Sample records for programmable microfluidic processor

  1. Digitally programmable microfluidic automaton for multiscale combinatorial mixing and sample processing†

    PubMed Central

    Jensen, Erik C.; Stockton, Amanda M.; Chiesl, Thomas N.; Kim, Jungkyu; Bera, Abhisek; Mathies, Richard A.

    2013-01-01

    A digitally programmable microfluidic Automaton consisting of a 2-dimensional array of pneumatically actuated microvalves is programmed to perform new multiscale mixing and sample processing operations. Large (µL-scale) volume processing operations are enabled by precise metering of multiple reagents within individual nL-scale valves followed by serial repetitive transfer to programmed locations in the array. A novel process exploiting new combining valve concepts is developed for continuous rapid and complete mixing of reagents in less than 800 ms. Mixing, transfer, storage, and rinsing operations are implemented combinatorially to achieve complex assay automation protocols. The practical utility of this technology is demonstrated by performing automated serial dilution for quantitative analysis as well as the first demonstration of on-chip fluorescent derivatization of biomarker targets (carboxylic acids) for microchip capillary electrophoresis on the Mars Organic Analyzer. A language is developed to describe how unit operations are combined to form a microfluidic program. Finally, this technology is used to develop a novel microfluidic 6-sample processor for combinatorial mixing of large sets (>26 unique combinations) of reagents. The digitally programmable microfluidic Automaton is a versatile programmable sample processor for a wide range of process volumes, for multiple samples, and for different types of analyses. PMID:23172232

  2. Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer.

    PubMed

    Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A

    2013-08-20

    A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.

  3. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    PubMed Central

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  4. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.

    PubMed

    Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  5. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  6. Integrated, Continuous Emulsion Creamer.

    PubMed

    Cochrane, Wesley G; Hackler, Amber L; Cavett, Valerie J; Price, Alexander K; Paegel, Brian M

    2017-12-19

    Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.

  7. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics

    PubMed Central

    Yehezkel, Tuval Ben; Rival, Arnaud; Raz, Ofir; Cohen, Rafael; Marx, Zipora; Camara, Miguel; Dubern, Jean-Frédéric; Koch, Birgit; Heeb, Stephan; Krasnogor, Natalio; Delattre, Cyril; Shapiro, Ehud

    2016-01-01

    Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development. PMID:26481354

  8. Punch card programmable microfluidics.

    PubMed

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  9. Punch Card Programmable Microfluidics

    PubMed Central

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word “PUNCHCARD MICROFLUIDICS” using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world. PMID:25738834

  10. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval.

    PubMed

    Jin, Si Hyung; Jeong, Heon-Ho; Lee, Byungjin; Lee, Sung Sik; Lee, Chang-Soo

    2015-01-01

    We present a programmable microfluidic static droplet array (SDA) device that can perform user-defined multistep combinatorial protocols. It combines the passive storage of aqueous droplets without any external control with integrated microvalves for discrete sample dispensing and dispersion-free unit operation. The addressable picoliter-volume reaction is systematically achieved by consecutively merging programmable sequences of reagent droplets. The SDA device is remarkably reusable and able to perform identical enzyme kinetic experiments at least 30 times via automated cross-contamination-free removal of droplets from individual hydrodynamic traps. Taking all these features together, this programmable and reusable universal SDA device will be a general microfluidic platform that can be reprogrammed for multiple applications.

  11. Field-programmable lab-on-a-chip based on microelectrode dot array architecture.

    PubMed

    Wang, Gary; Teng, Daniel; Lai, Yi-Tse; Lu, Yi-Wen; Ho, Yingchieh; Lee, Chen-Yi

    2014-09-01

    The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called 'microelectrode cell', which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top-down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

  12. Programmable DNA-Mediated Multitasking Processor.

    PubMed

    Shu, Jian-Jun; Wang, Qi-Wen; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin

    2015-04-30

    Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.

  13. Microfluidics for rapid cytokeratin immunohistochemical staining in frozen sections.

    PubMed

    Brajkovic, Saska; Dupouy, Diego G; de Leval, Laurence; Gijs, Martin Am

    2017-08-01

    Frozen sections (FS) of tumor samples represent a cornerstone of pathological intraoperative consultation and have an important role in the microscopic analysis of specimens during surgery. So far, immunohistochemical (IHC) stainings on FS have been demonstrated for a few markers using manual methods. Microfluidic technologies have proven to bring substantial improvement in many fields of diagnostics, though only a few microfluidic devices have been designed to improve the performance of IHC assays. In this work, we show optimization of a complete pan-cytokeratin chromogenic immunostaining protocol on FS using a microfluidic tissue processor into a protocol taking <12 min. Our results showed specificity and low levels of background. The dimensions of the microfluidic prototype device are compatible with the space constraints of an intraoperative pathology laboratory. We therefore anticipate that the adoption of microfluidic technologies in the field of surgical pathology can significantly improve the way FSs influence surgical procedures.

  14. Microfluidics for rapid cytokeratin immunohistochemical staining in frozen sections

    PubMed Central

    Brajkovic, Saska; Dupouy, Diego G.; de Leval, Laurence; Gijs, Martin A. M.

    2017-01-01

    Frozen sections (FS) of tumor samples represent a cornerstone of pathological intraoperative consultation and play an important role in the microscopic analysis of specimens during surgery. So far, immunohistochemical (IHC) stainings on FS have been demonstrated for a few markers using manual methods. Microfluidic technologies have proven to bring substantial improvement in many fields of diagnostics, though only a few microfluidic devices have been designed to improve the performance of IHC assays. In this work, we show optimization of a complete pan-cytokeratin chromogenic immunostaining protocol on FS using a microfluidic tissue processor, into a protocol taking less than 12 minutes. Our results showed specificity and low levels of background. The dimensions of the microfluidic prototype device are compatible with the space constraints of an intraoperative pathology laboratory. We therefore anticipate that the adoption of microfluidic technologies in the field of surgical pathology can significantly improve the way FSs influence surgical procedures. PMID:28553936

  15. Reconfigurable lattice mesh designs for programmable photonic processors.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  16. Study of a programmable high speed processor for use on-board satellites

    NASA Astrophysics Data System (ADS)

    Degavre, J. Cl.; Okkes, R.; Gaillat, G.

    The availability of VLSI programmable devices will significantly enhance satellite on-board data processing capabilities. A case study is presented which indicates that computation-intensive processing applications requiring the execution of 100 megainstructions/sec are within the CD power constraints of satellites. It is noted that the current progress in semicustom design technique development and in achievable gate array densities, together with the recent announcement of improved monochip processors, are encouraging the development of an on-board programmable processor architecture able to associate the devices that will appear in communication and military markets.

  17. Reconfigurable virtual electrowetting channels.

    PubMed

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  18. Concept of a programmable maintenance processor applicable to multiprocessing systems

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    A programmable maintenance processor concept applicable to multiprocessing systems has been developed at the NASA Ames Research Center's Dryden Flight Research Facility. This stand-alone-processor is intended to provide support for system and application software testing as well as hardware diagnostics. An initial machanization has been incorporated into the extended aircraft interrogation and display system (XAIDS) which is multiprocessing general-purpose ground support equipment. The XAIDS maintenance processor has independent terminal and printer interfaces and a dedicated magnetic bubble memory that stores system test sequences entered from the terminal. This report describes the hardware and software embodied in this processor and shows a typical application in the check-out of a new XAIDS.

  19. Shuttle cryogenics supply system. Optimization study. Volume 5 B-2, part 1: Appendix programmers manual for math model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An appendix to the programmers manual for the mathematical model pertaining to the design of cryogenic supply systems for spacecraft is presented. The program listing was produced using the EXEC-8 LISTALL processor which lists a file in alphabetical order. Since the processor does not differentiate between subroutines, functions, and procedure definition processors, each subprogram has been relabeled to clearly identify the type of symbolic listing.

  20. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  1. Soft tubular microfluidics for 2D and 3D applications

    PubMed Central

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck

    2017-01-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs. PMID:28923968

  2. Soft tubular microfluidics for 2D and 3D applications

    NASA Astrophysics Data System (ADS)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  3. FPGA-based multiprocessor system for injection molding control.

    PubMed

    Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P; Osornio-Rios, Roque A

    2012-10-18

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected.

  4. System and method for cognitive processing for data fusion

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor)

    2012-01-01

    A system and method for cognitive processing of sensor data. A processor array receiving analog sensor data and having programmable interconnects, multiplication weights, and filters provides for adaptive learning in real-time. A static random access memory contains the programmable data for the processor array and the stored data is modified to provide for adaptive learning.

  5. Framework Programmable Platform for the advanced software development workstation: Framework processor design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, Wes; Sanders, Les

    1991-01-01

    The design of the Framework Processor (FP) component of the Framework Programmable Software Development Platform (FFP) is described. The FFP is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by the model, this Framework Processor will take advantage of an integrated operating environment to provide automated support for the management and control of the software development process so that costly mistakes during the development phase can be eliminated.

  6. Rapid prototyping and evaluation of programmable SIMD SDR processors in LISA

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Liu, Hengzhu; Zhang, Botao; Liu, Dongpei

    2013-03-01

    With the development of international wireless communication standards, there is an increase in computational requirement for baseband signal processors. Time-to-market pressure makes it impossible to completely redesign new processors for the evolving standards. Due to its high flexibility and low power, software defined radio (SDR) digital signal processors have been proposed as promising technology to replace traditional ASIC and FPGA fashions. In addition, there are large numbers of parallel data processed in computation-intensive functions, which fosters the development of single instruction multiple data (SIMD) architecture in SDR platform. So a new way must be found to prototype the SDR processors efficiently. In this paper we present a bit-and-cycle accurate model of programmable SIMD SDR processors in a machine description language LISA. LISA is a language for instruction set architecture which can gain rapid model at architectural level. In order to evaluate the availability of our proposed processor, three common baseband functions, FFT, FIR digital filter and matrix multiplication have been mapped on the SDR platform. Analytical results showed that the SDR processor achieved the maximum of 47.1% performance boost relative to the opponent processor.

  7. Improved Remapping Processor For Digital Imagery

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1991-01-01

    Proposed digital image processor improved version of Programmable Remapper, which performs geometric and radiometric transformations on digital images. Features include overlapping and variably sized preimages. Overcomes some of limitations of image-warping circuit boards implementing only those geometric tranformations expressible in terms of polynomials of limited order. Also overcomes limitations of existing Programmable Remapper and made to perform transformations at video rate.

  8. A programmable power processor for a 25-kW power module

    NASA Technical Reports Server (NTRS)

    Lanier, R., Jr.; Kapustka, R. E.; Bush, J. R., Jr.

    1979-01-01

    A discussion of the power processor for an electrical power system for a 25-kW Power Module that could support the Space Shuttle program during the 1980's and 1990's and which could be a stepping stone to future large space power systems is presented. Trades that led to the selection of a microprocessor-controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Efficiency data from a breadboard programmable power processor are presented, and component selection and design considerations are also discussed.

  9. FPGA-Based Multiprocessor System for Injection Molding Control

    PubMed Central

    Muñoz-Barron, Benigno; Morales-Velazquez, Luis; Romero-Troncoso, Rene J.; Rodriguez-Donate, Carlos; Trejo-Hernandez, Miguel; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.

    2012-01-01

    The plastic industry is a very important manufacturing sector and injection molding is a widely used forming method in that industry. The contribution of this work is the development of a strategy to retrofit control of an injection molding machine based on an embedded system microprocessors sensor network on a field programmable gate array (FPGA) device. Six types of embedded processors are included in the system: a smart-sensor processor, a micro fuzzy logic controller, a programmable logic controller, a system manager, an IO processor and a communication processor. Temperature, pressure and position are controlled by the proposed system and experimentation results show its feasibility and robustness. As validation of the present work, a particular sample was successfully injected. PMID:23202036

  10. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  11. 3D Printed Multimaterial Microfluidic Valve.

    PubMed

    Keating, Steven J; Gariboldi, Maria Isabella; Patrick, William G; Sharma, Sunanda; Kong, David S; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  12. Implementation of a Configurable Fault Tolerant Processor (CFTP) Using Internal Triple Modular Redundancy (TMR)

    DTIC Science & Technology

    2005-12-01

    Upsets in SRAM FPGAs,” Military and Aerospace Applications of Programmable Logic Devices, September 2002. 8. Wakerly , John F,. “Microcomputer...change. The goal of the Configurable Fault Tolerant Processor (CFTP) Project is to explore, develop and demonstrate the applicability of using off-the...develop and demonstrate the applicability of using commercial-of-the-shelf (COTS) Field Programmable Gate Arrays (FPGA) in the design of

  13. Paper pump for passive and programmable transport

    PubMed Central

    Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian

    2013-01-01

    In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999

  14. A programmable power processor for high power space applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.

    1982-01-01

    A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.

  15. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  16. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  17. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  18. Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis.

    PubMed

    Fei, Jiayuan; Wu, Lei; Zhang, Yizhi; Zong, Shenfei; Wang, Zhuyuan; Cui, Yiping

    2017-06-23

    Synergistic effects of dual or multiple drugs have attracted great attention in medical fields, especially in cancer therapies. We provide a programmable microfluidic platform for pharmacokinetic detection of multiple drugs in multiple cells. The well-designed microfluidic platform includes two 2 × 3 microarrays of cell chambers, two gradient generators, and several pneumatic valves. Through the combined use of valves and gradient generators, each chamber can be controlled to infuse different kinds of living cells and drugs with specific concentrations as needed. In our experiments, 6-mercaptopurine (6MP) and methimazole (MMI) were chosen as two drug models and their pharmacokinetic parameters in different living cells were monitored through intracellular SERS spectra, which reflected the molecular structure of these drugs. The dynamic change of SERS fingerprints from 6MP and MMI molecules were recorded during drug metabolism in living cells. The results indicated that both 6MP and MMI molecules were diffused into the cells within 4 min and excreted out after 36 h. Moreover, the intracellular distribution of these drugs was monitored through SERS mapping. Thus, our microfluidic platform simultaneously accomplishes the functions to monitor pharmacokinetic action, distribution, and fingerprint of multiple drugs in multiple cells. Owing to its real-time, rapid-speed, high-precision, and programmable capability of multiple-drug and multicell analysis, such a microfluidic platform has great potential in drug design and development.

  19. Evaluation of peristaltic micromixers for highly integrated microfluidic systems

    PubMed Central

    Kim, Duckjong; Rho, Hoon Suk; Jambovane, Sachin; Shin, Soojeong; Hong, Jong Wook

    2016-01-01

    Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip. PMID:27036809

  20. Evaluation of peristaltic micromixers for highly integrated microfluidic systems

    NASA Astrophysics Data System (ADS)

    Kim, Duckjong; Rho, Hoon Suk; Jambovane, Sachin; Shin, Soojeong; Hong, Jong Wook

    2016-03-01

    Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip.

  1. Design and implementation of projects with Xilinx Zynq FPGA: a practical case

    NASA Astrophysics Data System (ADS)

    Travaglini, R.; D'Antone, I.; Meneghini, S.; Rignanese, L.; Zuffa, M.

    The main advantage when using FPGAs with embedded processors is the availability of additional several high-performance resources in the same physical device. Moreover, the FPGA programmability allows for connect custom peripherals. Xilinx have designed a programmable device named Zynq-7000 (simply called Zynq in the following), which integrates programmable logic (identical to the other Xilinx "serie 7" devices) with a System on Chip (SOC) based on two embedded ARM processors. Since both parts are deeply connected, the designers benefit from performance of hardware SOC and flexibility of programmability as well. In this paper a design developed by the Electronic Design Department at the Bologna Division of INFN will be presented as a practical case of project based on Zynq device. It is developed by using a commercial board called ZedBoard hosting a FMC mezzanine with a 12-bit 500 MS/s ADC. The Zynq FPGA on the ZedBoard receives digital outputs from the ADC and send them to the acquisition PC, after proper formatting, through a Gigabit Ethernet link. The major focus of the paper will be about the methodology to develop a Zynq-based design with the Xilinx Vivado software, enlightening how to configure the SOC and connect it with the programmable logic. Firmware design techniques will be presented: in particular both VHDL and IP core based strategies will be discussed. Further, the procedure to develop software for the embedded processor will be presented. Finally, some debugging tools, like the embedded Logic Analyzer, will be shown. Advantages and disadvantages with respect to adopting FPGA without embedded processors will be discussed.

  2. Design and simulation of programmable relational optoelectronic time-pulse coded processors as base elements for sorting neural networks

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lazareva, Maria V.

    2010-05-01

    In the paper we show that the biologically motivated conception of time-pulse encoding usage gives a set of advantages (single methodological basis, universality, tuning simplicity, learning and programming et al) at creation and design of sensor systems with parallel input-output and processing for 2D structures hybrid and next generations neuro-fuzzy neurocomputers. We show design principles of programmable relational optoelectronic time-pulse encoded processors on the base of continuous logic, order logic and temporal waves processes. We consider a structure that execute analog signal extraction, analog and time-pulse coded variables sorting. We offer optoelectronic realization of such base relational order logic element, that consists of time-pulse coded photoconverters (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutation blocks. We make technical parameters estimations of devices and processors on such base elements by simulation and experimental research: optical input signals power 0.2 - 20 uW, processing time 1 - 10 us, supply voltage 1 - 3 V, consumption power 10 - 100 uW, extended functional possibilities, learning possibilities. We discuss some aspects of possible rules and principles of learning and programmable tuning on required function, relational operation and realization of hardware blocks for modifications of such processors. We show that it is possible to create sorting machines, neural networks and hybrid data-processing systems with untraditional numerical systems and pictures operands on the basis of such quasiuniversal hardware simple blocks with flexible programmable tuning.

  3. Data preprocessing for determining outer/inner parallelization in the nested loop problem using OpenMP

    NASA Astrophysics Data System (ADS)

    Handhika, T.; Bustamam, A.; Ernastuti, Kerami, D.

    2017-07-01

    Multi-thread programming using OpenMP on the shared-memory architecture with hyperthreading technology allows the resource to be accessed by multiple processors simultaneously. Each processor can execute more than one thread for a certain period of time. However, its speedup depends on the ability of the processor to execute threads in limited quantities, especially the sequential algorithm which contains a nested loop. The number of the outer loop iterations is greater than the maximum number of threads that can be executed by a processor. The thread distribution technique that had been found previously only be applied by the high-level programmer. This paper generates a parallelization procedure for low-level programmer in dealing with 2-level nested loop problems with the maximum number of threads that can be executed by a processor is smaller than the number of the outer loop iterations. Data preprocessing which is related to the number of the outer loop and the inner loop iterations, the computational time required to execute each iteration and the maximum number of threads that can be executed by a processor are used as a strategy to determine which parallel region that will produce optimal speedup.

  4. Programmable diagnostic devices made from paper and tape.

    PubMed

    Martinez, Andres W; Phillips, Scott T; Nie, Zhihong; Cheng, Chao-Min; Carrilho, Emanuel; Wiley, Benjamin J; Whitesides, George M

    2010-10-07

    This paper describes three-dimensional microfluidic paper-based analytical devices (3-D microPADs) that can be programmed (postfabrication) by the user to generate multiple patterns of flow through them. These devices are programmed by pressing single-use 'on' buttons, using a stylus or a ballpoint pen. Pressing a button closes a small space (gap) between two vertically aligned microfluidic channels, and allows fluids to wick from one channel to the other. These devices are simple to fabricate, and are made entirely out of paper and double-sided adhesive tape. Programmable devices expand the capabilities of microPADs and provide a simple method for controlling the movement of fluids in paper-based channels. They are the conceptual equivalent of field-programmable gate arrays (FPGAs) widely used in electronics.

  5. A computational approach to real-time image processing for serial time-encoded amplified microscopy

    NASA Astrophysics Data System (ADS)

    Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi

    2016-03-01

    High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.

  6. Master/Programmable-Slave Computer

    NASA Technical Reports Server (NTRS)

    Smaistrla, David; Hall, William A.

    1990-01-01

    Unique modular computer features compactness, low power, mass storage of data, multiprocessing, and choice of various input/output modes. Master processor communicates with user via usual keyboard and video display terminal. Coordinates operations of as many as 24 slave processors, each dedicated to different experiment. Each slave circuit card includes slave microprocessor and assortment of input/output circuits for communication with external equipment, with master processor, and with other slave processors. Adaptable to industrial process control with selectable degrees of automatic control, automatic and/or manual monitoring, and manual intervention.

  7. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  8. ELIPS: Toward a Sensor Fusion Processor on a Chip

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James

    1998-01-01

    The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.

  9. An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Mcvey, E. S.

    1977-01-01

    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.

  10. Advanced development of a programmable power processor

    NASA Technical Reports Server (NTRS)

    Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.

    1980-01-01

    The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.

  11. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  12. Programmable architecture for pixel level processing tasks in lightweight strapdown IR seekers

    NASA Astrophysics Data System (ADS)

    Coates, James L.

    1993-06-01

    Typical processing tasks associated with missile IR seeker applications are described, and a straw man suite of algorithms is presented. A fully programmable multiprocessor architecture is realized on a multimedia video processor (MVP) developed by Texas Instruments. The MVP combines the elements of RISC, floating point, advanced DSPs, graphics processors, display and acquisition control, RAM, and external memory. Front end pixel level tasks typical of missile interceptor applications, operating on 256 x 256 sensor imagery, can be processed at frame rates exceeding 100 Hz in a single MVP chip.

  13. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device

    PubMed Central

    Tangen, Uwe; Sharma, Abhishek

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library. PMID:25759752

  14. On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.

    PubMed

    Tangen, Uwe; Sharma, Abhishek; Wagler, Patrick; McCaskill, John S

    2015-01-01

    We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s-1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.

  15. Implementing the PM Programming Language using MPI and OpenMP - a New Tool for Programming Geophysical Models on Parallel Systems

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2015-04-01

    PM (Parallel Models) is a new parallel programming language specifically designed for writing environmental and geophysical models. The language is intended to enable implementers to concentrate on the science behind the model rather than the details of running on parallel hardware. At the same time PM leaves the programmer in control - all parallelisation is explicit and the parallel structure of any given program may be deduced directly from the code. This paper describes a PM implementation based on the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards, looking at issues involved with translating the PM parallelisation model to MPI/OpenMP protocols and considering performance in terms of the competing factors of finer-grained parallelisation and increased communication overhead. In order to maximise portability, the implementation stays within the MPI 1.3 standard as much as possible, with MPI-2 MPI-IO file handling the only significant exception. Moreover, it does not assume a thread-safe implementation of MPI. PM adopts a two-tier abstract representation of parallel hardware. A PM processor is a conceptual unit capable of efficiently executing a set of language tasks, with a complete parallel system consisting of an abstract N-dimensional array of such processors. PM processors may map to single cores executing tasks using cooperative multi-tasking, to multiple cores or even to separate processing nodes, efficiently sharing tasks using algorithms such as work stealing. While tasks may move between hardware elements within a PM processor, they may not move between processors without specific programmer intervention. Tasks are assigned to processors using a nested parallelism approach, building on ideas from Reyes et al. (2009). The main program owns all available processors. When the program enters a parallel statement then either processors are divided out among the newly generated tasks (number of new tasks < number of processors) or tasks are divided out among the available processors (number of tasks > number of processors). Nested parallel statements may further subdivide the processor set owned by a given task. Tasks or processors are distributed evenly by default, but uneven distributions are possible under programmer control. It is also possible to explicitly enable child tasks to migrate within the processor set owned by their parent task, reducing load unbalancing at the potential cost of increased inter-processor message traffic. PM incorporates some programming structures from the earlier MIST language presented at a previous EGU General Assembly, while adopting a significantly different underlying parallelisation model and type system. PM code is available at www.pm-lang.org under an unrestrictive MIT license. Reference Ruymán Reyes, Antonio J. Dorta, Francisco Almeida, Francisco de Sande, 2009. Automatic Hybrid MPI+OpenMP Code Generation with llc, Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer Science Volume 5759, 185-195

  16. A fully reconfigurable photonic integrated signal processor

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2016-03-01

    Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.

  17. Neurovision processor for designing intelligent sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1992-03-01

    A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.

  18. Dynamically programmable cache

    NASA Astrophysics Data System (ADS)

    Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas

    1998-10-01

    Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).

  19. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.

    PubMed

    Sochol, Ryan D; Lu, Albert; Lei, Jonathan; Iwai, Kosuke; Lee, Luke P; Lin, Liwei

    2014-05-07

    Self-regulating fluidic components are critical to the advancement of microfluidic processors for chemical and biological applications, such as sample preparation on chip, point-of-care molecular diagnostics, and implantable drug delivery devices. Although researchers have developed a wide range of components to enable flow rectification in fluidic systems, engineering microfluidic diodes that function at the low Reynolds number (Re) flows and smaller scales of emerging micro/nanofluidic platforms has remained a considerable challenge. Recently, researchers have demonstrated microfluidic diodes that utilize high numbers of suspended microbeads as dynamic resistive elements; however, using spherical particles to block fluid flow through rectangular microchannels is inherently limited. To overcome this issue, here we present a single-layer microfluidic bead-based diode (18 μm in height) that uses a targeted circular-shaped microchannel for the docking of a single microbead (15 μm in diameter) to rectify fluid flow under low Re conditions. Three-dimensional simulations and experimental results revealed that adjusting the docking channel geometry and size to better match the suspended microbead greatly increased the diodicity (Di) performance. Arraying multiple bead-based diodes in parallel was found to adversely affect system efficacy, while arraying multiple diodes in series was observed to enhance device performance. In particular, systems consisting of four microfluidic bead-based diodes with targeted circular-shaped docking channels in series revealed average Di's ranging from 2.72 ± 0.41 to 10.21 ± 1.53 corresponding to Re varying from 0.1 to 0.6.

  20. Low-Latency Embedded Vision Processor (LLEVS)

    DTIC Science & Technology

    2016-03-01

    26 3.2.3 Task 3 Projected Performance Analysis of FPGA- based Vision Processor ........... 31 3.2.3.1 Algorithms Latency Analysis ...Programmable Gate Array Custom Hardware for Real- Time Multiresolution Analysis . ............................................... 35...conduct data analysis for performance projections. The data acquired through measurements , simulation and estimation provide the requisite platform for

  1. Self-Calibrating and Remote Programmable Signal Conditioning Amplifier System and Method

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Hallberg, Carl G. (Inventor); Simpson, Howard J., III (Inventor); Thayer, Stephen W. (Inventor)

    1998-01-01

    A self-calibrating, remote programmable signal conditioning amplifier system employs information read from a memory attached to a measurement transducer for automatic calibration. The signal conditioning amplifier is self-calibrated on a continuous basis through use of a dual input path arrangement, with each path containing a multiplexer and a programmable amplifier. A digital signal processor controls operation of the system such that a transducer signal is applied to one of the input paths, while one or more calibration signals are applied to the second input path. Once the second path is calibrated, the digital signal processor switches the transducer signal to the second path. and then calibrates the first path. This process is continually repeated so that each path is calibrated on an essentially continuous basis. Dual output paths are also employed which are calibrated in the same manner. The digital signal processor also allows the implementation of a variety of digital filters which are either programmed into the system or downloaded by an operator, and performs up to eighth order linearization.

  2. Embedded System Implementation on FPGA System With μCLinux OS

    NASA Astrophysics Data System (ADS)

    Fairuz Muhd Amin, Ahmad; Aris, Ishak; Syamsul Azmir Raja Abdullah, Raja; Kalos Zakiah Sahbudin, Ratna

    2011-02-01

    Embedded systems are taking on more complicated tasks as the processors involved become more powerful. The embedded systems have been widely used in many areas such as in industries, automotives, medical imaging, communications, speech recognition and computer vision. The complexity requirements in hardware and software nowadays need a flexibility system for further enhancement in any design without adding new hardware. Therefore, any changes in the design system will affect the processor that need to be changed. To overcome this problem, a System On Programmable Chip (SOPC) has been designed and developed using Field Programmable Gate Array (FPGA). A softcore processor, NIOS II 32-bit RISC, which is the microprocessor core was utilized in FPGA system together with the embedded operating system(OS), μClinux. In this paper, an example of web server is explained and demonstrated

  3. Design of a MIMD neural network processor

    NASA Astrophysics Data System (ADS)

    Saeks, Richard E.; Priddy, Kevin L.; Pap, Robert M.; Stowell, S.

    1994-03-01

    The Accurate Automation Corporation (AAC) neural network processor (NNP) module is a fully programmable multiple instruction multiple data (MIMD) parallel processor optimized for the implementation of neural networks. The AAC NNP design fully exploits the intrinsic sparseness of neural network topologies. Moreover, by using a MIMD parallel processing architecture one can update multiple neurons in parallel with efficiency approaching 100 percent as the size of the network increases. Each AAC NNP module has 8 K neurons and 32 K interconnections and is capable of 140,000,000 connections per second with an eight processor array capable of over one billion connections per second.

  4. Shared performance monitor in a multiprocessor system

    DOEpatents

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  5. The LOGO Processor; A Guide for System Programmers.

    ERIC Educational Resources Information Center

    Weiner, Walter B.; And Others

    A detailed specification of the LOGO programing system is given. The level of description is intended to enable system programers to design LOGO processors of their own. The discussion of storage allocation and garbage collection algorithms is virtually complete. An annotated LOGO system listing for the PDP-10 computer system may be obtained on…

  6. Case for a field-programmable gate array multicore hybrid machine for an image-processing application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ives, Robert W.; Lira, Javier; Molina, Carlos

    2011-01-01

    General purpose computer designers have recently begun adding cores to their processors in order to increase performance. For example, Intel has adopted a homogeneous quad-core processor as a base for general purpose computing. PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high level. Can modern image-processing algorithms utilize these additional cores? On the other hand, modern advancements in configurable hardware, most notably field-programmable gate arrays (FPGAs) have created an interesting question for general purpose computer designers. Is there a reason to combine FPGAs with multicore processors to create an FPGA multicore hybrid general purpose computer? Iris matching, a repeatedly executed portion of a modern iris-recognition algorithm, is parallelized on an Intel-based homogeneous multicore Xeon system, a heterogeneous multicore Cell system, and an FPGA multicore hybrid system. Surprisingly, the cheaper PS3 slightly outperforms the Intel-based multicore on a core-for-core basis. However, both multicore systems are beaten by the FPGA multicore hybrid system by >50%.

  7. Programmed optoelectronic time-pulse coded relational processor as base element for sorting neural networks

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.

    2007-04-01

    In the paper we show that the biologically motivated conception of the use of time-pulse encoding gives the row of advantages (single methodological basis, universality, simplicity of tuning, training and programming et al) at creation and designing of sensor systems with parallel input-output and processing, 2D-structures of hybrid and neuro-fuzzy neurocomputers of next generations. We show principles of construction of programmable relational optoelectronic time-pulse coded processors, continuous logic, order logic and temporal waves processes, that lie in basis of the creation. We consider structure that executes extraction of analog signal of the set grade (order), sorting of analog and time-pulse coded variables. We offer optoelectronic realization of such base relational elements of order logic, which consists of time-pulse coded phototransformers (pulse-width and pulse-phase modulators) with direct and complementary outputs, sorting network on logical elements and programmable commutations blocks. We make estimations of basic technical parameters of such base devices and processors on their basis by simulation and experimental research: power of optical input signals - 0.200-20 μW, processing time - microseconds, supply voltage - 1.5-10 V, consumption power - hundreds of microwatts per element, extended functional possibilities, training possibilities. We discuss some aspects of possible rules and principles of training and programmable tuning on the required function, relational operation and realization of hardware blocks for modifications of such processors. We show as on the basis of such quasiuniversal hardware simple block and flexible programmable tuning it is possible to create sorting machines, neural networks and hybrid data-processing systems with the untraditional numerical systems and pictures operands.

  8. An acceleration framework for synthetic aperture radar algorithms

    NASA Astrophysics Data System (ADS)

    Kim, Youngsoo; Gloster, Clay S.; Alexander, Winser E.

    2017-04-01

    Algorithms for radar signal processing, such as Synthetic Aperture Radar (SAR) are computationally intensive and require considerable execution time on a general purpose processor. Reconfigurable logic can be used to off-load the primary computational kernel onto a custom computing machine in order to reduce execution time by an order of magnitude as compared to kernel execution on a general purpose processor. Specifically, Field Programmable Gate Arrays (FPGAs) can be used to accelerate these kernels using hardware-based custom logic implementations. In this paper, we demonstrate a framework for algorithm acceleration. We used SAR as a case study to illustrate the potential for algorithm acceleration offered by FPGAs. Initially, we profiled the SAR algorithm and implemented a homomorphic filter using a hardware implementation of the natural logarithm. Experimental results show a linear speedup by adding reasonably small processing elements in Field Programmable Gate Array (FPGA) as opposed to using a software implementation running on a typical general purpose processor.

  9. Programmable Bio-Nano-Chip Systems for Serum CA125 Quantification: Towards Ovarian Cancer Diagnostics at the Point-of-Care

    PubMed Central

    Raamanathan, Archana; Simmons, Glennon W.; Christodoulides, Nicolaos; Floriano, Pierre N.; Furmaga, Wieslaw B.; Redding, Spencer W.; Lu, Karen H.; Bast, Robert C.; McDevitt, John T.

    2013-01-01

    Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, modular (Programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multi-modal and multi-marker screening approaches. In the p-BNC, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a 3-D microfluidic environment, the p-BNC operating variables (incubation times, flow rates and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (Inter- and intra-assay precision of 1.2% and 1.9% and LODs of 1.0 U/mL) was achieved on this mini-sensor ensemble. Further validation with sera of ovarian cancer patients (n=20) demonstrated excellent correlation (R2 = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics. PMID:22490510

  10. Programmable bio-nano-chip systems for serum CA125 quantification: toward ovarian cancer diagnostics at the point-of-care.

    PubMed

    Raamanathan, Archana; Simmons, Glennon W; Christodoulides, Nicolaos; Floriano, Pierre N; Furmaga, Wieslaw B; Redding, Spencer W; Lu, Karen H; Bast, Robert C; McDevitt, John T

    2012-05-01

    Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive, and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, and modular (programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multimodal and multimarker screening approaches. In the p-BNCs, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing, and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a three-dimensional microfluidic environment, the p-BNC operating variables (incubation times, flow rates, and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (inter- and intra-assay precision of 1.2% and 1.9% and limit of detection of 1.0 U/mL) was achieved on this minisensor ensemble. Furthermore, validation with sera of patients with ovarian cancer (n = 20) showed excellent correlation (R(2) = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise, and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics.

