to assess current in-house capabilities for the prediction of near-field sonic boom. Such capabilities are required to simulate the highly nonlinear flow near an aircraft, wherein a sonic-boom signature is generated. There are many available computational fluid dynamics codes that could be used to provide the near-field flow for a sonic boom calculation. However, such codes have typically been developed for applications involving aerodynamic configuration, for which an efficiently generated computational mesh is usually not optimum for a sonic boom prediction. Preliminary guidelines are suggested to characterize a state-of-the-art sonic boom prediction methodology. The available simulation tools that are best suited to incorporate into that methodology are identified; preliminary test cases are presented in support of the selection. During this phase of process definition and tool selection, parallel research was conducted in an attempt to establish criteria that link the properties of a computational mesh to the accuracy of a sonic boom prediction. Such properties include sufficient grid density near shocks and within the zone of influence, which are achieved by adaptation and mesh refinement strategies. Prediction accuracy is validated by comparison with wind tunnel data.
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H.
1990-01-01
The data are reproduced from NSBEO-1-67, which contains some preliminary results of the test program, and from NASA-Langley working papers 259 and 288 which are now out of print. Included are sample acceleration and strain recordings from F-104, B-58, and XB-70 sonic boom exposures, along with tabulations of the maximum acceleration and strain values measured for each one of about 130 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
Confidence Intervals for Laboratory Sonic Boom Annoyance Tests
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Christian, Andrew
2016-01-01
Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.
A total variation diminishing finite difference algorithm for sonic boom propagation models
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1993-01-01
It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.
NASA Technical Reports Server (NTRS)
Durston, Donald A.; Kmak, Francis J.
2009-01-01
Multiple sonic boom wind tunnel models were tested in the NASA Ames Research Center 9-by 7-Foot Supersonic Wind Tunnel to reestablish related test techniques in this facility. The goal of the testing was to acquire higher fidelity sonic boom signatures with instrumentation that is significantly more sensitive than that used during previous wind tunnel entries and to compare old and new data from established models. Another objective was to perform tunnel-to-tunnel comparisons of data from a Gulfstream sonic boom model tested at the NASA Langley Research Center 4-foot by 4-foot Unitary Plan Wind Tunnel.
Experimental and Computational Sonic Boom Assessment of Boeing N+2 Low Boom Models
NASA Technical Reports Server (NTRS)
Durston, Donald A.; Elmiligui, Alaa; Cliff, Susan E.; Winski, Courtney S.; Carter, Melissa B.; Walker, Eric L.
2015-01-01
Near-field pressure signatures were measured and computational predictions made for several sonic boom models representing Boeing's Quiet Experimental Validation Concept (QEVC) supersonic transport, as well as three axisymmetric calibration models. Boeing developed the QEVC under a NASA Research Announcement (NRA) contract for Experimental Systems Validations for N+2 Supersonic Commercial Transport Aircraft, which was led by the NASA High Speed Project under the Fundamental Aeronautics Program. The concept was designed to address environmental and performance goals given in the NRA, specifically for low sonic boom loudness levels and high cruise efficiency, for an aircraft anticipated to enter service in the 2020 timeframe. Wind tunnel tests were conducted on the aircraft and calibration models during Phases I and II of the NRA contract from 2011 to 2013 in the NASA Ames 9- by 7-Foot and NASA Glenn 8- by 6-Foot Supersonic Wind Tunnels. Sonic boom pressure signatures were acquired primarily at Mach 1.6 and 1.8, and force and moment data were acquired from Mach 0.8 to 1.8. The sonic boom test data were obtained using a 2-in. flat-top pressure rail and a 14-in. round-top tapered "reflection factor 1" (RF1) pressure rail. Both rails capture an entire pressure signature in one data point, and successive signatures at varying positions along or above the rail were used to improve data quality through spatial averaging. The sonic boom data obtained by the rails were validated with high-fidelity numerical simulations of off-body pressures using the CFD codes USM3D, Cart3D, and OVERFLOW. The test results from the RF1 rail showed good agreement between the computational and experimental data when a variety of testing techniques including spatial averaging of a series of pressure signatures were employed, however, reflections off the 2-in. flat-top rail caused distortions in the signatures that did not agree with the CFD predictions. The 9 x 7 and 8 x 6 wind tunnels generally produced comparable data.
Sonic Boom: Six Decades of Research
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Bobbitt, Percy J.; Plotkin, Kenneth J.; Shepherd, Kevin P.; Coen, Peter G.; Richwine, David M.
2014-01-01
Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.
NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms
2016-07-20
One of three microphone arrays positioned strategically along the ground at Edwards Air Force Base, California, sits ready to collect sound signatures from sonic booms created by a NASA F/A-18 during the SonicBAT flight series. The arrays collected the sound signatures of booms that had traveled through atmospheric turbulence before reaching the ground.
NASA's F-15B testbed aircraft with Gulfstream Quiet Spike sonic boom mitigator attached
2006-07-06
Gulfstream Aerospace and NASA's Dryden Flight Research Center are testing the structural integrity of a telescopic 'Quiet Spike' sonic boom mitigator on the F-15B testbed. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response
NASA Technical Reports Server (NTRS)
Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.
2014-01-01
In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts logistics and operations including human response subject recruitment, the operational processes involved in implementing the surveys throughout the community, instrumentation systems, logistics, flight planning, and flight operations. Findings discussed in this paper include critical lessons learned in all of those areas. The paper also discusses flight operations results. Analysis of the accuracy and repeatability of planning and executing the unique aircraft maneuver used to generate low sonic booms concluded that the sonic booms had overpressures within 0.15 pounds-per-square-feet of the planned values for 76 of t he attempts. Similarly, 90 of the attempts to generate low sonic booms within the community were successful.
Review of sonic-boom simulation devices and techniques.
NASA Technical Reports Server (NTRS)
Edge, P. M., Jr.; Hubbard, H. H.
1972-01-01
Research on aircraft-generated sonic booms has led to the development of special techniques to generate controlled sonic-boom-type disturbances without the complications and expense of supersonic flight operations. This paper contains brief descriptions of several of these techniques along with the significant hardware items involved and indicates the advantages and disadvantages of each in research applications. Included are wind tunnels, ballistic ranges, spark discharges, piston phones, shock tubes, high-speed valve systems, and shaped explosive charges. Specialized applications include sonic-boom generation and propagation studies and the responses of structures, terrain, people, and animals. Situations for which simulators are applicable are shown to include both small-scale and large-scale laboratory tests and full-scale field tests. Although no one approach to simulation is ideal, the various techniques available generally complement each other to provide desired capability for a broad range of sonic-boom studies.
Real-Time, Interactive Sonic Boom Display
NASA Technical Reports Server (NTRS)
Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)
2012-01-01
The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.
State of the art of sonic boom modeling
NASA Astrophysics Data System (ADS)
Plotkin, Kenneth J.
2002-01-01
Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.
State of the art of sonic boom modeling.
Plotkin, Kenneth J
2002-01-01
Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Connolly, Joseph; Kopasakis, George
2016-01-01
An overview of recent applications of the FUN3D CFD code to computational aeroelastic, sonic boom, and aeropropulsoservoelasticity (APSE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed including multiple unstructured CFD grids suitable for aeroelastic and sonic boom analyses. In addition, aeroelastic Reduced-Order Models (ROMs) are generated and used to rapidly compute the aeroelastic response and utter boundaries at multiple flight conditions.
Sonic boom generated by a slender body aerodynamically shaded by a disk spike
NASA Astrophysics Data System (ADS)
Potapkin, A. V.; Moskvichev, D. Yu.
2018-03-01
The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.
NASA Astrophysics Data System (ADS)
Volkov, V. F.; Mazhul', I. I.
2018-01-01
Results of calculations of the sonic boom produced by a supersonic passenger aircraft in a cruising regime of flight at the Mach number M = 2.03 are presented. Consideration is given to the influence of the lateral dihedral of the wings and the angle of their setting, and also of different locations of the aircraft engine nacelles on the wing. An analysis of parametric calculations has shown that the intensities of sonic boom generated by a configuration with a dihedral rear wing and by a configuration with set wings remain constant, in practice, and correspond to the intensity level created by the optimum configuration. Comparative assessments of sonic boom for tandem configurations with different locations of the engine nacelles on the wing surface have shown that the intensity of sonic boom generated by the configuration with an engine nacelle on the windward side can be reduced by 14% compared to the configuration without engine nacelles. In the case of the configuration with engine nacelles on the leeward size of the wing, the profile of the sonic-boom wave degenerates into an N-wave, in which the intensity of the bow shock is significantly reduced.
SCAMP: Rapid Focused Sonic Boom Waypoint Flight Planning Methods, Execution, and Results
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Cliatt, Larry J., II; Delaney, Michael M., Jr.; Plotkin, Kenneth J.; Maglieri, Domenic J.; Brown, Jacob C.
2012-01-01
Successful execution of the flight phase of the Superboom Caustic Analysis and Measurement Project (SCAMP) required accurate placement of focused sonic booms on an array of prepositioned ground sensors. While the array was spread over a 10,000-ft-long area, this is a relatively small region when considering the speed of a supersonic aircraft and sonic boom ray path variability due to shifting atmospheric conditions and aircraft trajectories. Another requirement of the project was to determine the proper position for a microphone-equipped motorized glider to intercept the sonic boom caustic, adding critical timing to the constraints. Variability in several inputs to these calculations caused some shifts of the focus away from the optimal location. Reports of the sonic booms heard by persons positioned amongst the array were used to shift the focus closer to the optimal location for subsequent passes. This paper describes the methods and computations used to place the focused sonic boom on the SCAMP array and gives recommendations for their accurate placement by future quiet supersonic aircraft. For the SCAMP flights, 67% of the foci were placed on the ground array with measured positions within a few thousand feet of computed positions. Among those foci with large caustic elevation angles, 96% of foci were placed on the array, and measured positions were within a few hundred feet of computed positions. The motorized glider captured sonic booms on 59% of the passes when the instrumentation was operating properly.
High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing
NASA Technical Reports Server (NTRS)
McCurdy, David A. (Editor)
1999-01-01
The third High-Speed Research Sonic Boom Workshop was held at NASA Langley Research Center on June 1-3, 1994. The purpose of this workshop was to provide a forum for Government, industry, and university participants to present and discuss progress in their research. The workshop was organized into sessions dealing with atmospheric propagation; acceptability studies; and configuration design, and testing. Attendance at the workshop was by invitation only. The workshop proceedings include papers on design, analysis, and testing of low-boom high-speed civil transport configurations and experimental techniques for measuring sonic booms. Significant progress is noted in these areas in the time since the previous workshop a year earlier. The papers include preliminary results of sonic boom wind tunnel tests conducted during 1993 and 1994 on several low-boom designs. Results of a mission performance analysis of all low-boom designs are also included. Two experimental methods for measuring near-field signatures of airplanes in flight are reported.
2006-05-01
NASA Dryden's F-15B testbed aircraft with the Gulfstream Quiet Spike sonic boom mitigator attached undergoes ground vibration testing in preparation for test flights. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.
2014-01-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on the NASA role in the logistics and operations of the effort, including human response subject recruitment, the operational processes involved in implementing the surveys throughout the community, instrumentation systems, logistics, flight planning, and flight operations. Findings discussed in this paper include critical lessons learned in all of the above-mentioned areas, as well as flight operations results. Analysis of the accuracy and repeatability of planning and executing the unique aircraft maneuver used to generate low sonic booms concluded that the sonic booms had overpressures within 0.15 lbft2 of the planned values for 76 percent of the attempts. Similarly, 90 percent of the attempts to generate low sonic booms within the community were successful.
Application of sonic-boom minimization concepts in supersonic transport design
NASA Technical Reports Server (NTRS)
Carlson, H. W.; Barger, R. L.; Mack, R. J.
1973-01-01
The applicability of sonic boom minimization concepts in the design of large supersonic transport airplanes capable of a 2500-nautical-mile range at a cruise Mach number of 2.7 is considered. Aerodynamics, weight and balance, and mission performance as well as sonic boom factors, have been taken into account. The results indicate that shock-strength nominal values of somewhat less than 48 newtons/sq m during cruise are within the realm of possibility. Because many of the design features are in direct contradiction to presently accepted design practices, further study of qualified airplane design teams is required to ascertain sonic boom shock strength levels actually attainable for practical supersonic transports.
Pilot Test of a Novel Method for Assessing Community Response to Low-Amplitude Sonic Booms
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Horonjeff, Richard D.; Harris, Michael
2012-01-01
A pilot test of a novel method for assessing residents annoyance to sonic booms was performed. During a two-week period, residents of the base housing area at Edwards Air Force Base provided data on their reactions to sonic booms using Smartphone-based interviews. Noise measurements were conducted at the same time. The report presents information about data collection methods and about test participants reactions to low-amplitude sonic booms. The latter information should not be viewed as definitive for several reasons. It may not be reliably generalized to the wider U.S. residential population (because it was not derived from a representative random sample) and the sample itself was not large.
Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves
NASA Astrophysics Data System (ADS)
Haering, Edward A.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.
2006-05-01
The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.
Experimental Measurements of Sonic Boom Signatures Using a Continuous Data Acquisition Technique
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J.; Elmiligui, Alaa A.
2013-01-01
A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical survey probe while continuously moving the model past the probe. Sonic boom signatures were obtained using both move-pause and continuous data acquisition methods for comparison. The test was conducted using a generic business jet model at a constant angle of attack and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a Mach number of 2.0 and a unit Reynolds number of 2 million per foot. The test results showed that it is possible to obtain sonic boom signatures while continuously moving the model and that the time required to acquire the signature is at least 10 times faster than the move-pause method. Data plots are presented with a discussion of the results. No tabulated data or flow visualization photographs are included.
A study of the limitations of linear theory methods as applied to sonic boom calculations
NASA Technical Reports Server (NTRS)
Darden, Christine M.
1990-01-01
Current sonic boom minimization theories have been reviewed to emphasize the capabilities and flexibilities of the methods. Flexibility is important because it is necessary for the designer to meet optimized area constraints while reducing the impact on vehicle aerodynamic performance. Preliminary comparisons of sonic booms predicted for two Mach 3 concepts illustrate the benefits of shaping. Finally, for very simple bodies of revolution, sonic boom predictions were made using two methods - a modified linear theory method and a nonlinear method - for signature shapes which were both farfield N-waves and midfield waves. Preliminary analysis on these simple bodies verified that current modified linear theory prediction methods become inadequate for predicting midfield signatures for Mach numbers above 3. The importance of impulse is sonic boom disturbance and the importance of three-dimensional effects which could not be simulated with the bodies of revolution will determine the validity of current modified linear theory methods in predicting midfield signatures at lower Mach numbers.
Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Smolka, James W.; Murray, James E.; Plotkin, Kenneth J.
2005-01-01
The recent flight demonstration of shaped sonic booms shows the potential for quiet overland supersonic flight, which could revolutionize air transport. To successfully design quiet supersonic aircraft, the upper limit of an acceptable noise level must be determined through quantitative recording and subjective human response measurements. Past efforts have concentrated on the use of sonic boom simulators to assess human response, but simulators often cannot reproduce a realistic sonic boom sound. Until now, molecular relaxation effects on low overpressure rise time had never been compared with flight data. Supersonic flight slower than the cutoff Mach number, which generates evanescent waves, also prevents loud sonic booms from impacting the ground. The loudness of these evanescent waves can be computed, but flight measurement validation is needed. A novel flight demonstration technique that generates low overpressure N-waves using conventional military aircraft is outlined, in addition to initial quantitative flight data. As part of this demonstration, evanescent waves also will be recorded.
Ground-recorded sonic boom signatures of F-18 aircraft formation flight
NASA Technical Reports Server (NTRS)
Bahm, Catherine M.; Haering, Edward A., Jr.
1995-01-01
Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.
Effect of sonic boom on avalanches. Preparation for flight of a supersonic jet over the Lavay Valley
NASA Technical Reports Server (NTRS)
Schaffar, M.; Carrie, B.; Amardeil, P.
1986-01-01
An experiment to determine the effect of sonic booms on the stability of the snow mantle in the Lavey Valley is proposed. It includes provisions for the aircraft trajectory, line of fucus, boom zone, as well as the determination of boom intensity levels for the whole valley.
Initial Results from the Variable Intensity Sonic Boom Database
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Cliatt, Larry J., II; Gabrielson, Thomas; Sparrow, Victor W.; Locey, Lance L.; Bunce, Thomas J.
2008-01-01
43 sonic booms generated (a few were evanescent waves) a) Overpressures of 0.08 to 2.20 lbf/sq ft; b) Rise-times of about 0.7 to 50 ms. Objectives: a) Structural response of a house of modern construction; b) Sonic boom propagation code validation. Approach: a) Measure shockwave directionality; b) Determine effect of height above ground on acoustic level; c) Generate atmospheric turbulence filter functions.
Sonic boom measurement test plan for Space Shuttle STS-3 reentry
NASA Technical Reports Server (NTRS)
Henderson, H. R.
1982-01-01
The lateral area from the reentry ground track affected by sonic boom overpressure levels is determined. Four data acquisition stations are deployed laterally to the STS-3 reentry flight track. These stations provide six intermediate band FM channels of sonic boom data, universal time synchronization, and voice annotation. All measurements are correlated with the vehicle reentry flight track information along with atmospheric and vehicle operation conditions.
Detection and Assessment of Secondary Sonic Booms in New England.
1980-05-01
MEASUREMENT DATA During the period May 3, 1979 to September 14, 1979, infra - sonic measurements were made at Malden MA, at six other sites in the Greater...D-AO8O 160 TRANSPORTATION SYSTEMS CENTER CAMBRIDGE MA F/ 20/1 DETECTION AND ASSESSMENT OF SECONDARY SONIC BOOMS IN NEW ENGLAN--ETC(U) MAY 80 E J...CHART F AA-AEE-8O-22 DETECTION AND ASSESSMENT OF SECONDARY SONIC BOOMS IN NEW ENGLAND AD A088 160 MAY 1980 Q4 = Ci OF T R, 4 This document has been
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark
2005-01-01
The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.
In-Flight Technique for Acquiring Mid- And Far-Field Sonic Boom Signatures
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.; Baize, Daniel G.; Maglieri, Domenic, J.
1999-01-01
Flight test experiments have been conducted to establish the feasibility of obtaining sonic boom signature measurements below a supersonic aircraft using the NASA Portable Automatic Triggering System (PATS) mounted in the USMC Pioneer Unmanned Aerial Vehicle (UAV). This study forms a part of the NASA sonic boom minimization activities, specifically the demonstration of persistence of modified boom signatures to very large distances in a real atmosphere. The basic objective of the measurement effort was to obtain a qualitative view of the sonic boom signature in terms of its shape, number of shocks, their locations, and their relative strength. Results suggest that the technique may very well provide quantitative information relative to mid-field and far-field boom signatures. The purpose of this presentation is to describe the arrangement and operation of this in-flight system and to present the resulting sonic boom measurements. Adaption and modification of two PATS to the UAV payload section are described and include transducer location, mounting arrangement and recording system isolation. Ground static runup, takeoff and landing, and cruise flight checkouts regarding UAV propeller and flow noise on the PATS automated triggering system and recording mode are discussed. For the proof-of-concept tests, the PATS instrumented UAV was flown under radar control in steady-level flight at the altitude of 8700 feet MSL and at a cruise speed of about 60 knots. The USN F-4N sonic boom generating aircraft was vectored over the UAV on reciprocal headings at altitudes of about 1 1,000 feet MSL and 13,000 feet MSL at about Mach 1. 15. Sonic boom signatures were acquired on both PATS for all six supersonic passes. Although the UAV propeller noise is clearly evident in all the measurements, the F-4 boom signature is clearly distinguishable and is typically N-wave in character with sharply rising shock fronts and with a mid-shock associated with the inlet-wing juncture. Consideration is being given to adapting the PATS/TJAV measurements technique to the NASA Learjet to determine feasibility of acquiring in-flight boom signatures in the altitude range of 10,000 feet to 40,000 feet.
Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature
NASA Technical Reports Server (NTRS)
Bui, Trong
2010-01-01
An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without coupling to a sonic boom propagation analysis code, from the stagnation chamber of the nozzle to the far field external flow, taking into account all nonisentropic effects in the shocks, boundary layers, and free shear layers, and their interactions at distances up to 30 times the nozzle exit diameter from the jet centerline. A CFD solution is shown in Figure 2. The flow field is very complicated and multi-dimensional, with shock-shock and shockplume interactions. At the time of this reporting, a full three-dimensional CFD study was being conducted to evaluate the effects of nozzle vectoring on the aircraft tail shock strength.
Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.
Affordable/Acceptable Supersonic Flight: Is It Near?
NASA Technical Reports Server (NTRS)
Darden, Christine M.
2003-01-01
The author takes a historical look at supersonic flight and humankind's first encounter with the sonic boom. A review is given from the 1950s to the present of the quest to understand the sonic boom, quantify its disturbance on humans and structures, and minimize its effect through aircraft design and operation. Finally, the author reminds readers that sonic boom is only one factor, though critical, in enabling an economically viable commercial supersonic aircraft.
Shuttle sonic boom - Technology and predictions. [environmental impact
NASA Technical Reports Server (NTRS)
Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.
1973-01-01
Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.
Sonic boom prediction for the Langley Mach 2 low-boom configuration
NASA Technical Reports Server (NTRS)
Madson, Michael D.
1992-01-01
Sonic boom pressure signatures and aerodynamic force data for the Langley Mach 2 low sonic boom configuration were computed using the TranAir full-potential code. A solution-adaptive Cartesian grid scheme is utilized to compute off-body flow field data. Computations were performed with and without nacelles at several angles of attack. Force and moment data were computed to measure nacelle effects on the aerodynamic characteristics and sonic boom footprints of the model. Pressure signatures were computed both on and off ground-track. Near-field pressure signature computations on ground-track were in good agreement with experimental data. Computed off ground-track signatures showed that maximum pressure peaks were located off ground-track and were significantly higher than the signatures on ground-track. Bow shocks from the nacelle inlets increased lift and drag, and also increased the magnitude of the maximum pressure both on and off ground-track.
NASA Technical Reports Server (NTRS)
Needleman, Kathy E.; Mack, Robert J.
1990-01-01
This paper presents and discusses trends in nose shock overpressure generated by two conceptual Mach 2.0 configurations. One configuration was designed for high aerodynamic efficiency, while the other was designed to produce a low boom, shaped-overpressure signature. Aerodynamic lift, sonic boom minimization, and Mach-sliced/area-rule codes were used to analyze and compute the sonic boom characteristics of both configurations with respect to cruise Mach number, weight, and altitude. The influence of these parameters on the overpressure and the overpressure trends are discussed and conclusions are given.
Sonic boom predictions using a modified Euler code
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1992-01-01
The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.
Low Boom Flight Demonstrator Briefing
2018-04-03
Peter Iosifidis, program manager, Low-Boom Flight Demonstrator, Lockheed Martin Skunk Works, speaks on a panel at a briefing after Lockheed Martin was awarded the contract to develop the first X-plane, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Loubeau, Alexandra; Klos, Jacob
2013-01-01
The National Aeronautics and Space Administration's High Speed Project is developing a predictive capability for annoyance caused by shaped sonic booms transmitted indoors. The predictive capability is intended for use by aircraft designers as well as by aircraft noise regulators who are considering lifting the current prohibition on overland civil supersonic flight. The goal of the current study is to use an indoor simulator to validate two models developed using headphone tests for annoyance caused by sonic booms with and without rattle augmentation. The predictors in the proposed models include Moore and Glasberg's Stationary Loudness Level, the time derivative of Moore and Glasberg's time-varying short-term Loudness Level, and the difference between two weighted sound exposure levels, CSEL-ASEL. The indoor simulator provides a more realistic listening environment than headphones due to lowfrequency sound reproduction down to 6 Hz, which also causes perceptible tactile vibration. The results of this study show that a model consisting of {PL + (CSEL-ASEL)} is a reliable predictor of annoyance caused by shaped sonic booms alone, rattle sounds alone, and shaped sonic booms and rattle sounds together.
Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency
NASA Technical Reports Server (NTRS)
Castner, Raymond
2011-01-01
The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
NASA Technical Reports Server (NTRS)
Castner, Ray
2012-01-01
The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
Design methodology for a community response questionnaire on sonic boom exposure
NASA Technical Reports Server (NTRS)
Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.
1991-01-01
A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.
NASA Technical Reports Server (NTRS)
Brown, David; Sutherland, Louis C.
1992-01-01
The preferred descriptor to define the spectral content of sonic booms is the Sound Exposure Spectrum Level, LE(f). This descriptor represents the spectral content of the basic noise descriptors used for describing any single event--the Sound Exposure Level, LE. The latter is equal to ten times the logarithms, to the base ten, of the integral, over the duration of the event, of the square of the instantaneous acoustic pressure, divided by the square of the reference pressure, 20 micro-Pa. When applied to the evaluation of community response to sonic booms, it is customary to use the so-called C-Weighted Sound Exposure Level, LCE, for which the frequency content of the instantaneous acoustic pressure is modified by the C-Weighting curve.
Numerical model for the weakly nonlinear propagation of sound through turbulence
NASA Technical Reports Server (NTRS)
Lipkens, Bart; Blanc-Benon, Philippe
1994-01-01
When finite amplitude (or intense) sound, such as a sonic boom, propagates through a turbulent atmosphere, the propagation is strongly affected by the turbulence. The interaction between sound and turbulence has mostly been studied as a linear phenomenon, i.e., the nonlinear behavior of the intense sound has been neglected. It has been shown that turbulence has an effect on the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. Peak pressure and rise time are important factors that determine the loudness of the sonic boom when heard outdoors. However, the interaction between turbulence and nonlinear effects has mostly not been included in propagation studies of sonic booms. It is therefore important to investigate the influence of acoustical nonlinearity on the interaction of intense sound with turbulence.
Design methodology for a community response questionnaire on sonic boom exposure
NASA Astrophysics Data System (ADS)
Farbry, John E., Jr.; Fields, James M.; Molino, John A.; Demiranda, Gwendolyn A.
1991-05-01
A preliminary draft questionnaire concerning community response to sonic booms was developed. Interviews were conducted in two communities that had experienced supersonic overflights of the SR-71 airplane for several years. Even though the overflights had ceased about 6 months prior to the interviews, people clearly remembered hearing sonic booms. A total of 22 people living in central Utah and 23 people living along Idaho/Washington state border took part in these interviews. The draft questionnaire was constantly modified during the study in order to evaluate different versions. Questions were developed which related to annoyance, startle, sleep disturbance, building vibration, and building damage. Based on the data collected, a proposed community response survey response instrument was developed for application in a full-scale sonic boom study.
Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model
NASA Technical Reports Server (NTRS)
Castner, Raymond; Lake, Troy
2012-01-01
Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.
Environmental Pollution: Noise Pollution - Sonic Boom
1977-06-01
UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION
Simulated sonic booms and sleep : effects of repeated booms of 1.0 psf.
DOT National Transportation Integrated Search
1972-12-01
Eight male subjects in each of three age groups (21-26, 40-45, 60-72 years) slept in pairs in the CAMI sonic boom simulation facility for 21 consecutive nights. The first five nights were used to acclimate the subjects (nights 1 and 2) and to obtain ...
NASA Technical Reports Server (NTRS)
Magee, Todd E.; Wilcox, Peter A.; Fugal, Spencer R.; Acheson, Kurt E.; Adamson, Eric E.; Bidwell, Alicia L.; Shaw, Stephen G.
2013-01-01
This report describes the work conducted by The Boeing Company under American Recovery and Reinvestment Act (ARRA) and NASA funding to experimentally validate the conceptual design of a supersonic airliner feasible for entry into service in the 2018 to 2020 timeframe (NASA N+2 generation). The report discusses the design, analysis and development of a low-boom concept that meets aggressive sonic boom and performance goals for a cruise Mach number of 1.8. The design is achieved through integrated multidisciplinary optimization tools. The report also describes the detailed design and fabrication of both sonic boom and performance wind tunnel models of the low-boom concept. Additionally, a description of the detailed validation wind tunnel testing that was performed with the wind tunnel models is provided along with validation comparisons with pretest Computational Fluid Dynamics (CFD). Finally, the report describes the evaluation of existing NASA sonic boom pressure rail measurement instrumentation and a detailed description of new sonic boom measurement instrumentation that was constructed for the validation wind tunnel testing.
CFD Predictions of Sonic-Boom Characteristics for Unmodified and Modified SR-71 Configurations
NASA Technical Reports Server (NTRS)
Fouladi, Kamran
1999-01-01
Shaped sonic-boom signatures refer to signatures that look something other than the typical N-waves. Shaped sonic-boom signatures such as "flat-top," "ramp-type," or "hybrid-type" waveforms have been shown to reduce the subjective loudness without requiring reductions in overpressure peaks. The shaping of sonic-boom signatures requires increasing the shock rise time and changes in frequency spectra. So far, a flat-top waveform was shown to be achievable in wind tunnels; however, the influence of long propagation distance and real atmosphere on shaped signatures should be addressed using flight tests. Two different approaches have been proposed for sonic-boom minimization flight tests. The first approach, proposed by Eagle Aerospace, is for a flight test using a modified BQM-34 "FIREBEE" remotely piloted vehicle. The 30-foot long FIREBEE has a steady state flight condition at the Mach number and altitude of interest, and it can be recovered by helicopter from the water. As an alternative approach, a modified SR-71 vehicle has been proposed by the McDonnell Douglas Corporation. Benefits of the SR-71 include its variable geometry supersonic inlets, small cockpit bulge, higher Mach number capabilities, slender design, and longer length (105 foot). The present investigation addresses the sonic-boom analysis for the second vehicle.The objective of the current investigation is to assess the feasibility of a modified SR-71 configuration, with McDonnell Douglas-designed fuselage modifications, intended to produce shaped sonic-boom signatures on the ground. The present study describes the use of a higher-order computational fluid dynamics (CFD) method to predict the sonic-boom characteristics for both unmodified and modified SR-71 configurations. An Euler unstructured grid methodology is used to predict the near-field, three-dimensional pressure patterns generated by both SR-71 models. The computed near-field pressure signatures are extrapolated to specified distances below the aircraft down to impingement on the ground using the code MDBOOM. Comparisons of the near-field pressure signatures with available flight-test data are presented in the current paper.
The effect of aircraft speed on the penetration of sonic boom noise into a flat ocean
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1994-01-01
As U.S. aircraft manufacturers now have focused their HSCT efforts on overwater supersonic flight, a great deal more must be known about sonic booms propagating overwater and interacting with the ocean. For example, it is thought that atmospheric turbulence effects are often much less severe over water than over land. Another important aspect of the overwater flight problems is the penetration of the sonic boom noise into the ocean, where there could be an environmental impact on sea life. This talk will present a brief review on the penetration of sonic boom noise into a large body of water with a flat surface. It has been determined recently that faster supersonic speeds imply greater penetration of sonic boom noise into the ocean. The new theory is derived from the original Sawyers paper and from the knowledge that for level flight a boom's duration is proportional to the quantity M/(M(exp 2)-1)(exp 3/8) where M is the Mach number. It is found that for depths of 10 m or less, the peak SPL varies less than 6 dB over a wide range of M. For greater depths, 100 m for example, increased Mach numbers may increase the SPL by 15 dB or more.
Initial Results from the Variable Intensity Sonic Boom Propagation Database
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Cliatt, Larry J., II; Bunce, Thomas J.; Gabrielson, Thomas B.; Sparrow, Victor W.; Locey, Lance L.
2008-01-01
An extensive sonic boom propagation database with low- to normal-intensity booms (overpressures of 0.08 lbf/sq ft to 2.20 lbf/sq ft) was collected for propagation code validation, and initial results and flight research techniques are presented. Several arrays of microphones were used, including a 10 m tall tower to measure shock wave directionality and the effect of height above ground on acoustic level. A sailplane was employed to measure sonic booms above and within the atmospheric turbulent boundary layer, and the sailplane was positioned to intercept the shock waves between the supersonic airplane and the ground sensors. Sailplane and ground-level sonic boom recordings were used to generate atmospheric turbulence filter functions showing excellent agreement with ground measurements. The sonic boom prediction software PCBoom4 was employed as a preflight planning tool using preflight weather data. The measured data of shock wave directionality, arrival time, and overpressure gave excellent agreement with the PCBoom4-calculated results using the measured aircraft and atmospheric data as inputs. C-weighted acoustic levels generally decreased with increasing height above the ground. A-weighted and perceived levels usually were at a minimum for a height where the elevated microphone pressure rise time history was the straightest, which is a result of incident and ground-reflected shock waves interacting.
A laboratory study of subjective response to sonic booms measured at White Sands Missile Range
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.; Leatherwood, Jack D.
1993-01-01
The Sonic Boom Simulator of the Langley Research Center was used to quantify subjective loudness response to boom signatures consisting of: (1) simulator reproductions of booms recently recorded at White Sands Missile Range; (2) idealized N-waves; and (3) idealized booms having intermediate shocks. The booms with intermediate shocks represented signatures derived from CFD predictions. The recorded booms represented those generated by F15 and T38 aircraft flyovers and represented a variety of waveforms reflecting the effects of propagation through a turbulent atmosphere. These waveforms included the following shape categories: N-waves, peaked, rounded, and U-shaped. Results showed that Perceived Level and Zwicker Loudness Level were good estimators of the loudness of turbulence modified sonic booms. No significant differences were observed between loudness responses for the several shape categories when expressed in terms of Perceived Level. Thus, Perceived Level effectively accounted for waveform differences due to turbulence. Idealized booms with intermediate shocks, however, were rated as being approximately 2.7 dB(PL) less loud than the recorded signatures. This difference was not accounted for by PL.
High-Speed Research: 1994 Sonic Boom Workshop: Atmospheric Propagation and Acceptability Studies
NASA Technical Reports Server (NTRS)
Mccurdy, David A. (Editor)
1994-01-01
The workshop proceedings include papers on atmospheric propagation and acceptability studies. Papers discussing atmospheric effects on the sonic boom waveform addressed several issues. It has long been assumed that the effects of molecular relaxation are adequately accounted for by assuming that a steady state balance between absorption and nonlinear wave steepening exists. It was shown that the unsteadiness induced by the nonuniform atmosphere precludes attaining this steady state. Further, it was shown that the random atmosphere acts as a filter, effectively filtering out high frequency components of the distorted waveform. Several different propagation models were compared, and an analysis of the sonic boom at the edge of the primary carpet established that the levels there are bounded. Finally, a discussion of the levels of the sonic boom below the sea surface was presented.
Review and status of sonic boom penetration into the ocean.
Sparrow, Victor W
2002-01-01
Since the 1970 Sonic Boom Symposium, held at the ASA's 80th meeting in Houston, TX, substantial progress has been made in understanding the penetration of sonic booms into the ocean. The state of the art at that time was documented by J. C. Cook, T. Goforth, and R. K. Cook [J. Acoust. Soc. Am. 51, 729-741 (1972)]. Since then, additional experiments have been performed which corroborate Cook's and Sawyers' theory for sonic boom penetration into a flat ocean surface. In addition, computational simulations have validated that theory and extended the work to include arbitrarily shaped waveforms penetrating flat ocean surfaces. Further numerical studies have investigated realistic ocean surfaces including large-scale ocean swell. Research has also been performed on the effects of ocean inhomogeneities due to bubble plumes. This paper provides a brief overview of these developments.
Uncertainty Analysis of Sonic Boom Levels Measured in a Simulator at NASA Langley
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Ely, Jeffry W.
2012-01-01
A sonic boom simulator has been constructed at NASA Langley Research Center for testing the human response to sonic booms heard indoors. Like all measured quantities, sonic boom levels in the simulator are subject to systematic and random errors. To quantify these errors, and their net influence on the measurement result, a formal uncertainty analysis is conducted. Knowledge of the measurement uncertainty, or range of values attributable to the quantity being measured, enables reliable comparisons among measurements at different locations in the simulator as well as comparisons with field data or laboratory data from other simulators. The analysis reported here accounts for acoustic excitation from two sets of loudspeakers: one loudspeaker set at the facility exterior that reproduces the exterior sonic boom waveform and a second set of interior loudspeakers for reproducing indoor rattle sounds. The analysis also addresses the effect of pressure fluctuations generated when exterior doors of the building housing the simulator are opened. An uncertainty budget is assembled to document each uncertainty component, its sensitivity coefficient, and the combined standard uncertainty. The latter quantity will be reported alongside measurement results in future research reports to indicate data reliability.
1985-10-03
years, there have been noise complaintn centering out of the Montello, Nevada and Park Valley, Utah areas, There has been alleged damage to chicken ...of mink to sonic booms does not affect reproduction. 4. All eรฝxperisental evidence to date indicates that the exposure of chicken eggs to sonic booms...structural response to sonic boom overpressure. The most intens-ive test was conducted at White Sands, New Mexico , where 21 structures of various design
Method for Estimating the Sonic-Boom Characteristics of Lifting Canard-Wing Aircraft Concepts
NASA Technical Reports Server (NTRS)
Mack, Robert J.
2005-01-01
A method for estimating the sonic-boom overpressures from a conceptual aircraft where the lift is carried by both a canard and a wing during supersonic cruise is presented and discussed. Computer codes used for the prediction of the aerodynamic performance of the wing, the canard-wing interference, the nacelle-wing interference, and the sonic-boom overpressures are identified and discussed as the procedures in the method are discussed. A canard-wing supersonic-cruise concept was used as an example to demonstrate the application of the method.
Fine structure of transient waves in a random medium: The correlation and spectral density functions
NASA Technical Reports Server (NTRS)
Wenzel, Alan R.
1994-01-01
This is essentially a progress report on a theoretical investigation of the propagation of transient waves in a random medium. The emphasis in this study is on applications to sonic-boom propagation, particularly as regards the effect of atmospheric turbulence on the sonic-boom waveform. The analysis is general, however, and is applicable to other types of waves besides sonic-boom waves. The phenomenon of primary concern in this investigation is the fine structure of the wave. A figure is used to illustrate what is meant by finestructure.
NASAโs Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms
2016-10-15
Flight Test Engineer Jacob Schaefer inspects the Cockpit Interactive Sonic Boom Display Avionics, or CISBoomDA, from the cockpit of his F-18 at NASAโs Armstrong Flight Research Center in Edwards, California.
Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1999-01-01
An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.
Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.
2013-01-01
A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.
Effects of aircraft noises on the sleep of women
NASA Technical Reports Server (NTRS)
Lukas, J. S.; Dobbs, M. E.
1972-01-01
The electroencephalographic and behavioral responses during sleep of eight women subjects, aged 29 to 49 years, to subsonic jet flyover noise and simulated sonic booms were tested over 14 consecutive nights. Stimulus intensities were 101, 113, and 119 PNdB (as if measured out-of-doors) for the subsonic jet flyover and 0.67, 2.50, and 5.0 psf (as if measured out-of-doors) for the simulated sonic booms. It was found that the women were awakened, on the average, by approximately 42 percent of the flyover noises and by approximately 15 percent of the simulated sonic booms. Comparison of the results of this study with those of a similar study using men as subjects revealed that women were awakened more frequently by the subsonic jet flyover noise then were the men, while men were awakened more frequently by the simulated sonic boom.
PARTNER Project 8: Sonic boom mitigation
NASA Astrophysics Data System (ADS)
Sparrow, Victor W.
2005-09-01
Current U.S. and international laws prohibit commercial supersonic flight over land due to the impact of conventional sonic boom noise. Aircraft manufacturers, however, now have modern computational fluid dynamics and optimization tools, unavailable when those laws were enacted, that will allow them to design and build aircraft with boom signatures that are substantially smoothed compared with traditional N-waves. One purpose of the FAA/NASA/Transport Canada PARTNER Center of Excellence Project 8 is to determine exactly which waveforms would be heard by the public if low-boom supersonic aircraft are put into service. Another purpose is to ascertain the acceptability of those waveforms. The project involves the following universities, government, and industry partners: Penn State, Purdue, Stanford, the National Aeronautics and Space Administration, the Federal Aviation Administration, Boeing, Cessna, Gulfstream, Lockheed-Martin, and Wyle Laboratories. Some of the initial project work includes studies on the propagation of sonic booms through atmospheric turbulence, on the mutual reproducibility of three sonic boom simulators, and on the realism of those simulators as determined by expert listeners. The results of all the studies are intended to provide the FAA with new data to reassess current regulations. [Work supported by NASA, the FAA, and the PARTNER industrial partners.
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
2009-01-01
Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.
NASA Technical Reports Server (NTRS)
Morgenstern, John; Buonanno, Michael; Yao, Jixian; Murugappan, Mugam; Paliath, Umesh; Cheung, Lawrence; Malcevic, Ivan; Ramakrishnan, Kishore; Pastouchenko, Nikolai; Wood, Trevor;
2015-01-01
Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added significant fidelity to the design of the configuration in this phase by performing a low speed wind tunnel test at our LTWT facility in Palmdale, by more complete modelling of propulsion effects in our sonic boom analysis, and by refining our configuration packaging and performance assessments. Working with General Electric, LM performed an assessment of the impact of inlet and nozzle effects on the sonic boom signature of the LM N+2 configurations. Our results indicate that inlet/exhaust streamtube boundary conditions are adequate for conceptual design studies, but realistic propulsion modeling at similar stream-tube conditions does have a small but measurable impact on the sonic boom signature. Previous supersonic transport studies have identified aeroelastic effects as one of the major challenges associated with the long, slender vehicles particularly common with shaped boom aircraft (Ref. 3). Under the Phase 2 effort, we have developed a detailed structural analysis model to evaluate the impact of flexibility and structural considerations on the feasibility of future quiet supersonic transports. We looked in particular at dynamic structural modes and flutter as a failure that must be avoided. We found that for our N+2 design in particular, adequate flutter margin existed. Our flutter margin is large enough to cover uncertainties like large increases in engine weight and the margin is relatively easy to increase with additional stiffening mass. The lack of major aeroelastic problems probably derives somewhat from an early design bias. While shaped boom aircraft require long length, they are not required to be thin. We intentionally developed our structural depths to avoid major flexibility problems. So at the end of Phase 2, we have validated that aeroelastic problems are not necessarily endemic to shaped boom designs. Experimental validation of sonic boom design and analysis techniques was the primary objective of the N+2 Supersonic Validations contract; and in this Phase, LM participated in four high speed wind tunnel tests. The first so-called Parametric Test in the Ames 9x7 tunnel did an exhaustive look at variation effects of the parameters: humidity, total pressure, sample time, spatial averaging distance and number of measurement locations, and more. From the results we learned to obtain data faster and more accurately, and made test condition tolerances easy to meet (eliminating earlier 60 percent wasted time when condition tolerances could not be held). The next two tests used different tunnels. The Ames 11 ft tunnel was used to test lower Mach numbers of 1.2 and 1.4. There were several difficulties using this tunnel for the first time for sonic boom including having to shift the measurement Mach numbers to 1.15 and 1.3 to avoid flow problems. It is believed that the 11 ft could be used successfully to measure sonic boom but there are likely to be a number of test condition restrictions. The Glenn 8x6 ft tunnel was used next and the tunnel has a number of desirable features for sonic boom measurement. While the Ames 9x7 can only test Mach 1.55 to 2.55 and the 11 ft can only test Mach 1.3 and lower, the Glenn 8x6 can test continuously from Mach 0.3 to 2.0. Unfortunately test measurement accuracy was compromised by a reference pressure drift. Post-test analysis revealed that the drift occurred when Mach number drifted slightly. Test measurements indicated that if Mach number drift is eliminated, results from the 8x6 would be more accurate, especially at longer distances, than results from the 9x7. The fourth test in the 9x7, called LM4, used everything we learned to comprehensively and accurately measure our new 1044-02 configuration with a full-carpet shaped signature design. Productivity was 8 times greater than our Phase 1 LM3 test. Measurement accuracy and repeatability was excellent out to 42 in. However, measurements at greater distances require the rail in the aft position and become substantially less accurate. Further signature processing or measurement improvements are needed for beyond near-field signature validation.
NASAโs Improved Supersonic Cockpit Display Shows Precise Locations of Sonic Booms
2016-10-06
Engineers and researchers at NASAโs Armstrong Flight Research Center monitored the flights, and were able to observe the mapping of the sonic boom carpet from the F-18, from the centerโs Mission Control Center.
Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence
DOT National Transportation Integrated Search
2017-06-19
The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from ...
A methodology for designing aircraft to low sonic boom constraints
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1991-01-01
A method for designing conceptual supersonic cruise aircraft to meet low sonic boom requirements is outlined and described. The aircraft design is guided through a systematic evolution from initial three view drawing to a final numerical model description, while the designer using the method controls the integration of low sonic boom, high supersonic aerodynamic efficiency, adequate low speed handling, and reasonable structure and materials technologies. Some experience in preliminary aircraft design and in the use of various analytical and numerical codes is required for integrating the volume and lift requirements throughout the design process.
USM3D Simulations for Second Sonic Boom Workshop
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Carter, Melissa B.; Nayani, Sudheer N.; Cliff, Susan; Pearl, Jason M.
2017-01-01
The NASA Tetrahedral Unstructured Software System with the USM3D flow solver was used to compute test cases for the Second AIAA Sonic Boom Prediction Workshop. The intent of this report is to document the USM3D results for SBPW2 test cases. The test cases included an axisymmetric equivalent area body, a JAXA wing body, a NASA low boom supersonic configuration modeled with flow through nacelles and engine boundary conditions. All simulations were conducted for a free stream Mach number of 1.6, zero degrees angle of attack, and a Reynolds number of 5.7 million per meter. Simulations were conducted on tetrahedral grids provided by the workshop committee, as well as a family of grids generated by an in-house approach for sonic boom analyses known as BoomGrid using current best practices. The near-field pressure signatures were extracted and propagated to the ground with the atmospheric propagation code, sBOOM. The USM3D near-field pressure signatures, corresponding sBOOM ground signatures, and loudness levels on the ground are compared with mean values from other workshop participants.
Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2011-01-01
A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.
Raptor responses to low-level jet aircraft and sonic booms
Ellis, David H.; Ellis, Catherine H.; Mindell, David P.
1991-01-01
We estimated effects of low-level military jet aircraft and mid- to high-altitude sonic booms (actual and simulated) on nesting peregrine falcons (Falco peregrinus) and seven other raptors by observing their responses to test stimuli, determining nesting success for the test year, and evaluating site reoccupancy rates for the year following the tests. Frequent and nearby jet aircraft passes: (1) sometimes noticeably alarmed birds, (2) occasionally caused birds to fly from perches or eyries, (3) most often evoked only minimal responses, and (4) were never associated with reproductive failure. Similarly, responses to real and simulated mid- to high-altitude sonic booms were often minimal and never appeared productivity limiting. Eighteen (95%) of 19 nest sites subjected to low-level jet flights and/or simulated sonic booms in 1980 fledged young during that year. Eighteen (95%) of 19 sites disturbed in 1980 were reoccupied by pairs or lone birds of the same species in 1981.We subjected four pairs of prairie falcons (Falco mexicanus) to low-level aircraft at ad libitum levels during the courtship and incubation phases when adults were most likely to abandon: all four eyries fledged young. From heart rate (HR) data taken via a telemetering egg at another prairie falcon eyrie, we determined that stimulus-induced HR alterations were comparable to rate changes for birds settling to incubate following flight.While encouraging, our findings cannot be taken as conclusive evidence that jet flights and/or sonic booms will have no long-term negative effects for other raptor species or for other areas. In addition, we did not experiment with totally naive wild adults, rotary-winged aircraft, or low-level sonic booms.
Sonic Booms on Big Structures (SonicBOBS) Phase I Database; NASA Dryden Sensors
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Arnac, Sarah Renee
2010-01-01
This DVD contains 13 channels of microphone and up to 22 channels of pressure transducer data collected in September, 2009 around several buildings located at Edwards Air Force Base. These data were recorded by NASA Dryden. Not included are data taken by NASA Langley and Gulfstream. Each day's data is in a separate folder and each pass is in a file beginning with "SonicBOBS_" (for microphone data) or "SonicBOBSBB_" (for BADS and BASS data) followed by the month, day, year as two digits each, followed by the hour, minute, sec after midnight GMT. The filename time given is for the END time of the raw recording file. In the case of the microphone data, this time may be several minutes after the sonic boom, and is according to the PC's uncalibrated clock. The Matlab data files have the actual time as provided by a GPS-based IRIG-B signal recorded concurrently with the data. Microphone data is given for 5 seconds prior to 20 seconds after the sonic boom. BADS and BASS data is given for the full recording, 6 seconds for the BADS and 10 seconds for the BASS. As an example of the naming convention, file "SonicBOBS_091209154618.mat" is from September 12, 2009 at 15:46:18 GMT. Note that data taken on September 12, 2009 prior to 01:00:00 GMT was of the Space Shuttle Discovery (a sonic boom of opportunity), which was on September 11, 2009 in local Pacific Daylight Time.
The effects of simulated sonic booms on tracking performance and autonomic response.
DOT National Transportation Integrated Search
1971-06-01
Subjects were exposed to four simulated 'indoor' sonic booms over an approximate thirty-minute period. The overpressure levels were 1.0, 2.0 and 4.0 psf (as measured 'outdoors') with durations of 295 milliseconds. Subjects performed a two-dimensional...
Environmental Pollution: Noise Pollution - Sonic Boom. Volume I.
ERIC Educational Resources Information Center
Defense Documentation Center, Alexandria, VA.
The unclassified, annotated bibliography is Volume I of a two-volume set on Noise Pollution - Sonic Boom in a series of scheduled bibliographies on Environmental Pollution. Volume II is Confidential. Corporate author-monitoring agency, subject, title, contract, and report number indexes are included. (Author/JR)
NASA's F-15B Research Testbed aircraft flies in the supersonic shock wave of a U.S. Navy F-5E as par
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's F-15B Research Testbed aircraft recently flew in the supersonic shock wave of a U.S. Navy F-5E in support of the F-5 Shaped Sonic Boom Demonstration (SSBD) project, part of the Defense Advanced Research Projects Agency's (DARPA) Quiet Supersonic Platform (QSP) program. The flights originated from the NASA Dryden Flight Research Center at Edwards, California. Four flights were flown in order to measure the F-5E's near-field (close-up) sonic boom signature at Mach 1.4, during which more than 50 shockwave patterns were measured at distances as close as 100 feet below the F-5E.
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.
2012-01-01
An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.
Specialized CFD Grid Generation Methods for Near-Field Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Campbell, Richard L.; Elmiligui, Alaa; Cliff, Susan E.; Nayani, Sudheer N.
2014-01-01
Ongoing interest in analysis and design of low sonic boom supersonic transports re- quires accurate and ecient Computational Fluid Dynamics (CFD) tools. Specialized grid generation techniques are employed to predict near- eld acoustic signatures of these con- gurations. A fundamental examination of grid properties is performed including grid alignment with ow characteristics and element type. The issues a ecting the robustness of cylindrical surface extrusion are illustrated. This study will compare three methods in the extrusion family of grid generation methods that produce grids aligned with the freestream Mach angle. These methods are applied to con gurations from the First AIAA Sonic Boom Prediction Workshop.
Sonic booms and sleep : affect change as a function of age.
DOT National Transportation Integrated Search
1972-06-01
The study concerned the measurement of mood changes resulting from simulated sonic booms occurring during sleep. Subjects from three age groups (21 to 26, 40 to 45, and 60 to 72 years old) spent 21 consecutive nights in a sleeping room equipped for s...
Sonic boom startle effects : report of a field study.
DOT National Transportation Integrated Search
1973-07-01
The study reports the results of a sonic boom field study conducted in Sweden during October 1972. Ten female subjects were tested indoors on each of six days. Two age groups were studied: 20-35 and 50-65 years. Fighter aircraft flying at various hei...
NASA Technical Reports Server (NTRS)
Plotkin, Kenneth J.; Maglieri, Domenic J.; Sullivan, Brenda M.
2005-01-01
Turbulence has two distinctive effects on sonic booms: there is distortion in the form of random perturbations that appear behind the shock waves, and shock rise times are increased randomly. A first scattering theory by S.C. Crow in the late 1960s quantified the random distortions, and Crow's theory was shown to agree with available flight test data. A variety of theories for the shock thickness have been presented, all supporting the role of turbulence in increasing rise time above that of a basic molecular-relaxation structure. The net effect of these phenomena on the loudness of shaped minimized booms is of significant interest. Initial analysis suggests that there would be no change to average loudness, but this had not been experimentally investigated. The January 2004 flight test of the Shaped Sonic Boom Demonstrator (SSBD), together with a reference unmodified F-5E, included a 12500- foot linear ground sensor array with 28 digitally recorded sensor sites. This data set provides an opportunity to re-test Crow's theory for the post-shock perturbations, and to examine the net effect of turbulence on the loudness of shaped sonic booms.
