2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Deputy Space Shuttle Program Manager of Operations Loren Shriver, USA Associate Program Manager of Ground Operations Andy Allen, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and USA Vice President and Space Shuttle Program Manager Howard DeCastro examine a tile used in the Shuttle's Thermal Protection System (TPS) in KSC's TPS Facility. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Space shuttle requirements/configuration evolution
NASA Technical Reports Server (NTRS)
Andrews, E. P.
1991-01-01
Space Shuttle chronology; Space Shuttle comparison; Cost comparison; Performance; Program ground rules; Sizing criteria; Crew/passenger provisions; Space Shuttle Main Engine (SSME) characteristics; Space Shuttle program milestones; and Space Shuttle requirements are outlined. This presentation is represented by viewgraphs.
Space Shuttle Projects Overview to Columbia Air Forces War College
NASA Technical Reports Server (NTRS)
Singer, Jody; McCool, Alex (Technical Monitor)
2000-01-01
This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with USA Vice President and Space Shuttle Program Manager Howard DeCastro and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility Bay 1, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (right) are briefed by a USA technician (center) on Shuttle processing in the payload bay of orbiter Atlantis. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (third from left) watch as a USA technician (right) creates a tile for use in the Shuttle's Thermal Protection System (TPS). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro are briefed on the properties of the tile used in the Shuttle's Thermal Protection System (TPS) by USA Manager of the TPS Facility Martin Wilson (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) are briefed on the use of a cold plate in Orbiter Processing Facility Bay 2 by a USA technician (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (top) discusses the inner workings of Shuttle Atlantis in Orbiter Processing Facility Bay 1 with a United Space Alliance (USA) technician (bottom). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right) discusses a speed brake on Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (left). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Space Shuttle Strategic Planning Status
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Norbraten, Gordon L.
2006-01-01
The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.
Space Shuttle Strategic Planning Status
NASA Technical Reports Server (NTRS)
Norbraten, Gordon L.; Henderson, Edward M.
2007-01-01
The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (center) discusses aspects of Shuttle processing performed in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility (ARF) with NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
NASA Technical Reports Server (NTRS)
Turner, D. N.
1981-01-01
The reusable manned Space Shuttle has made new and innovative payload planning a reality and opened the door to a variety of payload concepts formerly unavailable in routine space operations. In order to define the payload characteristics and program strategies, current Shuttle-oriented programs are presented: NASA's Space Telescope, the Long Duration Exposure Facility, the West German Shuttle Pallet Satellite, and the Goddard Space Flight Center's Multimission Modular Spacecraft. Commonality of spacecraft design and adaptation for specific mission roles minimizes payload program development and STS integration costs. Commonality of airborne support equipment assures the possibility of multiple program space operations with the Shuttle. On-orbit maintenance and repair was suggested for the module and system levels. Program savings from 13 to over 50% were found obtainable by the Shuttle over expendable launch systems, and savings from 17 to 45% were achievable by introducing reuse into the Shuttle-oriented programs.
2011-08-13
CAPE CANAVERAL, Fla. -- NASA’s Space Shuttle Program Launch Integration Manager Mike Moses speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to the agency’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
2013-09-09
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) discusses some of the working parts inside the nose of Shuttle Discovery in Orbiter Processing Facility Bay 3 with a United Space Alliance (USA) technician (back to camera). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) tours a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Vice President and Associate Program Manager of Florida Operations Bill Pickavance (left front) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right front) tour a solid rocket booster (SRB) retrieval ship at Cape Canaveral. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, United Space Alliance (USA) Director of Orbiter Operations Patty Stratton, and NASA Space Shuttle Program Manager William Parsons view the underside of Shuttle Discovery in Orbiter Processing Facility Bay 3. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill McArthur, (left) Space Shuttle Program Orbiter Projects manager; John Casper, Assistant Space Shuttle Program manager; John Shannon, Space Shuttle Program manager and Canadian Space Agency astronaut Chris Hadfield attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) is given a tour of a solid rocket booster (SRB) retrieval ship by United Space Alliance (USA) employee Joe Chaput (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and USA Vice President and Space Shuttle Program Manager Howard DeCastro on aspects of creating the tile used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2015-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
2014-01-01
A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- From front row left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons are trained on the proper use of the Emergency Life Support Apparatus (ELSA). NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
Space Shuttle wind tunnel testing program
NASA Technical Reports Server (NTRS)
Whitnah, A. M.; Hillje, E. R.
1984-01-01
A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.
2011-08-13
CAPE CANAVERAL, Fla. -- Three-time space shuttle astronaut Charles D. "Sam" Gemar signs autographs and takes photos with space shuttle workers and their families at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
Use of the space shuttle to avoid spacecraft anomalies
NASA Technical Reports Server (NTRS)
1972-01-01
An existing data base covering 304 spacecraft of the U.S. space program was analyzed to determine the effect on individual spacecraft failures and other anomalies that the space shuttle might have had if it had been operational throughout the period covered by the data. By combining the results of this analysis, information on the prelaunch activities of selected spacecraft programs, and shuttle capabilities data, the potential impact of the space shuttle on future space programs was derived. The shuttle was found to be highly effective in the prevention or correction of spacecraft anomalies, with 887 of 1,230 anomalies analyzed being favorably impacted by full utilization of shuttle capabilities. The shuttle was also determined to have a far-reaching and favorable influence on the design, development, and test phases of future space programs. This is documented in 37 individual statements of impact.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik and NASA Space Shuttle Program Manager William Parsons each don an Emergency Life Support Apparatus (ELSA) during training on the proper use of the escape devices. NASA and United Space Alliance (USA) Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
STS-121 Space Shuttle Processing Update
2006-04-27
NASA Administrator Michael Griffin, left, and Associate Administrator for Space Operations William Gerstenmaier, right, look on as Space Shuttle Program Manager Wayne Hale talks from NASA's Marshall Space Flight Center about the space shuttle's ice frost ramps during a media briefing about the space shuttle program and processing for the STS-121 mission, Friday, April 28, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Space Shuttle orbiter modifications to support Space Station Freedom
NASA Technical Reports Server (NTRS)
Segert, Randall; Lichtenfels, Allyson
1992-01-01
The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.
2011-08-13
CAPE CANAVERAL, Fla. -- Some veteran space shuttle fliers sign autographs and talk with shuttle workers and their families at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana welcomes current and former space shuttle workers and their families to the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
Shuttle - Mir Program Insignia
1994-09-20
The rising sun signifies the dawn of a new era of human Spaceflight, the first phase of the United States/Russian space partnership, Shuttle-Mir. Mir is shown in its proposed final on orbit configuration. The Shuttle is shown in a generic tunnel/Spacehab configuration. The Shuttle/Mir combination, docked to acknowledge the union of the two space programs, orbits over an Earth devoid of any definable features or political borders to emphasize Earth as the home planet for all humanity. The individual stars near the Space Shuttle and the Russian Mir Space Station represent the previous individual accomplishments of Russia's space program and that of the United States. The binary star is a tribute to the previous United States-Russian joint human Spaceflight program, the Apollo-Soyuz Test Project (ASTP). The flags of the two nations are symbolized by flowing ribbons of the national colors interwoven in space to represent the two nations joint exploration of space. NASA SHUTTLE and PKA MNP are shown in the stylized logo fonts of the two agencies that are conducting this program.
2011-08-13
CAPE CANAVERAL, Fla. -- Kennedy Space Center’s Launch Vehicle Processing Director Rita Willcoxon speaks to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
2011-08-13
CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden welcomes current and former space shuttle workers and their families to the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
NASA Technical Reports Server (NTRS)
1971-01-01
The results are reported of a study to explore the potential cost reductions in the operational ITOS weather satellite program as a consequence of shuttle/bug availability for satellite placement and retrieval, and satellite servicing and maintenance. The study program was divided into shuttle impact on equipment and testing costs, and shuttle impact on overall future ITOS operational program costs, and shuttle impact on configuration. It is concluded that savings in recurring spacecraft costs can be realized in the 1978 ITOS program, if a space shuttle is utilized.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs USA Associate Program Manager of Ground Operations Andy Allen (left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (center) on the properties of the components used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (left) discusses the construction of a thermal blanket used in the Shuttle's thermal protection system with USA Vice President and Space Shuttle Program Manager Howard DeCastro (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
STS-80 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1997-01-01
The STS-80 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the eightieth flight of the Space Shuttle Program, the fifty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Columbia (OV-102).
National Space Transportation System Reference. Volume 2: Operations
NASA Technical Reports Server (NTRS)
1988-01-01
An overview of the Space Transportation System is presented in which aspects of the program operations are discussed. The various mission preparation and prelaunch operations are described including astronaut selection and training, Space Shuttle processing, Space Shuttle integration and rollout, Complex 39 launch pad facilities, and Space Shuttle cargo processing. Also, launch and flight operations and space tracking and data acquisition are described along with the mission control and payload operations control center. In addition, landing, postlanding, and solid rocket booster retrieval operations are summarized. Space Shuttle program management is described and Space Shuttle mission summaries and chronologies are presented. A glossary of acronyms and abbreviations are provided.
2011-08-13
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana (at left) and NASA astronauts Rex Walheim, Sandra Magnus and Chris Ferguson talk to current and former space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
2011-08-13
CAPE CANAVERAL, Fla. -- With the Rocket Garden for a backdrop, five shuttle flags hang above the main stage at NASA Kennedy Space Center’s “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
The first Chinese student space shuttle getaway special program
NASA Technical Reports Server (NTRS)
Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen
1988-01-01
The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.
The Chinese student space shuttle get-way-special program
NASA Technical Reports Server (NTRS)
Lee, Mark C.; Jin, Xun-Shu; Ke, Shou-Quan; Fu, Bing-Chen
1989-01-01
The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space.
NASA Technical Reports Server (NTRS)
Whalen, Jessie E. (Compiler); Mckinley, Sarah L. (Compiler); Gates, Thomas G. (Compiler)
1988-01-01
Listings of major events directly related to the Space Shuttle Program at Marshall Space Flight Center (MSFC) are presented. This information will provide the researcher with a means of following the chronological progression of the program. The products that the historians have prepared are intended to provide supportive research essential to the writing of formal narrative histories of Marshall's contributions to the Space Shuttle and Space Station.
2011-08-13
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana visits with space shuttle workers and their families during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
STS-57 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
The STS-57 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-sixth flight of the Space Shuttle Program and fourth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-58); three SSME's which were designated as serial numbers 2019, 2034, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-059. The lightweight RSRM's that were installed in each SRB were designated as 360L032A for the left SRB and 360W032B for the right SRB. The STS-57 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement, as documented in NSTS 07700, Volume 8, Appendix E. That document states that each major organizational element supporting the Program will report the results of their hardware evaluation and mission performance plus identify all related in-flight anomalies.
1970-01-01
This 1970 artist's concept illustrates the use of the Space Shuttle, Nuclear Shuttle, and Space Tug in NASA's Integrated Program. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.
2011-08-13
CAPE CANAVERAL, Fla. -- NASA astronauts Michael Fincke and Greg H. Johnson create some excitement by helping to draw names for space-themed giveaways during Kennedy Space Center’s “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Partridge, Jonathan K.
2011-01-01
The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families watch a Starfire Night Skyshow at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The show featured spectacular night aerobatics with special computer-controlled lighting and firework effects on a plane flown by experienced pilot Bill Leff. The event also featured food, music, entertainment, astronaut appearances, educational activities and giveaways. Photo credit: Jim Grossmann
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis begins to disappear into the darkness as it rolls to a stop on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis disappears into the darkness as it rolls to a stop on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis begins to disappear into the darkness as it rolls to a stop on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis disappears into the darkness as it rolls to a stop on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families gather near the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida for the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families gather near the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida for the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families gather near the IMAX Theatre at the Kennedy Space Center Visitor Complex in Florida for the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Recording artist Ansel Brown performs on the main stage during NASA Kennedy Space Center’s “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
2011-08-13
CAPE CANAVERAL, Fla. – The Panama band entertains thousands of space shuttle workers and their families at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families gather near Orbit Cafe at the Kennedy Space Center Visitor Complex in Florida for the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families gather near Guest Services at the Kennedy Space Center Visitor Complex in Florida for the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Thousands of space shuttle workers and their families gather near the "Star Trek" exhibit at the Kennedy Space Center Visitor Complex in Florida for the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
STS-121 Space Shuttle Processing Update
2006-04-27
NASA Administrator Michael Griffin, left, and Associate Administrator for Space Operations William Gerstenmaier, right, look on as Space Shuttle Program Manager Wayne Hale from NASA's Marshall Space Flight Center, holds a test configuration of an ice frost ramp during a media briefing about the space shuttle program and processing for the STS-121 mission, Friday, April 28, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Gilbrech, Richard J.; Kichak, Robert A.; Davis, Mitchell; Williams, Glenn; Thomas, Walter, III; Slenski, George A.; Hetzel, Mark
2005-01-01
The Space Shuttle Program (SSP) has a zero-fault-tolerant design related to an inadvertent firing of the primary reaction control jets on the Orbiter during mated operations with the International Space Station (ISS). Failure modes identified by the program as a wire-to-wire "smart" short or a Darlington transistor short resulting in a failed-on primary thruster during mated operations with ISS can drive forces that exceed the structural capabilities of the docked Shuttle/ISS structure. The assessment team delivered 17 observations, 6 findings and 15 recommendations to the Space Shuttle Program.
Mission Possible: BioMedical Experiments on the Space Shuttle
NASA Technical Reports Server (NTRS)
Bopp, E.; Kreutzberg, K.
2011-01-01
Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical experiments aboard the Space Shuttle.
NASA Space Shuttle Program: Shuttle Environmental Assurance (SEA) Initiative
NASA Technical Reports Server (NTRS)
Glover, Steve E.; McCool, Alex (Technical Monitor)
2002-01-01
The first Space Shuttle flight was in 1981 and the fleet was originally expected to be replaced with a new generation vehicle in the early 21st century. Space Shuttle Program (SSP) elements proactively address environmental and obsolescence concerns and continue to improve safety and supportability. The SSP manager created the Shuttle Environmental Assurance (SEA) Initiative in 2000. SEA is to provide an integrated approach for the SSP to promote environmental excellence, proactively manage materials obsolescence, and optimize associated resources.
2011-04-12
CAPE CANAVERAL, Fla. -- Standing under the insignia designed for the Space Shuttle Program, Patty Stratton, associate program manager for Ground Operations at United Space Alliance, speaks to the audience attending a 30th anniversary celebration in honor of the Space Shuttle Program's first shuttle launch at NASA's Kennedy Space Center Visitor Complex in Florida. The celebration followed an announcement by NASA Administrator Charles Bolden where the four orbiters will be placed for permanent display after retirement. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- Shuttle Atlantis' three main engines take center stage to the banners commemorating the orbiters that served the Space Shuttle Program. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia
NASA Technical Reports Server (NTRS)
Jarrell, George
2010-01-01
This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..
2012-09-12
Ronnie Rigney (r), chief of the Propulsion Test Office in the Project Directorate at Stennis Space Center, stands with agency colleagues to receive the prestigious American Institute of Aeronautics and Astronautics George M. Low Space Transportation Award on Sept. 12. Rigney accepted the award on behalf of the NASA and contractor team at Stennis for their support of the Space Shuttle Program that ended last summer. From 1975 to 2009, Stennis Space Center tested every main engine used to power 135 space shuttle missions. Stennis continued to provide flight support services through the end of the Space Shuttle Program in July 2011. The center also supported transition and retirement of shuttle hardware and assets through September 2012. The 2012 award was presented to the space shuttle team 'for excellence in the conception, development, test, operation and retirement of the world's first and only reusable space transportation system.' Joining Rigney for the award ceremony at the 2012 AIAA Conference in Pasadena, Calif., were: (l to r) Allison Zuniga, NASA Headquarters; Michael Griffin, former NASA administrator; Don Noah, Johnson Space Center in Houston; Steve Cash, Marshall Space Flight Center in Huntsville, Ala.; and Pete Nickolenko, Kennedy Space Center in Florida.
2011-07-21
CAPE CANAVERAL, Fla. -- Only space shuttle Atlantis' drag chute is visible as the spacecraft disappears into the darkness and rolls to a stop on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
Space Shuttle Program Legacy Report
NASA Technical Reports Server (NTRS)
Johnson, Scott
2012-01-01
Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.
Safety, reliability, maintainability and quality provisions for the Space Shuttle program
NASA Technical Reports Server (NTRS)
1990-01-01
This publication establishes common safety, reliability, maintainability and quality provisions for the Space Shuttle Program. NASA Centers shall use this publication both as the basis for negotiating safety, reliability, maintainability and quality requirements with Shuttle Program contractors and as the guideline for conduct of program safety, reliability, maintainability and quality activities at the Centers. Centers shall assure that applicable provisions of the publication are imposed in lower tier contracts. Centers shall give due regard to other Space Shuttle Program planning in order to provide an integrated total Space Shuttle Program activity. In the implementation of safety, reliability, maintainability and quality activities, consideration shall be given to hardware complexity, supplier experience, state of hardware development, unit cost, and hardware use. The approach and methods for contractor implementation shall be described in the contractors safety, reliability, maintainability and quality plans. This publication incorporates provisions of NASA documents: NHB 1700.1 'NASA Safety Manual, Vol. 1'; NHB 5300.4(IA), 'Reliability Program Provisions for Aeronautical and Space System Contractors'; and NHB 5300.4(1B), 'Quality Program Provisions for Aeronautical and Space System Contractors'. It has been tailored from the above documents based on experience in other programs. It is intended that this publication be reviewed and revised, as appropriate, to reflect new experience and to assure continuing viability.
2010-09-20
NEW ORLEANS -- The Space Shuttle Program's last external fuel tank, ET-122, is loaded onto the Pegasus Barge at NASA's Michoud Assembly Facility in New Orleans. The tank will travel 900 miles to NASA's Kennedy Space Center in Florida where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
1971-01-01
This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.
NASA Technical Reports Server (NTRS)
Romere, Paul O.; Brown, Steve Wesley
1995-01-01
Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.
NASA Technical Reports Server (NTRS)
Romere, Paul O.; Brown, Steve Wesley
1995-01-01
Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.
NASA Technical Reports Server (NTRS)
Meinhold, Anne
2013-01-01
The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.
Space shuttle maintenance program planning document
NASA Technical Reports Server (NTRS)
Brown, D. V.
1972-01-01
A means for developing a space shuttle maintenance program which will be acceptable to the development centers, the operators (KSC and AF), and the manufacturer is presented. The general organization and decision processes for determining the essential scheduled maintenance requirements for the space shuttle orbiter are outlined. The development of initial scheduled maintenance programs is discussed. The remaining maintenance, that is non-scheduled or non-routine maintenance, is directed by the findings of the scheduled maintenance program and the normal operation of the shuttle. The remaining maintenance consists of maintenance actions to correct discrepancies noted during scheduled maintenance tasks, nonscheduled maintenance, normal operation, or condition monitoring.
STS-59 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-59 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixty-second flight of the Space Shuttle Program and sixth flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-63; three SSME's which were designated as serial numbers 2028, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-065. The RSRM's that were installed in each SRB were designated as 360W037A (welterweight) for the left SRB, and 360H037B (heavyweight) for the right SRB. This STS-59 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-59 mission was to successfully perform the operations of the Space Radar Laboratory-1 (SRL-1). The secondary objectives of this flight were to perform the operations of the Space Tissue Loss-A (STL-A) and STL-B payloads, the Visual Function Tester-4 (VFT-4) payload, the Shuttle Amateur Radio Experiment-2 (SAREX-2) experiment, the Consortium for Materials Development in Space Complex Autonomous Payload-4 (CONCAP-4), and the three Get-Away Special (GAS) payloads.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
1969-01-01
As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it touches down on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it touches down on Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Vapor trails follow space shuttle Atlantis as it approaches Runway 15 on the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida for the final time. A vapor trail, known as a contrail, is a cloud of water vapor that condenses and freezes around the small particles in aircraft exhaust. Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. It also was the final mission for the shuttle program. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information on the space shuttle era, visit www.nasa.gov/mission_pages/shuttle/flyout. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-08-13
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana (at left), Jackie Bolden and her husband, NASA Administrator Charlie Bolden, enjoy the entertainment at the main stage during the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
2011-08-13
CAPE CANAVERAL, Fla. -- STS-135 Mission Specialists Rex Walheim, left, and Sandy Magnus, and STS-135 Commander Chris Ferguson address thousands of space shuttle workers and their families at the “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex, Fla. The event was held to honor current and former workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Jim Grossmann
2011-08-13
CAPE CANAVERAL, Fla. -- Attending Kennedy Space Center’s “We Made History! Shuttle Program Celebration,” Aug. 13, at the Kennedy Space Center Visitor Complex in Florida, are from left, NASA astronauts Nicole Stott, Michael Fincke, Greg Johnson, Sandra Magnus, Rex Walheim and Chris Ferguson, and Kennedy Deputy Director Janet Petro. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The event featured food, music, entertainment, astronaut appearances, educational activities, giveaways, and Starfire Night Skyshow. Photo credit: Gianni Woods
NASA Technical Reports Server (NTRS)
Brodell, Charles L.
1999-01-01
The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Personnel Reliability Program § 1214.503 Policy. (a) The Space Shuttle and the Space Station Freedom are... Protection Program.” 2 The Space Shuttle and the Space Station Freedom provide a capability to support a wide... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Policy. 1214.503 Section 1214.503...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Personnel Reliability Program § 1214.503 Policy. (a) The Space Shuttle and the Space Station Freedom are... Protection Program.” 2 The Space Shuttle and the Space Station Freedom provide a capability to support a wide... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Policy. 1214.503 Section 1214.503...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Personnel Reliability Program § 1214.503 Policy. (a) The Space Shuttle and the Space Station Freedom are... Protection Program.” 2 The Space Shuttle and the Space Station Freedom provide a capability to support a wide... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Policy. 1214.503 Section 1214.503...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Personnel Reliability Program § 1214.503 Policy. (a) The Space Shuttle and the Space Station Freedom are... Protection Program.” 2 The Space Shuttle and the Space Station Freedom provide a capability to support a wide... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Policy. 1214.503 Section 1214.503...
NASA Technical Reports Server (NTRS)
1981-01-01
An overview of the Space Shuttle Program is presented. The missions of the space shuttle orbiters, the boosters and main engine, and experimental equipment are described. Crew and passenger accommodations are discussed as well as the shuttle management teams.
2011-04-12
CAPE CANAVERAL, Fla. -- Shuttle Atlantis' three main engines take center stage to the banners commemorating the orbiters that served the Space Shuttle Program. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Later, employees, their families and friends, will celebrate the 30th anniversary of the first shuttle launch at the visitor complex. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- Workers escort the Space Shuttle Program's last external fuel tank, ET-122, to the Pegasus Barge at NASA's Michoud Assembly Facility in New Orleans. The tank will travel 900 miles aboard the Pegasus Barge to NASA's Kennedy Space Center in Florida where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2012-04-14
CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, media representatives interview space shuttle managers following the arrival of space shuttle Discovery. Behind the rope with their backs to the camera are, from left, Bart Pannullo, NASA Transition and Retirement vehicle manager at Kennedy Dorothy Rasco, manager for Space Shuttle Program Transition and Retirement at NASA’s Johnson Space Center Stephanie Stilson, NASA flow director for Orbiter Transition and Retirement at Kennedy and Kevin Templin, transition manager for the Space Shuttle Program at Johnson. Discovery will be hoisted onto a Shuttle Carrier Aircraft, or SCA, with the aid of the mate-demate device at the landing facility. The SCA, a modified Boeing 747 jet airliner, is scheduled to ferry Discovery to the Washington Dulles International Airport in Virginia on April 17, after which the shuttle will be placed on permanent public display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/transition. Photo credit: NASA/Kim Shiflett
Stennis Holds Last Planned Space Shuttle Engine Test
NASA Technical Reports Server (NTRS)
2009-01-01
With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.
Study of solid rocket motor for a space shuttle booster
NASA Technical Reports Server (NTRS)
1972-01-01
The study of solid rocket motors for a space shuttle booster was directed toward definition of a parallel-burn shuttle booster using two 156-in.-dia solid rocket motors. The study effort was organized into the following major task areas: system studies, preliminary design, program planning, and program costing.
EA Shuttle Document Retention Effort
NASA Technical Reports Server (NTRS)
Wagner, Howard A.
2010-01-01
This slide presentation reviews the effort of code EA at Johnson Space Center (JSC) to identify and acquire databases and documents from the space shuttle program that are adjudged important for retention after the retirement of the space shuttle.
Planetary/DOD entry technology flight experiments. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The feasibility of using the space shuttle to launch planetary and DoD entry flight experiments was examined. The results of the program are presented in two parts: (1) simulating outer planet environments during an earth entry test, the prediction of Jovian and earth radiative heating dominated environments, mission strategy, booster performance and entry vehicle design, and (2) the DoD entry test needs for the 1980's, the use of the space shuttle to meet these DoD test needs, modifications of test procedures as pertaining to the space shuttle, modifications to the space shuttle to accommodate DoD test missions and the unique capabilities of the space shuttle. The major findings of this program are summarized.
HAL/S programmer's guide. [for space shuttle program
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.
Reference earth orbital research and applications investigations (blue book). Volume 1: Summary
NASA Technical Reports Server (NTRS)
1971-01-01
The criteria, guidelines, and an organized approach for use in the space station and space shuttle program definition phase are presented. Subjects discussed are: (1) background information and evolution of the studies, (2) definition of terms used, (3) concepts of the space shuttle, space station, experiment modules, shuttle-sortie operations and modular space station, and (4) summary of functional program element (FPE) requirements. Diagrams of the various configurations and the experimental equipment to be installed in the structures are included.
Space shuttle propulsion systems
NASA Technical Reports Server (NTRS)
Bardos, Russell
1991-01-01
This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.
2012-09-19
CAPE CANAVERAL, Fla. – Space shuttle Endeavour, mounted atop NASA's Shuttle Carrier Aircraft or SCA, taxis down the runway at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The SCA, a modified 747 jetliner, will fly Endeavour to Los Angeles where it will be placed on public display at the California Science Center. This is the final ferry flight scheduled in the Space Shuttle Program era. For more information on the shuttles' transition and retirement, visit http://www.nasa.gov/transition. Photo credit: NASA/Rusty Backer The SCA, a modified 747 jetliner, will fly Endeavour to Los Angeles where it will be placed on public display at the California Science Center. This is the final ferry flight scheduled in the Space Shuttle Program era. For more information on the shuttles' transition and retirement, visit http://www.nasa.gov/transition. Photo credit: NASA/Jim Grossmann
Toward a history of the space shuttle. An annotated bibliography
NASA Technical Reports Server (NTRS)
Launius, Roger D. (Compiler); Gillette, Aaron K. (Compiler)
1992-01-01
This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work.
The Space Shuttle - A future space transportation system
NASA Technical Reports Server (NTRS)
Thompson, R. F.
1974-01-01
The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.
The Space Shuttle Program and Its Support for Space Bioresearch
ERIC Educational Resources Information Center
Mason, J. A.; Heberlig, J. C.
1973-01-01
The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)
2010-09-27
CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. In the background, space shuttle Discovery is on Launch Pad 39A awaiting liftoff on the STS-133 mission to the International Space Station. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle fact sheet is presented. Four important reasons for the program are considered to be: (1) It is the only meaningful new manned space program which can be accomplished on a modest budget. (2) It is needed to make space operations less complex and costly. (3) It is required for scientific applications in civilian and military activities. (4) It will encourage greater international participation in space flight. The space shuttle and orbiter configurations are discussed along with the missions. The scope of the study and the costs of each contract for the major contractor are listed.
2006-02-17
KENNEDY SPACE CENTER, FLA. - At a space shuttle all hands meeting in the training auditorium at NASA's Kennedy Space Center, Space Shuttle Program Manager Wayne Hale discusses effects of Hurricane Katrina on NASA facilities, the status of the program, successes of the STS-114 mission, and the newly released budget. Photo credit: NASA/Jim Grossmann
2006-02-17
KENNEDY SPACE CENTER, FLA. - At a space shuttle all hands meeting in the training auditorium at NASA's Kennedy Space Center, Space Shuttle Program Manager Wayne Hale discusses the status of the program, successes of the STS-114 mission, effects of Hurricane Katrina on NASA facilities, and the newly released budget. Photo credit: NASA/Jim Grossmann
2006-02-17
KENNEDY SPACE CENTER, FLA. - At a space shuttle all hands meeting in the training auditorium at NASA's Kennedy Space Center, Space Shuttle Program Manager Wayne Hale discusses effects of Hurricane Katrina on NASA facilities, the status of the program, successes of the STS-114 mission, and the newly released budget. Photo credit: NASA/Jim Grossmann
Educational Planning for Utilization of Space Shuttle (ED-PLUSS). Final Research Report.
ERIC Educational Resources Information Center
Engle, Harry A.; Christensen, David L.
Possible educational uses of the proposed space-shuttle program of the National Aeronautics and Space Administration are outlined. Potential users of information developed by the project are identified and their characteristics analyzed. Other space-education programs operated by NASA are detailed. Proposals for a methodology for expanding…
NASA Technical Reports Server (NTRS)
1975-01-01
A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.
NASA Technical Reports Server (NTRS)
1976-01-01
Safety management areas of concern include the space shuttle main engine, shuttle avionics, orbiter thermal protection system, the external tank program, and the solid rocket booster program. The ground test program and ground support equipment system were reviewed. Systems integration and technical 'conscience' were of major priorities for the investigating teams.
Space Shuttle aerothermodynamic data report, phase C
NASA Technical Reports Server (NTRS)
1985-01-01
Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.
2010-09-20
NEW ORLEANS -- Workers at NASA's Michoud Assembly Facility in New Orleans prepare the Space Shuttle Program's last external fuel tank, ET-122, for transportation to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea secured aboard the Pegasus Barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-21
NEW ORLEANS -- At NASA's Michoud Assembly Facility in New Orleans the Space Shuttle Program's last external fuel tank, ET-122, is ready for transportation to NASA's Kennedy Space Center in Florida. Secured aboard the Pegasus Barge the tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-22
LOUISIANA -- In Gulfport, La., workers connect the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, to Freedom Star, NASA's solid rocket booster retrieval ship. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-21
NEW ORLEANS -- A tug boat is pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- Workers escort the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans onto the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-21
NEW ORLEANS -- A tug boat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- Workers escort the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans for transportation to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea secured aboard the Pegasus Barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
1971-01-01
In this 1971 artist's concept, the Nuclear Shuttle is shown in various space-based applications. As envisioned by Marshall Space Flight Center Program Development persornel, the Nuclear Shuttle would deliver payloads to geosychronous Earth orbits or lunar orbits then return to low Earth orbit for refueling. A cluster of Nuclear Shuttle units could form the basis for planetary missions.
1970-01-01
This artist's concept from 1970 shows a Nuclear Shuttle docked to an Orbital Propellant Depot and an early Space Shuttle. As envisioned by Marshall Space Flight Center Program Development plarners, the Nuclear Shuttle, in either manned or unmanned mode, would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additonal missions.
NASA Technical Reports Server (NTRS)
1976-01-01
Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.
STS-55 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
A summary of the Space Shuttle Payloads, Orbiter, External Tank, Solid Rocket Booster, Redesigned Solid Rocket Motor, and the Main Engine subsystems performance during the 55th flight of the Space Shuttle Program and the 14th flight of Columbia is presented.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
The space shuttle program from challenge to achievement: Space exploration rolling on tires
NASA Technical Reports Server (NTRS)
Felder, G. L.
1985-01-01
The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.
STS-62 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).
2004-04-15
The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.
NASA Technical Reports Server (NTRS)
2004-01-01
The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.
The space shuttle program: a policy failure?
Logsdon, J M
1986-05-30
The 5 January 1972 announcement by President Richard Nixon that the United States would develop during the 1970's a new space transportation system-the space shuttle-has had fundamental impacts on the character of U.S. space activities. In retrospect, it can be argued that the shuttle design chosen was destined to fail to meet many of the policy objectives established for the system; the shuttle's problems in serving as the primary launch vehicle for the United States and in providing routine and cost-effective space transportation are in large part a result of the ways in which compromises were made in the 1971-72 period in order to gain White House and congressional approval to proceed with the program. The decision to develop a space shuttle is an example of a poor quality national commitment to a major technological undertaking.
2011-08-13
CAPE CANAVERAL, Fla. -- A Starfire Night Skyshow takes place above the Kennedy Space Center Visitor Complex in Florida during the “We Made History! Shuttle Program Celebration” on Aug. 13. The event was held to honor shuttle workers’ dedication to NASA’s Space Shuttle Program and to celebrate 30 years of space shuttle achievements. The show featured spectacular night aerobatics with special computer-controlled lighting and firework effects on a plane flown by experienced pilot Bill Leff. The event also featured food, music, entertainment, astronaut appearances, educational activities and giveaways. Photo credit: Jim Grossmann
2009-02-03
CAPE CANAVERAL, Fla. – Mike Curie (left), with NASA Public Affairs, introduces NASA managers following their day-long Flight Readiness Review of space shuttle Discovery for the STS-119 mission. Next to Curie are (from left) William H. Gerstenmaier, associate administrator for Space Operations, John Shannon, Shuttle Program manager, Mike Suffredini, program manager for the International Space Station, and Mike Leinbach, shuttle launch director. NASA managers decided to plan a launch no earlier than Feb. 19, pending additional analysis and particle impact testing associated with a flow control valve in the shuttle's main engine system. Photo credit: NASA/Cory Huston
Code of Federal Regulations, 2014 CFR
2014-01-01
... Personnel Reliability Program § 1214.503 Policy. (a) The Space Shuttle and the Space Station Freedom are... Protection Program.” 2 The Space Shuttle and the Space Station Freedom provide a capability to support a wide... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Policy. § 1214.503 Section § 1214.503...
Space shuttle environmental and thermal control life support system computer program
NASA Technical Reports Server (NTRS)
1972-01-01
A computer program for the design and operation of the space shuttle environmental and thermal control life support system is presented. The subjects discussed are: (1) basic optimization program, (2) off design performance, (3) radiator/evaporator expendable usage, (4) component weights, and (5) computer program operating procedures.
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden, left, and Kennedy Space Center Director Bob Cabana join Kennedy employees in the Pledge of Allegiance at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Forward Skirt Structural Testing on the Space Launch System (SLS) Program
NASA Technical Reports Server (NTRS)
Lohrer, J. D.; Wright, R. D.
2016-01-01
Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.
NASA Technical Reports Server (NTRS)
Engle, H. A.; Christensen, D. L.
1975-01-01
The development and application of educational programs to improve public awareness of the space shuttle/space lab capabilities are reported. Special efforts were made to: identify the potential user, identify and analyze space education programs, plan methods for user involvement, develop techniques and programs to encourage new users, and compile follow-on ideas.
1994-07-07
S94-36965 (20 Sept 1994) --- The rising sun signifies the dawn of a new era of human Spaceflight, the first phase of the U.S./Russian space partnership, Shuttle-Mir. Mir is shown in its proposed final on orbit configuration. The Shuttle is shown in a generic tunnel/Spacehab configuration. The Shuttle-Mir combination, docked to acknowledge the union of the two space programs, orbits over an Earth devoid of any definable features or political borders to emphasize Earth as the home planet for all humanity. The individual stars near the Shuttle and the Mir station represent the previous individual accomplishments of Russia's space program and that of the U.S. The binary star is a tribute to the previous U.S.-Russian joint human Spaceflight program, the Apollo-Soyuz Test Project. The flags of the two nations are symbolized by flowing ribbons of the national colors interwoven in space to represent the two nations joint exploration of space. NASA SHUTTLE and PKA MNP are shown in the stylized logo fonts of the two agencies that are conducting this program.
Aerospace Safety Advisory Panel Annual Report February 1996
NASA Technical Reports Server (NTRS)
1996-01-01
The Aerospace Safety Advisory Panel (ASAP) presents its annual report covering February through December 1995. Findings and recommendations include the areas of the Space Shuttle Program, the International Space Station, Aeronautics, and Other. Information to support these findings is included in this report. NASA's response to last year's annual report is included as an appendix. With regards to the Space Shuttle Program, the panel addresses the potential for safety problems due to organizational changes by increasing its scrutiny of Space Shuttle operations and planning.
Tailoff thrust and impulse imbalance between pairs of Space Shuttle solid rocket motors
NASA Technical Reports Server (NTRS)
Jacobs, E. P.; Yeager, J. M.
1975-01-01
The tailoff thrust and impulse imbalance between pairs of solid rocket motors is of particular interest for the Space Shuttle Vehicle because of the potential control problems that exist with this asymmetric configuration. Although a similar arrangement of solid rocket motors was utilized for the Titan Program, they produced less than one-half the thrust level of the Space Shuttle at web action time, and the overall vehicle was symmetric. Since the Titan Program does provide the most applicable actual test data, 23 flight pairs were analyzed to determine the actual tailoff thrust and impulse imbalance experienced. The results were scaled up using the predicted web action time thrust and tailoff time to arrive at values for the Space Shuttle. These values were then statistically treated to obtain a prediction of the maximum imbalance one could expect to experience during the Shuttle Program.
Proceedings of the Space Shuttle Sortie Workshop. Volume 1: Policy and system characteristics
NASA Technical Reports Server (NTRS)
1972-01-01
The workshop held to definitize the utilization of the space shuttle is reported, and the objectives of the workshop are listed. The policy papers are presented along with concepts of the space shuttle program, and the sortie workshop.
Space shuttle and life sciences
NASA Technical Reports Server (NTRS)
Mason, J. A.
1977-01-01
During the 1980's, some 200 Spacelab missions will be flown on space shuttle in earth-orbit. Within these 200 missions, it is planned that at least 20 will be dedicated to life sciences research, projects which are yet to be outlined by the life sciences community. Objectives of the Life Sciences Shuttle/Spacelab Payloads Program are presented. Also discussed are major space life sciences programs including space medicine and physiology, clinical medicine, life support technology, and a variety of space biology topics. The shuttle, spacelab, and other life sciences payload carriers are described. Concepts for carry-on experiment packages, mini-labs, shared and dedicated spacelabs, as well as common operational research equipment (CORE) are reviewed. Current NASA planning and development includes Spacelab Mission Simulations, an Announcement of Planning Opportunity for Life Sciences, and a forthcoming Announcement of Opportunity for Flight Experiments which will together assist in forging a Life Science Program in space.
The MATHEMATICA economic analysis of the Space Shuttle System
NASA Technical Reports Server (NTRS)
Heiss, K. P.
1973-01-01
Detailed economic analysis shows the Thrust Assisted Orbiter Space Shuttle System (TAOS) to be the most economic Space Shuttle configuration among the systems studied. The development of a TAOS Shuttle system is economically justified within a level of space activities between 300 and 360 Shuttle flights in the 1979-1990 period, or about 25 to 30 flights per year, well within the U.S. Space Program including NASA and DoD missions. If the NASA and DoD models are taken at face value (624 flights), the benefits of the Shuttle system are estimated to be $13.9 billion with a standard deviation of plus or minus $1.45 billion in 1970 dollars (at a 10% social rate of discount). If the expected program is modified to 514 flights (in the 1979-1990 period), the estimated benefits of the Shuttle system are $10.2 billion, with a standard deviation of $940 million (at a 10% social rate of discount).
Space Shuttle program orbital flight test program results and implications
NASA Technical Reports Server (NTRS)
Kohrs, R. H.
1982-01-01
The Space Shuttle System Orbital Flight Test (OFT) program results are described along with an overview of significant development issues and their resolution. In addition, an overall summary of the development status and the follow-on flight demonstrations of Shuttle improvements such as Lightweight External Tank, High Performance SRBs, Full Power Level (109%) Main Engine Operation, and the SRB Filament Wound Case (FWC) will be discussed.
Space Shuttle operational logistics plan
NASA Technical Reports Server (NTRS)
Botts, J. W.
1983-01-01
The Kennedy Space Center plan for logistics to support Space Shuttle Operations and to establish the related policies, requirements, and responsibilities are described. The Directorate of Shuttle Management and Operations logistics responsibilities required by the Kennedy Organizational Manual, and the self-sufficiency contracting concept are implemented. The Space Shuttle Program Level 1 and Level 2 logistics policies and requirements applicable to KSC that are presented in HQ NASA and Johnson Space Center directives are also implemented.
2003-06-20
KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2010-09-28
CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves from the Turn Basin to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Once inside the Vehicle Assembly Building, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves from the Turn Basin to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Once inside the Vehicle Assembly Building, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, enters the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves from the Turn Basin to the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Once inside the Vehicle Assembly Building, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, has been moved inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- The Space Shuttle Program's last external fuel tank, ET-122, moves into the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to Kennedy's Turn Basin aboard the Pegasus Barge. The tank eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Azbell, Jim A.
2011-01-01
In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.
Report of the Presidential Commission on the Space Shuttle Challenger Accident, Volume 5
NASA Technical Reports Server (NTRS)
1986-01-01
This volume contains all the hearings of the Presidential Commission on the Space Shuttle Challenger accident from 26 February to 2 May 1986. Among others is the testimony of L. Mulloy, Manager, Space Shuttle Solid Rocket Booster Program, Marshall Space Flight Center and G. Hardy, Deputy Director, Science and Engineering, Marshall Space Flight Center.
Space-shuttle interfaces/utilization. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
The economic aspects of space shuttle application to a representative Earth Observatory Satellite (EOS) operational mission in the various candidate Shuttle modes of launch, retrieval, and resupply are discussed. System maintenance of the same mission capability using a conventional launch vehicle is also considered. The studies are based on application of sophisticated Monte Carlo mission simulation program developed originally for studies of in-space servicing of a military satellite system. The program has been modified to permit evaluation of space shuttle application to low altitude EOS missions in all three modes. The conclusions generated by the EOS system study are developed.
STS-60 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-60 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the sixtieth flight of the Space Shuttle Program and eighteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET designated at ET-61 (Block 10); three SSME's which were designated as serial numbers 2012, 2034, and 2032 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-062. The RSRM's that were installed in each SRB were designated as 360L035A (lightweight) for the left SRB, and 360Q035B (quarterweight) for the right SRB. This STS-60 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume VIII, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-60 mission were to deploy and retrieve the Wake Shield Facility-1 (WSF-1), and to activate the Spacehab-2 payload and perform on-orbit experiments. Secondary objectives of this flight were to activate and command the Capillary Pumped Loop/Orbital Debris Radar Calibration Spheres/Breman Satellite Experiment/Getaway Special (GAS) Bridge Assembly (CAPL/ODERACS/BREMSAT/GBA) payload, the Auroral Photography Experiment-B (APE-B), and the Shuttle Amateur Radio Experiment-II (SAREX-II).
Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration
NASA Technical Reports Server (NTRS)
Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.
2009-01-01
Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.
Methods of assessing structural integrity for space shuttle vehicles
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Stuckenberg, F. H.
1971-01-01
A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented.
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden thanks the Kennedy work force for their dedication at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- The Pegasus Barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, nears NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jim Grossmann
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-27
CAPE CANAVERAL, Fla. -- The Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-22
GULFPORT, La. -- At Gulfport, La., Michael Nicholas, captain M/V Freedom Star, guides NASA's solid rocket booster retrieval ship out of port pulling the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- NASA's Pegasus barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin of NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2010-09-25
CAPE CANAVERAL, Fla. -- This sunrise view from the stern of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The external tank will travel 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans to NASA's Kennedy Space Center in Florida secured aboard the Pegasus Barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-26
CAPE CANAVERAL, Fla. -- Deckhands on Freedom Star, one of NASA's solid rocket booster retrieval ships, keep the ship in good repair as it pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- The Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-20
NEW ORLEANS -- Workers watch the progress of the Space Shuttle Program's last external fuel tank, ET-122, at NASA's Michoud Assembly Facility in New Orleans, as it is being loaded onto the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, to the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-21
NEW ORLEANS -- At NASA's Michoud Assembly Facility in New Orleans a tug boat is prepared to escort the Space Shuttle Program's last external fuel tank, ET-122, for transportation to NASA's Kennedy Space Center in Florida. Secured aboard the Pegasus Barge the tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- Workers check the progress of the Space Shuttle Program's last external fuel tank, ET-122, at NASA's Michoud Assembly Facility in New Orleans as it is being loaded onto the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Pegasus Barge, carrying the Space Shuttle Program's last external fuel tank, ET-122, arrives at the Turn Basin. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-26
CAPE CANAVERAL, Fla. -- This view is from the deck of Freedom Star, one of NASA's solid rocket booster retrieval ships, as it pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-22
CAPE CANAVERAL, Fla. -- This view from Freedom Star, one NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, as it is transported to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-26
CAPE CANAVERAL, Fla. -- This view from the stern of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-26
CAPE CANAVERAL, Fla. -- Deckhands on Freedom Star, one of NASA's solid rocket booster retrieval ships, keep the ship in good repair as it pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-22
CAPE CANAVERAL, Fla. -- This view from the stern of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, as it is transported to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea, offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- A tugboat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. Next, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-25
CAPE CANAVERAL, Fla. -- This view from the stern of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-26
CAPE CANAVERAL, Fla. -- A deckhand on Freedom Star, one of NASA's solid rocket booster retrieval ships, keeps the ship in good repair as it pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb., 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-27
CAPE CANAVERAL, Fla. -- A tug boat pulls the Space Shuttle Program's last external fuel tank, ET-122, toward the Turn Basin at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. Next, the tank will be offloaded and moved to Kennedy's Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-26
CAPE CANAVERAL, Fla. -- Deckhands on Freedom Star, one of NASA's solid rocket booster retrieval ships, keep the ship in good repair as it pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Space Shuttle Main Engine (SSME) Evolution
NASA Technical Reports Server (NTRS)
Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)
2001-01-01
The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.
2010-09-20
NEW ORLEANS -- Workers monitor the progress of the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans as it is being loaded onto the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- Workers monitor the progress of the Space Shuttle Program's last external fuel tank, ET-122, at NASA's Michoud Assembly Facility in New Orleans as it is being loaded onto the Pegasus BargeThe tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2012-04-14
CAPE CANAVERAL, Fla. – Painted graphics line the side of NASA 905 depicting the various ferry flights the Shuttle Carrier Aircraft has supported during the Space Shuttle Program, including the tests using the space shuttle prototype Enterprise. The aircraft, known as an SCA, will ferry space shuttle Discovery to the Washington Dulles International Airport in Sterling, Va., on April 17. The SCA is a modified Boeing 747 jet airliner, originally manufactured for commercial use. One of two SCAs employed over the course of the Space Shuttle Program, NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 911 was decommissioned at the NASA Dryden Flight Research Center in California in February. Discovery will be placed on permanent public display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Tim Jacobs
Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights
NASA Technical Reports Server (NTRS)
Wedge, T. E.; Williamson, R. P.
1973-01-01
Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.
NASA space shuttle lightweight seat
NASA Technical Reports Server (NTRS)
Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd
1996-01-01
The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.
2011-07-06
CAPE CANAVERAL, Fla. -- In the Press Site auditorium at NASA's Kennedy Space Center in Florida, NASA managers brief media about the launch status of space shuttle Atlantis' STS-135 mission to the International Space Station. Seen here are Public Affairs Officer Candrea Thomas (left), Space Shuttle Program Launch Integration Manager Mike Moses, Shuttle Launch Director Mike Leinbach and Shuttle Weather Officer Kathy Winters. Atlantis and its crew of four are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jack Pfaller
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Mike Konzen of PGAV Destinations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. PGAV was responsible for the "Space Shuttle Atlantis" facility design and architecture. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.
2005-01-01
This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.
Space Shuttle Atlantis after its Final Landing
2011-07-21
STS135-S-274 (21 July 2011) --- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. (EDT) on July 21, 2011, secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA
Space Shuttle Atlantis after its Final Landing
2011-06-21
STS135-S-273 (21 July 2011) --- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. (EDT) on July 21, 2011, secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Lyons, J. T.
1993-01-01
The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing additional flexibility in the use of the program, allowing additional optimization options, and providing special options for the NLS configuration.
Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Sullivan, Steven J.
2010-01-01
This slide presentation reviews many of the innovations from Kennedy Space Center engineering for ground operations that were made during the shuttle program. The innovations are in the areas of detection, image analysis, protective equipment, software development and communications.
STS-43 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).
STS-43 Space Shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1991-09-01
The STS-43 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-second flight of the Space Shuttle Program and the ninth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-47 (LWT-40); three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-045. The primary objective of the STS-43 mission was to successfully deploy the Tracking and Data Relay Satellite-E/Inertial Upper Stage (TDRS-E/IUS) satellite and to perform all operations necessary to support the requirements of the Shuttle Solar Backscatter Ultraviolet (SSBUV) payload and the Space Station Heat Pipe Advanced Radiator Element (SHARE-2).
Forward Skirt Structural Testing on the Space Launch System (SLS) Program
NASA Technical Reports Server (NTRS)
Lohrer, Joe; Wright, R. D.
2016-01-01
Introduction: (a) Structural testing was performed to evaluate Space Shuttle heritage forward skirts for use on the Space Launch System (SLS) program, (b) Testing was required because SLS loads are approximately 35% greater than shuttle loads; and (c) Two forwards skirts were tested to failure.
Report of the Space Shuttle Management Independent Review Team
NASA Technical Reports Server (NTRS)
1995-01-01
At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.
Report of the Space Shuttle Management Independent Review Team
NASA Astrophysics Data System (ADS)
1995-02-01
At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Center, Edwards, California in 1977, as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
STS-61 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.
2006-09-29
The Stennis Space Center conducted the final space shuttle main engine test on its A-1 Test Stand Friday. The A-1 Test Stand was the site of the first test on a shuttle main engine in 1975. Stennis will continue testing shuttle main engines on its A-2 Test Stand through the end of the Space Shuttle Program in 2010. The A-1 stand begins a new chapter in its operational history in October. It will be temporarily decommissioned to convert it for testing the J-2X engine, which will power the upper stage of NASA's new crew launch vehicle, the Ares I. Although this ends the stand's work on the Space Shuttle Program, it will soon be used for the rocket that will carry America's next generation human spacecraft, Orion.
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned on Runway 15 at the Shuttle Landing Facility reveal space shuttle Atlantis as it nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered in the Raffaello multi-purpose logistics module more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 is the final mission in the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chuck Tintera
2011-07-21
CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis creates its own xenon light show as in lands on Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered in the Raffaello multi-purpose logistics module more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 is the final mission in the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chuck Tintera
2011-07-21
CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned on Runway 15 at the Shuttle Landing Facility reveal space shuttle Atlantis as it touches down for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered in the Raffaello multi-purpose logistics module more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 is the final mission in the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Rusty Backer
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned on Runway 15 at the Shuttle Landing Facility reveal space shuttle Atlantis as it nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Chad Baumer
2011-07-21
CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen
2010-09-28
CAPE CANAVERAL, Fla. -- This overhead view shows the Space Shuttle Program's last external fuel tank, ET-122, as it is being transported to the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea, carried in the Pegasus Barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kevin O'Connell
1999-07-28
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, NASA Administrator Daniel Goldin (foreground) talks with STS-93 Commander Eileen Collins beside the Space Shuttle orbiter Columbia following the successful completion of her mission. Marshall Space Flight Center Director Arthur G. Stephenson (far left) looks on. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander
1988-11-07
The STS-28 insignia was designed by the astronaut crew, who said it portrays the pride the American people have in their manned spaceflight program. It depicts America (the eagle) guiding the space program (the Space Shuttle) safely home from an orbital mission. The view looks south on Baja California and the west coast of the United States as the space travelers re-enter the atmosphere. The hypersonic contrails created by the eagle and Shuttle represent the American flag. The crew called the simple boldness of the design symbolic of America's unfaltering commitment to leadership in the exploration and development of space.
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 reveal that the drag chute has deployed behind space shuttle Atlantis to slow the shuttle as it lands for the last time at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
2011-07-21
CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the drag chute trailing space shuttle Atlantis is illuminated by the xenon lights on Runway 15 as the shuttle lands for the final time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 reveal that the drag chute has deployed behind space shuttle Atlantis to slow the shuttle as it lands for the last time at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
1993-04-07
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, ushers the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- NASA's Pegasus barge moves through the bridge at Port Canaveral, Fla. The barge is carrying the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2010-09-22
CAPE CANAVERAL, Fla. -- This view at dusk from the stern of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, as it is transported to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, ushers the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
2010-09-22
GULFPORT, La. -- This view from the captain's deck of Freedom Star, one of NASA's solid rocket booster retrieval ships, shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, as it is escorted from Gulfport, La., to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- NASA's Pegasus barge is pulled toward NASA's Kennedy Space Center in Florida by a tug boat. The barge is carrying the Space Shuttle Program's last external fuel tank, ET-122 and traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Kim Shiflett
2010-09-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, pulls the Space Shuttle Program's last external fuel tank, ET-122, toward NASA's Kennedy Space Center in Florida. The tank traveled 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. After reaching the Turn Basin at Kennedy, the tank will be offloaded and moved to the Vehicle Assembly Building where it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Jack Pfaller
Enterprise Separates from 747 SCA for First Tailcone off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rises from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preparation for the first space mission with the orbiter Columbia in April 1981. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
2003-06-20
KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
1969-01-01
This 1969 artist's concept illustrates the use of three major elements of NASA's Integrated program, as proposed by President Nixon's Space Task Group. In Phases I and II, a Space Tug with a manipulator-equipped crew module removes a cargo module from an early Space Shuttle Orbiter and docks with it. In Phases III and IV, the Space Tug with attached cargo module flys toward a Nuclear Shuttle. As a result of the Space Task Group's recommendations for more commonality and integration in the American space program, Marshall Space Flight Center engineers studied many of the spacecraft depicted here.
Study of solid rocket motors for a space shuttle booster. Volume 3: Program acquisition planning
NASA Technical Reports Server (NTRS)
Vonderesch, A. H.
1972-01-01
Plans for conducting Phase C/D for a solid rocket motor booster vehicle are presented. Methods for conducting this program with details of scheduling, testing, and program management and control are included. The requirements of the space shuttle program to deliver a minimum cost/maximum reliability booster vehicle are examined.
HAL/SM language specification. [programming languages and computer programming for space shuttles
NASA Technical Reports Server (NTRS)
Williams, G. P. W., Jr.; Ross, C.
1975-01-01
A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.
Legacy of Environmental Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Lane, Helen W.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the major environmental lessons learned and the development of countermeasures, monitoring hardware, and procedures.
NASA Technical Reports Server (NTRS)
Williams, F. E.; Lemon, R. S.; Jaggers, R. F.; Wilson, J. L.
1974-01-01
Dynamics and control, stability, and guidance analyses are summarized for the asymmetrical booster ascent guidance and control system design studies, performed in conjunction with space shuttle planning. The mathematical models developed for use in rigid body and flexible body versions of the NASA JSC space shuttle functional simulator are briefly discussed, along with information on the following: (1) space shuttle stability analysis using equations of motion for both pitch and lateral axes; (2) the computer program used to obtain stability margin; and (3) the guidance equations developed for the space shuttle powered flight phases.
NASA Technical Reports Server (NTRS)
1975-01-01
The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.
An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education
NASA Astrophysics Data System (ADS)
Lulla, Kamlesh
2012-07-01
This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.
Stennis certifies final shuttle engine
2008-10-22
Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.
Shuttle filter study. Volume 1: Characterization and optimization of filtration devices
NASA Technical Reports Server (NTRS)
1974-01-01
A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.
Marshall Space Flight Center - Launching the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Shivers, Alisa; Shivers, Herbert
2010-01-01
Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field
2010-09-20
NEW ORLEANS -- Associate Administrator for Space Operations Bill Gerstenmaier and Manny Zulueta, Lockheed Martin vice president and site executive at NASA's Michoud Assembly Facility in New Orleans, discuss the progress of the Space Shuttle Program's last external fuel tank, ET-122, as it is being transported from the facility to the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida, secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- Associate Administrator for Space Operations Bill Gerstenmaier and Manny Zulueta, Lockheed Martin vice president and site executive at NASA's Michoud Assembly Facility in New Orleans, watch the progress of the Space Shuttle Program's last external fuel tank, ET-122, as it is being transported from the facility to the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-20
NEW ORLEANS -- At NASA's Michoud Assembly Facility in New Orleans, Associate Administrator for Space Operations Bill Gerstenmaier and a Michoud employee discuss the progress of the Space Shuttle Program's last external fuel tank, ET-122, as it is being transported from the facility to the Pegasus Barge. The tank will travel 900 miles by sea to NASA's Kennedy Space Center in Florida secured aboard the barge, offloaded and moved to Kennedy's Vehicle Assembly Building where it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
Mission Operations Directorate - Success Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Azbell, Jim
2010-01-01
In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis and its employee entourage saunter along the towway from the Shuttle Landing Facility to the Orbiter Processing Facility at NASA's Kennedy Space Center in Florida. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the landing convoy vehicles line up to accompany space shuttle Atlantis from the Shuttle Landing Facility to an orbiter processing facility. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- Employees accompany space shuttle Atlantis as it is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida. Looming in the background is the 525-foot-tall Vehicle Assembly Building. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the landing convoy vehicles accompany space shuttle Atlantis as it is slowly towed from the Shuttle Landing Facility to an orbiter processing facility. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis is reflected in the water along the towway from the Shuttle Landing Facility to the Orbiter Processing Facility at NASA's Kennedy Space Center in Florida. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- It is time for reflection at NASA's Kennedy Space Center in Florida as employees accompany space shuttle Atlantis as it is slowly towed from the Shuttle Landing Facility to an orbiter processing facility. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights positioned at the end of Runway 15 illuminate the Shuttle Landing Facility for space shuttle Atlantis' final return from space. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights positioned at the end of Runway 15 illuminate the Shuttle Landing Facility for space shuttle Atlantis' final return from space. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
NASA Technical Reports Server (NTRS)
Siders, Jeffrey A.; Smith, Robert H.
2004-01-01
The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.
2011-07-21
CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Seen here is Chris Hasselbring, USA Operations Manager. Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky
HAL/S programmer's guide. [space shuttle flight software language
NASA Technical Reports Server (NTRS)
Newbold, P. M.; Hotz, R. L.
1974-01-01
HAL/S is a programming language developed to satisfy the flight software requirements for the space shuttle program. The user's guide explains pertinent language operating procedures and described the various HAL/S facilities for manipulating integer, scalar, vector, and matrix data types.
2012-04-11
CAPE CANAVERAL, Fla. – Painted graphics line the side of NASA 905 depicting the various ferry flights the Shuttle Carrier Aircraft has supported during the Space Shuttle Program, including the tests using the space shuttle prototype Enterprise. The aircraft, known as an SCA, is at Kennedy to prepare for shuttle Discovery’s ferry flight to the Washington Dulles International Airport in Sterling, Va., on April 17. The SCA is a modified Boeing 747 jet airliner, originally manufactured for commercial use. One of two SCAs employed over the course of the Space Shuttle Program, NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 911 was decommissioned at the NASA Dryden Flight Research Center in California in February. Discovery will be placed on permanent public display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Ben Smegelsky
2012-04-11
CAPE CANAVERAL, Fla. – Painted graphics line the side of NASA 905 depicting the various ferry flights the Shuttle Carrier Aircraft has supported during the Space Shuttle Program, including the tests using the space shuttle prototype Enterprise. The aircraft, known as an SCA, is at Kennedy to prepare for shuttle Discovery’s ferry flight to the Washington Dulles International Airport in Sterling, Va., on April 17. The SCA is a modified Boeing 747 jet airliner, originally manufactured for commercial use. One of two SCAs employed over the course of the Space Shuttle Program, NASA 905 is assigned to the remaining ferry missions, delivering the shuttles to their permanent public display sites. NASA 911 was decommissioned at the NASA Dryden Flight Research Center in California in February. Discovery will be placed on permanent public display in the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va. For more information on the SCA, visit http://www.nasa.gov/centers/dryden/news/FactSheets/FS-013-DFRC.html. For more information on shuttle transition and retirement activities, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Ben Smegelsky
Science Operation in Space: Lessons
NASA Technical Reports Server (NTRS)
1988-01-01
This program (conceived by a group of veteran Shuttle astronauts) shows prospective experimenters how they can better design their experiments for operation onboard Shuttle flights. Shuttle astronauts Dunbar, Seddon, Hoffman, Cleave, Ross, and ChangDiaz also show how crews live and work in space.
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis begins its slow trek from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Stennis Space Center goes to Washington Folklife Festival
2008-07-03
A visitor to the Smithsonian Folklife Festival in Washington, D.C., examines a space shuttle main engine display provided by Stennis Space Center. Since 1975, Stennis has been responsible for testing every engine used in NASA's Space Shuttle Program.
Stennis Space Center goes to Washington Folklife Festival
NASA Technical Reports Server (NTRS)
2008-01-01
A visitor to the Smithsonian Folklife Festival in Washington, D.C., examines a space shuttle main engine display provided by Stennis Space Center. Since 1975, Stennis has been responsible for testing every engine used in NASA's Space Shuttle Program.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Enterprise - Free Flight after Separation from 747
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) over Rogers Dry Lake during the second of five free flights carried out at the Dryden Flight Research Center, Edwards, California, as part of the Shuttle program's Approach and Landing Tests (ALT) in 1977. The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. A series of test flights during which Enterprise was taken aloft atop the SCA, but was not released, preceded the free flight tests. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
Behavioral Health and Performance Operations During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.
2011-01-01
Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions
2010-09-28
CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller
2010-09-22
LOUISIANA -- A tug boat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans toward a dock in Gulfport, La. The barge will meet up with Freedom Star, NASA's solid rocket booster retrieval ship, which will escort it to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- To commemorate the history of the Space Shuttle Program's last external fuel tank, its intertank door is emblazoned with an ET-122 insignia. The tank is in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida after traveling 900 miles by sea from NASA's Michoud Assembly Facility in New Orleans aboard the Pegasus Barge. It eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station. STS-134, targeted to launch in Feb. 2011, currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was completed in 2002, modified during Return to Flight operations in 2003 and 2004, damaged during Hurricane Katrina in 2005, and then restored to flight configuration by Lockheed Martin Space Systems Company employees in 2008 at NASA's Marshall Space Flight Center in Alabama. Photo credit: NASA/Jack Pfaller
2010-09-22
LOUISIANA -- A tug boat pulls the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, from NASA's Michoud Assembly Facility in New Orleans toward Gulfport, La. The barge will meet up with Freedom Star, NASA's solid rocket booster retrieval ship, which will escort it to NASA's Kennedy Space Center in Florida. The tank will travel 900 miles by sea before being offloaded and moved to Kennedy's Vehicle Assembly Building. There it will be integrated to space shuttle Endeavour for the STS-134 mission to the International Space Station. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. STS-134, targeted to launch Feb. 2011, currently is scheduled to be the last mission in the Space Shuttle Program. Photo credit: NASA/Kim Shiflett
1992-05-27
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), is serviced on the ramp at NASA's Dryden Flight Research Center, Edwards, California, before a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
NASA Technical Reports Server (NTRS)
1994-01-01
A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA). The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.
1989-01-01
In this 1989 artist's concept, the Shuttle-C floats in space with its cargo bay doors open. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Oribiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay length of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
2012-11-02
Onlookers wearing commemorative t-shirts watch as space shuttle Atlantis rolls to ts new home at the Kennedy Space Center Visitor Complex, early Friday, Nov. 2, 2012, in Cape Canaveral, Fla. The spacecraft traveled 125,935,769 miles during 33 spaceflights, including 12 missions to the International Space Station. Its final flight, STS-135, closed out the Space Shuttle Program era with a landing on July 21, 2011. Photo Credit: (NASA/Bill Ingalls)
STS-51 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
The STS-51 Space Shuttle Program Mission Report summarizes the payloads as well as the orbiter, external tank (ET), solid rocket booster (SRB), redesigned solid rocket motor (RSRM), and the space shuttle main engine (SSME) systems performance during the fifty-seventh flight of the space shuttle program and seventeenth flight of the orbiter vehicle Discovery (OV-103). In addition to the orbiter, the flight vehicle consisted of an ET designated as ET-59; three SSME's, which were designated as serial numbers 2031, 2034, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-060. The lightweight RSRM's that were installed in each SRB were designated as 360W033A for the left SRB and 360L033B for the right SRB.
STS-49: Space shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1992-01-01
The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.
STS-49: Space shuttle mission report
NASA Astrophysics Data System (ADS)
Fricke, Robert W.
1992-07-01
The STS-49 Space Shuttle Program Mission Report contains a summary of the Orbiter, External Tank (ET), Solid Rocket Booster/Redesigned Solid Rocket Motor (SRB/RSRM), and Space Shuttle main engine (SSME) subsystem performance during the forty-seventh flight of the Space Shuttle Program and the first flight of the Orbiter vehicle Endeavor (OV-105). In addition to the Endeavor vehicle, the flight vehicle consisted of an ET designated as ET-43 (LWT-36); three SSME's which were serial numbers 2030, 2015, and 2017 in positions 1, 2, and 3, respectively; and two SRB's designated as BI-050. The lightweight RSRM's installed in each SRB were designated as 360L022A for the left RSRM and 360L022B for the right RSRM.
Aerothermodynamic data base. Data file contents report, phase C
NASA Technical Reports Server (NTRS)
Lutz, G. R.
1983-01-01
Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration is listed to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables provide survey information to the various space shuttle managerial and technical levels.
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a plethora of switches fills the control panel on the flight deck of space shuttle Atlantis. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
1984-01-01
Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. A list of documentation of DMS processed data arranged sequentially and by space shuttle configuration is presented. The listing provides an up to date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables are designed to provide survey information to the various space shuttle managerial and technical levels.
STS-114: Discovery Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
2011-07-21
CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. It was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. It was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
2011-07-21
CAPE CANAVERAL, Fla. -- Backlit by the xenon lights on Runway 15 at the Shuttle Landing Facility, space shuttle Atlantis nears touchdown for the final time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. It was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell
Kennedy Space Center, Space Shuttle Processing, and International Space Station Program Overview
NASA Technical Reports Server (NTRS)
Higginbotham, Scott Alan
2011-01-01
Topics include: International Space Station assembly sequence; Electrical power substation; Thermal control substation; Guidance, navigation and control; Command data and handling; Robotics; Human and robotic integration; Additional modes of re-supply; NASA and International partner control centers; Space Shuttle ground operations.
Space Flight: The First 30 Years
NASA Technical Reports Server (NTRS)
1991-01-01
A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.
2011-12-07
CAPE CANAVERAL, Fla. – Space shuttle Discovery sports three replica shuttle main engines (RSMEs) in Orbiter Processing Facility-1 at NASA’s Kennedy Space Center in Florida. The RSMEs were installed on Discovery during Space Shuttle Program transition and retirement activities. The replicas are built in the Pratt & Whitney Rocketdyne engine shop at Kennedy to replace the shuttle engines which will be placed in storage to support NASA's Space Launch System, under development. Discovery is being prepared for display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights spotlight space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights create a halo around space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen
2011-07-21
CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft nears touchdown for the last time on Runway 15 at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kenny Allen
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. As the space shuttle program ends in 2011, a review of how training for STS-1 was conducted compared to STS-134 will show multiple changes in training of shuttle flight controller over a thirty year period. This paper will additionally give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams have been trained certified over the life span of the space shuttle. The training methods for developing flight controllers have evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
NASA Technical Reports Server (NTRS)
Newbold, P. M.
1974-01-01
A programming language for the flight software of the NASA space shuttle program was developed and identified as HAL/S. The language is intended to satisfy virtually all of the flight software requirements of the space shuttle. The language incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks.
Study of solid rocket motor for space shuttle booster, Volume 3: Program acquisition planning
NASA Technical Reports Server (NTRS)
1972-01-01
The program planning acquisition functions for the development of the solid propellant rocket engine for the space shuttle booster is presented. The subjects discussed are: (1) program management, (2) contracts administration, (3) systems engineering, (4) configuration management, and (5) maintenance engineering. The plans for manufacturing, testing, and operations support are included.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
First Shuttle/747 Captive Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided realistic, in-flight simulations of how subsequent Space Shuttles would be flown at the end of an orbital mission. The fifth approach and landing test, with the Enterprise landing on the Edwards Air Force Base concrete runway, revealed a problem with the Space Shuttle flight control system that made it susceptible to Pilot-Induced Oscillation (PIO), a potentially dangerous control problem during a landing. Further research using other NASA aircraft, especially the F-8 Digital-Fly-By-Wire aircraft, led to correction of the PIO problem before the first orbital flight. The Enterprise's last free-flight was October 26, 1977, after which it was ferried to other NASA centers for ground-based flight simulations that tested Space Shuttle systems and structure.
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
2000-06-02
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, center director Bob Cabana speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
2009-01-01
Several employees who contributed to the Space Shuttle Main Engine (SSME) program describe their most memorable experiences relating to the launching of the Space Shuttle. Some describe the emotional aspects they experienced while watching and filming the launch from Kennedy Space Center.
2011-07-21
CAPE CANAVERAL, Fla. -- STS-135 Commander Chris Ferguson expresses his gratitude to the thousands of workers who have processed, launched and landed the space shuttles for more than three decades during an employee appreciation event. Space shuttle Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the STS-135 mission and America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2006-02-17
KENNEDY SPACE CENTER, FLA. - In the training auditorium at NASA's Kennedy Space Center, Deputy Director Bill Parsons, at the beginning of a space shuttle all hands meeting, speaks to employees about his journey through NASA. He was followed by Space Shuttle Program Manager Wayne Hale discussed the status of the program, successes of the STS-114 mission, effects of Hurricane Katrina on NASA facilities, and the newly released budget. Photo credit: NASA/Jim Grossmann
2006-02-17
KENNEDY SPACE CENTER, FLA. - In the training auditorium at NASA's Kennedy Space Center, Center Director Jim Kennedy (at podium) welcomes Deputy Director Bill Parsons back to the center during a space shuttle all hands meeting. Following Kennedy, Space Shuttle Program Manager Wayne Hale discussed the status of the program, successes of the STS-114 mission, effects of Hurricane Katrina on NASA facilities, and the newly released budget. Photo credit: NASA/Jim Grossmann
2006-02-28
KENNEDY SPACE CENTER, FLA. - NASA managers brief the media about the Space Shuttle Program and mission STS-121 from the press site at NASA's Kennedy Space Center in Florida. Public Information Officer Jessica Rye moderated. Seated at her right are Space Shuttle Program Manager Wayne Hale, NASA Launch Director Mike Leinbach and STS-114 External Tank Tiger Team lead Tim Wilson, with the NASA Engineering & Safety Center. Photo credit: NASA/Jack Pfaller
2010-09-28
CAPE CANAVERAL, Fla. -- This panoramic image shows the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, through the Port Canaveral locks on its way to the Turn Basin at NASA's Kennedy Space Center in Florida. Once docked, the tank will be offloaded from the barge and transported to the Vehicle Assembly Building (VAB). The tank traveled 900 miles by sea, carried in the barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin
Space Shuttle security policies and programs
NASA Astrophysics Data System (ADS)
Keith, E. L.
The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.
Space Shuttle security policies and programs
NASA Technical Reports Server (NTRS)
Keith, E. L.
1985-01-01
The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.
Study of alternate space shuttle concepts
NASA Technical Reports Server (NTRS)
1971-01-01
A study of alternate space shuttle concepts was conducted to examine the stage-and-one-half concept and its potential for later conversion and use in the two stage reusable shuttle system. A study of external hydrogen tank concepts was conducted to determine the issues involved in the design and production of a low-cost expendable tank system. The major objectives of the study were to determine: (1) realistic drop tank program cost estimates, (2) estimated drop tank program cost for selected specific designs, and (3) change in program cost due to variations in design and manufacturing concepts and changes in program assumptions.
2011-07-21
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis is positioned between the work platforms of Orbiter Processing Facility-2 where it will be prepared for future public display at Kennedy's Visitor Complex. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis glides into position between the work platforms of Orbiter Processing Facility-2. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-04-21
CAPE CANAVERAL, Fla. -- Members of a visiting team from the Smithsonian's National Air and Space Museum examine the space shuttle's thermal protection system tile as they stand beneath shuttle Discovery in Orbiter Processing Facility-2 at NASA's Kennedy Space Center. NASA Administrator Charles Bolden announced April 12 the facilities where all four shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired in March after completing its 39th mission. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Cory Huston
2011-04-21
CAPE CANAVERAL, Fla. -- Members of a visiting team from the Smithsonian's National Air and Space Museum discuss the application of the space shuttle's thermal protection system tile with shuttle technicians in Orbiter Processing Facility-2 at NASA's Kennedy Space Center. NASA Administrator Charles Bolden announced April 12 the facilities where all four shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired in March after completing its 39th mission. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Cory Huston
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. There to welcome Atlantis home are the thousands of workers who have processed, launched and landed the shuttles for more than three decades. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1983-01-01
Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.
Legacy of Operational Space Medicine During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.
2011-01-01
The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.
STS-118 Space Shuttle Crew Honored
2007-09-10
A special event honoring the crew of space shuttle mission STS-118 was held at Walt Disney World. Here, visitors enjoy the NASA display at Epcot's Innoventions Center. The event also honored teacher-turned-astronaut Barbara R. Morgan, who dedicated a plaque outside the Mission: Space attraction. Other activities included meeting with the media and students and a parade down Main Street. Mission STS-118 was the 119th shuttle program flight and the 22nd flight to the International Space Station. Space shuttle Endeavour launched from NASA's Kennedy Space Center on Aug. 8 and landed Aug. 21. The mission delivered the S5 truss, continuing the assembly of the space station.
2012-01-12
CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a technician oversees the closure of a transportation canister containing a Pratt Whitney Rocketdyne space shuttle main engine (SSME). This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Gianni Woods
Use of shuttle for life sciences
NASA Technical Reports Server (NTRS)
Mcgaughy, R. E.
1972-01-01
The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects.
NASA Administrator Goldin talks with STS-93 Commander Collins at the SLF
NASA Technical Reports Server (NTRS)
1999-01-01
At the Shuttle Landing Facility, NASA Administrator Daniel Goldin (foreground) talks with STS-93 Commander Eileen Collins beside the Space Shuttle orbiter Columbia following the successful completion of her mission. Marshall Space Flight Center Director Arthur G. Stephenson (far left) looks on. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.
Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.
2012-09-16
CAPE CANAVERAL, Fla. – An overview of the cockpit of NASA's Shuttle Carrier Aircraft, or SCA, is captured for posterity at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida before the aircraft is decommissioned. The SCA, a modified 747 jetliner, will fly space shuttle Endeavour to Los Angeles where it will be placed on public display at the California Science Center. This is the final ferry flight scheduled in the Space Shuttle Program era. For more information on the shuttles' transition and retirement, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2012-09-16
CAPE CANAVERAL, Fla. – An overview of the cockpit of NASA's Shuttle Carrier Aircraft, or SCA, is captured for posterity at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida before the aircraft is decommissioned. The SCA, a modified 747 jetliner, will fly space shuttle Endeavour to Los Angeles where it will be placed on public display at the California Science Center. This is the final ferry flight scheduled in the Space Shuttle Program era. For more information on the shuttles' transition and retirement, visit http://www.nasa.gov/transition. Photo credit: NASA/Dimitri Gerondidakis
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis dwarfs the employees monitoring its arrival into the empty bay of Orbiter Processing Facility-2. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis noses its way toward the open door of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- The Convoy Command Center vehicle is positioned on the Shuttle Landing Facility (SLF) at NASA's Kennedy Space Center in Florida awaiting the landing of space shuttle Atlantis. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Accompanying the command convoy team are STS-135 Assistant Launch Director Pete Nickolenko (right), NASA astronaut Janet Kavandi and Chris Hasselbring, USA Operations Manager (left). Securing the space shuttle fleet's place in history, Atlantis marks the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ben Smegelsky
2011-07-21
CAPE CANAVERAL, Fla. -- Seen here in this panoramic image are thousands of workers who have processed, launched and landed space shuttles for more than three decades, welcoming space shuttle Atlantis home to NASA's Kennedy Space Center in Florida during an employee appreciation event. Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. Atlantis and its crew delivered spare parts, equipment and supplies to the International Space Station. The STS-135 mission was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-21
CAPE CANAVERAL, Fla. -- The STS-135 crew members and NASA Kennedy Space Center Director Bob Cabana express their gratitude to the thousands of workers who have processed, launched and landed the space shuttles for more than three decades during an employee appreciation event. Space shuttle Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the STS-135 mission and America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews remove 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews have removed 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews have removed 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews have removed 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
2013-04-26
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, construction crews are removing 16,000 square feet of plastic shrink-wrap from the space shuttle Atlantis. The spacecraft was enclosed in the plastic shrink-wrap since November of last year to protect the artifact from dust and debris during construction of the 90,000-square-foot facility. Last November, the space shuttle Atlantis made its historic final journey to its new home, traveling 10 miles from the Kennedy Space Center's Vehicle Assembly Building to the spaceport's visitor complex. The new $100 million "Space Shuttle Atlantis" facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlights the future of space exploration. The "Space Shuttle Atlantis" exhibit scheduled to open June 29, 2013.Photo credit: NASA/Cory Huston
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Media gather in the television studio at the NASA News Center to hear members of the Mission Management Team reveal aspects of the troubleshooting and testing being done on the liquid hydrogen tank low-level fuel cut-off sensor. On the stage at right are (from left) Wayne Hale, Space Shuttle deputy program manager; John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; and Mike Wetmore, director of Space Shuttle Processing. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
STS-56 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1993-01-01
The STS-56 Space Shuttle Program Mission Report provides a summary of the Payloads, as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-fourth flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET (ET-54); three SSME's, which were designated as serial numbers 2024, 2033, and 2018 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-058. The lightweight RSRM's that were installed in each SRB were designated as 360L031A for the left SRB and 360L031B for the right SRB.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Transition to the space shuttle operations era
NASA Technical Reports Server (NTRS)
1985-01-01
The tasks involved in the Space Shuttle Development Program are discussed. The ten major characteristics of an operational Shuttle are described, as well as the changes occurring in Shuttle processing, on-line operations, operations engineering, and support operations. A summary is given of tasks and goals that are being pursued in the effort to create a cost effective and efficient system.
NASA Technical Reports Server (NTRS)
1971-01-01
A definition of the expendable second stage for use with the reusable space shuttle booster is presented. The subjects discussed are: (1) expendable second stage design, (2) structural subsystem, (3) propulsion subsystem, (4) avionics subsystems, (5) recovery and deorbit subsystem, and (6) expendable second stage vehicle installation, assembly, and checkout.
2013-06-29
CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, Expedition 36 flight engineers Karen Nyberg, left, and Chris Cassidy speak to guests via television from the International Space Station. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2011-04-12
CAPE CANAVERAL, Fla. -- Mike Parrish, space shuttle Endeavour's vehicle manager with United Space Alliance addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
Mission Operations Directorate - Success Legacy of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Azbell, James A.
2011-01-01
In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.
Design guide for space shuttle low-cost payloads
NASA Technical Reports Server (NTRS)
1971-01-01
A handbook is presented which delineates the principles of the new low-cost design methodology for designers of unmanned payloads to be carried by the space shuttle. The basic relationships between payload designs and program cost effects are discussed, and some concepts for designing low-cost payloads and implementing low-cost programs are given. The data are summarized from a payloads effects study of three unmanned earth satellites (OAO, a syneq orbiter, and a small research satellite), and the earth satellite design is emphasized. Brief summaries of space shuttle and space tug performance, environmental, and interface data pertinent to low-cost payload concepts are included.
2011-12-22
CAPE CANAVERAL, Fla. – In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, the controller used during docking to the airlock of space shuttle Atlantis stands among the switches filling the control panel on the flight deck. The flight deck is illuminated one last time as preparations are made for the shuttle's final power down during Space Shuttle Program transition and retirement activities. Atlantis is being prepared for public display in 2013 at the Kennedy Space Center Visitor Complex. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann
Space Tug systems study. Volume 2: Compendium
NASA Technical Reports Server (NTRS)
1974-01-01
Possible storable propellant configurations and program plans are evaluated for the space tug. Alternatives examined include: use of existing expendable stages modified for use with shuttle, followed by a space tug at a later date; use of a modified growth version of existing expendable stages for greater performance and potential reuse, followed by a space tug at a later date; use of a low development cost, reusable, interim space tug available at shuttle initial operational capability (IOC) that could be evolved to greater system capabilities at a later date; and use a direct developed tug with maximum potential to be available at some specified time after space shuttle IOC. The capability options were narrowed down to three final options for detailed program definition.
2013-06-27
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, a display inside the "Space Shuttle Atlantis" facility features a 43-feet-tall full-scale replica of the Hubble telescope hung through an opening in the second floor. The new $100 million facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit is scheduled to open June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, NASA Administrator Charlie Bolden speaks to guests gathered for the ceremony. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, center director Bob Cabana speaks to guests gathered for the ceremony. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president, speaks to guests during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president, speaks to guests during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- Inside the new "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, guests gather around the spacecraft on display with payload bay doors open and remote manipulator system robot arm extended. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-29
CAPE CANAVERAL, Fla. -- Inside the new "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, 40 astronauts posed with the spacecraft on display with payload bay doors open and remote manipulator system robot arm extended. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
The space shuttle payload planning working groups: Executive summaries
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of a space shuttle payload planning group session are presented. The purpose of the workshop is: (1) to provide guidance for the design and development of the space shuttle and the spacelab and (2) to plan a space science and applications program for the 1980 time period. Individual groups were organized to cover the various space sciences, applications, technologies, and life sciences. Summaries of the reports submitted by the working groups are provided.
History of Space Shuttle Rendezvous
NASA Technical Reports Server (NTRS)
Goodman, John L.
2011-01-01
This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.
1998-12-18
Federal, state, NASA, KSC and Space Florida Authority (SFA) officials dig in at the planned site of a multi-purpose hangar, phase one of the Reusable Launch Vehicle (RLV) Support Complex to be built near the Shuttle Landing Facility. From left, they are a representative from Rush Construction; Ed O'Connor, executive director of the Spaceport Florida Authority (SFA); Stephen T. Black, Lockheed Martin technical operations program manager; Warren Wiley, deputy director of engineering development; Tom Best, district director, representing U.S. Congressman Dave Weldon; Roy Bridges, director, Kennedy Space Center; Bill Posey, 32nd district representative; Randy Ball, state representative; Charlie Bronson, state senator; Donald McMonagle, manager of launch integration; and John London, Marshall Space Flight Center X-34 program manager. The new complex is jointly funded by SFA, NASA's Space Shuttle Program and Kennedy Space Center. It is intended to support the Space Shuttle and other RLV and X-vehicle systems. Completion is expected by the year 2000
Risk management in international manned space program operations.
Seastrom, J W; Peercy, R L; Johnson, G W; Sotnikov, B J; Brukhanov, N
2004-02-01
New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions. c2003 Published by Elsevier Ltd.
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis returns to Earth for the last time on Runway 15 at NASA's Kennedy Space Center in Florida just before sunrise. Atlantis touched down on Runway 15 at 5:57 a.m., bringing an end to the STS-135 mission and NASA's Space Shuttle Program. CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Carl Winebarger
Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.;
1996-01-01
At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.
2003-06-20
KENNEDY SPACE CENTER, FLA. - Daniel LeBlanc, chief operating officer of Delaware North Companies Parks and Resorts at KSC, makes the opening remarks to hundreds of guests and media representatives attending a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-20
KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
NASA Technical Reports Server (NTRS)
Alverado, U.
1975-01-01
The use of the space shuttle for the Earth Resources Program is discussed. Several problems with respect to payload selection, integration, and mission planning were studied. Each of four shuttle roles in the sortie mode were examined and projected into an integrated shuttle program. Several representative Earth Resources missions were designed which would use the shuttle sortie as a platform and collectively include the four shuttle roles. An integrated flight program based on these missions was then developed for the first two years of shuttle flights. A set of broad implications concerning the uses of the shuttle for Earth Resources studies resulted.
2013-06-29
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella counted down for the ceremonial opening of the new "Space Shuttle Atlantis" facility. Smoke bellows near a full-scale set of space shuttle twin solid rocket boosters and external fuel tank at the entrance to the exhibit building. Guests may walk beneath the 184-foot-tall boosters and tank as they enter the facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
Advanced technology and the Space Shuttle /10th Von Karman Lecture/.
NASA Technical Reports Server (NTRS)
Love, E. S.
1973-01-01
Selected topics in technology advancement related to the space shuttle are examined. Contributions from long-range research prior to the advent of the 'shuttle-focused technology program' of the past 3 years are considered together with highlights from the latter. Attention is confined to three of the shuttle's seven principal technology areas: aerothermodynamics/configurations, dynamics/aeroelasticity, and structures/materials. Some observations are presented on the shuttle's origin, the need to sustain advanced research, and future systems that could emerge from a combination of shuttle and non-shuttle technology advancements.
2011-04-12
In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- STS-135 Mission Specialist Sandy Magnus expresses her gratitude to the thousands of workers who have processed, launched and landed the space shuttles for more than three decades during an employee appreciation event. On the right is Pilot Doug Hurley. Space shuttle Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the STS-135 mission and America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-21
CAPE CANAVERAL, Fla. -- STS-135 Mission Specialist Rex Walheim expresses his gratitude to the thousands of workers who have processed, launched and landed the space shuttles for more than three decades during an employee appreciation event. On the right is Pilot Doug Hurley. Space shuttle Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the STS-135 mission and America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
Liftoff of Space Shuttle Atlantis on mission STS-98
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis surpasses the full moon for beauty as it roars into the early evening sky trailing a tail of smoke. The upper portion catches the sun'''s rays as it climbs above the horizon and a flock of birds soars above the moon. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis is slowly towed from the Shuttle Landing Facility to an orbiter processing facility at NASA's Kennedy Space Center in Florida for the last time. Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the America's Space Shuttle Program. There to welcome Atlantis home and an employee appreciation event are the thousands of workers who have processed, launched and landed the shuttles for more than three decades. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jim Grossmann
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-08
CAPE CANAVERAL, Fla. -- Members of the media gather for a post-launch news conference held in the Press Site auditorium at NASA's Kennedy Space Center in Florida, following the successful launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here are NASA Public Affairs Officer Mike Curie (left) moderator; Associate Administrator for Space Operations Bill Gerstenmaier, Kennedy Center Director Bob Cabana, Shuttle Program Launch Integration Manager Mike Moses, and Shuttle Launch Director Mike Leinbach. Atlantis began its final flight at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 spotlight space shuttle Atlantis as it nears touchdown for the last time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 spotlight space shuttle Atlantis as it nears touchdown for the last time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
2011-07-21
CAPE CANAVERAL, Fla. -- Xenon lights positioned at the end of Runway 15 spotlight space shuttle Atlantis as it nears touchdown for the last time at NASA's Kennedy Space Center in Florida. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. STS-135 also was the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tom Farrar and Tony Gray
Space Shuttle Program (SSP) Dual Docked Operations (DDO)
NASA Technical Reports Server (NTRS)
Sills, Joel W., Jr.; Bruno, Erica E.
2016-01-01
This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
Construction continues on the RLV complex at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
NASA Technical Reports Server (NTRS)
Orr, James K.; Peltier, Daryl
2010-01-01
Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.
1989-01-01
This 1989 artist's rendering shows how a Shuttle-C would look during launch. As envisioned by Marshall Space Flight Center plarners, the Shuttle-C would be an unmanned heavy-lift cargo vehicle derived from Space Shuttle elements. The vehicle would utilize the basic Shuttle propulsion units (Solid Rocket Boosters, Space Shuttle Main Engine, External Tank), but would replace the Orbiter with an unmanned Shuttle-C Cargo Element (SCE). The SCE would have a payload bay lenght of eighty-two feet, compared to sixty feet for the Orbiter cargo bay, and would be able to deliver 170,000 pound payloads to low Earth orbit, more than three times the Orbiter's capacity.
Space transportation system shuttle turnabout analysis report
NASA Technical Reports Server (NTRS)
Reedy, R. E.
1979-01-01
The progress made and the problems encountered by the various program elements of the shuttle program in achieving the 160 hour ground turnaround goal are presented and evaluated. Task assessment time is measured against the program allocation time.
Aerial photo shows RLV complex at KSC
NASA Technical Reports Server (NTRS)
2000-01-01
This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.
KSC ice/frost/debris assessment for space shuttle mission STS-29R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.
Ice/frost/debris assessment for space shuttle mission STS-26R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1988-01-01
An Ice/Frost/Debris Assessment was conducted for Space Shuttle Mission STS-26R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/Frost conditions are assessed by use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission 26R and their effect on the Space Shuttle Program is documented.
Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.
STS-78 Space Shuttle Mission Report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1996-01-01
The STS-78 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-eighth flight of the Space Shuttle Program, the fifty-third flight since the return-to-flight, and the twentieth flight of the Orbiter Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-79; three SSME's that were designated as serial numbers 2041, 2039, and 2036 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-081. The RSRM's, designated RSRM-55, were installed in each SRB and the individual RSRM's were designated as 360L055A for the left SRB, and 360L055B for the right SRB. The STS-78 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 7, Appendix E. The requirement stated in that document is that each organizational element supporting the Program will report the results of their hardware (and software) evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of this flight was to successfully perform the planned operations of the Life and Microgravity Spacelab experiments. The secondary objectives of this flight were to complete the operations of the Orbital Acceleration Research Experiment (OARE), Biological Research in Canister Unit-Block II (BRIC), and the Shuttle Amateur Radio Experiment II-Configuration C (SAREX-II). The STS-78 mission was planned as a 16-day, plus one day flight plus two contingency days, which were available for weather avoidance or Orbiter contingency operations. The sequence of events for the STS-78 mission is shown in Table 1, and the Space Shuttle Vehicle Management Office Problem Tracking List is shown in Table 2. The Government Furnished Equipment/Flight Crew Equipment (GFE/FCE) Problem Tracking List is shown in Table 3. The Marshall Space Flight Center (MSFC) Problem Tracking List is shown in Table 4. Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (G.m.t.) and mission elapsed time (MET).
2011-07-21
CAPE CANAVERAL, Fla. -- Space shuttle Atlantis' drag chute is illuminated as the spacecraft glides to a stop on Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. CAPE CANAVERAL, Fla. -- Xenons cast a halo of light on space shuttle Atlantis as the spacecraft approaches Runway 15 at NASA's Kennedy Space Center in Florida for the last time. Securing the space shuttle fleet's place in history, Atlantis marked the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board are STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered more than 9,400 pounds of spare parts, equipment and supplies in the Raffaello multi-purpose logistics module that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Carl Winebarger
The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned
NASA Technical Reports Server (NTRS)
Long, Victoria S.; Wright, M. Clara; McDanels, Steve
2015-01-01
The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.
2011-04-21
CAPE CANAVERAL, Fla. -- NASA's Stephanie Stilson (facing camera), flow director for space shuttle Discovery, discusses Discovery's thermal protection system with members of a visiting team from the Smithsonian's National Air and Space Museum in Orbiter Processing Facility-2 at NASA's Kennedy Space Center. NASA Administrator Charles Bolden announced April 12 the facilities where all four shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired in March after completing its 39th mission. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Cory Huston
2011-04-21
CAPE CANAVERAL, Fla. -- Members of a visiting team from the Smithsonian's National Air and Space Museum receive a briefing on the application of the space shuttle's thermal protection system tile in Orbiter Processing Facility-2 at NASA's Kennedy Space Center. NASA Administrator Charles Bolden announced April 12 the facilities where all four shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired in March after completing its 39th mission. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Cory Huston
2011-04-21
CAPE CANAVERAL, Fla. -- Members of a visiting team from the Smithsonian's National Air and Space Museum inspect the aft-end of space shuttle Discovery in Orbiter Processing Facility-2 at NASA's Kennedy Space Center. NASA Administrator Charles Bolden announced April 12 the facilities where all four shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired in March after completing its 39th mission. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Cory Huston
Wireless Sensor Needs in the Space Shuttle and CEV Structures Communities
NASA Technical Reports Server (NTRS)
James, George H., III
2007-01-01
This presentation will clarify some of the structural measurement needs of NASA's Space Shuttle and Crew Exploration Vehicles. Emerging technologies in wireless sensor systems can be of some advantage in both Programs. The presentation will address how wireless instrumentation has helped in the past and what has gone unmeasured on Shuttle due to various limitations. Finally, it will address the needs of the CEV program that can be met with reliable wireless systems, if modular avionics interfaces are provided to accommodate the usual evolving needs of an ambitious space vehicle development program. Examples of the advantages of flight data to support flight certification engineering analyses and of areas where add-on wireless instrumentation can be used will be shown. Without flight instrumentation, it is necessary to retain the conservative assumptions used in the design process. It will be shown how the lessons learned on Space Shuttle for wired and wireless structural measurements apply to the Orion Crew Exploration Vehicle (CEV), which is currently being designed.
Space Shuttle Placement Announcement
2011-04-12
Pilot of the first space shuttle mission, STS-1, Bob Crippen speaks at an event where NASA Administrator Charles Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, in background, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)
Space Shuttle Placement Announcement
2011-04-12
The space shuttle Atlantis is seen in the Orbiter Processing Facility at an event where NASA Administrator Charles Bolden announced where four space shuttle orbiters will be permanently displayed at the conclusion of the Space Shuttle Program, Tuesday, April 12, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The four orbiters, Enterprise, which currently is on display at the Smithsonian's Steven F. Udvar-Hazy Center near Washington Dulles International Airport, will move to the Intrepid Sea, Air & Space Museum in New York, Discovery will move to Udvar-Hazy, Endeavour will be displayed at the California Science Center in Los Angeles and Atlantis, will be displayed at the Kennedy Space Center Visitor’s Complex. Photo Credit: (NASA/Bill Ingalls)
2011-07-21
CAPE CANAVERAL, Fla. -- STS-135 Commander Chris Ferguson, left, and NASA Kennedy Space Center Director Bob Cabana express their gratitude to the thousands of workers who have processed, launched and landed the space shuttles for more than three decades during an employee appreciation event. Space shuttle Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the STS-135 mission and America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
Status of shuttle fuel cell technology program.
NASA Technical Reports Server (NTRS)
Rice, W. E.; Bell, D., III
1972-01-01
The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Bill Moore, Delaware North Parks and Resorts chief operating officer speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Andrea Farmer, Delaware North Parks and Resorts manager of Public Relations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
2013-06-28
CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Bill Moore, Delaware North Parks and Resorts chief operating officer speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann
NASA Materials Research for Extreme Conditions
NASA Technical Reports Server (NTRS)
Sharpe, R. J.; Wright, M. D.
2009-01-01
This Technical Memorandum briefly covers various innovations in materials science and development throughout the course of the American Space program. It details each innovation s discovery and development, explains its significance, and describes the applications of this material either in the time period discovered or today. Topics of research include silazane polymers, solvent-resistant elastomeric polymers (polyurethanes and polyisocyanurates), siloxanes, the Space Shuttle thermal protection system, phenolic-impregnated carbon ablator, and carbon nanotubes. Significance of these developments includes the Space Shuttle, Apollo programs, and the Constellation program.
Legacy of the Space Shuttle from an Aerodynamic and Aerothermodynamic Perspective
NASA Technical Reports Server (NTRS)
Martin, Fred W.
2011-01-01
The development of the Space Shuttle Orbiter thermal protection system heating environment is described from a design stand point that began in the early 1970s. The desire for a light weight, reusable heat shield required the development of new technology, relative to previous manned spacecraft, and a systems approach to the design of the vehicle, entry guidance, and thermal protection system. Several unanticipated issues had to be resolved in both the entry and ascent phases of flight, which are discussed at a high level. During the life of the Program, significant improvements in computing power and numerical methods have been applied to Space Shuttle aerodynamic and aerothermodynamic issues, with the Shuttle Program often being the motivation, and or sponsor of the analysis development.
Aerial views of construction on the RLV hangar at the Shuttle Landing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.
2011-07-21
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward the open door of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- A "towback" vehicle slowly pulls space shuttle Atlantis toward the empty bay of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. A purge unit that pumps conditioned air into a shuttle after landing is connected to Atlantis' aft end. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Space shuttle recommendations based on aircraft maintenance experience
NASA Technical Reports Server (NTRS)
Spears, J. M.; Fox, C. L.
1972-01-01
Space shuttle design recommendations based on aircraft maintenance experience are developed. The recommendations are specifically applied to the landing gear system, nondestructive inspection techniques, hydraulic system design, materials and processes, and program support.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Media gather in the television studio at the NASA News Center to hear members of the Mission Management Team reveal aspects of the troubleshooting and testing being done on the liquid hydrogen tank low-level fuel cut-off sensor. On the stage at right are (from left) Bruce Buckingham, NASA news chief; Wayne Hale, Space Shuttle deputy program manager; John Muratore, manager of Systems Engineering and Integration for the Space Shuttle Program; and Mike Wetmore, director of Space Shuttle Processing. The sensor failed a routine prelaunch check during the launch countdown July 13, causing mission managers to scrub Discovery's first launch attempt. The sensor protects the Shuttle's main engines by triggering their shutdown in the event fuel runs unexpectedly low. The sensor is one of four inside the liquid hydrogen section of the External Tank (ET).
STS-48 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W.
1991-01-01
The STS-48 Space Shuttle Program Mission Report is a summary of the vehicle subsystem operations during the forty-third flight of the Space Shuttle Program and the thirteenth flight of the Orbiter vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-42 (LUT-35); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-046. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each one of the SRB's were designated as 360L018A for the left SRB and 360L018B for the right SRB. The primary objective of the flight was to successfully deploy the Upper Atmospheric Research Satellite (UARS) payload.
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
NASA Technical Reports Server (NTRS)
1972-01-01
The study has concluded that there are very large space program cost savings to be obtained by use of low cost, refurbishable, and standard spacecraft in conjunction with the shuttle transportation system. The range of space program cost savings for three different groups of programs are shown in quantitative terms. The total savings for the 91 programs will range from $13.4 billion to $18.0 billion depending on the degree of hardware standardization. These savings, principally resulting from payload cost reductions, tangibly support the development costs of the shuttle system.
2011-04-12
CAPE CANAVERAL, Fla. -- Kennedy Center Director Bob Cabana addresses the audience after the announcement that revealed the four institutions that will receive shuttle orbiters for permanent display. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-04-12
CAPE CANAVERAL, Fla. -- Kennedy Center Director Bob Cabana appears pleased that Kennedy was awarded shuttle Atlantis to be displayed permanently in Florida. In a ceremony held in front of Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, NASA Administrator Charles Bolden announced the facilities where four shuttle orbiters will be displayed permanently at the conclusion of the Space Shuttle Program. Shuttle Enterprise, the first orbiter built, will move from the Smithsonian's National Air and Space Museum Steven F. Udvar-Hazy Center in Virginia to the Intrepid Sea, Air & Space Museum in New York. The Udvar-Hazy Center will become the new home for shuttle Discovery, which retired after completing its 39th mission in March. Shuttle Endeavour, which is preparing for its final flight at the end of the month, will go to the California Science Center in Los Angeles. Atlantis, which will fly the last planned shuttle mission in June, will be displayed at the Kennedy Space Center Visitor Complex in Florida. The event also commemorated the 30th anniversary of the first space shuttle launch with the launch of shuttle Columbia. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), Mission Convoy Commander Tim Obrien strategies with NASA managers and convoy crew members during a prelanding meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- In the Flight Vehicle Support Building at NASA Kennedy Space Center's Shuttle Landing Facility (SLF), NASA Administrator Charles Bolden discusses strategies with NASA managers and convoy crew members during a prelanding convoy meeting. A Convoy Command Center vehicle will be positioned near shuttle Atlantis on the SLF. The command vehicle is equipped to control critical communications between the crew still aboard Atlantis and the Launch Control Center. The team will monitor the health of the orbiter systems and direct convoy operations made up of about 40 vehicles, including 25 specially designed vehicles to assist the crew in leaving the shuttle, and prepare the vehicle for towing from the SLF to its processing hangar. Securing the space shuttle fleet's place in history, Atlantis will mark the 26th nighttime landing of NASA's Space Shuttle Program and the 78th landing at Kennedy. Atlantis and its crew delivered to the International Space Station the Raffaello multi-purpose logistics module packed with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 is the 33rd and final flight for Atlantis and final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program
NASA Technical Reports Server (NTRS)
Winter, D. L.
1975-01-01
Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.
The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments
NASA Technical Reports Server (NTRS)
Torrez, Jonathan
2009-01-01
The goal of this project was to assist in the creation of the appendix for the book being written about the Space Shuttle that is titled The Legacy of the Space Shuttle Program: Scientific and Engineering Accomplishments. The specific responsibility of the intern was the creation of the human health and performance (life sciences) and space biology sections of the appendix. This included examining and finalizing the list of flights with life sciences and space biology experiments flown aboard them, researching the experiments performed, synopsizing each experiment into two sentences, and placing the synopses into an appendix template. Overall, approximately 70 flights had their experiments synopsized and a good method for researching and construction of the template was established this summer.
2012-09-21
The space shuttle Endeavour, atop the Shuttle Carrier Aircraft, or SCA, lands at Los Angeles International Airport on Tuesday, Sept. 21, 2012 in Los Angeles where it will be placed on public display at the California Science Center. Today's flight marks the final scheduled ferry flight of the Space Shuttle Program. Photo Credit: (NASA/Matt Hedges)
2012-09-21
The space shuttle Endeavour, atop the Shuttle Carrier Aircraft, or SCA, performs a fly-by of Los Angeles International Airport on Tuesday, Sept. 21, 2012 in Los Angeles where it will be placed on public display at the California Science Center. Today's flight marks the final scheduled ferry flight of the Space Shuttle Program. Photo Credit: (NASA/Joel Kowsky)
Space Shuttle Program Tin Whisker Mitigation
NASA Technical Reports Server (NTRS)
Nishimi, Keith
2007-01-01
The discovery of tin whiskers (TW) on space shuttle hardware led to a program to investigate and removal and mitigation of the source of the tin whiskers. A Flight Control System (FCS) avionics box failed during vehicle testing, and was routed to the NASA Shuttle Logistics Depot for testing and disassembly. The internal inspection of the box revealed TW growth visible without magnification. The results of the Tiger Team that was assembled to investigate and develop recommendations are reviewed in this viewgraph presentation.
Main propulsion system test requirements for the two-engine Shuttle-C
NASA Technical Reports Server (NTRS)
Lynn, E. E.; Platt, G. K.
1989-01-01
The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.
2006-07-04
KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Program manager Wayne Hale (far left), NASA Associate Administrator for Space Operations Mission Bill Gerstenmaier (third from left) and Center Director Jim Kennedy (far right) watch the historic ride of Space Shuttle Discovery as it rockets through the sky on mission STS-121 -- the first ever Independence Day launch of a space shuttle. Liftoff was on-time at 2:38 p.m. EDT. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett
NASA's extended duration orbiter medical program
NASA Technical Reports Server (NTRS)
Pool, Sam Lee; Sawin, Charles F.
1992-01-01
The physiological issues involved in safely extending Shuttle flights from 10 to 16 days have been viewed by some as academic. After all, they reasoned, humans already have lived and worked in space for periods exceeding even 28 days in the United States Skylab Program and onboard the Russian space stations. The difference in the Shuttle program is in the physical position of the astronauts as they reenter the Earth's atmosphere. Crewmembers in the earlier Apollo, Skylab, and Russian programs were returned to Earth in the supine position. Space Shuttle crewmembers, in contrast, are seated upright during reentry and landing; reexperiencing the Earth's g forces in this position has far more pronounced effects on the crewmember's physiological functions. The goal of the Extended Duration Orbiter (EDO) Medical Project (EDOMP) has been to ensure that crewmembers maintain physiological reserves sufficient to perform entry, landing, and egress safely. Early in the Shuttle Program, it became clear that physiological deconditioning during space flight could produce significant symptoms upon return to Earth. The signs and symptoms observed during the entry, landing, and egress after Shuttle missions have included very high heart rates and low blood pressures upon standing. Dizziness, 'graying out,' and fainting have occurred on ambulation or shortly thereafter. Other symptoms at landing have included headache, light-headedness, nausea and vomitting, leg cramping, inability to stand for several minutes after wheel-stop, and unsteadiness of gait.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Casper, Assistant Space Shuttle Program manager and Kennedy Center Director Bob Cabana talk with each other during a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Liftoff of Space Shuttle Atlantis on mission STS-98
NASA Technical Reports Server (NTRS)
2001-01-01
Like 10,000 fireworks going off at once, Space Shuttle Atlantis roars into the moonlit sky while clouds of steam and smoke cascade behind. Liftoff occurred at 6:13:02 p.m. EST. Along with a crew of five, Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program. The planned landing is at KSC Feb. 18 about 1:39 p.m. EST.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
2003-06-21
KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Project Explorer - Student experiments aboard the Space Shuttle
NASA Technical Reports Server (NTRS)
Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.
1979-01-01
Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.
The use of the Space Shuttle for land remote sensing
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.
STS-38 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1991-01-01
The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.
2011-07-21
CAPE CANAVERAL, Fla. -- With the assistance of a "towback" vehicle, space shuttle Atlantis inches its way into the empty bay of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- Slowly and carefully, a "towback" vehicle pulls space shuttle Atlantis into the empty bay of Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, employees in Orbiter Processing Facility-2 monitor the alignment of space shuttle Atlantis as it is towed into the empty bay. Once inside the processing facility, Atlantis will be prepared for future public display at Kennedy's Visitor Complex. Atlantis' final return from space at 5:57 a.m. EDT concluded the STS-135 mission, secured the space shuttle fleet's place in history and brought a close to America's Space Shuttle Program. Main gear touchdown was at 5:57:00 a.m. EDT, followed by nose gear touchdown at 5:57:20 a.m., and wheelstop at 5:57:54 a.m. On board were STS-135 Commander Chris Ferguson, Pilot Doug Hurley, and Mission Specialists Sandra Magnus and Rex Walheim. On the 37th shuttle mission to the International Space Station, STS-135 delivered the Raffaello multi-purpose logistics module filled with more than 9,400 pounds of spare parts, equipment and supplies that will sustain station operations for the next year. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles, and also the final mission of the Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
Shuttle Discovery Arrives at Udvar-Hazy
2012-04-19
Dr. Valerie Neal, curator for the shuttle program in the Space History office at the National Air and Space Museum, attends the transfer ceremony for space shuttle Discovery, Thursday, April 19, 2012, at the Smithsonian's Steven F. Udvar-Hazy Center in Chantilly, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, which completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles will take the place of Enterprise at the center to commemorate past achievements in space and to educate and inspire future generations of explorers at the center. Photo Credit: (NASA/Carla Cioffi)
NASA Technical Reports Server (NTRS)
1996-01-01
In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.
Launch of Space Shuttle Atlantis / STS-129 Mission
2009-11-16
STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.
2011-07-21
JSC2011-E-067975 (21 July 2011) --- The sun rises over the space shuttle Atlantis after landing July 21 at the Kennedy Space Center in Florida. The landing completed STS-135, the final mission of the NASA Space Shuttle Program. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2011-07-21
JSC2011-E-067976 (21 July 2011) --- The sun rises over the space shuttle Atlantis after landing July 21 at the Kennedy Space Center in Florida. The landing completed STS-135, the final mission of the NASA Space Shuttle Program. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
2009-03-28
CAPE CANAVERAL, Fla. – STS-119 Commander Lee Archambault shakes hands with NASA Deputy Manager of Space Shuttle Program LeRoy Cain (third from left) as Pilot Tony Antonelli, behind him, is greeted by NASA Associate Administrator for Space Operations Bill Gerstenmaier. Shuttle Launch Director Mike Leinbach, left, and Kennedy Space Center Deputy Director Janet Petro also await their turns to welcome the crew home. Space shuttle Discovery’s landing completed the 13-day, 5.3-million mile journey of the STS-119 mission to the International Space Station. Main gear touchdown was at 3:13:17 p.m. EDT. Nose gear touchdown was at 3:13:40 p.m. and wheels stop was at 3:14:45 p.m. Discovery delivered the final pair of large power-generating solar array wings and the S6 truss segment. The mission was the 28th flight to the station, the 36th flight of Discovery and the 125th in the Space Shuttle Program, as well as the 70th landing at Kennedy. Photo credit: NASA/Kim Shiflett
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, The Band of the United States Air Force Reserve provides entertainment at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, The Band of the United States Air Force Reserve will provide the entertainment at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-21
CAPE CANAVERAL, Fla. -- STS-135 Pilot Doug Hurley expresses his gratitude to the thousands of workers who have processed, launched and landed the space shuttles for more than three decades during an employee appreciation event. On the left is Mission Specialist Rex Walheim and to the right is Commander Chris Ferguson. Space shuttle Atlantis' final return from space at 5:57 a.m. EDT secured the space shuttle fleet's place in history and brought a close to the STS-135 mission and America's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
2011-07-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, The Band of the United States Air Force Reserve provides entertainment at an employee appreciation event for the thousands of workers who have processed, launched and landed America's space shuttles for more than three decades. Following the successful STS-135 mission, space shuttle Atlantis was parked at the celebration site for photo opportunities. STS-135 secured the space shuttle fleet's place in history and brought a close to NASA's Space Shuttle Program. STS-135 delivered spare parts, equipment and supplies to the International Space Station. STS-135 was the 33rd and final flight for Atlantis, which has spent 307 days in space, orbited Earth 4,848 times and traveled 125,935,769 miles. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frankie Martin
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
The flights before the flight - An overview of shuttle astronaut training
NASA Technical Reports Server (NTRS)
Sims, John T.; Sterling, Michael R.
1989-01-01
Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.
Investigation of abort procedures for space shuttle-type vehicles
NASA Technical Reports Server (NTRS)
Powell, R. W.; Eide, D. G.
1974-01-01
An investigation has been made of abort procedures for space shuttle-type vehicles using a point mass trajectory optimization program known as POST. This study determined the minimum time gap between immediate and once-around safe return to the launch site from a baseline due-East launch trajectory for an alternate space shuttle concept which experiences an instantaneous loss of 25 percent of the total main engine thrust.
NASA Technical Reports Server (NTRS)
Henderson, Edward
2001-01-01
The Space Shuttle has been flying for over 20 years and based on the Orbiter design life of 100 missions it should be capable of flying at least 20 years more if we take care of it. The Space Shuttle Development Office established in 1997 has identified those upgrades needed to keep the Shuttle flying safely and efficiently until a new reusable launch vehicle (RLV) is available to meet the agency commitments and goals for human access to space. The upgrade requirements shown in figure 1 are to meet the program goals, support HEDS and next generation space transportation goals while protecting the country 's investment in the Space Shuttle. A major review of the shuttle hardware and processes was conducted in 1999 which identified key shuttle safety improvement priorities, as well as other system upgrades needed to reliably continue to support the shuttle miss ions well into the second decade of this century. The high priority safety upgrades selected for development and study will be addressed in this paper.
CV-990 Landing Systems Research Aircraft (LSRA) during Space Shuttle tire test
1995-08-02
A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), lands on the Edwards AFB main runway in test of the space shuttle landing gear system. In this case, the shuttle tire failed, bursting into flame during the rollout. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. The CV-990 used as the LSRA was built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.
Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.
2004-01-01
The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.
NASA Technical Reports Server (NTRS)
Kemp, N. D.
1983-01-01
Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.