  11. Software Engineering Laboratory (SEL) programmer workbench phase 1 evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Phase 1 of the SEL programmer workbench consists of the design of the following three components: communications link, command language processor, and collection of software aids. A brief description, and evaluation, and recommendations are presented for each of these three components.

  12. Tailoring Software for Multiple Processor Systems

    DTIC Science & Technology

    1982-10-01

    resource management decisions . Despite the lack of programming support, the use of multiple processor systems has grown sub- -stantially. Software has...making resource management decisions . Specifically, program- 1 mers need not allocate specific hardware resources to individual program components...Instead, such allocation decisions are automatically made based on high-level resource directives stated by ap- plication programmers, where each directive

  13. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  14. Computerized microfluidic cell culture using elastomeric channels and Braille displays.

    PubMed

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S; Takayama, Shuichi

    2004-11-09

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use.

  15. Computerized microfluidic cell culture using elastomeric channels and Braille displays

    PubMed Central

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S.; Takayama, Shuichi

    2004-01-01

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use. PMID:15514025

  16. A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive.

    PubMed

    Silva, Ryan; Bhatia, Swapnil; Densmore, Douglas

    2016-07-05

    Microfluidic devices, by definition, are required to move liquids from one physical location to another. Given a finite and frequently fixed set of physical channels to route fluids, a primitive design element that allows reconfigurable routing of that fluid from any of n input ports to any n output ports will dramatically change the paradigms by which these chips are designed and applied. Furthermore, if these elements are "regular" regarding their design, the programming and fabrication of these elements becomes scalable. This paper presents such a design element called a transposer. We illustrate the design, fabrication and operation of a single transposer. We then scale this design to create a programmable fabric towards a general-purpose, reconfigurable microfluidic platform analogous to the Field Programmable Gate Array (FPGA) found in digital electronics.

  17. Multiple Embedded Processors for Fault-Tolerant Computing

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary; Watson, Robert; Katanyoutanant, Sunant; Burke, Gary; Wang, Mandy

    2005-01-01

    A fault-tolerant computer architecture has been conceived in an effort to reduce vulnerability to single-event upsets (spurious bit flips caused by impingement of energetic ionizing particles or photons). As in some prior fault-tolerant architectures, the redundancy needed for fault tolerance is obtained by use of multiple processors in one computer. Unlike prior architectures, the multiple processors are embedded in a single field-programmable gate array (FPGA). What makes this new approach practical is the recent commercial availability of FPGAs that are capable of having multiple embedded processors. A working prototype (see figure) consists of two embedded IBM PowerPC 405 processor cores and a comparator built on a Xilinx Virtex-II Pro FPGA. This relatively simple instantiation of the architecture implements an error-detection scheme. A planned future version, incorporating four processors and two comparators, would correct some errors in addition to detecting them.

  18. Reduction of solar vector magnetograph data using a microMSP array processor

    NASA Technical Reports Server (NTRS)

    Kineke, Jack

    1990-01-01

    The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.

  19. Networked Workstations and Parallel Processing Utilizing Functional Languages

    DTIC Science & Technology

    1993-03-01

    program . This frees the programmer to concentrate on what the program is to do, not how the program is...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially pro- grammed, single processor approach to problem...traditional ’von Neumann’ architecture uses a timer based (e.g., the program counter), sequentially programmed , single processor approach to

  20. SPAR thermal analysis processors reference manual, system level 16. Volume 1: Program executive. Volume 2: Theory. Volume 3: Demonstration problems. Volume 4: Experimental thermal element capability. Volume 5: Programmer reference

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.

    1979-01-01

    User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.

  1. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.

    PubMed

    Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil

    2007-06-01

    A 64-channel neural processor has been developed for use in an implantable neural recording microsystem. In the Scan Mode, the processor is capable of detecting neural spikes by programmable positive, negative, or window thresholding. Spikes are tagged with their associated channel addresses and formed into 18-bit data words that are sent serially to the external host. In the Monitor Mode, two channels can be selected and viewed at high resolution for studies where the entire signal is of interest. The processor runs from a 3-V supply and a 2-MHz clock, with a channel scan rate of 64 kS/s and an output bit rate of 2 Mbps.

  2. A wideband software reconfigurable modem

    NASA Astrophysics Data System (ADS)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  3. The Transition to a Many-core World

    NASA Astrophysics Data System (ADS)

    Mattson, T. G.

    2012-12-01

    The need to increase performance within a fixed energy budget has pushed the computer industry to many core processors. This is grounded in the physics of computing and is not a trend that will just go away. It is hard to overestimate the profound impact of many-core processors on software developers. Virtually every facet of the software development process will need to change to adapt to these new processors. In this talk, we will look at many-core hardware and consider its evolution from a perspective grounded in the CPU. We will show that the number of cores will inevitably increase, but in addition, a quest to maximize performance per watt will push these cores to be heterogeneous. We will show that the inevitable result of these changes is a computing landscape where the distinction between the CPU and the GPU is blurred. We will then consider the much more pressing problem of software in a many core world. Writing software for heterogeneous many core processors is well beyond the ability of current programmers. One solution is to support a software development process where programmer teams are split into two distinct groups: a large group of domain-expert productivity programmers and much smaller team of computer-scientist efficiency programmers. The productivity programmers work in terms of high level frameworks to express the concurrency in their problems while avoiding any details for how that concurrency is exploited. The second group, the efficiency programmers, map applications expressed in terms of these frameworks onto the target many-core system. In other words, we can solve the many-core software problem by creating a software infrastructure that only requires a small subset of programmers to become master parallel programmers. This is different from the discredited dream of automatic parallelism. Note that productivity programmers still need to define the architecture of their software in a way that exposes the concurrency inherent in their problem. We submit that domain-expert programmers understand "what is concurrent". The parallel programming problem emerges from the complexity of "how that concurrency is utilized" on real hardware. The research described in this talk was carried out in collaboration with the ParLab at UC Berkeley. We use a design pattern language to define the high level frameworks exposed to domain-expert, productivity programmers. We then use tools from the SEJITS project (Selective embedded Just In time Specializers) to build the software transformation tool chains thst turn these framework-oriented designs into highly efficient code. The final ingredient is a software platform to serve as a target for these tools. One such platform is the OpenCL industry standard for programming heterogeneous systems. We will briefly describe OpenCL and show how it provides a vendor-neutral software target for current and future many core systems; both CPU-based, GPU-based, and heterogeneous combinations of the two.

  4. A programmable systolic array correlator as a trigger processor for electron pairs in rich (ring image Cherenkov) counters

    NASA Astrophysics Data System (ADS)

    Männer, R.

    1989-12-01

    This paper describes a systolic array processor for a ring image Cherenkov counter which is capable of identifying pairs of electron circles with a known radius and a certain minimum distance within 15 μs. The processor is a very flexible and fast device. It consists of 128 x 128 processing elements (PEs), where one PE is assigned to each pixel of the image. All PEs run synchronously at 40 MHz. The identification of electron circles is done by correlating the detector image with the proper circle circumference. Circle centers are found by peak detection in the correlation result. A second correlation with a circle disc allows circles of closed electron pairs to be rejected. The trigger decision is generated if a pseudo adder detects at least two remaining circles. The device is controlled by a freely programmable sequencer. A VLSI chip containing 8 x 8 PEs is being developed using a VENUS design system and will be produced in 2μ CMOS technology.

  5. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications.

    PubMed

    Lake, John R; Heyde, Keith C; Ruder, Warren C

    2017-01-01

    Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.

  6. Predicting the behavior of microfluidic circuits made from discrete elements

    PubMed Central

    Bhargava, Krisna C.; Thompson, Bryant; Iqbal, Danish; Malmstadt, Noah

    2015-01-01

    Microfluidic devices can be used to execute a variety of continuous flow analytical and synthetic chemistry protocols with a great degree of precision. The growing availability of additive manufacturing has enabled the design of microfluidic devices with new functionality and complexity. However, these devices are prone to larger manufacturing variation than is typical of those made with micromachining or soft lithography. In this report, we demonstrate a design-for-manufacturing workflow that addresses performance variation at the microfluidic element and circuit level, in context of mass-manufacturing and additive manufacturing. Our approach relies on discrete microfluidic elements that are characterized by their terminal hydraulic resistance and associated tolerance. Network analysis is employed to construct simple analytical design rules for model microfluidic circuits. Monte Carlo analysis is employed at both the individual element and circuit level to establish expected performance metrics for several specific circuit configurations. A protocol based on osmometry is used to experimentally probe mixing behavior in circuits in order to validate these approaches. The overall workflow is applied to two application circuits with immediate use at on the bench-top: series and parallel mixing circuits that are modularly programmable, virtually predictable, highly precise, and operable by hand. PMID:26516059

  7. Low-cost feedback-controlled syringe pressure pumps for microfluidics applications

    PubMed Central

    Lake, John R.; Heyde, Keith C.

    2017-01-01

    Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips. PMID:28369134

  8. A distributed fault-tolerant signal processor /FTSP/

    NASA Astrophysics Data System (ADS)

    Bonneau, R. J.; Evett, R. C.; Young, M. J.

    1980-01-01

    A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.

  9. Electrically reconfigurable logic array

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1982-01-01

    To compose the complicated systems using algorithmically specialized logic circuits or processors, one solution is to perform relational computations such as union, division and intersection directly on hardware. These relations can be pipelined efficiently on a network of processors having an array configuration. These processors can be designed and implemented with a few simple cells. In order to determine the state-of-the-art in Electrically Reconfigurable Logic Array (ERLA), a survey of the available programmable logic array (PLA) and the logic circuit elements used in such arrays was conducted. Based on this survey some recommendations are made for ERLA devices.

  10. Is random access memory random?

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.

  11. Embedded processor extensions for image processing

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Paindavoine, Michel; Letellier, Laurent; Heyrman, Barthélémy

    2008-04-01

    The advent of camera phones marks a new phase in embedded camera sales. By late 2009, the total number of camera phones will exceed that of both conventional and digital cameras shipped since the invention of photography. Use in mobile phones of applications like visiophony, matrix code readers and biometrics requires a high degree of component flexibility that image processors (IPs) have not, to date, been able to provide. For all these reasons, programmable processor solutions have become essential. This paper presents several techniques geared to speeding up image processors. It demonstrates that a gain of twice is possible for the complete image acquisition chain and the enhancement pipeline downstream of the video sensor. Such results confirm the potential of these computing systems for supporting future applications.

  12. CoNNeCT Baseband Processor Module

    NASA Technical Reports Server (NTRS)

    Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.

    2011-01-01

    A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.

  13. Compilation of Abstracts of Theses Submitted by Candidates for Degrees.

    DTIC Science & Technology

    1984-06-01

    Management System for the TI - 59 Programmable Calculator Kersh, T. B. Signal Processor Interface 65 CPT, USA Simulation of the AN/SPY-lA Radar...DESIGN AND IMPLEMENTATION OF A BASIC CROSS-COMPILER AND VIRTUAL MEMORY MANAGEMENT SYSTEM FOR THE TI - 59 PROGRAMMABLE CALCULATOR Mark R. Kindl Captain...Academy, 1974 The instruction set of the TI - 59 Programmable Calculator bears a close similarity to that of an assembler. Though most of the calculator

  14. Parallelizing Compiler Framework and API for Power Reduction and Software Productivity of Real-Time Heterogeneous Multicores

    NASA Astrophysics Data System (ADS)

    Hayashi, Akihiro; Wada, Yasutaka; Watanabe, Takeshi; Sekiguchi, Takeshi; Mase, Masayoshi; Shirako, Jun; Kimura, Keiji; Kasahara, Hironori

    Heterogeneous multicores have been attracting much attention to attain high performance keeping power consumption low in wide spread of areas. However, heterogeneous multicores force programmers very difficult programming. The long application program development period lowers product competitiveness. In order to overcome such a situation, this paper proposes a compilation framework which bridges a gap between programmers and heterogeneous multicores. In particular, this paper describes the compilation framework based on OSCAR compiler. It realizes coarse grain task parallel processing, data transfer using a DMA controller, power reduction control from user programs with DVFS and clock gating on various heterogeneous multicores from different vendors. This paper also evaluates processing performance and the power reduction by the proposed framework on a newly developed 15 core heterogeneous multicore chip named RP-X integrating 8 general purpose processor cores and 3 types of accelerator cores which was developed by Renesas Electronics, Hitachi, Tokyo Institute of Technology and Waseda University. The framework attains speedups up to 32x for an optical flow program with eight general purpose processor cores and four DRP(Dynamically Reconfigurable Processor) accelerator cores against sequential execution by a single processor core and 80% of power reduction for the real-time AAC encoding.

  15. Distributed memory compiler methods for irregular problems: Data copy reuse and runtime partitioning

    NASA Technical Reports Server (NTRS)

    Das, Raja; Ponnusamy, Ravi; Saltz, Joel; Mavriplis, Dimitri

    1991-01-01

    Outlined here are two methods which we believe will play an important role in any distributed memory compiler able to handle sparse and unstructured problems. We describe how to link runtime partitioners to distributed memory compilers. In our scheme, programmers can implicitly specify how data and loop iterations are to be distributed between processors. This insulates users from having to deal explicitly with potentially complex algorithms that carry out work and data partitioning. We also describe a viable mechanism for tracking and reusing copies of off-processor data. In many programs, several loops access the same off-processor memory locations. As long as it can be verified that the values assigned to off-processor memory locations remain unmodified, we show that we can effectively reuse stored off-processor data. We present experimental data from a 3-D unstructured Euler solver run on iPSC/860 to demonstrate the usefulness of our methods.

  16. Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosetto, Dario B.

    1998-10-30

    The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelfmore » FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.« less

  17. A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi

    1997-01-01

    A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.

  18. A floating-point/multiple-precision processor for airborne applications

    NASA Technical Reports Server (NTRS)

    Yee, R.

    1982-01-01

    A compact input output (I/O) numerical processor capable of performing floating-point, multiple precision and other arithmetic functions at execution times which are at least 100 times faster than comparable software emulation is described. The I/O device is a microcomputer system containing a 16 bit microprocessor, a numerical coprocessor with eight 80 bit registers running at a 5 MHz clock rate, 18K random access memory (RAM) and 16K electrically programmable read only memory (EPROM). The processor acts as an intelligent slave to the host computer and can be programmed in high order languages such as FORTRAN and PL/M-86.

  19. Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James

    2000-01-01

    The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.

  20. Analog Delta-Back-Propagation Neural-Network Circuitry

    NASA Technical Reports Server (NTRS)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  1. Polymer-Based Dense Fluidic Networks for High Throughput Screening with Ultrasensitive Fluorescence Detection

    PubMed Central

    Okagbare, Paul I.; Soper, Steven A.

    2011-01-01

    Microfluidics represents a viable platform for performing High Throughput Screening (HTS) due to its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1–10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40X microscope objective (numerical aperture = 0.75) created a FoV of 200 μm, providing the ability to interrogate ~25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device (EMCCD). The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, APE1, used as a model screening assay. PMID:20872611

  2. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    NASA Astrophysics Data System (ADS)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  3. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    PubMed Central

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-01-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564

  4. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    PubMed Central

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-01-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay. PMID:28760972

  5. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

    PubMed

    Cole, Russell H; Tang, Shi-Yang; Siltanen, Christian A; Shahi, Payam; Zhang, Jesse Q; Poust, Sean; Gartner, Zev J; Abate, Adam R

    2017-08-15

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  6. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells

    NASA Astrophysics Data System (ADS)

    Cole, Russell H.; Tang, Shi-Yang; Siltanen, Christian A.; Shahi, Payam; Zhang, Jesse Q.; Poust, Sean; Gartner, Zev J.; Abate, Adam R.

    2017-08-01

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  7. Fault-Tolerant Software-Defined Radio on Manycore

    NASA Technical Reports Server (NTRS)

    Ricketts, Scott

    2015-01-01

    Software-defined radio (SDR) platforms generally rely on field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), but such architectures require significant software development. In addition, application demands for radiation mitigation and fault tolerance exacerbate programming challenges. MaXentric Technologies, LLC, has developed a manycore-based SDR technology that provides 100 times the throughput of conventional radiationhardened general purpose processors. Manycore systems (30-100 cores and beyond) have the potential to provide high processing performance at error rates that are equivalent to current space-deployed uniprocessor systems. MaXentric's innovation is a highly flexible radio, providing over-the-air reconfiguration; adaptability; and uninterrupted, real-time, multimode operation. The technology is also compliant with NASA's Space Telecommunications Radio System (STRS) architecture. In addition to its many uses within NASA communications, the SDR can also serve as a highly programmable research-stage prototyping device for new waveforms and other communications technologies. It can also support noncommunication codes on its multicore processor, collocated with the communications workload-reducing the size, weight, and power of the overall system by aggregating processing jobs to a single board computer.

  8. Transputer parallel processing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1989-01-01

    The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.

  9. Orthorectification by Using Gpgpu Method

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kulur, S.

    2012-07-01

    Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.

  10. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  11. Miniature Intelligent Sensor Module

    NASA Technical Reports Server (NTRS)

    Beech, Russell S.

    2007-01-01

    An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.

  12. Soft-core processor study for node-based architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Houten, Jonathan Roger; Jarosz, Jason P.; Welch, Benjamin James

    2008-09-01

    Node-based architecture (NBA) designs for future satellite projects hold the promise of decreasing system development time and costs, size, weight, and power and positioning the laboratory to address other emerging mission opportunities quickly. Reconfigurable Field Programmable Gate Array (FPGA) based modules will comprise the core of several of the NBA nodes. Microprocessing capabilities will be necessary with varying degrees of mission-specific performance requirements on these nodes. To enable the flexibility of these reconfigurable nodes, it is advantageous to incorporate the microprocessor into the FPGA itself, either as a hardcore processor built into the FPGA or as a soft-core processor builtmore » out of FPGA elements. This document describes the evaluation of three reconfigurable FPGA based processors for use in future NBA systems--two soft cores (MicroBlaze and non-fault-tolerant LEON) and one hard core (PowerPC 405). Two standard performance benchmark applications were developed for each processor. The first, Dhrystone, is a fixed-point operation metric. The second, Whetstone, is a floating-point operation metric. Several trials were run at varying code locations, loop counts, processor speeds, and cache configurations. FPGA resource utilization was recorded for each configuration. Cache configurations impacted the results greatly; for optimal processor efficiency it is necessary to enable caches on the processors. Processor caches carry a penalty; cache error mitigation is necessary when operating in a radiation environment.« less

  13. Design Approach and Implementation of Application Specific Instruction Set Processor for SHA-3 BLAKE Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuli; Han, Jun; Weng, Xinqian; He, Zhongzhu; Zeng, Xiaoyang

    This paper presents an Application Specific Instruction-set Processor (ASIP) for the SHA-3 BLAKE algorithm family by instruction set extensions (ISE) from an RISC (reduced instruction set computer) processor. With a design space exploration for this ASIP to increase the performance and reduce the area cost, we accomplish an efficient hardware and software implementation of BLAKE algorithm. The special instructions and their well-matched hardware function unit improve the calculation of the key section of the algorithm, namely G-functions. Also, relaxing the time constraint of the special function unit can decrease its hardware cost, while keeping the high data throughput of the processor. Evaluation results reveal the ASIP achieves 335Mbps and 176Mbps for BLAKE-256 and BLAKE-512. The extra area cost is only 8.06k equivalent gates. The proposed ASIP outperforms several software approaches on various platforms in cycle per byte. In fact, both high throughput and low hardware cost achieved by this programmable processor are comparable to that of ASIC implementations.

  14. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.

    2017-12-01

    Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  15. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  16. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  17. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE PAGES

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina; ...

    2016-02-02

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  18. Reconfigurable Sensor Monitoring System

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  19. Upset Characterization of the PowerPC405 Hard-core Processor Embedded in Virtex-II Pro Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Allen, Gregory S.; Farmanesh, Farhad; George, Jeffrey; Petrick, David J.; Chayab, Fayez

    2006-01-01

    Shown in this presentation are recent results for the upset susceptibility of the various types of memory elements in the embedded PowerPC405 in the Xilinx V2P40 FPGA. For critical flight designs where configuration upsets are mitigated effectively through appropriate design triplication and configuration scrubbing, these upsets of processor elements can dominate the system error rate. Data from irradiations with both protons and heavy ions are given and compared using available models.

  20. Architectures for single-chip image computing

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  1. Field programmable chemistry: integrated chemical and electronic processing of informational molecules towards electronic chemical cells.

    PubMed

    Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S

    2012-07-01

    The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  3. CPU architecture for a fast and energy-saving calculation of convolution neural networks

    NASA Astrophysics Data System (ADS)

    Knoll, Florian J.; Grelcke, Michael; Czymmek, Vitali; Holtorf, Tim; Hussmann, Stephan

    2017-06-01

    One of the most difficult problem in the use of artificial neural networks is the computational capacity. Although large search engine companies own specially developed hardware to provide the necessary computing power, for the conventional user only remains the state of the art method, which is the use of a graphic processing unit (GPU) as a computational basis. Although these processors are well suited for large matrix computations, they need massive energy. Therefore a new processor on the basis of a field programmable gate array (FPGA) has been developed and is optimized for the application of deep learning. This processor is presented in this paper. The processor can be adapted for a particular application (in this paper to an organic farming application). The power consumption is only a fraction of a GPU application and should therefore be well suited for energy-saving applications.

  4. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    PubMed Central

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  5. 20-GFLOPS QR processor on a Xilinx Virtex-E FPGA

    NASA Astrophysics Data System (ADS)

    Walke, Richard L.; Smith, Robert W. M.; Lightbody, Gaye

    2000-11-01

    Adaptive beamforming can play an important role in sensor array systems in countering directional interference. In high-sample rate systems, such as radar and comms, the calculation of adaptive weights is a very computational task that requires highly parallel solutions. For systems where low power consumption and volume are important the only viable implementation is as an Application Specific Integrated Circuit (ASIC). However, the rapid advancement of Field Programmable Gate Array (FPGA) technology is enabling highly credible re-programmable solutions. In this paper we present the implementation of a scalable linear array processor for weight calculation using QR decomposition. We employ floating-point arithmetic with mantissa size optimized to the target application to minimize component size, and implement them as relationally placed macros (RPMs) on Xilinx Virtex FPGAs to achieve predictable dense layout and high-speed operation. We present results that show that 20GFLOPS of sustained computation on a single XCV3200E-8 Virtex-E FPGA is possible. We also describe the parameterized implementation of the floating-point operators and QR-processor, and the design methodology that enables us to rapidly generate complex FPGA implementations using the industry standard hardware description language VHDL.

  6. A novel VLSI processor architecture for supercomputing arrays

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Pattabiraman, S.; Devanathan, R.; Ahmed, Ashaf; Venkataraman, S.; Ganesh, N.

    1993-01-01

    Design of the processor element for general purpose massively parallel supercomputing arrays is highly complex and cost ineffective. To overcome this, the architecture and organization of the functional units of the processor element should be such as to suit the diverse computational structures and simplify mapping of complex communication structures of different classes of algorithms. This demands that the computation and communication structures of different class of algorithms be unified. While unifying the different communication structures is a difficult process, analysis of a wide class of algorithms reveals that their computation structures can be expressed in terms of basic IP,IP,OP,CM,R,SM, and MAA operations. The execution of these operations is unified on the PAcube macro-cell array. Based on this PAcube macro-cell array, we present a novel processor element called the GIPOP processor, which has dedicated functional units to perform the above operations. The architecture and organization of these functional units are such to satisfy the two important criteria mentioned above. The structure of the macro-cell and the unification process has led to a very regular and simpler design of the GIPOP processor. The production cost of the GIPOP processor is drastically reduced as it is designed on high performance mask programmable PAcube arrays.

  7. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    PubMed

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode waveform frequency is about 200 Hz; and standard 5-V CMOS logic data communication rate is variable up to 250 kHz. This HV demonstration chip is fabricated in a 130-V 1.0-mum SOI CMOS fabrication technology, dissipates a maximum of 1.87 W, and is about 10.4 mm x 8.2 mm.

  8. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  9. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  10. Novel processor architecture for onboard infrared sensors

    NASA Astrophysics Data System (ADS)

    Hihara, Hiroki; Iwasaki, Akira; Tamagawa, Nobuo; Kuribayashi, Mitsunobu; Hashimoto, Masanori; Mitsuyama, Yukio; Ochi, Hiroyuki; Onodera, Hidetoshi; Kanbara, Hiroyuki; Wakabayashi, Kazutoshi; Tada, Munehiro

    2016-09-01

    Infrared sensor system is a major concern for inter-planetary missions that investigate the nature and the formation processes of planets and asteroids. The infrared sensor system requires signal preprocessing functions that compensate for the intensity of infrared image sensors to get high quality data and high compression ratio through the limited capacity of transmission channels towards ground stations. For those implementations, combinations of Field Programmable Gate Arrays (FPGAs) and microprocessors are employed by AKATSUKI, the Venus Climate Orbiter, and HAYABUSA2, the asteroid probe. On the other hand, much smaller size and lower power consumption are demanded for future missions to accommodate more sensors. To fulfill this future demand, we developed a novel processor architecture which consists of reconfigurable cluster cores and programmable-logic cells with complementary atom switches. The complementary atom switches enable hardware programming without configuration memories, and thus soft-error on logic circuit connection is completely eliminated. This is a noteworthy advantage for space applications which cannot be found in conventional re-writable FPGAs. Almost one-tenth of lower power consumption is expected compared to conventional re-writable FPGAs because of the elimination of configuration memories. The proposed processor architecture can be reconfigured by behavioral synthesis with higher level language specification. Consequently, compensation functions are implemented in a single chip without accommodating program memories, which is accompanied with conventional microprocessors, while maintaining the comparable performance. This enables us to embed a processor element on each infrared signal detector output channel.

  11. Screw-actuated displacement micropumps for thermoplastic microfluidics.

    PubMed

    Han, J Y; Rahmanian, O D; Kendall, E L; Fleming, N; DeVoe, D L

    2016-10-05

    The fabrication of on-chip displacement pumps integrated into thermoplastic chips is explored as a simple and low cost method for achieving precise and programmable flow control for disposable microfluidic systems. The displacement pumps consist of stainless steel screws inserted into threaded ports machined into a thermoplastic substrate which also serve as on-chip reagent storage reservoirs. Three different methods for pump sealing are investigated to enable high pressure flows without leakage, and software-defined control of multiple pumps is demonstrated in a self-contained platform using a compact and self-contained microcontroller for operation. Using this system, flow rates ranging from 0.5-40 μl min -1 are demonstrated. The pumps are combined with on-chip burst valves to fully seal multiple reagents into fabricated chips while providing on-demand fluid distribution in a downstream microfluidic network, and demonstrated for the generation of size-tunable water-in-oil emulsions.

  12. Active mixing of complex fluids at the microscale

    DOE PAGES

    Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.

    2015-09-22

    Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. As a result, active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks withmore » programmable control of local composition.« less

  13. Active mixing of complex fluids at the microscale

    PubMed Central

    Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.

    2015-01-01

    Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. Active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks with programmable control of local composition. PMID:26396254

  14. Development of a General-Purpose Analysis System Based on a Programmable Fluid Processor Final Report CRADA No. TC-2027-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConaghy, C. F.; Gascoyne, P. R.

    The purpose ofthis project was to develop a general-purpose analysis system based on a programmable fluid processor (PFP). The PFP is an array of electrodes surrounded by fluid reservoirs and injectors. Injected droplets of various reagents are manjpulated and combined on the array by Dielectrophoretic (DEP) forces. The goal was to create a small handheld device that could accomplish the tasks currently undertaken by much larger, time consuming, manual manipulation in the lab. The entire effo1t was funded by DARPA under the Bio-Flips program. MD Anderson Cancer Center was the PI for the DARPA effort. The Bio-Flips program was amore » 3- year program that ran from September 2000 to September 2003. The CRADA was somewhat behind the Bi-Flips program running from June 2001 to June 2004 with a no cost extension to September 2004.« less

  15. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  16. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities

    PubMed Central

    Leung, Kaston; Zahn, Hans; Leaver, Timothy; Konwar, Kishori M.; Hanson, Niels W.; Pagé, Antoine P.; Lo, Chien-Chi; Chain, Patrick S.; Hallam, Steven J.; Hansen, Carl L.

    2012-01-01

    We present a programmable droplet-based microfluidic device that combines the reconfigurable flow-routing capabilities of integrated microvalve technology with the sample compartmentalization and dispersion-free transport that is inherent to droplets. The device allows for the execution of user-defined multistep reaction protocols in 95 individually addressable nanoliter-volume storage chambers by consecutively merging programmable sequences of picoliter-volume droplets containing reagents or cells. This functionality is enabled by “flow-controlled wetting,” a droplet docking and merging mechanism that exploits the physics of droplet flow through a channel to control the precise location of droplet wetting. The device also allows for automated cross-contamination-free recovery of reaction products from individual chambers into standard microfuge tubes for downstream analysis. The combined features of programmability, addressability, and selective recovery provide a general hardware platform that can be reprogrammed for multiple applications. We demonstrate this versatility by implementing multiple single-cell experiment types with this device: bacterial cell sorting and cultivation, taxonomic gene identification, and high-throughput single-cell whole genome amplification and sequencing using common laboratory strains. Finally, we apply the device to genome analysis of single cells and microbial consortia from diverse environmental samples including a marine enrichment culture, deep-sea sediments, and the human oral cavity. The resulting datasets capture genotypic properties of individual cells and illuminate known and potentially unique partnerships between microbial community members. PMID:22547789

  17. Testability Design Rating System: Testability Handbook. Volume 1

    DTIC Science & Technology

    1992-02-01

    4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory

  18. Compiling for Application Specific Computational Acceleration in Reconfigurable Architectures Final Report CRADA No. TSB-2033-01

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Supinski, B.; Caliga, D.

    2017-09-28

    The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.

  19. A fast, programmable hardware architecture for spaceborne SAR processing

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1983-01-01

    The launch of spaceborne SARs during the 1980's is discussed. The satellite SARs require high quality and high throughput ground processors. Compression ratios in range and azimuth of greater than 500 and 150 respectively lead to frequency domain processing and data computation rates in excess of 2000 million real operations per second for C-band SARs under consideration. Various hardware architectures are examined and two promising candidates and proceeds to recommend a fast, programmable hardware architecture for spaceborne SAR processing are selected. Modularity and programmability are introduced as desirable attributes for the purpose of HTSP hardware selection.

  20. Programmable calculator as a data system controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.W.; Strasburg, A.C.

    Digital data techniques are in common use for analysis of analog information obtained in various tests, and systems have been developed which use a minicomputer as the central controller and data processor. Now, microprocessors allow new design approaches at considerably less cost. This report outlines an approach to system design based on the use of a programmable calculator as the data system controller. A block diagram of the calculator-controlled data system is shown. It was found that the programmable calculator provides a viable alternative to minicomputers or microprocessors for the development laboratory requiring digital data processing. 3 figures. (RWR)

  1. FPGA wavelet processor design using language for instruction-set architectures (LISA)

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Vera, Alonzo; Rao, Suhasini; Lenk, Karl; Pattichis, Marios

    2007-04-01

    The design of an microprocessor is a long, tedious, and error-prone task consisting of typically three design phases: architecture exploration, software design (assembler, linker, loader, profiler), architecture implementation (RTL generation for FPGA or cell-based ASIC) and verification. The Language for instruction-set architectures (LISA) allows to model a microprocessor not only from instruction-set but also from architecture description including pipelining behavior that allows a design and development tool consistency over all levels of the design. To explore the capability of the LISA processor design platform a.k.a. CoWare Processor Designer we present in this paper three microprocessor designs that implement a 8/8 wavelet transform processor that is typically used in today's FBI fingerprint compression scheme. We have designed a 3 stage pipelined 16 bit RISC processor (NanoBlaze). Although RISC μPs are usually considered "fast" processors due to design concept like constant instruction word size, deep pipelines and many general purpose registers, it turns out that DSP operations consume essential processing time in a RISC processor. In a second step we have used design principles from programmable digital signal processor (PDSP) to improve the throughput of the DWT processor. A multiply-accumulate operation along with indirect addressing operation were the key to achieve higher throughput. A further improvement is possible with today's FPGA technology. Today's FPGAs offer a large number of embedded array multipliers and it is now feasible to design a "true" vector processor (TVP). A multiplication of two vectors can be done in just one clock cycle with our TVP, a complete scalar product in two clock cycles. Code profiling and Xilinx FPGA ISE synthesis results are provided that demonstrate the essential improvement that a TVP has compared with traditional RISC or PDSP designs.

  2. A High-Throughput Processor for Flight Control Research Using Small UAVs

    NASA Technical Reports Server (NTRS)

    Klenke, Robert H.; Sleeman, W. C., IV; Motter, Mark A.

    2006-01-01

    There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.

  3. Rubus: A compiler for seamless and extensible parallelism.

    PubMed

    Adnan, Muhammad; Aslam, Faisal; Nawaz, Zubair; Sarwar, Syed Mansoor

    2017-01-01

    Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer's expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program.

  4. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening

    PubMed Central

    2017-01-01

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790

  5. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening.

    PubMed

    MacConnell, Andrew B; Price, Alexander K; Paegel, Brian M

    2017-03-13

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing.

  6. Solutions and debugging for data consistency in multiprocessors with noncoherent caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, D.; Mendelson, B.; Breternitz, M. Jr.

    1995-02-01

    We analyze two important problems that arise in shared-memory multiprocessor systems. The stale data problem involves ensuring that data items in local memory of individual processors are current, independent of writes done by other processors. False sharing occurs when two processors have copies of the same shared data block but update different portions of the block. The false sharing problem involves guaranteeing that subsequent writes are properly combined. In modern architectures these problems are usually solved in hardware, by exploiting mechanisms for hardware controlled cache consistency. This leads to more expensive and nonscalable designs. Therefore, we are concentrating on softwaremore » methods for ensuring cache consistency that would allow for affordable and scalable multiprocessing systems. Unfortunately, providing software control is nontrivial, both for the compiler writer and for the application programmer. For this reason we are developing a debugging environment that will facilitate the development of compiler-based techniques and will help the programmer to tune his or her application using explicit cache management mechanisms. We extend the notion of a race condition for IBM Shared Memory System POWER/4, taking into consideration its noncoherent caches, and propose techniques for detection of false sharing problems. Identification of the stale data problem is discussed as well, and solutions are suggested.« less

  7. Video image processor on the Spacelab 2 Solar Optical Universal Polarimeter /SL2 SOUP/

    NASA Technical Reports Server (NTRS)

    Lindgren, R. W.; Tarbell, T. D.