Noise and Sonic Boom Impact Technology. Sonic Boom Damage to Conventional Structures
1989-02-01
Pallant (21) reported on tests on leaded glass windows conducted in England. Tests were conducted to investigate the effect of repeated booms and to...changes can cause considerable deflections in the window due to the thermal expansion of the lead. However, Pallant also found that these...RD-775-118, July , 1975. 10. Abiassi, J.J., "The Strength of Weathered Window Glass Using Surface Characteristics," Institute For Disaster Research
High speed civil transport: Sonic boom softening and aerodynamic optimization
NASA Technical Reports Server (NTRS)
Cheung, Samson
1994-01-01
An improvement in sonic boom extrapolation techniques has been the desire of aerospace designers for years. This is because the linear acoustic theory developed in the 60's is incapable of predicting the nonlinear phenomenon of shock wave propagation. On the other hand, CFD techniques are too computationally expensive to employ on sonic boom problems. Therefore, this research focused on the development of a fast and accurate sonic boom extrapolation method that solves the Euler equations for axisymmetric flow. This new technique has brought the sonic boom extrapolation techniques up to the standards of the 90's. Parallel computing is a fast growing subject in the field of computer science because of its promising speed. A new optimizer (IIOWA) for the parallel computing environment has been developed and tested for aerodynamic drag minimization. This is a promising method for CFD optimization making use of the computational resources of workstations, which unlike supercomputers can spend most of their time idle. Finally, the OAW concept is attractive because of its overall theoretical performance. In order to fully understand the concept, a wind-tunnel model was built and is currently being tested at NASA Ames Research Center. The CFD calculations performed under this cooperative agreement helped to identify the problem of the flow separation, and also aided the design by optimizing the wing deflection for roll trim.
NASA Astrophysics Data System (ADS)
Carr, Daniel; Davies, Patricia
2015-10-01
Aircraft manufacturers are interested in designing and building a new generation of supersonic aircraft that produce shaped sonic booms of lower peak amplitude than booms created by current supersonic aircraft. To determine if the noise exposure from these "low"booms is more acceptable to communities, new laboratory testing to evaluate people's responses must occur. To guide supersonic aircraft design, objective measures that predict human response to modified sonic boom waveforms and other impulsive sounds are needed. The present research phase is focused on understanding people's reactions to booms when heard inside, and therefore includes consideration of the effects of house type and the indoor acoustic environment. A test was conducted in NASA Langley's Interior Effects Room (IER), with the collaboration of NASA Langley engineers. This test was focused on the effects of low-frequency content and of vibration, and subjects sat in a small living room environment. A second test was conducted in a sound booth at Purdue University, using similar sounds played back over earphones. The sounds in this test contained less very-low-frequency energy due to limitations in the playback, and the laboratory setting is a less natural environment. For the purpose of comparison, and to improve the robustness of the model, both sonic booms and other more familiar transient sounds were used in the tests. The design of the tests and the signals are briefly described, and the results of both tests will be presented.
Preliminary work about the reproduction of sonic boom signals for perception studies
NASA Astrophysics Data System (ADS)
Epain, N.; Herzog, P.; Rabau, G.; Friot, E.
2006-05-01
As part of a French research program, a sound restitution cabin was designed for investigating the annoyance of sonic boom signals. The first goal was to reproduce the boom spectrum and temporal waveform: this required linear generation of high pressure levels at infrasonic frequencies (110 SPL dB around 3 Hz), and response equalization over the full frequency range (1 Hz-20 kHz). At this stage the pressure inside the cabin was almost uniform around the listener, emulating an outdoor situation. A psychoacoustic study was then conducted which confirmed that the loudness (related to annoyance) of N-waves is roughly governed by the peak pressure, the rise/fall time, and the wave duration. A longer-term goal is to reproduce other aspects of an indoor situation including rattle noise, ground vibrations, and a more realistic spatial repartition of pressure. This latter point has been addressed through an Active Noise Control study aiming at monitoring the low-frequency acoustic pressure on a surface enclosing a listener. Frequency and time-domain numerical simulations of boom reproduction via ANC are given, including a sensitivity study of the coupling between a listener's head and the incident boom wave which combine into the effective sound-field to be reproduced.
NASA Technical Reports Server (NTRS)
Carlson, H. W.
1978-01-01
Sonic boom overpressures and signature duration may be predicted for the entire affected ground area for a wide variety of supersonic airplane configurations and spacecraft operating at altitudes up to 76 km in level flight or in moderate climbing or descending flight paths. The outlined procedure relies to a great extent on the use of charts to provide generation and propagation factors for use in relatively simple expressions for signature calculation. Computational requirements can be met by hand-held scientific calculators, or even by slide rules. A variety of correlations of predicted and measured sonic-boom data for airplanes and spacecraft serve to demonstrate the applicability of the simplified method.
A comparison of the startle effects resulting from exposure to two levels of simulated sonic booms.
DOT National Transportation Integrated Search
1973-12-01
Subjects were exposed indoors to simulated sonic booms having outside overpressures of 50 and 150 N/sq m. Rise times were held constant at 5.5 msecs. In addition to the outside measurements, inside measures of dBlin and dBA were also obtained. Subjec...
Influence of Chair Vibrations on Indoor Sonic Boom Annoyance
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra
2015-01-01
One goal of NASAโs Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Sothcott, Victor E.
1990-01-01
The sonic boom signature data acquired from about 1225 supersonic flights, over a 6-month period in 1964 in the Oklahoma City area, was enhanced with the addition of data relating to rise times and total signature duration. These later parameters, not available at the time of publication of the original report on the Oklahoma City sonic boom exposures, are listed in tabular form along with overpressure, positive impulse, positive duration, and waveform category. Airplane operating information along with the surface weather observations are also included. Sonic boom rise times include readings to the 1/2, 3/4, and maximum overpressure values. Rise time relative probabilities for various lateral locations from the ground track of 0, 5, and 10 miles are presented along with the variation of rise times with flight altitude. The tabulated signature data, along with corresponding airplane operating conditions and surface and upper level atmospheric information, are also available on electronic files to provide it in the format for more efficient and effective utilization.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Haering, Edward A., Jr.; Ehernberger, L. J.
1996-01-01
In-flight measurements of the SR-71 near-field sonic boom were obtained by an F-16XL airplane at flightpath separation distances from 40 to 740 ft. Twenty-two signatures were obtained from Mach 1.60 to Mach 1.84 and altitudes from 47,600 to 49,150 ft. The shock wave signatures were measured by the total and static sensors on the F-16XL noseboo. These near-field signature measurements were distorted by pneumatic attenuation in the pitot-static sensors and accounting for their effects using optimal deconvolution. Measurement system magnitude and phase characteristics were determined from ground-based step-response tests and extrapolated to flight conditions using analytical models. Deconvolution was implemented using Fourier transform methods. Comparisons of the shock wave signatures reconstructed from the total and static pressure data are presented. The good agreement achieved gives confidence of the quality of the reconstruction analysis. although originally developed to reconstruct the sonic boom signatures from SR-71 sonic boom flight tests, the methods presented here generally apply to other types of highly attenuated or distorted pneumatic measurements.
Comparison of methods of predicting community response to impulsive and nonimpulsive noise
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Pearsons, Karl S.
1994-01-01
Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.
Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes
NASA Technical Reports Server (NTRS)
Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.
2017-01-01
NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.
Measured Sonic Boom Signatures Above and Below the XB-70 Airplane Flying at Mach 1.5 and 37,000 Feet
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Henderson, Herbert R.; Tinetti, Ana F.
2011-01-01
During the 1966-67 Edwards Air Force Base (EAFB) National Sonic Boom Evaluation Program, a series of in-flight flow-field measurements were made above and below the USAF XB-70 using an instrumented NASA F-104 aircraft with a specially designed nose probe. These were accomplished in the three XB-70 flights at about Mach 1.5 at about 37,000 ft. and gross weights of about 350,000 lbs. Six supersonic passes with the F-104 probe aircraft were made through the XB-70 shock flow-field; one above and five below the XB-70. Separation distances ranged from about 3000 ft. above and 7000 ft. to the side of the XB-70 and about 2000 ft. and 5000 ft. below the XB-70. Complex near-field "sawtooth-type" signatures were observed in all cases. At ground level, the XB-70 shock waves had not coalesced into the two-shock classical sonic boom N-wave signature, but contained three shocks. Included in this report is a description of the generating and probe airplanes, the in-flight and ground pressure measuring instrumentation, the flight test procedure and aircraft positioning, surface and upper air weather observations, and the six in-flight pressure signatures from the three flights.
Sonic boom measurements from accelerating supersonic tracked sleds
NASA Technical Reports Server (NTRS)
Reed, J. W.
1974-01-01
Supersonic sled tests on the Sandia 1524-m (5000-ft) track generate sonic booms of sufficient intensity to allow some airblast measurements at distance scales not obtained from wind tunnel or flight tests. During acceleration, an emitted curved boom wave propagates to a caustic, or focus. Detailed measurements around these caustics may help to clarify the overpressure magnification which can occur from real aircraft operations. Six fixed pressure gages have been operated to document the general noise field, and a mobile array of twelve gages.
Human Response to Low-Intensity Sonic Booms Heard Indoors and Outdoors
NASA Technical Reports Server (NTRS)
Sullivan, Brenda M.; Klos, Jacob; Buehrle, Ralph D.; McCurdy, David A.; Haering, Edward A., Jr.
2010-01-01
Test subjects seated inside and outside a house were exposed to low-intensity N-wave sonic booms during a 3-week test period in June 2006- The house was instrumented to measure the booms both inside and out. F-18 aircraft were flown to achieve a variety of boom overpressures from approximately .1 to .6 psf During four test days, seventy-seven test subjects heard the booms while seated inside and outside the house. Using the Magnitude Estimation methodology and artificial reference sounds ; the subjects rated the annoyance of the booms. Since the same subjects heard similar booms both inside and outside the house, comparative ratings of indoor and outdoor annoyance were obtained. For a given metric level, indoor subjects gave higher annoyance scores than outdoor subjects. For a given boom; annoyance scores inside were on average the same as those outside. In a post-test questionnaire, the majority of subjects rated the indoor booms as more annoying than the outdoor ones. These results are discussed in this paper.
Laboratory study of effects of sonic boom shaping on subjective loudness and acceptability
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1992-01-01
A laboratory study was conducted to determine the effects of sonic boom signature shaping on subjective loudness and acceptability. The study utilized the sonic boom simulator at the Langley Research Center. A wide range of symmetrical, front-shock-minimized signature shapes were investigated together with a limited number of asymmetrical signatures. Subjective loudness judgments were obtained from 60 test subjects by using an 11-point numerical category scale. Acceptability judgments were obtained using the method of constant stimuli. Results were used to assess the relative predictive ability of several noise metrics, determine the loudness benefits of detailed boom shaping, and derive laboratory sonic boom acceptability criteria. These results indicated that the A-weighted sound exposure level, the Stevens Mark 7 Perceived Level, and the Zwicker Loudness Level metrics all performed well. Significant reductions in loudness were obtained by increasing front-shock rise time and/or decreasing front-shock overpressure of the front-shock minimized signatures. In addition, the asymmetrical signatures were rated to be slightly quieter than the symmetrical front-shock-minimized signatures of equal A-weighted sound exposure level. However, this result was based on a limited number of asymmetric signatures. The comparison of laboratory acceptability results with acceptability data obtained in more realistic situations also indicated good agreement.
Sonic-boom ground-pressure measurements from Apollo 15
NASA Technical Reports Server (NTRS)
Hilton, D. A.; Henderson, H. R.; Mckinney, R.
1972-01-01
Sonic boom pressure signatures recorded during the launch and reentry phases of the Apollo 15 mission are presented. The measurements were obtained along the vehicle ground track at 87 km and 970 km downrange from the launch site during ascent; and at 500 km, 55.6 km, and 12.9 km from the splashdown point during reentry. Tracings of the measured signatures are included along with values of the overpressure, impulse, time duration, and rise times. Also included are brief descriptions of the launch and recovery test areas in which the measurements were obtained, the sonic boom instrumentation deployment, flight profiles and operating conditions for the launch vehicle and spacecraft, surface weather information at the measuring sites, and high altitude weather information for the general measurement areas.
NASA Technical Reports Server (NTRS)
Bobbitt, Percy J.
1992-01-01
A discussion is given of the many factors that affect sonic booms with particular emphasis on the application and development of improved computational fluid dynamics (CFD) codes. The benefits that accrue from interference (induced) lift, distributing lift using canard configurations, the use of wings with dihedral or anhedral and hybrid laminar flow control for drag reduction are detailed. The application of the most advanced codes to a wider variety of configurations along with improved ray-tracing codes to arrive at more accurate and, hopefully, lower sonic booms is advocated. Finally, it is speculated that when all of the latest technology is applied to the design of a supersonic transport it will be found environmentally acceptable.
Effect of sonic boom asymmetry on subjective loudness
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1992-01-01
The NASA Langley Research Center's sonic boom apparatus was used in an experimental study to quantify subjective loudness response to a wide range of asymmetrical N-wave sonic boom signatures. Results were used to assess the relative performance of several metrics as loudness estimators for asymmetrical signatures and to quantify in detail the effects on subjective loudness of varying both the degree and direction of signature loudness asymmetry. Findings of the study indicated that Perceived Level (Steven's Mark 7) and A-weighted sound exposure level were the best metrics for quantifying asymmetrical boom loudness. Asymmetrical signatures were generally rated as being less loud than symmetrical signatures of equivalent Perceived Level. The magnitude of the loudness reductions increased as the degree of boom asymmetry increased, and depended upon the direction of asymmetry. These loudness reductions were not accounted for by any of the metrics. Corrections were determined for use in adjusting calculated Perceived Level values to account for these reductions. It was also demonstrated that the subjects generally incorporated the loudness components of the complete signatures when making their subjective judgments.
Supersonic airplane study and design
NASA Technical Reports Server (NTRS)
Cheung, Samson
1993-01-01
A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.
LAVA Simulations for the AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.
2014-01-01
Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.
NASA Technical Reports Server (NTRS)
Darden, C. M.
1984-01-01
A method for analyzing shock coalescence which includes three dimensional effects was developed. The method is based on an extension of the axisymmetric solution, with asymmetric effects introduced through an additional set of governing equations, derived by taking the second circumferential derivative of the standard shock equations in the plane of symmetry. The coalescence method is consistent with and has been combined with a nonlinear sonic boom extrapolation program which is based on the method of characteristics. The extrapolation program, is able to extrapolate pressure signatures which include embedded shocks from an initial data line in the plane of symmetry at approximately one body length from the axis of the aircraft to the ground. The axisymmetric shock coalescence solution, the asymmetric shock coalescence solution, the method of incorporating these solutions into the extrapolation program, and the methods used to determine spatial derivatives needed in the coalescence solution are described. Results of the method are shown for a body of revolution at a small, positive angle of attack.
Sonic Boom Assessment for the Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Herron, Marissa
2007-01-01
The Constellation Environmental Impact Statement (Cx EIS) requires that an assessment be performed on the environmental impact of sonic booms during the reentry of the Crew Exploration Vehicle (CEV). This included an analysis of current planned vehicle trajectories for the Crew Module (CM) and the Service Module (SM) debris and the determination of the potential impact to the overflown environment.
Analysis of Exhaust Plume Effects on Sonic Boom for a 59-Degree Wing Body Model
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
2011-01-01
Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analyses showed how the shock wave formed at the nozzle lip interacted with the nozzle boat-tail expansion wave. The nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion. Lip shock movement caused a favorable change in the observed pressure signature. These results were applied to a simplified supersonic vehicle geometry with no inlets and no tail, in which the goal was to demonstrate how under-expanded nozzle operation reduced the sonic boom signature by twelve percent. A secondary goal was to demonstrate the use of the Cart3D inviscid code for off-body pressure signatures including the nozzle plume effect.
NASA Technical Reports Server (NTRS)
Goforth, T. T.; Rasmussen, R. K.
1974-01-01
Seismic data recorded at the Tonto Forest Seismological Observatory in Arizona and the Uinta Basin Seismological Observatory in Utah were used to compare the frequency of occurrence, severity, and spectral content of ground motions resulting from earthquakes, and other natural and man-made sources with the motions generated by sonic booms. A search of data recorded at the two observatories yielded a classification of over 180,000 earthquake phase arrivals on the basis of frequency of occurrence versus maximum ground velocity. The majority of the large ground velocities were produced by seismic surface waves from moderate to large earthquakes in the western United States, and particularly along the Pacific Coast of the United States and northern Mexico. A visual analysis of raw film seismogram data over a 3-year period indicates that local and regional seismic events, including quarry blasts, are frequent in occurrence, but do not produce ground motions at the observatories comparable to either the large western United States earthquakes or to sonic booms. Seismic data from the Nevada Test Site nuclear blasts were used to derive magnitude-distance-sonic boom overpressure relations.
NASA Technical Reports Server (NTRS)
Klos, Jacob; Buehrle, Ralph; Sullivan, Brenda; Gavin, Joseph; Salamone, Joseph; Haering, Edward A., jr.; Miller, Denise M.
2008-01-01
Two experiments have been performed to measure the vibroacoustic response of houses exposed to sonic booms. In 2006, an old home in the base housing area of Edwards Air Force Base, built around 1960 and demolished in 2007, was instrumented with 288 transducers. During a 2007 follow-on test, a newer home in the base housing area, built in 1997, was instrumented with 112 transducers. For each experiment, accelerometers were placed on walls, windows and ceilings in bedrooms of the house to measure the vibration response of the structure. Microphones were placed outside and inside the house to measure the excitation field and resulting interior sound field. The vibroacoustic response of each house was measured for sonic boom amplitudes spanning from 2.4 to 96 Pa (0.05 to 2 lbf/sq ft). The boom amplitudes were systematically varied using a unique dive maneuver of an F/A-18 airplane. In total, the database for both houses contains vibroacoustic response data for 154 sonic booms. In addition, several tests were performed with mechanical shaker excitation of the structure to characterize the forced response of the houses. The purpose of this paper is to summarize all the data from these experiments that are available to the research community, and to compare and contrast the vibroacoustic behavior of these two dissimilar houses.
Development and evaluation of a device to simulate a sonic boom
NASA Technical Reports Server (NTRS)
Rash, L. C.; Barrett, R. F.; Hart, F. D.
1972-01-01
A device to simulate the vibrational and acoustical properties of a sonic boom was developed and evaluated. The design employed a moving circular diaphragm which produced pressure variations by altering the volume of an air-tight enclosure that was located adjacent to an acoustical test chamber. A review of construction oriented problems, along with their solutions, is presented. The simulator is shown to produce the effects of sonic booms having pressure signatures with rise times as low as 5 milliseconds, durations as short as 80 milliseconds, and overpressures as high as 2.5 pounds per square foot. Variations in the signatures are possible by independent adjustments of the simulator. The energy spectral density is also shown to be in agreement with theory and with actual measurements for aircraft.
Aeroacoustics analysis and community noise overview
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Soderman, Paul T.
1992-01-01
The goals of the High Speed Research Program are focused on three major environmental issues: atmospheric effect, airport community noise, and sonic booms. The issues are basic concerns that require better understanding before further HSRP endeavors can be addresses. This paper discusses airport community noise and aeroacoustic analysis.
Multidisciplinary design optimization for sonic boom mitigation
NASA Astrophysics Data System (ADS)
Ozcer, Isik A.
Automated, parallelized, time-efficient surface definition and grid generation and flow simulation methods are developed for sharp and accurate sonic boom signal computation in three dimensions in the near and mid-field of an aircraft using Euler/Full-Potential unstructured/structured computational fluid dynamics. The full-potential mid-field sonic boom prediction code is an accurate and efficient solver featuring automated grid generation, grid adaptation and shock fitting, and parallel processing. This program quickly marches the solution using a single nonlinear equation for large distances that cannot be covered with Euler solvers due to large memory and long computational time requirements. The solver takes into account variations in temperature and pressure with altitude. The far-field signal prediction is handled using the classical linear Thomas Waveform Parameter Method where the switching altitude from the nonlinear to linear prediction is determined by convergence of the ground signal pressure impulse value. This altitude is determined as r/L โ 10 from the source for a simple lifting wing, and r/L โ 40 for a real complex aircraft. Unstructured grid adaptation and shock fitting methodology developed for the near-field analysis employs an Hessian based anisotropic grid adaptation based on error equidistribution. A special field scalar is formulated to be used in the computation of the Hessian based error metric which enhances significantly the adaptation scheme for shocks. The entire cross-flow of a complex aircraft is resolved with high fidelity using only 500,000 grid nodes after only about 10 solution/adaptation cycles. Shock fitting is accomplished using Roe's Flux-Difference Splitting scheme which is an approximate Riemann type solver and by proper alignment of the cell faces with respect to shock surfaces. Simple to complex real aircraft geometries are handled with no user-interference required making the simulation methods suitable tools for product design. The simulation tools are used to optimize three geometries for sonic boom mitigation. The first is a simple axisymmetric shape to be used as a generic nose component, the second is a delta wing with lift, and the third is a real aircraft with nose and wing optimization. The objectives are to minimize the pressure impulse or the peak pressure in the sonic boom signal, while keeping the drag penalty under feasible limits. The design parameters for the meridian profile of the nose shape are the lengths and the half-cone angles of the linear segments that make up the profile. The design parameters for the lifting wing are the dihedral angle, angle of attack, non-linear span-wise twist and camber distribution. The test-bed aircraft is the modified F-5E aircraft built by Northrop Grumman, designated the Shaped Sonic Boom Demonstrator. This aircraft is fitted with an optimized axisymmetric nose, and the wings are optimized to demonstrate optimization for sonic boom mitigation for a real aircraft. The final results predict 42% reduction in bow shock strength, 17% reduction in peak Deltap, 22% reduction in pressure impulse, 10% reduction in foot print size, 24% reduction in inviscid drag, and no loss in lift for the optimized aircraft. Optimization is carried out using response surface methodology, and the design matrices are determined using standard DoE techniques for quadratic response modeling.
Sonic Boom Prediction and Minimization of the Douglas Reference OPT5 Configuration
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
Conventional CFD methods and grids do not yield adequate resolution of the complex shock flow pattern generated by a real aircraft geometry. As a result, a unique grid topology and supersonic flow solver was developed at Northrop Grumman based on the characteristic behavior of supersonic wave patterns emanating from the aircraft. Using this approach, it was possible to compute flow fields with adequate resolution several body lengths below the aircraft. In this region, three-dimensional effects are diminished and conventional two-dimensional modified linear theory (MLT) can be applied to estimate ground pressure signatures or sonic booms. To accommodate real aircraft geometries and alleviate the burdensome grid generation task, an implicit marching multi-block, multi-grid finite-volume Euler code was developed as the basis for the sonic boom prediction methodology. The Thomas two-dimensional extrapolation method is built into the Euler code so that ground signatures can be obtained quickly and efficiently with minimum computational effort suitable to the aircraft design environment. The loudness levels of these signatures can then be determined using a NASA generated noise code. Since the Euler code is a three-dimensional flow field solver, the complete circumferential region below the aircraft is computed. The extrapolation of all this field data from a cylinder of constant radius leads to the definition of the entire boom corridor occurring directly below and off to the side of the aircraft's flight path yielding an estimate for the entire noise "annoyance" corridor in miles as well as its magnitude. An automated multidisciplinary sonic boom design optimization software system was developed during the latter part of HSR Phase 1. Using this system, it was found that sonic boom signatures could be reduced through optimization of a variety of geometric aircraft parameters. This system uses a gradient based nonlinear optimizer as the driver in conjunction with a computationally efficient Euler CFD solver (NIIM3DSB) for computing the three-dimensional near-field characteristics of the aircraft. The intent of the design system is to identify and optimize geometric design variables that have a beneficial impact on the ground sonic boom. The system uses a simple wave drag data format to specify the aircraft geometry. The geometry is internally enhanced and analytic methods are used to generate marching grids suitable for the multi-block Euler solver. The Thomas extrapolation method is integrated into this system, and hence, the aircraft's centerline ground sonic boom signature is also automatically computed for a specified cruise altitude and yields the parameters necessary to evaluate the design function. The entire design system has been automated since the gradient based optimization software requires many flow analyses in order to obtain the required sensitivity derivatives for each design variable in order to converge on an optimal solution. Hence, once the problem is defined which includes defining the objective function and geometric and aerodynamic constraints, the system will automatically regenerate the perturbed geometry, the necessary grids, the Euler solution, and finally the ground sonic boom signature at the request of the optimizer.
Unstructured Grids for Sonic Boom Analysis and Design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Nayani, Sudheer N.
2015-01-01
An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.
Sonic boom effect on fish: Observations
NASA Technical Reports Server (NTRS)
Wilkins, M. E.
1972-01-01
Motion pictures of fish in a small tank at the time a bullet traveling 1200 m/sec passes a few centimeters above indicate that fish sense the passage of the shock wave but suffer no ill effects. The pressure rise at the bow shock wave was 0.26 atm or 275 times that associated with a strong sonic boom, for example, from the proposed supersonic transport.
Evaluation of Potential Damage to Unconventional Structures by Sonic Booms
1990-05-01
plaster and gypsum board caused by sonic boom is broken...on wood lath 3.3 5.6 2. Plaster on gyplath 7.5 16 3. Plaster on expanded metal lath 16 16 4. Plaster on concrete block 16 16 5. Gypsum board (new) 16... wallboard (also called plasterboard or drywall), it is assumed that interior walls of unconventional historic wood frame buildings used plaster instead.
NASA Technical Reports Server (NTRS)
Landahl, M.; Loefgren, P.
1973-01-01
A second-order theory for supersonic flow past slender bodies is presented. Through the introduction of characteristic coordinates as independent variables and the expansion procedure proposed by Lin and Oswatitsch, a uniformly valid solution is obtained for the whole flow field in the axisymmetric case and for far field in the general three-dimensional case. For distances far from the body the theory is an extension of Whitham's first-order solution and for the domain close to the body it is a modification of Van Dyke's second-order solution in the axisymmetric case. From the theory useful formulas relating flow deflections to the Whitham F-function are derived, which permits one to determine the sonic boom strength from wind tunnel measurements fairly close to the body.
Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan
2016-01-01
NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.
Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles
NASA Technical Reports Server (NTRS)
Castner, Raymond
2012-01-01
Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1992-01-01
A CFD analysis of the near-field sonic boom environment of several low boom High Speed Civilian Transport (HSCT) concepts is presented. The CFD method utilizes a multi-block Euler marching code within the context of an innovative mesh topology that allows for the resolution of shock waves several body lengths from the aircraft. Three-dimensional pressure footprints at one body length below three-different low boom aircraft concepts are presented. Models of two concepts designed by NASA to cruise at Mach 2 and Mach 3 were built and tested in the wind tunnel. The third concept was designed by Boeing to cruise at Mach 1.7. Centerline and sideline samples of these footprints are then extrapolated to the ground using a linear waveform parameter method to estimate the ground signatures or sonic boom ground overpressure levels. The Mach 2 concept achieved its centerline design signature but indicated higher sideline booms due to the outboard wing crank of the configuration. Nacelles are also included on two of NASA's low boom concepts. Computations are carried out for both flow-through nacelles and nacelles with engine exhaust simulation. The flow-through nacelles with the assumption of zero spillage and zero inlet lip radius showed very little effect on the sonic boom signatures. On the other hand, it was shown that the engine exhaust plumes can have an effect on the levels of overpressure reaching the ground depending on the engine operating conditions. The results of this study indicate that engine integration into a low boom design should be given some attention.
A laboratory study of subjective annoyance response to sonic booms and aircraft flyovers
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Sullivan, Brenda M.
1994-01-01
Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.
Mach Cutoff Analysis and Results from NASA's Farfield Investigation of No-Boom Thresholds
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Hill, Michael A.; Haering, Edward A., Jr.
2016-01-01
In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in partnership with other industry organizations and academia, conducted a flight research experiment to analyze acoustic propagation in the Mach cutoff shadow zone. The effort was conducted in the fall of 2012 and named the Farfield Investigation of No-boom Thresholds (FaINT). The test helped to build a dataset that will go toward further understanding of the unique acoustic propagation characteristics below Mach cutoff altitude. FaINT was able to correlate sonic boom noise levels measured below cutoff altitude with precise airplane flight conditions, potentially increasing the accuracy over previous studies. A NASA F-18B airplane made supersonic passes such that its Mach cutoff caustic would be at varying distances above a linear 60-microphone, 7375-ft (2247.9 m) long array. A TG-14 motor glider equipped with a microphone on its wing-tip also attempted to capture the same sonic boom waves above ground, but below the Mach cutoff altitude. This paper identified an appropriate metric for sonic boom waveforms in the Mach cutoff shadow zone called Perceived Sound Exposure Level; derived an empirical relationship between Mach cutoff flight conditions and noise levels in the shadow zone; validated a safe cutoff altitude theory presented by previous studies; analyzed the sensitivity of flight below Mach cutoff to unsteady atmospheric conditions and realistic aircraft perturbations; and demonstrated the ability to record sonic boom measurements over 5000 ft (1524.0 m) above ground level, but below Mach cutoff altitude.
Adjoint-Based Mesh Adaptation for the Sonic Boom Signature Loudness
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.; Park, Michael A.
2017-01-01
The mesh adaptation functionality of FUN3D is utilized to obtain a mesh optimized to calculate sonic boom ground signature loudness. During this process, the coupling between the discrete-adjoints of the computational fluid dynamics tool FUN3D and the atmospheric propagation tool sBOOM is exploited to form the error estimate. This new mesh adaptation methodology will allow generation of suitable meshes adapted to reduce the estimated errors in the ground loudness, which is an optimization metric employed in supersonic aircraft design. This new output-based adaptation could allow new insights into meshing for sonic boom analysis and design, and complements existing output-based adaptation techniques such as adaptation to reduce estimated errors in off-body pressure functional. This effort could also have implications for other coupled multidisciplinary adjoint capabilities (e.g., aeroelasticity) as well as inclusion of propagation specific parameters such as prevailing winds or non-standard atmospheric conditions. Results are discussed in the context of existing methods and appropriate conclusions are drawn as to the efficacy and efficiency of the developed capability.
A solid state converter for measurement of aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1972-01-01
The problems inherent in present systems of instrumentation for measuring aircraft noise and sonic boom include limited frequency response, expensive connecting cables, sensitivity to cable length and type, high sensitivity to environmental conditions, and additional limitations of individual system components. Furthermore, differing requirements have resulted in the use of two different systems for aircraft noise and sonic boom measurements respectively. To alleviate these difficulties a unified system of instrumentation suitable for both types of measurements was developed. The system features a new solid state converter connected to a zero drive amplifier. The system was found insensitive to cable length and type up to at least 1000 ft and requires no impedance matching networks. The converter itself has flat frequency response from dc to 28 kHz (- 3 db), dynamic range of 72 db, and noise floor of 50 db in the band 22.4 Hz to 22.4 kHz.
Exhaust Nozzle Plume and Shock Wave Interaction
NASA Technical Reports Server (NTRS)
Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan
2013-01-01
Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.
Reduction of the sonic boom level in supersonic aircraft flight by the method of surface cooling
NASA Astrophysics Data System (ADS)
Fomin, V. M.; Chirkashenko, V. F.; Volkov, V. F.; Kharitonov, A. M.
2013-12-01
Based on the analysis of various aspects of creating a supersonic transport aircraft of the second generation, the necessity of developing unconventional active methods of sonic boom level reduction is demonstrated. Surface cooling is shown to exert a significant effect on formation of the disturbed flow structure up to large distances from the body by an example of a supersonic flow around a body of revolution. A method of reducing the intensity of the intermediate shock wave and excess pressure momentum near the body is proposed. This method allows the length of the reduced (by 50%) sonic boom level to be increased and the bow shock wave intensity in the far zone to be reduced by 12%. A possibility of controlling the process of formation of wave structures, such as hanging pressure shocks arising near the aircraft surface, is demonstrated. The action of the cryogenic mechanism is explained.
Concorde sonic booms as an atmospheric probe.
Balachandran, N K; Donn, W L; Rind, D H
1977-07-01
Infrasound generated by the sonic boom from the inbound Concorde supersonic transport is recorded at Palisades, New York (Lamont-Doherty Geological Observatory), as a series of impulses from distances varying from 165 to about 1000 kilometers. Refraction effects determined by temperature and wind conditions return the signal to the surface from both stratospheric (40 to 50 kilometers) and thermospheric (100 to 130 kilometers) levels. The frequency of the recorded signal is a function of the level of reflection; the frequency decreases from impulse stretching as the atmosphere becomes more rarified relative to the sound pressure. The horizontal trace velocity of the signal across the array of instruments is equal to the acoustic velocity at the reflection level. The sonic boom can thus be used to provide temperature-wind parameters at reflection levels estimated from the signal frequency. Daily observed signal variations have indicated significant variations in these parameters.
Application of Adjoint Methodology in Various Aspects of Sonic Boom Design
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.
2014-01-01
One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.
NASA X-Plane Looks To The Future of Supersonic Flight
2017-10-11
NASAโs Low Boom Flight Demonstration experimental airplane aims to make supersonic passenger jet travel over land a real possibility by reducing the disruptive sonic boom sound associated with supersonic flight.
A Supersonic Business-Jet Concept Designed for Low Sonic Boom
NASA Technical Reports Server (NTRS)
Mack, Robert J.
2003-01-01
Ongoing human-response studies of sonic-boom noise indicated that a previous level of 1.0 psf might still be too annoying. This led to studies of a Supersonic Business Jet (SBJ), which might generate lower, more acceptable ground overpressures. To determine whether methods for designing a High Speed Civil Transport (HSCT) could be successfully applied, a SBJ concept was designed at the langley Research Center. It would cruise at Mach 2, carry 10 passengers for 4000 nautical miles, and generate a 0.50 psf or less on the ground under the flight path at start of cruise. Results indicated that a 10-passenger, low-boom SBJ design was just as technically demanding as a 300-passenger, low-boom HSCT design. In this report, the sources of these technical problems are identified, and ideas for addressing them are discussed.
Design and testing of low sonic boom configurations and an oblique all-wing supersonic transport
NASA Technical Reports Server (NTRS)
Lee, Christopher A.
1995-01-01
From December 1991 to June 1992, applied aerodynamic research support was given to the team working on Low Sonic Boom configurations in the RAC branch at NASA Ames Research Center. This team developed two different configurations: a conventional wing-tail and a canard wing, in an effort to reduce the overpressure of shock waves and the accompanying noise which are projected to the ground from supersonic civil transport aircraft. A generic description of this sensitive technology is given.
Instrumentation for measuring aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1976-01-01
Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.
Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong
2011-01-01
The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.; Pierce, Allan D.
1992-01-01
A theory which gives statistical predictions for how often sonic booms propagating through the earth's turbulent boundary layer will encounter caustics, given the spectral properties of the atmospheric turbulence, is outlined. The theory is simple but approximately accounts for the variation of ray tube areas along ray paths. This theory predicts that the variation of ray tube areas is determined by the product of two similar area factors, psi (x) and phi (x), each satisfying a generic harmonic oscillator equation. If an area factor increases the peak acoustic pressure decreases, and if the factor decreases the peak acoustic pressure increases. Additionally, if an area factor decreases to zero and becomes negative, the ray has propagated through a caustic, which contributes a phase change of 90 degrees to the wave. Thus, it is clear that the number of times that a sonic boom wave passes through a caustic should be related to the distorted boom waveform received on the ground. Examples are given based on a characterization of atmospheric turbulence due to the structure function of Tatarski as modified by Crow.
Measurements of the Basic SR-71 Airplane Near-Field Signature
NASA Technical Reports Server (NTRS)
Haering, Edward A., Jr.; Whitmore, Stephen A.; Ehernberger, L. J.
1999-01-01
Airplane design studies have developed configuration concepts that may produce lower sonic boom annoyance levels. Since lower noise designs differ significantly from other HSCT designs, it is necessary to accurately assess their potential before HSCT final configuration decisions are made. Flight tests to demonstrate lower noise design capability by modifying an existing airframe have been proposed for the Mach 3 SR-71 reconnaissance airplane. To support the modified SR-71 proposal, baseline in-flight measurements were made of the unmodified aircraft. These measurements of SR-71 near-field sonic boom signatures were obtained by an F-16XL probe airplane at flightpath separation distances ranging from approximately 740 to 40 ft. This paper discusses the methods used to gather and analyze the flight data, and makes comparisons of these flight data with CFD results from Douglas Aircraft Corporation and NASA Langley Research Center. The CFD solutions were obtained for the near-field flow about the SR-71, and then propagated to the flight test measurement location using the program MDBOOM.
A study to determine the feasibility of a low sonic boom supersonic transport
NASA Technical Reports Server (NTRS)
Kane, E. J.
1973-01-01
A study was made to determine the feasibility of supersonic transport configurations designed to produce a goal sonic boom signature with low overpressure. The results indicate that, in principle, such a concept represents a potentially realistic design approach assuming technology of the 1985 time period. Two sonic boom goals were selected which included: (1) A high speed design that would produce shock waves no stronger than 48 Newtons per square meter (1.0 psf); and an intermediate Mach number (mid-Mach) design that would produce shock waves no stronger than 24 Newtons per square meter. The high speed airplane design was a Mach 2.7 blended arrow wing configuration which was capable of carrying 183 passengers a distance of 7000 km (3780 nmi) while meeting the signature goal. The mid-Mach airplane designed was a Mach 1.5 low arrow wing configuration with a horizontal tail which could carry 180 passengers a distance of 5960 km (3220 nmi).
Relaxation and turbulence effects on sonic boom signatures
NASA Technical Reports Server (NTRS)
Pierce, Allan D.; Sparrow, Victor W.
1992-01-01
The rudimentary theory of sonic booms predicts that the pressure signatures received at the ground begin with an abrupt shock, such that the overpressure is nearly abrupt. This discontinuity actually has some structure, and a finite time is required for the waveform to reach its peak value. This portion of the waveform is here termed the rise phase, and it is with this portion that this presentation is primarily concerned. Any time characterizing the duration of the rise phase is loosely called the 'rise time.' Various definitions are used in the literature for this rise time. In the present discussion the rise time can be taken as the time for the waveform to rise from 10 percent of its peak value to 90 percent of its peak value. The available data on sonic booms that appears in the open literature suggests that typical values of shock over-pressure lie in the range of 30 Pa to 200 Pa, typical values of shock duration lie in the range of 150 ms to 250 ms, and typical values of the rise time lie in the range of 1 ms to 5 ms. The understanding of the rise phase of sonic booms is important because the perceived loudness of a shock depends primarily on the structure of the rise phase. A longer rise time typically implies a less loud shock. A primary question is just what physical mechanisms are most important for the determination of the detailed structure of the rise phase.
NASA Technical Reports Server (NTRS)
Haering, Edward A.
2017-01-01
The world as a whole and NASA in particular, owes a large debt of gratitude to Dr. Kenneth Plotkin for his decades of service in the field of sonic boom research and advancement of quiet supersonic transportation. This presentation will highlight the contributions of Dr. Plotkin to a myriad of NASA projects. One of the largest efforts was the assembly and continual improvement of sonic boom propagation software tools, collectively called PCBoom, which allowed the analysis of real and imagined vehicles from Mach cutoff conditions to the hypersonic.
Low Boom Flight Demonstrator Briefing
2018-04-03
A model of the first Low Boom Flight Demonstrator is seen at a briefing on Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
1995-02-02
Photographed outside their hangar at the Dryden Flight Research Center, Edwards, California, part of Dryden's F-16 fleet is, left to right; an F-16A, the F-16XL no. 1, and the F-16 AFTI. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
The Use of Structural-Acoustic Techniques to Assess Potential Structural Damage From Sonic Booms
NASA Technical Reports Server (NTRS)
Garrelick, Joel; Martini, Kyle
1996-01-01
The potential impact of supersonic operations includes structural damage from the sonic boom overpressure. This paper describes a study of how structural-acoustic modeling and testing techniques may be used to assess the potential for such damage in the absence of actual flyovers. Procedures are described whereby transfer functions relating structural response to sonic boom signature may be obtained with a stationary acoustic source and appropriate data processing. Further, by invoking structural-acoustic reciprocity, these transfer functions may also be acquired by measuring the radiated sound from the structure under a mechanical drive. The approach is based on the fundamental assumption of linearity, both with regard to the (acoustic) propagation of the boom in the vicinity of the structure and to the structure's response. Practical issues revolve around acoustic far field and source directivity requirements. The technique was implemented on a specially fabricated test structure at Edwards AFB, CA with the support of Wyle Laboratories, Inc. Blank shots from a cannon served as our acoustic source and taps from an instrumented hammer generated the mechanical drive. Simulated response functions were constructed. Results of comparisons with corresponding measurements recorded during dedicated supersonic flyovers with F-15 aircraft are presented for a number of sensor placements.
Cart3D Analysis of Plume and Shock Interaction Effects on Sonic Boom
NASA Technical Reports Server (NTRS)
Castner, Raymond
2015-01-01
A plume and shock interaction study was developed to collect data and perform CFD on a configuration where a nozzle plume passed through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedge-shaped shock generator. Three configurations were analyzed consisting of two strut mounted wedges and one propulsion pod with an aft deck from a low boom vehicle concept. Research efforts at NASA were intended to enable future supersonic flight over land in the United States. Two of these efforts provided data for regulatory change and enabled design of low boom aircraft. Research has determined that sonic boom is a function of aircraft lift and volume distribution. Through careful tailoring of these variables, the sonic boom of concept vehicles has been reduced. One aspect of vehicle tailoring involved how the aircraft engine exhaust interacted with aft surfaces on a supersonic aircraft, such as the tail and wing trailing edges. In this work, results from Euler CFD simulations are compared to experimental data collected on sub-scale components in a wind tunnel. Three configurations are studied to simulate the nozzle plume interaction with representative wing and tail surfaces. Results demonstrate how the plume and tail shock structure moves with increasing nozzle pressure ratio. The CFD captures the main features of the plume and shock interaction. Differences are observed in the plume and deck shock structure that warrant further research and investigation.
Inlet Trade Study for a Low-Boom Aircraft Demonstrator
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.
2016-01-01
Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.
Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian
2017-01-01
Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signatures at specified distances and off-track angles, using an inviscid, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft configuration with a powered nacelle. For efficiency, boom carpets are decomposed into sets of independent meshes and computed in parallel. This also facilitates the use of more effective meshing strategies - each off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also presented for the two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Burgers' equation method (NASA's sBOOM), and ground noise metrics are computed with LCASB.
NASA Awards Contract to Lockheed Martin to Build X-Plane
2018-04-03
NASA has taken another step toward re-introducing supersonic flight with the award Tuesday of a contract for the design, build and testing of a supersonic aircraft that reduces a sonic boom to a gentle thump. Lockheed Martin Aeronautics Company of Palmdale, California, was selected for the Low-Boom Flight Demonstrator contract valued at $247.5 million with work going through Dec. 31, 2021. Under this contract, Lockheed Martin will complete the design and fabrication of an experimental aircraft, known as an X-plane, which will cruise at 55,000 feet at a speed of about 940 mph and, instead of a sonic boom, create a sound only about as loud as a car door closing in the distance equivalent to approximately 75 Perceived Level decibel (PLdB).
Preliminary results from the White Sands Missile Range sonic boom propagation experiment
NASA Technical Reports Server (NTRS)
Willshire, William L., Jr.; Devilbiss, David W.
1992-01-01
Sonic boom bow shock amplitude and rise time statistics from a recent sonic boom propagation experiment are presented. Distributions of bow shock overpressure and rise time measured under different atmospheric turbulence conditions for the same test aircraft are quite different. The peak overpressure distributions are skewed positively, indicating a tendency for positive deviations from the mean to be larger than negative deviations. Standard deviations of overpressure distributions measured under moderate turbulence were 40 percent larger than those measured under low turbulence. As turbulence increased, the difference between the median and the mean increased, indicating increased positive overpressure deviations. The effect of turbulence was more readily seen in the rise time distributions. Under moderate turbulence conditions, the rise time distribution means were larger by a factor of 4 and the standard deviations were larger by a factor of 3 from the low turbulence values. These distribution changes resulted in a transition from a peaked appearance of the rise time distribution for the morning to a flattened appearance for the afternoon rise time distributions. The sonic boom propagation experiment consisted of flying three types of aircraft supersonically over a ground-based microphone array with concurrent measurements of turbulence and other meteorological data. The test aircraft were a T-38, an F-15, and an F-111, and they were flown at speeds of Mach 1.2 to 1.3, 30,000 feet above a 16 element, linear microphone array with an inter-element spacing of 200 ft. In two weeks of testing, 57 supersonic passes of the test aircraft were flown from early morning to late afternoon.
Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.
Sonic Boom Propagation Codes Validated by Flight Test
NASA Technical Reports Server (NTRS)
Poling, Hugh W.
1996-01-01
The sonic boom propagation codes reviewed in this study, SHOCKN and ZEPHYRUS, implement current theory on air absorption using different computational concepts. Review of the codes with a realistic atmosphere model confirm the agreement of propagation results reported by others for idealized propagation conditions. ZEPHYRUS offers greater flexibility in propagation conditions and is thus preferred for practical aircraft analysis. The ZEPHYRUS code was used to propagate sonic boom waveforms measured approximately 1000 feet away from an SR-71 aircraft flying at Mach 1.25 to 5000 feet away. These extrapolated signatures were compared to measurements at 5000 feet. Pressure values of the significant shocks (bow, canopy, inlet and tail) in the waveforms are consistent between extrapolation and measurement. Of particular interest is that four (independent) measurements taken under the aircraft centerline converge to the same extrapolated result despite differences in measurement conditions. Agreement between extrapolated and measured signature duration is prevented by measured duration of the 5000 foot signatures either much longer or shorter than would be expected. The duration anomalies may be due to signature probing not sufficiently parallel to the aircraft flight direction.
Measured Rattle Threshold of Residential House Windows
NASA Technical Reports Server (NTRS)
Sizov, Natalia; Schultz, Troy; Hobbs, Christopher; Klos, Jacob
2008-01-01
Window rattle is a common indoor noise effect in houses exposed to low frequency noise from such sources as railroads, blast noise and sonic boom. Human perception of rattle can be negative that is a motivating factor of the current research effort to study sonic boom induced window rattle. A rattle study has been conducted on residential houses containing windows of different construction at a variety of geographic locations within the United States. Windows in these houses were excited by a portable, high-powered loudspeaker and enclosure specifically designed to be mounted on the house exterior to cover an entire window. Window vibration was measured with accelerometers placed on different window components. Reference microphones were also placed inside the house and inside of the loudspeaker box. Swept sine excitation was used to identify the vibration threshold at which the response of the structure becomes non-linear and begins to rattle. Initial results from this study are presented and discussed. Future efforts will continue to explore the rattle occurrence in windows of residential houses exposed to sonic booms.
Low Boom Flight Demonstrator Briefing
2018-04-03
J.D. Harrington, public affairs officer, Aeronautics Mission Directorate, NASA, speaks at a briefing on the Low Boom Flight Demonstrator, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
Economic benefits of supersonic overland operation
NASA Technical Reports Server (NTRS)
Metwally, Munir
1992-01-01
Environmental concerns are likely to impose some restrictions on the next generation of supersonic commercial transport. There is a global concern over the effects of engine emissions on the ozone layer which protects life on Earth from ultraviolet radiation. There is also some concern over community noise. The High Speed Civil Transport (HSCT) must meet at least the current subsonic noise certification standards to be compatible with the future subsonic fleet. Concerns over sonic boom represent another environmental and marketing challenge to the HSCT program. The most attractive feature of the supersonic transport is speed, which offers the traveling public significant time-savings on long range routes. The sonic boom issue represents a major environmental and economic challenge as well. Supersonic operation overland produces the most desirable economic results. However, unacceptable overland sonic boom raise levels may force HSCT to use subsonic speeds overland. These environmental and economic challenges are likely to impose some restrictions on supersonic operation, thus introducing major changes to existing route structures and future supersonic network composition. The current subsonic route structure may have to be altered for supersonic transports to avoid sensitive areas in the stratosphere or to minimize overland flight tracks. It is important to examine the alternative route structure and the impact of these restrictions on the economic viability of the overall supersonic operation. Future market potential for HSCT fleets must be large enough to enable engine and airframe manufacturers to build the plane at a cost that provides them with an attractive return on investment and to sell it at a price that allows the airlines to operate with a reasonable margin of profit. Subsonic overland operation of a supersonic aircraft hinders its economic viability. Ways to increase the market potential of supersonic operation are described.
Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept
NASA Technical Reports Server (NTRS)
Wintzer, Mathias; Ordaz, Irian; Fenbert, James W.
2015-01-01
The detailed outer mold line shaping of a Mach 1.6, demonstrator-sized low-boom concept is presented. Cruise trim is incorporated a priori as part of the shaping objective, using an equivalent-area-based approach. Design work is performed using a gradient-driven optimization framework that incorporates a three-dimensional, nonlinear flow solver, a parametric geometry modeler, and sensitivities derived using the adjoint method. The shaping effort is focused on reducing the under-track sonic boom level using an inverse design approach, while simultaneously satisfying the trim requirement. Conceptual-level geometric constraints are incorporated in the optimization process, including the internal layout of fuel tanks, landing gear, engine, and crew station. Details of the model parameterization and design process are documented for both flow-through and powered states, and the performance of these optimized vehicles presented in terms of inviscid L/D, trim state, pressures in the near-field and at the ground, and predicted sonic boom loudness.
Investigation of sonic boom for the Space Shuttle: Low cross-range orbiter
NASA Technical Reports Server (NTRS)
Levy, Lionel L., Jr.; Hicks, Raymond M.; Mendoza, Joel P.
1993-01-01
It is desired that the Space Shuttle Orbiter be capable of landing at airports equipped to handle present-day jet transports. Since the majority of such airports are located near heavily populated areas, an investigation has been undertaken to determine whether or not the sonic boom generated during reentry of Space Shuttle Orbiters is potentially a serious problem. The investigation was concerned with the low cross-range orbiter and reentry concept proposed by Faget of the Manned Spacecraft Center (MSC). This report describes the approach used and presents the results obtained to date.
1986-06-01
63 SPARKS 621 10.46 0.80 0.0 35. 3 0.19v, 64 VERDI 73 0.68 0.80 0.0 23 4 ,.01,3 65 WADSWORTH 730 10.70 0.80 0.0 35. 4 (.. 67 HAKER 1168 1.47 0.80...Q. , HAKER 1168 10.68 0.82 3584.1 5.6 4 48 H Ft y 7190 51.23 0.83 3563.1 iY.4 7.I 3 o9 LUNi 694 %.51 0.81 3631.5 32.6 .. , II)t. 109889 .86 100
An experimental study of the validity of the heat-field concept for sonic-boom alleviation
NASA Technical Reports Server (NTRS)
Swigart, R. J.
1974-01-01
An experimental program was carried out in the NASA-Langley 4 ft x 4 ft supersonic pressure tunnel to investigate the validity of the heat-field concept for sonic boom alleviation. The concept involves heating the flow about a supersonic aircraft in such a manner as to obtain an increase in effective aircraft length and yield an effective aircraft shape that will result in a shock-free pressure signature on the ground. First, a basic body-of-revolution representing an SST configuration with its lift equivalence in volume was tested to provide a baseline pressure signature. Second, a model having a 5/2-power area distribution which, according to theory, should yield a linear pressure rise with no front shock wave was tested. Third, the concept of providing the 5/2-power area distribution by using an off-axis slender fin below the basic body was investigated. Then a substantial portion (approximately 40 percent) of the solid fin was replaced by a heat field generated by passing heated nitrogen through the rear of the fin.
Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology
NASA Technical Reports Server (NTRS)
Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.
2012-01-01
This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.