    1981-01-01

    The SOUP instrument is designed to obtain diffraction-limited digital images of the sun with high photometric accuracy. The Video Processor originated from the requirement to provide onboard real-time image processing, both to reduce the telemetry rate and to provide meaningful video displays of scientific data to the payload crew. This original concept has evolved into a versatile digital processing system with a multitude of other uses in the SOUP program. The central element in the Video Processor design is a 16-bit central processing unit based on 2900 family bipolar bit-slice devices. All arithmetic, logical and I/O operations are under control of microprograms, stored in programmable read-only memory and initiated by commands from the LSI-11. Several functions of the Video Processor are described, including interface to the High Rate Multiplexer downlink, cosmetic and scientific data processing, scan conversion for crew displays, focus and exposure testing, and use as ground support equipment.

  8. Software-Reconfigurable Processors for Spacecraft

    NASA Technical Reports Server (NTRS)

    Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey

    2005-01-01

    A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).

  9. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    PubMed

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  10. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.

    PubMed

    Gong, Hua; Bickham, Bryce P; Woolley, Adam T; Nordin, Gregory P

    2017-08-22

    While there is great interest in 3D printing for microfluidic device fabrication, to-date the achieved feature sizes have not been in the truly microfluidic regime (<100 μm). In this paper we demonstrate that a custom digital light processor stereolithographic (DLP-SLA) 3D printer and a specifically-designed, low cost, custom resin can readily achieve flow channel cross sections as small as 18 μm × 20 μm. Our 3D printer has a projected image plane resolution of 7.6 μm and uses a 385 nm LED, which dramatically increases the available selection of UV absorbers for resin formulation compared to 3D printers with 405 nm LEDs. Beginning with 20 candidate absorbers, we demonstrate the evaluation criteria and process flow required to develop a high-resolution resin. In doing so, we introduce a new mathematical model for characterizing the resin optical penetration depth based only on measurement of the absorber's molar absorptivity. Our final resin formulation uses 2-nitrophenyl phenyl sulfide (NPS) as the UV absorber. We also develop a novel channel narrowing technique that, together with the new resin and 3D printer resolution, enables small flow channel fabrication. We demonstrate the efficacy of our approach by fabricating 3D serpentine flow channels 41 mm long in a volume of only 0.12 mm 3 , and by printing high aspect ratio flow channels <25 μm wide and 3 mm tall. These results indicate that 3D printing is finally positioned to challenge the pre-eminence of methods such as soft lithography for microfluidic device prototyping and fabrication.

  11. Analysis system for characterisation of simple, low-cost microfluidic components

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Naidoo, Thegaran; Nxumalo, Zandile; Land, Kevin; Davies, Emlyn; Fourie, Louis; Marais, Philip; Roux, Pieter

    2014-06-01

    There is an inherent trade-off between cost and operational integrity of microfluidic components, especially when intended for use in point-of-care devices. We present an analysis system developed to characterise microfluidic components for performing blood cell counting, enabling the balance between function and cost to be established quantitatively. Microfluidic components for sample and reagent introduction, mixing and dispensing of fluids were investigated. A simple inlet port plugging mechanism is used to introduce and dispense a sample of blood, while a reagent is released into the microfluidic system through compression and bursting of a blister pack. Mixing and dispensing of the sample and reagent are facilitated via air actuation. For these microfluidic components to be implemented successfully, a number of aspects need to be characterised for development of an integrated point-of-care device design. The functional components were measured using a microfluidic component analysis system established in-house. Experiments were carried out to determine: 1. the force and speed requirements for sample inlet port plugging and blister pack compression and release using two linear actuators and load cells for plugging the inlet port, compressing the blister pack, and subsequently measuring the resulting forces exerted, 2. the accuracy and repeatability of total volumes of sample and reagent dispensed, and 3. the degree of mixing and dispensing uniformity of the sample and reagent for cell counting analysis. A programmable syringe pump was used for air actuation to facilitate mixing and dispensing of the sample and reagent. Two high speed cameras formed part of the analysis system and allowed for visualisation of the fluidic operations within the microfluidic device. Additional quantitative measures such as microscopy were also used to assess mixing and dilution accuracy, as well as uniformity of fluid dispensing - all of which are important requirements towards the successful implementation of a blood cell counting system.

  12. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging.

    PubMed

    Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming

    2011-11-01

    Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.

  13. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    PubMed

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  14. Replication of Space-Shuttle Computers in FPGAs and ASICs

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.

    2008-01-01

    A document discusses the replication of the functionality of the onboard space-shuttle general-purpose computers (GPCs) in field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs). The purpose of the replication effort is to enable utilization of proven space-shuttle flight software and software-development facilities to the extent possible during development of software for flight computers for a new generation of launch vehicles derived from the space shuttles. The replication involves specifying the instruction set of the central processing unit and the input/output processor (IOP) of the space-shuttle GPC in a hardware description language (HDL). The HDL is synthesized to form a "core" processor in an FPGA or, less preferably, in an ASIC. The core processor can be used to create a flight-control card to be inserted into a new avionics computer. The IOP of the GPC as implemented in the core processor could be designed to support data-bus protocols other than that of a multiplexer interface adapter (MIA) used in the space shuttle. Hence, a computer containing the core processor could be tailored to communicate via the space-shuttle GPC bus and/or one or more other buses.

  15. Microfluidic integration of parallel solid-phase liquid chromatography.

    PubMed

    Huft, Jens; Haynes, Charles A; Hansen, Carl L

    2013-03-05

    We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.

  16. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells

    PubMed Central

    Hansen, Anders S.; Hao, Nan; O'Shea, Erin K.

    2015-01-01

    Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure, and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy, and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. Using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, whilst collecting data for thousands of single cells. Compared to other protocols, the present protocol is relatively easy to adopt and higher-throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms. PMID:26158443

  17. Integrated bioassays in microfluidic devices: botulinum toxin assays.

    PubMed

    Mangru, Shakuntala; Bentz, Bryan L; Davis, Timothy J; Desai, Nitin; Stabile, Paul J; Schmidt, James J; Millard, Charles B; Bavari, Sina; Kodukula, Krishna

    2005-12-01

    A microfluidic assay was developed for screening botulinum neurotoxin serotype A (BoNT-A) by using a fluorescent resonance energy transfer (FRET) assay. Molded silicone microdevices with integral valves, pumps, and reagent reservoirs were designed and fabricated. Electrical and pneumatic control hardware were constructed, and software was written to automate the assay protocol and data acquisition. Detection was accomplished by fluorescence microscopy. The system was validated with a peptide inhibitor, running 2 parallel assays, as a feasibility demonstration. The small footprint of each bioreactor cell (0.5 cm2) and scalable fluidic architecture enabled many parallel assays on a single chip. The chip is programmable to run a dilution series in each lane, generating concentration-response data for multiple inhibitors. The assay results showed good agreement with the corresponding experiments done at a macroscale level. Although the system has been developed for BoNT-A screening, a wide variety of assays can be performed on the microfluidic chip with little or no modification.

  18. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  19. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  20. Multipurpose silicon photonics signal processor core.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  1. Media processors using a new microsystem architecture designed for the Internet era

    NASA Astrophysics Data System (ADS)

    Wyland, David C.

    1999-12-01

    The demands of digital image processing, communications and multimedia applications are growing more rapidly than traditional design methods can fulfill them. Previously, only custom hardware designs could provide the performance required to meet the demands of these applications. However, hardware design has reached a crisis point. Hardware design can no longer deliver a product with the required performance and cost in a reasonable time for a reasonable risk. Software based designs running on conventional processors can deliver working designs in a reasonable time and with low risk but cannot meet the performance requirements. What is needed is a media processing approach that combines very high performance, a simple programming model, complete programmability, short time to market and scalability. The Universal Micro System (UMS) is a solution to these problems. The UMS is a completely programmable (including I/O) system on a chip that combines hardware performance with the fast time to market, low cost and low risk of software designs.

  2. Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Meng, Long; Cai, Feiyan; Chen, Juanjuan; Niu, Lili; Li, Yanming; Wu, Junru; Zheng, Hairong

    2012-04-01

    A microfluidic device is developed to transport microbubbles (MBs) along a desired trajectory in fluid by introducing the phase-shift to a planar standing surface acoustic wave (SSAW). The radiation force of SSAW due to the acoustic pressure gradient modulated by a phase-shift can move MBs to anticipated potential wells in a programmable manner. The resolution of the transportation is approximately 2.2 µm and the estimated radiation force on the MBs is on the order of 10-9 N. This device can be used for manipulation of bioparticles, cell sorting, tissue engineering, and other biomedical applications.

  3. Mapping of H.264 decoding on a multiprocessor architecture

    NASA Astrophysics Data System (ADS)

    van der Tol, Erik B.; Jaspers, Egbert G.; Gelderblom, Rob H.

    2003-05-01

    Due to the increasing significance of development costs in the competitive domain of high-volume consumer electronics, generic solutions are required to enable reuse of the design effort and to increase the potential market volume. As a result from this, Systems-on-Chip (SoCs) contain a growing amount of fully programmable media processing devices as opposed to application-specific systems, which offered the most attractive solutions due to a high performance density. The following motivates this trend. First, SoCs are increasingly dominated by their communication infrastructure and embedded memory, thereby making the cost of the functional units less significant. Moreover, the continuously growing design costs require generic solutions that can be applied over a broad product range. Hence, powerful programmable SoCs are becoming increasingly attractive. However, to enable power-efficient designs, that are also scalable over the advancing VLSI technology, parallelism should be fully exploited. Both task-level and instruction-level parallelism can be provided by means of e.g. a VLIW multiprocessor architecture. To provide the above-mentioned scalability, we propose to partition the data over the processors, instead of traditional functional partitioning. An advantage of this approach is the inherent locality of data, which is extremely important for communication-efficient software implementations. Consequently, a software implementation is discussed, enabling e.g. SD resolution H.264 decoding with a two-processor architecture, whereas High-Definition (HD) decoding can be achieved with an eight-processor system, executing the same software. Experimental results show that the data communication considerably reduces up to 65% directly improving the overall performance. Apart from considerable improvement in memory bandwidth, this novel concept of partitioning offers a natural approach for optimally balancing the load of all processors, thereby further improving the overall speedup.

  4. Fault-Tolerant, Real-Time, Multi-Core Computer System

    NASA Technical Reports Server (NTRS)

    Gostelow, Kim P.

    2012-01-01

    A document discusses a fault-tolerant, self-aware, low-power, multi-core computer for space missions with thousands of simple cores, achieving speed through concurrency. The proposed machine decides how to achieve concurrency in real time, rather than depending on programmers. The driving features of the system are simple hardware that is modular in the extreme, with no shared memory, and software with significant runtime reorganizing capability. The document describes a mechanism for moving ongoing computations and data that is based on a functional model of execution. Because there is no shared memory, the processor connects to its neighbors through a high-speed data link. Messages are sent to a neighbor switch, which in turn forwards that message on to its neighbor until reaching the intended destination. Except for the neighbor connections, processors are isolated and independent of each other. The processors on the periphery also connect chip-to-chip, thus building up a large processor net. There is no particular topology to the larger net, as a function at each processor allows it to forward a message in the correct direction. Some chip-to-chip connections are not necessarily nearest neighbors, providing short cuts for some of the longer physical distances. The peripheral processors also provide the connections to sensors, actuators, radios, science instruments, and other devices with which the computer system interacts.

  5. WebStruct and VisualStruct: Web interfaces and visualization for Structure software implemented in a cluster environment.

    PubMed

    Jayashree, B; Rajgopal, S; Hoisington, D; Prasanth, V P; Chandra, S

    2008-09-24

    Structure, is a widely used software tool to investigate population genetic structure with multi-locus genotyping data. The software uses an iterative algorithm to group individuals into "K" clusters, representing possibly K genetically distinct subpopulations. The serial implementation of this programme is processor-intensive even with small datasets. We describe an implementation of the program within a parallel framework. Speedup was achieved by running different replicates and values of K on each node of the cluster. A web-based user-oriented GUI has been implemented in PHP, through which the user can specify input parameters for the programme. The number of processors to be used can be specified in the background command. A web-based visualization tool "Visualstruct", written in PHP (HTML and Java script embedded), allows for the graphical display of population clusters output from Structure, where each individual may be visualized as a line segment with K colors defining its possible genomic composition with respect to the K genetic sub-populations. The advantage over available programs is in the increased number of individuals that can be visualized. The analyses of real datasets indicate a speedup of up to four, when comparing the speed of execution on clusters of eight processors with the speed of execution on one desktop. The software package is freely available to interested users upon request.

  6. A programmable two-qubit quantum processor in silicon

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  7. A programmable two-qubit quantum processor in silicon.

    PubMed

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  8. Multi-threaded parallel simulation of non-local non-linear problems in ultrashort laser pulse propagation in the presence of plasma

    NASA Astrophysics Data System (ADS)

    Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger

    2011-06-01

    We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.

  9. A new electrowetting lab-on-a-chip platform based on programmable and virtual wall-less channels

    NASA Astrophysics Data System (ADS)

    Banerjee, Ananda; Kreit, Eric; Dhindsa, Manjeet; Heikenfeld, Jason; Papautsky, Ian

    2011-02-01

    Microscale liquid handling based on electrowetting has been previously demonstrated by several groups. Such liquid manipulation however is limited to control of individual droplets, aptly termed digital microfluidics. The inability to form continuous channels thus prevents conventional microfluidic sample manipulation and analysis approaches, such as electroosmosis and electrophoresis. In this paper, we discuss our recent progress on the development of electrowettingbased virtual channels. These channels can be created and reconfigured on-demand and preserve their shape without external stimulus. We also discuss recent progress towards demonstrating electroosmotic flows in such microchannels for fluid transport. This would permit a variety of basic functionalities in this new platform including sample transport and mixing between various functional areas of the chip.

  10. Smart Power Supply for Battery-Powered Systems

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have differing power needs, this supply also has a secondary power bus, which can be programmed a priori or on-the-fly to boost the primary battery voltage level from 24 to 50 V to accommodate various loads as they are brought on line. Through voltage and current monitoring, the device can also shield the charging source from overloads, keep it within safe operating modes, and can meter available power to the application and maintain safe operations.

  11. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.

    PubMed

    Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F

    2014-12-21

    Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.

  12. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.

    PubMed

    Muluneh, Melaku; Issadore, David

    2014-12-07

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm(2) microfluidic chip that incorporated a commercial 565 × 1145 μm(2) IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series.

  13. An FPGA computing demo core for space charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computedmore » using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.« less

  14. Programmable Remapper with Single Flow Architecture

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E. (Inventor)

    1993-01-01

    An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.

  15. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods.

    PubMed

    Zierke, Stephanie; Bakos, Jason D

    2010-04-12

    Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10x speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs).

  16. PCI-based WILDFIRE reconfigurable computing engines

    NASA Astrophysics Data System (ADS)

    Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.

    1996-10-01

    WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.

  17. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, W.K.; Hubbard, B.

    1997-11-04

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.

  18. Method and apparatus for digitally based high speed x-ray spectrometer

    DOEpatents

    Warburton, William K.; Hubbard, Bradley

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.

  19. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  20. The computational structural mechanics testbed architecture. Volume 5: The Input-Output Manager DMGASP

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1989-01-01

    This is the fifth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the command language interpreter (CLIP), and the data manager (GAL). Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 5 describes the low-level data management component of the NICE software. It is intended only for advanced programmers involved in maintenance of the software.

  1. Neuromorphic Computing: A Post-Moore's Law Complementary Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Birdwell, John Douglas; Dean, Mark

    2016-01-01

    We describe our approach to post-Moore's law computing with three neuromorphic computing models that share a RISC philosophy, featuring simple components combined with a flexible and programmable structure. We envision these to be leveraged as co-processors, or as data filters to provide in situ data analysis in supercomputing environments.

  2. Optical triple-in digital logic using nonlinear optical four-wave mixing

    NASA Astrophysics Data System (ADS)

    Widjaja, Joewono; Tomita, Yasuo

    1995-08-01

    A new programmable optical processor is proposed for implementing triple-in combinatorial digital logic that uses four-wave mixing. Binary-coded decimal-to-octal decoding is experimentally demonstrated by use of a photorefractive BaTiO 3 crystal. The result confirms the feasibility of the proposed system.

  3. The architecture of a video image processor for the space station

    NASA Technical Reports Server (NTRS)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  4. Special-purpose computing for dense stellar systems

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    2007-08-01

    I'll describe the current status of the GRAPE-DR project. The GRAPE-DR is the next-generation hardware for N-body simulation. Unlike the previous GRAPE hardwares, it is programmable SIMD machine with a large number of simple processors integrated into a single chip. The GRAPE-DR chip consists of 512 simple processors and operates at the clock speed of 500 MHz, delivering the theoretical peak speed of 512/226 Gflops (single/double precision). As of August 2006, the first prototype board with the sample chip successfully passed the test we prepared. The full GRAPE-DR system will consist of 4096 chips, reaching the theoretical peak speed of 2 Pflops.

  5. Assessment of mammographic film processor performance in a hospital and mobile screening unit.

    PubMed

    Murray, J G; Dowsett, D J; Laird, O; Ennis, J T

    1992-12-01

    In contrast to the majority of mammographic breast screening programmes, film processing at this centre occurs on site in both hospital and mobile trailer units. Initial (1989) quality control (QC) sensitometric tests revealed a large variation in film processor performance in the mobile unit. The clinical significance of these variations was assessed and acceptance limits for processor performance determined. Abnormal mammograms were used as reference material and copied using high definition 35 mm film over a range of exposure settings. The copies were than matched with QC film density variation from the mobile unit. All films were subsequently ranked for spatial and contrast resolution. Optimal values for processing time of 2 min (equivalent to film transit time 3 min and developer time 46 s) and temperature of 36 degrees C were obtained. The widespread anomaly of reporting film transit time as processing time is highlighted. Use of mammogram copies as a means of measuring the influence of film processor variation is advocated. Careful monitoring of the mobile unit film processor performance has produced stable quality comparable with the hospital based unit. The advantages of on site film processing are outlined. The addition of a sensitometric step wedge to all mammography film stock as a means of assessing image quality is recommended.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Learn, Mark Walter

    Sandia National Laboratories is currently developing new processing and data communication architectures for use in future satellite payloads. These architectures will leverage the flexibility and performance of state-of-the-art static-random-access-memory-based Field Programmable Gate Arrays (FPGAs). One such FPGA is the radiation-hardened version of the Virtex-5 being developed by Xilinx. However, not all features of this FPGA are being radiation-hardened by design and could still be susceptible to on-orbit upsets. One such feature is the embedded hard-core PPC440 processor. Since this processor is implemented in the FPGA as a hard-core, traditional mitigation approaches such as Triple Modular Redundancy (TMR) are not availablemore » to improve the processor's on-orbit reliability. The goal of this work is to investigate techniques that can help mitigate the embedded hard-core PPC440 processor within the Virtex-5 FPGA other than TMR. Implementing various mitigation schemes reliably within the PPC440 offers a powerful reconfigurable computing resource to these node-based processing architectures. This document summarizes the work done on the cache mitigation scheme for the embedded hard-core PPC440 processor within the Virtex-5 FPGAs, and describes in detail the design of the cache mitigation scheme and the testing conducted at the radiation effects facility on the Texas A&M campus.« less

  7. Optical reversible programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  8. Development of an Extraterrestrial Organic Analyzer (EOA) for Highly Sensitive Organic Detection on an Ice Shell Impact Penetrator (IceShIP)

    NASA Astrophysics Data System (ADS)

    Stockton, A. M.; Duca, Z. A.; Cato, M.; Cantrell, T.; Kim, J.; Putman, P.; Schmidt, B. E.

    2016-12-01

    Kinetic penetrators have the potential to enable low cost in situ measurements of the ice of worlds including Europa and Enceladus [1]. Their small size and mass, critical to limiting their kinetic energy, makes them ideal small landers riding on primarily orbiter missions, while enabling sampling at several m depth due to burial and excavation. In situ microfluidic-based organic analysis systems are a powerful, miniaturized approach for detecting markers of habitability and recent biological activity. Development of microfluidic technology, like that of the Mars Organic Analyzer (MOA) [2,3] and Enceladus Organic Analyzer (EOA), has led to an instrument capable of in situ organic chemical analysis compatible with a kinetic penetrator platform. This technology uses an integrated microfluidic processor to prepare samples for analysis via fluorescent derivatization prior to highly sensitive laser-induced fluorescence (LIF) detection. Selective derivatization in the presence of a chiral selector enables distinction between amino acid enantiomers. Finite element analysis of the core microfluidic processing and analytical device indicated that the device itself is more than capable of surviving the stresses associated with an impact acceleration of >50,000g. However, a number of developments were still required to enable a flight-ready system. Preliminary experiments indicated that moving from a pneumatically-actuated to a hydraulically-actuated microvalve system may provide better impact resistance. A hydraulically-actuated microvalve system was developed and tested. A modification of an established microfabricated LIF detection system would use indium bump bonding to permanently weld optical components using standard microfabrication techniques with perfect alignment. Recent work has also focused on developing and characterizing impact-resistant electronics. This work shows the low-TRL development of EOA's LIF and microfluidic subsystems for future planetary impact penetrator missions. With correct structural decisions and optimizations, EOA can survive a 50,000g impact, making it the only current optical instrument with this capability. References: [1] Gowen et al., Adv. Space Res., 2011, 725. [2] Skelley et al, PNAS USA, 2005, 102, 1041. [3] Kim J., et al, Anal. Chem., 2013, 85, 7682.

  9. Computer-aided programming for message-passing system; Problems and a solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.Y.; Gajski, D.D.

    1989-12-01

    As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.

  10. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the microfluidic networks are validated on a microfluidic disk designed for performing liquid circulation. Finally, an array of RTPVs is integrated into a microfluidic cartridge to enable sequential aliquoting for the conversion of dengue virus RNA to cDNA and the preparation of PCR reaction mixtures.

  11. Hyperuniform materials made with microfluidics

    NASA Astrophysics Data System (ADS)

    Yazhgur, Pavel; Ricouvier, Joshua; Pierrat, Romain; Carminati, RéMi; Tabeling, Patrick

    Hyperuniform materials, being disordered systems with suppressed long-scale fluctuations, now attract a significant scientific interest, especially due to their potential applications for disordered photonic materials production. In our project we study a jammed packing of oil droplets in water. The droplets are produced in a PDMS microfluidic chip and directly assembled in a microfluidic channel. By varying the fluid pressures we manage to sharply control the droplet production and thereby govern the structural properties of the obtained material. The pseudo-2D (a monolayer of droplets) and 3D systems are investigated. Our results show that at appropriate experimental conditions droplets self-organize in hyperuniform patterns. Our electromagnetic simulations also show that the obtained material can be transparent while staying optically dense. As far as we know, the proposed material is one of the first examples of experimentally made hyperuniform materials. We hope that our studies will help to establish a new way of disordered photonic materials production. The Microflusa project receives funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 664823.

  12. Power estimation on functional level for programmable processors

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Blume, H.; Noll, T. G.

    2004-05-01

    In diesem Beitrag werden verschiedene Ansätze zur Verlustleistungsschätzung von programmierbaren Prozessoren vorgestellt und bezüglich ihrer Übertragbarkeit auf moderne Prozessor-Architekturen wie beispielsweise Very Long Instruction Word (VLIW)-Architekturen bewertet. Besonderes Augenmerk liegt hierbei auf dem Konzept der sogenannten Functional-Level Power Analysis (FLPA). Dieser Ansatz basiert auf der Einteilung der Prozessor-Architektur in funktionale Blöcke wie beispielsweise Processing-Unit, Clock-Netzwerk, interner Speicher und andere. Die Verlustleistungsaufnahme dieser Bl¨ocke wird parameterabhängig durch arithmetische Modellfunktionen beschrieben. Durch automatisierte Analyse von Assemblercodes des zu schätzenden Systems mittels eines Parsers können die Eingangsparameter wie beispielsweise der erzielte Parallelitätsgrad oder die Art des Speicherzugriffs gewonnen werden. Dieser Ansatz wird am Beispiel zweier moderner digitaler Signalprozessoren durch eine Vielzahl von Basis-Algorithmen der digitalen Signalverarbeitung evaluiert. Die ermittelten Schätzwerte für die einzelnen Algorithmen werden dabei mit physikalisch gemessenen Werten verglichen. Es ergibt sich ein sehr kleiner maximaler Schätzfehler von 3%. In this contribution different approaches for power estimation for programmable processors are presented and evaluated concerning their capability to be applied to modern digital signal processor architectures like e.g. Very Long InstructionWord (VLIW) -architectures. Special emphasis will be laid on the concept of so-called Functional-Level Power Analysis (FLPA). This approach is based on the separation of the processor architecture into functional blocks like e.g. processing unit, clock network, internal memory and others. The power consumption of these blocks is described by parameter dependent arithmetic model functions. By application of a parser based automized analysis of assembler codes of the systems to be estimated the input parameters of the Correspondence to: H. Blume (blume@eecs.rwth-aachen.de) arithmetic functions like e.g. the achieved degree of parallelism or the kind and number of memory accesses can be computed. This approach is exemplarily demonstrated and evaluated applying two modern digital signal processors and a variety of basic algorithms of digital signal processing. The resulting estimation values for the inspected algorithms are compared to physically measured values. A resulting maximum estimation error of 3% is achieved.

  13. Transformations of software design and code may lead to reduced errors

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.

    1983-01-01

    The capability of programmers and non-programmers to specify problem solutions by developing example-solutions and also for the programmers by writing computer programs was investigated; each method of specification was accomplished at various levels of problem complexity. The level of difficulty of each problem was reflected by the number of steps needed by the user to develop a solution. Machine processing of the user inputs permitted inferences to be developed about the algorithms required to solve a particular problem. The interactive feedback of processing results led users to a more precise definition of the desired solution. Two participant groups (programmers and bookkeepers/accountants) working with three levels of problem complexity and three levels of processor complexity were used. The experimental task employed required specification of a logic for solution of a Navy task force problem.

  14. Programmable fuzzy associative memory processor

    NASA Astrophysics Data System (ADS)

    Shao, Lan; Liu, Liren; Li, Guoqiang

    1996-02-01

    An optical system based on the method of spatial area-coding and multiple image scheme is proposed for fuzzy associative memory processing. Fuzzy maximum operation is accomplished by a ferroelectric liquid crystal PROM instead of a computer-based approach. A relative subsethood is introduced here to be used as a criterion for the recall evaluation.

  15. Onboard Experiment Data Support Facility

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An onboard array structure has been devised for end to end processing of data from multiple spaceborne sensors. The array constitutes sets of programmable pipeline processors whose elements perform each assigned function in 0.25 microseconds. This space shuttle computer system can handle data rates from a few bits to over 100 megabits per second.

  16. Programmable Quantum Photonic Processor Using Silicon Photonics

    DTIC Science & Technology

    2017-04-01

    quantum information processing and quantum sensing, ranging from linear optics quantum computing and quantum simulation to quantum ...transformers have driven experimental and theoretical advances in quantum simulation, cluster-state quantum computing , all-optical quantum repeaters...neuromorphic computing , and other applications. In addition, we developed new schemes for ballistic quantum computation , new methods for

  17. Associative architecture for image processing

    NASA Astrophysics Data System (ADS)

    Adar, Rutie; Akerib, Avidan

    1997-09-01

    This article presents a new generation in parallel processing architecture for real-time image processing. The approach is implemented in a real time image processor chip, called the XiumTM-2, based on combining a fully associative array which provides the parallel engine with a serial RISC core on the same die. The architecture is fully programmable and can be programmed to implement a wide range of color image processing, computer vision and media processing functions in real time. The associative part of the chip is based on patented pending methodology of Associative Computing Ltd. (ACL), which condenses 2048 associative processors, each of 128 'intelligent' bits. Each bit can be a processing bit or a memory bit. At only 33 MHz and 0.6 micron manufacturing technology process, the chip has a computational power of 3 billion ALU operations per second and 66 billion string search operations per second. The fully programmable nature of the XiumTM-2 chip enables developers to use ACL tools to write their own proprietary algorithms combined with existing image processing and analysis functions from ACL's extended set of libraries.

  18. High-performance computing for airborne applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even thoughmore » the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.« less

  19. A distributed control system for the lower-hybrid current drive system on the Tokamak de Varennes

    NASA Astrophysics Data System (ADS)

    Bagdoo, J.; Guay, J. M.; Chaudron, G.-A.; Decoste, R.; Demers, Y.; Hubbard, A.

    1990-08-01

    An rf current drive system with an output power of 1 MW at 3.7 GHz is under development for the Tokamak de Varennes. The control system is based on an Ethernet local-area network of programmable logic controllers as front end, personal computers as consoles, and CAMAC-based DSP processors. The DSP processors ensure the PID control of the phase and rf power of each klystron, and the fast protection of high-power rf hardware, all within a 40 μs loop. Slower control and protection, event sequencing and the run-time database are provided by the programmable logic controllers, which communicate, via the LAN, with the consoles. The latter run a commercial process-control console software. The LAN protocol respects the first four layers of the ISO/OSI 802.3 standard. Synchronization with the tokamak control system is provided by commercially available CAMAC timing modules which trigger shot-related events and reference waveform generators. A detailed description of each subsystem and a performance evaluation of the system will be presented.

  20. Programmable computing with a single magnetoresistive element

    NASA Astrophysics Data System (ADS)

    Ney, A.; Pampuch, C.; Koch, R.; Ploog, K. H.

    2003-10-01

    The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such `chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, `chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.

  1. Plastic-Based Structurally Programmable Microfluidic Biochips for Clinical Diagnostics

    DTIC Science & Technology

    2005-05-01

    BIOCOMPATIBILITY CRITERIA OF SELECTED UV ADHESIVE LOCTITE 3211™......... 63 1 I. Executive Summary The objective of this project is to develop a smart...added into biochip design for improving the biocompatibility of entire biochip. Detailed problems include: • Design and development of structure... biocompatible biosensor array. 6 • Design and development of the sensor-to-circuit interface. Electronic Control System and Analyzer Design of the

  2. PIFEX: An advanced programmable pipelined-image processor

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.; Wilcox, B.

    1985-01-01

    PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It will operate on digitized raster-scanned images (at 60 frames per second for images up to about 300 by 400 and at lesser rates for larger images), performing a variety of operations simultaneously under program control. It thus is a powerful, flexible tool for image processing and low-level computer vision. It also has applications in other two-dimensional problems such as route planning for obstacle avoidance and the numerical solution of two-dimensional partial differential equations (although its low numerical precision limits its use in the latter field). The concept and design of PIFEX are described herein, and some examples of its use are given.

  3. Rubus: A compiler for seamless and extensible parallelism

    PubMed Central

    Adnan, Muhammad; Aslam, Faisal; Sarwar, Syed Mansoor

    2017-01-01

    Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer’s expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program. PMID:29211758

  4. Design and implementation of a high performance network security processor

    NASA Astrophysics Data System (ADS)

    Wang, Haixin; Bai, Guoqiang; Chen, Hongyi

    2010-03-01

    The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.

  5. Autonomous Telemetry Collection for Single-Processor Small Satellites

    NASA Technical Reports Server (NTRS)

    Speer, Dave

    2003-01-01

    For the Space Technology 5 mission, which is being developed under NASA's New Millennium Program, a single spacecraft processor will be required to do on-board real-time computations and operations associated with attitude control, up-link and down-link communications, science data processing, solid-state recorder management, power switching and battery charge management, experiment data collection, health and status data collection, etc. Much of the health and status information is in analog form, and each of the analog signals must be routed to the input of an analog-to-digital converter, converted to digital form, and then stored in memory. If the micro-operations of the analog data collection process are implemented in software, the processor may use up a lot of time either waiting for the analog signal to settle, waiting for the analog-to-digital conversion to complete, or servicing a large number of high frequency interrupts. In order to off-load a very busy processor, the collection and digitization of all analog spacecraft health and status data will be done autonomously by a field-programmable gate array that can configure the analog signal chain, control the analog-to-digital converter, and store the converted data in memory.

  6. Broadband set-top box using MAP-CA processor

    NASA Astrophysics Data System (ADS)

    Bush, John E.; Lee, Woobin; Basoglu, Chris

    2001-12-01

    Advances in broadband access are expected to exert a profound impact in our everyday life. It will be the key to the digital convergence of communication, computer and consumer equipment. A common thread that facilitates this convergence comprises digital media and Internet. To address this market, Equator Technologies, Inc., is developing the Dolphin broadband set-top box reference platform using its MAP-CA Broadband Signal ProcessorT chip. The Dolphin reference platform is a universal media platform for display and presentation of digital contents on end-user entertainment systems. The objective of the Dolphin reference platform is to provide a complete set-top box system based on the MAP-CA processor. It includes all the necessary hardware and software components for the emerging broadcast and the broadband digital media market based on IP protocols. Such reference design requires a broadband Internet access and high-performance digital signal processing. By using the MAP-CA processor, the Dolphin reference platform is completely programmable, allowing various codecs to be implemented in software, such as MPEG-2, MPEG-4, H.263 and proprietary codecs. The software implementation also enables field upgrades to keep pace with evolving technology and industry demands.

  7. Voltage-programmable liquid optical interface

    NASA Astrophysics Data System (ADS)

    Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.

    2009-07-01

    Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.

  8. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  9. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  10. Bus-Programmable Slave Card

    NASA Technical Reports Server (NTRS)

    Hall, William A.

    1990-01-01

    Slave microprocessors in multimicroprocessor computing system contains modified circuit cards programmed via bus connecting master processor with slave microprocessors. Enables interactive, microprocessor-based, single-loop control. Confers ability to load and run program from master/slave bus, without need for microprocessor development station. Tristate buffers latch all data and information on status. Slave central processing unit never connected directly to bus.

  11. Application developer's tutorial for the CSM testbed architecture

    NASA Technical Reports Server (NTRS)

    Underwood, Phillip; Felippa, Carlos A.