F15B-Quiet Spike Aeroservoelastic Flight Test Data Analysis
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2007-01-01
Airframe structural morphing technologies designed to mitigate sonic boom strength are being developed by Gulfstream Aerospace Corporation (GAC). Among these technologies is a concept in which an aircraft's frontend would be extended prior to supersonic acceleration. This morphing would effectively lengthen the vehicle, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. This combination of boom shaping techniques is predicted to transform the classic, high-impulse N-wave pattern typically generated by an aircraft traveling at supersonic speed into a signature more closely resembling a sinusoidal wave with a greatly reduced perceived loudness. 'QuietSpike' is GAC's nomenclature for its recently patented front-end vehicle morphing arrangement. The ability of Quiet Spike to effectively shape a vehicle's far- field sonic boom signature is highly dependent on the area distribution characteristics of the aircraft. The full aeroacoustic benefits of front-end morphing at farfield are only possible when the QuietSpike article and vehicle configuration are designed in consideration of each other. Adding QuietSpike technology to the airframe of an existing, non-boom-optimized supersonic vehicle is unlikely to result in an improved far-field signature due to the generally over-powering influence of wing- and inlet-generated shocks. Therefore, it is generally recognized within NASA and the industry that a clean-sheet vehicle design is required to demonstrate the theoretically predicted far-field aeroacoustic benefits of QuietSpike type morphing and other boom- mitigating concepts. NASA's Aeronautics Research Mission Directorate (ARMD) Supersonics Division has placed increased priority on near-term development and flight-testing of such a vehicle. To help achieve this objective, static and dynamic aerostructural proof-of-concept testing was considered a prudent step prior to a clean-sheet effort in order to reduce risk associated with a follow-on test program. Following a survey of potential test platforms, NASA Dryden's F-15B was selected as the target test vehicle primarily because of its unique ability to carry a largescale test apparatus to relevant supersonic flight speeds, so called the F15 -QS. The QuietSpike test article was constructed primarily of composite materials and attached to the forward fuselage of the F-1 5B bulkhead (see Figures 1,2). The QuietSpike test article replaces the current flight test noseboom and radome assembly. Power is supplied to the Quiet Spike motor assembly in order to extend and retract the Spike, and the Quiet Spike test article was appropriately instrumented with accelerometers, strain gages, pressure transducers, and thermocouples.
Comparison of jet plume shape predictions and plume influence on sonic boom signature
NASA Technical Reports Server (NTRS)
Barger, Raymond L.; Melson, N. Duane
1992-01-01
An Euler shock-fitting marching code yields good agreement with semiempirically determined plume shapes, although the agreement decreases somewhat with increasing nozzle angle and the attendant increase in the nonisentropic nature of the flow. Some calculations for the low boom configuration with a simple engine indicated that, for flight at altitudes above 60,000 feet, the plume effect is dominant. This negates the advantages of a low boom design. At lower altitudes, plume effects are significant, but of the order that can be incorporated into the low boom design process.
What is that mysterious booming sound?
Hill, David P.
2011-01-01
The residents of coastal North Carolina are occasionally treated to sequences of booming sounds of unknown origin. The sounds are often energetic enough to rattle windows and doors. A recent sequence occurred in early January 2011 during clear weather with no evidence of local thunder storms. Queries by a local reporter (Colin Hackman of the NBC affiliate WETC in Wilmington, North Carolina, personal communication 2011) seemed to eliminate common anthropogenic sources such as sonic booms or quarry blasts. So the commonly asked question, โWhat's making these booming sounds?โ remained (and remains) unanswered.
NASA Technical Reports Server (NTRS)
Seebass, R.; George, A. R.
1972-01-01
There have been many attempts to reduce or eliminate the sonic boom. Such attempts fall into two categories: (1) aerodynamic minimization and (2) exotic configurations. In the first category changes in the entropy and the Bernoulli constant are neglected and equivalent body shapes required to minimize the overpressure, the shock pressure rise and the impulse are deduced. These results include the beneficial effects of atmospheric stratification. In the second category, the effective length of the aircraft is increased or its base area decreased by modifying the Bernoulli constant a significant fraction of the flow past the aircraft. A figure of merit is introduced which makes it possible to judge the effectiveness of the latter schemes.
Concept development of a Mach 4 high-speed civil transport
NASA Technical Reports Server (NTRS)
Domack, Christopher S.; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl A.; Mcgraw, Marvin E., Jr.; Shields, Elwood W.; Swanson, Edward E.
1990-01-01
A study was conducted to configure and analyze a 250 passenger, Mach 4 High Speed Civil Transport with a design range of 6500 n.mi. The design mission assumed an all-supersonic cruise segment and no community noise or sonic boom constraints. The study airplane was developed in order to examine the technology requirements for such a vehicle and to provide an unconstrained baseline from which to assess changes in technology levels, sonic boom limits, or community noise constraints in future studies. The propulsion, structure, and materials technologies utilized in the sizing of the study aircraft were assumed to represent a technology availability date of 2015. The study airplane was a derivative of a previously developed Mach 3 concept and utilized advanced afterburning turbojet engines and passive airframe thermal protection. Details of the configuration development, aerodynamic design, propulsion system, mass properties, and mission performance are presented. The study airplane was estimated to weigh approx. 866,000 lbs. Although an aircraft of this size is a marginally acceptable candidate to fit into the world airport infrastructure, it was concluded that the inclusion of community noise or sonic boom constraints would quickly cause the aircraft to grow beyond acceptable limits using the assumed technology levels.
Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise
NASA Technical Reports Server (NTRS)
West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.
2015-01-01
The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Maglieri, Domenic J.; Driver, Cornelius; Bobbitt, Percy J.
2011-01-01
A detailed geometric description, in wave drag format, has been developed for the Convair B-58 and North American XB-70-1 delta wing airplanes. These descriptions have been placed on electronic files, the contents of which are described in this paper They are intended for use in wave drag and sonic boom calculations. Included in the electronic file and in the present paper are photographs and 3-view drawings of the two airplanes, tabulated geometric descriptions of each vehicle and its components, and comparisons of the electronic file outputs with existing data. The comparisons include a pictorial of the two airplanes based on the present geometric descriptions, and cross-sectional area distributions for both the normal Mach cuts and oblique Mach cuts above and below the vehicles. Good correlation exists between the area distributions generated in the late 1950s and 1960s and the present files. The availability of these electronic files facilitates further validation of sonic boom prediction codes through the use of two existing data bases on these airplanes, which were acquired in the 1960s and have not been fully exploited.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1994-01-01
In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.
NASA Astrophysics Data System (ADS)
Collmar, M.; Cook, B. G.; Cowart, R.; Freund, D.; Gavin, J.
2015-10-01
A pool of 240 subjects was exposed to a library of waveforms consisting of example signatures of low boom aircraft. The signature library included intentional variations in both loudness and spectral content, and were auralized using the Gulfstream SASS-II sonic boom simulator. Post-processing was used to quantify the impacts of test design decisions on the "quality" of the resultant database. Specific lessons learned from this study include insight regarding potential for bias error due to variations in loudness or peak over-pressure, sources of uncertainty and their relative importance on objective measurements and robustness of individual metrics to wide variations in spectral content. Results provide clear guidance for design of future large scale community surveys, where one must optimize the complex tradeoffs between the size of the surveyed population, spatial footprint of those participants, and the fidelity/density of objective measurements.
A Rapid Empirical Method for Estimating the Gross Takeoff Weight of a High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1999-01-01
During the cruise segment of the flight mission, aircraft flying at supersonic speeds generate sonic booms that are usually maximum at the beginning of cruise. The pressure signature with the shocks causing these perceived booms can be predicted if the aircraft's geometry, Mach number, altitude, angle of attack, and cruise weight are known. Most methods for estimating aircraft weight, especially beginning-cruise weight, are empirical and based on least- square-fit equations that best represent a body of component weight data. The empirical method discussed in this report used simplified weight equations based on a study of performance and weight data from conceptual and real transport aircraft. Like other weight-estimation methods, weights were determined at several points in the mission. While these additional weights were found to be useful, it is the determination of beginning-cruise weight that is most important for the prediction of the aircraft's sonic-boom characteristics.
Final Environmental Assessment: C-17 Program Changes Altus Air Force Base, Oklahoma
2004-07-01
speed aircraft on MTRs showed that there is little probability of structural damage from such operations ( Sutherland 1989). One finding in that...October. Plotkin, K.J., 1996. PCBoom3 Sonic Boom Prediction Model: Version 1.0c. Wyle Research Report WR 95-22C. May. Plotkin, K.J., Sutherland ...Rate on Aircraft Noise Annoyance. Volume 3: Hybrid Own-Home Experiment. Wyle Laboratories Research Report WR 93-22. December. Sutherland , L
Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets
NASA Technical Reports Server (NTRS)
Li, Wu; Rallabhand, Sriam
2011-01-01
A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.
Variability of measured sonic boom signatures. Volume 2: Data report
NASA Technical Reports Server (NTRS)
Elmer, K. R.; Joshi, M. C.
1994-01-01
Sonic boom signatures from two databases, the BOOMFILE and the XB-70, were analyzed in terms of C-weighted sound exposure level (CSEL), A-weighted sound exposure level (ASEL), and Stevens Mark VII perceived level (PLdB), as well as the more traditional peak positive overpressure and rise time. The variability of these parameters due to propagation through atmosphere was analyzed for different aircraft Mach number and altitude groups. The low Mach number/low altitude group had significantly greater variation in rise time, overpressure, and loudness level than the high Mach number/high altitude group. The loudness of measured booms were found to have a variation of up to 25 dB relative to the loudness of boom predicted for a non-turbulent atmosphere. This is due primarily to the steeper ray paths of the high Mach number/high altitude group and the corresponding shorter distances traveled by these rays through the lower atmosphere resulting in reduced refraction effects. The general trend of decreased overpressure and loudness level with increasing lateral distance was also seen. Sonic boom signatures from early morning flights had less variation in rise time and overpressure than afternoon flights because of reduced turbulence. Measures of asymmetry (difference between compression and expansion portion of the signature) showed that the variability in Delta loudness level was greater than the variability in Delta overpressure due to the large influence of turbulence on rise time. Lastly, analysis of data within 50 percent of lateral cutoff showed that the mean value for overpressure and loudness level was independent of time of day but that the frequency with which it occurred was greater in the morning. This is a clear indicator of increased turbulence in the afternoon.
NASA Technical Reports Server (NTRS)
1992-01-01
The status is summarized of the NASA sponsored involvement in high speed civil transport research and technology, including major cooperative efforts. That involvement is currently focussed on the High Speed Research Program. The program goals are an acceptable level of ozone depletion or sonic boom, the definition of which is a regulatory and political process. The HSRP goal is to provide technical bases for acceptability criteria. Community noise is currently regulated, and it seems clear that HSCT aircraft will have to comply with at least the spirit of the current subsonic constraint, FAR 36, Stage 3.
Low Boom Flight Demonstrator Briefing
2018-04-03
Dr. Jaiwon Shin, associate administrator for the Aeronautics Research Mission Directorate, NASA, announces Lockheed Martin as the winner of the contract to develop a Low Boom Flight Demonstrator at a briefing, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms
2016-07-20
NASAโs SonicBAT team poses in front of the TG-14 motor glider and F/A-18 research aircraft, sitting side-by-side in front of Rogers Dry Lake prior to a SonicBAT flight at Armstrong Flight Research Center on Edwards Air Force Base, California. The TG-14 collected sound signatures of shockwaves created by the F/A-18, to compare with signatures collected on the ground.
Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney
2015-01-01
The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.
Low Boom Flight Demonstrator Briefing
2018-04-03
Peter Coen, project manager, Commercial Supersonics Technology Project, Langley Research Center, NASA, speaks on a panel with Peter Iosifidis, Lockheed Martin, left, and Dr. Ed Waggoner, NASA, right, at a briefing on the Low Boom Flight Demonstrator, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
Low Boom Flight Demonstrator Briefing
2018-04-03
Peter Coen, project manager, Commercial Supersonics Technology Project, Langley Research Center, NASA, center, speaks on a panel with Peter Iosifidis, Lockheed Martin, left, and Dr. Ed Waggoner, NASA, right, at a briefing on the Low Boom Flight Demonstrator, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
Correlation of predicted and measured sonic boom characteristics from the reentry of STS-1 orbiter
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.
1985-01-01
Characteristics from sonic boom pressure signatures recorded at 11 locations during reentry of the Space Shuttle Orbiter Columbia are correlated with characteristics of wind tunnel signatures extrapolated from flight altitudes for Mach numbers ranging from 1.23 to 5.87. The flight pressure signature were recorded by microphones positioned at two levels near the descent groundtrack along the California corridor. The wind tunnel signatures used in theoretical predictions were measured using a 0.0041-scale model Orbiter. The mean difference between all measured and predicted overpressures is 12 percent from measured levels. With one exception, the flight signatures are very similar to theoretical n-waves.
NASA Technical Reports Server (NTRS)
Feir, J. B.
1974-01-01
Travel markets which would be served by high speed commercial transport aircraft and the ability of the airlines to schedule and route the aircraft in a way that would achieve good daily utilization and productivity are examined. The following areas are considered: (1) identification of the major long-haul city pairs that would most likely demand nonstop service; (2) selection of flight tracks observing alternative sonic boom restrictions; (3) estimation of flight times for all city pairs for the various sonic boom constraints; (4) impact of airport curfews on possible departure and arrival schedules; (5) projection of passenger traffic volumes on the selected city pairs; and (6) potential daily utilization and aircraft productivity.
Vibro-Acoustic Response of Buildings Due to Sonic Boom Exposure: June 2006 Field Test
NASA Technical Reports Server (NTRS)
Klos, Jacob; Buehrle, Ralph D.
2007-01-01
During the month of June 2006, a series of structural response measurements were made on a house on Edwards Air Force Base (AFB) property that was excited by sonic booms of various amplitudes. Many NASA personnel other than the authors of this report from both Langley Research Center and Dryden Flight Research Center participated in the planning, coordination, execution, and data reduction for the experiment documented in this report. The purpose of this report is to document the measurements that were made, the structure on which they were made, the conditions under which they were made, the sensors and other hardware that were used, and the data that were collected.
Effects of aircraft noise and sonic booms on domestic animals and wildlife: bibliographic abstracts
Gladwin, Douglas N.; Manci, Karen M.; Villella, Rita
1988-01-01
The purpose of this document is to provide an information base on the effects of aircraft noise and sonic booms on various animal species. Such information is necessary to assess potential impacts to wildlife populations from proposed military and other flight operations. To develop this document the National Ecology Center conducted a literature search of information pertaining to animals and wildlife. Information concerning other types of noise was also gathered to supplement the lack of knowledge on the effects of aircraft noise. The bibliographic abstracts in this report provide a compilation of current knowledge. No attempt was made to evaluate the appropriateness or adequacy of the scientific approach of each study.
1995-02-02
The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
1995-02-02
The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
2012 Ground Testing Highlights
NASA Technical Reports Server (NTRS)
Buchholz, Steven J.
2012-01-01
As part of the Fundamental Aeronautics Program and a collaborative effort with Boeing, and Lockheed Martin this past year a series of sonic boom test were completed in the NASA Ames Unitary Plan Wind Tunnel (UPWT). One of the goals was to develop new test techniques and hardware for measuring sonic boom signatures in the transonic and supersonic regimes. Data for various model designs and configurations were collected and will be used to validate CFD predictions of sonic boom signatures. Reactivation of the NASA Ames Mitsubishi compressor system was completed this past year. The compressor is intended to replace and augment the existing UPWT Clark Compressor as the primary Make Up Air (MUA) source. The MUA system provides air and vacuum pumping capability to the Ames UPWT. It will improve productivity and reliability of the UPWT as a vital testing and research facility for the U.S. aerospace industry and NASA. Funding for this task was provided from the American Recovery Investment Act (ARRA). Installation and validation of a Noncontact Stress Monitoring System (NSMS) for the 3-stage compressor was completed at the 11-foot Transonic Wind Tunnel. The system, originally developed at AEDC, consists of 36 pairs of LED light sources with optic beam send and receive probes along a 1-per rev signal. The new system allows for continuous monitoring and recording of compressor blade bending and torsion stress during normal test operations. A very unusual test was completed in the 11 FT TWT to acquire aerodynamic and flow field data for the Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) to validate CFD methods and tools. Surface pressure distribution measurements and velocity measurements in the wake of the command module back to the drogues parachute location were acquired. Testing methods included Particle Image Velocimetry (PIV), Pressure Sensitive Paint (PSP), Schlieren Infrared Imaging (IR) and boundary layer survey and skin friction.
Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
2011-01-01
Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.
Progress in modeling atmospheric propagation of sonic booms
NASA Technical Reports Server (NTRS)
Pierce, Allan D.
1994-01-01
The improved simulation of sonic boom propagation through the real atmosphere requires greater understanding of how the transient acoustic pulses popularly termed sonic booms are affected by humidity and turbulence. A realistic atmosphere is invariably somewhat turbulent, and may be characterized by an ambient fluid velocity v and sound speed c that vary from point to point. The absolute humidity will also vary from point to point, although possibly not as irregularly. What is ideally desired is a relatively simple scheme for predicting the probable spreads in key sonic boom signature parameters. Such parameters could be peak amplitudes, rise times, or gross quantities obtainable by signal processing that correlate well with annoyance or damage potential. The practical desire for the prediction scheme is that it require a relatively small amount of knowledge, possibly of a statistical nature, concerning the atmosphere along, the propagation path from the aircraft to the ground. The impact of such a scheme, if developed, implemented, and verified, would be that it would give the persons who make planning decisions a tool for assessing the magnitude of environmental problems that might result from any given overflight or sequence of overflights. The technical approach that has been followed by the author and some of his colleagues is to formulate a hierarchy of simple approximate models based on fundamental physical principles and then to test these models against existing data. For propagation of sonic booms and of other types of acoustic pulses in nonturbulent model atmospheres, there exists a basic overall theoretical model that has evolved as an outgrowth of geometrical acoustics. This theoretical model depicts the sound as propagating within ray tubes in a manner analogous to sound in a waveguide of slowly varying cross-section. Propagation along the ray tube is quasi-one-dimensional, and a wave equation for unidirectional wave propagation is used. A nonlinear term is added to this equation to account for nonlinear steepening, and the formulation has been carried through to allow for spatially varying sound speed, ambient density, and ambient wind velocities. The model intrinsically neglects diffraction, so it cannot take into account what has previously been mentioned in the literature as possibly important mechanisms for turbulence-related distortion. The model as originally developed could predict an idealized N-waveform which often agrees with data in terms of peak amplitude and overall positive phase duration. It is possible, moreover, to develop simple methods based on the physics of relaxation processes for incorporating molecular relaxation into the quasi-one-dimensional model of nonlinear propagation along ray tubes.
First Annual High-Speed Research Workshop, part 1
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.
Human Repsonse to Sonic Booms: A Research Program Plan
1970-02-01
low- 10 1 - - - BEjgia i lรคysi y, tZ:,ร\\m, voltage, fast EEG stages of sleep that occur In the last half of the night, stimulus intensities no...effect of noise vยซith a mean of 83 dB on rats and found a significant increase in heart weight after three weeks of intermit - tent exposure...catecholamines. Environmental stress is clearly related to an increase in lipid levels. Friedman et al. (1967), using 102-dB noise with intermit
United States Air Force Statistical Digest, Fiscal Year 1967, Twenty Second Edition
1967-09-30
tests as part of the Air Force’s support of the National Sonic Boom Evaluation Program. (FOUO) 18 January 1967 A Titan III-C launched a second. group...Strategic Air Command and the North American Air Defense Command participated in a joint training exercise, TOP RUNG XV. The operation evaluated ...SnlA1’IXIIC โข IlEI’EIlSIVE Figbter Interceptor !I . . . . . . Airborne Barly Warning and Control โข Pofenae Syatem Evaluation .. โข Air Defenee Mila11e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanamori, Masashi, E-mail: kanamori.masashi@jaxa.jp; Takahashi, Takashi, E-mail: takahashi.takashi@jaxa.jp; Aoyama, Takashi, E-mail: aoyama.takashi@jaxa.jp
2015-10-28
Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region justmoreย ยป behind the front and rear shock waves in the sonic boom signature.ยซย less
An Integrated Fuselage-Sting Balance for a Sonic-Boom Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Mack, Robert J.
2004-01-01
Measured and predicted pressure signatures from a lifting wind-tunnel model can be compared when the lift on the model is accurately known. The model's lift can be set by bending the support sting to a desired angle of attack. This method is simple in practice, but difficult to accurately apply. A second method is to build a normal force/pitching moment balance into the aft end of the sting, and use an angle-of-attack mechanism to set model attitude. In this report, a method for designing a sting/balance into the aft fuselage/sting of a sonic-boom model is described. A computer code is given, and a sample sting design is outlined to demonstrate the method.
Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Rallabhandi, Sriram K.
2010-01-01
A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.
Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts
NASA Technical Reports Server (NTRS)
Li, Wu; Shields, Elwood
2011-01-01
A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration
Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft
NASA Technical Reports Server (NTRS)
Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph
2007-01-01
The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.
DFRC F-16 aircraft fleet and support crew
NASA Technical Reports Server (NTRS)
1995-01-01
The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and is primarily used in engine tests and for parts. Although it is flight-worthy, it is not currently flown at Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.
NASA Astrophysics Data System (ADS)
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F.; Blackstock, David T.
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T
2002-01-01
Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.
Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John N.
1997-01-01
A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.
Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.
2016-01-01
NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
1959-09-10
Crusader on runway. Navy aircraft number 6340. L59-6101 caption: The Navy's Vought XF8U-3 Supersonic Fighter was an entirely new design as compared to the earlier F8U Crusader series. This jet plane lost in competition with the McDonnell F4H, however, and was never put into production. Langley used the XF8U-3 in some of the first flight measurements of sonic boom intensity. Photograph published in Engineer in Charge A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 507. Caption: Chance Vought F8U-3 airplane used in sonic boom investigation at Wallops, June-August 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 672.
Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature
NASA Technical Reports Server (NTRS)
Yoo, Seung Yeun (Paul)
2010-01-01
The streamwise lift distribution of a wing-canard-stabilator-body configuration was varied to study its effect on the near-field sonic boom signature. The investigation was carried out via solving the three-dimensional Euler equation with the OVERFLOW-2 flow solver. The computational meshes were created using the Chimera overset grid topology. The lift distribution was varied by first deflecting the canard then trimming the aircraft with the wing and the stabilator while maintaining constant lift coefficient of 0.05. A validation study using experimental results was also performed to determine required grid resolution and appropriate numerical scheme. A wide range of streamwise lift distribution was simulated. The result shows that the longitudinal wave propagation speed can be controlled through lift distribution thus controlling the shock coalescence.
Sonic boom interaction with turbulence
NASA Technical Reports Server (NTRS)
Rusak, Zvi; Giddings, Thomas E.
1994-01-01
A recently developed transonic small-disturbance model is used to analyze the interactions of random disturbances with a weak shock. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. It shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed-type elliptic hyperbolic flows around the shock wave is presented. Numerical calculations of shock wave interactions with various deterministic vorticity and temperature disturbances result in complicate shock wave structures and describe peaked as well as rounded pressure signatures behind the shock front, as were recorded in experiments of sonic booms running through atmospheric turbulence.
Supersonic Flow Field Investigation Using a Fiber-optic based Doppler Global Velocimeter
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Fletcher, Mark T.; Cavone, Angelo A.; AscencionGuerreroViramontes, J.
2006-01-01
A three-component fiber-optic based Doppler Global Velocimeter was constructed, evaluated and used to measure shock structures about a low-sonic boom model in a Mach 2 flow. The system was designed to have maximum flexibility in its ability to measure flows with restricted optical access and in various facilities. System layout is described along with techniques developed for production supersonic testing. System evaluation in the Unitary Plan Wind Tunnel showed a common acceptance angle of f4 among the three views with velocity measurement resolutions comparable with free-space systems. Flow field measurements of shock structures above a flat plate with an attached ellipsoid-cylinder store and a low-sonic boom model are presented to demonstrate the capabilities of the system during production testing.
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The principal objective of the Supersonics Project is to develop and validate multidisciplinary physics-based predictive design, analysis and optimization capabilities for supersonic vehicles. For aircraft, the focus will be on eliminating the efficiency, environmental and performance barriers to practical supersonic flight. Previous flight projects found that a shaped sonic boom could propagate all the way to the ground (F-5 SSBD experiment) and validated design tools for forebody shape modifications (F-5 SSBD and Quiet Spike experiments). The current project, Lift and Nozzle Change Effects on Tail Shock (LaNCETS) seeks to obtain flight data to develop and validate design tools for low-boom tail shock modifications. Attempts will be made to alter the shock structure of NASA's NF-15B TN/837 by changing the lift distribution by biasing the canard positions, changing the plume shape by under- and over-expanding the nozzles, and changing the plume shape using thrust vectoring. Additional efforts will measure resulting shocks with a probing aircraft (F-15B TN/836) and use the results to validate and update predictive tools. Preliminary flight results are presented and are available to provide truth data for developing and validating the CFD tools required to design low-boom supersonic aircraft.
Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.
2008-01-01
Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.
Sound, infrasound, and sonic boom absorption by atmospheric clouds.
Baudoin, Michaรซl; Coulouvrat, Franรงois; Thomas, Jean-Louis
2011-09-01
This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. ยฉ 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Dagrau, Franck; Coulouvrat, Franรงois; Marchiano, Rรฉgis; Hรฉron, Nicolas
2008-06-01
Dassault Aviation as a civil aircraft manufacturer is studying the feasibility of a supersonic business jet with the target of an "acceptable" sonic boom at the ground level, and in particular in case of focusing. A sonic boom computational process has been performed, that takes into account meteorological effects and aircraft manoeuvres. Turn manoeuvres and aircraft acceleration create zones of convergence of rays (caustics) which are the place of sound amplification. Therefore two elements have to be evaluated: firstly the geometrical position of the caustics, and secondly the noise level in the neighbourhood of the caustics. The modelling of the sonic boom propagation is based essentially on the assumptions of geometrical acoustics. Ray tracing is obtained according to Fermat's principle as paths that minimise the propagation time between the source (the aircraft) and the receiver. Wave amplitude and time waveform result from the solution of the inviscid Burgers' equation written along each individual ray. The "age variable" measuring the cumulative nonlinear effects is linked to the ray tube area. Caustics are located as the place where the ray tube area vanishes. Since geometrical acoustics does not take into account diffraction effects, it breaks down in the neighbourhood of caustics where it would predict unphysical infinite pressure amplitude. The aim of this study is to describe an original method for computing the focused noise level. The approach involves three main steps that can be summarised as follows. The propagation equation is solved by a forward marching procedure split into three successive steps: linear propagation in a homogeneous medium, linear perturbation due to the weak heterogeneity of the medium, and non-linear effects. The first step is solved using an "exact" angular spectrum algorithm. Parabolic approximation is applied only for the weak perturbation due to the heterogeneities. Finally, non linear effects are performed by solving the in-viscid Burgers' equation. As this one is valid for a plane wave, the direction of this last one is not prescribed a priori, but is computed in a self-adaptative way using an efficient numerical solver of the non-linear eikonal equation (Fast Marching Method).
Flying Faster Than The Speed of Sound
2017-10-10
It's been 70 years since Chuck Yeager broke the sound barrier in his experimental airplane, the X-1. Today, NASA is working to make supersonic air travel across the U.S. a reality with its Low Boom Flight Demonstration aircraft. Decades of NASA research in supersonics have gone into the unique design of this aircraft, which aims to reduce the loudness of the sonic boom associated with planes traveling faster than the speed of sound.
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.
Preliminary sonic boom correlation of predicted and measured levels for STS-1 entry
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.; Morrison, K. M.; Jones, J. H.; Henderson, H. R.
1982-01-01
A preliminary analysis correlating peaks from sonic boom pressure signatures recorded during the descent trajectory of the Orbiter Columbia, which landed in the dry lake bed at Edwards Air Force Base (EAFB), California, with measured wind tunnel signatures extrapolated from flight altitudes to the ground has been made for Mach numbers ranging from 1.3 to 6. The flight pressure signatures were recorded by microphones positioned at ground level near the groundtrack, whereas the wind tunnel signatures were measured during a test of a 0.0041-scale model Orbiter. The agreement between overpressure estimates based on wind tunnel data using preliminary flight trajectory data and oscillograph traces from ground measurements appears reasonable at this time for the range of Mach numbers considered. More detailed studies using final flight trajectory data and digitized ground measured data will be performed.
Aerodynamic Effects of a 24-Foot, Multisegmented Telescoping Nose Boom on an F-15B Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.
2007-01-01
An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicated that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was flown to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom s influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.
Aerodynamic Effects of a 24-foot Multisegmented Telescoping Nose Boom on an F-15B Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.
2008-01-01
An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicate that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was conducted to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom's influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.
SR-71B - in flight over snow-capped mountains
NASA Technical Reports Server (NTRS)
1995-01-01
Dryden's SR-71B, NASA 831, slices across the snowy southern Sierra Nevada Mountains of California after being refueled by an Air Force Flight Test Center tanker during a recent flight. The Mach 3 aircraft, on loan to NASA by the U.S. Air Force, were flown by the Dryden Flight Research Center, Edwards, California, during the decade of the 1990s as testbeds for high-speed, high-altitude aeronautical research. Capable of flying more than 2200 mph and at altitudes of over 80,000 feet, they were excellent platforms for research and experiments in aerodynamics, propulsion, structures, thermal protection materials, atmospheric studies, and sonic boom characterization. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startle affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Dryden has had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
Low Boom Flight Demonstrator Briefing
2018-04-03
Dave Richardson, director, Air Vehicle Design and Technologies, Lockheed Martin Skunk Works, speaks after the announcement that Lockheed Martin won the contract to develop the first X-plane at a briefing, Tuesday, April 3, 2018 at NASA Headquarters in Washington. This new experimental aircraft will cut cross country travel times in half by flying faster than the speed of sound without creating a sonic boom, enabling travel from New York to Los Angeles in two hours. Photo Credit: (NASA/Aubrey Gemignani)
NASA Astrophysics Data System (ADS)
Aizin, G. R.; Mikalopas, J.; Shur, M.
2016-05-01
An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.
Recovery of motor performance following startle.
DOT National Transportation Integrated Search
1969-10-01
Sudden, high-intensity sounds, such as those produced by sonic booms, can be quite startling. Although many studies have investigated physiological response to startle, much less is known concerning the effects of startle on performance. The present ...
NASA F-15B #836 landing with Quiet Spike attached
2006-10-03
NASA F-15B #836 landing with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
SR-71A - in Flight View from Tanker during an Airborne Refueling
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows a USAF tanker aircraft Boom Operator's or 'Boomer's' view of NASA Dryden Flight Research Center's SR-71A, tail number 844, following air refueling during a 1997 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
Analysis of the Effects of Streamwise Lift Distribution on Sonic Boom Signature
NASA Technical Reports Server (NTRS)
Yoo, Paul
2013-01-01
Investigation of sonic boom has been one of the major areas of study in aeronautics due to the benefits a low-boom aircraft has in both civilian and military applications. This work conducts a numerical analysis of the effects of streamwise lift distribution on the shock coalescence characteristics. A simple wing-canard-stabilator body model is used in the numerical simulation. The streamwise lift distribution is varied by fixing the canard at a deflection angle while trimming the aircraft with the wing and the stabilator at the desired lift coefficient. The lift and the pitching moment coefficients are computed using the Missile DATCOM v. 707. The flow field around the wing-canard- stabilator body model is resolved using the OVERFLOW-2 flow solver. Overset/ chimera grid topology is used to simplify the grid generation of various configurations representing different streamwise lift distributions. The numerical simulations are performed without viscosity unless it is required for numerical stability. All configurations are simulated at Mach 1.4, angle-of-attack of 1.50, lift coefficient of 0.05, and pitching moment coefficient of approximately 0. Four streamwise lift distribution configurations were tested.
NASA F-15B #836 in flight with Quiet Spike attached
2006-09-27
NASA F-15B #836 in flight with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
NASA F-15B #836 in flight with Quiet Spike attached
2006-10-03
NASA F-15B #836 in flight with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
NASA F-15B #836 in flight with Quiet Spike attached
2006-09-25
NASA F-15B #836 in flight with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
Overview of an Indoor Sonic Boom Simulator at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Klos, Jacob
2012-01-01
A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact ]induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.
Instrumentation for measurement of aircraft noise and sonic boom
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J. (Inventor)
1975-01-01
A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplified by a zero drive amplifier and recorded on magnetic tape. The converter is comprised of a local oscillator, a dual-gate field-effect transistor (FET) mixer and a voltage regulator/impedance translator. A carrier voltage that is applied to one of the gates of the FET mixer is generated by the local oscillator. The microphone signal is mixed with the carrier to produce an electrical current at the frequency of vibration of the microphone diaphragm by the FET mixer. The voltage of the local oscillator and mixer stages is regulated, the carrier at the output is eliminated, and a low output impedance at the cable terminals is provided by the voltage regulator/impedance translator.
Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow
NASA Technical Reports Server (NTRS)
Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher
2014-01-01
Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.
Effects of Sonic Booms on Marine Mammals: Problem Review and Recommended Research
NASA Technical Reports Server (NTRS)
Bowles, Ann E.
1996-01-01
By flying the High-Speed Civil Transport (HSCT) exclusively over uninhabited areas and mo over water, human annoyance will be reduced to acceptable levels. However, this strategy will for HSCT proponents to contend with the potential effects of sonic booms on animals, particularly ma mammals. What follows is a summary of the environmental regulations that must be addressed, the scientific community's concerns about the potential effects of the HSCT, and recommendations fox research to address the most important concerns. The recommendations included herein are based both on existing scientific evidence and regulatory needs. One cannot over-emphasize the importance of obtaining the appropriate information prior to substantial public exposure. Recent controversies over other human-made acoustic sources in the ocean suggest that the HSCT will receive intense scrutiny. It seems certain that an Environmental Impact Statement (EIS) and Incidental Harassment Authorization (IHA) under the Marine Mammal Protection Act (MMPA) or its equivalent will be necessary.
First Annual High-Speed Research Workshop, part 3
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.
First Annual High-Speed Research Workshop, part 4
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
Papers presented at the First Annual High Speed Research Workshop held in Williamsburg, Viginia, on May 14-16, 1991 are presented. This NASA-sponsored workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The sessions are developed around the technical components of NASA's Phase 1 High Speed Research Program which addresses the environmental issues of atmospheric emissions, community noise, and sonic boom. In particular, this part of the publication, Part 4, addresses high lift research and supersonic laminar flow control.
Douglas Aircraft HSCT status and future research needs
NASA Technical Reports Server (NTRS)
Welge, H. Robert
1992-01-01
Current activities on the High Speed Civil Transport (HSCT) at Douglas are focussed on baseline vehicle development at Mach 1.6 and 2.4. Parallel design activities incorporating the latest technologies in structures/materials, propulsion/noise, and aerodynamics are also being conducted and incorporated into the baseline to establish performance, economic viability, and environmental compliance. Studies are also being conducted to establish the feasibility of incorporating laminar flow control and minimized sonic boom concepts into the baseline. A decision point on these last two technologies is targeted prior to the start of the NASA HSR Phase 2 Program in 1993.
A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Deere, Karen A.
2008-01-01
NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (<10 body lengths below the aircraft) boom signatures at supersonic speeds using the USM3D unstructured grid flow solver. The study began by examining sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.
An Experimental Investigation of Rise Times of Very Weak Shock Waves.
1981-03-01
Supply, R & M No. 3659, London, Pallant , R. J. 1971. Walters, W. L. 7. Webb, D. R. B. Private Communications, March and May, 1977. 8. Rigaud, P. "Bang...Mediumn", Proc. Eleventh International Symposium on Shock Tubes and Waves, July 1977, pp. 82-90. 23. Hesselink, L. "An Experimental Investigation of...B. "Sonic Boom and Turbulence Interactions - Laboratory Measurements Compared with Theory", AIAA Paper 71-618, July 1971. 25. Bauer, A. B. "Sonic
NASA Technical Reports Server (NTRS)
1990-01-01
The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of one of the two 'A' models. As microscopic-sized atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air-data collection system was successfully tested at Dryden on an F-l04 testbed. The first of a series of flights using the SR-71 as a science camera platform for the NASA Jet Propulsion Laboratory was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who are investigating the use of charged chlorine atoms to protect and rebuild the ozone layer. The SR-71, operating as a testbed, has been used to assist in the development of a commercial satellite-based instant wireless personal communications network, called the IRIDIUM system, under a NASA commercialization assistance program. In addition, the SR-71 has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this study could eventually lead to aircraft designs that would reduce the 'peak' of sonic booms and minimize the startle affect they produce on the ground. Instruments at precise locations on the ground recorded the sonic booms as the aircraft passed overhead at known altitudes and speeds. An F-16XL aircraft was also used in this study. It was flown behind the SR-71 to 'probe' the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters. The aircraft has also been used most recently to evaluate a new concept for space propulsion called the Linear Aerospike Rocket Engine, which could be used in the X-33 advanced technology demonstrator for a next generation reusable launch vehicle.
NASA Technical Reports Server (NTRS)
1990-01-01
This clip, running about 14 seconds in length, shows the NASA SR-71 (No. 844) lighting off the afterburners on a low pass over the Dryden Flight Research Center. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of one of the two 'A' models. As microscopic-sized atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air-data collection system was successfully tested at Dryden on an F-l04 testbed. The first of a series of flights using the SR-71 as a science camera platform for the NASA Jet Propulsion Laboratory was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who are investigating the use of charged chlorine atoms to protect and rebuild the ozone layer. The SR-71, operating as a testbed, has been used to assist in the development of a commercial satellite-based instant wireless personal communications network, called the IRIDIUM system, under a NASA commercialization assistance program. In addition, the SR-71 has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this study could eventually lead to aircraft designs that would reduce the 'peak' of sonic booms and minimize the startle affect they produce on the ground. Instruments at precise locations on the ground recorded the sonic booms as the aircraft passed overhead at known altitudes and speeds. An F-16XL aircraft was also used in this study. It was flown behind the SR-71 to 'probe' the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters. The aircraft has also been used most recently to evaluate a new concept for space propulsion called the Linear Aerospike Rocket Engine, which could be used in the X-33 advanced technology demonstrator for a next generation reusable launch vehicle.
A Whitham-Theory Sonic-Boom Analysis of the TU-144 Aircraft at a Mach Number of 2.2
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1999-01-01
Officially, the Tu-144 was the first supersonic-cruise, passenger-carrying aircraft to enter commercial service. Design, construction, and testing were carried out by the Soviet Union, flight certification was by the Soviet Union, and the only regular passenger flights were scheduled and flown across the territory of the Soviet Union. Although it was not introduced to international passenger service, there were many significant engineering accomplishments achieved in the design, production, and flight of this aircraft. Development of the aircraft began with a prototype stage. Systematic testing and redesign led to a production aircraft in discrete stages that measurably improved the performance of the aircraft from the starting concept to final aircraft certification. It flew in competition with the English-French Concorde for a short time, but was withdrawn from national commercial service due to a lack of interest by airlines outside the Soviet Union. NASA became interested in the Tu- 144 aircraft when it was offered for use as a flying "testbed" in the study of operating characteristics of a supersonic-cruise commercial airplane. Since it had been in supersonic-cruise service, the Tu- 144 had operational characteris'tics similar to those anticipated in the conceptual aircraft designs being studied by the United States aircraft companies. In addition to the other operational tests being conducted on the Tu-144 aircraft, it was proposed that two sets of sonic-boom pressure signature measurements be made. The first set would be made on the ground, using techniques and devices similar to those in reference I and many other subsequent studies. A second set would be made in the air with an instrumented aircraft flying close under the Tu-144 in supersonic flight. Such in-flight measurements would require pressure gages that were capable of accurately recording the flow-field overpressures generated by the Tu- 144 at relatively close distances under the vehicle. Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.
Residual performance effects of simulated sonic booms introduced during sleep.
DOT National Transportation Integrated Search
1972-05-01
Twenty-four male subjects were tested on a complex performance device involving monitoring, mental arithmetic, and pattern discrimination. Three age-groups were used: 20 to 26, 40 to 45, and 60 to 72. Subjects were tested for 30 minutes each morning ...
Air/Sea Transfer of Gases and Aerosols
2003-09-30
of tubing from the boom at the western end of the pier. The boom housed the inlet and a Campbell CSAT sonic anemometer, which measured three...with the return flow from breaking waves onshore. 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 U10 (m/s) k 6 00 (c m /h r ) this study wanninkof...ultimately result in improved algorithms relating the state of the air/sea interface to remotely sensed properties. REFERENCES Bandy, A, R ., D
Vibro-Acoustic Response of Buildings Due to Sonic Boom Exposure: July 2007 Field Test
NASA Technical Reports Server (NTRS)
Klos, Jacob
2008-01-01
During the month of July 2007, a series of structural response measurements were made on a house on Edwards Air Force Base (EAFB) property that was exposed to sonic booms of various amplitudes. The purpose of this report is to document the measurements that were made, the structure on which they were made, the conditions under which they were made, the sensors and other hardware that were used, and the data that were collected. To that end, Chapter 2 documents the house, its location, the physical layout of the house, the surrounding area, and summarizes the transducers placed in and around the house. Chapter 3 details the sensors and other hardware that were placed in the house during the experiment. In addition, day-to-day variations of hardware configurations and transducer calibrations are documented in Chapter 3. Chapter 4 documents the boom generation process, flight conditions, and ambient weather conditions during the test days. Chapter 5 includes information about sub-experiments that were performed to characterize the vibro-acoustic response of the structure, the acoustic environment inside the house, and the acoustic environment outside the house. Chapter 6 documents the data format and presents examples of reduced data that were collected during the test days.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Of Marine Mammals Incidental To Space Vehicle And Test Flight Activities ยง 216.124 Mitigation. (a..., national security, or for space vehicle launch trajectory necessary to meet mission objectives. (3) Vandenberg Air Force Base must avoid, whenever possible, launches which are predicted to produce a sonic boom...
ERIC Educational Resources Information Center
Hurtig, Brent
1998-01-01
Reviews and evaluates Pro Tools 4.1, a multitrack digital audio workstation (DAWs) that imports and synchronizes to QuickTime or AVI digital movies. Audio-for-picture editors lock their digital audio workstations to linear videotape recorders, using complex, expensive time code synchronizers. Highlights Macintosh and Windows based alternatives.โฆ
32 CFR 750.43 - Claims payable.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...
NASA Astrophysics Data System (ADS)
Kacerek, Richard
2018-02-01
Public reports about a bright flash of light, sonic booms and some shaking of the ground could be associated with a giant dust cloud registered on a Doppler radar image, indicating an explosion of a bolide about 20 miles off the coast followed by an impact in the ocean.
32 CFR 750.43 - Claims payable.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...
32 CFR 750.43 - Claims payable.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...
32 CFR 750.43 - Claims payable.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...
32 CFR 750.43 - Claims payable.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...
Ballistic range experiments on superbooms generated by refraction
NASA Technical Reports Server (NTRS)
Sanai, M.; Toong, T.-Y.; Pierce, A. D.
1976-01-01
The enhanced sonic boom or supersonic boom generated as a result of atmospheric refraction in threshold Mach number flights was recreated in a ballistic range by firing projectiles at low supersonic speeds into a stratified medium obtained by slowly injecting carbon dioxide into air. The range was equipped with a fast-response dynamic pressure transducer and schlieren photographic equipment, and the sound speed variation with height was controlled by regulating the flow rate of the CO2. The schlieren observations of the resulting flow field indicate that the generated shocks are reflected near the sonic cutoff altitude where local sound speed equals body speed, provided such an altitude exists. Maximum shock strength occurs very nearly at the point where the incident and reflected shocks join, indicating that the presence of the reflected shock may have an appreciable effect on the magnitude of the focus factor. The largest focus factor detected was 1.7 and leads to an estimate that the constant in the Guiraud-Thery scaling law should have a value of 1.30.
Interaction of the sonic boom with atmospheric turbulence
NASA Technical Reports Server (NTRS)
Rusak, Zvi; Cole, Julian D.
1994-01-01
Theoretical research was carried out to study the effect of free-stream turbulence on sonic boom pressure fields. A new transonic small-disturbance model to analyze the interactions of random disturbances with a weak shock was developed. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. An alternative approach shows that the pressure field may be described by an equation that has an extended form of the classic nonlinear acoustics equation that describes the propagation of sound beams with narrow angular spectrum. The model shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed type elliptic-hyperbolic flows around the shock wave was also developed. Numerical calculations of shock wave interactions with various deterministic and random fluctuations will be presented in a future report.
Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian
2014-01-01
Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.
NASA Technical Reports Server (NTRS)
Haglund, G. T.; Kane, E. J.
1974-01-01
The analysis of the 14 low-altitude transonic flights showed that the prevailing meteorological consideration of the acoustic disturbances below the cutoff altitude during threshold Mach number flight has shown that a theoretical safe altitude appears to be valid over a wide range of meteorological conditions and provides a reasonable estimate of the airplane ground speed reduction to avoid sonic boom noise during threshold Mach number flight. Recent theoretical results for the acoustic pressure waves below the threshold Mach number caustic showed excellent agreement with observations near the caustic, but the predicted overpressure levels were significantly lower than those observed far from the caustic. The analysis of caustics produced by inadvertent low-magnitude accelerations during flight at Mach numbers slightly greater than the threshold Mach number showed that folds and associated caustics were produced by slight changes in the airplane ground speed. These caustic intensities ranged from 1 to 3 time the nominal steady, level flight intensity.
SR-71 - In-flight Close-up from Tanker
NASA Technical Reports Server (NTRS)
1994-01-01
This extreme close-up of the SR-71B operated by NASA's Dryden Flight Research Center, Edwards, California, gives an unusual view of the twin cockpit of Dryden's SR-71B, NASA 831, and its helmeted crew members. The photo was taken from an Air Force tanker refueling the Blackbird during a 1994 flight. The Mach 3 Blackbird aircraft were loaned to NASA by the U.S. Air Force for high-speed, high-altitude aeronautical research. Capable of flying more than 2200 mph and at altitudes of over 85,000 feet, they are excellent platforms for research and experiments in aerodynamics, propulsion, structures, thermal protection materials, atmospheric studies, and sonic boom characterization. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
NASA Technical Reports Server (NTRS)
Lina, Lindsay J.; Maglieri, Domenic J.
1960-01-01
The intensity of shock-wave noise at the ground resulting from flights at Mach numbers to 2.0 and altitudes to 60,000 feet was measured. Meagurements near the ground track for flights of a supersonic fighter and one flight of a supersonic bomber are presented. Level cruising flight at an altitude of 60,000 feet and a Mach number of 2.0 produced sonic booms which were considered to be tolerable, and it is reasonable t o expect that cruising flight at higher altitudes will produce booms of tolerable intensity for airplanes of the size and weight of the test airplanes. The measured variation of sonic-boom intensity with altitude was in good agreement with the variation calculated by an equation given in NASA Technical Note D-48. The effect of Mach number on the ground overpressure is small between Mach numbers of 1.4 and 2.0, a result in agreement with the theory. No amplification of the shock-wave overpressures due to refraction effects was apparent near the cutoff Mach number. A method for estimating the effect of fligh-path angle on cutoff Mach number is shown. Experimental results indicate agreement with the method, since a climb maneuver produced booms of a much decreased intensity as compared with the intensity of those measured in level flight at about the same altitude and Mach number. Comparison of sound pressure levels for the fighter and bomber airp lanes indicated little effect of either airplane size or weight at an altitude of 40,000 feet.
Identification of tower-wake distortions using sonic anemometer and lidar measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya
The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairsmoreย ยป of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. Furthermorew, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.ยซย less
Identification of tower-wake distortions using sonic anemometer and lidar measurements
McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya; ...
2017-02-02
The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairsmoreย ยป of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. Furthermorew, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.ยซย less
Persistence Characteristics of Wind-Tunnel Pressure Signatures From Two Similar Models
NASA Technical Reports Server (NTRS)
Mack, Robert J.
2004-01-01
Pressure signatures generated by two sonic-boom wind-tunnel models and measured at Mach 2 are presented, analyzed, and discussed. The two wind-tunnel models differed in length and span by a factor of fourteen, but were similar in wing-body planform shape. The geometry of the larger model had been low-boom tailored to generate a flat top ground pressure signature, and the nacelles-off pressure signatures from this model became more flattop in shape as the model-probe separation distances increased from 0.94 to 4.4 span lengths. The geometry of the smaller model had not been low-boom tailored, yet its measured pressure signatures had non-N-wave shapes that persisted as model-probe separation distances increased from 26.0 to 104.2 span lengths. Since the overall planforms of the two wind-tunnel models were so similar, it was concluded that the shape-persistence trends in the pressure signatures of the smaller, non-low-boom tailored model would also be present at very large distances in the pressure signatures of the larger, low-boom-tailored model.
Full-Carpet Design of a Low-Boom Demonstrator Concept
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Wintzer, Mathias; Rallabhandi, Sriram K.
2015-01-01
The Cart3D adjoint-based design framework is used to mitigate the undesirable o -track sonic boom properties of a demonstrator concept designed for low-boom directly under the flight path. First, the requirements of a Cart3D design mesh are determined using a high-fidelity mesh adapted to minimize the discretization error of the CFD analysis. Low-boom equivalent area targets are then generated at the under-track and one off-track azimuthal position for the baseline configuration. The under-track target is generated using a trim- feasible low-boom target generation process, ensuring that the final design is not only low-boom, but also trimmed at the specified flight condition. The o -track equivalent area target is generated by minimizing the A-weighted loudness using an efficient adjoint-based approach. The configuration outer mold line is then parameterized and optimized to match the off-body pressure distributions prescribed by the low-boom targets. The numerical optimizer uses design gradients which are calculated using the Cart3D adjoint- based design capability. Optimization constraints are placed on the geometry to satisfy structural feasibility. The low-boom properties of the final design are verified using the adaptive meshing approach. This analysis quantifies the error associated with the CFD mesh that is used for design. Finally, an alternate mesh construction and target positioning approach offering greater computational efficiency is demonstrated and verified.
High-speed civil transport study: Special factors
NASA Technical Reports Server (NTRS)
1990-01-01
Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.
A corporate supersonic transport
NASA Technical Reports Server (NTRS)
Greene, Randall; Seebass, Richard
1996-01-01
This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.
Draft Environmental Impact Statement: F-15E Beddown at Seymour Johnson AFB, North Carolina
1988-03-01
destruction, stunted growth, necrosis ( killing of plant tissue), chlorosis (loss or reduction in plant chlorophyll), leaf abscission (dropping of leaves...occasionally run, fly, or crowd when exposed to sonic booms. In a field and laboratory study, Mourning Doves, Mockingbirds , Cardinals, Lark Sparrows, and
Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: Bibliographic Abstracts
1988-06-01
described in historical tales and literature regarding a "hush or stillness falling over" an area preceding some remarkable event, such as a volcanic ...canaries (Serinus canarias ). Longer exposure caused greater deficits with losses of high-frequency sensitivity. After the noise exposure was terminated
Study to Determine Seismic Response of Sonic Boom-Coupled Rayleigh Waves
1990-04-26
are compiled from the microtremor measurements carried out by Instituto de Ingenieria , UNAM and scientists from Japan (for a total of 181 sites...the accelerographs operated by Instituto de Ingenieria , UNAM. Using this new data and results from the analysis of previous accelerograms we present
SR-71 - Taxi on Ramp with Engines
NASA Technical Reports Server (NTRS)
1995-01-01
This photo shows a head-on shot of NASA's SR-71A aircraft taxiing on the ramp at NASA's Dryden Flight Research Center, Edwards, California, heat waves from its engines blurring the hangars in the background. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71B - Mach 3 Trainer in Flight at Sunset
NASA Technical Reports Server (NTRS)
1995-01-01
An SR-71B Blackbird aircraft, based at NASA's Dryden Flight Research Center, Edwards, California, is seen here silhouetted against the golden colors of a sunset sky on a 1995 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71 in Flight over Rogers Dry Lakebed
NASA Technical Reports Server (NTRS)
1995-01-01
This photo shows NASA Dryden Flight Research Center's SR-71B, tail number 831, over Rogers Dry Lakebed during a July 1995 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71B - Mach 3 Trainer in Flight at Sunset
NASA Technical Reports Server (NTRS)
1995-01-01
The setting sun peeks beneath a SR-71B Blackbird, silhouetted against the orange hues of the western sky on a 1995 flight from at NASA's Dryden Flight Research Center, Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71 Tail #844 Landing at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1996-01-01
With distinctive heat waves trailing behind its engines, NASA Dryden Flight Research Center's SR-71A, tail number 844, lands at the Edwards AFB runway after a 1996 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71A on Ramp with Dual Max Afterburner Engines Firing
NASA Technical Reports Server (NTRS)
1998-01-01
This night shot shows one of NASA's SR-71 Blackbird research aircraft on the ramp at the Dryden Flight Research Center, Edwards, California, with both engines running in max afterburner. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71A - in Flight over Southern Sierra Nevada Mountains
NASA Technical Reports Server (NTRS)
1997-01-01
NASA Dryden Flight Research Center's SR-71A, tail number 844, banks away over the Sierra Nevada mountains after air refueling from a USAF tanker during a 1997 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71A in Flight with Test Fixture Mounted Atop the Aft Section of the Aircraft
NASA Technical Reports Server (NTRS)
1999-01-01
This close-up, head-on view of NASA's SR-71A Blackbird in flight shows the aircraft with an experimental test fixture mounted on the back of the airplane. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71B - in Flight - View from Air Force Tanker
NASA Technical Reports Server (NTRS)
1997-01-01
This look-down view shows NASA 831, an SR-71B flown by Dryden Flight Research Center, Edwards, California, as it cruises over the Mojave Desert. The photo was from an Air Force refueling tanker taken on a 1997 mission. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71 Mid-air Refueling with KC-135 Tanker
NASA Technical Reports Server (NTRS)
1995-01-01
NASA Dryden Flight Research Center's SR-71B, tail number 831, is seen here receiving air refueling from a USAF tanker during a July, 1995 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
NASA Technical Reports Server (NTRS)
1994-01-01
This look-down, front view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
NASA Technical Reports Server (NTRS)
1994-01-01
Dryden's SR-71B, NASA 831, slices across the snow-covered southern Sierra Nevada Mountains of California after being refueled by an Air Force tanker during a 1994 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
NASA Astrophysics Data System (ADS)
Volkov, V. F.