    1988-01-01

    This tutorial serves as an illustration of the use of the programmer interface on the CSM Testbed Architecture (NICE). It presents a complete, but simple, introduction to using both the GAL-DBM (Global Access Library-Database Manager) and CLIP (Command Language Interface Program) to write a NICE processor. Familiarity with the CSM Testbed architecture is required.

  12. Electronic processing and control system with programmable hardware

    NASA Technical Reports Server (NTRS)

    Alkalaj, Leon (Inventor); Fang, Wai-Chi (Inventor); Newell, Michael A. (Inventor)

    1998-01-01

    A computer system with reprogrammable hardware allowing dynamically allocating hardware resources for different functions and adaptability for different processors and different operating platforms. All hardware resources are physically partitioned into system-user hardware and application-user hardware depending on the specific operation requirements. A reprogrammable interface preferably interconnects the system-user hardware and application-user hardware.

  13. The Department of Defense Very High Speed Integrated Circuit (VHSIC) Technology Availability Program Plan for the Committees on Armed Services United States Congress.

    DTIC Science & Technology

    1986-06-30

    features of computer aided design systems and statistical quality control procedures that are generic to chip sets and processes. RADIATION HARDNESS -The...System PSP Programmable Signal Processor SSI Small Scale Integration ." TOW Tube Launched, Optically Tracked, Wire Guided TTL Transistor Transitor Logic

  14. Multiprocessor programming environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.B.; Fornaro, R.

    Programming tools and techniques have been well developed for traditional uniprocessor computer systems. The focus of this research project is on the development of a programming environment for a high speed real time heterogeneous multiprocessor system, with special emphasis on languages and compilers. The new tools and techniques will allow a smooth transition for programmers with experience only on single processor systems.

  15. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.

  16. Concurrent Image Processing Executive (CIPE). Volume 2: Programmer's guide

    NASA Technical Reports Server (NTRS)

    Williams, Winifred I.

    1990-01-01

    This manual is intended as a guide for application programmers using the Concurrent Image Processing Executive (CIPE). CIPE is intended to become the support system software for a prototype high performance science analysis workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark 3fp Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other concurrent architectures as well. CIPE provides a programming environment to applications' programmers to shield them from various user interfaces, file transactions, and architectural complexities. A programmer may choose to write applications to use only the Sun-4 or to use the Sun-4 with the hypercube. A hypercube program will use the hypercube's data processors and optionally the Weitek floating point accelerators. The CIPE programming environment provides a simple set of subroutines to activate user interface functions, specify data distributions, activate hypercube resident applications, and to communicate parameters to and from the hypercube.

  17. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics†

    PubMed Central

    Muluneh, Melaku

    2015-01-01

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm2 microfluidic chip that incorporated a commercial 565 × 1145 μm2 IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series. PMID:25284502

  18. Use of Field Programmable Gate Array Technology in Future Space Avionics

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Tate, Robert

    2005-01-01

    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.

  19. Techniques for the rapid display and manipulation of 3-D biomedical data.

    PubMed

    Goldwasser, S M; Reynolds, R A; Talton, D A; Walsh, E S

    1988-01-01

    The use of fully interactive 3-D workstations with true real-time performance will become increasingly common as technology matures and economical commercial systems become available. This paper provides a comprehensive introduction to high speed approaches to the display and manipulation of 3-D medical objects obtained from tomographic data acquisition systems such as CT, MR, and PET. A variety of techniques are outlined including the use of software on conventional minicomputers, hardware assist devices such as array processors and programmable frame buffers, and special purpose computer architecture for dedicated high performance systems. While both algorithms and architectures are addressed, the major theme centers around the utilization of hardware-based approaches including parallel processors for the implementation of true real-time systems.

  20. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  1. Programmable remapper for image processing

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor); Sampsell, Jeffrey B. (Inventor)

    1991-01-01

    A video-rate coordinate remapper includes a memory for storing a plurality of transformations on look-up tables for remapping input images from one coordinate system to another. Such transformations are operator selectable. The remapper includes a collective processor by which certain input pixels of an input image are transformed to a portion of the output image in a many-to-one relationship. The remapper includes an interpolative processor by which the remaining input pixels of the input image are transformed to another portion of the output image in a one-to-many relationship. The invention includes certain specific transforms for creating output images useful for certain defects of visually impaired people. The invention also includes means for shifting input pixels and means for scrolling the output matrix.

  2. Architecture and data processing alternatives for Tse computer. Volume 1: Tse logic design concepts and the development of image processing machine architectures

    NASA Technical Reports Server (NTRS)

    Rickard, D. A.; Bodenheimer, R. E.

    1976-01-01

    Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.

  3. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.

    PubMed

    Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José

    2014-11-01

    We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.

  4. A Tutorial on Parallel and Concurrent Programming in Haskell

    NASA Astrophysics Data System (ADS)

    Peyton Jones, Simon; Singh, Satnam

    This practical tutorial introduces the features available in Haskell for writing parallel and concurrent programs. We first describe how to write semi-explicit parallel programs by using annotations to express opportunities for parallelism and to help control the granularity of parallelism for effective execution on modern operating systems and processors. We then describe the mechanisms provided by Haskell for writing explicitly parallel programs with a focus on the use of software transactional memory to help share information between threads. Finally, we show how nested data parallelism can be used to write deterministically parallel programs which allows programmers to use rich data types in data parallel programs which are automatically transformed into flat data parallel versions for efficient execution on multi-core processors.

  5. Echo movement and evolution from real-time processing.

    NASA Technical Reports Server (NTRS)

    Schaffner, M. R.

    1972-01-01

    Preliminary experimental data on the effectiveness of conventional radars in measuring the movement and evolution of meteorological echoes when the radar is connected to a programmable real-time processor are examined. In the processor programming is accomplished by conceiving abstract machines which constitute the actual programs used in the methods employed. An analysis of these methods, such as the center of gravity method, the contour-displacement method, the method of slope, the cross-section method, the contour crosscorrelation method, the method of echo evolution at each point, and three-dimensional measurements, shows that the motions deduced from them may differ notably (since each method determines different quantities) but the plurality of measurement may give additional information on the characteristics of the precipitation.

  6. Analog hardware for delta-backpropagation neural networks

    NASA Technical Reports Server (NTRS)

    Eberhardt, Silvio P. (Inventor)

    1992-01-01

    This is a fully parallel analog backpropagation learning processor which comprises a plurality of programmable resistive memory elements serving as synapse connections whose values can be weighted during learning with buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in a plurality of neuron layers in accordance with delta-backpropagation algorithms modified so as to control weight changes due to circuit drift.

  7. Spring 2006. Industry Study. Information Technology Industry

    DTIC Science & Technology

    2006-01-01

    unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 i Information Technology 2006 ABSTRACT...integration of processors, coprocessors, memory, storage, etc. into a user-programmable final product. C . Software (Apple, Oracle): These firms...able to support the U.S. national security interests. C . Manufacturing: The personal computer manufacturing industry has also changed considerably

  8. VASP-4096: a very high performance programmable device for digital media processing applications

    NASA Astrophysics Data System (ADS)

    Krikelis, Argy

    2001-03-01

    Over the past few years, technology drivers for microprocessors have changed significantly. Media data delivery and processing--such as telecommunications, networking, video processing, speech recognition and 3D graphics--is increasing in importance and will soon dominate the processing cycles consumed in computer-based systems. This paper presents the architecture of the VASP-4096 processor. VASP-4096 provides high media performance with low energy consumption by integrating associative SIMD parallel processing with embedded microprocessor technology. The major innovations in the VASP-4096 is the integration of thousands of processing units in a single chip that are capable of support software programmable high-performance mathematical functions as well as abstract data processing. In addition to 4096 processing units, VASP-4096 integrates on a single chip a RISC controller that is an implementation of the SPARC architecture, 128 Kbytes of Data Memory, and I/O interfaces. The SIMD processing in VASP-4096 implements the ASProCore architecture, which is a proprietary implementation of SIMD processing, operates at 266 MHz with program instructions issued by the RISC controller. The device also integrates a 64-bit synchronous main memory interface operating at 133 MHz (double-data rate), and a 64- bit 66 MHz PCI interface. VASP-4096, compared with other processors architectures that support media processing, offers true performance scalability, support for deterministic and non-deterministic data processing on a single device, and software programmability that can be re- used in future chip generations.

  9. Robust media processing on programmable power-constrained systems

    NASA Astrophysics Data System (ADS)

    McVeigh, Jeff

    2005-03-01

    To achieve consumer-level quality, media systems must process continuous streams of audio and video data while maintaining exacting tolerances on sampling rate, jitter, synchronization, and latency. While it is relatively straightforward to design fixed-function hardware implementations to satisfy worst-case conditions, there is a growing trend to utilize programmable multi-tasking solutions for media applications. The flexibility of these systems enables support for multiple current and future media formats, which can reduce design costs and time-to-market. This paper provides practical engineering solutions to achieve robust media processing on such systems, with specific attention given to power-constrained platforms. The techniques covered in this article utilize the fundamental concepts of algorithm and software optimization, software/hardware partitioning, stream buffering, hierarchical prioritization, and system resource and power management. A novel enhancement to dynamically adjust processor voltage and frequency based on buffer fullness to reduce system power consumption is examined in detail. The application of these techniques is provided in a case study of a portable video player implementation based on a general-purpose processor running a non real-time operating system that achieves robust playback of synchronized H.264 video and MP3 audio from local storage and streaming over 802.11.

  10. Error-rate prediction for programmable circuits: methodology, tools and studied cases

    NASA Astrophysics Data System (ADS)

    Velazco, Raoul

    2013-05-01

    This work presents an approach to predict the error rates due to Single Event Upsets (SEU) occurring in programmable circuits as a consequence of the impact or energetic particles present in the environment the circuits operate. For a chosen application, the error-rate is predicted by combining the results obtained from radiation ground testing and the results of fault injection campaigns performed off-beam during which huge numbers of SEUs are injected during the execution of the studied application. The goal of this strategy is to obtain accurate results about different applications' error rates, without using particle accelerator facilities, thus significantly reducing the cost of the sensitivity evaluation. As a case study, this methodology was applied a complex processor, the Power PC 7448 executing a program issued from a real space application and a crypto-processor application implemented in an SRAM-based FPGA and accepted to be embedded in the payload of a scientific satellite of NASA. The accuracy of predicted error rates was confirmed by comparing, for the same circuit and application, predictions with measures issued from radiation ground testing performed at the cyclotron Cyclone cyclotron of HIF (Heavy Ion Facility) of Louvain-la-Neuve (Belgium).

  11. Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation.

    PubMed

    Arakawa, Christopher K; Badeau, Barry A; Zheng, Ying; DeForest, Cole A

    2017-10-01

    A photodegradable material-based approach to generate endothelialized 3D vascular networks within cell-laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user-defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next-generation microfluidics and directed cell function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) methods.

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Garcia-Mondéjar, A.; Bercher, N.; Fabry, P. L.; Roca, M.; Varona, E.; Fernandes, J.; Lazaro, C.; Vieira, T.; David, G.; Restano, M.; Ambrózio, A.

    2017-12-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. The SHAPE Processor implements all of the steps necessary to derive rivers and lakes water levels and discharge from Delay-Doppler Altimetry and perform their validation against in situ data. The processor uses FBR CryoSat-2 and L1A Sentinel-3A data as input and also various ancillary data (proc. param., water masks, L2 corrections, etc.), to produce surface water levels. At a later stage, water level data are assimilated into hydrological models to derive river discharge. This poster presents the improvements obtained with the new methods and algorithms over the regions of interest (Amazon and Danube rivers, Vanern and Titicaca lakes).

  13. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  14. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    PubMed Central

    Zhang, Zhen; Zhu, Rong

    2017-01-01

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas. PMID:28832522

  15. Geospace simulations using modern accelerator processor technology

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.

    2009-12-01

    OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.

  16. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis.

    PubMed

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-05-09

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform's performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.

  17. Nanoliter-Scale Protein Crystallization and Screening with a Microfluidic Droplet Robot

    PubMed Central

    Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun

    2014-01-01

    Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35–96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4–8 nL. The protein consumption significantly reduces 50–500 fold compared with current crystallization stations. PMID:24854085

  18. Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.

    PubMed

    Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun

    2014-05-23

    Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8 nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.

  19. Separation and counting of single molecules through nanofluidics, programmable electrophoresis, and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2006-04-25

    An apparatus for carrying out the separation, detection, and/or counting of single molecules at nanometer scale. Molecular separation is achieved by driving single molecules through a microfluidic or nanofluidic medium using programmable and coordinated electric fields. In various embodiments, the fluidic medium is a strip of hydrophilic material on nonconductive hydrophobic surface, a trough produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base, or a covered passageway produced by parallel strips of hydrophobic nonconductive material on a hydrophilic base together with a nonconductive cover on the parallel strips of hydrophobic nonconductive material. The molecules are detected and counted using nanoelectrode-gated electron tunneling methods, dielectric monitoring, and other methods.

  20. Full speed ahead for software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, A.

    1986-03-10

    Supercomputing software is moving into high gear, spurred by the rapid spread of supercomputers into new applications. The critical challenge is how to develop tools that will make it easier for programmers to write applications that take advantage of vectorizing in the classical supercomputer and the parallelism that is emerging in supercomputers and minisupercomputers. Writing parallel software is a challenge that every programmer must face because parallel architectures are springing up across the range of computing. Cray is developing a host of tools for programmers. Tools to support multitasking (in supercomputer parlance, multitasking means dividing up a single program tomore » run on multiple processors) are high on Cray's agenda. On tap for multitasking is Premult, dubbed a microtasking tool. As a preprocessor for Cray's CFT77 FORTRAN compiler, Premult will provide fine-grain multitasking.« less

  1. Another expert system rule inference based on DNA molecule logic gates

    NASA Astrophysics Data System (ADS)

    WÄ siewicz, Piotr

    2013-10-01

    With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.

  2. Design and evaluation of an architecture for a digital signal processor for instrumentation applications

    NASA Astrophysics Data System (ADS)

    Fellman, Ronald D.; Kaneshiro, Ronald T.; Konstantinides, Konstantinos

    1990-03-01

    The authors present the design and evaluation of an architecture for a monolithic, programmable, floating-point digital signal processor (DSP) for instrumentation applications. An investigation of the most commonly used algorithms in instrumentation led to a design that satisfies the requirements for high computational and I/O (input/output) throughput. In the arithmetic unit, a 16- x 16-bit multiplier and a 32-bit accumulator provide the capability for single-cycle multiply/accumulate operations, and three format adjusters automatically adjust the data format for increased accuracy and dynamic range. An on-chip I/O unit is capable of handling data block transfers through a direct memory access port and real-time data streams through a pair of parallel I/O ports. I/O operations and program execution are performed in parallel. In addition, the processor includes two data memories with independent addressing units, a microsequencer with instruction RAM, and multiplexers for internal data redirection. The authors also present the structure and implementation of a design environment suitable for the algorithmic, behavioral, and timing simulation of a complete DSP system. Various benchmarking results are reported.

  3. A generic FPGA-based detector readout and real-time image processing board

    NASA Astrophysics Data System (ADS)

    Sarpotdar, Mayuresh; Mathew, Joice; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    For space-based astronomical observations, it is important to have a mechanism to capture the digital output from the standard detector for further on-board analysis and storage. We have developed a generic (application- wise) field-programmable gate array (FPGA) board to interface with an image sensor, a method to generate the clocks required to read the image data from the sensor, and a real-time image processor system (on-chip) which can be used for various image processing tasks. The FPGA board is applied as the image processor board in the Lunar Ultraviolet Cosmic Imager (LUCI) and a star sensor (StarSense) - instruments developed by our group. In this paper, we discuss the various design considerations for this board and its applications in the future balloon and possible space flights.

  4. Safeguards Technology Factsheet - Unattended Dual Current Monitor (UDCM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matthew R.

    2016-04-13

    The UDCM is a low-current measurement device designed to record sub-nano-amp to micro-amp currents from radiation detectors. The UDCM is a two-channel device that incorporates a Commercial-Off-The-Shelf (COTS) processor enabling both serial over USB as well as Ethernet communications. The instrument includes microSD and USB flash memory for data storage as well as a programmable High Voltage (HV) power supply for detector bias. The UDCM is packaged in the same enclosure, employs the same processor and has a similar user interface as the UMSR. A serial over USB communication line to the UDCM allows the use of existing versions ofmore » MIC software, while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less

  5. Effects Of Local Oscillator Errors On Digital Beamforming

    DTIC Science & Technology

    2016-03-01

    processor EF element factor EW electronic warfare FFM flicker frequency modulation FOV field-of-view FPGA field-programmable gate array FPM flicker...frequencies and also more difficult to measure [15]. 2. Flicker frequency modulation The source for flicker frequency modulation ( FFM ) is attributed to...a physical resonance mechanism of an oscillator or issues controlling electronic components. Some oscillators might not show FFM noise, which might

  6. M3: Microscope-based maskless micropatterning with dry film photoresist

    PubMed Central

    Leigh, Steven Y.; Tattu, Aashay; Mitchell, Joseph S. B.

    2011-01-01

    We present a maskless micropatterning system that utilizes a fluorescence microscope with programmable X-Y stage and dry film photoresist to realize feature sizes in the sub-millimeter range (40–700 μm). The method allows for flexible in-house maskless photolithography without a dedicated microfabrication facility and is well-suited for rapid prototyping of microfluidic channels, scaffold templates for protein/cell patterning or optically-guided cell encapsulation for biomedical applications. PMID:21190086

  7. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  8. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  9. Research on NC motion controller based on SOPC technology

    NASA Astrophysics Data System (ADS)

    Jiang, Tingbiao; Meng, Biao

    2006-11-01

    With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.

  10. The Use of Field Programmable Gate Arrays (FPGA) in Small Satellite Communication Systems

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta; Sims, William Herbert; Casas, Joseph

    2015-01-01

    This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging SmallSat and CubeSat industry and to provide advances for NASA as described in the TAO5 Communication and Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A typical implementation of the SDR is to use a processor and write software to implement all the functions of filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, error correcting and other algorithms is too much for modern processors to get efficient use of the available bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining low power. These methods will implement digital radios with significant data rates in the X and Ka bands. Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in a 1/2 U sized telemetry system. Additionally, modern FPGAs have embedded processing systems, such as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR technologies.

  11. Good animal welfare makes economic sense: potential of pig abattoir meat inspection as a welfare surveillance tool

    PubMed Central

    2012-01-01

    During abattoir meat inspection pig carcasses are partially or fully condemned upon detection of disease that poses a risk to public health or welfare conditions that cause animal suffering e.g. fractures. This incurs direct financial losses to producers and processors. Other health and welfare-related conditions may not result in condemnation but can necessitate ‘trimming’ of the carcass e.g. bruising, and result in financial losses to the processor. Since animal health is a component of animal welfare these represent a clear link between suboptimal pig welfare and financial losses to the pig industry. Meat inspection data can be used to inform herd health programmes, thereby reducing the risk of injury and disease and improving production efficiency. Furthermore, meat inspection has the potential to contribute to surveillance of animal welfare. Such data could contribute to reduced losses to producers and processors through lower rates of carcass condemnations, trimming and downgrading in conjunction with higher pig welfare standards on farm. Currently meat inspection data are under-utilised in the EU, even as a means of informing herd health programmes. This includes the island of Ireland but particularly the Republic. This review describes the current situation with regard to meat inspection regulation, method, data capture and utilisation across the EU, with special reference to the island of Ireland. It also describes the financial losses arising from poor animal welfare (and health) on farms. This review seeks to contribute to efforts to evaluate the role of meat inspection as a surveillance tool for animal welfare on-farm, using pigs as a case example. PMID:22738170

  12. Pressure driven digital logic in PDMS based microfluidic devices fabricated by multilayer soft lithography.

    PubMed

    Devaraju, Naga Sai Gopi K; Unger, Marc A

    2012-11-21

    Advances in microfluidics now allow an unprecedented level of parallelization and integration of biochemical reactions. However, one challenge still faced by the field has been the complexity and cost of the control hardware: one external pressure signal has been required for each independently actuated set of valves on chip. Using a simple post-modification to the multilayer soft lithography fabrication process, we present a new implementation of digital fluidic logic fully analogous to electronic logic with significant performance advances over the previous implementations. We demonstrate a novel normally closed static gain valve capable of modulating pressure signals in a fashion analogous to an electronic transistor. We utilize these valves to build complex fluidic logic circuits capable of arbitrary control of flows by processing binary input signals (pressure (1) and atmosphere (0)). We demonstrate logic gates and devices including NOT, NAND and NOR gates, bi-stable flip-flops, gated flip-flops (latches), oscillators, self-driven peristaltic pumps, delay flip-flops, and a 12-bit shift register built using static gain valves. This fluidic logic shows cascade-ability, feedback, programmability, bi-stability, and autonomous control capability. This implementation of fluidic logic yields significantly smaller devices, higher clock rates, simple designs, easy fabrication, and integration into MSL microfluidics.

  13. Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids

    PubMed Central

    Um, Taewoong; Hong, Jiwoo; Im, Do Jin; Lee, Sang Joon; Kang, In Seok

    2016-01-01

    The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work systematically demonstrates droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. It exhibits three main modes (i.e., attaching, uniform, and bursting modes) as a function of flow rates, applied voltages, and gap distances between the nozzle and the oil surface. Through a conventional nozzle with diameter of a few millimeters, charged droplets with volumes ranging from a few μL to a few tens of nL can be uniformly dispensed into the oil chamber without reduction in nozzle size. Based on the features of the proposed method (e.g., formation of droplets with controllable polarity and amount of electric charge in water and oil system), a simple and straightforward method is developed for microparticle synthesis, including preparation of colloidosomes and fabrication of Janus microparticles with anisotropic internal structures. Finally, a combined system consisting of ECC-induced droplet dispensing and electrophoresis of charged droplet (ECD)-driven manipulation systems is constructed. This integrated platform will provide increased utility and flexibility in microfluidic applications because a charged droplet can be delivered toward the intended position by programmable electric control. PMID:27534580

  14. Microfluidic device for novel breast cancer screening by blood test using miRNA beacon probe.

    PubMed

    Salim, Bindu; Athira, M V; Kandaswamy, A; Vijayakumar, Madhulika; Saravanan, T; Sairam, Thiagarajan

    2017-09-30

    Breast cancer is identified as the highest cause of death in women suffering from cancer. Early diagnosis is the key to increase the survival of breast cancer victims. Molecular diagnosis using biomarkers have advanced much in the recent years. The cost involved in such diagnosis is not affordable for most of the population. The concept being investigated here is to realize a simple diagnosis system for screening cancer by way of a blood test utilizing a miRNA based biomarker with a complementary molecular beacon probe. A microfluidic platform was designed and attached with a fluorescence reader, which is portable and cost effective. Experiments were performed with 51 blood samples of which 30 were healthy and 21 were positive for breast cancer, collected against institutional human ethical clearance, IHEC 16/180-7-9-2016. miRNA 21 was chosen as the biomarker because it is overexpressed 4-fold in the serum of breast cancer patients. This work involved design of an experiment to prove the concept of miRNA over expression followed by detection of miRNA 21 using the microfluidic platform attached with a fluorescence reader and validation of the results using quantitative Real Time Polymerase Chain Reaction (qRT-PCR). The results obtained from the microfluidic device concurred with qRT-PCR results. The device is suitable for point-of-care application in a mass-screening programme. The study also has revealed that the stage of the cancer could be indicated by this test, which will be further useful for deciding a therapeutic regime.

  15. PANDA: A distributed multiprocessor operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubb, P.

    1989-01-01

    PANDA is a design for a distributed multiprocessor and an operating system. PANDA is designed to allow easy expansion of both hardware and software. As such, the PANDA kernel provides only message passing and memory and process management. The other features needed for the system (device drivers, secondary storage management, etc.) are provided as replaceable user tasks. The thesis presents PANDA's design and implementation, both hardware and software. PANDA uses multiple 68010 processors sharing memory on a VME bus, each such node potentially connected to others via a high speed network. The machine is completely homogeneous: there are no differencesmore » between processors that are detectable by programs running on the machine. A single two-processor node has been constructed. Each processor contains memory management circuits designed to allow processors to share page tables safely. PANDA presents a programmers' model similar to the hardware model: a job is divided into multiple tasks, each having its own address space. Within each task, multiple processes share code and data. Tasks can send messages to each other, and set up virtual circuits between themselves. Peripheral devices such as disc drives are represented within PANDA by tasks. PANDA divides secondary storage into volumes, each volume being accessed by a volume access task, or VAT. All knowledge about the way that data is stored on a disc is kept in its volume's VAT. The design is such that PANDA should provide a useful testbed for file systems and device drivers, as these can be installed without recompiling PANDA itself, and without rebooting the machine.« less

  16. FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.

    PubMed

    Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora

    2013-09-01

    In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.

  17. Microlens array processor with programmable weight mask and direct optical input

    NASA Astrophysics Data System (ADS)

    Schmid, Volker R.; Lueder, Ernst H.; Bader, Gerhard; Maier, Gert; Siegordner, Jochen

    1999-03-01

    We present an optical feature extraction system with a microlens array processor. The system is suitable for online implementation of a variety of transforms such as the Walsh transform and DCT. Operating with incoherent light, our processor accepts direct optical input. Employing a sandwich- like architecture, we obtain a very compact design of the optical system. The key elements of the microlens array processor are a square array of 15 X 15 spherical microlenses on acrylic substrate and a spatial light modulator as transmissive mask. The light distribution behind the mask is imaged onto the pixels of a customized a-Si image sensor with adjustable gain. We obtain one output sample for each microlens image and its corresponding weight mask area as summation of the transmitted intensity within one sensor pixel. The resulting architecture is very compact and robust like a conventional camera lens while incorporating a high degree of parallelism. We successfully demonstrate a Walsh transform into the spatial frequency domain as well as the implementation of a discrete cosine transform with digitized gray values. We provide results showing the transformation performance for both synthetic image patterns and images of natural texture samples. The extracted frequency features are suitable for neural classification of the input image. Other transforms and correlations can be implemented in real-time allowing adaptive optical signal processing.

  18. Single-Scale Retinex Using Digital Signal Processors

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2005-01-01

    The Retinex is an image enhancement algorithm that improves the brightness, contrast and sharpness of an image. It performs a non-linear spatial/spectral transform that provides simultaneous dynamic range compression and color constancy. It has been used for a wide variety of applications ranging from aviation safety to general purpose photography. Many potential applications require the use of Retinex processing at video frame rates. This is difficult to achieve with general purpose processors because the algorithm contains a large number of complex computations and data transfers. In addition, many of these applications also constrain the potential architectures to embedded processors to save power, weight and cost. Thus we have focused on digital signal processors (DSPs) and field programmable gate arrays (FPGAs) as potential solutions for real-time Retinex processing. In previous efforts we attained a 21 (full) frame per second (fps) processing rate for the single-scale monochromatic Retinex with a TMS320C6711 DSP operating at 150 MHz. This was achieved after several significant code improvements and optimizations. Since then we have migrated our design to the slightly more powerful TMS320C6713 DSP and the fixed point TMS320DM642 DSP. In this paper we briefly discuss the Retinex algorithm, the performance of the algorithm executing on the TMS320C6713 and the TMS320DM642, and compare the results with the TMS320C6711.

  19. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices

    PubMed Central

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N.; Christodoulides, Nicolaos; McDevitt, John T.

    2013-01-01

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications forces cost considerations to be kept low and throughput high. As such, a materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 minutes with the ability to scale up 4x by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing. PMID:23183187

  20. Modem design for a MOBILESAT terminal

    NASA Technical Reports Server (NTRS)

    Rice, M.; Miller, M. J.; Cowley, W. G.; Rowe, D.

    1990-01-01

    The implementation is described of a programmable digital signal processor based system, designed for use as a test bed in the development of a digital modem, codec, and channel simulator. Code was written to configure the system as a 5600 bps or 6600 bps QPSK modem. The test bed is currently being used in an experiment to evaluate the performance of digital speech over shadowed channels in the Australian mobile satellite (MOBILESAT) project.

  1. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    PubMed

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Chrestenson transform FPGA embedded factorizations.

    PubMed

    Corinthios, Michael J

    2016-01-01

    Chrestenson generalized Walsh transform factorizations for parallel processing imbedded implementations on field programmable gate arrays are presented. This general base transform, sometimes referred to as the Discrete Chrestenson transform, has received special attention in recent years. In fact, the Discrete Fourier transform and Walsh-Hadamard transform are but special cases of the Chrestenson generalized Walsh transform. Rotations of a base-p hypercube, where p is an arbitrary integer, are shown to produce dynamic contention-free memory allocation, in processor architecture. The approach is illustrated by factorizations involving the processing of matrices of the transform which are function of four variables. Parallel operations are implemented matrix multiplications. Each matrix, of dimension N × N, where N = p (n) , n integer, has a structure that depends on a variable parameter k that denotes the iteration number in the factorization process. The level of parallelism, in the form of M = p (m) processors can be chosen arbitrarily by varying m between zero to its maximum value of n - 1. The result is an equation describing the generalised parallelism factorization as a function of the four variables n, p, k and m. Applications of the approach are shown in relation to configuring field programmable gate arrays for digital signal processing applications.

  3. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.

    PubMed

    Zhang, Weifeng; Yao, Jianping

    2018-04-11

    Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.

  4. Compute Element and Interface Box for the Hazard Detection System

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Khanoyan, Garen; Stern, Ryan A.; Some, Raphael R.; Bailey, Erik S.; Carson, John M.; Vaughan, Geoffrey M.; Werner, Robert A.; Salomon, Phil M.; Martin, Keith E.; hide

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is building a sensor that enables a spacecraft to evaluate autonomously a potential landing area to generate a list of hazardous and safe landing sites. It will also provide navigation inputs relative to those safe sites. The Hazard Detection System Compute Element (HDS-CE) box combines a field-programmable gate array (FPGA) board for sensor integration and timing, with a multicore computer board for processing. The FPGA does system-level timing and data aggregation, and acts as a go-between, removing the real-time requirements from the processor and labeling events with a high resolution time. The processor manages the behavior of the system, controls the instruments connected to the HDS-CE, and services the "heavy lifting" computational requirements for analyzing the potential landing spots.

  5. DNA Assembly in 3D Printed Fluidics

    PubMed Central

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.

    2015-01-01

    The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  6. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis

    PubMed Central

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-01-01

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform’s performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis. PMID:27157697

  7. Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, Marco; Malaquin, Laurent; Viovy, Jean-Louis; de Cremoux, Patricia; Descroix, Stephanie

    2016-05-01

    The development of precision medicine, together with the multiplication of targeted therapies and associated molecular biomarkers, call for major progress in genetic analysis methods, allowing increased multiplexing and the implementation of more complex decision trees, without cost increase or loss of robustness. We present a platform combining droplet microfluidics and magnetic tweezers, performing RNA purification, reverse transcription and amplification in a fully automated and programmable way, in droplets of 250nL directly sampled from a microtiter-plate. This platform decreases sample consumption about 100 fold as compared to current robotized platforms and it reduces human manipulations and contamination risk. The platform’s performance was first evaluated on cell lines, showing robust operation on RNA quantities corresponding to less than one cell, and then clinically validated with a cohort of 21 breast cancer samples, for the determination of their HER2 expression status, in a blind comparison with an established routine clinical analysis.

  8. PROGRAPE-1: A Programmable, Multi-Purpose Computer for Many-Body Simulations

    NASA Astrophysics Data System (ADS)

    Hamada, Tsuyoshi; Fukushige, Toshiyuki; Kawai, Atsushi; Makino, Junichiro

    2000-10-01

    We have developed PROGRAPE-1 (PROgrammable GRAPE-1), a programmable multi-purpose computer for many-body simulations. The main difference between PROGRAPE-1 and ``traditional'' GRAPE systems is that the former uses FPGA (Field Programmable Gate Array) chips as the processing elements, while the latter relies on a hardwired pipeline processor specialized to gravitational interactions. Since the logic implemented in FPGA chips can be reconfigured, we can use PROGRAPE-1 to calculate not only gravitational interactions, but also other forms of interactions, such as the van der Waals force, hydro\\-dynamical interactions in the SPHr calculation, and so on. PROGRAPE-1 comprises two Altera EPF10K100 FPGA chips, each of which contains nominally 100000 gates. To evaluate the programmability and performance of PROGRAPE-1, we implemented a pipeline for gravitational interactions similar to that of GRAPE-3. One pipeline is fitted into a single FPGA chip, operated at 16 MHz clock. Thus, for gravitational interactions, PROGRAPE-1 provided a speed of 0.96 Gflops-equivalent. PROGRAPE will prove to be useful for a wide-range of particle-based simulations in which the calculation cost of interactions other than gravity is high, such as the evaluation of SPH interactions.

  9. Effective Vectorization with OpenMP 4.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Joseph N.; Hernandez, Oscar R.; Lopez, Matthew Graham

    This paper describes how the Single Instruction Multiple Data (SIMD) model and its extensions in OpenMP work, and how these are implemented in different compilers. Modern processors are highly parallel computational machines which often include multiple processors capable of executing several instructions in parallel. Understanding SIMD and executing instructions in parallel allows the processor to achieve higher performance without increasing the power required to run it. SIMD instructions can significantly reduce the runtime of code by executing a single operation on large groups of data. The SIMD model is so integral to the processor s potential performance that, if SIMDmore » is not utilized, less than half of the processor is ever actually used. Unfortunately, using SIMD instructions is a challenge in higher level languages because most programming languages do not have a way to describe them. Most compilers are capable of vectorizing code by using the SIMD instructions, but there are many code features important for SIMD vectorization that the compiler cannot determine at compile time. OpenMP attempts to solve this by extending the C++/C and Fortran programming languages with compiler directives that express SIMD parallelism. OpenMP is used to pass hints to the compiler about the code to be executed in SIMD. This is a key resource for making optimized code, but it does not change whether or not the code can use SIMD operations. However, in many cases critical functions are limited by a poor understanding of how SIMD instructions are actually implemented, as SIMD can be implemented through vector instructions or simultaneous multi-threading (SMT). We have found that it is often the case that code cannot be vectorized, or is vectorized poorly, because the programmer does not have sufficient knowledge of how SIMD instructions work.« less

  10. A Low-Power Wearable Stand-Alone Tongue Drive System for People With Severe Disabilities.

    PubMed

    Jafari, Ali; Buswell, Nathanael; Ghovanloo, Maysam; Mohsenin, Tinoosh

    2018-02-01

    This paper presents a low-power stand-alone tongue drive system (sTDS) used for individuals with severe disabilities to potentially control their environment such as computer, smartphone, and wheelchair using their voluntary tongue movements. A low-power local processor is proposed, which can perform signal processing to convert raw magnetic sensor signals to user-defined commands, on the sTDS wearable headset, rather than sending all raw data out to a PC or smartphone. The proposed sTDS significantly reduces the transmitter power consumption and subsequently increases the battery life. Assuming the sTDS user issues one command every 20 ms, the proposed local processor reduces the data volume that needs to be wirelessly transmitted by a factor of 64, from 9.6 to 0.15 kb/s. The proposed processor consists of three main blocks: serial peripheral interface bus for receiving raw data from magnetic sensors, external magnetic interference attenuation to attenuate external magnetic field from the raw magnetic signal, and a machine learning classifier for command detection. A proof-of-concept prototype sTDS has been implemented with a low-power IGLOO-nano field programmable gate array (FPGA), bluetooth low energy, battery and magnetic sensors on a headset, and tested. At clock frequency of 20 MHz, the processor takes 6.6 s and consumes 27 nJ for detecting a command with a detection accuracy of 96.9%. To further reduce power consumption, an application-specified integrated circuit processor for the sTDS is implemented at the postlayout level in 65-nm CMOS technology with 1-V power supply, and it consumes 0.43 mW, which is 10 lower than FPGA power consumption and occupies an area of only 0.016 mm.

  11. Scalable Engineering of Quantum Optical Information Processing Architectures (SEQUOIA)

    DTIC Science & Technology

    2016-12-13

    arrays. Figure 4: An 8-channel fiber-coupled SNSPD array. 1.4 Post -fabrication-tunable linear optic fabrication We have analyzed the...performance of the programmable nanophotonic processor (PNP) that is dynamically tunable via post -fabrication active phase tuning to predict the scaling of...various device losses. PACS numbers: 42.50. Ex , 03.67.Dd, 03.67.Lx, 42.50.Dv I. INTRODUCTION Quantum key distribution (QKD) enables two distant authenticated

  12. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  13. The Intelligibility of Non-Vocoded and Vocoded Semantically Anomalous Sentences.

    DTIC Science & Technology

    1985-07-26

    then vocoded with a real-time channel vocoder (see Gold and Tierney 5 for program description). The Lincoln Digital Signal Processors (LDSPs) - simple...programmable computers of a Harvard architecture - were used to imple- ment the real-time channel vocoder program . Noise was generated within the...ratio at the input was approximately 0 dB. The impor- tant fact to emphasize is that identical vocoding programs were used to generate the Gold and

  14. Turbo Pascal Implementation of a Distributed Processing Network of MS-DOS Microcomputers Connected in a Master-Slave Configuration

    DTIC Science & Technology

    1989-12-01

    Interrupt Procedures ....... 29 13. Support for a Larger Memory Model ................ 29 C. IMPLEMENTATION ........................................ 29...describe the programmer’s model of the hardware utilized in the microcomputers and interrupt driven serial communication considerations. Chapter III...Central Processor Unit The programming model of Table 2.1 is common to the Intel 8088, 8086 and 80x86 series of microprocessors used in the IBM PC/AT

  15. Low-Cost Space Hardware and Software

    NASA Technical Reports Server (NTRS)

    Shea, Bradley Franklin

    2013-01-01

    The goal of this project is to demonstrate and support the overall vision of NASA's Rocket University (RocketU) through the design of an electrical power system (EPS) monitor for implementation on RUBICS (Rocket University Broad Initiatives CubeSat), through the support for the CHREC (Center for High-Performance Reconfigurable Computing) Space Processor, and through FPGA (Field Programmable Gate Array) design. RocketU will continue to provide low-cost innovations even with continuous cuts to the budget.

  16. Spacecube V2.0 Micro Single Board Computer

    NASA Technical Reports Server (NTRS)

    Petrick, David J. (Inventor); Geist, Alessandro (Inventor); Lin, Michael R. (Inventor); Crum, Gary R. (Inventor)

    2017-01-01

    A single board computer system radiation hardened for space flight includes a printed circuit board having a top side and bottom side; a reconfigurable field programmable gate array (FPGA) processor device disposed on the top side; a connector disposed on the top side; a plurality of peripheral components mounted on the bottom side; and wherein a size of the single board computer system is not greater than approximately 7 cm.times.7 cm.

  17. Data Handling and Processing Unit for Alphabus/Alphasat TDP-8

    NASA Astrophysics Data System (ADS)

    Habinc, Sandi; Martins, Rodolfo; Costa Pinto, Joao; Furano, Gianluca

    2011-08-01

    ESA's and Inmarsat's ARTES 8 Alphabus/Alphasat is a specific programme dedicated to the development and deployment of Alphasat. It encompasses several technology demonstration payloads (TDPs), of which the TDP8 is an Environment effects facility to monitor the GEO radiation environment and its effects on electronic components and sensors. This paper will discuss the rapid development of the processor and board for TDP8's data handling and processing unit.

  18. Early MIMD experience on the CRAY X-MP

    NASA Astrophysics Data System (ADS)

    Rhoades, Clifford E.; Stevens, K. G.

    1985-07-01

    This paper describes some early experience with converting four physics simulation programs to the CRAY X-MP, a current Multiple Instruction, Multiple Data (MIMD) computer consisting of two processors each with an architecture similar to that of the CRAY-1. As a multi-processor, the CRAY X-MP together with the high speed Solid-state Storage Device (SSD) in an ideal machine upon which to study MIMD algorithms for solving the equations of mathematical physics because it is fast enough to run real problems. The computer programs used in this study are all FORTRAN versions of original production codes. They range in sophistication from a one-dimensional numerical simulation of collisionless plasma to a two-dimensional hydrodynamics code with heat flow to a couple of three-dimensional fluid dynamics codes with varying degrees of viscous modeling. Early research with a dual processor configuration has shown speed-ups ranging from 1.55 to 1.98. It has been observed that a few simple extensions to FORTRAN allow a typical programmer to achieve a remarkable level of efficiency. These extensions involve the concept of memory local to a concurrent subprogram and memory common to all concurrent subprograms.

  19. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  20. Optical apparatus for forming correlation spectrometers and optical processors

    DOEpatents

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  1. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  2. Emulating Many-Body Localization with a Superconducting Quantum Processor

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Chen, Jin-Jun; Zeng, Yu; Zhang, Yu-Ran; Song, Chao; Liu, Wuxin; Guo, Qiujiang; Zhang, Pengfei; Xu, Da; Deng, Hui; Huang, Keqiang; Wang, H.; Zhu, Xiaobo; Zheng, Dongning; Fan, Heng

    2018-02-01

    The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography. Here we present an experiment fully emulating the MBL dynamics with a 10-qubit superconducting quantum processor, which represents a spin-1 /2 X Y model featuring programmable disorder and long-range spin-spin interactions. We provide essential signatures of MBL, such as the imbalance due to the initial nonequilibrium, the violation of eigenstate thermalization hypothesis, and, more importantly, the direct evidence of the long-time logarithmic growth of entanglement entropy. Our results lay solid foundations for precisely simulating the intriguing physics of quantum many-body systems on the platform of large-scale multiqubit superconducting quantum processors.

  3. An automated microfluidic DNA microarray platform for genetic variant detection in inherited arrhythmic diseases.

    PubMed

    Huang, Shu-Hong; Chang, Yu-Shin; Juang, Jyh-Ming Jimmy; Chang, Kai-Wei; Tsai, Mong-Hsun; Lu, Tzu-Pin; Lai, Liang-Chuan; Chuang, Eric Y; Huang, Nien-Tsu

    2018-03-12

    In this study, we developed an automated microfluidic DNA microarray (AMDM) platform for point mutation detection of genetic variants in inherited arrhythmic diseases. The platform allows for automated and programmable reagent sequencing under precise conditions of hybridization flow and temperature control. It is composed of a commercial microfluidic control system, a microfluidic microarray device, and a temperature control unit. The automated and rapid hybridization process can be performed in the AMDM platform using Cy3 labeled oligonucleotide exons of SCN5A genetic DNA, which produces proteins associated with sodium channels abundant in the heart (cardiac) muscle cells. We then introduce a graphene oxide (GO)-assisted DNA microarray hybridization protocol to enable point mutation detection. In this protocol, a GO solution is added after the staining step to quench dyes bound to single-stranded DNA or non-perfectly matched DNA, which can improve point mutation specificity. As proof-of-concept we extracted the wild-type and mutant of exon 12 and exon 17 of SCN5A genetic DNA from patients with long QT syndrome or Brugada syndrome by touchdown PCR and performed a successful point mutation discrimination in the AMDM platform. Overall, the AMDM platform can greatly reduce laborious and time-consuming hybridization steps and prevent potential contamination. Furthermore, by introducing the reciprocating flow into the microchannel during the hybridization process, the total assay time can be reduced to 3 hours, which is 6 times faster than the conventional DNA microarray. Given the automatic assay operation, shorter assay time, and high point mutation discrimination, we believe that the AMDM platform has potential for low-cost, rapid and sensitive genetic testing in a simple and user-friendly manner, which may benefit gene screening in medical practice.

  4. Splash 2

    NASA Technical Reports Server (NTRS)

    Arnold, Jeffrey M.; Buell, Duncan A.; Kleinfelder, Walter J.

    1993-01-01

    Splash 2 is an attached processor system for Sun SPARC 2 workstations that uses Xilinx 4010 Field Programmable Gate Arrays (FPGA's) as its processing elements. The purpose of this paper is to describe Splash 2. The predecessor system, Splash 1, was designed to be used as a systolic processing system. Although it was very successful in that mode, there were many other applications that were not systolic, but which were successful, nonetheless, on Splash 1, or that were not implemented successfully due to one or more architectural limitations, most notably I/O bandwidth and interprocessor communication. Although other uses to increase computational performance have been found for the Xilinx FPGA's that are Splash's processing elements. Splash is unique in its goal to be programmable in a general sense.

  5. Implementation of a robotic flexible assembly system

    NASA Technical Reports Server (NTRS)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  6. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate ( C'' or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability bymore » using DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  7. Overview of the DART project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, K.R.; Hansen, F.R.; Napolitano, L.M.

    1992-01-01

    DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate (``C`` or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability by usingmore » DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less

  8. Fabrication of microscale materials with programmable composition gradients.

    PubMed

    Laval, Cédric; Bouchaudy, Anne; Salmon, Jean-Baptiste

    2016-04-07

    We present an original microfluidic technique coupling pervaporation and the use of Quake valves to fabricate microscale materials (∼10 × 100 μm(2) × 1 cm) with composition gradients along their longest dimension. Our device exploits pervaporation of water through a thin poly(dimethylsiloxane) (PDMS) membrane to continuously pump solutions (or dispersions) contained in different reservoirs connected to a microfluidic channel. This pervaporation-induced flow concentrates solutes (or particles) at the tip of the channel up to the formation of a dense material. The latter invades the channel as it is constantly enriched by an incoming flux of solutes/particles. Upstream Quake valves are used to select which reservoir is connected to the pervaporation channel and thus which solution (or dispersion) enriches the material during its growth. The microfluidic configuration of the pervaporation process is used to impose controlled growth along the channel thus enabling one to program spatial composition gradients using appropriate actuations of the valves. We demonstrate the possibilities offered by our technique through the fabrication of dense assemblies of nanoparticles and polymer composites with programmed gradients of fluorescent dyes. We also address the key issue of the spatial resolution of our gradients and we show that well-defined spatial modulations down to ≈50 μm can be obtained within colloidal materials, whereas gradients within polymer materials are resolved on length scales down to ≈1 mm due to molecular diffusion.

  9. Implementation of 4-way Superscalar Hash MIPS Processor Using FPGA

    NASA Astrophysics Data System (ADS)

    Sahib Omran, Safaa; Fouad Jumma, Laith

    2018-05-01

    Due to the quick advancements in the personal communications systems and wireless communications, giving data security has turned into a more essential subject. This security idea turns into a more confounded subject when next-generation system requirements and constant calculation speed are considered in real-time. Hash functions are among the most essential cryptographic primitives and utilized as a part of the many fields of signature authentication and communication integrity. These functions are utilized to acquire a settled size unique fingerprint or hash value of an arbitrary length of message. In this paper, Secure Hash Algorithms (SHA) of types SHA-1, SHA-2 (SHA-224, SHA-256) and SHA-3 (BLAKE) are implemented on Field-Programmable Gate Array (FPGA) in a processor structure. The design is described and implemented using a hardware description language, namely VHSIC “Very High Speed Integrated Circuit” Hardware Description Language (VHDL). Since the logical operation of the hash types of (SHA-1, SHA-224, SHA-256 and SHA-3) are 32-bits, so a Superscalar Hash Microprocessor without Interlocked Pipelines (MIPS) processor are designed with only few instructions that were required in invoking the desired Hash algorithms, when the four types of hash algorithms executed sequentially using the designed processor, the total time required equal to approximately 342 us, with a throughput of 4.8 Mbps while the required to execute the same four hash algorithms using the designed four-way superscalar is reduced to 237 us with improved the throughput to 5.1 Mbps.

  10. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  11. Design of video processing and testing system based on DSP and FPGA

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Lv, Jun; Chen, Xi'ai; Gong, Xuexia; Yang, Chen'na

    2007-12-01

    Based on high speed Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA), a video capture, processing and display system is presented, which is of miniaturization and low power. In this system, a triple buffering scheme was used for the capture and display, so that the application can always get a new buffer without waiting; The Digital Signal Processor has an image process ability and it can be used to test the boundary of workpiece's image. A video graduation technology is used to aim at the position which is about to be tested, also, it can enhance the system's flexibility. The character superposition technology realized by DSP is used to display the test result on the screen in character format. This system can process image information in real time, ensure test precision, and help to enhance product quality and quality management.

  12. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  13. Hardware Architecture Study for NASA's Space Software Defined Radios

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Scardelletti, Maximilian C.; Mortensen, Dale J.; Kacpura, Thomas J.; Andro, Monty; Smith, Carl; Liebetreu, John

    2008-01-01

    This study defines a hardware architecture approach for software defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general purpose processors, digital signal processors, field programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) in addition to flexible and tunable radio frequency (RF) front-ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and and interfaces. The modules are a logical division of common radio functions that comprise a typical communication radio. This paper describes the architecture details, module definitions, and the typical functions on each module as well as the module interfaces. Trade-offs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify the internal physical implementation within each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  14. Space Telecommunications Radio Systems (STRS) Hardware Architecture Standard: Release 1.0 Hardware Section

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.; Smith, Carl R.; Liebetreu, John; Hill, Gary; Mortensen, Dale J.; Andro, Monty; Scardelletti, Maximilian C.; Farrington, Allen

    2008-01-01

    This report defines a hardware architecture approach for software-defined radios to enable commonality among NASA space missions. The architecture accommodates a range of reconfigurable processing technologies including general-purpose processors, digital signal processors, field programmable gate arrays, and application-specific integrated circuits (ASICs) in addition to flexible and tunable radiofrequency front ends to satisfy varying mission requirements. The hardware architecture consists of modules, radio functions, and interfaces. The modules are a logical division of common radio functions that compose a typical communication radio. This report describes the architecture details, the module definitions, the typical functions on each module, and the module interfaces. Tradeoffs between component-based, custom architecture and a functional-based, open architecture are described. The architecture does not specify a physical implementation internally on each module, nor does the architecture mandate the standards or ratings of the hardware used to construct the radios.

  15. Prototyping the HPDP Chip on STM 65 NM Process

    NASA Astrophysics Data System (ADS)

    Papadas, C.; Dramitinos, G.; Syed, M.; Helfers, T.; Dedes, G.; Schoellkopf, J.-P.; Dugoujon, L.

    2011-08-01

    Currently Astrium GmbH is involved in the of the High Performance Data Processor (HPDP) development programme for telecommunication applications under a DLR contract. The HPDP project targets the implementation of the commercially available reconfigurable array processor IP (XPP from the company PACT XPP Technologies) in a radiation hardened technology.In the current complementary development phase funded under the Greek Industry Incentive scheme, it is planned to prototype the HPDP chip in commercial STM 65 nm technology. In addition it is also planned to utilise the preliminary radiation hardened components of this library wherever possible.This abstract gives an overview of the HPDP chip architecture, the basic details of the STM 65 nm process and the design flow foreseen for the prototyping. The paper will discuss the development and integration issues involved in using the STM 65 nm process (also including the available preliminary radiation hardened components) for designs targeted to be used in space applications.

  16. Electronic Structure Calculations and Adaptation Scheme in Multi-core Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshagiri, Lakshminarasimhan; Sosonkina, Masha; Zhang, Zhao

    2009-05-20

    Multi-core processing environments have become the norm in the generic computing environment and are being considered for adding an extra dimension to the execution of any application. The T2 Niagara processor is a very unique environment where it consists of eight cores having a capability of running eight threads simultaneously in each of the cores. Applications like General Atomic and Molecular Electronic Structure (GAMESS), used for ab-initio molecular quantum chemistry calculations, can be good indicators of the performance of such machines and would be a guideline for both hardware designers and application programmers. In this paper we try to benchmarkmore » the GAMESS performance on a T2 Niagara processor for a couple of molecules. We also show the suitability of using a middleware based adaptation algorithm on GAMESS on such a multi-core environment.« less

  17. A cost-effective methodology for the design of massively-parallel VLSI functional units

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Sriram, G.; Desouza, J.

    1993-01-01

    In this paper we propose a generalized methodology for the design of cost-effective massively-parallel VLSI Functional Units. This methodology is based on a technique of generating and reducing a massive bit-array on the mask-programmable PAcube VLSI array. This methodology unifies (maintains identical data flow and control) the execution of complex arithmetic functions on PAcube arrays. It is highly regular, expandable and uniform with respect to problem-size and wordlength, thereby reducing the communication complexity. The memory-functional unit interface is regular and expandable. Using this technique functional units of dedicated processors can be mask-programmed on the naked PAcube arrays, reducing the turn-around time. The production cost of such dedicated processors can be drastically reduced since the naked PAcube arrays can be mass-produced. Analysis of the the performance of functional units designed by our method yields promising results.

  18. Microfluidics Transport and Path Control via Programmable Electrowetting on Dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodore W. Von Bitner, Ph.D.

    2002-08-22

    This research was conducted in collaboration with Professor Chang-Jin Kim of the University of California, Los Angeles. In phase I, the IOS-UCLA collaboration demonstrated the transport and manipulation of insulting liquid droplets using the principles of EWOD. A postage stamp sized array of electronically addressable Teflon pads, whose surface tension characteristics could be altered on command through computer algorithms, was developed and tested using deionized water as the liquid. Going beyond the tasks originally proposed for Phase I, droplet manipulation was achieved and droplet stability in the EWOD device was examined.

  19. The Formal Specification of a Visual display Device: Design and Implementation.

    DTIC Science & Technology

    1985-06-01

    The use of these data structures with their defined operations, give the programmer a very powerful instructions set. Like the DPU code generator in...which any AM hosted machine could faithfully display. 27 In- general , most applications have no need to create images from a data structure representing...formation of standard functional interfaces to these resources. OS’s generally do not provide a functional interface to either the processor or the display2

  20. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  1. Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications

    NASA Astrophysics Data System (ADS)

    Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon

    1997-04-01

    A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.

  2. Stroboscope Controller for Imaging Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Jensen, Scott; Marmie, John; Mai, Nghia

    2004-01-01

    A versatile electronic timing-and-control unit, denoted a rotorcraft strobe controller, has been developed for use in controlling stroboscopes, lasers, video cameras, and other instruments for capturing still images of rotating machine parts especially helicopter rotors. This unit is designed to be compatible with a variety of sources of input shaftangle or timing signals and to be capable of generating a variety of output signals suitable for triggering instruments characterized by different input-signal specifications. It is also designed to be flexible and reconfigurable in that it can be modified and updated through changes in its control software, without need to change its hardware. Figure 1 is a block diagram of the rotorcraft strobe controller. The control processor is a high-density complementary metal oxide semiconductor, singlechip 8-bit microcontroller. It is connected to a 32K x 8 nonvolatile static random-access memory (RAM) module. Also connected to the control processor is a 32K 8 electrically programmable read-only-memory (EPROM) module, which is used to store the control software. Digital logic support circuitry is implemented in a field-programmable gate array (FPGA). A 240 x 128-dot, 40- character 16-line liquid-crystal display (LCD) module serves as a graphical user interface; the user provides input through a 16-key keypad mounted next to the LCD. A 12-bit digital-to-analog converter (DAC) generates a 0-to-10-V ramp output signal used as part of a rotor-blade monitoring system, while the control processor generates all the appropriate strobing signals. Optocouplers are used to isolate all input and output digital signals, and optoisolators are used to isolate all analog signals. The unit is designed to fit inside a 19-in. (.48-cm) rack-mount enclosure. Electronic components are mounted on a custom printed-circuit board (see Figure 2). Two power-conversion modules on the printedcircuit board convert AC power to +5 VDC and 15 VDC, respectively.

  3. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.

  4. Dotette: Programmable, high-precision, plug-and-play droplet pipetting.

    PubMed

    Fan, Jinzhen; Men, Yongfan; Hao Tseng, Kuo; Ding, Yi; Ding, Yunfeng; Villarreal, Fernando; Tan, Cheemeng; Li, Baoqing; Pan, Tingrui

    2018-05-01

    Manual micropipettes are the most heavily used liquid handling devices in biological and chemical laboratories; however, they suffer from low precision for volumes under 1  μ l and inevitable human errors. For a manual device, the human errors introduced pose potential risks of failed experiments, inaccurate results, and financial costs. Meanwhile, low precision under 1  μ l can cause severe quantification errors and high heterogeneity of outcomes, becoming a bottleneck of reaction miniaturization for quantitative research in biochemical labs. Here, we report Dotette, a programmable, plug-and-play microfluidic pipetting device based on nanoliter liquid printing. With automated control, protocols designed on computers can be directly downloaded into Dotette, enabling programmable operation processes. Utilizing continuous nanoliter droplet dispensing, the precision of the volume control has been successfully improved from traditional 20%-50% to less than 5% in the range of 100 nl to 1000 nl. Such a highly automated, plug-and-play add-on to existing pipetting devices not only improves precise quantification in low-volume liquid handling and reduces chemical consumptions but also facilitates and automates a variety of biochemical and biological operations.

  5. Hot embossed polyethylene through-hole chips for bead-based microfluidic devices.

    PubMed

    Chou, Jie; Du, Nan; Ou, Tina; Floriano, Pierre N; Christodoulides, Nicolaos; McDevitt, John T

    2013-04-15

    Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications force cost considerations to be kept low and throughput high. As such, materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 min with the ability to scale up 4 times by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating that the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Compiling global name-space programs for distributed execution

    NASA Technical Reports Server (NTRS)

    Koelbel, Charles; Mehrotra, Piyush

    1990-01-01

    Distributed memory machines do not provide hardware support for a global address space. Thus programmers are forced to partition the data across the memories of the architecture and use explicit message passing to communicate data between processors. The compiler support required to allow programmers to express their algorithms using a global name-space is examined. A general method is presented for analysis of a high level source program and along with its translation to a set of independently executing tasks communicating via messages. If the compiler has enough information, this translation can be carried out at compile-time. Otherwise run-time code is generated to implement the required data movement. The analysis required in both situations is described and the performance of the generated code on the Intel iPSC/2 is presented.

  7. DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection

    DOEpatents

    Lee, James W.; Thundat, Thomas G.

    2005-06-14

    An apparatus and method for performing nucleic acid (DNA and/or RNA) sequencing on a single molecule. The genetic sequence information is obtained by probing through a DNA or RNA molecule base by base at nanometer scale as though looking through a strip of movie film. This DNA sequencing nanotechnology has the theoretical capability of performing DNA sequencing at a maximal rate of about 1,000,000 bases per second. This enhanced performance is made possible by a series of innovations including: novel applications of a fine-tuned nanometer gap for passage of a single DNA or RNA molecule; thin layer microfluidics for sample loading and delivery; and programmable electric fields for precise control of DNA or RNA movement. Detection methods include nanoelectrode-gated tunneling current measurements, dielectric molecular characterization, and atomic force microscopy/electrostatic force microscopy (AFM/EFM) probing for nanoscale reading of the nucleic acid sequences.

  8. Single Event Effects (SEE) Testing of Embedded DSP Cores within Microsemi RTAX4000D Field Programmable Gate Array (FPGA) Devices

    NASA Technical Reports Server (NTRS)

    Perez, Christopher E.; Berg, Melanie D.; Friendlich, Mark R.

    2011-01-01

    Motivation for this work is: (1) Accurately characterize digital signal processor (DSP) core single-event effect (SEE) behavior (2) Test DSP cores across a large frequency range and across various input conditions (3) Isolate SEE analysis to DSP cores alone (4) Interpret SEE analysis in terms of single-event upsets (SEUs) and single-event transients (SETs) (5) Provide flight missions with accurate estimate of DSP core error rates and error signatures.

  9. Radiation Tolerant, FPGA-Based SmallSat Computer System

    NASA Technical Reports Server (NTRS)

    LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.

  10. Scalable NIC-based reduction on large-scale clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, A.; Fernández, J. C.; Petrini, F.

    2003-01-01

    Many parallel algorithms require effiaent support for reduction mllectives. Over the years, researchers have developed optimal reduction algonduns by taking inm account system size, dam size, and complexities of reduction operations. However, all of these algorithm have assumed the faa that the reduction precessing takes place on the host CPU. Modem Network Interface Cards (NICs) sport programmable processors with substantial memory and thus introduce a fresh variable into the equation This raises the following intersting challenge: Can we take advantage of modern NICs to implementJost redudion operations? In this paper, we take on this challenge in the context of large-scalemore » clusters. Through experiments on the 960-node, 1920-processor or ASCI Linux Cluster (ALC) located at the Lawrence Livermore National Laboratory, we show that NIC-based reductions indeed perform with reduced latency and immed consistency over host-based aleorithms for the wmmon case and that these benefits scale as the system grows. In the largest configuration tested--1812 processors-- our NIC-based algorithm can sum a single element vector in 73 ps with 32-bi integers and in 118 with Mbit floating-point numnbers. These results represent an improvement, respeaively, of 121% and 39% with resvect w the {approx}roductionle vel MPI library« less

  11. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  12. Bitstream decoding processor for fast entropy decoding of variable length coding-based multiformat videos

    NASA Astrophysics Data System (ADS)

    Jo, Hyunho; Sim, Donggyu

    2014-06-01

    We present a bitstream decoding processor for entropy decoding of variable length coding-based multiformat videos. Since most of the computational complexity of entropy decoders comes from bitstream accesses and table look-up process, the developed bitstream processing unit (BsPU) has several designated instructions to access bitstreams and to minimize branch operations in the table look-up process. In addition, the instruction for bitstream access has the capability to remove emulation prevention bytes (EPBs) of H.264/AVC without initial delay, repeated memory accesses, and additional buffer. Experimental results show that the proposed method for EPB removal achieves a speed-up of 1.23 times compared to the conventional EPB removal method. In addition, the BsPU achieves speed-ups of 5.6 and 3.5 times in entropy decoding of H.264/AVC and MPEG-4 Visual bitstreams, respectively, compared to an existing processor without designated instructions and a new table mapping algorithm. The BsPU is implemented on a Xilinx Virtex5 LX330 field-programmable gate array. The MPEG-4 Visual (ASP, Level 5) and H.264/AVC (Main Profile, Level 4) are processed using the developed BsPU with a core clock speed of under 250 MHz in real time.

  13. Exploiting an automated microfluidic hydrodynamic sequential injection system for determination of phosphate.

    PubMed

    Khongpet, Wanpen; Pencharee, Somkid; Puangpila, Chanida; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai; Jakmunee, Jaroon

    2018-01-15

    A microfluidic hydrodynamic sequential injection (μHSI) spectrophotometric system was designed and fabricated. The system was built by laser engraving a manifold pattern on an acrylic block and sealing with another flat acrylic plate to form a microfluidic channel platform. The platform was incorporated with small solenoid valves to obtain a portable setup for programmable control of the liquid flow into the channel according to the HSI principle. The system was demonstrated for the determination of phosphate using a molybdenum blue method. An ascorbic acid, standard or sample, and acidic molybdate solutions were sequentially aspirated to fill the channel forming a stack zone before flowing to the detector. Under the optimum condition, a linear calibration graph in the range of 0.1-6mg P L -1 was obtained. The detection limit was 0.1mgL -1 . The system is compact (5.0mm thick, 80mm wide × 140mm long), durable, portable, cost-effective, and consumes little amount of chemicals (83μL each of molybdate and ascorbic acid, 133μL of the sample solution and 1.7mL of water carrier/run). It was applied for the determination of phosphate content in extracted soil samples. The percent recoveries of the analysis were obtained in the range of 91.2-107.3. The results obtained agreed well with those of the batch spectrophotometric method. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  15. Digital Beamforming Scatterometer

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul

    2009-01-01

    This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics

  16. On-board computational efficiency in real time UAV embedded terrain reconstruction

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Agadakos, Ioannis; Athanasiou, Vasilis; Papaefstathiou, Ioannis; Mertikas, Stylianos; Kyritsis, Sarantis; Tripolitsiotis, Achilles; Zervos, Panagiotis

    2014-05-01

    In the last few years, there is a surge of applications for object recognition, interpretation and mapping using unmanned aerial vehicles (UAV). Specifications in constructing those UAVs are highly diverse with contradictory characteristics including cost-efficiency, carrying weight, flight time, mapping precision, real time processing capabilities, etc. In this work, a hexacopter UAV is employed for near real time terrain mapping. The main challenge addressed is to retain a low cost flying platform with real time processing capabilities. The UAV weight limitation affecting the overall flight time, makes the selection of the on-board processing components particularly critical. On the other hand, surface reconstruction, as a computational demanding task, calls for a highly demanding processing unit on board. To merge these two contradicting aspects along with customized development, a System on a Chip (SoC) integrated circuit is proposed as a low-power, low-cost processor, which natively supports camera sensors and positioning and navigation systems. Modern SoCs, such as Omap3530 or Zynq, are classified as heterogeneous devices and provide a versatile platform, allowing access to both general purpose processors, such as the ARM11, as well as specialized processors, such as a digital signal processor and floating field-programmable gate array. A UAV equipped with the proposed embedded processors, allows on-board terrain reconstruction using stereo vision in near real time. Furthermore, according to the frame rate required, additional image processing may concurrently take place, such as image rectification andobject detection. Lastly, the onboard positioning and navigation (e.g., GNSS) chip may further improve the quality of the generated map. The resulting terrain maps are compared to ground truth geodetic measurements in order to access the accuracy limitations of the overall process. It is shown that with our proposed novel system,there is much potential in computational efficiency on board and in optimized time constraints.

  17. Level Zero Trigger Processor for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Soldi, D.; Chiozzi, S.

    2018-05-01

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.

  18. Fast and robust control of nanopositioning systems: Performance limits enabled by field programmable analog arrays.

    PubMed

    Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M

    2015-08-01

    This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.

  19. Lossless microwave photonic delay line using a ring resonator with an integrated semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Zhuang, Leimeng; Boller, Klaus-Jochen; Lowery, Arthur James

    2017-06-01

    Optical delay lines implemented in photonic integrated circuits (PICs) are essential for creating robust and low-cost optical signal processors on miniaturized chips. In particular, tunable delay lines enable a key feature of programmability for the on-chip processing functions. However, the previously investigated tunable delay lines are plagued by a severe drawback of delay-dependent loss due to the propagation loss in the constituent waveguides. In principle, a serial-connected amplifier can be used to compensate such losses or perform additional amplitude manipulation. However, this solution is generally unpractical as it introduces additional burden on chip area and power consumption, particularly for large-scale integrated PICs. Here, we report an integrated tunable delay line that overcomes the delay-dependent loss, and simultaneously allows for independent manipulation of group delay and amplitude responses. It uses a ring resonator with a tunable coupler and a semiconductor optical amplifier in the feedback path. A proof-of-concept device with a free spectral range of 11.5 GHz and a delay bandwidth in the order of 200 MHz is discussed in the context of microwave photonics and is experimentally demonstrated to be able to provide a lossless delay up to 1.1 to a 5 ns Gaussian pulse. The proposed device can be designed for different frequency scales with potential for applications across many other areas such as telecommunications, LIDAR, and spectroscopy, serving as a novel building block for creating chip-scale programmable optical signal processors.

  20. Framework Programmable Platform for the Advanced Software Development Workstation: Preliminary system design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Ackley, Keith A.; Crump, John W., IV; Henderson, Richard; Futrell, Michael T.

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software environment. Guided by the model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated. The focus here is on the design of components that make up the FPP. These components serve as supporting systems for the Integration Mechanism and the Framework Processor and provide the 'glue' that ties the FPP together. Also discussed are the components that allow the platform to operate in a distributed, heterogeneous environment and to manage the development and evolution of software system artifacts.

  1. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  2. The Fortran-P Translator: Towards Automatic Translation of Fortran 77 Programs for Massively Parallel Processors

    DOE PAGES

    O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; ...

    1995-01-01

    Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less

  3. A fast, programmable hardware architecture for the processing of spaceborne SAR data

    NASA Technical Reports Server (NTRS)

    Bennett, J. R.; Cumming, I. G.; Lim, J.; Wedding, R. M.

    1984-01-01

    The development of high-throughput SAR processors (HTSPs) for the spaceborne SARs being planned by NASA, ESA, DFVLR, NASDA, and the Canadian Radarsat Project is discussed. The basic parameters and data-processing requirements of the SARs are listed in tables, and the principal problems are identified as real-operations rates in excess of 2 x 10 to the 9th/sec, I/O rates in excess of 8 x 10 to the 6th samples/sec, and control computation loads (as for range cell migration correction) as high as 1.4 x 10 to the 6th instructions/sec. A number of possible HTSP architectures are reviewed; host/array-processor (H/AP) and distributed-control/data-path (DCDP) architectures are examined in detail and illustrated with block diagrams; and a cost/speed comparison of these two architectures is presented. The H/AP approach is found to be adequate and economical for speeds below 1/200 of real time, while DCDP is more cost-effective above 1/50 of real time.

  4. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  5. A Discussion of Using a Reconfigurable Processor to Implement the Discrete Fourier Transform

    NASA Technical Reports Server (NTRS)

    White, Michael J.

    2004-01-01

    This paper presents the design and implementation of the Discrete Fourier Transform (DFT) algorithm on a reconfigurable processor system. While highly applicable to many engineering problems, the DFT is an extremely computationally intensive algorithm. Consequently, the eventual goal of this work is to enhance the execution of a floating-point precision DFT algorithm by off loading the algorithm from the computing system. This computing system, within the context of this research, is a typical high performance desktop computer with an may of field programmable gate arrays (FPGAs). FPGAs are hardware devices that are configured by software to execute an algorithm. If it is desired to change the algorithm, the software is changed to reflect the modification, then download to the FPGA, which is then itself modified. This paper will discuss methodology for developing the DFT algorithm to be implemented on the FPGA. We will discuss the algorithm, the FPGA code effort, and the results to date.

  6. A pipelined architecture for real time correction of non-uniformity in infrared focal plane arrays imaging system using multiprocessors

    NASA Astrophysics Data System (ADS)

    Zou, Liang; Fu, Zhuang; Zhao, YanZheng; Yang, JunYan

    2010-07-01

    This paper proposes a kind of pipelined electric circuit architecture implemented in FPGA, a very large scale integrated circuit (VLSI), which efficiently deals with the real time non-uniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPA). Dual Nios II soft-core processors and a DSP with a 64+ core together constitute this image system. Each processor undertakes own systematic task, coordinating its work with each other's. The system on programmable chip (SOPC) in FPGA works steadily under the global clock frequency of 96Mhz. Adequate time allowance makes FPGA perform NUC image pre-processing algorithm with ease, which has offered favorable guarantee for the work of post image processing in DSP. And at the meantime, this paper presents a hardware (HW) and software (SW) co-design in FPGA. Thus, this systematic architecture yields an image processing system with multiprocessor, and a smart solution to the satisfaction with the performance of the system.

  7. The Fermilab lattice supercomputer project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischler, M.; Atac, R.; Cook, A.

    1989-02-01

    The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8 MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C andmore » Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort. 3 refs., 1 fig.« less

  8. Design of a real-time wind turbine simulator using a custom parallel architecture

    NASA Technical Reports Server (NTRS)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  9. High-performance hardware implementation of a parallel database search engine for real-time peptide mass fingerprinting

    PubMed Central

    Bogdán, István A.; Rivers, Jenny; Beynon, Robert J.; Coca, Daniel

    2008-01-01

    Motivation: Peptide mass fingerprinting (PMF) is a method for protein identification in which a protein is fragmented by a defined cleavage protocol (usually proteolysis with trypsin), and the masses of these products constitute a ‘fingerprint’ that can be searched against theoretical fingerprints of all known proteins. In the first stage of PMF, the raw mass spectrometric data are processed to generate a peptide mass list. In the second stage this protein fingerprint is used to search a database of known proteins for the best protein match. Although current software solutions can typically deliver a match in a relatively short time, a system that can find a match in real time could change the way in which PMF is deployed and presented. In a paper published earlier we presented a hardware design of a raw mass spectra processor that, when implemented in Field Programmable Gate Array (FPGA) hardware, achieves almost 170-fold speed gain relative to a conventional software implementation running on a dual processor server. In this article we present a complementary hardware realization of a parallel database search engine that, when running on a Xilinx Virtex 2 FPGA at 100 MHz, delivers 1800-fold speed-up compared with an equivalent C software routine, running on a 3.06 GHz Xeon workstation. The inherent scalability of the design means that processing speed can be multiplied by deploying the design on multiple FPGAs. The database search processor and the mass spectra processor, running on a reconfigurable computing platform, provide a complete real-time PMF protein identification solution. Contact: d.coca@sheffield.ac.uk PMID:18453553

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bales, Benjamin B; Barrett, Richard F

    In almost all modern scientific applications, developers achieve the greatest performance gains by tuning algorithms, communication systems, and memory access patterns, while leaving low level instruction optimizations to the compiler. Given the increasingly varied and complicated x86 architectures, the value of these optimizations is unclear, and, due to time and complexity constraints, it is difficult for many programmers to experiment with them. In this report we explore the potential gains of these 'last mile' optimization efforts on an AMD Barcelona processor, providing readers with relevant information so that they can decide whether investment in the presented optimizations is worthwhile.

  11. Software Implemented Fault-Tolerant (SIFT) user's guide

    NASA Technical Reports Server (NTRS)

    Green, D. F., Jr.; Palumbo, D. L.; Baltrus, D. W.

    1984-01-01

    Program development for a Software Implemented Fault Tolerant (SIFT) computer system is accomplished in the NASA LaRC AIRLAB facility using a DEC VAX-11 to interface with eight Bendix BDX 930 flight control processors. The interface software which provides this SIFT program development capability was developed by AIRLAB personnel. This technical memorandum describes the application and design of this software in detail, and is intended to assist both the user in performance of SIFT research and the systems programmer responsible for maintaining and/or upgrading the SIFT programming environment.

  12. Spaceborne Hybrid-FPGA System for Processing FTIR Data

    NASA Technical Reports Server (NTRS)

    Bekker, Dmitriy; Blavier, Jean-Francois L.; Pingree, Paula J.; Lukowiak, Marcin; Shaaban, Muhammad

    2008-01-01

    Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs.

  13. Acoustic charge transport technology investigation for advanced development transponder

    NASA Technical Reports Server (NTRS)

    Kayalar, S.

    1993-01-01

    Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.

  14. Telemetry Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Avtec Systems, Inc. developed its first telemetry boards for Goddard Space Flight Center. Avtec products now include PC/AT, PCI and VME-based high speed I/O boards and turn-key systems. The most recent and most successful technology transfer from NASA to Avtec is the Programmable Telemetry Processor (PTP), a personal computer- based, multi-channel telemetry front-end processing system originally developed to support the NASA communication (NASCOM) network. The PTP performs data acquisition, real-time network transfer, and store and forward operations. There are over 100 PTP systems located in NASA facilities and throughout the world.

  15. Microcomputer technology applications: Charger and regulator software for a breadboard programmable power processor

    NASA Technical Reports Server (NTRS)

    Green, D. M.

    1978-01-01

    Software programs are described, one which implements a voltage regulation function, and one which implements a charger function with peak-power tracking of its input. The software, written in modular fashion, is intended as a vehicle for further experimentation with the P-3 system. A control teleprinter allows an operator to make parameter modifications to the control algorithm during experiments. The programs require 3K ROM and 2K ram each. User manuals for each system are included as well as a third program for simple I/O control.

  16. Architecture and data processing alternatives for the TSE computer. Volume 2: Extraction of topological information from an image by the Tse computer

    NASA Technical Reports Server (NTRS)

    Jones, J. R.; Bodenheimer, R. E.

    1976-01-01

    A simple programmable Tse processor organization and arithmetic operations necessary for extraction of the desired topological information are described. Hardware additions to this organization are discussed along with trade-offs peculiar to the tse computing concept. An improved organization is presented along with the complementary software for the various arithmetic operations. The performance of the two organizations is compared in terms of speed, power, and cost. Software routines developed to extract the desired information from an image are included.

  17. Video rate morphological processor based on a redundant number representation

    NASA Astrophysics Data System (ADS)

    Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.

    1992-03-01

    This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.

  18. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    PubMed Central

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  19. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.

    PubMed

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  20. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-07

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  1. FPGA-Based, Self-Checking, Fault-Tolerant Computers

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Rennels, David

    2004-01-01

    A proposed computer architecture would exploit the capabilities of commercially available field-programmable gate arrays (FPGAs) to enable computers to detect and recover from bit errors. The main purpose of the proposed architecture is to enable fault-tolerant computing in the presence of single-event upsets (SEUs). [An SEU is a spurious bit flip (also called a soft error) caused by a single impact of ionizing radiation.] The architecture would also enable recovery from some soft errors caused by electrical transients and, to some extent, from intermittent and permanent (hard) errors caused by aging of electronic components. A typical FPGA of the current generation contains one or more complete processor cores, memories, and highspeed serial input/output (I/O) channels, making it possible to shrink a board-level processor node to a single integrated-circuit chip. Custom, highly efficient microcontrollers, general-purpose computers, custom I/O processors, and signal processors can be rapidly and efficiently implemented by use of FPGAs. Unfortunately, FPGAs are susceptible to SEUs. Prior efforts to mitigate the effects of SEUs have yielded solutions that degrade performance of the system and require support from external hardware and software. In comparison with other fault-tolerant- computing architectures (e.g., triple modular redundancy), the proposed architecture could be implemented with less circuitry and lower power demand. Moreover, the fault-tolerant computing functions would require only minimal support from circuitry outside the central processing units (CPUs) of computers, would not require any software support, and would be largely transparent to software and to other computer hardware. There would be two types of modules: a self-checking processor module and a memory system (see figure). The self-checking processor module would be implemented on a single FPGA and would be capable of detecting its own internal errors. It would contain two CPUs executing identical programs in lock step, with comparison of their outputs to detect errors. It would also contain various cache local memory circuits, communication circuits, and configurable special-purpose processors that would use self-checking checkers. (The basic principle of the self-checking checker method is to utilize logic circuitry that generates error signals whenever there is an error in either the checker or the circuit being checked.) The memory system would comprise a main memory and a hardware-controlled check-pointing system (CPS) based on a buffer memory denoted the recovery cache. The main memory would contain random-access memory (RAM) chips and FPGAs that would, in addition to everything else, implement double-error-detecting and single-error-correcting memory functions to enable recovery from single-bit errors.

  2. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.

    PubMed

    Perelman, Yevgeny; Ginosar, Ran

    2007-01-01

    A mixed-signal front-end processor for multichannel neuronal recording is described. It receives 12 differential-input channels of implanted recording electrodes. A programmable cutoff High Pass Filter (HPF) blocks dc and low-frequency input drift at about 1 Hz. The signals are band-split at about 200 Hz to low-frequency Local Field Potential (LFP) and high-frequency spike data (SPK), which is band limited by a programmable-cutoff LPF, in a range of 8-13 kHz. Amplifier offsets are compensated by 5-bit calibration digital-to-analog converters (DACs). The SPK and LFP channels provide variable amplification rates of up to 5000 and 500, respectively. The analog signals are converted into 10-bit digital form, and streamed out over a serial digital bus at up to 8 Mbps. A threshold filter suppresses inactive portions of the signal and emits only spike segments of programmable length. A prototype has been fabricated on a 0.35-microm CMOS process and tested successfully, demonstrating a 3-microV noise level. Special interface system incorporating an embedded CPU core in a programmable logic device accompanied by real-time software has been developed to allow connectivity to a computer host.

  3. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  4. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    NASA Astrophysics Data System (ADS)

    Szplet, R.; Kalisz, J.; Jachna, Z.

    2009-02-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.

  5. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    PubMed

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.

  6. Deep learning with coherent nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin

    2017-07-01

    Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

  7. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  8. Real-time generation of infrared ocean scene based on GPU

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoyi; Wang, Xun; Lin, Yun; Jin, Jianqiu

    2007-12-01

    Infrared (IR) image synthesis for ocean scene has become more and more important nowadays, especially for remote sensing and military application. Although a number of works present ready-to-use simulations, those techniques cover only a few possible ways of water interacting with the environment. And the detail calculation of ocean temperature is rarely considered by previous investigators. With the advance of programmable features of graphic card, many algorithms previously limited to offline processing have become feasible for real-time usage. In this paper, we propose an efficient algorithm for real-time rendering of infrared ocean scene using the newest features of programmable graphics processors (GPU). It differs from previous works in three aspects: adaptive GPU-based ocean surface tessellation, sophisticated balance equation of thermal balance for ocean surface, and GPU-based rendering for infrared ocean scene. Finally some results of infrared image are shown, which are in good accordance with real images.

  9. Automated digital magnetofluidics

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Garcia, A. A.; Marquez, M.

    2008-08-01

    Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.

  10. NASA Tech Briefs, March 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.

  11. Engineering and physical sciences in oncology: challenges and opportunities.

    PubMed

    Mitchell, Michael J; Jain, Rakesh K; Langer, Robert

    2017-11-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.

  12. A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control.

    PubMed

    Wang, Guanghui; Ho, Ho-Pui; Chen, Qiulan; Yang, Alice Kar-Lai; Kwok, Ho-Chin; Wu, Shu-Yuen; Kong, Siu-Kai; Kwan, Yiu-Wa; Zhang, Xuping

    2013-09-21

    In this paper, we present a lab-in-a-droplet bioassay strategy for a centrifugal microfluidics or lab-on-a-disc (LOAD) platform with three important advancements including density difference pumping, power to disc and bidirectional flow control. First, with the water based bioassay droplets trapped in a micro-channel filled with mineral oil, centrifugal force due to the density difference between the water and oil phases actuates droplet movement while the oil based medium remains stationary. Second, electricity is coupled to the rotating disc through a split-core transformer, thus enabling on-chip real-time heating in selected areas as desired and wireless programmable functionality. Third, an inertial mechanical structure is proposed to achieve bidirectional flow control within the spinning disc. The droplets can move back and forth between two heaters upon changing the rotational speed. Our platform is an essential and versatile solution for bioassays such as those involving DNA amplification, where localized temperature cycling is required. Finally, without the loss of generality, we demonstrate the functionality of our platform by performing real-time polymerase chain reaction (RT-PCR) in a linear microchannel made with PTFE (Teflon) micro-tubing.

  13. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  14. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  15. Sample Processor for Life on Icy Worlds (SPLIce): Design and Test Results

    NASA Technical Reports Server (NTRS)

    Chinn, Tori N.; Lee, Anthony K.; Boone, Travis D.; Tan, Ming X.; Chin, Matthew M.; McCutcheon, Griffin C.; Horne, Mera F.; Padgen, Michael R.; Blaich, Justin T.; Forgione, Joshua B.; hide

    2017-01-01

    We report the design, development, and testing of the Sample Processor for Life on Icy Worlds (SPLIce) system, a microfluidic sample processor to enable autonomous detection of signatures of life and measurements of habitability parameters in Ocean Worlds. This monolithic fluid processing-and-handling system (Figure 1; mass 0.5 kg) retrieves a 50-L-volume sample and prepares it to supply a suite of detection instruments, each with unique preparation needs. SPLIce has potential applications in orbiter missions that sample ocean plumes, such as found in Saturns icy moon Enceladus, or landed missions on the surface of icy satellites, such as Jupiters moon Europa. Answering the question Are we alone in the universe? is captivating and exceptionally challenging. Even general criteria that define life very broadly include a significant role for water [1,2]. Searches for extinct or extant life therefore prioritize locations of abundant water whether in ancient (Mars), or present (Europa and Enceladus) times. Only two previous planetary missions had onboard fluid processing: the Viking Biology Experiments [3] and Phoenixs Wet Chemistry Laboratory (WCL) [4]. SPLIce differs crucially from those systems, including its capability to process and distribute L-volume samples and the integration autonomous control of a wide range of fluidic functions, including: 1) retrieval of fluid samples from an evacuated sample chamber; 2) onboard multi-year storage of dehydrated reagents; 3) integrated pressure, pH, and conductivity measurement; 4) filtration and retention of insoluble particles for microscopy; 5) dilution or vacuum-driven concentration of samples to accommodate instrument working ranges; 6) removal of gas bubbles from sample aliquots; 7) unidirectional flow (check valves); 8) active flow-path selection (solenoid-actuated valves); 9) metered pumping in 100 nL volume increments. The SPLIce manifold, made of three thermally fused layers of precision-machined cyclo-olefin polymer, supports all fluidic components (Figure 1) and integrated microchannels (125 x 250 m). Fluid is pumped by a stepper-motor-driven pump (Lee Co.). The functionality of the integrated MEMS pressure sensor (Honeywell) and passive check valves (Figure 2) were tested in conjunction with our newly designed integral bubble traps (Figure 3) and hydrophobic membrane-based concentrator (Figure 4). The concentrator (initially tested as a standalone component) demonstrated 5-fold vacuum-evaporative concentration. Polyethylene fused bead beds (PEFBBs; 50 porosity) store drylyophilized buffers, calibrants, and fluorescent dyes, and also promote mixing of sample with calibrant, dye, or H2O. Software-controlled automated tests demonstrated successful 1) fluid delivery to each component 2) valve and pump synchronization 3) sample aliquot delivery to instrument interface ports, and 4) rehydration of vacuum-dried fluorescent dye. In Figure 5, fluorescein on PEFBBs was rehydrated for 15 min using a pump-delivered water aliquot; it is displaced as H2O enters the bottom of the channel and pushes the dye into a check valve. Ultimately, SPLIce will fluorescently label amino acids in the sample for microchip-based electrophoretic (MCE) chiral separation and detection to seek and quantify key organic bio-signatures [5]; it will also deliver sample to a microfluidic version of WCL (mWCL) to measure soluble ions and redox-active species.

  16. AAO2: a general purpose CCD controller for the AAT

    NASA Astrophysics Data System (ADS)

    Waller, Lew; Barton, John; Mayfield, Don; Griesbach, Jason

    2004-09-01

    The Anglo-Australian Observatory has developed a 2nd generation optical CCD controller to replace an earlier controller used now for almost twenty years. The new AAO2 controller builds on the considerable experience gained with the first controller, the new technologies now available and the techniques developed and successfully implemented in AAO's IRIS2 detector controller. The AAO2 controller has been designed to operate a wide variety of detectors and to achieve as near to detector limited performance as possible. It is capable of reading out CCDs with one, two or four output amplifiers, each output having its own video processor and high speed 16-bit ADC. The video processor is a correlated double sampler that may be switched between low noise dual slope integration or high speed clamp and sample modes. Programmable features include low noise DAC biases, horizontal clocks with DAC controllable levels and slopes and vertical clocks with DAC controllable arbitrary waveshapes. The controller uses two DSPs; one for overall control and the other for clock signal generation, which is highly programmable, with downloadable sequences of waveform patterns. The controller incorporates a precision detector temperature controller and provides accurate exposure time control. Telemetry is provided of all DAC generated voltages, many derived voltages, power supply voltages, detector temperature and detector identification. A high speed, full duplex fibre optic interface connects the controller to a host computer. The modular design uses six to ten circuit boards, plugged in to common backplanes. Two backplanes separate noisy digital signals from low noise analog signals.

  17. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  18. FPGA-accelerated algorithm for the regular expression matching system

    NASA Astrophysics Data System (ADS)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  19. Image processing using Gallium Arsenide (GaAs) technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.

    1989-01-01

    The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s.

  20. DeepX: Deep Learning Accelerator for Restricted Boltzmann Machine Artificial Neural Networks.

    PubMed

    Kim, Lok-Won

    2018-05-01

    Although there have been many decades of research and commercial presence on high performance general purpose processors, there are still many applications that require fully customized hardware architectures for further computational acceleration. Recently, deep learning has been successfully used to learn in a wide variety of applications, but their heavy computation demand has considerably limited their practical applications. This paper proposes a fully pipelined acceleration architecture to alleviate high computational demand of an artificial neural network (ANN) which is restricted Boltzmann machine (RBM) ANNs. The implemented RBM ANN accelerator (integrating network size, using 128 input cases per batch, and running at a 303-MHz clock frequency) integrated in a state-of-the art field-programmable gate array (FPGA) (Xilinx Virtex 7 XC7V-2000T) provides a computational performance of 301-billion connection-updates-per-second and about 193 times higher performance than a software solution running on general purpose processors. Most importantly, the architecture enables over 4 times (12 times in batch learning) higher performance compared with a previous work when both are implemented in an FPGA device (XC2VP70).

  1. ATCA digital controller hardware for vertical stabilization of plasmas in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batista, A. J. N.; Sousa, J.; Varandas, C. A. F.

    2006-10-15

    The efficient vertical stabilization (VS) of plasmas in tokamaks requires a fast reaction of the VS controller, for example, after detection of edge localized modes (ELM). For controlling the effects of very large ELMs a new digital control hardware, based on the Advanced Telecommunications Computing Architecture trade mark sign (ATCA), is being developed aiming to reduce the VS digital control loop cycle (down to an optimal value of 10 {mu}s) and improve the algorithm performance. The system has 1 ATCA trade mark sign processor module and up to 12 ATCA trade mark sign control modules, each one with 32 analogmore » input channels (12 bit resolution), 4 analog output channels (12 bit resolution), and 8 digital input/output channels. The Aurora trade mark sign and PCI Express trade mark sign communication protocols will be used for data transport, between modules, with expected latencies below 2 {mu}s. Control algorithms are implemented on a ix86 based processor with 6 Gflops and on field programmable gate arrays with 80 GMACS, interconnected by serial gigabit links in a full mesh topology.« less

  2. [Development of a video image system for wireless capsule endoscopes based on DSP].

    PubMed

    Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua

    2008-02-01

    A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.

  3. Development of an embedded atmospheric turbulence mitigation engine

    NASA Astrophysics Data System (ADS)

    Paolini, Aaron; Bonnett, James; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Methods to reconstruct pictures from imagery degraded by atmospheric turbulence have been under development for decades. The techniques were initially developed for observing astronomical phenomena from the Earth's surface, but have more recently been modified for ground and air surveillance scenarios. Such applications can impose significant constraints on deployment options because they both increase the computational complexity of the algorithms themselves and often dictate a requirement for low size, weight, and power (SWaP) form factors. Consequently, embedded implementations must be developed that can perform the necessary computations on low-SWaP platforms. Fortunately, there is an emerging class of embedded processors driven by the mobile and ubiquitous computing industries. We have leveraged these processors to develop embedded versions of the core atmospheric correction engine found in our ATCOM software. In this paper, we will present our experience adapting our algorithms for embedded systems on a chip (SoCs), namely the NVIDIA Tegra that couples general-purpose ARM cores with their graphics processing unit (GPU) technology and the Xilinx Zynq which pairs similar ARM cores with their field-programmable gate array (FPGA) fabric.

  4. The research and application of multi-biometric acquisition embedded system

    NASA Astrophysics Data System (ADS)

    Deng, Shichao; Liu, Tiegen; Guo, Jingjing; Li, Xiuyan

    2009-11-01

    The identification technology based on multi-biometric can greatly improve the applicability, reliability and antifalsification. This paper presents a multi-biometric system bases on embedded system, which includes: three capture daughter boards are applied to obtain different biometric: one each for fingerprint, iris and vein of the back of hand; FPGA (Field Programmable Gate Array) is designed as coprocessor, which uses to configure three daughter boards on request and provides data path between DSP (digital signal processor) and daughter boards; DSP is the master processor and its functions include: control the biometric information acquisition, extracts feature as required and responsible for compare the results with the local database or data server through network communication. The advantages of this system were it can acquire three different biometric in real time, extracts complexity feature flexibly in different biometrics' raw data according to different purposes and arithmetic and network interface on the core-board will be the solution of big data scale. Because this embedded system has high stability, reliability, flexibility and fit for different data scale, it can satisfy the demand of multi-biometric recognition.

  5. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  6. UDCM Operating Procedure (Limited Functionality prototype)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matthew R.

    2016-06-14

    The UDCM is a two channel low current measurement device designed to record sub-nano-amp to micro-amp currents from radiation detectors. The UDCM incorporates a Commercial-Off-The- Shelf (COTS) processor enabling both serial over USB as well as Ethernet communications. The instrument includes microSD and USB flash memory for data storage as well as a programmable High Voltage (HV) power supply for detector bias. The UDCM incorporates a unique TTL output feature first used in the LANL Current to Pulse Converter (CPC). Two SMA connectors on the UDCM provide TTL pulses at a frequency proportional to the input currents.

  7. Design of the ANTARES LCM-DAQ board test bench using a FPGA-based system-on-chip approach

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Kestener, P.; Le Provost, H.

    2006-11-01

    The System-on-Chip (SoC) approach consists in using state-of-the-art FPGA devices with embedded RISC processor cores, high-speed differential LVDS links and ready-to-use multi-gigabit transceivers allowing development of compact systems with substantial number of IO channels. Required performances are obtained through a subtle separation of tasks between closely cooperating programmable hardware logic and user-friendly software environment. We report about our experience in using the SoC approach for designing the production test bench of the off-shore readout system for the ANTARES neutrino experiment.

  8. System and method for modeling and analyzing complex scenarios

    DOEpatents

    Shevitz, Daniel Wolf

    2013-04-09

    An embodiment of the present invention includes a method for analyzing and solving possibility tree. A possibility tree having a plurality of programmable nodes is constructed and solved with a solver module executed by a processor element. The solver module executes the programming of said nodes, and tracks the state of at least a variable through a branch. When a variable of said branch is out of tolerance with a parameter, the solver disables remaining nodes of the branch and marks the branch as an invalid solution. The valid solutions are then aggregated and displayed as valid tree solutions.

  9. A fully programmable 100-spin coherent Ising machine with all-to-all connections

    NASA Astrophysics Data System (ADS)

    McMahon, Peter; Marandi, Alireza; Haribara, Yoshitaka; Hamerly, Ryan; Langrock, Carsten; Tamate, Shuhei; Inagaki, Takahiro; Takesue, Hiroki; Utsunomiya, Shoko; Aihara, Kazuyuki; Byer, Robert; Fejer, Martin; Mabuchi, Hideo; Yamamoto, Yoshihisa

    We present a scalable optical processor with electronic feedback, based on networks of optical parametric oscillators. The design of our machine is inspired by adiabatic quantum computers, although it is not an AQC itself. Our prototype machine is able to find exact solutions of, or sample good approximate solutions to, a variety of hard instances of Ising problems with up to 100 spins and 10,000 spin-spin connections. This research was funded by the Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Program of the Council of Science, Technology and Innovation (Cabinet Office, Government of Japan).

  10. Image Processor

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Texas Instruments Programmable Remapper is a research tool used to determine how to best utilize the part of a patient's visual field still usable by mapping onto his field of vision with manipulated imagery. It is an offshoot of a NASA program for speeding up, improving the accuracy of pattern recognition in video imagery. The Remapper enables an image to be "pushed around" so more of it falls into the functional portions in the retina of a low vision person. It works at video rates, and researchers hope to significantly reduce its size and cost, creating a wearable prosthesis for visually impaired people.

  11. Some examples of image warping for low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Loshin, David S.

    1988-01-01

    NASA has developed an image processor, the Programmable Remapper, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. Coordinate warpings have been developed for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype.

  12. Implementation of a cone-beam backprojection algorithm on the cell broadband engine processor

    NASA Astrophysics Data System (ADS)

    Bockenbach, Olivier; Knaup, Michael; Kachelrieß, Marc

    2007-03-01

    Tomographic image reconstruction is computationally very demanding. In all cases the backprojection represents the performance bottleneck due to the high operational count and due to the high demand put on the memory subsystem. In the past, solving this problem has lead to the implementation of specific architectures, connecting Application Specific Integrated Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs) to memory through dedicated high speed busses. More recently, there have also been attempt to use Graphic Processing Units (GPUs) to perform the backprojection step. Originally aimed at the gaming market, IBM, Toshiba and Sony have introduced the Cell Broadband Engine (CBE) processor, often considered as a multicomputer on a chip. Clocked at 3 GHz, the Cell allows for a theoretical performance of 192 GFlops and a peak data transfer rate over the internal bus of 200 GB/s. This performance indeed makes the Cell a very attractive architecture for implementing tomographic image reconstruction algorithms. In this study, we investigate the relative performance of a perspective backprojection algorithm when implemented on a standard PC and on the Cell processor. We compare these results to the performance achievable with FPGAs based boards and high end GPUs. The cone-beam backprojection performance was assessed by backprojecting a full circle scan of 512 projections of 1024x1024 pixels into a volume of size 512x512x512 voxels. It took 3.2 minutes on the PC (single CPU) and is as fast as 13.6 seconds on the Cell.

  13. Bottom-up on-crystal in-chip formation of a conducting salt and a view of its restructuring: from organic insulator to conducting "switch" through microfluidic manipulation.

    PubMed

    Puigmartí-Luis, Josep; Paradinas, Markos; Bailo, Elena; Rodriguez-Trujillo, Romen; Pfattner, Raphael; Ocal, Carmen; Amabilino, David B

    2015-06-01

    The chemical modification of an immobilized single crystal in a fluid cell is reported, whereby a material with switching functions is generated in situ by generating a chemical reagent in the flow. Crystals of the insulating organic crystal of TCNQ (tetracyanoquinodimethane) were grown in a microfluidic channel and were trapped using a pneumatic valve, a nascent technique for materials manipulation. They were subsequently reduced using solution-deposited silver to provide a conducting material in situ by a heterogeneous reaction. Removal of the new material from the chip proved it to be the silver salt of reduced TCNQ. Uniquely, conducting atomic force microscope (CAFM) studies show three regions in the solid. The localized original neutral organic material crystal is shown to be an insulator but to produce areas with Ohmic conducting characteristics after reduction. This inhomogeneous doping provides an opportunity for probing electrical materials properties side by side. Measurements with the CAFM witness this conducting material where the TCNQ is fully transformed to the silver salt. Additionally, an intermediate phase is observed that exhibits bipolar resistive switching typical of programmable resistive memories. Raman microscopy proves the conversion of the material in specific regions and clearly defines the intermediate phase region that could be responsible for the switching effect in related materials. This kind of "on crystal chemistry" exploiting immobilization and masking by a pneumatic clamp in a microfluidic channel shows how material can be selectively converted to give different functionalities in the same material piece, even though it is not a single crystal to single crystal conversion, and beckons exploitation for the preparation of systems relevant for molecular electronics as well as other areas where chemical manipulation of single crystals could be beneficial.

  14. A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps.

    PubMed

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.

  15. A Microfluidic Device for Preparing Next Generation DNA Sequencing Libraries and for Automating Other Laboratory Protocols That Require One or More Column Chromatography Steps

    PubMed Central

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273

  16. Microfluidic networks embedded in a printed circuit board

    NASA Astrophysics Data System (ADS)

    Dong, Liangwei; Hu, Yueli

    2017-07-01

    In order to improve the robustness of microfluidic networks in printed circuit board (PCB)-based microfluidic platforms, a new method was presented. A pattern in a PCB was formed using hollowed-out technology. Polydimethylsiloxane was partly filled in the hollowed-out fields after mounting an adhesive tape on the bottom of the PCB, and solidified in an oven. Then, microfluidic networks were built using soft lithography technology. Microfluidic transportation and dilution operations were demonstrated using the fabricated microfluidic platform. Results show that this method can embed microfluidic networks into a PCB, and microfluidic operations can be implemented in the microfluidic networks embedded into the PCB.

  17. Ultraaccurate genome sequencing and haplotyping of single human cells.

    PubMed

    Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun

    2017-11-21

    Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.

  18. 3D printed microfluidic circuitry via multijet-based additive manufacturing†

    PubMed Central

    Sochol, R. D.; Sweet, E.; Glick, C. C.; Venkatesh, S.; Avetisyan, A.; Ekman, K. F.; Raulinaitis, A.; Tsai, A.; Wienkers, A.; Korner, K.; Hanson, K.; Long, A.; Hightower, B. J.; Slatton, G.; Burnett, D. C.; Massey, T. L.; Iwai, K.; Lee, L. P.; Pister, K. S. J.; Lin, L.

    2016-01-01

    The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or “three-dimensional (3D) printing” technologies – predominantly stereolithography – as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) – a layer-by-layer, multi-material inkjetting process – for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 ± 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 ± 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community. PMID:26725379

  19. Unconventional microfluidics: expanding the discipline.

    PubMed

    Nawaz, Ahmad Ahsan; Mao, Xiaole; Stratton, Zackary S; Huang, Tony Jun

    2013-04-21

    Since its inception, the discipline of microfluidics has been harnessed for innovations in the biomedicine/chemistry fields-and to great effect. This success has had the natural side-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes. But microfluidics has more to offer. And very recently, some researchers have successfully applied microfluidics to fields outside its traditional domains. In this Focus article, we highlight notable examples of such "unconventional" microfluidics applications (e.g., robotics, electronics). It is our hope that these early successes in unconventional microfluidics prompt further creativity, and inspire readers to expand the microfluidics discipline.

  20. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-01-01

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813

  1. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  2. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    PubMed

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  3. Calibration and Validation Plan for the L2A Processor and Products of the SENTINEL-2 Mission

    NASA Astrophysics Data System (ADS)

    Main-Knorn, M.; Pflug, B.; Debaecker, V.; Louis, J.

    2015-04-01

    The Copernicus programme, is a European initiative for the implementation of information services based on observation data received from Earth Observation (EO) satellites and ground based information. In the frame of this programme, ESA is developing the Sentinel-2 optical imaging mission that will deliver optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. To ensure the highest quality of service, ESA sets up the Sentinel-2 Mission Performance Centre (MPC) in charge of the overall performance monitoring of the Sentinel-2 mission. TPZ F and DLR have teamed up in order to provide the best added-value support to the MPC for calibration and validation of the Level-2A processor (Sen2Cor) and products. This paper gives an overview over the planned L2A calibration and validation activities. Level-2A processing is applied to Top-Of-Atmosphere (TOA) Level-1C ortho-image reflectance products. Level-2A main output is the Bottom-Of-Atmosphere (BOA) corrected reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SC) map with Quality Indicators for cloud and snow probabilities. Level-2A BOA, AOT and WV outputs are calibrated and validated using ground-based data of automatic operating stations and data of in-situ campaigns. Scene classification is validated by the visual inspection of test datasets and cross-sensor comparison, supplemented by meteorological data, if available. Contributions of external in-situ campaigns would enlarge the reference dataset and enable extended validation exercise. Therefore, we are highly interested in and welcome external contributors.

  4. Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)

    2001-01-01

    The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.

  5. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sen2Cor for Sentinel-2

    NASA Astrophysics Data System (ADS)

    Main-Knorn, Magdalena; Pflug, Bringfried; Louis, Jerome; Debaecker, Vincent; Müller-Wilm, Uwe; Gascon, Ferran

    2017-10-01

    In the frame of the Copernicus programme, ESA has developed and launched the Sentinel-2 optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. The Sentinel-2 mission is the constellation of two polar orbiting satellites Sentinel-2A and Sentinel-2B, each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23rd, 2015 and Sentinel-2B followed on March 7th, 2017. With the beginning of the operational phase the constellation of both satellites enable image acquisition over the same area every 5 days or less. To use unique potential of the Sentinel-2 data for land applications and ensure the highest quality of scientific exploitation, accurate correction of satellite images for atmospheric effects is required. Therefore the atmospheric correction processor Sen2Cor was developed by Telespazio VEGA Deutschland GmbH on behalf of ESA. Sen2Cor is a Level-2A processor which main purpose is to correct single-date Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) products from the effects of the atmosphere in order to deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SCL) map with Quality Indicators for cloud and snow probabilities. Telespazio France and DLR have teamed up in order to provide the calibration and validation of the Sen2Cor processor. Here we provide an overview over the Sentinel-2 data, processor and products. It presents some processing examples of Sen2Cor applied to Sentinel-2 data, provides up-to-date information about the Sen2Cor release status and recent validation results at the time of the SPIE Remote Sensing 2017.

  7. Microfluidic electrochemical reactors

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  8. Fault-Tolerant, Radiation-Hard DSP

    NASA Technical Reports Server (NTRS)

    Czajkowski, David

    2011-01-01

    Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high-performance signal processing include significant increase in onboard science data processing, enabling orders of magnitude reduction in required communication bandwidth for science data return, orders of magnitude improvement in onboard mission planning and critical decision making, and the ability to rapidly respond to changing mission environments, thus enabling opportunistic science and orders of magnitude reduction in the cost of mission operations through reduction of required staff. Additional benefits of COTS-based, high-performance signal processing include the ability to leverage considerable commercial and academic investments in advanced computing tools, techniques, and infra structure, and the familiarity of the science and IT community with these computing environments.

  9. Recent developments in microfluidics-based chemotaxis studies.

    PubMed

    Wu, Jiandong; Wu, Xun; Lin, Francis

    2013-07-07

    Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.

  10. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    NASA Astrophysics Data System (ADS)

    Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  11. Lab-on-a-Chip Instrumentation and Method for Detecting Trace Organic and Bioorganic Molecules in Planetary Exploration: The Enceladus Organic Analyzer (EOA)

    NASA Astrophysics Data System (ADS)

    Butterworth, A.; Stockton, A. M.; Turin, P.; Ludlam, M.; Diaz-Aguado, M.; Kim, J.; Mathies, R. A.

    2015-12-01

    Lab-on-a-chip instrumentation is providing an ever more powerful in situ approach for detecting organic molecules relevant for chemical/biochemical evolution in our solar system obviating the cost, risk and long mission duration associated with sample return. Microfabricated analysis systems are particularly feasible when directly sampling from comet comae, or ejecta from icy moons, such as targeting organic molecules in plumes from Enceladus. Furthermore, the superb ppm to ppb sensitivity of chip analyzers, like the Enceladus Organic Analyzer (EOA), coupled with the ability to examine organics with a wide variety of functional groups enhance the probability of detecting organic molecules and determining whether they have a biological origin. The EOA is based on 20 years of research and development of microfabricated capillary electrophoresis (CE) analyzers at Berkeley that provide ppb sensitivity for a wide variety of organic molecules including amino acids, carboxylic acids, amines, aldehydes, ketones and polycyclic aromatic hydrocarbons [1]. Organic molecules are labeled with a fluorescent reagent according to their functional group in a programmable microfluidic processor [2,3] and then separated in a CE system followed by laser-induced fluorescence detection to determine molecular size and concentration. The EOA will be flown through Enceladus plumes and uses a specially designed impact plate/door to capture ice-particles. After closing the door, the material in the capture chamber is dissolved, labeled and analyzed by the microfabricated CE system. Only a few thousand 2 μm diameter particles containing ppm organic concentrations will provide an EOA detectable signal. If amino acids are detected, their chirality is determined because chirality is the best indicator of a biologically produced molecule. We have developed a flight design of this instrument for planetary exploration that is compact (16x16x12 cm), has low mass (3 kg), and requires very low power. [1] Skelley et al. (2005) PNAS USA, 102, 1041-1046. [2] Kim et al. (2013) Anal. Chem., 85, 7682-7688. [3] Mora et al. (2012) Electrophoresis, 33, 2624-2638. [4] Stockton et al. (2014) Second International Workshop on Instrumentation for Planetary Missions, NASA Greenbelt MD, Nov. 4-7, 2014.

  12. Engineering and physical sciences in oncology: challenges and opportunities

    PubMed Central

    Mitchell, Michael J.; Jain, Rakesh K.; Langer, Robert

    2017-01-01

    The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas. PMID:29026204

  13. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.

    PubMed

    Yang, Chao; Wu, Lei; Li, Gang

    2018-06-13

    A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.

  14. Programming chemistry in DNA-addressable bioreactors

    PubMed Central

    Fellermann, Harold; Cardelli, Luca

    2014-01-01

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647

  15. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    PubMed

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  16. FPGA cluster for high-performance AO real-time control system

    NASA Astrophysics Data System (ADS)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  17. IOPA: I/O-aware parallelism adaption for parallel programs

    PubMed Central

    Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei

    2017-01-01

    With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads. PMID:28278236

  18. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware

    PubMed Central

    Bajaj, Chandrajit; Ihm, Insung; Min, Jungki; Oh, Jinsang

    2009-01-01

    The increased programmability of graphics hardware allows efficient graphical processing unit (GPU) implementations of a wide range of general computations on commodity PCs. An important factor in such implementations is how to fully exploit the SIMD computing capacities offered by modern graphics processors. Linear expressions in the form of ȳ = Ax̄ + b̄, where A is a matrix, and x̄, ȳ and b̄ are vectors, constitute one of the most basic operations in many scientific computations. In this paper, we propose a SIMD code optimization technique that enables efficient shader codes to be generated for evaluating linear expressions. It is shown that performance can be improved considerably by efficiently packing arithmetic operations into four-wide SIMD instructions through reordering of the operations in linear expressions. We demonstrate that the presented technique can be used effectively for programming both vertex and pixel shaders for a variety of mathematical applications, including integrating differential equations and solving a sparse linear system of equations using iterative methods. PMID:19946569

  19. Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody V.

    2009-01-01

    As the molecular origins of disease are better understood, the need for affordable, rapid, and automated technologies that enable microscale molecular diagnostics has become apparent. Widespread use of microsystems that perform sample preparation and molecular analysis could ensure that the benefits of new biomedical discoveries are realized by a maximum number of people, even those in environments lacking any infrastructure. While progress has been made in developing miniaturized diagnostic systems, samples are generally processed off-device using labor-intensive and time-consuming traditional sample preparation methods. We present the concept of an integrated programmable general-purpose sample analysis processor (GSAP) architecture where raw samples are routed to separation and analysis functional blocks contained within a single device. Several dielectrophoresis-based methods that could serve as the foundation for building GSAP functional blocks are reviewed including methods for cell and particle sorting, cell focusing, cell ac impedance analysis, cell lysis, and the manipulation of molecules and reagent droplets. PMID:19684877

  20. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  1. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  2. IOPA: I/O-aware parallelism adaption for parallel programs.

    PubMed

    Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei

    2017-01-01

    With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads.

  3. Passive microfluidic array card and reader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugan, Lawrence Christopher; Coleman, Matthew A

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  4. Rapid microfluidic thermal cycler for nucleic acid amplification

    DOEpatents

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  5. Research based on the SoPC platform of feature-based image registration

    NASA Astrophysics Data System (ADS)

    Shi, Yue-dong; Wang, Zhi-hui

    2015-12-01

    This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.

  6. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    PubMed

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  7. Sequence invariant state machines

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Manjunath, S.

    1990-01-01

    A synthesis method and new VLSI architecture are introduced to realize sequential circuits that have the ability to implement any state machine having N states and m inputs, regardless of the actual sequence specified in the flow table. A design method is proposed that utilizes BTS logic to implement regular and dense circuits. A given state sequence can be programmed with power supply connections or dynamically reallocated if stored in a register. Arbitrary flow table sequences can be modified or programmed to dynamically alter the function of the machine. This allows VLSI controllers to be designed with the programmability of a general purpose processor but with the compact size and performance of dedicated logic.

  8. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    NASA Technical Reports Server (NTRS)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  9. Concept report: Microprocessor control of electrical power system

    NASA Technical Reports Server (NTRS)

    Perry, E.

    1977-01-01

    An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.

  10. Peptide Logic Circuits Based on Chemoenzymatic Ligation for Programmable Cell Apoptosis.

    PubMed

    Li, Yong; Sun, Sujuan; Fan, Lin; Hu, Shanfang; Huang, Yan; Zhang, Ke; Nie, Zhou; Yao, Shouzhou

    2017-11-20

    A novel and versatile peptide-based bio-logic system capable of regulating cell function is developed using sortase A (SrtA), a peptide ligation enzyme, as a generic processor. By modular peptide design, we demonstrate that mammalian cells apoptosis can be programmed by peptide-based logic operations, including binary and combination gates (AND, INHIBIT, OR, and AND-INHIBIT), and a complex sequential logic circuit (multi-input keypad lock). Moreover, a proof-of-concept peptide regulatory circuit was developed to analyze the expression profile of cell-secreted protein biomarkers and trigger cancer-cell-specific apoptosis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.

    PubMed

    Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young

    2003-01-01

    An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.

  12. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    PubMed Central

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  13. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  14. Software Defined GPS Receiver for International Space Station

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  15. Fast generation of computer-generated hologram by graphics processing unit

    NASA Astrophysics Data System (ADS)

    Matsuda, Sho; Fujii, Tomohiko; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    A cylindrical hologram is well known to be viewable in 360 deg. This hologram depends high pixel resolution.Therefore, Computer-Generated Cylindrical Hologram (CGCH) requires huge calculation amount.In our previous research, we used look-up table method for fast calculation with Intel Pentium4 2.8 GHz.It took 480 hours to calculate high resolution CGCH (504,000 x 63,000 pixels and the average number of object points are 27,000).To improve quality of CGCH reconstructed image, fringe pattern requires higher spatial frequency and resolution.Therefore, to increase the calculation speed, we have to change the calculation method. In this paper, to reduce the calculation time of CGCH (912,000 x 108,000 pixels), we employ Graphics Processing Unit (GPU).It took 4,406 hours to calculate high resolution CGCH on Xeon 3.4 GHz.Since GPU has many streaming processors and a parallel processing structure, GPU works as the high performance parallel processor.In addition, GPU gives max performance to 2 dimensional data and streaming data.Recently, GPU can be utilized for the general purpose (GPGPU).For example, NVIDIA's GeForce7 series became a programmable processor with Cg programming language.Next GeForce8 series have CUDA as software development kit made by NVIDIA.Theoretically, calculation ability of GPU is announced as 500 GFLOPS. From the experimental result, we have achieved that 47 times faster calculation compared with our previous work which used CPU.Therefore, CGCH can be generated in 95 hours.So, total time is 110 hours to calculate and print the CGCH.

  16. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.

    PubMed

    Wen, Na; Zhao, Zhan; Fan, Beiyuan; Chen, Deyong; Men, Dong; Wang, Junbo; Chen, Jian

    2016-07-05

    This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.

  17. Microfluidics and Raman microscopy: current applications and future challenges.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-07

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  18. Dual-nozzle microfluidic droplet generator

    NASA Astrophysics Data System (ADS)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  19. Microfluidics on liquid handling stations (μF-on-LHS): an industry compatible chip interface between microfluidics and automated liquid handling stations.

    PubMed

    Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E

    2013-06-21

    We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.

  20. A two-magnet strategy for improved mixing and capture from biofluids

    PubMed Central

    Doyle, Andrew B.; Haselton, Frederick R.

    2016-01-01

    Magnetic beads are a popular method for concentrating biomolecules from solution and have been more recently used in multistep pre-arrayed microfluidic cartridges. Typical processing strategies rely on a single magnet, resulting in a tight cluster of beads and requiring long incubation times to achieve high capture efficiencies, especially in highly viscous patient samples. This report describes a two-magnet strategy to improve the interaction of the bead surface with the surrounding fluid inside of a pre-arrayed, self-contained assay-in-a-tube. In the two-magnet system, target biomarker capture occurs at a rate three times faster than the single-magnet system. In clinically relevant biomatrices, we find a 2.5-fold improvement in biomarker capture at lower sample viscosities with the two-magnet system. In addition, we observe a 20% increase in the amount of protein captured at high viscosity for the two-magnet configuration relative to the single magnet approach. The two-magnet approach offers a means to achieve higher biomolecule extraction yields and shorter assay times in magnetic capture assays and in self-contained processor designs. PMID:27158286

  1. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.

    PubMed

    Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai

    2015-12-16

    We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.

  2. Slime mould processors, logic gates and sensors.

    PubMed

    Adamatzky, A

    2015-07-28

    A heterotic, or hybrid, computation implies that two or more substrates of different physical nature are merged into a single device with indistinguishable parts. These hybrid devices then undertake coherent acts on programmable and sensible processing of information. We study the potential of heterotic computers using slime mould acting under the guidance of chemical, mechanical and optical stimuli. Plasmodium of acellular slime mould Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioural morphological patterns in response to changing environmental conditions. Given data represented by chemical or physical stimuli, we can employ and modify the behaviour of the slime mould to make it solve a range of computing and sensing tasks. We overview results of laboratory experimental studies on prototyping of the slime mould morphological processors for approximation of Voronoi diagrams, planar shapes and solving mazes, and discuss logic gates implemented via collision of active growing zones and tactile responses of P. polycephalum. We also overview a range of electronic components--memristor, chemical, tactile and colour sensors-made of the slime mould. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Effective correlator for RadioAstron project

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey

    This paper presents the implementation of programme FX-correlator for Very Long Baseline Interferometry, adapted for the project "RadioAstron". Software correlator implemented for heterogeneous computing systems using graphics accelerators. It is shown that for the task interferometry implementation of the graphics hardware has a high efficiency. The host processor of heterogeneous computing system, performs the function of forming the data flow for graphics accelerators, the number of which corresponds to the number of frequency channels. So, for the Radioastron project, such channels is seven. Each accelerator is perform correlation matrix for all bases for a single frequency channel. Initial data is converted to the floating-point format, is correction for the corresponding delay function and computes the entire correlation matrix simultaneously. Calculation of the correlation matrix is performed using the sliding Fourier transform. Thus, thanks to the compliance of a solved problem for architecture graphics accelerators, managed to get a performance for one processor platform Kepler, which corresponds to the performance of this task, the computing cluster platforms Intel on four nodes. This task successfully scaled not only on a large number of graphics accelerators, but also on a large number of nodes with multiple accelerators.

  4. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  5. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  6. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  7. CORDIC-based digital signal processing (DSP) element for adaptive signal processing

    NASA Astrophysics Data System (ADS)

    Bolstad, Gregory D.; Neeld, Kenneth B.

    1995-04-01

    The High Performance Adaptive Weight Computation (HAWC) processing element is a CORDIC based application specific DSP element that, when connected in a linear array, can perform extremely high throughput (100s of GFLOPS) matrix arithmetic operations on linear systems of equations in real time. In particular, it very efficiently performs the numerically intense computation of optimal least squares solutions for large, over-determined linear systems. Most techniques for computing solutions to these types of problems have used either a hard-wired, non-programmable systolic array approach, or more commonly, programmable DSP or microprocessor approaches. The custom logic methods can be efficient, but are generally inflexible. Approaches using multiple programmable generic DSP devices are very flexible, but suffer from poor efficiency and high computation latencies, primarily due to the large number of DSP devices that must be utilized to achieve the necessary arithmetic throughput. The HAWC processor is implemented as a highly optimized systolic array, yet retains some of the flexibility of a programmable data-flow system, allowing efficient implementation of algorithm variations. This provides flexible matrix processing capabilities that are one to three orders of magnitude less expensive and more dense than the current state of the art, and more importantly, allows a realizable solution to matrix processing problems that were previously considered impractical to physically implement. HAWC has direct applications in RADAR, SONAR, communications, and image processing, as well as in many other types of systems.

  8. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives.

    PubMed

    Hongzhou, Cui; Shuping, Guo; Wenju, Wang; Li, Li; Lulu, Wei; Linjun, Deng; Jingmin, Li; Xiaoli, Ren; Li, Bai

    2017-02-01

    In recent years, molecular biology has proven to be a great asset in our understanding of mechanisms in genodermatoses. However, bench to bedside translation research lags far behind. Advances in lab-on-a-chip technologies enabled programmable, reconfigurable, and scalable manipulation of a variety of laboratory procedures. Sample preparation, microfluidic reactions, and continuous monitoring systems can be integrated on a small chip. These advantages have attracted attention in various fields of clinical application including diagnosis of inherited skin diseases. This review lists an overview of the underlying genes and mutations and describes prospective application of lab-on-a-chip technologies as solutions to challenges for point-of-care genodematoses diagnosis. Copyright © 2016. Published by Elsevier B.V.

  9. Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip

    PubMed Central

    McRae, Michael P; Simmons, Glennon; McDevitt, John T

    2016-01-01

    This perspective highlights the major challenges for the bioanalytical community, in particular the area of lab-on-a-chip sensors, as they relate to point-of-care diagnostics. There is a strong need for general-purpose and universal biosensing platforms that can perform multiplexed and multiclass assays on real-world clinical samples. However, the adoption of novel lab-on-a-chip/microfluidic devices has been slow as several key challenges remain for the translation of these new devices to clinical practice. A pipeline of promising medical microdevice technologies will be made possible by addressing the challenges of integration, failure to compete with cost and performance of existing technologies, requisite for new content, and regulatory approval and clinical adoption. PMID:27071710

  10. Microfluidic opportunities in the field of nutrition

    PubMed Central

    Li, Sixing; Kiehne, Justin; Sinoway, Lawrence I.; Cameron, Craig E.

    2013-01-01

    Nutrition has always been closely related to human health, which is a constant motivational force driving research in a variety of disciplines. Over the years, the rapidly emerging field of microfluidics has been pushing forward the healthcare industry with the development of microfluidic-based, point-of-care (POC) diagnostic devices. Though a great deal of work has been done in developing microfluidic platforms for disease diagnoses, potential microfluidic applications in the field of nutrition remain largely unexplored. In this Focus article, we would like to investigate the potential chances for microfluidics in the field of nutrition. We will first highlight some of the recent advances in microfluidic blood analysis systems that have the capacity to detect biomarkers of nutrition. Then we will examine existing examples of microfluidic devices for the detection of specific biomarkers of nutrition or nutrient content in food. Finally, we will discuss the challenges in this field and provide some insight into the future of applied microfluidics in nutrition. PMID:24056522

  11. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  12. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    NASA Astrophysics Data System (ADS)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  13. Fabrication of a multiplexed microfluidic system for scaled up production of cross-linked biocatalytic microspheres

    NASA Astrophysics Data System (ADS)

    Mbanjwa, Mesuli B.; Chen, Hao; Fourie, Louis; Ngwenya, Sibusiso; Land, Kevin

    2014-06-01

    Multiplexed or parallelised droplet microfluidic systems allow for increased throughput in the production of emulsions and microparticles, while maintaining a small footprint and utilising minimal ancillary equipment. The current paper demonstrates the design and fabrication of a multiplexed microfluidic system for producing biocatalytic microspheres. The microfluidic system consists of an array of 10 parallel microfluidic circuits, for simultaneous operation to demonstrate increased production throughput. The flow distribution was achieved using a principle of reservoirs supplying individual microfluidic circuits. The microfluidic devices were fabricated in poly (dimethylsiloxane) (PDMS) using soft lithography techniques. The consistency of the flow distribution was determined by measuring the size variations of the microspheres produced. The coefficient of variation of the particles was determined to be 9%, an indication of consistent particle formation and good flow distribution between the 10 microfluidic circuits.

  14. Suspended microfluidics.

    PubMed

    Casavant, Benjamin P; Berthier, Erwin; Theberge, Ashleigh B; Berthier, Jean; Montanez-Sauri, Sara I; Bischel, Lauren L; Brakke, Kenneth; Hedman, Curtis J; Bushman, Wade; Keller, Nancy P; Beebe, David J

    2013-06-18

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics.

  15. Suspended microfluidics

    PubMed Central

    Casavant, Benjamin P.; Berthier, Erwin; Theberge, Ashleigh B.; Berthier, Jean; Montanez-Sauri, Sara I.; Bischel, Lauren L.; Brakke, Kenneth; Hedman, Curtis J.; Bushman, Wade; Keller, Nancy P.; Beebe, David J.

    2013-01-01

    Although the field of microfluidics has made significant progress in bringing new tools to address biological questions, the accessibility and adoption of microfluidics within the life sciences are still limited. Open microfluidic systems have the potential to lower the barriers to adoption, but the absence of robust design rules has hindered their use. Here, we present an open microfluidic platform, suspended microfluidics, that uses surface tension to fill and maintain a fluid in microscale structures devoid of a ceiling and floor. We developed a simple and ubiquitous model predicting fluid flow in suspended microfluidic systems and show that it encompasses many known capillary phenomena. Suspended microfluidics was used to create arrays of collagen membranes, mico Dots (μDots), in a horizontal plane separating two fluidic chambers, demonstrating a transwell platform able to discern collective or individual cellular invasion. Further, we demonstrated that μDots can also be used as a simple multiplexed 3D cellular growth platform. Using the μDot array, we probed the combined effects of soluble factors and matrix components, finding that laminin mitigates the growth suppression properties of the matrix metalloproteinase inhibitor GM6001. Based on the same fluidic principles, we created a suspended microfluidic metabolite extraction platform using a multilayer biphasic system that leverages the accessibility of open microchannels to retrieve steroids and other metabolites readily from cell culture. Suspended microfluidics brings the high degree of fluidic control and unique functionality of closed microfluidics into the highly accessible and robust platform of open microfluidics. PMID:23729815

  16. Microfluidics on liquid handling stations (μF-on-LHS): a new industry-compatible microfluidic platform

    NASA Astrophysics Data System (ADS)

    Kittelmann, Jörg; Radtke, Carsten P.; Waldbaur, Ansgar; Neumann, Christiane; Hubbuch, Jürgen; Rapp, Bastian E.

    2014-03-01

    Since the early days microfluidics as a scientific discipline has been an interdisciplinary research field with a wide scope of potential applications. Besides tailored assays for point-of-care (PoC) diagnostics, microfluidics has been an important tool for large-scale screening of reagents and building blocks in organic chemistry, pharmaceutics and medical engineering. Furthermore, numerous potential marketable products have been described over the years. However, especially in industrial applications, microfluidics is often considered only an alternative technology for fluid handling, a field which is industrially mostly dominated by large-scale numerically controlled fluid and liquid handling stations. Numerous noteworthy products have dominated this field in the last decade and have been inhibited the widespread application of microfluidics technology. However, automated liquid handling stations and microfluidics do not have to be considered as mutually exclusive approached. We have recently introduced a hybrid fluidic platform combining an industrially established liquid handling station and a generic microfluidic interfacing module that allows probing a microfluidic system (such as an essay or a synthesis array) using the instrumentation provided by the liquid handling station. We term this technology "Microfluidic on Liquid Handling Stations (μF-on-LHS)" - a classical "best of both worlds"- approach that allows combining the highly evolved, automated and industry-proven LHS systems with any type of microfluidic assay. In this paper we show, to the best of our knowledge, the first droplet microfluidics application on an industrial LHS using the μF-on-LHS concept.

  17. PREFACE: Nano- and microfluidics Nano- and microfluidics

    NASA Astrophysics Data System (ADS)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al, Uhlmann et al and articles to be published in a later issue by Bäumchen and Jacobs, Walz et al). Moreover, simulations accounted for these new phenomena (see articles in this issue by Leonforte et al, Hyväaluoma et al, Varnik et al, Chelakkot et al, Litvinov et al and the article to be published in a later issue by Boettcher et al), since commercial software packages typically override these special yet fundamentally new conditions. For future applications, the know-how can be used, for instance, to manipulate particles or molecules in microfluidic systems (see articles in this issue by Nottebrock et al, Straube, Uhlmann et al and the article to be published in a later issue by Boettcher et al). The articles have been divided into four subsections: 'Probing the boundary condition', 'Flow over or in special geometries', 'Soft objects in fluid flow' and 'Manipulating flow'. Many articles, however, cover more than only one aspect and could easily be listed under one of the other subsections. Three articles, two listed in the section 'Probing the boundary condition' and one listed in 'Manipulating flow', could not be included and will be published in a later issue (Bäumchen and Jacobs, Walz et al, Boettcher et al). The collection of studies gives a comprehensive overview of what has been achieved to 'bridge the gap between molecular motion and continuum flow', which was the mission of the programme and which will now form a sound platform for continuative studies. References [1] Bowtell D D 1999 Nature Genet. 21 25 [2] Lion N et al 2003 Electrophoresis 24 3533 [3] Weston A D and Hood L 2004 J. Proteome Res. 3 179 [4] Li D 2004 Microfluidics Nanofluidics 1 1 Nano- and microfluidics contents Impact of slippage on the morphology and stability of a dewetting rim Andreas Münch and Barbara Wagner Nanoscale discontinuities at the boundary of flowing liquids: a look into structure Max Wolff, Philipp Gutfreund, Adrian Rühm, Bulent Akgun and Hartmut Zabel Capillary waves of compressible fluids Kerstin Falk and Klaus Mecke Wetting, roughness and flow boundary conditions Olga I Vinogradova and Aleksey V Belyaev Molecular transport and flow past hard and soft surfaces: computer simulation of model systems F Léonforte, J Servantie, C Pastorino, and M Müller Simulations of slip flow on nanobubble-laden surfaces J Hyväluoma, C Kunert and J Harting Electrophoretic transport of biomolecules across liquid-liquid interfaces Thomas Hahn, Götz Münchow and Steffen Hardt Wetting morphologies and their transitions in grooved substrates Ralf Seemann, Martin Brinkmann, Stephan Herminghaus, Krishnacharya Khare, Bruce M Law, Sean McBride, Konstantina Kostourou, Evgeny Gurevich, Stefan Bommer, Carsten Herrmann and Dominik Michler Imbibition in mesoporous silica: rheological concepts and experiments on water and a liquid crystal Simon Gruener, and Patrick Huber Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls Douwe Jan Bonthuis, Klaus F Rinne, Kerstin Falk, C Nadir Kaplan, Dominik Horinek, A Nihat Berker, Lydéric Bocquet, and Roland R Netz Structure and flow of droplets on solid surfaces P Müller-Buschbaum, D Magerl, R Hengstler, J-F Moulin, V Körstgens, A Diethert, J Perlich, S V Roth, M Burghammer, C Riekel, M Gross, F Varnik, P Uhlmann, M Stamm, J M Feldkamp and C G Schroer Stability and dynamics of droplets on patterned substrates: insights from experiments and lattice Boltzmann simulations F Varnik, M Gross, N Moradi, G Zikos, P Uhlmann, P Müller-Buschbaum, D Magerl, D Raabe, I Steinbach and M Stamm Micro-capsules in shear flow R Finken, S Kessler and U Seifert Micro-rheology on (polymer-grafted) colloids using optical tweezers C Gutsche, M M Elmahdy, K Kegler, I Semenov, T Stangner, O Otto, O Ueberschär, U F Keyser, M Krueger, M Rauscher, R Weeber, J Harting, Y W Kim, V Lobaskin, R R Netz, and F Kremer Dynamics of colloids in confined geometries L Almenar and M Rauscher Dynamics of red blood cells and vesicles in microchannels of oscillating width S Braunmüller, L Schmid and T Franke Semiflexible polymer conformation, distribution and migration in microcapillary flows Raghunath Chelakkot, Roland G Winkler and Gerhard Gompper Numerical simulation of tethered DNA in shear flow S Litvinov, X Y Hu and N A Adams Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in shear flow K Laube, K Günther and M Mertig Interaction of flexible surface hairs with near-wall turbulence Ch Brücker Development of a shear stress sensor to analyse the influence of polymers on the turbulent wall shear stress Bernardo Nottebrock, Sebastian Große and Wolfgang Schröder Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale Arthur V Straube Microfluidic emulsion separation—simultaneous separation and sensing by multilayer nanofilm structures P Uhlmann, F Varnik, P Truman, G Zikos, J-F Moulin, P Müller-Buschbaum and M Stamm Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters M Boettcher, S Schmidt, A Latz, M S Jaeger, M Stuke and C Duschl Nanoscale structures and dynamics of a boundary liquid layer M Walz, S Gerth, P Falus, M Klimczak, T H Metzger and A Magerl

  18. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  19. Ice matrix in reconfigurable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  20. Distributed processor allocation for launching applications in a massively connected processors complex

    DOEpatents

    Pedretti, Kevin

    2008-11-18

    A compute processor allocator architecture for allocating compute processors to run applications in a multiple processor computing apparatus is distributed among a subset of processors within the computing apparatus. Each processor of the subset includes a compute processor allocator. The compute processor allocators can share a common database of information pertinent to compute processor allocation. A communication path permits retrieval of information from the database independently of the compute processor allocators.

  1. 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs.

    PubMed

    Singh, Manjot; Tong, Yuxin; Webster, Kelly; Cesewski, Ellen; Haring, Alexander P; Laheri, Sahil; Carswell, Bill; O'Brien, Timothy J; Aardema, Charles H; Senger, Ryan S; Robertson, John L; Johnson, Blake N

    2017-07-25

    The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL -1 , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.

  2. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    PubMed

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  3. Microfluidic electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  4. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and subsequent insertion into a diagnostic device. A more advanced form of tissue integration with microfluidics is tissue encapsulation, wherein the sample is completely encapsulated within a microfluidic device, to allow for full surface access. The immediate applications of these approaches lie with diagnostics of tissue slices and biopsy samples e.g. for cancer but the approaches would also be very useful in comparative genomics and other areas of fundamental research involving heterogeneous tissue samples.

  5. Manufacturing methods and applications of membranes in microfluidics.

    PubMed

    Chen, Xueye; Shen, Jienan; Hu, Zengliang; Huo, Xuyao

    2016-12-01

    Applications of membranes in microfluidics solved many thorny problems for analytical chemistry and bioscience, so that the use of membranes in microfluidics has been a topic of growing interest. Many different examples have been reported, demonstrating the versatile use of membranes. This work reviews a lot of applications of membranes in microfluidics. Membranes in microfluidics for applications including chemical reagents detection, gas detection, drug screening, cell, protein, microreactor, electrokinetical fluid, pump and valve and fluid transport control and so on, have been analyzed and discussed. In addition, the definition and basic concepts of membranes are summed up. And the methods of manufacturing membranes in microfluidics are discussed. This paper will provide a helpful reference to researchers who want to study applications of membranes in microfluidics.

  6. Microfluidics: a transformational tool for nanomedicine development and production.

    PubMed

    Garg, Shyam; Heuck, Gesine; Ip, Shell; Ramsay, Euan

    2016-11-01

    Microfluidic devices are mircoscale fluidic circuits used to manipulate liquids at the nanoliter scale. The ability to control the mixing of fluids and the continuous nature of the process make it apt for solvent/antisolvent precipitation of drug-delivery nanoparticles. This review describes the use of numerous microfluidic designs for the formulation and production of lipid nanoparticles, liposomes and polymer nanoparticles to encapsulate and deliver small molecule or genetic payloads. The advantages of microfluidics are illustrated through examples from literature comparing conventional processes such as beaker and T-tube mixing to microfluidic approaches. Particular emphasis is placed on examples of microfluidic nanoparticle formulations that have been tested in vitro and in vivo. Fine control of process parameters afforded by microfluidics, allows unprecedented optimization of nanoparticle quality and encapsulation efficiency. Automation improves the reproducibility and optimization of formulations. Furthermore, the continuous nature of the microfluidic process is inherently scalable, allowing optimization at low volumes, which is advantageous with scarce or costly materials, as well as scale-up through process parallelization. Given these advantages, microfluidics is poised to become the new paradigm for nanomedicine formulation and production.

  7. Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8

    NASA Astrophysics Data System (ADS)

    Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.

  8. Advances in microfluidics for drug discovery.

    PubMed

    Lombardi, Dario; Dittrich, Petra S

    2010-11-01

    Microfluidics is considered as an enabling technology for the development of unconventional and innovative methods in the drug discovery process. The concept of micrometer-sized reaction systems in the form of continuous flow reactors, microdroplets or microchambers is intriguing, and the versatility of the technology perfectly fits with the requirements of drug synthesis, drug screening and drug testing. In this review article, we introduce key microfluidic approaches to the drug discovery process, highlighting the latest and promising achievements in this field, mainly from the years 2007 - 2010. Despite high expectations of microfluidic approaches to several stages of the drug discovery process, up to now microfluidic technology has not been able to significantly replace conventional drug discovery platforms. Our aim is to identify bottlenecks that have impeded the transfer of microfluidics into routine platforms for drug discovery and show some recent solutions to overcome these hurdles. Although most microfluidic approaches are still applied only for proof-of-concept studies, thanks to creative microfluidic research in the past years unprecedented novel capabilities of microdevices could be demonstrated, and general applicable, robust and reliable microfluidic platforms seem to be within reach.

  9. Rapid prototyping of 2D glass microfluidic devices based on femtosecond laser assisted selective etching process

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Il; Kim, Jeongtae; Koo, Chiwan; Joung, Yeun-Ho; Choi, Jiyeon

    2018-02-01

    Microfluidics technology which deals with small liquid samples and reagents within micro-scale channels has been widely applied in various aspects of biological, chemical, and life-scientific research. For fabricating microfluidic devices, a silicon-based polymer, PDMS (Polydimethylsiloxane), is widely used in soft lithography, but it has several drawbacks for microfluidic applications. Glass has many advantages over PDMS due to its excellent optical, chemical, and mechanical properties. However, difficulties in fabrication of glass microfluidic devices that requires multiple skilled steps such as MEMS technology taking several hours to days, impedes broad application of glass based devices. Here, we demonstrate a rapid and optical prototyping of a glass microfluidic device by using femtosecond laser assisted selective etching (LASE) and femtosecond laser welding. A microfluidic droplet generator was fabricated as a demonstration of a microfluidic device using our proposed prototyping. The fabrication time of a single glass chip containing few centimeter long and complex-shaped microfluidic channels was drastically reduced in an hour with the proposed laser based rapid and simple glass micromachining and hermetic packaging technique.