2017-03-01
The author gives results of parametric calculations of shock-boom levels in the case of flow with a free-stream Mach number of 2.03 past configurations of a supersonic aircraft. The calculations are aimed at investigating the influence of the relative position of basic elements and their geometric shape on the aerodynamic quality of the configuration and on the parameters of shock boom at great distances from the perturbation source. The geometric models of the configurations were formed by combining and joining component elements: the body, the front wing, and the rear tapered wing with root dogtooth extension. From an analysis of all the considered models of tandem configurations with account of the resolvability of shock waves in a perturbed profile compared to the monoplane configuration, the optimum configuration has been singled out that ensures a reduction of 24% in the intensity level of shock boom with an increase of 0.24% in its aerodynamic quality.
1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodyamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
NASA Technical Reports Server (NTRS)
Baize, Daniel G. (Editor)
1999-01-01
The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in area of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
2006-05-03
Some of the test team for the Gulfstream Quiet Spike project assembled for a group photo on May 3, 2006. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
Final Environmental Assessment for Force Structure Changes at Langley Air Force Base, VA
2011-10-01
Shepard Blvd, Hampton, VA, 23665, DEQ PC No. 20095002, PC Case Status - Release Confirmed, Case Closed. Langley Air Force Base- Building 333, 90 Oak...NOISEXPO โ77, Chicago , IL. March. White, R. 1972. Effects of Repetitive Sonic Booms on Glass Breakage. FAA Report FAA-RD-72- 43. April. 6
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results of the Douglas Aircraft Company system studies related to high speed civil transports (HSCT) are discussed. The studies were conducted to assess the environmental compatibility of a high speed civil transport at a design Mach number of 3.2. Sonic boom minimization, external noise, and engine emissions were assessed together with the effect of the laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that a sonic boom loudness level of 90-PLdB at Mach 3.2 may not be achievable for a practical design; the high flow engine cycle concept shows promise of achieving the sideline FAR Part 36 noise limit, but may not achieve the aircraft range design goal of 6,500 nautical miles; the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO sub x levels when combined with a premixed pilot stage/advanced technology, high power stage duct burner in the Pratt and Whitney variable steam control engine (VSCE); and full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
The 1989 high-speed civil transport studies
NASA Technical Reports Server (NTRS)
1991-01-01
The results are presented for the Douglas Aircraft Company system studies related to high speed civil transports (HSCTs). The system studies were conducted to assess the environmental compatibility of a HSCT at a design Mach number of 3.2. Sonic boom minimization, exterior noise, and engine emissions were assessed together with the effect of a laminar flow control (LFC) technology on vehicle gross weight. The general results indicated that (1) achievement of a 90 PLdB sonic boom loudness level goal at Mach 3.2 may not be practical; (2) the high flow engine cycle concept shows promise of achieving the side line FAR Part 36 noise limit but may not achieve the aircraft range design goal of 6,500 nautical miles; (3) the rich burn/quick quench (RB/QQ) combustor concept shows promise for achieving low EINO(sub x) levels when combined with a premixed pilot stage/advanced technology high power stage duct burner in the P and W variable stream control engine (VSCE); and (4) full chord wing LFC has significant performance and economic advantages relative to the turbulent wing baseline.
SR-71 Pilot Stephen (Steve) D. Ishmael
NASA Technical Reports Server (NTRS)
1992-01-01
NASA research pilot Stephen D. Ishmael is pictured here in front of an SR-71 Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Ishmael was one of two NASA research pilots assigned to the SR-71 high speed research program in the early 1990s at NASA's Dryden Flight Research Facility (redesignated the Dryden Flight Research Center in 1994), Edwards, California. Ishmael became a NASA research pilot in 1977. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
NASA Technical Reports Server (NTRS)
1992-01-01
Research pilot Rogers E. Smith is shown here in front of the SR-71 Blackbird he flew for NASA. Rogers was one of the two original NASA research pilots assigned to the SR-71 high speed research program at NASA's Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center, Edwards, California. Smith has been a NASA research pilot at Dryden since 1982. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. The SR-71 is capable of flying more than 2200 mph (Mach 3+) and at altitudes of over 80,000 feet. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf
2016-01-01
An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.
2006-08-10
NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
2006-08-16
The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.
1958-10-07
North American F-100 C airplane used in sonic boom investigation at Wallops, October 7, 1958. Photograph published in: A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 672. -- Aircraft number: NACA 42024. Side view, 3/4 view from front, 3/4 view from rear, rear view, and two front views.
14 CFR Appendix B to Part 91 - Authorizations To Exceed Mach 1 (ยง 91.817)
Code of Federal Regulations, 2010 CFR
2010-01-01
..., including an environmental analysis of that area meeting the requirements of paragraph (b) of this section... reach the surface outside of the designated test area. (d) An application is denied if the Administrator... number of 1 will not cause a measurable sonic boom overpressure to reach the surface. (b) For a flight...
14 CFR Appendix B to Part 91 - Authorizations To Exceed Mach 1 (ยง 91.817)
Code of Federal Regulations, 2011 CFR
2011-01-01
..., including an environmental analysis of that area meeting the requirements of paragraph (b) of this section... reach the surface outside of the designated test area. (d) An application is denied if the Administrator... number of 1 will not cause a measurable sonic boom overpressure to reach the surface. (b) For a flight...
Edward (Ed) T. Schneider in Front of SR-71 Blackbird
NASA Technical Reports Server (NTRS)
1995-01-01
SR-71 research pilot Ed Schneider is pictured here in front of an SR-71 Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Schneider became a NASA research pilot at Dryden in 1983. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. He retired as a NASA research pilot in September 2000. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71 Research Engineer Marta Bohn-Meyer
NASA Technical Reports Server (NTRS)
1992-01-01
This 1992 photo shows SR-71 flight engineer Marta Bohn-Meyer in front of one of NASA's SR-71 aircraft on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. An aerospace engineer who has been at Dryden since 1979, Bohn-Meyer is the first female crew member ever assigned to fly in the SR-71. Data from the SR-71 program carried out by NASA will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
High infrasonic goniometry applied to the detection of a helicopter in a high activity environment
NASA Astrophysics Data System (ADS)
Chritin, Vincent; Van Lancker, Eric; Wellig, Peter; Ott, Beat
2016-10-01
A current concern of armasuisse is the feasibility of a fixed or mobile acoustic surveillance and recognition network of sensors allowing to permanently monitor the noise immissions of a wide range of aerial activities such as civil or military aviation, and other possible acoustic events such as transient events, subsonic or sonic booms or other. This objective requires an ability to detect, localize and recognize a wide range of potential acoustic events of interest, among others possibly parasitic acoustic events (natural and industrial events on the ground for example), and possibly high background noise (for example close to urban or high activity areas). This article presents a general discussion and conclusion about this problem, based on 20 years of experience totalizing a dozen of research programs or internal researches by IAV, with an illustration through one central specific experimental case-study carried out within the framework of an armasuisse research program.
The Need for Non-Lethal Weapons in Major Combat Operations
2008-04-23
and sent out a shock wave similar to a sonic boom that in theory could have downed a B-17 bomber. Its effects 4 were disabling, rather than...malodorants and toxic incapacitating agents) Mechanical technologies (including nets and barriers) Acoustic technologies (such as infra - and...oxide AUDIBLE INFRASONIC ULTRASONIC BARRIERS Caltrops Tire spikes and strips ENTANGLEMENTS Portable vehicle arresting barrier Running
NASA Technical Reports Server (NTRS)
Fryer, B. A. (Compiler)
1980-01-01
Reference lists of approximately 900 published Langley Research Center reports in various areas of acoustics and noise control for the period 1940-1979 are presented. Specific topic areas covered include: duct acoustics; propagation and operations; rotating blade noise; jet noise; sonic boom; flow surface interaction noise; structural response/interior noise; human response; and noise prediction.
Aviation weather service requirements, 1980 - 1990
NASA Technical Reports Server (NTRS)
Lieurance, N. A.
1977-01-01
Future aviation weather needs are discussed. Priority weather requirements and deficiencies existing for weather observations and forecast services in terminal areas are presented. Needs in en route operations up to 30 km are addressed with emphasis on turbulence, presence of suspended ice and water particles, SST to supersonic speeds, solar radiation, ozone, and sonic booms. Some conclusions are drawn and recommendations are presented.
An evaluation of rise time characterization and prediction methods
NASA Technical Reports Server (NTRS)
Robinson, Leick D.
1994-01-01
One common method of extrapolating sonic boom waveforms from aircraft to ground is to calculate the nonlinear distortion, and then add a rise time to each shock by a simple empirical rule. One common rule is the '3 over P' rule which calculates the rise time in milliseconds as three divided by the shock amplitude in psf. This rule was compared with the results of ZEPHYRUS, a comprehensive algorithm which calculates sonic boom propagation and extrapolation with the combined effects of nonlinearity, attenuation, dispersion, geometric spreading, and refraction in a stratified atmosphere. It is shown there that the simple empirical rule considerably overestimates the rise time estimate. In addition, the empirical rule does not account for variations in the rise time due to humidity variation or propagation history. It is also demonstrated that the rise time is only an approximate indicator of perceived loudness. Three waveforms with identical characteristics (shock placement, amplitude, and rise time), but with different shock shapes, are shown to give different calculated loudness. This paper is based in part on work performed at the Applied Research Laboratories, the University of Texas at Austin, and supported by NASA Langley.
Interaction of aerodynamic noise with laminar boundary layers in supersonic wind tunnels
NASA Technical Reports Server (NTRS)
Schopper, M. R.
1984-01-01
The interaction between incoming aerodynamic noise and the supersonic laminar boundary layer is studied. The noise field is modeled as a Mach wave radiation field consisting of discrete waves emanating from coherent turbulent entities moving downstream within the supersonic turbulent boundary layer. The individual disturbances are likened to miniature sonic booms and the laminar boundary layer is staffed by the waves as the sources move downstream. The mean, autocorrelation, and power spectral density of the field are expressed in terms of the wave shapes and their average arrival rates. Some consideration is given to the possible appreciable thickness of the weak shock fronts. The emphasis in the interaction analysis is on the behavior of the shocklets in the noise field. The shocklets are shown to be focused by the laminar boundary layer in its outer region. Borrowing wave propagation terminology, this region is termed the caustic region. Using scaling laws from sonic boom work, focus factors at the caustic are estimated to vary from 2 to 6 for incoming shocklet strengths of 1 to .01 percent of the free stream pressure level. The situation regarding experimental evidence of the caustic region is reviewed.
Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Morgenstern, John M.
2014-01-01
A summary is provided for the First AIAA Sonic Boom Workshop held 11 January 2014 in conjunction with AIAA SciTech 2014. Near-field pressure signatures extracted from computational fluid dynamics solutions are gathered from nineteen participants representing three countries for the two required cases, an axisymmetric body and simple delta wing body. Structured multiblock, unstructured mixed-element, unstructured tetrahedral, overset, and Cartesian cut-cell methods are used by the participants. Participants provided signatures computed on participant generated and solution adapted grids. Signatures are also provided for a series of uniformly refined workshop provided grids. These submissions are propagated to the ground and loudness measures are computed. This allows the grid convergence of a loudness measure and a validation metric (dfference norm between computed and wind tunnel measured near-field signatures) to be studied for the first time. Statistical analysis is also presented for these measures. An optional configuration includes fuselage, wing, tail, flow-through nacelles, and blade sting. This full configuration exhibits more variation in eleven submissions than the sixty submissions provided for each required case. Recommendations are provided for potential improvements to the analysis methods and a possible subsequent workshop.
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
2014-01-01
The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.
Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach
NASA Technical Reports Server (NTRS)
Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald
2007-01-01
Flight tests of Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the NASA Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the F-15B airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, however, instead of a centerline mounting, a relatively long forward-pointing boom was attached to the radar bulkhead of the F-15B airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets over land. The Quiet Spike(TradeMark) boom is a concept in which an aircraft s noseboom would be extended prior to supersonic acceleration. This morphing effectively lengthens the aircraft, thus reducing the peak sonic-boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, noncoalescing shocklets. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. However, due to the flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for- flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This paper provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project which includes the test setup details, instrumentation layout, and modal results obtained in support of the structural dynamic modeling and flutter analyses.
SR-71A - in Flight from Below at Takeoff
NASA Technical Reports Server (NTRS)
1997-01-01
With landing gear retracting, NASA Dryden Flight Research Center's SR-71A Blackbird, tail number 844, powers its way off the Edwards AFB runway with two Pratt & Whitney JT11D-20 engines rated at 34,000 pounds of thrust each, on a 1997 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
NASA Technical Reports Server (NTRS)
1994-01-01
This look-down view of NASA's SR-71A aircraft shows the Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California, with Rogers Dry Lake in the background. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft at that point in time, both based at Dryden. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71 Pilots and Crew (Smith, Meyer, Bohn-Meyer, Ishmael)
NASA Technical Reports Server (NTRS)
1991-01-01
The two pilot-engineer teams that flew the SR-71 aircraft at the NASA Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center, Edwards, California, are, from left, pilot Rogers Smith, flight engineers Robert Meyer and Marta Bohn-Meyer, and pilot Steven Ishmael. The Meyers are the first husband-wife team of aeronautical engineers at Dryden on flight status. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71 Pilots and Crew (Smith, Meyer, Bohn-Meyer, Ishmael)
NASA Technical Reports Server (NTRS)
1991-01-01
The two pilot-engineer teams that flew the SR-71 aircraft at the NASA Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California, are, from top of ladder, pilot Rogers Smith, flight engineer Robert Meyer, pilot Steven Ishmael, and flight engineer Marta Bohn-Meyer. The Meyers are the first husband-wife team of aeronautical engineers at Dryden on flight status. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker
NASA Technical Reports Server (NTRS)
1996-01-01
NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
SR-71A Taking Off with Test Fixture Mounted Atop the Aft Section of the Aircraft and F-18 Chase Airc
NASA Technical Reports Server (NTRS)
1999-01-01
This photo shows a NASA's SR-71A Blackbird, followed by a NASA F/A-18 chase plane, taking off from the runway at the Dryden Flight Research Center, Edwards, California, on a 1999 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
Performance of a Supersonic Over-Wing Inlet with Application to a Low-Sonic-Boom Aircraft
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Hirt, Stefanie M.; Anderson, Bernhard H.; Fink, Lawrence E.; Magee, Todd E.
2014-01-01
Development of commercial supersonic aircraft has been hindered by many related factors including fuel-efficiency, economics, and sonic-boom signatures that have prevented over-land flight. Materials, propulsion, and flight control technologies have developed to the point where, if over-land flight were made possible, a commercial supersonic transport could be economically viable. Computational fluid dynamics, and modern optimization techniques enable designers to reduce the boom signature of candidate aircraft configurations to acceptable levels. However, propulsion systems must be carefully integrated with these low-boom configurations in order that the signatures remain acceptable. One technique to minimize the downward propagation of waves is to mount the propulsion systems above the wing, such that the wing provides shielding from shock waves generated by the inlet and nacelle. This topmounted approach introduces a number of issues with inlet design and performance especially with the highly-swept wing configurations common to low-boom designs. A 1.79%-scale aircraft model was built and tested at the NASA Glenn Research Center's 8-by 6-Foot Supersonic Wind Tunnel (8x6 SWT) to validate the configuration's sonic boom signature. In order to evaluate performance of the top-mounted inlets, the starboard flow-through nacelle on the aerodynamic model was replaced by a 2.3%-scale operational inlet model. This integrated configuration was tested at the 8x6 SWT from Mach 0.25 to 1.8 over a wide range of angles-of-attack and yaw. The inlet was also tested in an isolated configuration over a smaller range of angles-of-attack and yaw. A number of boundary-layer bleed configurations were investigated and found to provide a substantial positive impact on pressure recovery and distortion. Installed inlet performance in terms of mass capture, pressure recovery, and distortion over the Mach number range at the design angle-of-attack of 4-degrees is presented herein and compared to that at 0- degrees, as well as the isolated inlet configuration to highlight installation effects. Performance of the installed inlet fell below that of the isolated inlet at Mach numbers of 1.4 and greater. The installed inlet demonstrated adequate operability over the expected range of angles-of-attack and yaw, but did exhibit definite angle-ofattack and yaw limits at supersonic conditions. At each supersonic flight Mach number, performance parameters near zero yaw angle were relatively insensitive to yaw, but in general the yaw angle yielding best performance was non-zero and varied with angle-of-attack. Performance of the installed inlet is also presented as functions of angle-of-attack and yaw to highlight these effects. Distortion at the aerodynamic interface plane ranged between 10 and 25% at the inlet critical points over the range of flight Mach numbers tested and did not decrease significantly for the isolated inlet. Although these distortion levels would be considered high for operation with a turbine engine, the over-wing installation is likely not as significant a contributor as the low test Reynolds number. This is demonstrated by comparing CFD analysis of the isolated inlet at test scale with that at intermediate and full scales.
1986-06-01
were retained from the original source. The undesired data lines in both shortened population files were then manually deleted through full-screen...Prenatal Visits 00-99 00-blank 88-not on certificate 99-unknown Apgar Score: 161-162 1 min. 00-10, 88, 99 99-entry >10 88-not on record 00=blank 163
First Annual High-Speed Research Workshop, part 2
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
This workshop provided a national forum for presenting and discussing important technology issues related to the definition of an economically viable and environmentally compatible High Speed Civil Transport. The workshop was organized into 13 sessions. This volume is part 2 of 4 and covers 4 of the 13 sessions: (1) source noise; (2) sonic boom (aerodynamic performance); (3) propulsion systems studies; and (4) emission reduction.
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.
2005-01-01
This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.
What gross weight and range for an advanced HSCT?
NASA Technical Reports Server (NTRS)
Driver, Cornelius
1992-01-01
A review of studies conducted in 1986 indicates that a 300 passenger, 5500 nautical mile range aircraft should weigh less than 400,000 pounds. Some data from a British Aerospace Society of Automotive Engineers (SAE) paper will be shown that purport to be an advanced Concorde that meets the range payload specifications at a gross weight of 360,000 pounds. Previous studies by Peter Coen of Langley Research Center support these results. The weight of a supersonic transport is important from the point of view of how much effort should be expended in developing lower sonic boom technologies. It is obvious that a 360,000 pound aircraft can be modified to a more acceptable boom level than a 700,000 pound one.
2006-08-10
NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
Seismic Response to Sonic Boom-Coupled Rayleigh Waves
1990-06-28
90 \\" VA ’ NOTICE When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely...your organization no longer employs the addressee, please nofify HSD/XART, Brooks AFB TX 78235-5000 to help us maintain a current mailing list. Copies...of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document
Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Nemec, Marian
2017-01-01
A summary is provided for the Second AIAA Sonic Boom Workshop held 8-9 January 2017 in conjunction with AIAA SciTech 2017. The workshop used three required models of increasing complexity: an axisymmetric body, a wing body, and a complete configuration with flow-through nacelle. An optional complete configuration with propulsion boundary conditions is also provided. These models are designed with similar nearfield signatures to isolate geometry and shock/expansion interaction effects. Eleven international participant groups submitted nearfield signatures with forces, pitching moment, and iterative convergence norms. Statistics and grid convergence of these nearfield signatures are presented. These submissions are propagated to the ground, and noise levels are computed. This allows the grid convergence and the statistical distribution of a noise level to be computed. While progress is documented since the first workshop, improvement to the analysis methods for a possible subsequent workshop are provided. The complete configuration with flow-through nacelle showed the most dramatic improvement between the two workshops. The current workshop cases are more relevant to vehicles with lower loudness and have the potential for lower annoyance than the first workshop cases. The models for this workshop with quieter ground noise levels than the first workshop exposed weaknesses in analysis, particularly in convective discretization.
NASA Technical Reports Server (NTRS)
1994-01-01
This photo shows a head-on shot of NASA's SR-71A aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California. NASA operated two SR-71s, an SR-71A and an SR- 71B pilot trainer aircraft, both based at Dryden, at that particular point in time. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and 'moveable spike' system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-7967.
A Performance Assessment of Eight Low-Boom High-Speed Civil Transport Concepts
NASA Technical Reports Server (NTRS)
Baize, Daniel G.; McElroy, Marcus O.; Fenbert, James A.; Coen, Peter G.; Ozoroski, Lori P.; Domack, Chris S.; Needleman, Kathy E.; Geiselhart, Karl A.
1999-01-01
A performance assessment of eight low-boom high speed civil transport (HSCT) configurations and a reference HSCT configuration has been performed. Although each of the configurations was designed with different engine concepts, for consistency, a year 2005 technology, 0.4 bypass ratio mixed-flow turbofan (MFTF) engine was used for all of the performance assessments. Therefore, all original configuration nacelles were replaced by a year 2005 MFRF nacelle design which corresponds to the engine deck utilized. The engine thrust level was optimized to minimize vehicle takeoff gross weight. To preserve the configuration's sonic-boom shaping, wing area was not optimized or altered from its original design value. Performance sizings were completed when possible for takeoff balanced field lengths of 11,000 ft and 12,000 ft, not considering FAR Part 36 Stage III noise compliance. Additionally, an arbitrary sizing with thrust-to-weight ratio equal to 0.25 was performed, enabling performance levels to be compared independent of takeoff characteristics. The low-boom configurations analyzed included designs from the Boeing Commercial Airplane Group, Douglas Aircraft Company, Ames Research Center, and Langley Research Center. This paper discusses the technology level assumptions, mission profile, analysis methodologies, and the results of the assessment. The results include maximum lift-to-drag ratios, total fuel consumption, number of passengers, optimum engine sizing plots, takeoff performance, mission block time, and takeoff gross weight for all configurations. Results from the low-boom configurations are also compared with a non-low-boom reference configuration. Configuration dependent advantages or deficiencies are discussed as warranted.
The Atmospheric Effects of Stratospheric Aircraft: a First Program Report
NASA Technical Reports Server (NTRS)
Prather, Michael J.; Wesoky, Howard L.; Miake-Lye, Richard C.; Douglass, Anne R.; Turco, Richard P.; Wuebbles, Donald J.; Ko, Malcolm K. W.; Schmeltekopf, Arthur L.
1992-01-01
Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models.
Historical development of worldwide supersonic aircraft
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1979-01-01
Aerodynamic problems in the development of supersonic aircraft, their solutions, and innovative design features are presented. Studies of compressibility, introduction of jets, supersonic phenomena, transonic drag and lift, longitudinal and directional stability, dynamic pressure fields, and advent of the supersonic fighter are discussed. The flight research aircraft such as the Bell X-1 and the Douglas-558, the century series models, reconnaissance aircraft, the multimission tactical fighter, and the current generation fighters such as F-16 and F-18 are described. The SCAT program is considered, along with supersonic developments in Great Britain, France, and USSR. It is concluded that the sonic boom still appears to be an inherent problem of supersonic flight that particularly affects overland commercial flight, and efforts continue for increased efficiency for economic and performance gains and increased safety for military and civilian aircraft.
2006-08-10
Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed near the Dryden Flight Research Center. The Quiet Spike was developed by Gulfstream Aerospace as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.
Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: A Literature Synthesis
1988-06-01
the digestive response of yearling wethers to the same sound types and intensities used in the two studies above: white noise and music presen’ed...metabolizable energy of the ration and improved the apparent nutrient digestibilities . Sound intensity did not affect apparent digest - ibility coefficients. The...high digestibility coefficients for lambs exposed to intermittent sounds suggests that those types of auditory stimuli influenced the digestive system
Supplemental Environmental Impact Statement for F-35 Beddown at Eglin Air Force Base, Florida
2014-06-26
warming, slowing the rise in global temperature , but these effects would only last a few years. Reducing emissions of carbon dioxide (CO2) would...and others migrate to areas with more favorable conditions. For example, along the coast, fish that need colder temperatures to survive could...and R. Villella, 1988. Effects of Aircraft Noise and Sonic Booms on Domestic Animals and Wildlife: Bibliographic Abstracts. U.S. Fish and Wildlife
Publications in acoustics and noise control from the NASA Langley Research Center during 1940-1976
NASA Technical Reports Server (NTRS)
Fryer, B. A. (Compiler)
1977-01-01
Reference lists are presented of published research papers in various areas of acoustics and noise control for the period 1940-1976. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics; (2) propagation and operations; (3) rotating blade noise; (4) jet noise; (5) sonic boom; (6) flow-surface interaction noise; (7) human response; (8) structural response; (9) prediction; and (10) miscellaneous.
Potential of hydrogen fuel for future air transportation systems.
NASA Technical Reports Server (NTRS)
Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.
1973-01-01
Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.
Ellis, D.H.