  10. Microfluidic perfusion culture.

    PubMed

    Hattori, Koji; Sugiura, Shinji; Kanamori, Toshiyuki

    2014-01-01

    Microfluidic perfusion culture is a novel technique to culture animal cells in a small-scale microchamber with medium perfusion. Polydimethylsiloxane (PDMS) is the most popular material to fabricate a microfluidic perfusion culture chip. Photolithography and replica molding techniques are generally used for fabrication of a microfluidic perfusion culture chip. Pressure-driven perfusion culture system is convenient technique to carry out the perfusion culture of animal cells in a microfluidic device. Here, we describe a general theory on microfluid network design, microfabrication technique, and experimental technique for pressure-driven perfusion culture in an 8 × 8 microchamber array on a glass slide-sized microchip made out of PDMS.

  11. Programming chemistry in DNA-addressable bioreactors.

    PubMed

    Fellermann, Harold; Cardelli, Luca

    2014-10-06

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Integrated microfluidic technology for sub-lethal and behavioral marine ecotoxicity biotests

    NASA Astrophysics Data System (ADS)

    Huang, Yushi; Reyes Aldasoro, Constantino Carlos; Persoone, Guido; Wlodkowic, Donald

    2015-06-01

    Changes in behavioral traits exhibited by small aquatic invertebrates are increasingly postulated as ethically acceptable and more sensitive endpoints for detection of water-born ecotoxicity than conventional mortality assays. Despite importance of such behavioral biotests, their implementation is profoundly limited by the lack of appropriate biocompatible automation, integrated optoelectronic sensors, and the associated electronics and analysis algorithms. This work outlines development of a proof-of-concept miniaturized Lab-on-a-Chip (LOC) platform for rapid water toxicity tests based on changes in swimming patterns exhibited by Artemia franciscana (Artoxkit M™) nauplii. In contrast to conventionally performed end-point analysis based on counting numbers of dead/immobile specimens we performed a time-resolved video data analysis to dynamically assess impact of a reference toxicant on swimming pattern of A. franciscana. Our system design combined: (i) innovative microfluidic device keeping free swimming Artemia sp. nauplii under continuous microperfusion as a mean of toxin delivery; (ii) mechatronic interface for user-friendly fluidic actuation of the chip; and (iii) miniaturized video acquisition for movement analysis of test specimens. The system was capable of performing fully programmable time-lapse and video-microscopy of multiple samples for rapid ecotoxicity analysis. It enabled development of a user-friendly and inexpensive test protocol to dynamically detect sub-lethal behavioral end-points such as changes in speed of movement or distance traveled by each animal.

  13. Microfluidic sieve valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  14. Miniaturization of environmental chemical assays in flowing systems: the lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices.

    PubMed

    Miró, Manuel; Hansen, Elo Harald

    2007-09-26

    The analytical capabilities of the microminiaturized lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis systems (muTAS), also termed lab-on-a-chip (LOC). This paper illustrates, via selected representative examples, the potentials of the LOV scheme vis-à-vis LOC microdevices for environmental assays. By means of user-friendly programmable flow and the exploitation of the interplay between the thermodynamics and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take full advantage of kinetic discriminations schemes, where even subtle differences in reactions are utilized for analytical purposes. Furthermore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open-architecture of the micromachined unit for implementation of peripheral modules and automated handling of a variety of reagents; and most importantly, it offers itself as a versatile front end to a plethora of detection schemes. Not the least, LOV is regarded as an emerging downscaled tool to overcome the dilemma of LOC microsystems to admit real-life samples. This is nurtured via its intrinsic flexibility for accommodation of sample pre-treatment schemes aimed at the on-line manipulation of complex samples. Thus, LOV is playing a prominent role in the environmental field, whenever the monitoring of trace level concentration of pollutants is pursued, because both matrix isolation and preconcentration of target analytes is most often imperative, or in fact necessary, prior to sample presentation to the detector.

  15. Optimized smith waterman processor design for breast cancer early diagnosis

    NASA Astrophysics Data System (ADS)

    Nurdin, D. S.; Isa, M. N.; Ismail, R. C.; Ahmad, M. I.

    2017-09-01

    This paper presents an optimized design of Processing Element (PE) of Systolic Array (SA) which implements affine gap penalty Smith Waterman (SW) algorithm on the Xilinx Virtex-6 XC6VLX75T Field Programmable Gate Array (FPGA) for Deoxyribonucleic Acid (DNA) sequence alignment. The PE optimization aims to reduce PE logic resources to increase number of PEs in FPGA for higher degree of parallelism during alignment matrix computations. This is useful for aligning long DNA-based disease sequence such as Breast Cancer (BC) for early diagnosis. The optimized PE architecture has the smallest PE area with 15 slices in a PE and 776 PEs implemented in the Virtex - 6 FPGA.

  16. GOME/ERS-2: New Homogeneous Level 1B Data from an Old Instrument

    NASA Astrophysics Data System (ADS)

    Slijkhuis, S.; Aberle, B.; Coldewey-Egbers, M.; Loyola, D.; Dehn, A.; Fehr, T.

    2015-11-01

    In the framework of ESA's "GOME Evolution Project", a reprocessing will be made of the entire 16 year GOME Level 1 dataset. The GOME Evolution Project further includes the generation of a new GOME water vapour product, and a public outreach programme.In this paper we will describe the reprocessing of the Level 1 data, carried out with the latest version of the GOME Data Processor at DLR. The change most visible to the user will be the new product format in NetCDF, plus supporting documentation (ATBD and PUM). Full-mission reprocessed L1b data are expected to be released in the 4th quarter of 2015.

  17. Some Examples Of Image Warping For Low Vision Prosthesis

    NASA Astrophysics Data System (ADS)

    Juday, Richard D.; Loshin, David S.

    1988-08-01

    NASA and Texas Instruments have developed an image processor, the Programmable Remapper 1, for certain functions in machine vision. The Remapper performs a highly arbitrary geometric warping of an image at video rate. It might ultimately be shrunk to a size and cost that could allow its use in a low-vision prosthesis. We have developed coordinate warpings for retinitis pigmentosa (tunnel vision) and for maculapathy (loss of central field) that are intended to make best use of the patient's remaining viable retina. The rationales and mathematics are presented for some warpings that we will try in clinical studies using the Remapper's prototype. (Recorded video imagery was shown at the conference for the maculapathy remapping.

  18. Single-Event Transient Testing of Low Dropout PNP Series Linear Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Adell, Philippe; Allen, Gregory

    2013-01-01

    As demand for high-speed, on-board, digital-processing integrated circuits on spacecraft increases (field-programmable gate arrays and digital signal processors in particular), the need for the next generation point-of-load (POL) regulator becomes a prominent design issue. Shrinking process nodes have resulted in core rails dropping to values close to 1.0 V, drastically reducing margin to standard switching converters or regulators that power digital ICs. The goal of this task is to perform SET characterization of several commercial POL converters, and provide a discussion of the impact of these results to state-of-the-art digital processing IC through laser and heavy ion testing

  19. Digital MOS integrated circuits

    NASA Astrophysics Data System (ADS)

    Elmasry, M. I.

    MOS in digital circuit design is considered along with aspects of digital VLSI, taking into account a comparison of MOSFET logic circuits, 1-micrometer MOSFET VLSI technology, a generalized guide for MOSFET miniaturization, processing technologies, novel circuit structures for VLSI, and questions of circuit and system design for VLSI. MOS memory cells and circuits are discussed, giving attention to a survey of high-density dynamic RAM cell concepts, one-device cells for dynamic random-access memories, variable resistance polysilicon for high density CMOS Ram, high performance MOS EPROMs using a stacked-gate cell, and the optimization of the latching pulse for dynamic flip-flop sensors. Programmable logic arrays are considered along with digital signal processors, microprocessors, static RAMs, and dynamic RAMs.

  20. Spatio-temporal coupling of EEG signals in epilepsy

    NASA Astrophysics Data System (ADS)

    Senger, Vanessa; Müller, Jens; Tetzlaff, Ronald

    2011-05-01

    Approximately 1% of the world's population suffer from epileptic seizures throughout their lives that mostly come without sign or warning. Thus, epilepsy is the most common chronical disorder of the neurological system. In the past decades, the problem of detecting a pre-seizure state in epilepsy using EEG signals has been addressed in many contributions by various authors over the past two decades. Up to now, the goal of identifying an impending epileptic seizure with sufficient specificity and reliability has not yet been achieved. Cellular Nonlinear Networks (CNN) are characterized by local couplings of dynamical systems of comparably low complexity. Thus, they are well suited for an implementation as highly parallel analogue processors. Programmable sensor-processor realizations of CNN combine high computational power comparable to tera ops of digital processors with low power consumption. An algorithm allowing an automated and reliable detection of epileptic seizure precursors would be a"huge step" towards the vision of an implantable seizure warning device that could provide information to patients and for a time/event specific treatment directly in the brain. Recent contributions have shown that modeling of brain electrical activity by solutions of Reaction-Diffusion-CNN as well as the application of a CNN predictor taking into account values of neighboring electrodes may contribute to the realization of a seizure warning device. In this paper, a CNN based predictor corresponding to a spatio-temporal filter is applied to multi channel EEG data in order to identify mutual couplings for different channels which lead to a enhanced prediction quality. Long term EEG recordings of different patients are considered. Results calculated for these recordings with inter-ictal phases as well as phases with seizures will be discussed in detail.

  1. "Connecting worlds - a view on microfluidics for a wider application".

    PubMed

    Fernandes, Ana C; Gernaey, Krist V; Krühne, Ulrich

    From its birth, microfluidics has been referenced as a revolutionary technology and the solution to long standing technological and sociological issues, such as detection of dilute compounds and personalized healthcare. Microfluidics has for example been envisioned as: (1) being capable of miniaturizing industrial production plants, thereby increasing their automation and operational safety at low cost; (2) being able to identify rare diseases by running bioanalytics directly on the patient's skin; (3) allowing health diagnostics in point-of-care sites through cheap lab-on-a-chip devices. However, the current state of microfluidics, although technologically advanced, has so far failed to reach the originally promised widespread use. In this paper, some of the aspects are identified and discussed that have prevented microfluidics from reaching its full potential, especially in the chemical engineering and biotechnology fields, focusing mainly on the specialization on a single target of most microfluidic devices and offering a perspective on the alternate, multi-use, "plug and play" approach. Increasing the flexibility of microfluidic platforms, by increasing their compatibility with different substrates, reactions and operation conditions, and other microfluidic systems is indeed of surmount importance and current academic and industrial approaches to modular microfluidics are presented. Furthermore, two views on the commercialization of plug-and-play microfluidics systems, leading towards improved acceptance and more widespread use, are introduced. A brief review of the main materials and fabrication strategies used in these fields, is also presented. Finally, a step-wise guide towards the development of microfluidic systems is introduced with special focus on the integration of sensors in microfluidics. The proposed guidelines are then applied for the development of two different example platforms, and to three examples taken from literature. With this work, we aim to provide an interesting perspective on the field of microfluidics when applied to chemical engineering and biotechnology studies, as well as to contribute with potential solutions to some of its current challenges. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.

    PubMed

    Damiri, Hazem Salim; Bardaweel, Hamzeh Khalid

    2015-11-07

    Microfluidic networks represent the milestone of microfluidic devices. Recent advancements in microfluidic technologies mandate complex designs where both hydraulic resistance and pressure drop across the microfluidic network are minimized, while wall shear stress is precisely mapped throughout the network. In this work, a combination of theoretical and modeling techniques is used to construct a microfluidic network that operates under minimum hydraulic resistance and minimum pressure drop while constraining wall shear stress throughout the network. The results show that in order to minimize the hydraulic resistance and pressure drop throughout the network while maintaining constant wall shear stress throughout the network, geometric and shape conditions related to the compactness and aspect ratio of the parent and daughter branches must be followed. Also, results suggest that while a "local" minimum hydraulic resistance can be achieved for a geometry with an arbitrary aspect ratio, a "global" minimum hydraulic resistance occurs only when the aspect ratio of that geometry is set to unity. Thus, it is concluded that square and equilateral triangular cross-sectional area microfluidic networks have the least resistance compared to all rectangular and isosceles triangular cross-sectional microfluidic networks, respectively. Precise control over wall shear stress through the bifurcations of the microfluidic network is demonstrated in this work. Three multi-generation microfluidic network designs are considered. In these three designs, wall shear stress in the microfluidic network is successfully kept constant, increased in the daughter-branch direction, or decreased in the daughter-branch direction, respectively. For the multi-generation microfluidic network with constant wall shear stress, the design guidelines presented in this work result in identical profiles of wall shear stresses not only within a single generation but also through all the generations of the microfluidic network under investigation. The results obtained in this work are consistent with previously reported data and suitable for a wide range of lab-on-chip applications.

  3. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  4. Printing-based fabrication method using sacrificial paper substrates for flexible and wearable microfluidic devices

    NASA Astrophysics Data System (ADS)

    Chung, Daehan; Gray, Bonnie L.

    2017-11-01

    We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.

  5. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  6. Microfluidic assembly blocks.

    PubMed

    Rhee, Minsoung; Burns, Mark A

    2008-08-01

    An assembly approach for microdevice construction using prefabricated microfluidic components is presented. Although microfluidic systems are convenient platforms for biological assays, their use in the life sciences is still limited mainly due to the high-level fabrication expertise required for construction. This approach involves prefabrication of individual microfluidic assembly blocks (MABs) in PDMS that can be readily assembled to form microfluidic systems. Non-expert users can assemble the blocks on glass slides to build their devices in minutes without any fabrication steps. In this paper, we describe the construction and assembly of the devices using the MAB methodology, and demonstrate common microfluidic applications including laminar flow development, valve control, and cell culture.

  7. Desktop aligner for fabrication of multilayer microfluidic devices.

    PubMed

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  8. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    PubMed

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  9. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  10. Shannon Meets Fick on the Microfluidic Channel: Diffusion Limit to Sum Broadcast Capacity for Molecular Communication.

    PubMed

    Bicen, A Ozan; Lehtomaki, Janne J; Akyildiz, Ian F

    2018-03-01

    Molecular communication (MC) over a microfluidic channel with flow is investigated based on Shannon's channel capacity theorem and Fick's laws of diffusion. Specifically, the sum capacity for MC between a single transmitter and multiple receivers (broadcast MC) is studied. The transmitter communicates by using different types of signaling molecules with each receiver over the microfluidic channel. The transmitted molecules propagate through microfluidic channel until reaching the corresponding receiver. Although the use of different types of molecules provides orthogonal signaling, the sum broadcast capacity may not scale with the number of the receivers due to physics of the propagation (interplay between convection and diffusion based on distance). In this paper, the performance of broadcast MC on a microfluidic chip is characterized by studying the physical geometry of the microfluidic channel and leveraging the information theory. The convergence of the sum capacity for microfluidic broadcast channel is analytically investigated based on the physical system parameters with respect to the increasing number of molecular receivers. The analysis presented here can be useful to predict the achievable information rate in microfluidic interconnects for the biochemical computation and microfluidic multi-sample assays.

  11. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Benavides, Gilbert L [Los Ranchos, NM; Hetherington, Dale L [Albuquerque, NM

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  12. Recent Progress of Microfluidics in Translational Applications

    PubMed Central

    Liu, Zongbin; Han, Xin

    2016-01-01

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. PMID:27091777

  13. Microfluidic devices with thick-film electrochemical detection

    DOEpatents

    Wang, Joseph; Tian, Baomin; Sahlin, Eskil

    2005-04-12

    An apparatus for conducting a microfluidic process and analysis, including at least one elongated microfluidic channel, fluidic transport means for transport of fluids through the microfluidic channel, and at least one thick-film electrode in fluidic connection with the outlet end of the microfluidic channel. The present invention includes an integrated on-chip combination reaction, separation and thick-film electrochemical detection microsystem, for use in detection of a wide range of analytes, and methods for the use thereof.

  14. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune fields where constant HIRISE image acquisitions are available. ACKNOWLEDGEMENTS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement Nr. 607379.

  15. Overview of SCIAMACHY validation: 2002 2004

    NASA Astrophysics Data System (ADS)

    Piters, A. J. M.; Bramstedt, K.; Lambert, J.-C.; Kirchhoff, B.

    2005-08-01

    SCIAMACHY, on board Envisat, is now in operation for almost three years. This UV/visible/NIR spectrometer measures the solar irradiance, the earthshine radiance scattered at nadir and from the limb, and the attenuation of solar radiation by the atmosphere during sunrise and sunset, from 240 to 2380 nm and at moderate spectral resolution. Vertical columns and profiles of a variety of atmospheric constituents are inferred from the SCIAMACHY radiometric measurements by dedicated retrieval algorithms. With the support of ESA and several international partners, a methodical SCIAMACHY validation programme has been developed jointly by Germany, the Netherlands and Belgium (the three instrument providing countries) to face complex requirements in terms of measured species, altitude range, spatial and temporal scales, geophysical states and intended scientific applications. This summary paper describes the approach adopted to address those requirements. The actual validation of the operational SCIAMACHY processors established at DLR on behalf of ESA has been hampered by data distribution and processor problems. Since first data releases in summer 2002, operational processors were upgraded regularly and some data products - level-1b spectra, level-2 O3, NO2, BrO and clouds data - have improved significantly. Validation results summarised in this paper conclude that for limited periods and geographical domains they can already be used for atmospheric research. Nevertheless, remaining processor problems cause major errors preventing from scientific usability in other periods and domains. Untied to the constraints of operational processing, seven scientific institutes (BIRA-IASB, IFE, IUP-Heidelberg, KNMI, MPI, SAO and SRON) have developed their own retrieval algorithms and generated SCIAMACHY data products, together addressing nearly all targeted constituents. Most of the UV-visible data products (both columns and profiles) already have acceptable, if not excellent, quality. Several near-infrared column products are still in development but they have already demonstrated their potential for a variety of applications. In any case, scientific users are advised to read carefully validation reports before using the data. It is required and anticipated that SCIAMACHY validation will continue throughout instrument lifetime and beyond. The actual amount of work will obviously depend on funding considerations.

  16. Implementing Access to Data Distributed on Many Processors

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A reference architecture is defined for an object-oriented implementation of domains, arrays, and distributions written in the programming language Chapel. This technology primarily addresses domains that contain arrays that have regular index sets with the low-level implementation details being beyond the scope of this discussion. What is defined is a complete set of object-oriented operators that allows one to perform data distributions for domain arrays involving regular arithmetic index sets. What is unique is that these operators allow for the arbitrary regions of the arrays to be fragmented and distributed across multiple processors with a single point of access giving the programmer the illusion that all the elements are collocated on a single processor. Today's massively parallel High Productivity Computing Systems (HPCS) are characterized by a modular structure, with a large number of processing and memory units connected by a high-speed network. Locality of access as well as load balancing are primary concerns in these systems that are typically used for high-performance scientific computation. Data distributions address these issues by providing a range of methods for spreading large data sets across the components of a system. Over the past two decades, many languages, systems, tools, and libraries have been developed for the support of distributions. Since the performance of data parallel applications is directly influenced by the distribution strategy, users often resort to low-level programming models that allow fine-tuning of the distribution aspects affecting performance, but, at the same time, are tedious and error-prone. This technology presents a reusable design of a data-distribution framework for data parallel high-performance applications. Distributions are a means to express locality in systems composed of large numbers of processor and memory components connected by a network. Since distributions have a great effect on the performance of applications, it is important that the distribution strategy is flexible, so its behavior can change depending on the needs of the application. At the same time, high productivity concerns require that the user be shielded from error-prone, tedious details such as communication and synchronization.

  17. Design and fabrication of chemically robust three-dimensional microfluidic valves.

    PubMed

    Maltezos, George; Garcia, Erika; Hanrahan, Grady; Gomez, Frank A; Vyawahare, Saurabh; Vyawhare, Saurabh; van Dam, R Michael; Chen, Yan; Scherer, Axel

    2007-09-01

    A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of "non-stick" fluoropolymers necessary to create traditional microfluidic valves. With our new three-dimensional (3D) valve design we can fabricate microfluidic devices from fluorinated compounds in a single monolithic layer that is resistant to most organic solvents with minimal swelling. This paper describes the design and development of 3D microfluidic valves by molding of a perfluoropolyether, termed Sifel, onto printed wax molds. The fabrication of Sifel-based microfluidic devices using this technique has great potential in chemical synthesis and analysis.

  18. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  19. Programmable personality interface for the dynamic infrared scene generator (IRSG2)

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; Mobley, Scott B.; Mayhall, Anthony J.; Braselton, William J.

    1998-07-01

    As scene generator platforms begin to rely specifically on commercial off-the-shelf (COTS) hardware and software components, the need for high speed programmable personality interfaces (PPIs) are required for interfacing to Infrared (IR) flight computer/processors and complex IR projectors in the hardware-in-the-loop (HWIL) simulation facilities. Recent technological advances and innovative applications of established technologies are beginning to allow development of cost effective PPIs to interface to COTS scene generators. At the U.S. Army Aviation and Missile Command (AMCOM) Missile Research, Development, and Engineering Center (MRDEC) researchers have developed such a PPI to reside between the AMCOM MRDEC IR Scene Generator (IRSG) and either a missile flight computer or the dynamic Laser Diode Array Projector (LDAP). AMCOM MRDEC has developed several PPIs for the first and second generation IRSGs (IRSG1 and IRSG2), which are based on Silicon Graphics Incorporated (SGI) Onyx and Onyx2 computers with Reality Engine 2 (RE2) and Infinite Reality (IR/IR2) graphics engines. This paper provides an overview of PPIs designed, integrated, tested, and verified at AMCOM MRDEC, specifically the IRSG2's PPI.

  20. Optoelectronic analogs of self-programming neural nets - Architecture and methodologies for implementing fast stochastic learning by simulated annealing

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.

    1987-01-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  1. Compiling probabilistic, bio-inspired circuits on a field programmable analog array

    PubMed Central

    Marr, Bo; Hasler, Jennifer

    2014-01-01

    A field programmable analog array (FPAA) is presented as an energy and computational efficiency engine: a mixed mode processor for which functions can be compiled at significantly less energy costs using probabilistic computing circuits. More specifically, it will be shown that the core computation of any dynamical system can be computed on the FPAA at significantly less energy per operation than a digital implementation. A stochastic system that is dynamically controllable via voltage controlled amplifier and comparator thresholds is implemented, which computes Bernoulli random variables. From Bernoulli variables it is shown exponentially distributed random variables, and random variables of an arbitrary distribution can be computed. The Gillespie algorithm is simulated to show the utility of this system by calculating the trajectory of a biological system computed stochastically with this probabilistic hardware where over a 127X performance improvement over current software approaches is shown. The relevance of this approach is extended to any dynamical system. The initial circuits and ideas for this work were generated at the 2008 Telluride Neuromorphic Workshop. PMID:24847199

  2. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres.

    PubMed

    Kang, Edward; Jeong, Gi Seok; Choi, Yoon Young; Lee, Kwang Ho; Khademhosseini, Ali; Lee, Sang-Hoon

    2011-09-04

    Heterotypic functional materials with compositional and topographical properties that vary spatiotemporally on the micro- or nanoscale are common in nature. However, fabricating such complex materials in the laboratory remains challenging. Here we describe a method to continuously create microfibres with tunable morphological, structural and chemical features using a microfluidic system consisting of a digital, programmable flow control that mimics the silk-spinning process of spiders. With this method we fabricated hydrogel microfibres coded with varying chemical composition and topography along the fibre, including gas micro-bubbles as well as nanoporous spindle-knots and joints that enabled directional water collection. We also explored the potential use of the coded microfibres for tissue engineering applications by creating multifunctional microfibres with a spatially controlled co-culture of encapsulated cells.

  3. Recent Progress of Microfluidics in Translational Applications.

    PubMed

    Liu, Zongbin; Han, Xin; Qin, Lidong

    2016-04-20

    Microfluidics, featuring microfabricated structures, is a technology for manipulating fluids at the micrometer scale. The small dimension and flexibility of microfluidic systems are ideal for mimicking molecular and cellular microenvironment, and show great potential in translational research and development. Here, the recent progress of microfluidics in biological and biomedical applications, including molecular analysis, cellular analysis, and chip-based material delivery and biomimetic design is presented. The potential future developments in the translational microfluidics field are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    DOEpatents

    Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  5. Integrated Multi-process Microfluidic Systems for Automating Analysis

    PubMed Central

    Yang, Weichun; Woolley, Adam T.

    2010-01-01

    Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343

  6. Finger-Powered Electro-Digital-Microfluidics.

    PubMed

    Peng, Cheng; Ju, Y Sungtaek

    2017-01-01

    Portable microfluidic devices are promising for point-of-care (POC) diagnosis and bio- and environmental surveillance in resource-constrained or non-laboratory environments. Lateral-flow devices, some built off paper or strings, have been widely developed but the fixed layouts of their underlying wicking/microchannel structures limit their flexibility and present challenges in implementing multistep reactions. Digital microfluidics can circumvent these difficulties by addressing discrete droplets individually. Existing approaches to digital microfluidics, however, often require bulky power supplies/batteries and high voltage circuits. We present a scheme to drive digital microfluidic devices by converting mechanical energy of human fingers to electrical energy using an array of piezoelectric elements. We describe the integration our scheme into two promising digital microfluidics platforms: one based on the electro-wetting-on-dielectric (EWOD) phenomenon and the other on the electrophoretic control of droplet (EPD). Basic operations of droplet manipulations, such as droplet transport, merging and splitting, are demonstrated using the finger-powered digital-microfluidics.

  7. Open-source, community-driven microfluidics with Metafluidics.

    PubMed

    Kong, David S; Thorsen, Todd A; Babb, Jonathan; Wick, Scott T; Gam, Jeremy J; Weiss, Ron; Carr, Peter A

    2017-06-07

    Microfluidic devices have the potential to automate and miniaturize biological experiments, but open-source sharing of device designs has lagged behind sharing of other resources such as software. Synthetic biologists have used microfluidics for DNA assembly, cell-free expression, and cell culture, but a combination of expense, device complexity, and reliance on custom set-ups hampers their widespread adoption. We present Metafluidics, an open-source, community-driven repository that hosts digital design files, assembly specifications, and open-source software to enable users to build, configure, and operate a microfluidic device. We use Metafluidics to share designs and fabrication instructions for both a microfluidic ring-mixer device and a 32-channel tabletop microfluidic controller. This device and controller are applied to build genetic circuits using standard DNA assembly methods including ligation, Gateway, Gibson, and Golden Gate. Metafluidics is intended to enable a broad community of engineers, DIY enthusiasts, and other nontraditional participants with limited fabrication skills to contribute to microfluidic research.

  8. Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/Nanofluidic Devices

    ERIC Educational Resources Information Center

    King, Travis L.

    2009-01-01

    The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfluidic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to…

  9. Self-contained microfluidic systems: a review.

    PubMed

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  10. Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

    DOE PAGES

    Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran

    2015-08-14

    Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 μm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore » were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less

  11. Pumps for microfluidic cell culture.

    PubMed

    Byun, Chang Kyu; Abi-Samra, Kameel; Cho, Yoon-Kyoung; Takayama, Shuichi

    2014-02-01

    In comparison to traditional in vitro cell culture in Petri dishes or well plates, cell culture in microfluidic-based devices enables better control over chemical and physical environments, higher levels of experimental automation, and a reduction in experimental materials. Over the past decade, the advantages associated with cell culturing in microfluidic-based platforms have garnered significant interest and have led to a plethora of studies for high throughput cell assays, organs-on-a-chip applications, temporal signaling studies, and cell sorting. A clear concern for performing cell culture in microfluidic-based devices is deciding on a technique to deliver and pump media to cells that are encased in a microfluidic device. In this review, we summarize recent advances in pumping techniques for microfluidic cell culture and discuss their advantages and possible drawbacks. The ultimate goal of our review is to distill the large body of information available related to pumps for microfluidic cell culture in an effort to assist current and potential users of microfluidic-based devices for advanced in vitro cellular studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multimedia systems in ultrasound image boundary detection and measurements

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Chalana, Vikram; Kim, Yongmin

    1997-05-01

    Ultrasound as a medical imaging modality offers the clinician a real-time of the anatomy of the internal organs/tissues, their movement, and flow noninvasively. One of the applications of ultrasound is to monitor fetal growth by measuring biparietal diameter (BPD) and head circumference (HC). We have been working on automatic detection of fetal head boundaries in ultrasound images. These detected boundaries are used to measure BPD and HC. The boundary detection algorithm is based on active contour models and takes 32 seconds on an external high-end workstation, SUN SparcStation 20/71. Our goal has been to make this tool available within an ultrasound machine and at the same time significantly improve its performance utilizing multimedia technology. With the advent of high- performance programmable digital signal processors (DSP), the software solution within an ultrasound machine instead of the traditional hardwired approach or requiring an external computer is now possible. We have integrated our boundary detection algorithm into a programmable ultrasound image processor (PUIP) that fits into a commercial ultrasound machine. The PUIP provides both the high computing power and flexibility needed to support computationally-intensive image processing algorithms within an ultrasound machine. According to our data analysis, BPD/HC measurements made on PUIP lie within the interobserver variability. Hence, the errors in the automated BPD/HC measurements using the algorithm are on the same order as the average interobserver differences. On PUIP, it takes 360 ms to measure the values of BPD/HC on one head image. When processing multiple head images in sequence, it takes 185 ms per image, thus enabling 5.4 BPD/HC measurements per second. Reduction in the overall execution time from 32 seconds to a fraction of a second and making this multimedia system available within an ultrasound machine will help this image processing algorithm and other computer-intensive imaging applications become a practical tool for the sonographers in the feature.

  13. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert F.; Hukerikar, Saurabh

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  14. Rolex: Resilience-oriented language extensions for extreme-scale systems

    DOE PAGES

    Lucas, Robert F.; Hukerikar, Saurabh

    2016-05-26

    Future exascale high-performance computing (HPC) systems will be constructed from VLSI devices that will be less reliable than those used today, and faults will become the norm, not the exception. This will pose significant problems for system designers and programmers, who for half-a-century have enjoyed an execution model that assumed correct behavior by the underlying computing system. The mean time to failure (MTTF) of the system scales inversely to the number of components in the system and therefore faults and resultant system level failures will increase, as systems scale in terms of the number of processor cores and memory modulesmore » used. However every error detected need not cause catastrophic failure. Many HPC applications are inherently fault resilient. Yet it is the application programmers who have this knowledge but lack mechanisms to convey it to the system. In this paper, we present new Resilience Oriented Language Extensions (Rolex) which facilitate the incorporation of fault resilience as an intrinsic property of the application code. We describe the syntax and semantics of the language extensions as well as the implementation of the supporting compiler infrastructure and runtime system. Furthermore, our experiments show that an approach that leverages the programmer's insight to reason about the context and significance of faults to the application outcome significantly improves the probability that an application runs to a successful conclusion.« less

  15. Fundamentals of microfluidic cell culture in controlled microenvironments†

    PubMed Central

    Young, Edmond W. K.; Beebe, David J.

    2010-01-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823

  16. Recent advances of controlled drug delivery using microfluidic platforms.

    PubMed

    Sanjay, Sharma T; Zhou, Wan; Dou, Maowei; Tavakoli, Hamed; Ma, Lei; Xu, Feng; Li, XiuJun

    2018-03-15

    Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    PubMed

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  18. Design, characterization and control of the Unique Mobility Corporation robot

    NASA Technical Reports Server (NTRS)

    Velasco, Virgilio B., Jr.; Newman, Wyatt S.; Steinetz, Bruce; Kopf, Carlo; Malik, John

    1994-01-01

    Space and mass are at a premium on any space mission, and thus any machinery designed for space use should be lightweight and compact, without sacrificing strength. It is for this reason that NASA/LeRC contracted Unique Mobility Corporation to exploit their novel actuator designs to build a robot that would advance the present state of technology with respect to these requirements. Custom-designed motors are the key feature of this robot. They are compact, high-performance dc brushless servo motors with a high pole count and low inductance, thus permitting high torque generation and rapid phase commutation. Using a custom-designed digital signal processor-based controller board, the pulse width modulation power amplifiers regulate the fast dynamics of the motor currents. In addition, the programmable digital signal processor (DSP) controller permits implementation of nonlinear compensation algorithms to account for motoring vs. regeneration, torque ripple, and back-EMF. As a result, the motors produce a high torque relative to their size and weight, and can do so with good torque regulation and acceptably high velocity saturation limits. This paper presents the Unique Mobility Corporation robot prototype: its actuators, its kinematic design, its control system, and its experimental characterization. Performance results, including saturation torques, saturation velocities and tracking accuracy tests are included.

  19. Multiprocessing the Sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Bokhari, S.

    1986-01-01

    The Sieve of Eratosthenes for finding prime numbers in recent years has seen much use as a benchmark algorithm for serial computers while its intrinsically parallel nature has gone largely unnoticed. The implementation of a parallel version of this algorithm for a real parallel computer, the Flex/32, is described and its performance discussed. It is shown that the algorithm is sensitive to several fundamental performance parameters of parallel machines, such as spawning time, signaling time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing is employed. We describe the performance of our algorithm with and without load balancing and compare it with theoretical lower bounds and simulated results. It is straightforward to understand this algorithm and to check the final results. However, its efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic load balancing is desired. The fundamental operations required by the algorithm are very simple: this means that the slightest overhead appears prominently in performance data. The Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge for the programmer.

  20. Microdot - A Four-Bit Microcontroller Designed for Distributed Low-End Computing in Satellites

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Many satellites are an integrated collection of sensors and actuators that require dedicated real-time control. For single processor systems, additional sensors require an increase in computing power and speed to provide the multi-tasking capability needed to service each sensor. Faster processors cost more and consume more power, which taxes a satellite's power resources and may lead to shorter satellite lifetimes. An alternative design approach is a distributed network of small and low power microcontrollers designed for space that handle the computing requirements of each individual sensor and actuator. The design of microdot, a four-bit microcontroller for distributed low-end computing, is presented. The design is based on previous research completed at the Space Electronics Branch, Air Force Research Laboratory (AFRL/VSSE) at Kirtland AFB, NM, and the Air Force Institute of Technology at Wright-Patterson AFB, OH. The Microdot has 29 instructions and a 1K x 4 instruction memory. The distributed computing architecture is based on the Philips Semiconductor I2C Serial Bus Protocol. A prototype was implemented and tested using an Altera Field Programmable Gate Array (FPGA). The prototype was operable to 9.1 MHz. The design was targeted for fabrication in a radiation-hardened-by-design gate-array cell library for the TSMC 0.35 micrometer CMOS process.

Top