1981-01-01
Summary: For this study, we gathered several kinds of data to determine the likely effects of low level jets and sonic booms on nesting Peregrine Falcons and other raptors. We directly observed responses to worst case stimulus loads: responses to extremely frequent and extremely nearby jet aircraft were often minimal, seldom significant and never associated with reproductive failure. Likewise, responses to real and simulated sonic booms were often minimal and never productivity limiting. In addition to directly observing behavioral responses, in 1981 we invited jet passes at four Prairie Falcon eyries during courtship and incubation when the adults were most likely to abandon, on an ad libitum basis. All four eyries fledged young. Nesting success and site reoccupancy rates were high for all eyries. In tests of two relatively naive captive Peregrine Falcons, we failed to detect significantly negative responses. Typically the birds either quickly resumed feeding or other activities within a few seconds following a pass or boom. The female falcon repeatedly made hunting forays as jets swept overhead. From heart rate (HR) data taken via a telemetering egg during incubation at a wild Prairie Falcon eyrie, we determined that stimulus induced HR alterations were comparable to rate changes of the birds settling to incubate following flight. No significant long term responses were identified. The falcons successfully fledged two young even with the more disruptive activities associated with entering the eyrie three times to position and recover the telemetering eggs. Significantly, birds ofprey of several genera commonly nest in the supersonic military operations areas in southern Arizona. In addition, raptor eyries are frequently found at locations where low level jet traffic naturally concentrates. For example, Prairie Falcon Site 11 is directly on the approach path to strafing and bombing targets. Prairie Falcon Site 1 is in a narrow canyon through which A-10 aircraft naturally funnel while flying low altitude tactical navigation (LATN) missions. Both sites successfully fledged young both years of the study. In summary, while the birds observed for this study were often noticeably alarmed by the subject stimuli, the negative responses were brief and never productivity limiting. In general, the birds were incredibly tolerant of stimulus loads which would likely be unacceptable to humans. It is significant that the endangered species recovery plan for the Peregrine Falcon in the southwest (USFWS 1977) fails to mention military jet operations as a likely factor in the falcon's decrease or that military jet operations should be taken into account in the species recovery.
Sonic Booms Produced by United States Air Force and United States Navy Aircraft: Measured Data
1991-01-01
29791 . 0.1 -. 0097 259. 12:03:41 1.268 68028. 37. 29793. 0.1 -. 0276 259. 12:03:42 1.268 66713. 85 29794. 0.1 -. 0129 259. 12:03:43 1.268 65400. 134...3811. 29793. -0.1 0.1585 253. 10:49:25 1.270 62762. -3896. 29791 , -0.1 0.1404 253. 10:49:26 1.273 61452. -3981. 29788. -0.1 0.0582 253. 10:49:27
Effects of aircraft noise on human sleep.
NASA Technical Reports Server (NTRS)
Lukas, J. S.
1972-01-01
Under controlled conditions in two test rooms, studies were made of the response of sleeping subjects to the stimuli of simulated sonic booms and subsonic jet aircraft noise. Children were relatively nonresponsive to the stimuli. In general, the older the subject, the more likely is behavioral awakening. The response rates to the two types of stimuli were essentially the same. The stimulus intensity had little, if any, effect on frequency of arousal, although other degrees of response did increase.
Multi-fidelity and multi-disciplinary design optimization of supersonic business jets
NASA Astrophysics Data System (ADS)
Choi, Seongim
Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.
1989-01-01
The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.
1989-01-01
The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.
High Speed Research Program Sonic Fatigue
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul
2005-01-01
The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.
Sound Science: Taking Action with Acoustics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Dipen
2014-07-16
From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.
Fan Noise for a Concept Commercial Supersonic Transport
NASA Technical Reports Server (NTRS)
Stephens, David B.
2017-01-01
NASA is currently studying a commercial supersonic transport (CST) aircraft that could carry 35+ passengers at Mach 1.6+ with a 4000+nm range. The aircraft should also meet environmental goals for sonic boom, airport noise and emissions at cruise. With respect to airport noise, considerable effort has been put into predicting the noise due to the jet exhaust. This report describes an internal NASA effort to consider the contribution of fan noise to the overall engine noise of this class of aircraft.
Sound Science: Taking Action with Acoustics
Sinha, Dipen
2018-01-16
From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.
2013-06-01
Appendix B: Noise B-29 Final, June 2013 aircraft noise and sonic booms on the milk production of dairy cows . Through the compilation and...Hluku Na Mliekovรบ รzitkovost Krรกv [The Effect of Noise on the Milk Efficiency of Cows ]. Zivocisnรก Vyroba, Vol. 16, Nos. 10-11, pp. 795-804. Kryter...have reported primary and secondary effects including reduced milk production and rate of milk release, increased glucose concentrations, decreased
NASA Technical Reports Server (NTRS)
Verma, S. B.; Arkebauer, T. J.; Ullman, F. G.; Valentine, D. W.; Parton, W. J.; Schimel, D. S.
1998-01-01
The main instrumentation platform consisted of eddy correlation sensors mounted on a scaffold tower at a height of 4.2 m above the peat surface. The sensors were attached to a boom assembly which could be rotated into the prevailing winds. The boom assembly was mounted on a movable sled which, when extended, allowed sensors to be up to 2 m away from the scaffolding structure to minimize flow distortion. When retracted, the sensors could easily be installed, serviced or rotated. An electronic level with linear actuators allowed the sensors to be remotely levelled once the sled was extended. Two instrument arrays were installed. A primary (fast-response) array consisted of a three-dimensional sonic anemometer, a methane sensor (tunable diode laser spectrometer), a carbon dioxide/water vapor sensor, a fine wire thermocouple and a backup one-dimensional sonic anemometer. The secondary array consisted of a one-dimensional sonic anemometer, a fine wire thermocouple and a Krypton hygrometer. Descriptions of these sensors may be found in other reports (e.g., Verma; Suyker and Verma). Slow-response sensors provided supporting measurements including mean air temperature and humidity, mean horizontal windspeed and direction, incoming and reflected solar radiation, net radiation, incoming and reflected photosynthetically active radiation (PAR), soil heat flux, peat temperature, water-table elevation and precipitation. A data acquisition system (consisting of an IBM compatible microcomputer, amplifiers and a 16 bit analog-to-digital converter), housed in a small trailer, was used to record the fast response signals. These signals were low-pass filtered (using 8-pole Butterworth active filters with a 12.5 Hz cutoff frequency) and sampled at 25 Hz. Slow-response signals were sampled every 5 s using a network of CR21X (Campbell Scientific, Inc., Logan Utah) data loggers installed in the fen. All signals were averaged over 30-minute periods (runs).
NASA Astrophysics Data System (ADS)
Nippress, Alexandra; Green, David N.
2017-11-01
For the past 5 years (2010-2015) infrasound arrivals have been included in International Data Centre analyst-reviewed bulletins of events detected across the International Monitoring System (IMS). In western Eurasia, there are clusters of up to 268 events that consist of only infrasound arrivals (no associated seismic phases). These clusters are of unknown origin, although one in the North Sea region is associated with sonic booms from supersonic aircraft activity. IMS data for 17 North Sea events are analysed and compared with data from the Large Aperture Infrasound Array in the Netherlands to support the existence of these events and to determine common characteristics. Three other large clusters in western Eurasia are also identified and studied and show similar characteristics to the North Sea events, indicative of supersonic aircraft activity. The IMS infrasound network is shown to be particularly sensitive to sonic booms because the elevated source height reduces the anisotropy of infrasonic propagation within a stratospheric duct and allows for episodic upwind propagation. This episodic upwind propagation in addition to the prevailing downwind propagation, leads to clusters of Reviewed Event Bulletin events with constrained locations in western Eurasia region during the summer months. In the winter months, the recorded arrivals suggest that episodic upwind propagation is not as prevalent. Propagation modelling indicates that the subsequent unidirectional propagation, combined with the sparseness of the IMS network, leads to elongated lines of estimated event locations.
Study of high-speed civil transports
NASA Technical Reports Server (NTRS)
1989-01-01
A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.
Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram; Loubeau, Alexandra
2017-01-01
A summary is provided for the propagation portion of the second AIAA Sonic Boom Workshop held January 8, 2017 in conjunction with the AIAA SciTech 2017 conference. Near-field pressure waveforms for two cases were supplied and ground signatures at multiple azimuthal angles as well as their corresponding loudness metrics were requested from 10 participants, representing 3 countries. Each case had some required runs, as well as some optional runs. The required cases included atmospheric profiles with measured data including winds, using Radiosonde balloon data at multiple geographically spread locations, while the optional cases included temperature and pressure profiles from the US Standard atmosphere. The humidity profiles provided for the optional cases were taken from ANSI guidance, as the authors were unaware of an accepted standard at the time the cases were released to the participants. Participants provided ground signatures along with the requested data, including some loudness metrics using their best practices, which included lossy as well as lossless schemes. All the participants' submissions, for each case, are compared and discussed. Noise or loudness measures are calculated and detailed comparisons and statistical analyses are performed and presented. It has been observed that the variation in the loudness measures and spread between participants' submissions increased as the computation proceeded from under-track locations towards the lateral cut-off. Lessons learned during this workshop are discussed and recommendations are made for potential improvements and possible subsequent workshops as we collectively attempt to refine our analysis methods.
Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)
NASA Technical Reports Server (NTRS)
Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert
2016-01-01
To date, over twenty meteorite falls have been located in the weather radar imagery of the National Oceanic and Atmospheric Administration (NOAA)'s NEXRAD radar network. We present here the most prominent events recorded since the last Meteoritical Society meeting, covering most of 2015 and early 2016. Meteorite Falls: The following events produced evidence of falling meteorites in radar imagery and resulted in meteorites recovered at the fall site. Creston, CA (24 Oct 2015 0531 UTC): This event generated 218 eyewitness reports submitted to the American Meteor Society (AMS) and is recorded as event #2635 for 2015 on the AMS website. Witnesses reported a bright fireball with fragmentation terminating near the city of Creston, CA, north of Los Angeles. Sonic booms and electrophonic noise were reported in the vicinity of the event. Weather radar imagery records signatures consistent with falling meteorites in data from the KMUX, KVTX, KHNX and KVBX. The Meteoritical Society records the Creston fall as an L6 meteorite with a total recovered mass of 688g. Osceola, FL (24 Jan 2016 1527 UTC): This daytime fireball generated 134 eyewitness reports on AMS report number 266 for 2016, with one credible sonic boom report. The fireball traveled roughly NE to SW with a terminus location north of Lake City, FL in sparsely populated, forested countryside. Radar imagery shows distinct and prominent evidence of a significant meteorite fall with radar signatures seen in data from the KJAX and KVAX radars. Searchers at the fall site found that recoveries were restricted to road sites by the difficult terrain, and yet several meteorites were recovered. Evidence indicates that this was a relatively large meteorite fall where most of the meteorites are unrecoverable due to terrain. Osceola is an L6 meteorite with 991 g total mass recovered to date. Mount Blanco, TX (18 Feb 2016 0343 UTC): This event produced only 39 eyewitness reports and is recorded as AMS event #635 for 2016. No reports of sonic booms or electrophonic noise are recorded in the AMS eyewitness reports, but videos of the event show a relatively long-lasting fireball with fragmentation. Evidence of falling meteorites is seen in radar imagery from the KAMA and KLBB radars defining a roughly WNW to ESE trend with the dominant wind direction. This event featured favorable search ground composed mostly of farmland and ranchland and was extensively searched. Rather surprisingly, only a single L5 chondrite of 36.2g has been recovered to date.
Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2012-01-01
The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.
1989-06-01
field width, it will be padded on the left (or right, if the left adjustment indicator has been given) to make up the field width. The padding character...is blank (space) normally, and zero if the field width was specified with a leading zero (this zero does not imply an octal field width). 25 " a...unsigned octal notation (without a leading zero ). ’x The argument is coverted to unsigned hexadecimal notation (without a leading Ox). * u The argument is
1988-08-01
altitude flights ( ft agl), and (2) the distribution of colonies in and out of flight corridors . 10. Additional comments (e.g., application of study...flight corridors are planned in the region. A large amount of background data on waterfowl production in the Prairie Potholes is available at the USFWS...affect breeding waterfowl and should indicate the degree of impacts. This should facilitate the design of flight corridors that best serve training
1983-01-01
to determine the potential hazards of noise exposure to embryos or fetuses of pregnant women; (2) on the basis of then current knowledge, to determine...discounted. Three very intense sonic booms between May 4 and and May 11 may have caused embryo damage due to egg abandonment or physical damages to uncovered...rights as citizens of the United States to I determine our own destinies , that doesn’t mean that we should--if we’re opposed to people coming and
Space Shuttle Environmental Effects: The First 5 Flights
NASA Technical Reports Server (NTRS)
Potter, A. (Editor)
1983-01-01
Environmental effects associated with the first five Space Shuttle flights were monitored by the National Aeronautics and Space Administration (NASA) and the U.S. Air Force (USAF). Results and interpretations from this effort were reported at the December 1982 joint NASA-USAF conference. The conference proceedings are presented in this document. Most of the monitoring activity was focused on the launch cloud, emphasizing surface effects on the biota and air quality, model prediction of surface concentrations of HCl gas and Al2O3 dust, and airborne measurements of cloud composition. In general, assessments and predictions made in the April 1978 Final Environmental Impact Statement for the Space Shuttle Program were verified. Fallout of acidic mist and dust within 3 mi to 5 mi of the launch pad was the only unexpected effect of the launch. Atomization of deluge water in the Shuttle exhaust is considered to be the most probable cause of this effect. Sonic booms were monitored for several landings at Edwards Air Force Base, California; results agreed well with model predictions.
Special features of the CLUSTER antenna and radial booms design, development and verification
NASA Technical Reports Server (NTRS)
Gianfiglio, G.; Yorck, M.; Luhmann, H. J.
1995-01-01
CLUSTER is a scientific space mission to in-situ investigate the Earth's plasma environment by means of four identical spin-stabilized spacecraft. Each spacecraft is provided with a set of four rigid booms: two Antenna Booms and two Radial Booms. This paper presents a summary of the boom development and verification phases addressing the key aspects of the Radial Boom design. In particular, it concentrates on the difficulties encountered in fulfilling simultaneously the requirements of minimum torque ratio and maximum allowed shock loads at boom latching for this two degree of freedom boom. The paper also provides an overview of the analysis campaign and testing program performed to achieve sufficient confidence in the boom performance and operation.
A technique for integrating engine cycle and aircraft configuration optimization
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.
1994-01-01
A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission, the low boom concept has a 5 percent total range penalty relative to the baseline. Additional cycles were optimized for various design overland distances and the effect of flying off-design overland distances is illustrated.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Pryor, Mark; Holmes, Buck; Schaechter, David; Pedreiro, Nelson; Carrington, Connie
2007-01-01
In 2005, NASA commenced Phase 1 of the Modular Reconfigurable High Energy Technology Demonstrator (MRHE) program to investigate reconfigurable systems of small spacecraft. During that year, Lockheed Martin's Advanced Technology Center (ATC) led an accelerated effort to develop a 1-g MRHE concept demonstration featuring robotic spacecraft simulators equipped with docking mechanisms and deployable booms. The deployable boom built for MRHE was the result of a joint effort in which ATK was primarily responsible for developing and fabricating the Collapsible Rollable Tube (CRT patent pending) boom while Lockheed Martin designed and built the motorized Boom Deployment Mechanism (BDM) under a concurrent but separate IR&D program. Tight coordination was necessary to meet testbed integration and functionality requirements. This paper provides an overview of the CRT boom and BDM designs and presents preliminary results of integration and testing to support the MRHE demonstration.
NASA Technical Reports Server (NTRS)
Wesoky, Howard L.; Prather, Michael J.
1991-01-01
Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.
Weak shock propagation through a turbulent atmosphere
NASA Technical Reports Server (NTRS)
Pierce, Allan D.; Sparrow, Victor W.
1990-01-01
Consideration is given to the propagation through turbulence of transient pressure waveforms whose initial onset at any given point is an abrupt shock. The work is motivated by the desire to eventually develop a mathematical model for predicting statistical features, such as peak overpressures and spike widths, of sonic booms generated by supersonic aircraft. It is argued that the transient waveform received at points where x greater than 0 will begin with a pressure jump and a formulation is developed for predicting the amount of this jump and the time derivatives of the pressure waveform immediately following the jump.
Hypersonic transports - Economics and environmental effects.
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Waters, M. H.
1973-01-01
An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and flyover noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.
Hypersonic transports - Economics and environmental effects.
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Waters, M. H.
1972-01-01
An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and flyover noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.
Hypersonic transports: Economics and environmental effects
NASA Technical Reports Server (NTRS)
Petersen, R. H.; Waters, M. H.
1972-01-01
An economic analysis of hypersonic transports is presented to show projected operating costs (direct and indirect) and return on investment. Important assumptions are varied to determine the probable range of values for operating costs and return on investment. The environmental effects of hypersonic transports are discussed and compared to current supersonic transports. Estimates of sideline and fly-over noise are made for a typical hypersonic transport, and the sonic boom problem is analyzed and discussed. Since the exhaust products from liquid hydrogen-fueled engines differ from those of kerosene-fueled aircraft, a qualitative assessment of air pollution effects is made.
Aeroacoustics of Flight Vehicles: Theory and Practice. Volume 1: Noise Sources
NASA Technical Reports Server (NTRS)
Hubbard, Harvey H. (Editor)
1991-01-01
Methodology recommended to evaluate aeroacoustic related problems is provided, and approaches to their solutions are suggested without extensive tables, nomographs, and derivations. Orientation is toward flight vehicles and emphasis is on underlying physical concepts. Theoretical, experimental, and applied aspects are covered, including the main formulations and comparisons of theory and experiment. The topics covered include: propeller and propfan noise, rotor noise, turbomachinery noise, jet noise classical theory and experiments, noise from turbulent shear flows, jet noise generated by large-scale coherent motion, airframe noise, propulsive lift noise, combustion and core noise, and sonic booms.
Publications in acoustics and noise control from the NASA Langley Research Center during 1940 - 1974
NASA Technical Reports Server (NTRS)
Smith, G. C. (Compiler); Laneave, J. N. (Compiler)
1975-01-01
This document contains reference lists of published Langley Research Center papers in various areas of acoustics and noise control for the period 1940-1974. The research work was performed either in-house by the center staff or by other personnel supported entirely or in part by grants or contracts. The references are listed chronologically and are grouped under the following general headings: (1) Duct acoustics, (2) Propagation and operations, (3) Rotating blade noise, (4) Jet noise, (5) Sonic boom, (6) Flow-surface interaction noise, (7) Human response, and (8) Structural response.
1989-01-27
Epidemiologic Study in 120 Oklahoma City 5.4 Chronic Exposure to Sonic Booms 122 5.4.1 White Sands Missile Range 122 5.4.2 Areas Overflown by SR-71 123...5.5 Chronic Exposure to Subsonic Civil Aircraft Noise 123 5.5.1 Design of an Ecologic Study in Airport Environs 124 Iv 5.5.2 Preliminary Evaluation of...dosage-effect relationships for different groups of individuals, one must be able to argue convincingly that a noise measure reflects some aspect of
Development in helicopter tail boom strake applications in the US
NASA Technical Reports Server (NTRS)
Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.
1988-01-01
The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.
Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Castner, Raynold S.
2010-01-01
A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nosecone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1 1 SWT for Schlieren photography and comparison to CFD analysis.
Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
2009-01-01
A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nose cone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1x1 SWT for Schlieren photography and comparison to CFD analysis.
NASA Technical Reports Server (NTRS)
Magee, Todd E.; Fugal, Spencer R.; Fink, Lawrence E.; Adamson, Eric E.; Shaw, Stephen G.
2015-01-01
This report describes the work conducted under NASA funding for the Boeing N+2 Supersonic Experimental Validation project to experimentally validate the conceptual design of a supersonic airliner feasible for entry into service in the 2018 -to 2020 timeframe (NASA N+2 generation). The primary goal of the project was to develop a low-boom configuration optimized for minimum sonic boom signature (65 to 70 PLdB). This was a very aggressive goal that could be achieved only through integrated multidisciplinary optimization tools validated in relevant ground and, later, flight environments. The project was split into two phases. Phase I of the project covered the detailed aerodynamic design of a low boom airliner as well as the wind tunnel tests to validate that design (ref. 1). This report covers Phase II of the project, which continued the design methodology development of Phase I with a focus on the propulsion integration aspects as well as the testing involved to validate those designs. One of the major airplane configuration features of the Boeing N+2 low boom design was the overwing nacelle. The location of the nacelle allowed for a minimal effect on the boom signature, however, it added a level of difficulty to designing an inlet with acceptable performance in the overwing flow field. Using the Phase I work as the starting point, the goals of the Phase 2 project were to design and verify inlet performance while maintaining a low-boom signature. The Phase II project was successful in meeting all contract objectives. New modular nacelles were built for the larger Performance Model along with a propulsion rig with an electrically-actuated mass flow plug. Two new mounting struts were built for the smaller Boom Model, along with new nacelles. Propulsion integration testing was performed using an instrumented fan face and a mass flow plug, while boom signatures were measured using a wall-mounted pressure rail. A side study of testing in different wind tunnels was completed as a precursor to the selection of the facilities used for validation testing. As facility schedules allowed, the propulsion testing was done at the NASA Glenn Research Center (GRC) 8 x 6-Foot wind tunnel, while boom and force testing was done at the NASA Ames Research Center (ARC) 9 x 7-Foot wind tunnel. During boom testing, a live balance was used for gathering force data. This report is broken down into nine sections. The first technical section (Section 2) covers the general scope of the Phase II activities, goals, a description of the design and testing efforts, and the project plan and schedule. Section 3 covers the details of the propulsion system concepts and design evolution. A series of short tests to evaluate the suitability of different wind tunnels for boom, propulsion, and force testing was also performed under the Phase 2 effort, with the results covered in Section 4. The propulsion integration testing is covered in Section 5 and the boom and force testing in Section 6. CFD comparisons and analyses are included in Section 7. Section 8 includes the conclusions and lessons learned.
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Meyers, James F.
2011-01-01
A nonintrusive technique Doppler global velocimetry (DGV) was used to determine conical shock strengths on a supersonic-cruise low-boom aircraft model. The work was performed at approximately Mach 2 in the Unitary Plan Wind Tunnel. Water is added to the wind tunnel flow circuit, generating small ice particles used as seed particles for the laser-based velocimetry. DGV generates two-dimensional (2-D) maps of three components of velocity that span the oblique shock. Shock strength (i.e. fractional pressure increase) is determined from observation of the flow deflection angle across the shock in combination with the standard shock relations. Although DGV had conveniently and accurately determined shock strengths from the homogenous velocity fields behind 2-D planar shocks, the inhomogeneous 3-D velocity fields behind the conical shocks presented additional challenges. Shock strength measurements for the near-field conical nose shock were demonstrated and compared with previously-published static pressure probe data for the same model in the same wind tunnel. Fair agreement was found between the two sets of results.
Review and prospect of supersonic business jet design
NASA Astrophysics Data System (ADS)
Sun, Yicheng; Smith, Howard
2017-04-01
This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
Technology issues for high-speed civil transports
NASA Technical Reports Server (NTRS)
Dollyhigh, Samuel M.
1989-01-01
Current efforts to prepare the technology for a new generation of high-speed civil transports are focused primarily on environmental issues. This paper reports on studies to provide: (1) acceptable engine emissions; (2) reduced airport/community noise; and (3) sonic-boom minimization. Attention is also given to technologies that allow a lighter, more efficient vehicle and to other high-payoff technologies, such as supersonic laminar flow; these have the potential for yielding not only better mission performance but also enhanced environmental compatibility for these new vehicles. The technology issues are reviewed in terms of the technologies themselves and their impact on the equally crucial need for economic success.
Advanced supersonic technology concept study: Hydrogen fueled configuration
NASA Technical Reports Server (NTRS)
Brewer, G. D.
1974-01-01
Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.
Supersonic laminar-flow control
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.; Malik, Mujeeb R.
1987-01-01
Detailed, up to date systems studies of the application of laminar flow control (LFC) to various supersonic missions and/or vehicles, both civilian and military, are not yet available. However, various first order looks at the benefits are summarized. The bottom line is that laminar flow control may allow development of a viable second generation SST. This follows from a combination of reduced fuel, structure, and insulation weight permitting operation at higher altitudes, thereby lowering sonic boom along with improving performance. The long stage lengths associated with the emerging economic importance of the Pacific Basin are creating a serious and renewed requirement for such a vehicle. Supersonic LFC techniques are discussed.
An edge-based solution-adaptive method applied to the AIRPLANE code
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.
1995-01-01
Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
NASA Technical Reports Server (NTRS)
Bershader, D. (Editor); Griffith, W.
1973-01-01
Recent advances in shock tube research are described in papers dealing with the design and performance features of new devices as well as applications in aerodynamic, chemical, and physics experiments. Topics considered include a cryogenic shock tube for studying liquid helium fluid mechanics, studies of shock focusing and nonlinear resonance in shock tubes, applications in gas laser studies, very-low and very-high temperature chemical kinetic measurements, shock tube studies of ionization and recombination phenomena, applications in bioacoustic research, shock-tube simulation studies of sonic booms, and plasma research. Individual items are announced in this issue.
The impact of emerging technologies on an advanced supersonic transport
NASA Technical Reports Server (NTRS)
Driver, C.; Maglieri, D. J.
1986-01-01
The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.
1988-08-01
by crash- associated fires. I -2 An Epual Opportunity Agency b. all off-road tracks created by vehicles driven to the site to retrieve the wreakage...require responses: 1. The DEIS established that in 1977, 10,394 supersonic sorties capable of creating sonic booms were flown in the Sells Airspace, DEIS...report discuss the effect of a typical case of a F-16 aircraft flying at interme- diate power and z00 feet AGL creating a noise of 103dB. RDEI3 ยง4.3.2.1
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The media swarm around Pilot Rick Svetkoff after his test flight of the Starfighter F-104, in the background. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-16
KENNEDY SPACE CENTER, FLA. -- Pilot Rick Svetkoff taxis a Starfighter F-104 down the runway on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- After returning from a test flight, pilot Rick Svetkoff climbs out of the cockpit of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 approaches the runway at the KSC Shuttle Landing Facility for a landing after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- Bill Parsons (left), director of Kennedy Space Center, greets pilot Rick Svetkoff after a test flight of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-17
KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 lands on the runway at the KSC Shuttle Landing Facility after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-16
KENNEDY SPACE CENTER, FLA. -- A Starfighter F-104 piloted by Rick Svetkoff lands on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett
2007-04-16
KENNEDY SPACE CENTER, FLA. -- A Starfighter F-104 piloted by Rick Svetkoff approaches the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett