Sample records for programmable spatial light

  1. Programmable liquid crystal waveplate polarization gratings as elements for polarimetric and interference applications

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Davis, J. A.

    2010-06-01

    We review the use of a parallel aligned nematic liquid crystal spatial light modulator as a very useful and flexible device for polarimetric and interferometric applications. The device acts as a programmable pixelated waveplate, and the encoding of a linear grating permits its use as a polarization beam splitter. When a grating with a reduced period is encoded, the diffracted beams are spatially separated and the device can be used for polarimetric analysis. On the contrary when a large period grating is displayed, the beams are not spatially separated, and they are useful to realize a common path interferometric system with polarization sensitivity. The flexibility offered by the programmability of the display allows non-conventional uses, including the analysis of light beams with structured spatial polarizations.

  2. Manipulation of Micro Scale Particles in Optical Traps Using Programmable Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Seibel, Robin E.; Decker, Arthur J. (Technical Monitor)

    2003-01-01

    1064 nm light, from an Nd:YAG laser, was polarized and incident upon a programmable parallel aligned liquid crystal spatial light modulator (PAL-SLM), where it was phase modulated according to the program controlling the PAL-SLM. Light reflected from the PAL-SLM was injected into a microscope and focused. At the focus, multiple optical traps were formed in which 9.975 m spheres were captured. The traps and the spheres were moved by changing the program of the PAL-SLM. The motion of ordered groups of micro particles was clearly demonstrated.

  3. Full-frame, programmable hyperspectral imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Steven P.; Graff, David L.

    A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays,more » that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.« less

  4. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  5. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  6. Optical reversible programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2012-07-20

    Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.

  7. Programmable light-controlled shape changes in layered polymer nanocomposites.

    PubMed

    Zhu, Zhichen; Senses, Erkan; Akcora, Pinar; Sukhishvili, Svetlana A

    2012-04-24

    We present soft, layered nanocomposites that exhibit controlled swelling anisotropy and spatially specific shape reconfigurations in response to light irradiation. The use of gold nanoparticles grafted with a temperature-responsive polymer (poly(N-isopropylacrylamide), PNIPAM) with layer-by-layer (LbL) assembly allowed placement of plasmonic structures within specific regions in the film, while exposure to light caused localized material deswelling by a photothermal mechanism. By layering PNIPAM-grafted gold nanoparticles in between nonresponsive polymer stacks, we have achieved zero Poisson's ratio materials that exhibit reversible, light-induced unidirectional shape changes. In addition, we report rheological properties of these LbL assemblies in their equilibrium swollen states. Moreover, incorporation of dissimilar plasmonic nanostructures (solid gold nanoparticles and nanoshells) within different material strata enabled controlled shrinkage of specific regions of hydrogels at specific excitation wavelengths. The approach is applicable to a wide range of metal nanoparticles and temperature-responsive polymers and affords many advanced build-in options useful in optically manipulated functional devices, including precise control of plasmonic layer thickness, tunability of shape variations to the excitation wavelength, and programmable spatial control of optical response.

  8. Programmable LED-based integrating sphere light source for wide-field fluorescence microscopy.

    PubMed

    Rehman, Aziz Ul; Anwer, Ayad G; Goldys, Ewa M

    2017-12-01

    Wide-field fluorescence microscopy commonly uses a mercury lamp, which has limited spectral capabilities. We designed and built a programmable integrating sphere light (PISL) source which consists of nine LEDs, light-collecting optics, a commercially available integrating sphere and a baffle. The PISL source is tuneable in the range 365-490nm with a uniform spatial profile and a sufficient power at the objective to carry out spectral imaging. We retrofitted a standard fluorescence inverted microscope DM IRB (Leica) with a PISL source by mounting it together with a highly sensitive low- noise CMOS camera. The capabilities of the setup have been demonstrated by carrying out multispectral autofluorescence imaging of live BV2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Programmable Illumination and High-Speed, Multi-Wavelength, Confocal Microscopy Using a Digital Micromirror

    PubMed Central

    Martial, Franck P.; Hartell, Nicholas A.

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130

  10. Programmable illumination and high-speed, multi-wavelength, confocal microscopy using a digital micromirror.

    PubMed

    Martial, Franck P; Hartell, Nicholas A

    2012-01-01

    Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.

  11. Focusing light through dynamical samples using fast continuous wavefront optimization.

    PubMed

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  12. Active optics null test system based on a liquid crystal programmable spatial light modulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ares, Miguel; Royo, Santiago; Sergievskaya, Irina

    2010-11-10

    We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack-Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM's phase response at 635 nmmore » and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below {lambda}/18 for spherical wavefronts with peak-to-valley heights of up to 78.7{lambda}, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed.« less

  13. On-axis programmable microscope using liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio

    2017-06-01

    Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.

  14. Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.

    PubMed

    Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua

    2017-05-01

    In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.

  15. Digital micromirror device as amplitude diffuser for multiple-plane phase retrieval

    NASA Astrophysics Data System (ADS)

    Abregana, Timothy Joseph T.; Hermosa, Nathaniel P.; Almoro, Percival F.

    2017-06-01

    Previous implementations of the phase diffuser used in the multiple-plane phase retrieval method included a diffuser glass plate with fixed optical properties or a programmable yet expensive spatial light modulator. Here a model for phase retrieval based on a digital micromirror device as amplitude diffuser is presented. The technique offers programmable, convenient and low-cost amplitude diffuser for a non-stagnating iterative phase retrieval. The technique is demonstrated in the reconstructions of smooth object wavefronts.

  16. Enhanced Interferometry with Programmable Spatial Light Modulator

    DTIC Science & Technology

    2010-06-07

    metrolaserinc.com6-7-2010-Monday 6 Simulated by Zemax  Lenslet diameters, d, define spatial resolution over the wavefront being measured.  (sensitivity...MetroLaser Irvine, California Fitted Zernike Polynomials upto 36 terms, found and put into Zemax Simulated Cats’ eye wavefronts by ZEMAX Experimental...measurement Simulated Fringes Leftover < 0.1λ 23 Cat’s eye wavefronts by ZEMAX based on Experimental results Jtrolinger@metrolaserinc.com6-7-2010

  17. Quantitative phase imaging using a programmable wavefront sensor

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Durán, V.; Clemente, P.; Lancis, J.; Tajahuerce, E.

    2018-02-01

    We perform phase imaging using a non-interferometric approach to measure the complex amplitude of a wavefront. We overcome the limitations in spatial resolution, optical efficiency, and dynamic range that are found in Shack-Hartmann wavefront sensing. To do so, we sample the wavefront with a high-speed spatial light modulator. A single lens forms a time-dependent light distribution on its focal plane, where a position detector is placed. Our approach is lenslet-free and does not rely on any kind of iterative or unwrap algorithm. The validity of our technique is demonstrated by performing both aberration sensing and phase imaging of transparent samples.

  18. Programmable phase plate for tool modification in laser machining applications

    DOEpatents

    Thompson Jr., Charles A.; Kartz, Michael W.; Brase, James M.; Pennington, Deanna; Perry, Michael D.

    2004-04-06

    A system for laser machining includes a laser source for propagating a laser beam toward a target location, and a spatial light modulator having individual controllable elements capable of modifying a phase profile of the laser beam to produce a corresponding irradiance pattern on the target location. The system also includes a controller operably connected to the spatial light modulator for controlling the individual controllable elements. By controlling the individual controllable elements, the phase profile of the laser beam may be modified into a desired phase profile so as to produce a corresponding desired irradiance pattern on the target location capable of performing a machining operation on the target location.

  19. LCD-based digital eyeglass for modulating spatial-angular information.

    PubMed

    Bian, Zichao; Liao, Jun; Guo, Kaikai; Heng, Xin; Zheng, Guoan

    2015-05-04

    Using programmable aperture to modulate spatial-angular information of light field is well-known in computational photography and microscopy. Inspired by this concept, we report a digital eyeglass design that adaptively modulates light field entering human eyes. The main hardware includes a transparent liquid crystal display (LCD) and a mini-camera. The device analyzes the spatial-angular information of the camera image in real time and subsequently sends a command to form a certain pattern on the LCD. We show that, the eyeglass prototype can adaptively reduce light transmission from bright sources by ~80% and retain transparency to other dim objects meanwhile. One application of the reported device is to reduce discomforting glare caused by vehicle headlamps. To this end, we report the preliminary result of using the reported device in a road test. The reported device may also find applications in military operations (sniper scope), laser counter measure, STEM education, and enhancing visual contrast for visually impaired patients and elderly people with low vision.

  20. An Electro-Optic Spatial Light Modulator for Thermoelastic Generation of Programmably Focused Ultrasound.

    DTIC Science & Technology

    1984-12-01

    The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)

  1. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

  2. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy.

    PubMed

    Wang, Jinhui; He, Hua; Xu, Xin; Wang, Xiao; Chen, Yongbing; Yin, Lichen

    2018-07-01

    Effective anti-cancer therapy is hurdled by the complicated extracellular and intracellular barriers, and thus a smart gene vector that can enable programmable gene delivery is highly demanded. Photo-manipulation of gene delivery processes features spatial and temporal precision, while majority of current strategies utilizes short-wavelength UV/visible light with poor tissue penetration or high-power-density near-infrared (NIR) light that would cause undesired heat damage. Herein, an ROS-degradable polycation was designed and co-delivered with a photosensitizer (PS), thus realizing photo-programmable gene delivery using far-red light (661 nm) at low optical power density (down to 5 mW cm -2 ). Thioketal-crosslinked polyethylenimine (TK-PEI) was synthesized to condense p53 gene to form nanocomplexes (NCs), and hyaluronic acid (HA) modified with pheophytin a (Pha) was coated onto NCs to enhance their colloidal stability and enable cancer cell targeting. Short-time (8-min) light irradiation produced non-lethal amount of ROS to disrupt the endosomal membranes and facilitate p53 gene release via degradation of TK-PEI, which collectively enhanced p53 expression levels toward anti-cancer gene therapy. Long-time (30-min) light irradiation at the post-transfection state generated lethal amount of ROS, which cooperatively killed cancer cells to strengthen p53 gene therapy. To the best of our knowledge, this study represents the first example of an "one stone, three birds" approach to realize cooperative anti-cancer gene therapy using low-power-density, long-wavelength visible light as a single stimulus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  4. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  5. A multi-modal stereo microscope based on a spatial light modulator.

    PubMed

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  6. Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    De Beule, Pieter A. A.; de Vries, Anthony H. B.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    2011-03-01

    We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching reduction, or spatial superresolution. We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle distortion.

  7. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    PubMed

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America

  8. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    PubMed

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  9. Compressive light field imaging

    NASA Astrophysics Data System (ADS)

    Ashok, Amit; Neifeld, Mark A.

    2010-04-01

    Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatioangular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient measurements. Here, we describe two architectures for compressive light field imaging that require relatively few photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall exposure time. Our simulation study shows that, compressive light field imagers using the principal component (PC) measurement basis require four times fewer measurements and three times shorter exposure time compared to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.

  10. Integrated sensor with frame memory and programmable resolution for light adaptive imaging

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2004-01-01

    An image sensor operable to vary the output spatial resolution according to a received light level while maintaining a desired signal-to-noise ratio. Signals from neighboring pixels in a pixel patch with an adjustable size are added to increase both the image brightness and signal-to-noise ratio. One embodiment comprises a sensor array for receiving input signals, a frame memory array for temporarily storing a full frame, and an array of self-calibration column integrators for uniform column-parallel signal summation. The column integrators are capable of substantially canceling fixed pattern noise.

  11. Optical Interconnection Via Computer-Generated Holograms

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  12. LCoS-SLM technology based on Digital Electro-optics Platform and using in dynamic optics for application development

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Wang, Chen; Lyu, Bo-Han; Chu, Chen-Hsien

    2017-08-01

    Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon - Spatial Light Modulator (LCoSSLM) based on JDC's On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a "dynamic optics" for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.

  13. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    NASA Astrophysics Data System (ADS)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  14. Biological applications of an LCoS-based programmable array microscope (PAM)

    NASA Astrophysics Data System (ADS)

    Hagen, Guy M.; Caarls, Wouter; Thomas, Martin; Hill, Andrew; Lidke, Keith A.; Rieger, Bernd; Fritsch, Cornelia; van Geest, Bert; Jovin, Thomas M.; Arndt-Jovin, Donna J.

    2007-02-01

    We report on a new generation, commercial prototype of a programmable array optical sectioning fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module, including light source(s) and detector(s), features an innovative optical design and a ferroelectric liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) instead of the DMD used in the original PAM design. The LCoS PAM (developed in collaboration with Cairn Research, Ltd.) can be attached to a port of a(ny) unmodified fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon emCCD camera. The module is mounted on an Olympus IX71 inverted microscope with 60-150X objectives with a Prior Scientific x,y, and z high resolution scanning stages. Further enhancements recently include: (i) point- and line-wise spectral resolution and (ii) lifetime imaging (FLIM) in the frequency domain. Multiphoton operation and other nonlinear techniques should be feasible. The capabilities of the PAM are illustrated by several examples demonstrating single molecule as well as lifetime imaging in live cells, and the unique capability to perform photoconversion with arbitrary patterns and high spatial resolution. Using quantum dot coupled ligands we show real-time binding and subsequent trafficking of individual ligand-growth factor receptor complexes on and in live cells with a temporal resolution and sensitivity exceeding those of conventional CLSM systems. The combined use of a blue laser and parallel LED or visible laser sources permits photoactivation and rapid kinetic analysis of cellular processes probed by photoswitchable visible fluorescent proteins such as DRONPA.

  15. Advanced SLMs for microscopy

    NASA Astrophysics Data System (ADS)

    Linnenberger, A.

    2018-02-01

    Wavefront shaping devices such as deformable mirrors, liquid crystal spatial light modulators (SLMs), and active lenses are of considerable interest in microscopy for aberration correction, volumetric imaging, and programmable excitation. Liquid crystal SLMs are high resolution phase modulators capable of creating complex phase profiles to reshape, or redirect light within a three-dimensional (3D) volume. Recent advances in Meadowlark Optics (MLO) SLMs reduce losses by increasing fill factor from 83.4% to 96%, and improving resolution from 512 x 512 pixels to 1920 x 1152 pixels while maintaining a liquid crystal response time of 300 Hz at 1064 nm. This paper summarizes new SLM capabilities, and benefits for microscopy.

  16. Generation of atmospheric wavefronts using binary micromirror arrays.

    PubMed

    Anzuola, Esdras; Belmonte, Aniceto

    2016-04-10

    To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.

  17. Photo-induced spatial modulation of THz waves: opportunities and limitations.

    PubMed

    Kannegulla, Akash; Shams, Md Itrat Bin; Liu, Lei; Cheng, Li-Jing

    2015-12-14

    Programmable conductive patterns created by photoexcitation of semiconductor substrates using digital light processing (DLP) provides a versatile approach for spatial and temporal modulation of THz waves. The reconfigurable nature of the technology has great potential in implementing several promising THz applications, such as THz beam steering, THz imaging or THz remote sensing, in a simple, cost-effective manner. In this paper, we provide physical insight about how the semiconducting materials, substrate dimension, optical illumination wavelength and illumination size impact the performance of THz modulation, including modulation depth, modulation speed and spatial resolution. The analysis establishes design guidelines for the development of photo-induced THz modulation technology. Evolved from the theoretical analysis, a new mesa array technology composed by a matrix of sub-THz wavelength structures is introduced to maximize both spatial resolution and modulation depth for THz modulation with low-power photoexcitation by prohibiting the lateral diffusion of photogenerated carriers.

  18. Visuospatial training improves elementary students' mathematics performance.

    PubMed

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-06-01

    Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial reasoning and (2) mathematics performance as a result of the intervention. The study involved grade six students (ages 10-12) in eight classes. There were five intervention classes (n = 120) and three non-intervention control classes (n = 66). A specifically designed 10-week spatial reasoning programme was developed collaboratively with the participating teachers, with the intervention replacing the standard mathematics curriculum. The five classroom teachers in the intervention programme presented 20 hr of activities aimed at enhancing students' spatial visualization, mental rotation, and spatial orientation skills. The spatial reasoning programme led to improvements in both spatial ability and mathematics performance relative to the control group who received standard mathematics instruction. Our study is the first to show that a classroom-based spatial reasoning intervention improves elementary school students' mathematics performance. © 2017 The British Psychological Society.

  19. A hyperspectral image projector for hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.

    2007-04-01

    We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.

  20. An inexpensive programmable illumination microscope with active feedback.

    PubMed

    Tompkins, Nathan; Fraden, Seth

    2016-02-01

    We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000.

  1. Holographic zoom system based on spatial light modulator and liquid device

    NASA Astrophysics Data System (ADS)

    Wang, Di; Li, Lei; Liu, Su-Juan; Wang, Qiong-Hua

    2018-02-01

    In this paper, two holographic zoom systems are proposed based on the programmability of spatial light modulator (SLM) and zoom characteristics of liquid lens. An active optical zoom system is proposed in which the zoom module is composed of a liquid lens and an SLM. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. Then a color holographic zoom system based on a liquid lens is proposed. The system processes the color separation of the original object for red, green, and blue components and generated three holograms respectively. A new hologram with specific reconstructed distance can be generated by combing the hologram of the digital lens with the hologram of the image. By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM, we can change the magnification of the reconstructed image.

  2. Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2015-01-01

    The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.

  3. An inexpensive programmable illumination microscope with active feedback

    PubMed Central

    Tompkins, Nathan; Fraden, Seth

    2016-01-01

    We have developed a programmable illumination system capable of tracking and illuminating numerous objects simultaneously using only low-cost and reused optical components. The active feedback control software allows for a closed-loop system that tracks and perturbs objects of interest automatically. Our system uses a static stage where the objects of interest are tracked computationally as they move across the field of view allowing for a large number of simultaneous experiments. An algorithmically determined illumination pattern can be applied anywhere in the field of view with simultaneous imaging and perturbation using different colors of light to enable spatially and temporally structured illumination. Our system consists of a consumer projector, camera, 35-mm camera lens, and a small number of other optical and scaffolding components. The entire apparatus can be assembled for under $4,000. PMID:27642182

  4. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  5. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  6. Influence of light-dark schedules and stocking density on behaviour, risk of leg problems and occurrence of chronic fear in broilers.

    PubMed

    Sanotra, G S; Lund, J Damkjer; Vestergaard, K S

    2002-07-01

    1. The aims of this study were to determine (1) the effect of light-dark schedules on the walking ability, the risk of tibial dyschondroplasia (TD) as well as the duration of tonic immobility (TI) reactions in commercial broiler flocks and (2) the effect of a daily dark period and reduced density on the behaviour of broiler chickens. 2. Experiment 1. Group 1 had a 2 to 8 h daily dark period from 2 to 26 d of age (light-dark programme A) at a stocking density of 28.4 chicks/m2. Group 2 had 8 h of darkness daily from 2 to 38 d of age (light-dark programme B) at 24 chicks/m2. The control group had 24 h continuous light at 28.4 chicks/m2. 3. Experiment 2. Behaviour was studied with and without a daily 8 h dark period and at high (30 chicks/m2) and low (18 chicks/m2) stocking densities. 4. Programme B reduced the prevalence of impaired walking ability, corresponding to gait score > 2, when compared with controls. The effect on walking ability corresponding to gait score > 0 approached significance. 5. Both light-dark programmes reduced the occurrence of TD. Programme B (combined with reduced stocking density), however, had the greater effect. 6. Both light-dark programmes reduced the duration of TI, compared with controls (mean = 426 s) Programme B resulted in a larger reduction (alpha = -156.9 s) than programme A (alpha = -117.0). 7. The proportions of chicks drinking, eating, pecking, scratching, standing and performing vertical wing-shakes increased--both when the 8 h dark period and the reduced stocking density were applied separately and in combination (experiment 2). 8. For all behaviours, except standing, the effect of the dark period was largest in broilers kept at the high stocking density (d 40).

  7. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

    PubMed

    Chen, Xianjun; Li, Ting; Wang, Xue; Du, Zengmin; Liu, Renmei; Yang, Yi

    2016-04-07

    Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  9. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  10. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  11. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme.

    PubMed

    Bonfiglio, Luca; Bocci, Tommaso; Minichilli, Fabrizio; Crecchi, Alessandra; Barloscio, Davide; Spina, Donata Maria; Rossi, Bruno; Sartucci, Ferdinando

    2017-01-01

    As well as obtaining confirmation of the magnocellular system involvement in developmental dyslexia (DD); the aim was primarily to search for a possible involvement of the parvocellular system; and, furthermore, to complete the assessment of the visual chromatic axis by also analysing the koniocellular system. Visual evoked potentials (VEPs) in response to achromatic stimuli with low luminance contrast and low spatial frequency, and isoluminant red/green and blue/yellow stimuli with high spatial frequency were recorded in 10 dyslexic children and 10 age- and sex-matched, healthy subjects. Dyslexic children showed delayed VEPs to both achromatic stimuli (magnocellular-dorsal stream) and isoluminant red/green and blue/yellow stimuli (parvocellular-ventral and koniocellular streams). To our knowledge, this is the first time that a dysfunction of colour vision has been brought to light in an objective way (i.e., by means of electrophysiological methods) in children with DD. These results give rise to speculation concerning the need for a putative approach for promoting both learning how to read and/or improving existing reading skills of children with or at risk of DD. The working hypothesis would be to combine two integrated interventions in a single programme aimed at fostering the function of both the magnocellular and the parvocellular streams.

  12. Program For A Pushbutton Display

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M.; Luck, William S., Jr.

    1989-01-01

    Programmable Display Pushbutton (PDP) is pushbutton device available from Micro Switch having programmable 16X35 matrix of light-emitting diodes on pushbutton surface. Any desired legends display on PDP's, producing user-friendly applications reducing need for dedicated manual controls. Interacts with operator, calls for correct response before transmitting next message. Both simple manual control and sophisticated programmable link between operator and host system. Programmable Display Pushbutton Legend Editor (PDPE) computer program used to create light-emitting-diode (LED) displays for pushbuttons. Written in FORTRAN.

  13. SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout) for low dose x-ray imaging: Spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Zhao Wei

    2008-07-15

    An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less

  14. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  15. Microlens array processor with programmable weight mask and direct optical input

    NASA Astrophysics Data System (ADS)

    Schmid, Volker R.; Lueder, Ernst H.; Bader, Gerhard; Maier, Gert; Siegordner, Jochen

    1999-03-01

    We present an optical feature extraction system with a microlens array processor. The system is suitable for online implementation of a variety of transforms such as the Walsh transform and DCT. Operating with incoherent light, our processor accepts direct optical input. Employing a sandwich- like architecture, we obtain a very compact design of the optical system. The key elements of the microlens array processor are a square array of 15 X 15 spherical microlenses on acrylic substrate and a spatial light modulator as transmissive mask. The light distribution behind the mask is imaged onto the pixels of a customized a-Si image sensor with adjustable gain. We obtain one output sample for each microlens image and its corresponding weight mask area as summation of the transmitted intensity within one sensor pixel. The resulting architecture is very compact and robust like a conventional camera lens while incorporating a high degree of parallelism. We successfully demonstrate a Walsh transform into the spatial frequency domain as well as the implementation of a discrete cosine transform with digitized gray values. We provide results showing the transformation performance for both synthetic image patterns and images of natural texture samples. The extracted frequency features are suitable for neural classification of the input image. Other transforms and correlations can be implemented in real-time allowing adaptive optical signal processing.

  16. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  17. Laser Speckle Imaging of Cerebral Blood Flow

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.

    Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.

  18. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    PubMed

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  19. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-01

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  20. Optical fibres in pre-detector signal processing

    NASA Astrophysics Data System (ADS)

    Flinn, A. R.

    The basic form of conventional electro-optic sensors is described. The main drawback of these sensors is their inability to deal with the background radiation which usually accompanies the signal. This 'clutter' limits the sensors performance long before other noise such as 'shot' noise. Pre-detector signal processing using the complex amplitude of the light is introduced as a means to discriminate between the signal and 'clutter'. Further improvements to predetector signal processors can be made by the inclusion of optical fibres allowing radiation to be used with greater efficiency and enabling certain signal processing tasks to be carried out with an ease unequalled by any other method. The theory of optical waveguides and their application in sensors, interferometers, and signal processors is reviewed. Geometrical aspects of the formation of linear and circular interference fringes are described along with temporal and spatial coherence theory and their relationship to Michelson's visibility function. The requirements for efficient coupling of a source into singlemode and multimode fibres are given. We describe interference experiments between beams of light emitted from a few metres of two or more, singlemode or multimode, optical fibres. Fresnel's equation is used to obtain expressions for Fresnel and Fraunhofer diffraction patterns which enable electro-optic (E-0) sensors to be analysed by Fourier optics. Image formation is considered when the aperture plane of an E-0 sensor is illuminated with partially coherent light. This allows sensors to be designed using optical transfer functions which are sensitive to the spatial coherence of the illuminating light. Spatial coherence sensors which use gratings as aperture plane reticles are discussed. By using fibre arrays, spatial coherence processing enables E-0 sensors to discriminate between a spatially coherent source and an incoherent background. The sensors enable the position and wavelength of the source to be determined. Experiments are described which use optical fibre arrays as masks for correlation with spatial distributions of light in image planes of E-0 sensors. Correlations between laser light from different points in a scene is investigated by interfering the light emitted from an array of fibres, placed in the image plane of a sensor, with each other. Temporal signal processing experiments show that the visibility of interference fringes gives information about path differences in a scene or through an optical system. Most E-0 sensors employ wavelength filtering of the detected radiation to improve their discrimination and this is shown to be less selective than temporal coherence filtering which is sensitive to spectral bandwidth. Experiments using fibre interferometers to discriminate between red and blue laser light by their bandwidths are described. In most cases the path difference need only be a few tens of centimetres. We consider spatial and temporal coherence in fibres. We show that high visibility interference fringes can be produced by red and blue laser light transmitted through over 100 metres of singlemode or multimode fibre. The effect of detector size, relative to speckle size, is considered for fringes produced by multimode fibres. The effect of dispersion on the coherence of the light emitted from fibres is considered in terms of correlation and interference between modes. We describe experiments using a spatial light modulator called SIGHT-MOD. The device is used in various systems as a fibre optic switch and as a programmable aperture plane reticle. The contrast of the device is measured using red and green, HeNe, sources. Fourier transform images of patterns on the SIGHT-MOD are obtained and used to demonstrate the geometrical manipulation of images using 2D fibre arrays. Correlation of Fourier transform images of the SIGHT-MOD with 2D fibre arrays is demonstrated.

  1. Spatial spillover effects of a community action programme targeting on-licensed premises on violent assaults: evidence from a natural experiment.

    PubMed

    Brännström, Lars; Trolldal, Björn; Menke, Martin

    2016-03-01

    Spatial dependencies may influence the success of community action strategies to prevent and reduce harmful alcohol use. This study examined the effectiveness of a multicomponent Responsible Beverage Service (RBS) programme targeting on-licensed premises on police-recorded assaults in Swedish municipalities. It was expected that the implementation of the programme within any given municipality had an indirect effect by reducing violent assaults in adjacent municipalities. This study was a natural experiment exploiting the temporal and spatial variation in the implementation of the RBS programme to predict change in the rate of violent assaults in all Swedish municipalities during 1996-2009 (n=288; T=14; N=4 032). Yearly police-recorded violent assaults per 100,000 inhabitants aged 15 and above committed on weekend nights were used as a dependent variable. Programme fidelity was identified by means of survey data. A semilogarithmic fixed-effects spatial panel regression model was used to estimate the direct, indirect and total effects of the programme. The direct, indirect and total effects were -1.8% (95% CI -4.4% to 0.8%), -5.8% (95% CI -11.5% to -0.1%) and -7.6% (95% CI -13.2% to -2.2%), respectively. Averaged over time and across all municipalities, implementing one additional programme component in all municipalities will thus reduce violent assaults in one typical municipality by nearly 8%. The indirect effect of the programme was three times larger than its direct effect. Failing to account for such local spillover effects can result in a considerable underestimation of the programme's total impact and may lead to erroneous policy recommendations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Complex photonic lattices embedded with tailored intrinsic defects by a dynamically reconfigurable single step interferometric approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in

    2014-02-24

    We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.

  3. Multimode optical dermoscopy (SkinSpect) analysis for skin with melanocytic nevus

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Chave, Robert; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.

    2016-04-01

    We have developed a multimode dermoscope (SkinSpect™) capable of illuminating human skin samples in-vivo with spectrally-programmable linearly-polarized light at 33 wavelengths between 468nm and 857 nm. Diffusely reflected photons are separated into collinear and cross-polarized image paths and images captured for each illumination wavelength. In vivo human skin nevi (N = 20) were evaluated with the multimode dermoscope and melanin and hemoglobin concentrations were compared with Spatially Modulated Quantitative Spectroscopy (SMoQS) measurements. Both systems show low correlation between their melanin and hemoglobin concentrations, demonstrating the ability of the SkinSpect™ to separate these molecular signatures and thus act as a biologically plausible device capable of early onset melanoma detection.

  4. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator.

    PubMed

    Liu, Jun; Wang, Jian

    2015-07-06

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.

  5. Real-time emulation of neural images in the outer retinal circuit.

    PubMed

    Hasegawa, Jun; Yagi, Tetsuya

    2008-12-01

    We describe a novel real-time system that emulates the architecture and functionality of the vertebrate retina. This system reconstructs the neural images formed by the retinal neurons in real time by using a combination of analog and digital systems consisting of a neuromorphic silicon retina chip, a field-programmable gate array, and a digital computer. While the silicon retina carries out the spatial filtering of input images instantaneously, using the embedded resistive networks that emulate the receptive field structure of the outer retinal neurons, the digital computer carries out the temporal filtering of the spatially filtered images to emulate the dynamical properties of the outer retinal circuits. The emulations of the neural image, including 128 x 128 bipolar cells, are carried out at a frame rate of 62.5 Hz. The emulation of the response to the Hermann grid and a spot of light and an annulus of lights has demonstrated that the system responds as expected by previous physiological and psychophysical observations. Furthermore, the emulated dynamics of neural images in response to natural scenes revealed the complex nature of retinal neuron activity. We have concluded that the system reflects the spatiotemporal responses of bipolar cells in the vertebrate retina. The proposed emulation system is expected to aid in understanding the visual computation in the retina and the brain.

  6. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator

    PubMed Central

    Liu, Jun; Wang, Jian

    2015-01-01

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032

  7. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  8. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.

    PubMed

    Gul, M Shahzeb Khan; Gunturk, Bahadir K

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  9. Programmable near-infrared ranging system

    DOEpatents

    Everett, Jr., Hobart R.

    1989-01-01

    A high angular resolution ranging system particularly suitable for indoor plications involving mobile robot navigation and collision avoidance uses a programmable array of light emitters that can be sequentially incremented by a microprocessor. A plurality of adjustable level threshold detectors are used in an optical receiver for detecting the threshold level of the light echoes produced when light emitted from one or more of the emitters is reflected by a target or object in the scan path of the ranging system.

  10. Active holographic interconnects for interfacing volume storage

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.

    1992-04-01

    In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels, encoding about 106 bits of data) and limited diffraction efficiency. For any application, one must choose between high diffractive performance and programmability.

  11. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  12. Optoelectronic analogs of self-programming neural nets - Architecture and methodologies for implementing fast stochastic learning by simulated annealing

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.

    1987-01-01

    Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.

  13. Primary School Autonomy in the Context of the Expanding Academies Programme

    ERIC Educational Resources Information Center

    Boyask, Ruth

    2018-01-01

    The transnational trend towards school autonomy has been enacted in England through the academies programme. The programme is poised to enter its third phase of expansion in light of government commitment to the conversion of all state-funded schools to academies. This article considers the moral implications of the expansion of the programme that…

  14. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  15. High speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy.

    PubMed

    Pozzi, P; Wilding, D; Soloviev, O; Verstraete, H; Bliek, L; Vdovin, G; Verhaegen, M

    2017-01-23

    The quality of fluorescence microscopy images is often impaired by the presence of sample induced optical aberrations. Adaptive optical elements such as deformable mirrors or spatial light modulators can be used to correct aberrations. However, previously reported techniques either require special sample preparation, or time consuming optimization procedures for the correction of static aberrations. This paper reports a technique for optical sectioning fluorescence microscopy capable of correcting dynamic aberrations in any fluorescent sample during the acquisition. This is achieved by implementing adaptive optics in a non conventional confocal microscopy setup, with multiple programmable confocal apertures, in which out of focus light can be separately detected, and used to optimize the correction performance with a sampling frequency an order of magnitude faster than the imaging rate of the system. The paper reports results comparing the correction performances to traditional image optimization algorithms, and demonstrates how the system can compensate for dynamic changes in the aberrations, such as those introduced during a focal stack acquisition though a thick sample.

  16. Proposal for automated transformations on single-photon multipath qudits

    NASA Astrophysics Data System (ADS)

    Baldijão, R. D.; Borges, G. F.; Marques, B.; Solís-Prosser, M. A.; Neves, L.; Pádua, S.

    2017-09-01

    We propose a method for implementing automated state transformations on single-photon multipath qudits encoded in a one-dimensional transverse spatial domain. It relies on transferring the encoding from this domain to the orthogonal one by applying a spatial phase modulation with diffraction gratings, merging all the initial propagation paths by using a stable interferometric network, and filtering out the unwanted diffraction orders. The automation feature is attained by utilizing a programmable phase-only spatial light modulator (SLM) where properly designed diffraction gratings displayed on its screen will implement the desired transformations, including, among others, projections, permutations, and random operations. We discuss the losses in the process which is, in general, inherently nonunitary. Some examples of transformations are presented and, considering a realistic scenario, we analyze how they will be affected by the pixelated structure of the SLM screen. The method proposed here enables one to implement much more general transformations on multipath qudits than is possible with a SLM alone operating in the diagonal basis of which-path states. Therefore, it will extend the range of applicability for this encoding in high-dimensional quantum information and computing protocols as well as fundamental studies in quantum theory.

  17. Comparing the effects of combined numerical and visuo- spatial psychoeducational trainings conducted by curricular teachers and external trainers. Preliminary evidence across kindergarteners.

    NASA Astrophysics Data System (ADS)

    Agus, M.; Mascia, M. L.; Fastame, M. C.; Napoleone, V.; Porru, A. M.; Siddu, F.; Lucangeli, D.; Penna, M. P.

    2016-11-01

    The aim of this study was to verify the efficacy of two pencil-and-paper trainings empowering numerical and visuo-spatial abilities in Italian five-year-old kindergarteners. Specifically, the trainings were respectively carried out by the curricular teacher or by an external trainer. The former received a specific training in order to use the psychoeducational programmes with her pupils, whereas the latter received a specific education about the role of numerical and visuo-spatial abilities for school achievement and she was also trained to use psychoeducational trainings in kindergarten schools. At pre-test and post-test nonverbal functions and numeracy knowledge were assessed through a battery of standardized tests. The results show that both the numerical psychoeducational programme and the visuo-spatial one are useful tools to enhance mathematical achievements in kindergarteners. However, when the trainings were proposed by the external trainer, the efficacy of the psychoeducational programmes was more significant. These outcomes seem to be related both to the expertise and the novelty effect of the external trainer on the classroom.

  18. Digital micromirror devices: principles and applications in imaging.

    PubMed

    Bansal, Vivek; Saggau, Peter

    2013-05-01

    A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.

  19. Creation of vector beams from a polarization diffraction grating using a programmable liquid crystal spatial light modulator and a q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine Emily

    This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.

  20. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  1. The Implications of Programme Assessment Patterns for Student Learning

    ERIC Educational Resources Information Center

    Jessop, Tansy; Tomas, Carmen

    2017-01-01

    Evidence from 73 programmes in 14 U.K universities sheds light on the typical student experience of assessment over a three-year undergraduate degree. A previous small-scale study in three universities characterised programme assessment environments using a similar method. The current study analyses data about assessment patterns using descriptive…

  2. Project Based Learning: In Pursuit of Androgogic Effectiveness

    ERIC Educational Resources Information Center

    Ntombela, Berrington X. S.

    2015-01-01

    In an attempt to standardise Foundation Programmes for Oman higher education providers, the Oman Academic Standards for General Foundation Programmes stipulated that higher education providers should offer programmes that ensure androgogic effectiveness. In the light of that, this paper presents attempts by a University College in Oman to…

  3. Flexible electronic control system based on FPGA for liquid-crystal microlens

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Xin, Zhaowei; Li, Dapeng; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Traditional imaging based on common optical lens can only be used to collect intensity information of incident beams, but actually lightwave also carries other mode information about targets and environment, including: spectrum, wavefront, and depth of target, and so on. It is very important to acquire those information mentioned for efficiently detecting and identifying targets in complex background. There is a urgent need to develop new high-performance optical imaging components. The liquid-crystal microlens (LCMs) only by applying spatial electrical field to change optical performance, have demonstrated remarkable advantages comparing conventional lenses, and therefore show a widely application prospect. Because the physical properties of the spatial electric fields between electrode plates in LCMs are directly related to the light-field performances of LCMs, the quality of voltage signal applied to LCMs needs high requirements. In this paper, we design and achieve a new type of digital voltage equipment with a wide adjustable voltage range and high precise voltage to effectively drive and adjust LCMs. More importantly, the device primarily based on field-programmable gate array(FPGA) can generate flexible and stable voltage signals to cooperate with the various functions of LCMs. Our experiments show that through the electronic control system, the LCMs already realize several significant functions including: electrically swing focus, wavefront imaging, electrically tunable spectral imaging and light-field imaging.

  4. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  5. The Applications of Model-Based Geostatistics in Helminth Epidemiology and Control

    PubMed Central

    Magalhães, Ricardo J. Soares; Clements, Archie C.A.; Patil, Anand P.; Gething, Peter W.; Brooker, Simon

    2011-01-01

    Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. PMID:21295680

  6. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.

    PubMed

    Jeon, Seog-Jin; Hauser, Adam W; Hayward, Ryan C

    2017-02-21

    The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable and even reprogrammable shape-morphing materials. We focus to a large extent on photothermally reprogrammable systems that include one of a variety of additives that serve to efficiently absorb light and convert it into heat, thereby driving the response of a temperature-sensitive hydrogel. Such systems are advantageous in that patterns of light can be defined with very high spatial and temporal resolution in addition to offering the potential for wavelength-selective addressability of multiple different inclusions. We highlight recent advances in the preparation of light-responsive hybrid systems capable of undergoing reprogrammable bending and buckling into well-defined 3D shapes. In addition, we describe several examples where shape tuning of hybrid systems enables control over the motion of responsive hydrogel-based materials. Finally, we offer our perspective on open challenges and future areas of interest for the field.

  7. Energy Efficiency in India: Challenges and Initiatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajay Mathur

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  8. Energy Efficiency in India: Challenges and Initiatives

    ScienceCinema

    Ajay Mathur

    2017-12-09

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  9. 77 FR 40023 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... vision goggle compatible and sun light readable. The pilots and aircrew have common programmable keysets... pilots and aircrew have common programmable keysets, a mass memory unit, mission and flight management...

  10. Spatial Light Modulator Would Serve As Electronic Iris

    NASA Technical Reports Server (NTRS)

    Gutow, David A.

    1991-01-01

    In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.

  11. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Soutar, Colin (Inventor); Juday, Richard D. (Inventor)

    2000-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.

  12. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Colin, Soutar (Inventor); Juday, Richard D. (Inventor)

    1999-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.

  13. Tourism and Management Study Programme through Blended Learning: Development and Results

    ERIC Educational Resources Information Center

    Simonova, Ivana

    2018-01-01

    This paper introduces and discusses a tourism and management study programme at the Faculty of Informatics and Management (FIM), University of Hradec Králové. It begins with description of the programme, along with a summary of its history and is considered in the light of changes in accreditation requirements. Students' interest in the programme…

  14. The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest

    Treesearch

    Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell

    2002-01-01

    Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...

  15. Goos-Hänchen shifts of partially coherent light beams from a cavity with a four-level Raman gain medium

    NASA Astrophysics Data System (ADS)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-09-01

    We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.

  16. Coupled counterrotating polariton condensates in optically defined annular potentials

    PubMed Central

    Dreismann, Alexander; Cristofolini, Peter; Balili, Ryan; Christmann, Gabriel; Pinsker, Florian; Berloff, Natasha G.; Hatzopoulos, Zacharias; Savvidis, Pavlos G.; Baumberg, Jeremy J.

    2014-01-01

    Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose–Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg–Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics. PMID:24889642

  17. Full-color stereoscopic single-pixel camera based on DMD technology

    NASA Astrophysics Data System (ADS)

    Salvador-Balaguer, Eva; Clemente, Pere; Tajahuerce, Enrique; Pla, Filiberto; Lancis, Jesús

    2017-02-01

    Imaging systems based on microstructured illumination and single-pixel detection offer several advantages over conventional imaging techniques. They are an effective method for imaging through scattering media even in the dynamic case. They work efficiently under low light levels, and the simplicity of the detector makes it easy to design imaging systems working out of the visible spectrum and to acquire multidimensional information. In particular, several approaches have been proposed to record 3D information. The technique is based on sampling the object with a sequence of microstructured light patterns codified onto a programmable spatial light modulator while light intensity is measured with a single-pixel detector. The image is retrieved computationally from the photocurrent fluctuations provided by the detector. In this contribution we describe an optical system able to produce full-color stereoscopic images by using few and simple optoelectronic components. In our setup we use an off-the-shelf digital light projector (DLP) based on a digital micromirror device (DMD) to generate the light patterns. To capture the color of the scene we take advantage of the codification procedure used by the DLP for color video projection. To record stereoscopic views we use a 90° beam splitter and two mirrors, allowing us two project the patterns form two different viewpoints. By using a single monochromatic photodiode we obtain a pair of color images that can be used as input in a 3-D display. To reduce the time we need to project the patterns we use a compressive sampling algorithm. Experimental results are shown.

  18. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Ma, Cheng; Shen, Yuecheng; Wang, Lihong V.

    2017-02-01

    Optical phase conjugation based wavefront shaping techniques are being actively developed to focus light through or inside scattering media such as biological tissue, and they promise to revolutionize optical imaging, manipulation, and therapy. The speed of digital optical phase conjugation (DOPC) has been limited by the low speeds of cameras and spatial light modulators (SLMs), preventing DOPC from being applied to thick living tissue. Recently, a fast DOPC system was developed based on a single-shot wavefront measurement method, a field programmable gate array (FPGA) for data processing, and a digital micromirror device (DMD) for fast modulation. However, this system has the following limitations. First, the reported single-shot wavefront measurement method does not work when our goal is to focus light inside, instead of through, scattering media. Second, the DMD performed binary amplitude modulation, which resulted in a lower focusing contrast compared with that of phase modulations. Third, the optical fluence threshold causing DMDs to malfunction under pulsed laser illumination is lower than that of liquid crystal based SLMs, and the system alignment is significantly complicated by the oblique reflection angle of the DMD. Here, we developed a simple but high-speed DOPC system using a ferroelectric liquid crystal based SLM (512 × 512 pixels), and focused light through three diffusers within 4.7 ms. Using focused-ultrasound-guided DOPC along with a double exposure scheme, we focused light inside a scattering medium containing two diffusers within 7.7 ms, thus achieving the fastest digital time-reversed ultrasonically encoded (TRUE) optical focusing to date.

  19. DMD-based programmable wide field spectrograph for Earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2015-03-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  20. Study on real-time images compounded using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the invented object on the spatial light modulator and the real background will be imaged by first image lens. Then, we can also get the compounded images by image sensor real time. Commonly, most spatial light modulator only can do modulate light intensity, so we can only do compounding BW images if use only one panel which without color filter. If we will get colorful compounded image, we need use the system like three spatial light modulator panel projection. In the paper, the system's optical system framework we will give out. In all experiment, the spatial light modulator used liquid crystal on silicon (LCoS). At the end of the paper, some original pictures and compounded pictures will be given on it. Although the system has a few shortcomings, we can conclude that, using this system to compounding images has no delay to do mathematic compounding process, it is a really real time images compounding system.

  1. The applications of model-based geostatistics in helminth epidemiology and control.

    PubMed

    Magalhães, Ricardo J Soares; Clements, Archie C A; Patil, Anand P; Gething, Peter W; Brooker, Simon

    2011-01-01

    Funding agencies are dedicating substantial resources to tackle helminth infections. Reliable maps of the distribution of helminth infection can assist these efforts by targeting control resources to areas of greatest need. The ability to define the distribution of infection at regional, national and subnational levels has been enhanced greatly by the increased availability of good quality survey data and the use of model-based geostatistics (MBG), enabling spatial prediction in unsampled locations. A major advantage of MBG risk mapping approaches is that they provide a flexible statistical platform for handling and representing different sources of uncertainty, providing plausible and robust information on the spatial distribution of infections to inform the design and implementation of control programmes. Focussing on schistosomiasis and soil-transmitted helminthiasis, with additional examples for lymphatic filariasis and onchocerciasis, we review the progress made to date with the application of MBG tools in large-scale, real-world control programmes and propose a general framework for their application to inform integrative spatial planning of helminth disease control programmes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.

    PubMed

    Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C

    2016-03-01

    This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.

  3. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  4. Using a pseudo-thermal light source to teach spatial coherence

    NASA Astrophysics Data System (ADS)

    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.

    2018-07-01

    Teaching students spatial coherence constitutes a challenge. On the one hand, discussing it theoretically requires a quite demanding mathematical breadth. On the other hand, discussing it experimentally is hardly possible as coherence usually cannot be directly observed. To solve this problem, we show, by studying the contrast of interference patterns of a double slit, that speckles of a pseudo-thermal light source, consisting of a laser and a rotating diffuser disc, are equivalent to the spatial extent of coherent areas of a thermal light source. Coherent areas are spatial regions within which light can be considered as coherent. The unique advantage of such pseudo-thermal light source is the opportunity to directly observe the spatial extent of the coherent areas. This renders the phenomena perceptible and accessible by various experiments, as described in this contribution. This opens modern paths to teach spatial coherence to students with a notably reduced order of abstraction.

  5. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    NASA Astrophysics Data System (ADS)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  6. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  7. Optical Correlation

    NASA Technical Reports Server (NTRS)

    Cotariu, Steven S.

    1991-01-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  8. Optical correlation

    NASA Astrophysics Data System (ADS)

    Cotariu, Steven S.

    1991-12-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  9. Spatial Reasoning Training Through Light Curves Of Model Asteroids

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.

    2015-11-01

    Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.

  10. All optical programmable logic array (PLA)

    NASA Astrophysics Data System (ADS)

    Hiluf, Dawit

    2018-03-01

    A programmable logic array (PLA) is an integrated circuit (IC) logic device that can be reconfigured to implement various kinds of combinational logic circuits. The device has a number of AND and OR gates which are linked together to give output or further combined with more gates or logic circuits. This work presents the realization of PLAs via the physics of a three level system interacting with light. A programmable logic array is designed such that a number of different logical functions can be combined as a sum-of-product or product-of-sum form. We present an all optical PLAs with the aid of laser light and observables of quantum systems, where encoded information can be considered as memory chip. The dynamics of the physical system is investigated using Lie algebra approach.

  11. Restoring the spatial resolution of refocus images on 4D light field

    NASA Astrophysics Data System (ADS)

    Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok

    2010-01-01

    This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.

  12. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical information processing with transformation of the spatial coherence of light

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.

    1995-10-01

    A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.

  13. User-programmer dialogue: Guidelines for designing menus and help files for interactive computer systems

    NASA Technical Reports Server (NTRS)

    Carlson, P. A.

    1983-01-01

    This document is a set of guidelines to aid a programmer in making the various decisions necessary for a clear user-programmer dialogue. Its goal is to promote an effective and efficient transfer of information between programmer and user. These guidelines are divided into four sections: (1) Format, (2) Sequence, (3) Audience, and (4) Aim. Format, in terms of this study, means the spatial and structural presentation of information. Sequence deals with the procedural aspects of multiple panel displays. This section looks at the issues of timelines of presentation, modularization of information, and patterns of user behavior. Audience looks at the relationship among programmer, user, and message. It covers the issues of analyzing the audience's knowledge, attitudes, and needs, anticipating the audience's inferences, and identifying textual ambiguities. The programmer's aim or intention shows up in everything from tone to format. Aim considers the programmer's purpose.

  14. The challenges of marine spatial planning in the Arctic: Results from the ACCESS programme.

    PubMed

    Edwards, Rosemary; Evans, Alan

    2017-12-01

    Marine spatial planning is increasingly used to manage the demands on marine areas, both spatially and temporally, where several different users may compete for resources or space, to ensure that development is as sustainable as possible. Diminishing sea-ice coverage in the Arctic will allow for potential increases in economic exploitation, and failure to plan for cross-sectoral management could have negative economic and environmental results. During the ACCESS programme, a marine spatial planning tool was developed for the Arctic, enabling the integrated study of human activities related to hydrocarbon exploitation, shipping and fisheries, and the possible environmental impacts, within the context of the next 30 years of climate change. In addition to areas under national jurisdiction, the Arctic Ocean contains a large area of high seas. Resources and ecosystems extend across political boundaries. We use three examples to highlight the need for transboundary planning and governance to be developed at a regional level.

  15. Enhancing Allocentric Spatial Recall in Pre-schoolers through Navigational Training Programme

    PubMed Central

    Boccia, Maddalena; Rosella, Michela; Vecchione, Francesca; Tanzilli, Antonio; Palermo, Liana; D'Amico, Simonetta; Guariglia, Cecilia; Piccardi, Laura

    2017-01-01

    Unlike for other abilities, children do not receive systematic spatial orientation training at school, even though navigational training during adulthood improves spatial skills. We investigated whether navigational training programme (NTP) improved spatial orientation skills in pre-schoolers. We administered 12-week NTP to seventeen 4- to 5-year-old children (training group, TG). The TG children and 17 age-matched children (control group, CG) who underwent standard didactics were tested twice before (T0) and after (T1) the NTP using tasks that tap into landmark, route and survey representations. We determined that the TG participants significantly improved their performances in the most demanding navigational task, which is the task that taps into survey representation. This improvement was significantly higher than that observed in the CG, suggesting that NTP fostered the acquisition of survey representation. Such representation is typically achieved by age seven. This finding suggests that NTP improves performance on higher-level navigational tasks in pre-schoolers. PMID:29085278

  16. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    PubMed

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  17. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  18. Microscopy illumination engineering using a low-cost liquid crystal display.

    PubMed

    Guo, Kaikai; Bian, Zichao; Dong, Siyuan; Nanda, Pariksheet; Wang, Ying Min; Zheng, Guoan

    2015-02-01

    Illumination engineering is critical for obtaining high-resolution, high-quality images in microscope settings. In a typical microscope, the condenser lens provides sample illumination that is uniform and free from glare. The associated condenser diaphragm can be manually adjusted to obtain the optimal illumination numerical aperture. In this paper, we report a programmable condenser lens for active illumination control. In our prototype setup, we used a $15 liquid crystal display as a transparent spatial light modulator and placed it at the back focal plane of the condenser lens. By setting different binary patterns on the display, we can actively control the illumination and the spatial coherence of the microscope platform. We demonstrated the use of such a simple scheme for multimodal imaging, including bright-field microscopy, darkfield microscopy, phase-contrast microscopy, polarization microscopy, 3D tomographic imaging, and super-resolution Fourier ptychographic imaging. The reported illumination engineering scheme is cost-effective and compatible with most existing platforms. It enables a turnkey solution with high flexibility for researchers in various communities. From the engineering point-of-view, the reported illumination scheme may also provide new insights for the development of multimodal microscopy and Fourier ptychographic imaging.

  19. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.

    PubMed

    Oléron Evans, Thomas P; Bishop, Steven R

    2014-08-01

    We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Optically programmable encoder based on light propagation in two-dimensional regular nanoplates.

    PubMed

    Li, Ya; Zhao, Fangyin; Guo, Shuai; Zhang, Yongyou; Niu, Chunhui; Zeng, Ruosheng; Zou, Bingsuo; Zhang, Wensheng; Ding, Kang; Bukhtiar, Arfan; Liu, Ruibin

    2017-04-07

    We design an efficient optically controlled microdevice based on CdSe nanoplates. Two-dimensional CdSe nanoplates exhibit lighting patterns around the edges and can be realized as a new type of optically controlled programmable encoder. The light source is used to excite the nanoplates and control the logical position under vertical pumping mode by the objective lens. At each excitation point in the nanoplates, the preferred light-propagation routes are along the normal direction and perpendicular to the edges, which then emit out from the edges to form a localized lighting section. The intensity distribution around the edges of different nanoplates demonstrates that the lighting part with a small scale is much stronger, defined as '1', than the dark section, defined as '0', along the edge. These '0' and '1' are the basic logic elements needed to compose logically functional devices. The observed propagation rules are consistent with theoretical simulations, meaning that the guided-light route in two-dimensional semiconductor nanoplates is regular and predictable. The same situation was also observed in regular CdS nanoplates. Basic theoretical analysis and experiments prove that the guided light and exit position follow rules mainly originating from the shape rather than material itself.

  1. Visuospatial Training Improves Elementary Students' Mathematics Performance

    ERIC Educational Resources Information Center

    Lowrie, Tom; Logan, Tracy; Ramful, Ajay

    2017-01-01

    Background: Although spatial ability and mathematics performance are highly correlated, there is scant research on the extent to which spatial ability training can improve mathematics performance. Aims: This study evaluated the efficacy of a visuospatial intervention programme within classrooms to determine the effect on students' (1) spatial…

  2. An extensive literature review of the evaluation of HIV prevention programmes.

    PubMed

    Coleman, L M; Ford, N J

    1996-09-01

    This paper draws out and distils three key themes that have emerged from a substantial bibliographical review of a range of HIV intervention programmes, implemented throughout the world between years 1987 and 1995. Specifically, the paper assesses (1) to what extent intervention programmes have been tailored to meet the requirements and needs of specific target groups; (2) to what extent intervention programmes are supported by social and psychological theory of attitudinal and behavioural change, and also to what extent the results and findings from the interventions have amended existing theory; and, finally, (3) the range of methodologies employed in evaluating intervention programmes and also to what extent behavioural measures have been used in examining a programme's effectiveness. In light of these themes, the paper presents and discusses the principal factors thought to contribute towards the effectiveness of HIV intervention programmes.

  3. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    PubMed Central

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  4. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    PubMed

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  5. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  6. fastSIM: a practical implementation of fast structured illumination microscopy.

    PubMed

    Lu-Walther, Hui-Wen; Kielhorn, Martin; Förster, Ronny; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer

    2015-01-16

    A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5  ×  16.5 µm 2 , free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.

  7. Quantum key distribution session with 16-dimensional photonic states

    NASA Astrophysics Data System (ADS)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-07-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  8. fastSIM: a practical implementation of fast structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Lu-Walther, Hui-Wen; Kielhorn, Martin; Förster, Ronny; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer

    2015-03-01

    A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5  ×  16.5 µm2, free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.

  9. On-axis non-linear effects with programmable Dammann lenses under femtosecond illumination.

    PubMed

    Pérez Vizcaíno, Jorge; Mendoza-Yero, Omel; Borrego-Varillas, Rocío; Mínguez-Vega, Gladys; Vázquez de Aldana, Javier R; Láncis, Jesús

    2013-05-15

    We demonstrate the utilization of Dammann lenses codified onto a spatial light modulator (SLM) for triggering non-linear effects. With continuous wave illumination Dammann lenses are binary phase optical elements that generate a set of equal intensity foci. We theoretically calculate the influence of ultrashort pulse illumination on the uniformity of the generated pattern, which is affected by chromatic aberration for pulses with temporal widths lower than 100 fs. The simulations also indicate that acceptable uniformity can be achieved for pulses of several fs by shortening the distance among foci which can be easily modified with the SLM. Multifocal second-harmonic generation (SHG) and on-axis multiple filamentation are produced and actively controlled in β-BaB2O4 (BBO) and fused silica samples, respectively, with an amplified Ti: Sapphire femtosecond laser of 30 fs pulse duration. Experimental results are in very good agreement with theoretical calculations.

  10. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  11. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  12. Optical programmable metamaterials

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei

    2018-02-01

    We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.

  13. Independent polarisation control of multiple optical traps

    PubMed Central

    Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan

    2009-01-01

    We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226

  14. Wide-field high spatial frequency domain imaging of tissue microstructure

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.

    2018-02-01

    Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.

  15. Drivers of Macrofungi Community Structure Differ between Soil and Rotten-Wood Substrates in a Temperate Mountain Forest in China

    PubMed Central

    Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong

    2018-01-01

    The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660

  16. Institutional evolution of a community-based programme for malaria control through larval source management in Dar es Salaam, United Republic of Tanzania.

    PubMed

    Chaki, Prosper P; Kannady, Khadija; Mtasiwa, Deo; Tanner, Marcel; Mshinda, Hassan; Kelly, Ann H; Killeen, Gerry F

    2014-06-25

    Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam's City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes.

  17. Institutional evolution of a community-based programme for malaria control through larval source management in Dar es Salaam, United Republic of Tanzania

    PubMed Central

    2014-01-01

    Background Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. Case description The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. Discussion and evaluation The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. Conclusions The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam’s City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes. PMID:24964790

  18. Creation of Excitons Excited by Light with a Spatial Mode

    NASA Astrophysics Data System (ADS)

    Syouji, Atsushi; Saito, Shingo; Otomo, Akira

    2017-12-01

    When light is absorbed into matter, its degrees of freedom (i.e., energy, polarization, and phase) are transferred to the matter and conserved. In this study, we demonstrate that elementary excitations in matter, which are one-photon-forbidden transition states, become allowed states because of the phase conservation across the entire cross section of excitation light. In particular, when 1S orthoexcitons of the yellow series in the semiconductor cuprous oxide (Cu2O) were resonantly excited by light with a spatial mode, an increase in the Γ 3 - -phonon-emission peak intensity of the excitons was detected depending on the spatial mode. Using group-theory-based analysis, we show that the irreducible representation of a one-photon-forbidden exciton, which is one of the orthoexcitons, can be transmuted to an allowed state by taking the direct product with the polar vector produced from the spatial mode of the light. Although the transition process of the exciton is locally characterized by the usual quadrupole interaction, the phase conservation at each position at which the sample is irradiated causes the exciton to be in the same spatial-mode state. That causes a change in the transition selection rule. The selection rule relaxation due to the spatial mode of the light was also applied for paraexciton creation.

  19. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention.

    PubMed

    Newman, Daniel P; Lockley, Steven W; Loughnane, Gerard M; Martins, Ana Carina P; Abe, Rafael; Zoratti, Marco T R; Kelly, Simon P; O'Neill, Megan H; Rajaratnam, Shantha M W; O'Connell, Redmond G; Bellgrove, Mark A

    2016-06-13

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.

  20. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention

    PubMed Central

    Newman, Daniel P.; Lockley, Steven W.; Loughnane, Gerard M.; Martins, Ana Carina P.; Abe, Rafael; Zoratti, Marco T. R.; Kelly, Simon P.; O’Neill, Megan H.; Rajaratnam, Shantha M. W.; O’Connell, Redmond G.; Bellgrove, Mark A.

    2016-01-01

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention. PMID:27291291

  1. Light-Directed Tuning of Plasmon Resonances via Plasmon-Induced Polymerization Using Hot Electrons

    PubMed Central

    2017-01-01

    The precise morphology of nanoscale gaps between noble-metal nanostructures controls their resonant wavelengths. Here we show photocatalytic plasmon-induced polymerization can locally enlarge the gap size and tune the plasmon resonances. We demonstrate light-directed programmable tuning of plasmons can be self-limiting. Selective control of polymer growth around individual plasmonic nanoparticles is achieved, with simultaneous real-time monitoring of the polymerization process in situ using dark-field spectroscopy. Even without initiators present, we show light-triggered chain growth of various monomers, implying plasmon initiation of free radicals via hot-electron transfer to monomers at the Au surface. This concept not only provides a programmable way to fine-tune plasmons for many applications but also provides a window on polymer chemistry at the sub-nanoscale. PMID:28670601

  2. Evaluation of the PhunkyFoods Programme. Final Report

    ERIC Educational Resources Information Center

    Teeman, David; Reed, Frances; Bielby, Gill; Scott, Emma; Sims, David

    2008-01-01

    The PhunkyFoods Programme (PFP), launched in 2005 by Purely Nutrition, teaches primary children key messages related to healthy eating and physical exercise in a light hearted and fun manner through art, drama, music, play and practical experience with food. It aims to enhance pupil performance, increase concentration, and improve behaviour,…

  3. Back to Basics: How Young Mothers Learn about Sex and Sexuality

    ERIC Educational Resources Information Center

    Dudley, James; Crowder, Amanda; Montgomery, Tchernavia R.

    2014-01-01

    Adolescent pregnancy continues to be a major concern for policy-makers, programme developers, helping professionals and society generally in the USA, especially in light of the US federal government's legislative emphasis on abstinence-only sex education until recently. Studies have found that abstinence-only programmes do not succeed in…

  4. Ethnicity and Engagement in First-Year New Zealand Law Programmes

    ERIC Educational Resources Information Center

    Taylor, Lynne; Brogt, Erik; Cheer, Ursula; Baird, Natalie; Caldwell, John; Wilson, Debra

    2017-01-01

    This paper investigated the extent to which the engagement levels of a self-selected cohort of students enrolled in first-year law programmes at three New Zealand universities varied according to ethnicity. When viewed in the light of factors identified within the international literature as having a bearing on student engagement and, in…

  5. Moral Education and the International Baccalaureate Learner Profile

    ERIC Educational Resources Information Center

    van Oord, Lodewijk

    2013-01-01

    This article analyses elements of moral education in the educational programmes offered by the International Baccalaureate (IB). Particular reference is made to the IB learner profile, a list of 10 virtues which, the IB claims, are fostered through its educational programmes. This approach is evaluated in the light of existing ideas concerning…

  6. Review of integrated digital systems: evolution and adoption

    NASA Astrophysics Data System (ADS)

    Fritz, Lawrence W.

    The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.

  7. Water participation for poverty alleviation--the case of Meseta Purépecha, Mexico.

    PubMed

    Escamilla, M; Kurtycz, A; van der Helm, R

    2003-01-01

    The construction of small water reservoirs has been used in an effort to alleviate poverty in Messeta Purépecha region in Mexico. The programme's rationale can be characterised as incentive-based participation, using both local employment and shared risks concepts. The programme so far has been a relative success. However, in the light of poverty alleviation questions have to be raised about the isolated nature of the programme as well as the role of the incentives used.

  8. Optically addressed and submillisecond response phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangjie; Duan, Jiazhu; Zhang, Dayong; Luo, Yongquan

    2014-10-01

    Liquid crystal based phase only spatial light modulator has attracted many research interests since last decades because of its superior advantage. Until now the liquid crystal spatial light modulator has been applied in many fields, but the response speed of nematic LC limited its further application. In this paper, an optically addressed phase only LC spatial light modulator was proposed based on polymer network liquid crystal. Morphology effect on the light scattering of PNLC was studied, which was mainly consisted of fiber and fiber bundles. The morphology nearly determined the light scattering and electro-optical property. Due to the high threshold voltage, to address the PNLC phase modulator was also concerned. Optical addressing method was proposed, in which BSO crystal was selected to replace one of the glass substrate. The response speed of PNLC was so fast that the reorientation of liquid crystal director will follow the change of effective voltage applied on LC layer, which was related with the voltage signal and especially with electron transport of photo-induced carriers due to diffusion and drift. The on state dynamic response of phase change was investigated. Based on this device, beam steering was also achieved by loading 488nm laser strip on the optical addressed phase only spatial light modulator.

  9. "Representing Your Country": Scotland, PISA and New Spatialities of Educational Governance

    ERIC Educational Resources Information Center

    Lingard, Bob; Sellar, Sam

    2014-01-01

    This paper focuses on the rescaling and re-spatialization of policy and governance in education, including the constitution of a global education policy field. It deals with the changing education policy work of the OECD, particularly the influential Programme for International Student Assessment (PISA). We argue that PISA has become the most…

  10. Determining biological tissue optical properties via integrating sphere spatial measurements

    DOEpatents

    Baba, Justin S [Knoxville, TN; Letzen, Brian S [Coral Springs, FL

    2011-01-11

    An optical sample is mounted on a spatial-acquisition apparatus that is placed in or on an enclosure. An incident beam is irradiated on a surface of the sample and the specular reflection is allowed to escape from the enclosure through an opening. The spatial-acquisition apparatus is provided with a light-occluding slider that moves in front of the sample to block portions of diffuse scattering from the sample. As the light-occluding slider moves across the front of the sample, diffuse light scattered into the area of the backside of the light-occluding slider is absorbed by back side surface of the light-occluding slider. By measuring a baseline diffuse reflectance without a light-occluding slider and subtracting measured diffuse reflectance with a light-occluding slider therefrom, diffuse reflectance for the area blocked by the light-occluding slider can be calculated.

  11. The combined medical/PhD degree: a global survey of physician-scientist training programmes.

    PubMed

    Alamri, Yassar

    2016-06-01

    Typically lasting 7-9 years, medical-scientist training programmes (MSTPs) allow students a unique opportunity to simultaneously intercalate medical (MBBS, MBChB or MD) and research (PhD) degrees. The nature of both degrees means that the combined programme is arduous, and selection is often restricted to a few highly motivated students. Despite the many successes of MSTPs, enthusiasm about MSTPs and the number of intercalating students, at least in some countries, appear to be diminishing. In this review, I shed light on MSTPs around the world, highlight the plethora of successes such programmes have had and provide insights on the setbacks experienced and solutions offered, with the aim of reigniting interest in these programmes. © 2016 Royal College of Physicians.

  12. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  13. Experimental observation of spatial quantum noise reduction below the standard quantum limit with bright twin beams of light

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Nunley, Hayden; Marino, Alberto

    2016-05-01

    Quantum noise reduction (QNR) below the standard quantum limit (SQL) has been a subject of interest for the past two to three decades due to its wide range of applications in quantum metrology and quantum information processing. To date, most of the attention has focused on the study of QNR in the temporal domain. However, many areas in quantum optics, specifically in quantum imaging, could benefit from QNR not only in the temporal domain but also in the spatial domain. With the use of a high quantum efficiency electron multiplier charge coupled device (EMCCD) camera, we have observed spatial QNR below the SQL in bright narrowband twin light beams generated through a four-wave mixing (FWM) process in hot rubidium atoms. Owing to momentum conservation in this process, the twin beams are momentum correlated. This leads to spatial quantum correlations and spatial QNR. Our preliminary results show a spatial QNR of over 2 dB with respect to the SQL. Unlike previous results on spatial QNR with faint and broadband photon pairs from parametric down conversion (PDC), we demonstrate spatial QNR with spectrally and spatially narrowband bright light beams. The results obtained will be useful for atom light interaction based quantum protocols and quantum imaging. Work supported by the W.M. Keck Foundation.

  14. Group purchasing of pharmaceuticals and medical supplies by the Gulf Cooperation Council states.

    PubMed

    Khoja, T A M; Bawazir, S A

    2005-01-01

    An important issue in health care today is the cost of essential pharmaceuticals and medical supplies. To control the increase of health care expenses, in 1976 the Gulf Cooperation Council states began to study the idea of establishing a group purchasing programme for pharmaceuticals and medical supplies. This paper demonstrates the elements of the programme, how it works, what obstacles it faces and how other countries can profit from this experience. It also discusses the future of the group purchasing programme in the light of globalization and how the international changes under the World Trade Organization agreements will affect the programme in future.

  15. Son et lumière: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish.

    PubMed

    Shafiei Sabet, Saeed; Van Dooren, Dirk; Slabbekoorn, Hans

    2016-05-01

    Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 × 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spatial and spectral imaging of point-spread functions using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Munagavalasa, Sravan; Schroeder, Bryce; Hua, Xuanwen; Jia, Shu

    2017-12-01

    We develop a point-spread function (PSF) engineering approach to imaging the spatial and spectral information of molecular emissions using a spatial light modulator (SLM). We show that a dispersive grating pattern imposed upon the emission reveals spectral information. We also propose a deconvolution model that allows the decoupling of the spectral and 3D spatial information in engineered PSFs. The work is readily applicable to single-molecule measurements and fluorescent microscopy.

  17. Evolutionary contingency and SETI revisited

    NASA Astrophysics Data System (ADS)

    Cirkovic, Milan M.

    2014-07-01

    The well-known argument against the Search for ExtraTerrestrial Intelligence (SETI) due to George Gaylord Simpson is re-analyzed almost half a century later, in the light of our improved understanding of preconditions for the emergence of life and intelligence brought about by the ongoing "astrobiological revolution". Simpson's argument has been enormously influential, in particular in biological circles, and it arguably fueled the most serious opposition to SETI programmes and their funding. I argue that both proponents and opponents of Simpson's argument have occasionally mispresented its core content. Proponents often oversimplify it as just another consequence of biological contingency, thus leaving their position open to general arguments limiting the scope of contingency in evolution (such as the recent argument of Geerat Vermeij based on selection effects in the fossil record). They also tend to neglect that the argument has been presented as essentially atemporal, while referring to entities and processes that are likely to change over time; this has become even less justifiable as our astrobiological knowledge increased in recent years. Opponents have failed to see that the weaknesses in Simpson's position could be removed by restructuring of the argument; I suggest one way of such restructuring, envisioned long ago in the fictional context by Stanislaw Lem. While no firm consensus has emerged on the validity of Simpson's argument so far, I suggest that, contrary to the original motivation, today it is less an anti-SETI argument, and more an astrobiological research programme. In this research programme, SETI could be generalized into a platform for testing some of the deepest assumptions about evolutionary continuity and the relative role of contingency versus convergence on unprecedented spatial and temporal scales.

  18. Design of transient light signal simulator based on FPGA

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Chen, Rong-li; Wang, Hong

    2014-11-01

    A design scheme of transient light signal simulator based on Field Programmable gate Array (FPGA) was proposed in this paper. Based on the characteristics of transient light signals and measured feature points of optical intensity signals, a fitted curve was created in MATLAB. And then the wave data was stored in a programmed memory chip AT29C1024 by using SUPERPRO programmer. The control logic was realized inside one EP3C16 FPGA chip. Data readout, data stream cache and a constant current buck regulator for powering high-brightness LEDs were all controlled by FPGA. A 12-Bit multiplying CMOS digital-to-analog converter (DAC) DAC7545 and an amplifier OPA277 were used to convert digital signals to voltage signals. A voltage-controlled current source constituted by a NPN transistor and an operational amplifier controlled LED array diming to achieve simulation of transient light signal. LM3405A, 1A Constant Current Buck Regulator for Powering LEDs, was used to simulate strong background signal in space. Experimental results showed that the scheme as a transient light signal simulator can satisfy the requests of the design stably.

  19. The Impact of Professional Development: A Theoretical Model for Empirical Research, Evaluation, Planning and Conducting Training and Development Programmes

    ERIC Educational Resources Information Center

    Huber, Stephan Gerhard

    2011-01-01

    This paper considers several trends in professional development programmes found internationally. The use of multiple learning approaches and of different modes and types of learning in PD is described. Various theories and models of evaluation are discussed in the light of common professional development activities. Several recommendations are…

  20. Youth and Lifelong Education: After-School Programmes as a Vital Component of Lifelong Education Infrastructure

    ERIC Educational Resources Information Center

    Lauzon, Allan C.

    2013-01-01

    This paper argues that after-school programmes need to be considered an essential part of lifelong learning infrastructure, particularly in light of the dominance of the economic discourse in both lifelong learning literature and the initial schooling literature. The paper, which is based upon existing literature, begins by providing an overview…

  1. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  2. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process

    PubMed Central

    Yin, Da; Feng, Jing; Ma, Rui; Liu, Yue-Feng; Zhang, Yong-Lai; Zhang, Xu-Lin; Bi, Yan-Gang; Chen, Qi-Dai; Sun, Hong-Bo

    2016-01-01

    Stretchable organic light-emitting devices are becoming increasingly important in the fast-growing fields of wearable displays, biomedical devices and health-monitoring technology. Although highly stretchable devices have been demonstrated, their luminous efficiency and mechanical stability remain impractical for the purposes of real-life applications. This is due to significant challenges arising from the high strain-induced limitations on the structure design of the device, the materials used and the difficulty of controlling the stretch-release process. Here we have developed a laser-programmable buckling process to overcome these obstacles and realize a highly stretchable organic light-emitting diode with unprecedented efficiency and mechanical robustness. The strained device luminous efficiency −70 cd A−1 under 70% strain - is the largest to date and the device can accommodate 100% strain while exhibiting only small fluctuations in performance over 15,000 stretch-release cycles. This work paves the way towards fully stretchable organic light-emitting diodes that can be used in wearable electronic devices. PMID:27187936

  3. Toward real-time quantum imaging with a single pixel camera

    DOE PAGES

    Lawrie, B. J.; Pooser, R. C.

    2013-03-19

    In this paper, we present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively pass macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. Finally, in low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imagingmore » with sensitivity below the photon shot noise limit.« less

  4. Spatial distribution of Cherenkov light from cascade showers in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomyakov, V. A., E-mail: VAKhomyakov@mephi.ru; Bogdanov, A. G.; Kindin, V. V.

    2016-12-15

    The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.

  5. Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling

    PubMed Central

    Mazade, Reece E.

    2016-01-01

    The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity. PMID:26912599

  6. A Qualitative Comparison of South Africa's Geomatics Professional Body's Academic Model against Industry's Understanding of SDI Knowledge and Skills Requirements

    ERIC Educational Resources Information Center

    Coetzee, Serena; Rautenbach, Victoria; du Plessis, Heindrich

    2015-01-01

    The South African Spatial Data Infrastructure (SASDI) was established in 2003.Registration of geographical information science (GISc) practitioners by the South African geomatics professional body followed in 2004 and accreditation of university GISc programmes in 2012. In 2010, the Committee for Spatial Information identified inadequate knowledge…

  7. Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators

    NASA Technical Reports Server (NTRS)

    Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen

    2012-01-01

    For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann sensing procedures to cover a virtually unlimited dynamic range with high resolution. Digital holography technology brings all of the power and benefits of digital holographic interferometry to the requirement, while Hartmann-type wavefront sensors bring deflectometry technologies to the solution. The SLM can be used to generate arbitrary wavefronts in one leg of the interferometer, thereby greatly simplifying its use and extending its range. The SLM can also be used to modify the system into a dynamic Shack-Hartmann system, which is useful for optical components with large amounts of slope. By integrating these capabilities into a single instrument, the system will have tremendous flexibility to measure a variety of optical shapes accurately.

  8. Child mortality inequalities across Rwanda districts: a geoadditive continuous-time survival analysis.

    PubMed

    Niragire, François; Achia, Thomas N O; Lyambabaje, Alexandre; Ntaganira, Joseph

    2017-05-11

    Child survival programmes are efficient when they target the most significant and area-specific factors. This study aimed to assess the key determinants and spatial variation of child mortality at the district level in Rwanda. Data from the 2010 Rwanda Demographic and Health Survey were analysed for 8817 live births that occurred during five years preceding the survey. Out of the children born, 433 had died before survey interviews were carried out. A full Bayesian geo-additive continuous-time hazard model enabled us to maximise data utilisation and hence improve the accuracy of our estimates. The results showed substantial district- level spatial variation in childhood mortality in Rwanda. District-specific spatial characteristics were particularly associated with higher death hazards in two districts: Musanze and Nyabihu. The model estimates showed that there were lower death rates among children from households of medium and high economic status compared to those from low-economic status households. Factors, such as four antenatal care visits, delivery at a health facility, prolonged breastfeeding and mothers younger than 31 years were associated with lower child death rates. Long preceding birth intervals were also associated with fewer hazards. For these reasons, programmes aimed at reducing child mortality gaps between districts in Rwanda should target maternal factors and take into consideration district-specific spatial characteristics. Further, child survival gains require strengthening or scaling-up of existing programmes pertaining to access to, and utilisation of maternal and child health care services as well as reduction of the household gap in the economic status.

  9. The role of spatial data infrastructure in disaster recover: An economic case study for Christchurch, New Zealand

    NASA Astrophysics Data System (ADS)

    Coote, A. M.; Whiteman, B.; Carver, J.; Balakrishnan, A.

    2013-12-01

    The disastrous earthquake in Christchurch city centre and surrounding parts of the Canterbury region of New Zealand in February 2011 which resulted in over 120 fatalities, highlighted a number of deficiencies in the information systems available to those involved in first response and in the subsequent rebuild. The lack of interoperability of geospatial information systems in particular was highlighted within the Royal Commission report on the disaster. As a result of this high level 'something must be done' call to action, Land Information New Zealand (LINZ), the lead public agency in national geospatial data management, were asked to scope a programme of work to accelerate the creation of a Spatial Data Infrastructure (SDI) for the area. This paper will outline the work undertaken to scope and prioritise a programme addressing the most pressing information infrastructure issues and then prepare the business case setting out the benefit-cost justification for the investment required. The resulting programme encompasses many of the emerging opportunities in the geospatial field including 3D GIS, crowd sourcing and open data leading to challenges in how to evaluate the benefits of innovative and 'ground breaking' solutions. It also considers how to track benefits realisation in a rapidly changing environment requiring an agile approach to programme management.

  10. The Effect of Programmable Tactile Displays on Spatial Learning Skills in Children and Adolescents of Different Visual Disability.

    PubMed

    Leo, Fabrizio; Cocchi, Elena; Brayda, Luca

    2017-07-01

    Vision loss has severe impacts on physical, social and emotional well-being. The education of blind children poses issues as many scholar disciplines (e.g., geometry, mathematics) are normally taught by heavily relying on vision. Touch-based assistive technologies are potential tools to provide graphical contents to blind users, improving learning possibilities and social inclusion. Raised-lines drawings are still the golden standard, but stimuli cannot be reconfigured or adapted and the blind person constantly requires assistance. Although much research concerns technological development, little work concerned the assessment of programmable tactile graphics, in educative and rehabilitative contexts. Here we designed, on programmable tactile displays, tests aimed at assessing spatial memory skills and shapes recognition abilities. Tests involved a group of blind and a group of low vision children and adolescents in a four-week longitudinal schedule. After establishing subject-specific difficulty levels, we observed a significant enhancement of performance across sessions and for both groups. Learning effects were comparable to raised paper control tests: however, our setup required minimal external assistance. Overall, our results demonstrate that programmable maps are an effective way to display graphical contents in educative/rehabilitative contexts. They can be at least as effective as traditional paper tests yet providing superior flexibility and versatility.

  11. Automated platform for determination of LEDs spatial radiation pattern

    NASA Astrophysics Data System (ADS)

    Vladescu, Marian; Vuza, Dan Tudor

    2015-02-01

    Nowadays technologies lead to remarkable properties of the light-emitting diodes (LEDs), making them attractive for more and more applications, such as: interior and exterior lighting, outdoor LED panels, traffic signals, automotive (tail and brake lights, backlighting in dashboard and switches), backlighting of display panels, LCD displays, symbols on switches, keyboards, graphic boards and measuring scales. Usually, LEDs are small light sources consisting of a chip placed into a package, which may bring additional optics to this encapsulated ensemble, resulting in a less or more complex spatial distribution of the light intensity, with particular radiation patterns. This paper presents an automated platform designed to allow a quick and accurate determination of the spatial radiation patterns of LEDs encapsulated in various packages. Keywords: LED, luminous

  12. Optical correlator method and apparatus for particle image velocimetry processing

    NASA Technical Reports Server (NTRS)

    Farrell, Patrick V. (Inventor)

    1991-01-01

    Young's fringes are produced from a double exposure image of particles in a flowing fluid by passing laser light through the film and projecting the light onto a screen. A video camera receives the image from the screen and controls a spatial light modulator. The spatial modulator has a two dimensional array of cells the transmissiveness of which are controlled in relation to the brightness of the corresponding pixel of the video camera image of the screen. A collimated beam of laser light is passed through the spatial light modulator to produce a diffraction pattern which is focused onto another video camera, with the output of the camera being digitized and provided to a microcomputer. The diffraction pattern formed when the laser light is passed through the spatial light modulator and is focused to a point corresponds to the two dimensional Fourier transform of the Young's fringe pattern projected onto the screen. The data obtained fro This invention was made with U.S. Government support awarded by the Department of the Army (DOD) and NASA grand number(s): DOD #DAAL03-86-K0174 and NASA #NAG3-718. The U.S. Government has certain rights in this invention.

  13. The Effect of Entrepreneurship Education Programmes on Satisfaction with Innovation Behaviour and Performance

    ERIC Educational Resources Information Center

    Cruz, Natalia Martin; Escudero, Ana Isabel Rodriguez; Barahona, Juan Hernangomez; Leitao, Fernando Saboia

    2009-01-01

    Purpose: This paper attempts to shed light on the effect of educational programmes aimed at entrepreneurs on innovation and business success. Design/methodology/approach: We use as theoretical framework the theory of planned behaviour. We use a sample of 354 entrepreneurs from Castile and Leon, Spain. To estimate the model we use a path analysis…

  14. Participant-Directed Evaluation: Using Teachers' Own Inquiries to Evaluate Professional Development in Technology Integration

    ERIC Educational Resources Information Center

    Ham, Vince

    2010-01-01

    Considering the high levels of time and money invested in teacher professional development programmes in information technologies over recent decades, questions arise as to how effective these programmes have been and by whose lights we are to judge. Based on a critical review of the evaluations of several of our own action-research-based…

  15. Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape.

    PubMed

    Hale, James D; Davies, Gemma; Fairbrass, Alison J; Matthews, Thomas J; Rogers, Christopher D F; Sadler, Jon P

    2013-01-01

    Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.

  16. Mapping Lightscapes: Spatial Patterning of Artificial Lighting in an Urban Landscape

    PubMed Central

    Hale, James D.; Davies, Gemma; Fairbrass, Alison J.; Matthews, Thomas J.; Rogers, Christopher D. F.; Sadler, Jon P.

    2013-01-01

    Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city’s brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas. PMID:23671566

  17. Investigation of a simplified artificial lighting programme to improve the fertility of sows in commercial piggeries.

    PubMed

    Tast, A; Hälli, O; Virolainen, J V; Oravainen, J; Heinonen, M; Peltoniemi, O A T

    2005-05-28

    Two artificial lighting regimens were studied in a commercial unit of 800 sows. The aim was to develop a simplified lighting regimen to overdrive the effects of season on reproduction. A long-day group had a constant 16 hours light and eight hours dark photoperiod in all units during a production cycle. A short-day group had eight hours of light and 16 hours darkness in a farrowing unit for four weeks and in a mating unit for four weeks. After one month of pregnancy the short-day group was transferred to 16 hours light and eight hours dark for the rest of the dry-sow period. Production data were collected for eight months, and the farrowing rate, weaning to oestrus interval, culling rate for fertility problems and the number of live-born piglets were analysed. Seasonal infertility, which had previously affected the herd, was not detected in either group during the follow-up period. The farrowing rate was 90 per cent for both groups. The median weaning to oestrus interval was five days in both lighting regimens with ranges from four to 74 days in the short-day group and three to 55 days in the long-day group. The long-day programme had a positive effect on the weaning to oestrus interval. When the sows were classified as either "normal", with a weaning to oestrus interval of up to 10 days, or "problem" animals, with a weaning to oestrus interval of over 10 days, the short-day programme also had a positive effect. The culling rate for fertility problems was 2.4 per cent for the short-day group and 3.2 per cent for the long-day group (P=0.027). The only significant predictor for the number of live-born piglets was parity (P=0.027).

  18. MEMS analog light processing: an enabling technology for adaptive optical phase control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Knobbe, Jens; Komenda, Ondrej

    2006-01-01

    Various applications in modern optics are demanding for Spatial Light Modulators (SLM) with a true analog light processing capability, e.g. the generation of arbitrary analog phase patterns for an adaptive optical phase control. For that purpose the Fraunhofer IPMS has developed a high-resolution MEMS Micro Mirror Array (MMA) with an integrated active-matrix CMOS address circuitry. The device provides 240 x 200 piston-type mirror elements with 40 μm pixel size, where each of them can be addressed and deflected independently at an 8bit height resolution with a vertical analog deflection range of up to 400 nm suitable for a 2pi phase modulation in the visible. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a direct data feed-through within a closed-loop environment. High-speed data communication is established by an IEEE1394a FireWire interface together with an electronic driving board performing the actual MMA programming and control at a maximum frame rate of up to 500 Hz. Successful application demonstrations have been given in eye aberration correction, coupling efficiency optimization into a monomode fiber, ultra-short laser pulse modulation and diffractive beam shaping. Besides a presentation of the basic device concept the paper will give an overview of the obtained results from these applications.

  19. All-optical liquid crystal spatial light modulators

    NASA Astrophysics Data System (ADS)

    Tabiryan, Nelson; Grozhik, Vladimir; Khoo, Iam Choon; Nersisyan, Sarik R.; Serak, Svetlana

    2003-12-01

    Nonlinear optical processes in liquid crystals (LC) can be used for construction of all-optical spatial light modulators (SLM) where the photosensitivity and phase modulating functions are integrated into a single layer of an LC-material. Such spatial light integrated modulators (SLIMs) cost only a fraction of the conventional LC-SLM and can be used with high power laser radiation due to high transparency of LC materials and absence of light absorbing electrodes on the substrates of the LC-cell constituting the SLIM. Recent development of LC materials the photosensitivity of which is comparable to that of semiconductors has led to using SLIM in schemes of optical anti-jamming, sensor protection, and image processing. All-optical processes add remarkable versatility to the operation of SLIM harnessing the wealth inherent to light-matter interaction phenomena.

  20. Metamaterial devices for molding the flow of diffuse light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wegener, Martin

    2016-09-01

    Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.

  1. Pseudo color ghost coding imaging with pseudo thermal light

    NASA Astrophysics Data System (ADS)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  2. Development of a digital astronomical intensity interferometer: laboratory results with thermal light

    NASA Astrophysics Data System (ADS)

    Matthews, Nolan; Kieda, David; LeBohec, Stephan

    2018-06-01

    We present measurements of the second-order spatial coherence function of thermal light sources using Hanbury-Brown and Twiss interferometry with a digital correlator. We demonstrate that intensity fluctuations between orthogonal polarizations, or at detector separations greater than the spatial coherence length of the source, are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov Telescopes used as star light collectors for stellar intensity interferometry to measure spatial properties of astronomical objects.

  3. Brief report: Exploring the benefits of a peer-tutored physical education programme among high school students with intellectual disability.

    PubMed

    Gobbi, Erica; Greguol, Márcia; Carraro, Attilio

    2018-01-29

    The purpose of this study was to explore possible benefits of a peer-tutored physical education programme (PTPE) in comparison with school physical education (SPE) in high school students with intellectual disability. Nineteen students with intellectual disabilities (15 boys, mean age 17.4 ± 1.7 years) were monitored during three PTPE and three SPE classes. A factorial RM-ANOVA was used to test differences on objective measured physical activity (PA), enjoyment and exertion during the two conditions, considering participants' weight condition as independent factor. During PTPE, participants reported higher light intensity PA, enjoyment and exertion than during SPE. Participants with overweight showed less inactive time and higher light intensity PA during PTPE than during SPE. The peer-tutored programme was beneficial for adolescents with intellectual disability, particularly for those in overweight condition. The higher enjoyment found during PTPE may encourage exercise participation of students with intellectual disability. © 2018 John Wiley & Sons Ltd.

  4. LASERS IN MEDICINE: Determination of the optical characteristics of turbid media by the laser optoacoustic method

    NASA Astrophysics Data System (ADS)

    Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.

    1999-12-01

    A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.

  5. All-optical photochromic spatial light modulators based on photoinduced electron transfer in rigid matrices

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Perry, Joseph W. (Inventor)

    1991-01-01

    A single material (not a multi-element structure) spatial light modulator may be written to, as well as read out from, using light. The device has tailorable rise and hold times dependent on the composition and concentration of the molecular species used as the active components. The spatial resolution of this device is limited only by light diffraction as in volume holograms. The device may function as a two-dimensional mask (transmission or reflection) or as a three-dimensional volume holographic medium. This device, based on optically-induced electron transfer, is able to perform incoherent to coherent image conversion or wavelength conversion over a wide spectral range (ultraviolet, visible, or near-infrared regions).

  6. Blue light filtered white light induces depression-like responses and temporary spatial learning deficits in rats.

    PubMed

    Meng, Qinghe; Lian, Yuzheng; Jiang, Jianjun; Wang, Wei; Hou, Xiaohong; Pan, Yao; Chu, Hongqian; Shang, Lanqin; Wei, Xuetao; Hao, Weidong

    2018-04-18

    Ambient light has a vital impact on mood and cognitive functions. Blue light has been previously reported to play a salient role in the antidepressant effect via melanopsin. Whether blue light filtered white light (BFW) affects mood and cognitive functions remains unclear. The present study aimed to investigate whether BFW led to depression-like symptoms and cognitive deficits including spatial learning and memory abilities in rats, and whether they were associated with the light-responsive function in retinal explants. Male Sprague-Dawley albino rats were randomly divided into 2 groups (n = 10) and treated with a white light-emitting diode (LED) light source and BFW light source, respectively, under a standard 12 : 12 h L/D condition over 30 days. The sucrose consumption test, forced swim test (FST) and the level of plasma corticosterone (CORT) were employed to evaluate depression-like symptoms in rats. Cognitive functions were assessed by the Morris water maze (MWM) test. A multi-electrode array (MEA) system was utilized to measure electro-retinogram (ERG) responses induced by white or BFW flashes. The effect of BFW over 30 days on depression-like responses in rats was indicated by decreased sucrose consumption in the sucrose consumption test, an increased immobility time in the FST and an elevated level of plasma CORT. BFW led to temporary spatial learning deficits in rats, which was evidenced by prolonged escape latency and swimming distances in the spatial navigation test. However, no changes were observed in the short memory ability of rats treated with BFW. The micro-ERG results showed a delayed implicit time and reduced amplitudes evoked by BFW flashes compared to the white flash group. BFW induces depression-like symptoms and temporary spatial learning deficits in rats, which might be closely related to the impairment of light-evoked output signals in the retina.

  7. Design of a Programmable Star Tracker-Based Reference System for a Simulated Spacecraft

    DTIC Science & Technology

    2014-03-27

    This reduces the overall light intensity hitting the sensor, as indicated by the darker color. However, the red and green circles are also forming...may be beneficial on SimSat since we can control the light output depending on the source chosen. It is possible to sacrifice some star light intensity ...could be done to improve accuracy based on what could be controlled and changed easily. 3.2.3.1 Focal Length. The optics portion of the light collection

  8. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  9. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  10. Shaping space programme as a tool for educating youth about architecture

    NASA Astrophysics Data System (ADS)

    Marczak, Piotr

    2017-10-01

    The Polish Architectural Policy’s vision of a systematic promotion of spatial culture has made its way into the national curriculum for 2009 - 2016 designed for various stages of child and teenager education. The objective of this effort was to furnish a basis for a system of architectural education which allows teaching society to be more conscious in their decisions as to spatial order with the effect of improving the quality of our living space. Educating individuals to engage consciously in activities related to the protection of space and transformations taking place within that space requires an understanding of basic issues connected with space, the nature of space and the interrelations of various elements which form it. The “Shaping space” programme under the patronage of the Chamber of Polish Architects is one of the tools dedicated to students of lower and higher secondary schools, designed to assist teachers as architectural educators. The aim of this paper is to present the results of a survey related to the implementation of the programme in Lower Secondary School 3 in Malbork in the years 2013-2016. The programme involved observation of students (of grades 1 to 3) in architecture-oriented classes, assistance for the teacher in the class rooms well as an evaluation of the usefulness of educational materials. A number of problems became evident during the implementation of the “Shaping space” programme which is now available in book form. The size of the book is large enough to discourage any potential readers. The subject matter of the book is not suitable for the intended age group (age: 13-16). Another issue was the teacher’s suitability to conduct this type of class. Class observation in grades 1-3 of the lower secondary school and discussions with teachers in charge of that programme served as a basis for developing our own tools and materials in the form of multimedia presentations, templates and lesson scenarios designed to convey and put in order the knowledge related to spatial planning. The conclusions drawn based on these observations have been used in classes at the Faculty of Architecture of the Gdansk University of Technology with a group of students in the 3rd semester of their MA studies, who have helped to prepare auxiliary materials for teachers conducting this type of programmes in primary schools. The joint effort has produced a dictionary entitled Pomeranian ABC of Space, which is designed as a tool for teachers in their own work related to architectural education.

  11. The Effect of Eradication of Lice on the Occurrence of the Grain Defect Light Flecks and Spots on Cattle Hides

    PubMed Central

    Nafstad, O; Grønstøl, H

    2001-01-01

    The influence of an eradication programme for lice on the prevalence of light flecks and spots on cattle hides was studied in 33 dairy cattle herds during a period of two and a half years. Lice were eradicated from the main group of herds after 9 to 12 months and the quality of the hides before and after treatment was compared. Hides from slaughtered animals were collected during the study period, tanned and examined with special emphasis on the occurrence of the grain damage light flecks and spots. The prevalence of hides without light flecks and spots increased from 24.2% before treatment to 61.6% after treatment. The prevalence of hides free from the damage increased significantly in all examined anatomical regions. The improvement in hide quality was most marked in the shoulders and neck region which corresponded to the major predilection site of cattle lice. The prevalence of hides with light flecks and spots started to decrease in the first period (2–40 days) after eradication. The changes after treatment suggested that most healing process took place over a period of about 4 months. The eradication programme eliminated the seasonal variation in the prevalence of light flecks and spots which was present before treatment. PMID:11455906

  12. Influence of supplementary lighting during artificial scab inoculation tests in an apple breeding programm focused on partial resistance.

    PubMed

    Lefrancq, B; Lateur, M

    2006-01-01

    In 1988, the Department of Biological Control and Plant Genetic Resources at the Walloon Agricultural Research Centre started an apple-breeding programme using local genetic resources and modern varieties. Our objective is to create high quality commercial cultivars with durable resistance to scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha) and canker (Nectria galligena). The breeding strategy is based on crossing old apple cultivars and landraces selected as parents for low disease susceptibility and possessing other desirable horticultural characteristics. The programme aims to develop an early and efficient selection methodology adapted to partial disease resistance. One of the objectives is to define the optimal screening limit for discarding individuals after artificial scab inoculation tests. Working with large populations of seedlings entails spacing the seedling scab tests throughout the year. In order to work during winter, seedlings were grown in controlled cabinet conditions and in a glasshouse with supplementary lighting. To assess the bias introduced by these conditions, two trials were conducted: the first one to compare the influence of both environments on the results of scab inoculation tests, and the second one to assess the influence of the duration of supplementary lighting. The results enabled us to evaluate the limits of artificial cultural systems.

  13. Spatially varying geometric phase in classically entangled vector beams of light

    NASA Astrophysics Data System (ADS)

    King-Smith, Andrew; Leary, Cody

    We present theoretical results describing a spatially varying geometric (Pancharatnam) phase present in vector modes of light, in which the polarization and transverse spatial mode degrees of freedom exhibit classical entanglement. We propose an experimental setup capable of characterizing this effect, in which a vector mode propagates through a Mach-Zehnder interferometer with a birefringent phase retarder present in one arm. Since the polarization state of a classically entangled light beam exhibits spatial variation across the transverse mode profile, the phase retarder gives rise to a spatially varying geometric phase in the beam propagating through it. When recombined with the reference beam from the other interferometer arm, the presence of the geometric phase is exhibited in the resulting interference pattern. We acknowledge funding from the Research Corporation for Science Advancement by means of a Cottrell College Science Award.

  14. Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark.

    PubMed

    Voutchkova, Denitza Dimitrova; Ernstsen, Vibeke; Hansen, Birgitte; Sørensen, Brian Lyngby; Zhang, Chaosheng; Kristiansen, Søren Munch

    2014-09-15

    Iodine is essential for human health. Many countries have therefore introduced universal salt iodising (USI) programmes to ensure adequate intake for the populations. However, little attention has been paid to subnational differences in iodine intake from drinking water caused by naturally occurring spatial variations. To address this issue, we here present the results of a Danish nationwide study of spatial trends of iodine in drinking water and the relevance of these trends for human dietary iodine intake. The data consist of treated drinking water samples from 144 waterworks, representing approx. 45% of the groundwater abstraction for drinking water supply in Denmark. The samples were analysed for iodide, iodate, total iodine (TI) and other major and trace elements. The spatial patterns were investigated with Local Moran's I. TI ranges from <0.2 to 126 μg L(-1) (mean 14.4 μg L(-1), median 11.9 μg L(-1)). Six speciation combinations were found. Half of the samples (n = 71) contain organic iodine; all species were detected in approx. 27% of all samples. The complex spatial variation is attributed both to the geology and the groundwater treatment. TI >40 μg L(-1) originates from postglacial marine and glacial meltwater sand and from Campanian-Maastrichtian chalk aquifers. The estimated drinking water contribution to human intake varies from 0% to >100% of the WHO recommended daily iodine intake for adults and from 0% to approx. 50% for adolescents. The paper presents a new conceptual model based on the observed clustering of high or low drinking-water iodine concentrations, delimiting zones with potentially deficient, excessive or optimal iodine status. Our findings suggest that the present coarse-scale nationwide programme for monitoring the population's iodine status may not offer a sufficiently accurate picture. Local variations in drinking-water iodine should be mapped and incorporated into future adjustment of the monitoring and/or the USI programmes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure

    USGS Publications Warehouse

    Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

    2012-01-01

    Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

  16. Spatial and temporal variability of lightings over Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Matsangouras, J. T.

    2010-09-01

    Lightings are the most powerful and spectacular natural phenomena in the lower atmosphere, being a major cause of storm related deaths. Cloud-to-ground lightning can kill and injure people by direct or indirect means. Lightning affects the many electrochemical systems in the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. In this study, the spatial and temporal variability of recorded lightings over Greece during the period from January 1, 2008 to December 31, 2009, were analyzed. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS) archive dataset. An operational lighting detector network was established in 2007 by HNMS consisted of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. The spatial variability of lightings revealed their incidence within specific geographical sub-regions while the temporal variability concerning the seasonal, monthly and daily distributions resulted in better understanding of the time of lightings’ occurrence. All the analyses were carried out with respect to cloud to cloud, cloud to ground and ground to cloud lightings, within the examined time period.

  17. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies.

    PubMed

    Chastin, Sebastien F M; De Craemer, Marieke; De Cocker, Katrien; Powell, Lauren; Van Cauwenberg, Jelle; Dall, Philippa; Hamer, Mark; Stamatakis, Emmanuel

    2018-04-25

    To assess the relationship between time spent in light physical activity and cardiometabolic health and mortality in adults. Systematic review and meta-analysis. Searches in Medline, Embase, PsycInfo, CINAHL and three rounds of hand searches. Experimental (including acute mechanistic studies and physical activity intervention programme) and observational studies (excluding case and case-control studies) conducted in adults (aged ≥18 years) published in English before February 2018 and reporting on the relationship between light physical activity (<3 metabolic equivalents) and cardiometabolic health outcomes or all-cause mortality. Study quality appraisal with QUALSYST tool and random effects inverse variance meta-analysis. Seventy-two studies were eligible including 27 experimental studies (and 45 observational studies). Mechanistic experimental studies showed that short but frequent bouts of light-intensity activity throughout the day reduced postprandial glucose (-17.5%; 95% CI -26.2 to -8.7) and insulin (-25.1%; 95% CI -31.8 to -18.3) levels compared with continuous sitting, but there was very limited evidence for it affecting other cardiometabolic markers. Three light physical activity programme intervention studies (n ranging from 12 to 58) reduced adiposity, improved blood pressure and lipidaemia; the programmes consisted of activity of >150 min/week for at least 12 weeks. Six out of eight prospective observational studies that were entered in the meta-analysis reported that more time spent in daily light activity reduced risk of all-cause mortality (pooled HR 0.71; 95% CI 0.62 to 0.83). Light-intensity physical activity could play a role in improving adult cardiometabolic health and reducing mortality risk. Frequent short bouts of light activity improve glycaemic control. Nevertheless, the modest volume of the prospective epidemiological evidence base and the moderate consistency between observational and laboratory evidence inhibits definitive conclusions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. MEMS-based tunable gratings and their applications

    NASA Astrophysics Data System (ADS)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  19. MOEMs devices designed and tested for future astronomical instrumentation in space

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Waldis, Severin; Noell, Wilfried; Conedera, Veronique; Fabre, Norbert; Viard, Thierry; Buisset, Christophe

    2017-11-01

    Next generation of astronomical instrumentation for space telescopes requires Micro-Opto-Electro- Mechanical Systems (MOEMS) with remote control capability and cryogenic operation. MOEMS devices have the capability to tailor the incoming light in terms of intensity and object selection with programmable slit masks, in terms of phase and wavefront control with micro-deformable mirrors, and finally in terms of spectrum with programmable diffraction gratings. Applications are multi-object spectroscopy (MOS), wavefront correction and programmable spectrographs. We are engaged since several years in the design, realization and characterization of MOEMS devices suited for astronomical instrumentation.

  20. To nudge or not to nudge: cancer screening programmes and the limits of libertarian paternalism.

    PubMed

    Ploug, Thomas; Holm, Søren; Brodersen, John

    2012-12-01

    'Nudging--and the underlying idea 'libertarian paternalism'--to an increasing degree influences policy thinking in the healthcare sector. This article discusses the influence exerted upon a woman's choice of participation in the Danish breast screening programme in light of 'libertarian paternalism'. The basic tenet of 'libertarian paternalism' is outlined and the relationship between 'libertarian paternalism' and informed consent investigated. Key elements in the process of enrolling women into the Danish mammography screening programme are introduced. It is shown that for several reasons the influence exerted upon women's choices of participation cannot be justified within a welfare-enhancing libertarian paternalistic framework. The article suggests that screening programmes alternatively adopt a liberty-enhancing approach and considers the practical implications of this alternative.

  1. A new spatial integration method for luminous flux determination of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoli; Zhu, Shaolong; Shen, Haiping; Liu, Muqing

    2010-10-01

    Spatial integrated measurement using an integrating sphere is usually used for the luminous flux determination of light sources. Devices using an integrating sphere are bulky for use on a production assembly line. This paper proposes an alternative spatial integration method for accurately measuring the total luminous flux of light-emitting diodes (LEDs) having no backward emission. A compound parabolic concentrator is introduced to collect the light from an LED in conjunction with a detector which in turn measures the luminous flux. The study reported here combines both modeling and experiment to show the applicability of this novel method. The uncertainty in the measurements is then evaluated for the total luminous flux measurement from an LED.

  2. Method and apparatus for two-dimensional spectroscopy

    DOEpatents

    DeCamp, Matthew F.; Tokmakoff, Andrei

    2010-10-12

    Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.

  3. Development of a competency mapping tool for undergraduate professional degree programmes, using mechanical engineering as a case study

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Sheehan, Madoc; Birks, Melanie; Smithson, John

    2018-01-01

    Mapping the curriculum of a professional degree to the associated competency standard ensures graduates have the competence to perform as professionals. Existing approaches to competence mapping vary greatly in depth, complexity, and effectiveness, and a standardised approach remains elusive. This paper describes a new mapping software tool that streamlines and standardises the competency mapping process. The available analytics facilitate ongoing programme review, management, and accreditation. The complete mapping and analysis of an Australian mechanical engineering degree programme is described as a case study. Each subject is mapped by evaluating the amount and depth of competence development present. Combining subject results then enables highly detailed programme level analysis. The mapping process is designed to be administratively light, with aspects of professional development embedded in the software. The effective competence mapping described in this paper enables quantification of learning within a professional degree programme, and provides a mechanism for holistic programme improvement.

  4. Measurement simulation of spatial coherence and density degree by turbulence of aerosol and CO II in atmospheric environment

    NASA Astrophysics Data System (ADS)

    Okayama, Hiroshi; Li, Wei

    2006-09-01

    Atmopheric turbulence is one of the important correction factors to evaluate the earth's surface using a sinsor on a satellite. CO II and aerosol are selected as factors of turbulence. The effects of turbulence caused by CO II and aerosol on the light reflected from the earth's surface are estimated by measuring the degradation of spatial coherence of light in a chamber in which atmospheric turbulence is generated. Dry ice is used to generate carbon dioxide gas. degradation of spatial coherence is measured in relation to the increase of CO II. Turbulence caused by aerosol is measured by density of smoke cigarettes. The spatial coherence of light in the chamber degrades in relation to the increase of aerosol and as a result the turbulence increases. The relation between the turbulence and the degree of spatial coherence is explained in a formula.

  5. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  6. Coding/decoding two-dimensional images with orbital angular momentum of light.

    PubMed

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  7. Optical programmable Boolean logic unit.

    PubMed

    Chattopadhyay, Tanay

    2011-11-10

    Logic units are the building blocks of many important computational operations likes arithmetic, multiplexer-demultiplexer, radix conversion, parity checker cum generator, etc. Multifunctional logic operation is very much essential in this respect. Here a programmable Boolean logic unit is proposed that can perform 16 Boolean logical operations from a single optical input according to the programming input without changing the circuit design. This circuit has two outputs. One output is complementary to the other. Hence no loss of data can occur. The circuit is basically designed by a 2×2 polarization independent optical cross bar switch. Performance of the proposed circuit has been achieved by doing numerical simulations. The binary logical states (0,1) are represented by the absence of light (null) and presence of light, respectively.

  8. Deciphering the Genetic Programme Triggering Timely and Spatially-Regulated Chitin Deposition

    PubMed Central

    Rotstein, Bárbara; Casali, Andreu; Llimargas, Marta

    2015-01-01

    Organ and tissue formation requires a finely tuned temporal and spatial regulation of differentiation programmes. This is necessary to balance sufficient plasticity to undergo morphogenesis with the acquisition of the mature traits needed for physiological activity. Here we addressed this issue by analysing the deposition of the chitinous extracellular matrix of Drosophila, an essential element of the cuticle (skin) and respiratory system (tracheae) in this insect. Chitin deposition requires the activity of the chitin synthase Krotzkopf verkehrt (Kkv). Our data demonstrate that this process equally requires the activity of two other genes, namely expansion (exp) and rebuf (reb). We found that Exp and Reb have interchangeable functions, and in their absence no chitin is produced, in spite of the presence of Kkv. Conversely, when Kkv and Exp/Reb are co-expressed in the ectoderm, they promote chitin deposition, even in tissues normally devoid of this polysaccharide. Therefore, our results indicate that both functions are not only required but also sufficient to trigger chitin accumulation. We show that this mechanism is highly regulated in time and space, ensuring chitin accumulation in the correct tissues and developmental stages. Accordingly, we observed that unregulated chitin deposition disturbs morphogenesis, thus highlighting the need for tight regulation of this process. In summary, here we identify the genetic programme that triggers the timely and spatially regulated deposition of chitin and thus provide new insights into the extracellular matrix maturation required for physiological activity. PMID:25617778

  9. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    NASA Astrophysics Data System (ADS)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  10. What aspects of vision facilitate haptic processing?

    PubMed

    Millar, Susanna; Al-Attar, Zainab

    2005-12-01

    We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.

  11. Biphoton Generation Driven by Spatial Light Modulation: Parallel-to-Series Conversion

    NASA Astrophysics Data System (ADS)

    Zhao, Luwei; Guo, Xianxin; Sun, Yuan; Su, Yumian; Loy, M. M. T.; Du, Shengwang

    2016-05-01

    We demonstrate the generation of narrowband biphotons with controllable temporal waveform by spontaneous four-wave mixing in cold atoms. In the group-delay regime, we study the dependence of the biphoton temporal waveform on the spatial profile of the pump laser beam. By using a spatial light modulator, we manipulate the spatial profile of the pump laser and map it onto the two-photon entangled temporal wave function. This parallel-to-series conversion (or spatial-to-temporal mapping) enables coding the parallel classical information of the pump spatial profile to the sequential temporal waveform of the biphoton quantum state. The work was supported by the Hong Kong RGC (Project No. 601113).

  12. Interdisciplinary science for future governance and management of forests.

    PubMed

    Nordin, Annika; Sandström, Camilla

    2016-02-01

    The sustainable use of forests constitutes one of the great challenges for the future due to forests' large spatial coverage, long-term planning horizons and inclusion of many ecosystem services. The mission of the Future Forests programme is to provide a scientifically robust knowledge base for sustainable governance and management of forests preparing for a future characterized by globalization and climate change. In this introduction to the Special Issue, we describe the interdisciplinary science approach developed in close collaboration with actors in the Future Forests programme, and discuss the potential impacts of this science on society. In addition, we introduce the 13 scientific articles and present results produced by the programme.

  13. The CORSAGE Programme: Continuous Orbital Remote Sensing of Archipelagic Geochemical Effects

    NASA Technical Reports Server (NTRS)

    Acker, J. G.; Brown, C. W.; Hine, A. C.

    1997-01-01

    Current and pending oceanographic remote sensing technology allows the conceptualization of a programme designed to investigate ocean island interactions that could induce short-term nearshore fluxes of particulate organic carbon and biogenic calcium carbonate from pelagic island archipelagoes. These events will influence the geochemistry of adjacent waters, particularly the marine carbon system. Justification and design are provided for a study that would combine oceanographic satellite remote sensing (visible and infrared radiometry, altimetry and scatterometry) with shore-based facilities. A programme incorporating the methodology outlined here would seek to identify the mechanisms that cause such events, assess their geochemical significance, and provide both analytical and predictive capabilities for observations on greater temporal and spatial scales.

  14. Spatial Light Modulators as Optical Crossbar Switches

    NASA Technical Reports Server (NTRS)

    Juday, Richard

    2003-01-01

    A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.

  15. Night Time Light Satellite Data for Evaluating the Socioeconomics in Central Asia

    NASA Astrophysics Data System (ADS)

    Li, S.; Zhang, T.; Yang, Z.; Li, X.; Xu, H.

    2017-09-01

    Using nighttime lights data combined with LandScan population counts and socioeconomic statistics, dynamic change was monitored in the social economy of the five countries in Central Asia, from 1993 to 2012. In addition, the spatial pattern of regional historical development was analyzed, using this data. The countries included in this study were Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan. The economic development in these five Central Asian countries, the movement of the economic center, the distribution of poor areas and the night light development index (NLDI) were studied at a relatively fine spatial scale. In addition, we studied the relationship between the per capita lighting and per capita GDP at the national scale, finding that the per capital lighting correlated with per capita GDP. The results of this study reflect the socioeconomic development of Central Asia but more importantly, show that nighttime light satellite images are an effective tool for monitoring spatial and temporal social economic parameters.

  16. Stand-alone scattering optical device using holographic photopolymer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Jongchan; Lee, KyeoReh; Park, YongKeun

    2016-03-01

    When a light propagates through highly disordered medium, its optical parameters such as amplitude, phase and polarization states are completely scrambled because of multiple scattering events. Since the multiple scattering is a fundamental optical process that contains extremely high degrees of freedom, optical information of a transmitted light is totally mingled. Until recently, the presence of multiple scattering in an inhomogeneous medium is considered as a major obstacle when manipulating a light transmitting through the medium. However, a recent development of wavefront shaping techniques enable us to control the propagation of light through turbid media; a light transmitting through a turbid medium can be effectively controlled by modulating the spatial profile of the incident light using spatial light modulator. In this work, stand-alone scattering optical device is proposed; a holographic photopolymer film, which is much economic compared to the other digital spatial light modulators, is used to record and reconstruct permanent wavefront to generate optical field behind a scattering medium. By employing our method, arbitrary optical field can be generated since the scattering medium completely mixes all the optical parameters which allow us to access all the optical information only by modulating spatial phase profile of the impinging wavefront. The method is experimentally demonstrated in both the far-field and near-field regime where it shows promising fidelity and stability. The proposed stand-alone scattering optical device will opens up new avenues for exploiting the randomness inherent in disordered medium.

  17. Dual-domain point diffraction interferometer

    DOEpatents

    Naulleau, Patrick P.; Goldberg, Kenneth Alan

    2000-01-01

    A hybrid spatial/temporal-domain point diffraction interferometer (referred to as the dual-domain PS/PDI) that is capable of suppressing the scattered-reference-light noise that hinders the conventional PS/PDI is provided. The dual-domain PS/PDI combines the separate noise-suppression capabilities of the widely-used phase-shifting and Fourier-transform fringe pattern analysis methods. The dual-domain PS/PDI relies on both a more restrictive implementation of the image plane PS/PDI mask and a new analysis method to be applied to the interferograms generated and recorded by the modified PS/PDI. The more restrictive PS/PDI mask guarantees the elimination of spatial-frequency crosstalk between the signal and the scattered-light noise arising from scattered-reference-light interfering with the test beam. The new dual-domain analysis method is then used to eliminate scattered-light noise arising from both the scattered-reference-light interfering with the test beam and the scattered-reference-light interfering with the "true" pinhole-diffracted reference light. The dual-domain analysis method has also been demonstrated to provide performance enhancement when using the non-optimized standard PS/PDI design. The dual-domain PS/PDI is essentially a three-tiered filtering system composed of lowpass spatial-filtering the test-beam electric field using the more restrictive PS/PDI mask, bandpass spatial-filtering the individual interferogram irradiance frames making up the phase-shifting series, and bandpass temporal-filtering the phase-shifting series as a whole.

  18. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  19. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Oksanen, Jani

    2017-02-01

    Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.

  20. Multiplexing 200 spatial modes with a single hologram

    NASA Astrophysics Data System (ADS)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  1. Optical Radiation from Integer Quantum Hall States in Dirac Materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael; Taylor, Jacob; Ghaemi, Pouyan; Hafezi, Mohammad

    Quantum Hall systems exhibit topologically protected edge states, which can have a macroscopic spatial extent. Such edge states provide a unique opportunity to study a quantum emitter whose size far exceeds the wavelength of emitted light. To better understand this limit, we theoretically characterize the optical radiation from integer quantum Hall states in two-dimensional Dirac materials. We show that the scattered light from the bulk reflects the spatial profile of the wavefunctions, enabling spatial imaging of the disorder landscape. We find that the radiation from the edge states are characterized by the presence of large multipole moments in the far-field. This multipole radiation arises from the transfer of angular momentum from the electrons into the scattered light, enabling the generation of coherent light with high orbital angular momentum.

  2. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less

  3. A Study on Quality of Public and Private Funded B.Ed Programme in Northern Region Based on Perception of Teacher Trainees with Regard to Learning Enhancement

    ERIC Educational Resources Information Center

    Barua, Sukti

    2015-01-01

    One of the key areas of a secondary teacher education programme is to train and prepare teacher trainees to function and carry out their responsibilities with commitment and most importantly as professionals. In the light of this, it is crucial for all teacher education institutions to visualize and share a common goal towards teacher preparation.…

  4. INFOMAR - Ireland's National Seabed Mapping Programme: A Tool For Marine Spatial Planning

    NASA Astrophysics Data System (ADS)

    Furey, T. M.

    2016-02-01

    INFOMAR is Ireland's national seabed mapping programme and is a key action in the national integrated marine plan, Harnessing Our Ocean Wealth. It comprises a multi-platform approach to delivering marine integrated mapping in 2 phases, over a projected 20 year timeline (2006-2026). The programme has three work strands; Data Acquisition, Data Exchange and Integration, and Value Added Exploitation. The Data Acquisition strand includes collection of hydrographic, oceanographic, geological, habitat and heritage datasets that will underpin future sustainable development and management of Ireland's marine resource. INFOMAR outputs are delivered through the Data Exchange and Integration strand. Uses of these outputs are wide ranging and multipurpose, from management plans for fisheries, aquaculture and coastal protection works, to environmental impact assessments, ocean renewable development and integrated coastal zone management. In order to address the evolution and diversification of maritime user requirements, the programme has realigned and developed outputs and new products, in part, through an innovative research funding initiative. Development is also fostered through the Value Added Exploitation strand. INFOMAR outputs and products serve to underpin delivery of Ireland's statutory obligations and enhance compliance with EU and national legislation. This is achieved through co-operation with the agencies responsible for supporting Ireland's international obligations and for the implementation of marine spatial planning. A strategic national seabed mapping programme such as INFOMAR, provides a critical baseline dataset which underpins development of the marine economy, and improves our understanding of the response of marine systems to pressures, and the effect of cumulative impacts. This paper will focus on the evolution and scope of INFOMAR, and look at examples of outputs being harnessed to serve approaches to the management of activities having an impact on the marine environment.

  5. Disease Control in Wildlife: Evaluating a Test and Cull Programme for Bovine Tuberculosis in African Buffalo.

    PubMed

    le Roex, N; Cooper, D; van Helden, P D; Hoal, E G; Jolles, A E

    2016-12-01

    Providing an evidence base for wildlife population management is difficult, due to limited opportunities for experimentation and study replication at the population level. We utilized an opportunity to assess the outcome of a test and cull programme aimed at limiting the spread of Mycobacterium bovis in African buffalo. Buffalo act as reservoirs of M. bovis, the causative agent of bovine tuberculosis (BTB), which can have major economic, ecological and public health impacts through the risk of infection to other wildlife species, livestock and surrounding communities. BTB prevalence data were collected in conjunction with disease control operations in Hluhluwe-iMfolozi Park, South Africa, from 1999 to 2006. A total of 4733 buffalo (250-950 per year) were tested for BTB using the single comparative intradermal tuberculin (SCIT) test, with BTB-positive animals culled, and negative animals released. BTB prevalence was spatially and temporally variable, ranging from 2.3% to 54.7%. Geographic area was a strong predictor of BTB transmission in HiP, owing to relatively stable herds and home ranges. Herds experiencing more intensive and frequent captures showed reduced per capita disease transmission risk and less increase in herd prevalence over time. Disease hot spots did not expand spatially over time, and BTB prevalence in all but the hot spot areas was maintained between 10% and 15% throughout the study period. Our data suggest that HiP's test and cull programme was effective at reducing BTB transmission in buffalo, with capture effort and interval found to be the crucial components of the programme. The programme was thus successful with respect to the original goals; however, there are additional factors that should be considered in future cost/benefit analyses and decision-making. These findings may be utilized and expanded in future collaborative work between wildlife managers, veterinarians and scientists, to optimize wildlife disease control programmes and mitigate conflict at the interface of conservation, agricultural and urban areas. © 2015 Blackwell Verlag GmbH.

  6. Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.

    1999-01-01

    We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of data from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes, particularly regarding the trade-off between precision and potential bias of parameter estimates at varying spatial scales.

  7. Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.

    1999-01-01

    We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of date from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes particularly regarding the trade-off between precison and potential bias o parameter estimates at varying spatial scales.

  8. Programmable bioelectronics in a stimuli-encoded 3D graphene interface

    NASA Astrophysics Data System (ADS)

    Parlak, Onur; Beyazit, Selim; Tse-Sum-Bui, Bernadette; Haupt, Karsten; Turner, Anthony P. F.; Tiwari, Ashutosh

    2016-05-01

    The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with `built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e. ``OR'' and ``AND'') based on enzymatic communications to deliver logic operations.The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with `built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e. ``OR'' and ``AND'') based on enzymatic communications to deliver logic operations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02355j

  9. Preliminary Results on Luminaire Designs for Hybrid Solar Lighting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, D.D.

    2001-06-15

    We report on the design of two hybrid lighting luminaires that blend light from a fiber optic end-emitted solar source with electric T8 fluorescent lamps. Both designs involve the retrofit of a commercially-available recessed fluorescent luminaire with minimal reductions in the original luminaire's optical efficiency. Two methods for high-angle dispersion of fiber optic end-emitted solar light are described and the resulting spatial intensity distributions, simulated using ZEMAX, are compared with standard cylindrical fluorescent tubes. Differences in spatial intensity distribution are qualitatively characterized and potential design improvements discussed.

  10. A Programmable Optical Stimulator for the Drosophila Eye.

    PubMed

    Chen, Xinping; Leon-Salas, Walter D; Zigon, Taylor; Ready, Donald F; Weake, Vikki M

    2017-10-01

    A programmable optical stimulator for Drosophila eyes is presented. The target application of the stimulator is to induce retinal degeneration in fly photoreceptor cells by exposing them to light in a controlled manner. The goal of this work is to obtain a reproducible system for studying age-related changes in susceptibility to environmental ocular stress. The stimulator uses light emitting diodes and an embedded computer to control illuminance, color (blue or red) and duration in two independent chambers. Further, the stimulator is equipped with per-chamber light and temperature sensors and a fan to monitor light intensity and to control temperature. An ON/OFF temperature control implemented on the embedded computer keeps the temperature from reaching levels that will induce the heat shock stress response in the flies. A custom enclosure was fabricated to house the electronic components of the stimulator. The enclosure provides a light-impermeable environment that allows air flow and lets users easily load and unload fly vials. Characterization results show that the fabricated stimulator can produce light at illuminances ranging from 0 to 16000 lux and power density levels from 0 to 7.2 mW/cm 2 for blue light. For red light the maximum illuminance is 8000 lux which corresponds to a power density of 3.54 mW/cm 2 . The fans and the ON/OFF temperature control are able to keep the temperature inside the chambers below 28.17°C. Experiments with white-eye male flies were performed to assess the ability of the fabricated simulator to induce blue light-dependent retinal degeneration. Retinal degeneration is observed in flies exposed to 8 hours of blue light at 7949 lux. Flies in a control experiment with no light exposure show no retinal degeneration. Flies exposed to red light for the similar duration and light intensity (8 hours and 7994 lux) do not show retinal degeneration either. Hence, the fabricated stimulator can be used to create environmental ocular stress using blue light.

  11. A hybrid silicon membrane spatial light modulator for optical information processing

    NASA Technical Reports Server (NTRS)

    Pape, D. R.; Hornbeck, L. J.

    1984-01-01

    A new two dimensional, fast, analog, electrically addressable, silicon based membrane spatial light modulator (SLM) was developed for optical information processing applications. Coherent light reflected from the mirror elements is phase modulated producing an optical Fourier transform of an analog signal input to the device. The DMD architecture and operating parameters related to this application are presented. A model is developed that describes the optical Fourier transform properties of the DMD.

  12. Ghost Imaging without Discord

    PubMed Central

    Shapiro, Jeffrey H.; Venkatraman, Dheera; Wong, Franco N. C.

    2013-01-01

    Ragy and Adesso argue that quantum discord is involved in the formation of a pseudothermal ghost image. We show that quantum discord plays no role in spatial light modulator ghost imaging, i.e., ghost-image formation based on structured illumination realized with laser light that has undergone spatial light modulation by the output from a pseudorandom number generator. Our analysis thus casts doubt on the degree to which quantum discord is necessary for ghost imaging. PMID:23673426

  13. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  14. VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.

    2015-03-01

    The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  15. Novel microfabrication stage allowing for one-photon and multi-photon light assisted molecular immobilization and for multi-photon microscope

    NASA Astrophysics Data System (ADS)

    Gonçalves, Odete; Snider, Scott; Zadoyan, Ruben; Nguyen, Quoc-Thang; Vorum, Henrik; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2017-02-01

    Light Assisted Molecular Immobilization (LAMI) results in spatially oriented and localized covalent coupling of biomolecules onto thiol reactive surfaces. LAMI is possible due to the conserved spatial proximity between aromatic residues and disulfide bridges in proteins. When aromatic residues are excited with UV light (275-295nm), disulphide bridges are disrupted and the formed thiol groups covalently bind to surfaces. Immobilization hereby reported is achieved in a microfabrication stage coupled to a fs-laser, through one- or multi-photon excitation. The fundamental 840nm output is tripled to 280nm and focused onto the sample, leading to one-photon excitation and molecular immobilization. The sample rests on a xyz-stage with micrometer step resolution and is illuminated according to a pattern uploaded to the software controlling the stage and the shutter. Molecules are immobilized according to such pattern, with micrometer spatial resolution. Spatial masks inserted in the light path lead to light diffraction patterns used to immobilize biomolecules with submicrometer spatial resolution. Light diffraction patterns are imaged by an inbuilt microscope. Two-photon microscopy and imaging of the fluorescent microbeads is shown. Immobilization of proteins, e.g. C-reactive protein, and of an engineered molecular beacon has been successfully achieved. The beacon was coupled to a peptide containing a disulfide bridge neighboring a tryptophan residue, being this way possible to immobilize the beacon on a surface using one-photon LAMI. This technology is being implemented in the creation of point-of-care biosensors aiming at the detection of cancer and cardiovascular disease markers.

  16. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The spatial behavior of nonclassical light

    NASA Astrophysics Data System (ADS)

    Kolobov, Mikhail I.

    1999-10-01

    Nonclassical effects such as squeezing, antibunching, and sub-Poissonian statistics of photons have been attracting attention in quantum optics over the last decade. Up to now most theoretical and experimental investigations have been carried out exclusively in the time domain while neglecting the spatial aspects by considering only one spatial mode of the electromagnetic field. In many situations such an approximation is well justified. There are, however, problems that do not allow in principle a single-mode consideration. This is the case when one wants to investigate the quantum fluctuations of light at different spatial points in the plane perpendicular to the direction of propagation of the light beam. Such an investigation requires a complete description of quantum fluctuations of light in both time and space and cannot be done within a single-mode theory. This space-time description brings about a natural generalization into the spatial domain of such notions as the standard quantum limit, squeezing, antibunching, etc. It predicts, for example, the possibility of generating a light beam with sub-Poissonian statistics of photons not only in time but also in the beam's transverse plane. Of particular relevance to the applications is a situation in which the cross section of the light beam contains several nonoverlapping areas with sub-Poissonian statistics of photons in each. Photodetection of such a beam produces several sub-shot-noise photocurrents depending on the number of independent areas with sub-Poissonian statistics. This is in marked contrast to the case of a single-mode sub-Poissonian light beam in which any attempt to collect light from only a part of the beam deteriorates the degree of shot-noise reduction. This property of multimode squeezed light opens a range of interesting new applications in optical imaging, optical parallel processing of information, parallel computing, and many other areas in which it is desirable to have a light beam with regular photon statistics across its transverse area. The aim of this review is to describe the recent development in this branch of quantum optics.

  18. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  19. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE PAGES

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; ...

    2017-07-31

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  20. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    PubMed Central

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel; Kerfeld, Cheryl A.; Ducat, Daniel C.

    2017-01-01

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering. PMID:28824573

  1. CEL-1 Lighting Computer Program - Programmer’s Guide.

    DTIC Science & Technology

    1983-01-01

    COMPLETING FORM I REPORT NumeR .2 GOUT ACCESSION NO. 1. RECIPIENT’S CATALOG NUMBER CR 83.009� 4TITLE (Id Subt.II.) F HIf REOTAPIDCVRD CEL-1 Light...contribution due to the "bright spots" gene - rated in OVLY20 may be considered the "first bounce" effect. The ceiling contribution computed here in

  2. Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.

    PubMed

    Stöckl, Anna Lisa; O'Carroll, David Charles; Warrant, Eric James

    2016-03-21

    Most of the world's animals are active in dim light and depend on good vision for the tasks of daily life. Many have evolved visual adaptations that permit a performance superior to that of manmade imaging devices [1]. In insects, a major model visual system, nocturnal species show impressive visual abilities ranging from flight control [2, 3], to color discrimination [4, 5], to navigation using visual landmarks [6-8] or dim celestial compass cues [9, 10]. In addition to optical adaptations that improve their sensitivity in dim light [11], neural summation of light in space and time-which enhances the coarser and slower features of the scene at the expense of noisier finer and faster features-has been suggested to improve sensitivity in theoretical [12-14], anatomical [15-17], and behavioral [18-20] studies. How these summation strategies function neurally is, however, presently unknown. Here, we quantified spatial and temporal summation in the motion vision pathway of a nocturnal hawkmoth. We show that spatial and temporal summation combine supralinearly to substantially increase contrast sensitivity and visual information rate over four decades of light intensity, enabling hawkmoths to see at light levels 100 times dimmer than without summation. Our results reveal how visual motion is calculated neurally in dim light and how spatial and temporal summation improve sensitivity while simultaneously maximizing spatial and temporal resolution, thus extending models of insect motion vision derived predominantly from diurnal flies. Moreover, the summation strategies we have revealed may benefit manmade vision systems optimized for variable light levels [21]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode.

    PubMed

    Garcia-Sucerquia, Jorge

    2013-01-01

    By engineering the light from a light-emitting diode (LED) the noises present in digital lensless holographic microscopy (DLHM) are reduced. The partially coherent light from an LED is tailored to produce a spherical wavefront with limited coherence time and the spatial coherence needed by DLHM to work. DLHM with this engineered light source is used to image biological samples that cover areas of the order of mm(2). The ratio between the diameter of the area that is almost coherently illuminated to the diameter of the illumination area is utilized as parameter to quantify the performance of the DLHM with the engineered LED light source. Experimental results show that while the noises can be reduced effectively the spatial resolution can be kept in the micrometer range.

  4. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  5. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].

    PubMed

    Soto, Juan M; Rodrigo, José A; Alieva, Tatiana

    2018-01-01

    Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

  6. Spatial resolution limitation of liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.

    2004-10-01

    The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.

  7. Topography and refractometry of nanostructures using spatial light interference microscopy.

    PubMed

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  8. Controlled supercontinua via spatial beam shaping

    NASA Astrophysics Data System (ADS)

    Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.

    2018-06-01

    Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.

  9. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber

    PubMed Central

    Pisanello, Marco; Oldenburg, Ian A.; Sileo, Leonardo; Markowitz, Jeffrey E.; Peterson, Ralph E.; Della Patria, Andrea; Haynes, Trevor M.; Emara, Mohamed S.; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L.

    2017-01-01

    Optogenetics promises spatiotemporal precise control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons when compared to the standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs. PMID:28628101

  10. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber.

    PubMed

    Pisanello, Ferruccio; Mandelbaum, Gil; Pisanello, Marco; Oldenburg, Ian A; Sileo, Leonardo; Markowitz, Jeffrey E; Peterson, Ralph E; Della Patria, Andrea; Haynes, Trevor M; Emara, Mohamed S; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L

    2017-08-01

    Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.

  11. Elimination of coherent noise in a coherent light imaging system

    NASA Technical Reports Server (NTRS)

    Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.

    1970-01-01

    Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.

  12. Light-driven OR and XOR programmable chemical logic gates.

    PubMed

    Szaciłowski, Konrad; Macyk, Wojciech; Stochel, Grazyna

    2006-04-12

    Photoelectrodes made of nanocrystalline titanium dioxide modified with various pentacyanoferrates exhibit unique photoelectrochemical properties; photocurrent direction can be switched from anodic to cathodic and vice versa upon changes in photoelectrode potential and incident light wavelength (PhotoElectrochemical Photocurrent Switching, PEPS effect). At certain potentials, anodic photocurrent generated upon UV irradiation has the same intensity as the cathodic photocurrent generated upon visible irradiation. Under these conditions, simultaneous irradiation with UV and visible light results in compensation of anodic and cathodic photocurrents, and zero net photocurrent is observed. This process can be used for construction of unique light-driven chemical logic gates.

  13. Evaluation of Return to Practice: the views of nurse returnees from three NHS Hospital Trusts.

    PubMed

    Barriball, K Louise; Coopamah, Vinoda; Roberts, Julia; Watts, Suzanne

    2007-05-01

    Exploration of the views and experiences of returnees on a Return to Practice programme based in three NHS Hospital Trusts. In the light of nursing shortages in Britain, there is an ongoing need to encourage nurses to re-enter the profession through Return to Practice programmes. In order to maximize returnees' participation in the nursing workforce; however, evaluation of the effectiveness of Return to Practice programmes is necessary. 17 returnees were recruited to the study completing self-report questionnaires at programme commencement and participating in focus group discussions on programme completion. Three key issues emerged from the data: the varied personal circumstances and professional histories of returnees; the challenge of providing adequate support in practice that reflected returnees' individual needs and aspirations and the importance of flexible employment opportunities to meet returnees' expectations of an appropriate work life balance. It is important that any schemes to attract nurses back to the profession are targeted at their specific needs.

  14. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  15. Super-resolution optical microscopy for studying membrane structure and dynamics.

    PubMed

    Sezgin, Erdinc

    2017-07-12

    Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.

  16. Part 3 Specialized aspects of GIS and spatial analysis . Garage band science and dynamic spatial models

    NASA Astrophysics Data System (ADS)

    Box, Paul W.

    GIS and spatial analysis is suited mainly for static pictures of the landscape, but many of the processes that need exploring are dynamic in nature. Dynamic processes can be complex when put in a spatial context; our ability to study such processes will probably come with advances in understanding complex systems in general. Cellular automata and agent-based models are two prime candidates for exploring complex spatial systems, but are difficult to implement. Innovative tools that help build complex simulations will create larger user communities, who will probably find novel solutions for understanding complexity. A significant source for such innovations is likely to be from the collective efforts of hobbyists and part-time programmers, who have been dubbed ``garage-band scientists'' in the popular press.

  17. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    NASA Astrophysics Data System (ADS)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  18. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  19. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  20. Compulsory service programmes for recruiting health workers in remote and rural areas: do they work?

    PubMed Central

    Mullan, Fitzhugh; Payne, Perry W; Ross, Heather

    2010-01-01

    Abstract Compulsory service programmes have been used worldwide as a way to deploy and retain a professional health workforce within countries. Other names for these programmes include ”obligatory”, ”mandatory”, ”required” and ”requisite.” All these different programme names refer to a country’s law or policy that governs the mandatory deployment and retention of a heath worker in the underserved and/or rural areas of the country for a certain period of time. This study identified three different types of compulsory service programmes in 70 countries. These programmes are all governed by some type of regulation, ranging from a parliamentary law to a policy within the ministry of health. Depending on the country, doctors, nurses, midwives and all types of professional allied health workers are required to participate in the programme. Some of the compliance-enforcement measures include withholding full registration until obligations are completed, withholding degree and salary, or imposing large fines. This paper aims to explain these programmes more clearly, to identify countries that have or had such programmes, to develop a typology for the different kinds and to discuss the programmes in the light of important issues that are related to policy concepts and implementation. As governments consider the cost of investment in health professionals’ education, the loss of health professionals to emigration and the lack of health workers in many geographic areas, they are using compulsory service requirements as a way to deploy and retain the health workforce. PMID:20461136

  1. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

    PubMed Central

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040

  2. A fiber-coupled incoherent light source for ultra-precise optical trapping

    NASA Astrophysics Data System (ADS)

    Menke, Tim; Schittko, Robert; Mazurenko, Anton; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Kaufman, Adam M.; Greiner, Markus

    2017-04-01

    The ability to engineer arbitrary optical potentials using spatial light modulation has opened up exciting possibilities in ultracold quantum gas experiments. Yet, despite the high trap quality currently achievable, interference-induced distortions caused by scattering along the optical path continue to impede more sensitive measurements. We present a design of a high-power, spatially and temporally incoherent light source that bears the potential to reduce the impact of such distortions. The device is based on an array of non-lasing semiconductor emitters mounted on a single chip whose optical output is coupled into a multi-mode fiber. By populating a large number of fiber modes, the low spatial coherence of the input light is further reduced due to the differing optical path lengths amongst the modes and the short coherence length of the light. In addition to theoretical calculations showcasing the feasibility of this approach, we present experimental measurements verifying the low degree of spatial coherence achievable with such a source, including a detailed analysis of the speckle contrast at the fiber end. We acknowledge support from the National Science Foundation, the Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program and an Army Research Office MURI program.

  3. Formation of ring-shaped light fields with orbital angular momentum using a modal type liquid crystal spatial modulator

    NASA Astrophysics Data System (ADS)

    Kotova, S. P.; Mayorova, A. M.; Samagin, S. A.

    2018-05-01

    Techniques for forming vortex light fields using a modal type liquid crystal spatial modulator were proposed. An orbital angular momentum of light passing through the modulator or reflecting from it appears as a result of the jump in the profile of phase delay by means of using special configurations of contact electrodes and predetermined values of applying voltages. The features of the generated vortex beams and capabilities for their control were simulated.

  4. Geometrical Reasoning in Wave Situations: The Case of Light Diffraction and Coherent Illumination Optical Imaging

    ERIC Educational Resources Information Center

    Maurines, Laurence

    2010-01-01

    This particular study is part of a research programme on the difficulties encountered by students when learning about wave phenomena in a three-dimensional medium in the absence or presence of obstacles. It focuses on how students reason in situations in which wave optics need to be used: diffraction of light by an aperture, imaging in the…

  5. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    PubMed

    Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B

    2013-01-01

    Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  6. Programmable bioelectronics in a stimuli-encoded 3D graphene interface.

    PubMed

    Parlak, Onur; Beyazit, Selim; Tse-Sum-Bui, Bernadette; Haupt, Karsten; Turner, Anthony P F; Tiwari, Ashutosh

    2016-05-21

    The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with 'built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and temperature responsive compartments, which allow the building of Boolean logic gates (i.e."OR" and "AND") based on enzymatic communications to deliver logic operations.

  7. Strong Interaction Studies with PANDA at FAIR

    NASA Astrophysics Data System (ADS)

    Schönning, Karin

    2016-10-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.

  8. Programmable spectral engine design of hyperspectral image projectors based on digital micro-mirror device (DMD)

    NASA Astrophysics Data System (ADS)

    Wang, Xicheng; Gao, Jiaobo; Wu, Jianghui; Li, Jianjun; Cheng, Hongliang

    2017-02-01

    Recently, hyperspectral image projectors (HIP) have been developed in the field of remote sensing. For the advanced performance of system-level validation, target detection and hyperspectral image calibration, HIP has great possibility of development in military, medicine, commercial and so on. HIP is based on the digital micro-mirror device (DMD) and projection technology, which is capable to project arbitrary programmable spectra (controlled by PC) into the each pixel of the IUT1 (instrument under test), such that the projected image could simulate realistic scenes that hyperspectral image could be measured during its use and enable system-level performance testing and validation. In this paper, we built a visible hyperspectral image projector also called the visible target simulator with double DMDs, which the first DMD is used to product the selected monochromatic light from the wavelength of 410 to 720 um, and the light come to the other one. Then we use computer to load image of realistic scenes to the second DMD, so that the target condition and background could be project by the second DMD with the selected monochromatic light. The target condition can be simulated and the experiment could be controlled and repeated in the lab, making the detector instrument could be tested in the lab. For the moment, we make the focus on the spectral engine design include the optical system, research of DMD programmable spectrum and the spectral resolution of the selected spectrum. The detail is shown.

  9. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging

    PubMed Central

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui

    2015-01-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946

  10. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.

    PubMed

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui

    2015-02-03

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.

  11. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.

    PubMed

    Hof, Kevin S; Bastings, Maartje M C

    2017-06-28

    The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.

  12. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  13. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Das, Abhijit; Boruah, Bosanta R.

    2014-04-01

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  14. Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)

    PubMed Central

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-01

    Spatial Light Interference Microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially-averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures. PMID:20081970

  15. Study on spatial-temporal change of Changsha-Zhuzhou-Xiangtan urban agglomeration based on DMSP / OLS night light data

    NASA Astrophysics Data System (ADS)

    Li, Mao; Li, Lel-in

    2018-03-01

    For the sake of curbing the spreading of Changsha-Zhuzhou-Xiangtan urban agglomeration and spatial disorder in the process of urbanization development on the regional bearing capacity of land resources and ecological environment and assisting to plan the integration process of ChangZhuTan,this paper uses the DMSP/OLS night light data of Chang ZhuTan in 1992 to 2013 to invert the urbanization process index of ChangZhuTan urban agglomeration. Based on the two scales of time and space, this paper analyzes the average index of lights, the speed of urban expansion and urban compactness index et al and studies the temporal and spatial characteristics of ChangZhuTan urban agglomeration in this period.

  16. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-04-01

    A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.

  17. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System

    PubMed Central

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F.; Kim, Chulhong

    2016-01-01

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies. PMID:27731357

  18. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System.

    PubMed

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F; Kim, Chulhong

    2016-10-12

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies.

  19. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    PubMed

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  20. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data

    PubMed Central

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales. PMID:26390037

  1. A programmable light engine for quantitative single molecule TIRF and HILO imaging.

    PubMed

    van 't Hoff, Marcel; de Sars, Vincent; Oheim, Martin

    2008-10-27

    We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective backfocal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescnt-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

  2. Wavefront shaping to correct intraocular scattering

    NASA Astrophysics Data System (ADS)

    Artal, Pablo; Arias, Augusto; Fernández, Enrique

    2018-02-01

    Cataracts is a common ocular pathology that increases the amount of intraocular scattering. It degrades the quality of vision by both blur and contrast reduction of the retinal images. In this work, we propose a non-invasive method, based on wavefront shaping (WS), to minimize cataract effects. For the experimental demonstration of the method, a liquid crystal on silicon (LCoS) spatial light modulator was used for both reproduction and reduction of the realistic cataracts effects. The LCoS area was separated in two halves conjugated with the eye's pupil by a telescope with unitary magnification. Thus, while the phase maps that induced programmable amounts of intraocular scattering (related to cataract severity) were displayed in a one half of the LCoS, sequentially testing wavefronts were displayed in the second one. Results of the imaging improvements were visually evaluated by subjects with no known ocular pathology seeing through the instrument. The diffracted intensity of exit pupil is analyzed for the feedback of the implemented algorithms in search for the optimum wavefront. Numerical and experimental results of the imaging improvements are presented and discussed.

  3. The spatial comfort study of shophouse at Kampung Madras

    NASA Astrophysics Data System (ADS)

    Ginting, Y. U. U.; Ginting, N.; Zahrah, W.

    2018-03-01

    This Research comes from the increasing quantity of shophouse in downtown Medan and the suburban area. The condition of shophouse tend to have narrowly spaced rooms, the middle area of the house are poorly lighted, and lots of space left unused. This research is supported by many spatial issues from previous studies. This study is conducted to determine the level of comfort of shophouse as a function of living space and focused on the spatial aspect namely anthropometry, indoor space circulation, space requirement and function, spatial design and indoor visual. This study uses the descriptive method with the qualitative and quantitative approach. Data collection technique is done by field observation, questionnaire method is also used to get the respondent perception of the spatial comfort of a shophouse. The result indicates that the level of spatial comfort of the shophouse is an uncomfort. So the improvements in the circulation of access to the building, spatial design, lighting, and aeration are needed to improve the spatial comfort of a shophouse.

  4. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    NASA Astrophysics Data System (ADS)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  5. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits.

    PubMed

    Cai, Yijun; Zhu, Jinfeng; Liu, Qing Huo; Lin, Timothy; Zhou, Jianyang; Ye, Longfang; Cai, Zhiping

    2015-12-14

    Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.

  6. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  7. Contrast sensitivity to spatial gratings in moderate and dim light conditions in patients with diabetes in the absence of diabetic retinopathy.

    PubMed

    Safi, Sare; Rahimi, Anoushiravan; Raeesi, Afsaneh; Safi, Hamid; Aghazadeh Amiri, Mohammad; Malek, Mojtaba; Yaseri, Mehdi; Haeri, Mohammad; Middleton, Frank A; Solessio, Eduardo; Ahmadieh, Hamid

    2017-01-01

    To evaluate the ability of contrast sensitivity (CS) to discriminate loss of visual function in diabetic subjects with no clinical signs of retinopathy relative to that of normal subjects. In this prospective cross-sectional study, we measured CS in 46 diabetic subjects with a mean age of 48±6 years, a best-corrected visual acuity of 20/20 and no signs of diabetic retinopathy. The CS in these subjects was compared with CS measurements in 46 normal control subjects at four spatial frequencies (3, 6, 12, 18 cycles per degree) under moderate (500 lux) and dim (less than 2 lux) background light conditions. CS was approximately 0.16 log units lower in patients with diabetes relative to controls both in moderate and in dim background light conditions. Logistic regression classification and receiver operating characteristic curve analysis indicated that CS analysis using two light conditions was more accurate (0.78) overall compared with CS analysis using only a single illumination condition (accuracy values were 0.67 and 0.70 in moderate and dim light conditions, respectively). Our results showed that patients with diabetes without clinical signs of retinopathy exhibit a uniform loss in CS at all spatial frequencies tested. Measuring the loss in CS at two spatial frequencies (3 and 6 cycles per degree) and two light conditions (moderate and dim) is sufficiently robust to classify diabetic subjects with no retinopathy versus control subjects.

  8. Optimization of freeform lightpipes for light-emitting-diode projectors.

    PubMed

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  9. Optimization of freeform lightpipes for light-emitting-diode projectors

    NASA Astrophysics Data System (ADS)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  10. Phase elements by means of a photolithographic system employing a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Aubrecht, Ivo; Miler, Miroslav; Pala, Jan

    2003-07-01

    The system employs a spatial light modulator (SLM), between a pair of crossed polarizers, and an electronic shutter. Transmission of the SLM with the polarizers is controlled by graphical software that defines which pixels are fully transparent and which are fully opaque. While a particular binary graphics is on the SLM the electronic shutter allows light to pass for a certain time. The graphics is imaged, by an objective, onto a photoresist plate. A mercury lamp is used as a light source. The graphics changes after each exposition and the whole sequence of images determines the resultant surface-relief modulation.

  11. Simulation of light in-coupling through an aperture probe to investigate light propagation in a thin layer for opto-electronic application

    NASA Astrophysics Data System (ADS)

    Ermes, Markus; Lehnen, Stephan; Cao, Zhao; Bittkau, Karsten; Carius, Reinhard

    2015-06-01

    In thin optoelectronic devices, like organic light emitting diodes (OLED) or thin-film solar cells (TFSC), light propagation, which is initiated by a local point source, is of particular importance. In OLEDs, light is generated in the layer by the luminescence of single molecules, whereas in TFSCs, light is coupled into the devices by scattering at small surface features. In both applications, light propagation within the active layers has a significant impact on the optical device performance. Scanning near-field optical microscopy (SNOM) using aperture probes is a powerful tool to investigate this propagation with a high spatial resolution. Dual-probe SNOM allows simulating the local light generation by an illumination probe as well as the detection of the light propagated through the layer. In our work, we focus on the light propagation in thin silicon films as used in thin-film silicon solar cells. We investigate the light-in-coupling from an illuminating probe via rigorous solution of Maxwell's equations using a Finite-Difference Time-Domain approach, especially to gain insight into the light distribution inside a thin layer, which is not accessible in the experiment. The structures investigated include at and structured surfaces with varying illumination positions and wavelengths. From the performed simulations, we define a "spatial sensitivity" which is characteristic for the local structure and illumination position. This quantity can help to identify structures which are beneficial as well as detrimental to absorption inside the investigated layer. We find a strong dependence of the spatial sensitivity on the surface structure as well as both the absorption coefficient and the probe position. Furthermore, we investigate inhomogeneity in local light propagation resulting from different surface structures and illumination positions.

  12. Relationships between brightness of nighttime lights and population density

    NASA Astrophysics Data System (ADS)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly lit area, relatively large under-estimations would emerge in the urban core regions. Previous studies have shown that GDP, carbon dioxide emission, and electric power consumption strongly correlate to urban population (Ghosh et al., 2010; Sutton et al., 2007; Zhao et al., 2012). Thus, although this study only examined the relationships between brightness of nighttime lights and population density, the results can provide insight for the spatial disaggregations of socioeconomic data (e.g. GDP, carbon dioxide emission, and electric power consumption) using the satellite nighttime light image data. Simply distributing the socioeconomic data to each pixel in proportion to the DN value of the nighttime light images may generate relatively large errors. References Bharit N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT, 2011. Science, 334:1424-1427. Ghosh T, Elvidge CD, Sutton PC, Baugh KE, Ziskin D, Tuttle BT, 2010. Energies, 3:1895-1913. Oda T, Maksyutov S, 2011. Atmospheric Chemistry and Physics, 11:543-556. Sutton PC, Elvidge CD, Ghosh T, 2007. International Journal of Ecological Economics and Statistics, 8:5-21. Zhao N, Ghosh T, Samson EL, 2012. International Journal of Remote sensing, 33:6304-6320.

  13. Research and development on the construction of 2D light-driven droplet manipulation platform based on light modulation of TiOPc impedance

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Chen, Ho-Tsung; Lee, Chih-Kung

    2014-03-01

    The newly developed configuration included adopting the photosensitive electrode material TiOPc (titanyl phthalocyanine) to create electrowetting on dielectric (EWOD) mechanism. With this new development, the electric potential on the surface of TiOPc could be on-line real-time changed and defined spatially by illuminating spatially distributed light beam patterns. We tried to control the polarized droplets in our EWOD devices by using different light intensities. The experimental results clearly demonstrated that the relationship of light intensity and electrowetting phenomena can provide us with a feasible platform to construct optofluidic chip with potential autonomous manipulation of samples for point-of-care home medical detection applications.

  14. Single-poly EEPROM cell with lightly doped MOS capacitors

    DOEpatents

    Riekels, James E [New Hope, MN; Lucking, Thomas B [Maple Grove, MN; Larsen, Bradley J [Mound, MN; Gardner, Gary R [Golden Valley, MN

    2008-05-27

    An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell and a method of operation are disclosed for creating an EEPROM memory cell in a standard CMOS process. A single polysilicon layer is used in combination with lightly doped MOS capacitors. The lightly doped capacitors employed in the EEPROM memory cell can be asymmetrical in design. Asymmetrical capacitors reduce area. Further capacitance variation caused by inversion can also be reduced by using multiple control capacitors. In addition, the use of multiple tunneling capacitors provides the benefit of customized tunneling paths.

  15. White-light diffraction phase microscopy at doubled space-bandwidth product.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel

    2016-12-12

    White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.

  16. Cross-modal detection using various temporal and spatial configurations.

    PubMed

    Schirillo, James A

    2011-01-01

    To better understand temporal and spatial cross-modal interactions, two signal detection experiments were conducted in which an auditory target was sometimes accompanied by an irrelevant flash of light. In the first, a psychometric function for detecting a unisensory auditory target in varying signal-to-noise ratios (SNRs) was derived. Then auditory target detection was measured while an irrelevant light was presented with light/sound stimulus onset asynchronies (SOAs) between 0 and ±700 ms. When the light preceded the sound by 100 ms or was coincident, target detection (d') improved for low SNR conditions. In contrast, for larger SOAs (350 and 700 ms), the behavioral gain resulted from a change in both d' and response criterion (β). However, when the light followed the sound, performance changed little. In the second experiment, observers detected multimodal target sounds at eccentricities of ±8°, and ±24°. Sensitivity benefits occurred at both locations, with a larger change at the more peripheral location. Thus, both temporal and spatial factors affect signal detection measures, effectively parsing sensory and decision-making processes.

  17. Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Krücken, R.; Ulrich, A.; Wieser, J.

    2006-11-01

    Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12keV electron beams at gas pressures from 250to1400hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.

  18. Optics outreach in Irish context

    NASA Astrophysics Data System (ADS)

    McHugh, Emer; Smith, Arlene

    2009-06-01

    The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.

  19. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optimal configuration of optical systems with spatial light modulators

    NASA Astrophysics Data System (ADS)

    Fedorov, Yu V.

    1995-10-01

    A description is given of a novel optical system for optical information processing. An analysis is given of ways of increasing optoenergetic characteristics of optical information processing systems in which use is made of spatial light modulators with phase-relief (in thermoplastic materials) and polarisation (in crystalline structures of the DKDP type) information storage.

  20. Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Min, Eunjung; Kandel, Mikhail E.; Ko, Chemyong J.; Popescu, Gabriel; Jung, Woonggyu; Best-Popescu, Catherine

    2016-12-01

    Brain connectivity spans over broad spatial scales, from nanometers to centimeters. In order to understand the brain at multi-scale, the neural network in wide-field has been visualized in detail by taking advantage of light microscopy. However, the process of staining or addition of fluorescent tags is commonly required, and the image contrast is insufficient for delineation of cytoarchitecture. To overcome this barrier, we use spatial light interference microscopy to investigate brain structure with high-resolution, sub-nanometer pathlength sensitivity without the use of exogenous contrast agents. Combining wide-field imaging and a mosaic algorithm developed in-house, we show the detailed architecture of cells and myelin, within coronal olfactory bulb and cortical sections, and from sagittal sections of the hippocampus and cerebellum. Our technique is well suited to identify laminar characteristics of fiber tract orientation within white matter, e.g. the corpus callosum. To further improve the macro-scale contrast of anatomical structures, and to better differentiate axons and dendrites from cell bodies, we mapped the tissue in terms of its scattering property. Based on our results, we anticipate that spatial light interference microscopy can potentially provide multiscale and multicontrast perspectives of gross and microscopic brain anatomy.

  1. Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors.

    PubMed

    Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-07-08

    We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm(3) by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores.

  2. Aerial projection of three-dimensional motion pictures by electro-holography and parabolic mirrors

    PubMed Central

    Kakue, Takashi; Nishitsuji, Takashi; Kawashima, Tetsuya; Suzuki, Keisuke; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2015-01-01

    We demonstrate an aerial projection system for reconstructing 3D motion pictures based on holography. The system consists of an optical source, a spatial light modulator corresponding to a display and two parabolic mirrors. The spatial light modulator displays holograms calculated by computer and can reconstruct holographic motion pictures near the surface of the modulator. The two parabolic mirrors can project floating 3D images of the motion pictures formed by the spatial light modulator without mechanical scanning or rotating. In this demonstration, we used a phase-modulation-type spatial light modulator. The number of pixels and the pixel pitch of the modulator were 1,080 × 1,920 and 8.0 μm × 8.0 μm, respectively. The diameter, the height and the focal length of each parabolic mirror were 288 mm, 55 mm and 100 mm, respectively. We succeeded in aerially projecting 3D motion pictures of size ~2.5 mm3 by this system constructed by the modulator and mirrors. In addition, by applying a fast computational algorithm for holograms, we achieved hologram calculations at ~12 ms per hologram with 4 CPU cores. PMID:26152453

  3. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  4. Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications.

    PubMed

    Shim, Euijae; Chen, Yu; Masmanidis, Sotiris; Li, Mo

    2016-03-04

    Optimal optogenetic perturbation of brain circuit activity often requires light delivery in a precise spatial pattern that cannot be achieved with conventional optical fibers. We demonstrate an implantable silicon-based probe with a compact light delivery system, consisting of silicon nitride waveguides and grating couplers for out-of-plane light emission with high spatial resolution. 473 nm light is coupled into and guided in cm-long waveguide and emitted at the output grating coupler. Using the direct cut-back and out-scattering measurement techniques, the propagation optical loss of the waveguide is measured to be below 3 dB/cm. The grating couplers provide collimated light emission with sufficient irradiance for neural stimulation. Finally, a probe with multisite light delivery with three output grating emitters from a single laser input is demonstrated.

  5. Holographic Associative Memory System Using A Thresholding Microchannel Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Song, Q. W.; Yu, Francis T.

    1989-05-01

    Experimental implementation of a holographic optical associative memory system using a thresholding microchannel spatial light modulator (MSLM) is presented. The first part of the system is basically a joint transform correlator, in which a liquid crystal light valve is used as a square-law converter for the inner product of the addressing and input memories. The MSLM is used as an active element to recall the associated data. If the device is properly thresholded, the system is capable of improving the quality of the output image.

  6. Graphene Oxide: A Perfect Material for Spatial Light Modulation Based on Plasma Channels

    PubMed Central

    Tan, Chao; Wu, Xinghua; Wang, Qinkai; Tang, Pinghua; Shi, Xiaohui; Zhan, Shiping; Xi, Zaifang; Fu, Xiquan

    2017-01-01

    The graphene oxide (GO) is successfully prepared from a purified natural graphite through a pressurized oxidation method. We experimentally demonstrate that GO as an optical media can be used for spatial light modulation based on plasma channels induced by femtosecond pulses. The modulated beam exhibits good propagation properties in free space. It is easy to realize the spatial modulation on the probe beam at a high concentration of GO dispersion solutions, high power and smaller pulse width of the pump beam. We also find that the spatial modulation on the probe beam can be conveniently adjusted through the power and pulse width of pump lasers, dispersion solution concentration. PMID:28772712

  7. Texture-adaptive hyperspectral video acquisition system with a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Fang, Xiaojing; Feng, Jiao; Wang, Yongjin

    2014-10-01

    We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.

  8. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator.

    PubMed

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-07-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.

  9. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  10. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy

    PubMed Central

    Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari

    2016-01-01

    Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486

  11. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    NASA Astrophysics Data System (ADS)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  12. Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.

    PubMed

    Yoshinobu, Tatsuo; Miyamoto, Ko-Ichiro; Werner, Carl Frederik; Poghossian, Arshak; Wagner, Torsten; Schöning, Michael J

    2017-06-12

    A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

  13. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    PubMed

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.

  14. Optical implementation of inner product neural associative memory

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1995-01-01

    An optical implementation of an inner-product neural associative memory is realized with a first spatial light modulator for entering an initial two-dimensional N-tuple vector and for entering a thresholded output vector image after each iteration until convergence is reached, and a second spatial light modulator for entering M weighted vectors of inner-product scalars multiplied with each of the M stored vectors, where the inner-product scalars are produced by multiplication of the initial input vector in the first iterative cycle (and thresholded vectors in subsequent iterative cycles) with each of the M stored vectors, and the weighted vectors are produced by multiplication of the scalars with corresponding ones of the stored vectors. A Hughes liquid crystal light valve is used for the dual function of summing the weighted vectors and thresholding the sum vector. The thresholded vector is then entered through the first spatial light modulator for reiteration of the process cycle until convergence is reached.

  15. National Electrical Manufacturers Association NU-4 performance evaluation of the PET component of the NanoPET/CT preclinical PET/CT scanner.

    PubMed

    Szanda, Istvan; Mackewn, Jane; Patay, Gergely; Major, Peter; Sunassee, Kavitha; Mullen, Gregory E; Nemeth, Gabor; Haemisch, York; Blower, Philip J; Marsden, Paul K

    2011-11-01

    The NanoPET/CT represents the latest generation of commercial preclinical PET/CT systems. This article presents a performance evaluation of the PET component of the system according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standard. The NanoPET/CT consists of 12 lutetium yttrium orthosilicate:cerium modular detectors forming 1 ring, with 9.5-cm axial coverage and a 16-cm animal port. Each detector crystal is 1.12 × 1.12 × 13 mm, and 1 module contains 81 × 39 of these crystals. An optical light guide transmits the scintillation light to the flat-panel multianode position-sensitive photomultiplier tubes. Analog-to-digital converter cards and a field-programmable gate array-based data-collecting card provide the readout. Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated in accordance with the NEMA NU-4 standard. Energy and temporal resolution measurements and a mouse imaging study were performed in addition to the standard. Energy resolution was 19% at 511 keV. The spatial resolution, measured as full width at half maximum on single-slice rebinning/filtered backprojection-reconstructed images, approached 1 mm on the axis and remained below 2.5 mm in the central 5-cm transaxial region both in the axial center and at one-quarter field of view. The maximum absolute sensitivity for a point source at the center of the field of view was 7.7%. The maximum noise equivalent counting rates were 430 kcps at 36 MBq and 130 kcps at 27 MBq for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients were measured with the image-quality phantom, giving good-quality images. In a mouse study with an (18)F-labeled thyroid-specific tracer, the 2 lobes of the thyroid were clearly distinguishable, despite the small size of this organ. The flexible readout system allowed experiments to be performed in an efficient manner, and the system remained stable throughout. The large number of detector crystals, arranged with a fine pitch, results in excellent spatial resolution, which is the best reported for currently available commercial systems. The absolute sensitivity is high over the field of view. Combined with the excellent image quality, these features make the NanoPET/CT a powerful tool for preclinical research.

  16. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  17. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  18. Programmable dispersion on a photonic integrated circuit for classical and quantum applications.

    PubMed

    Notaros, Jelena; Mower, Jacob; Heuck, Mikkel; Lupo, Cosmo; Harris, Nicholas C; Steinbrecher, Gregory R; Bunandar, Darius; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk

    2017-09-04

    We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit - high-speed quantum communications using temporal-mode-based quantum data locking - and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration.

  19. Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-10-01

    We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

  20. Contrast sensitivity to spatial gratings in moderate and dim light conditions in patients with diabetes in the absence of diabetic retinopathy

    PubMed Central

    Safi, Sare; Rahimi, Anoushiravan; Raeesi, Afsaneh; Safi, Hamid; Aghazadeh Amiri, Mohammad; Malek, Mojtaba; Yaseri, Mehdi; Haeri, Mohammad; Middleton, Frank A; Solessio, Eduardo; Ahmadieh, Hamid

    2017-01-01

    Objective To evaluate the ability of contrast sensitivity (CS) to discriminate loss of visual function in diabetic subjects with no clinical signs of retinopathy relative to that of normal subjects. Research design and methods In this prospective cross-sectional study, we measured CS in 46 diabetic subjects with a mean age of 48±6 years, a best-corrected visual acuity of 20/20 and no signs of diabetic retinopathy. The CS in these subjects was compared with CS measurements in 46 normal control subjects at four spatial frequencies (3, 6, 12, 18 cycles per degree) under moderate (500 lux) and dim (less than 2 lux) background light conditions. Results CS was approximately 0.16 log units lower in patients with diabetes relative to controls both in moderate and in dim background light conditions. Logistic regression classification and receiver operating characteristic curve analysis indicated that CS analysis using two light conditions was more accurate (0.78) overall compared with CS analysis using only a single illumination condition (accuracy values were 0.67 and 0.70 in moderate and dim light conditions, respectively). Conclusions Our results showed that patients with diabetes without clinical signs of retinopathy exhibit a uniform loss in CS at all spatial frequencies tested. Measuring the loss in CS at two spatial frequencies (3 and 6 cycles per degree) and two light conditions (moderate and dim) is sufficiently robust to classify diabetic subjects with no retinopathy versus control subjects. PMID:28878937

  1. Barriers encountered using skill-mix to deliver caries prevention in dental practices.

    PubMed

    Hatim, Eman; Kendall, Nick

    2012-04-01

    This opinion paper provides an analysis of the barriers and successes experienced when developing and implementing a pilot scheme to deliver caries prevention using skill-mix in the National Health Service (NHS) General Dental Services. A training programme was initiated to develop the skills of extended duties dental nurses to deliver fluoride varnish to patients in selected dental practices in Croydon, London, UK. In the light of the evaluation of this programme, a recommendation is made that similar preventive schemes should be delivered in the future within the NHS dental contract.

  2. Antarctica: a review of recent medical research.

    PubMed

    Olson, James J

    2002-10-01

    This article reviews recent developments and areas of research in Antarctic medical science. Nineteen nations are part of the Antarctic treaty and undertake research programmes in Antarctica. Medical science is a small but important part of these programmes. Areas that have been studied include aspects of cold physiology, ultraviolet light effects, endocrine changes (including polar T3 syndrome), alterations in immune function, chronobiology, psychology, microbiology, epidemiology and telemedicine. Antarctica has been recognized as the closest thing on Earth to a testing ground for aspects of space exploration and as such has been termed a space analogue.

  3. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    USGS Publications Warehouse

    Burgess, O.T.; Pine, William E.; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  4. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  5. Freeform array projection

    NASA Astrophysics Data System (ADS)

    Michaelis, D.; Schreiber, P.; Li, C.; Bräuer, A.; Gross, H.

    2015-09-01

    The concept of multichannel array projection is generalized in order to realize an ultraslim, highly efficient optical system for structured illumination with high lumen output, where additionally the Köhler illumination principle is utilized and source light homogenization occurs. The optical system consists of a multitude of neighboring optical channels. In each channel two optical freeforms generate a real or a virtual spatial light pattern and furthermore, the ray directions are modified to enable Köhler illumination of a subsequent projection lens. The internal light pattern may be additionally influenced by absorbing apertures or slides. The projection lens transfers the resulting light pattern to a target, where the total target distribution is produced by superposition of all individual channel output pattern. The optical system without absorbing apertures can be regarded as a generalization of a fly's eye condenser for structured illumination. In this case light pattern is exclusively generated by freeform light redistribution. The commonly occurring blurring effect for freeform beamshaping is reduced due to the creation of a virtual object light structure by means of the two freeform surfaces and its imaging towards the target. But, the remaining blurring inhibits very high spatial frequencies at the target. In order to create target features with very high spatial resolution the absorbing apertures can be utilized. In this case the freeform beamshaping can be used for an enhanced light transmission through the absorbing apertures. The freeform surfaces are designed by a generalized approach of Cartesian oval representation.

  6. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  7. A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging

    PubMed Central

    Hartmann, Sébastien; Elsäßer, Wolfgang

    2017-01-01

    Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737

  8. The effects of age and workload on 3D spatial attention in dual-task driving.

    PubMed

    Pierce, Russell S; Andersen, George J

    2014-06-01

    In the present study we assessed whether the limits in visual-spatial attention associated with aging affect the spatial extent of attention in depth during driving performance. Drivers in the present study performed a car-following and light-detection task. To assess the extent of visual-spatial attention, we compared reaction times and accuracy to light change targets that varied in horizontal position and depth location. In addition, because workload has been identified as a factor that can change the horizontal and vertical extent of attention, we tested whether variability of the lead car speed influenced the extent of spatial attention for younger or older drivers. For younger drivers, reaction time (RT) to light-change targets varied as a function of distance and horizontal position. For older drivers RT varied only as a function of distance. There was a distance by horizontal position interaction for younger drivers but not for older drivers. Specifically, there was no effect of horizontal position at any given level of depth for older drivers. However, for younger drivers there was an effect of horizontal position for targets further in depth but not for targets nearer in depth. With regards to workload, we found no statistically reliable evidence that variability of the lead car speed had an effect on the spatial extent of attention for younger or older drivers. In a control experiment, we examined the effects of depth on light detection when the projected size and position of the targets was constant. Consistent with our previous results, we found that drivers' reaction time to light-change targets varied as a function of distance even when 2D position and size were controlled. Given that depth is an important dimension in driving performance, an important issue for assessing driving safety is to consider the limits of attention in the depth dimension. Therefore, we suggest that future research should consider the importance of depth as a dimension of spatial attention in relation to the assessment of driving performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A simple method for correcting spatially resolved solar intensity oscillation observations for variations in scattered light

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Duvall, T. L., Jr.

    1991-01-01

    A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.

  10. Urban Spatial Pattern and Interaction based on Analysis of Nighttime Remote Sensing Data and Geo-social Media Information

    NASA Astrophysics Data System (ADS)

    Ratnasari, Nila; Dwi Candra, Erika; Herdianta Saputra, Defa; Putra Perdana, Aji

    2016-11-01

    Urban development in Indonesia significantly incerasing in line with rapid development of infrastructure, utility, and transportation network. Recently, people live depend on lights at night and social media and these two aspects can depicted urban spatial pattern and interaction. This research used nighttime remote sensing data with the VIIRS (Visible Infrared Imaging Radiometer Suite) day-night band detects lights, gas flares, auroras, and wildfires. Geo-social media information derived from twitter data gave big picture on spatial interaction from the geospatial footprint. Combined both data produced comprehensive urban spatial pattern and interaction in general for Indonesian territory. The result is shown as a preliminary study of integrating nighttime remote sensing data and geospatial footprint from twitter data.

  11. Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis

    NASA Astrophysics Data System (ADS)

    Manrique, Pedro D.; Caycedo-Soler, Felipe; De Mendoza, Adriana; Rodríguez, Ferney; Quiroga, Luis; Johnson, Neil F.

    Thermal light sources can produce photons with strong spatial correlations. We study the role that these correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between the transversal distance between consecutive absorptions and the efficiency of the photosynthetic process. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display a range where the organism profits maximally from the spatial correlation of the incoming light. By contrast, no maximum is found for membranes with low core-core clustering. We employ a detailed membrane model with state-of-the-art empirical inputs. Our results suggest that the organization of the membrane's antenna complexes may be well-suited to the spatial correlations present in an natural light source. Future experiments will be needed to test this prediction.

  12. Dimensional metrology of micro structure based on modulation depth in scanning broadband light interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.

  13. The experiences of districts in implementing a national incentive programme to promote safe delivery in Nepal

    PubMed Central

    Powell-Jackson, Timothy; Morrison, Joanna; Tiwari, Suresh; Neupane, Basu Dev; Costello, Anthony M

    2009-01-01

    Background Nepal's Safe Delivery Incentive Programme (SDIP) was introduced nationwide in 2005 with the intention of increasing utilisation of professional care at childbirth. It provided cash to women giving birth in a health facility and an incentive to the health provider for each delivery attended, either at home or in the facility. We explored early implementation of the programme at the district-level to understand the factors that have contributed to its low uptake. Methods We conducted in ten study districts a series of key informant interviews and focus group discussions with staff from health facilities and the district health office and other stakeholders involved in implementation. Manual content analysis was used to categorise data under emerging themes. Results Problems at the central level imposed severe constraints on the ability of district-level actors to implement the programme. These included bureaucratic delays in the disbursement of funds, difficulties in communicating the policy, both to implementers and the wider public and the complexity of the programme's design. However, some district implementers were able to cope with these problems, providing reasons for why uptake of the programme varied considerably between districts. Actions appeared to be influenced by the pressure to meet local needs, as well individual perceptions and acceptance of the programme. The experience also sheds light on some of the adverse effects of the programme on the wider health system. Conclusion The success of conditional cash transfer programmes in Latin America has led to a wave of enthusiasm for their adoption in other parts of the world. However, context matters and proponents of similar programmes in south Asia should give due attention to the challenges to implementation when capacity is weak and health services inadequate. PMID:19508710

  14. Parents' perceptions of the value of the Webster-Stratton Parenting Programme: a qualitative study of a general practice based initiative.

    PubMed

    Patterson, J; Mockford, C; Stewart-Brown, S

    2005-01-01

    Parenting styles and parent-child relationships are a determinant of emotional and behavioural problems in children. Controlled trials of parenting programmes have been shown to be effective in helping parents of children with clinical levels of behaviour problems, but there is little research on the impact of such programmes in families where children's development falls in the 'normal' range. Also, such trials do not shed light on why or how programmes do, or do not, work, or how they might be improved. A qualitative study of the impact of the Webster-Stratton 'Parents and Children Series' programme on participants in a controlled trial of this programme, whose children's behaviour was below average, but, for the majority, in the normal range. Data were gathered in interviews, open-ended questions on a questionnaire and tape recordings of group leader supervision sessions. Parents reported increased confidence, better relationships with their children, successful use of new behaviour management techniques and improvements in their children's behaviour as a result of the programme. One parent found the programme unsuitable because she was already using the techniques that were taught, and another parent felt the programme was designed for parents of younger children. Many parents reported that additional sessions would have been useful to consolidate what they had learnt, and some parents felt the course would have been more effective if their partners had attended. The Webster-Stratton Parenting Programme is useful for parents of 'normal' children as well as for parents of children whose behaviour is in the clinical range. Follow-up sessions and attendance by both parents might increase effectiveness. The findings of this study suggest greater benefits to parents and children than were apparent in the controlled trial.

  15. Content and Language Integrated Learning and the inclusion of immigrant minority language students: A research review

    NASA Astrophysics Data System (ADS)

    Somers, Thomas

    2017-08-01

    This article addresses the inclusion of immigrant minority language students in Content and Language Integrated Learning (CLIL) bilingual education programmes. It reviews results of research on (1) the reasons, beliefs and attitudes underlying immigrant minority language parents' and students' choice for CLIL programmes; (2) these students' proficiency in the languages of instruction and their academic achievement; and (3) the effects of first language typology on their second and third language proficiency. The author explores conditions and reasons for the effectiveness of CLIL pedagogy, as well as the comparative suitability of CLIL programmes for immigrant minority language students. The review shows that CLIL programmes provide a means to acquire important linguistic, economic and symbolic capital in order to effect upward social mobility. Findings demonstrate that immigrant minority language students enrolled in CLIL programmes are able to develop equal or superior levels of proficiency in both languages of instruction compared to majority language students; with previous development of first language literacy positively impacting academic language development. CLIL programmes are found to offer immigrant minority language students educational opportunities and effective pedagogical support which existing mainstream monolingual and minority bilingual education programmes may not always be able to provide. In light of these findings, the author discusses shortcomings in current educational policy. The article concludes with recommendations for further research.[Figure not available: see fulltext.

  16. Fully digital programmable optical frequency comb generation and application.

    PubMed

    Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José

    2018-01-15

    We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.

  17. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-03

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  18. Correlation Plenoptic Imaging

    NASA Astrophysics Data System (ADS)

    D'Angelo, Milena; Pepe, Francesco V.; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  19. Spatial-temporal light modulation by a liquid crystal-polymer photoconductor structure with conjugate bonds

    NASA Astrophysics Data System (ADS)

    Sliusar', A. V.; Myl'Nikov, V. S.

    1991-11-01

    A method is proposed for the spatial-temporal modulation of light by a polymer photoconductor-liquid crystal structure using conjugate-bond organic polymers as photosensitive elements. The preparation of such structures and their modulation characteristics are described. It is shown that the spectral absorption and photosensitivity characteristics of the structures are largely determined by the heat treament of the polymer film. Sensitivity limits of a modulator using a polyacrylonitrile film are 5 x 10 exp -6 J/sq cm and 5 x 10 exp -4 W/sq cm for the write and read light, respectively.

  20. Spatial Light Modulators and Applications: Summaries of Papers Presented at the Spatial Light Modulators and Applications Topical Meeting Held on March 15-17, 1993 in Palm Springs, California

    DTIC Science & Technology

    1993-03-17

    modulator: Number of Elements 16 x 16 Pixel Size 1 mmxl mm Area Fill Factor > 90% Reflectance > 90% Phase Shift 900 Frame Rate > 1 kHz Operational Spectral...electro-optic constants. By using reflected light from the second interface a factor of two increase in phase shift is obtained for an applied voltage vs...wavelengths in general require thinner PLZT wafers. One of the objectives of the SLM design was to maximize pixel area fill factor and thereby the

  1. Optimization of the excitation light sheet in selective plane illumination microscopy

    PubMed Central

    Gao, Liang

    2015-01-01

    Selective plane illumination microscopy (SPIM) allows rapid 3D live fluorescence imaging on biological specimens with high 3D spatial resolution, good optical sectioning capability and minimal photobleaching and phototoxic effect. SPIM gains its advantage by confining the excitation light near the detection focal plane, and its performance is determined by the ability to create a thin, large and uniform excitation light sheet. Several methods have been developed to create such an excitation light sheet for SPIM. However, each method has its own strengths and weaknesses, and tradeoffs must be made among different aspects in SPIM imaging. In this work, we present a strategy to select the excitation light sheet among the latest SPIM techniques, and to optimize its geometry based on spatial resolution, field of view, optical sectioning capability, and the sample to be imaged. Besides the light sheets discussed in this work, the proposed strategy is also applicable to estimate the SPIM performance using other excitation light sheets. PMID:25798312

  2. Neuronal connectome of a sensory-motor circuit for visual navigation

    PubMed Central

    Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár

    2014-01-01

    Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task. DOI: http://dx.doi.org/10.7554/eLife.02730.001 PMID:24867217

  3. Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm

    NASA Astrophysics Data System (ADS)

    Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang

    2017-10-01

    A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.

  4. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    PubMed

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  5. Simultaneous entanglement swapping of multiple orbital angular momentum states of light.

    PubMed

    Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew

    2017-09-21

    High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.

  6. Spatial Light Modulators with Arbitrary Quantum Wells Profiles

    DTIC Science & Technology

    1993-09-27

    phase change in the 1.152Pm wave propagating through the waveguide and appears as an optically bistable intensity signal normal to the control beam ...electrical bistability of a SEED was integrated with a phase modulator to produce optical bistability in an all- optical switch. A control wavelength of...received attention for its use in electrically-addressable spatial light intensity modulator arrays due to its potentially high contrast ratio, large

  7. A spatial light modulator that uses scattering in a cholesteric liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Mitsunori, E-mail: msaito@rins.ryukoku.ac.jp; Uemi, Hiroto

    2016-03-15

    When a cholesteric liquid crystal (helical pitch: 5 μm) was sandwiched between two glass plates with no alignment coating (gap: 20 μm), a random-domain texture appeared and a strong light scattering took place. This translucent texture turned to a transparent homeotropic phase when an electric voltage of 20 V was applied to the liquid crystal layer. This phase transition was used for constructing a spatial light modulator that needed no polarizers. Indium-tin-oxide electrodes (0.8 mm square) were arranged on a glass substrate to create a 20 × 20 pixel array (20 mm square). The liquid crystal was injected into amore » gap (20 μm thickness) between this substrate and another glass plate with a uniform electrode (ground). The transmittance of the pixels was originally below 10% and decreased to 0% by 7 V application because of increase in the scattering loss. As the voltage was raised, the transmittance increased gradually in the 7–17 V range and then rapidly in the 17–20 V range, attaining 40% at 27 V. Various transmittance distributions or gray-scale images were attainable by applying a suitable voltage (7–27 V) to each pixel. The transmission range of this spatial light modulator extended from ultraviolet (350 nm) to infrared wavelengths (>800 nm). Owing to this wide transmission range as well as capability of the polarizer-free operation, this spatial light modulator is useful to control a lamp spectrum in spectroscopic measurements.« less

  8. Research on photodiode detector-based spatial transient light detection and processing system

    NASA Astrophysics Data System (ADS)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  9. The E-ELT program status

    NASA Astrophysics Data System (ADS)

    Tamai, Roberto; Cirasuolo, Michele; González, Juan Carlos; Koehler, Bertrand; Tuti, Mauro

    2016-07-01

    ESO is now fully engaged in building the European Extremely Large Telescope (E-ELT), a 40-m class optical nearinfrared telescope to be installed on top of Cerro Armazones, Chile and become operational around 2025. The Programme was formally approved by ESO Council back in 2012. However the required funding level for starting construction was actually reached in 2014, leading to a Green Light to start large construction contracts in December of that year. Since then, the programme has entered a very busy phase leading to the signature of the first major industrial contracts as well as the agreements with scientific institutes in ESO Member States to design and built the first suite of science instruments. This paper summarizes the current status of the E-ELT Programme and presents some aspects related to scientific objectives, managerial organization, programmatic aspects and system engineering approach. It also outlines the procurement strategies put in place to achieve the goal of the Programme: building the 'world's biggest eye on the sky' within the next decade.

  10. Programmable optical microshutter arrays for large aspect ratio microslits

    NASA Astrophysics Data System (ADS)

    Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.; Le Noc, L.; Topart, P.

    2008-06-01

    Design, fabrication and characterization of a 16x1 programmable microshutter array are described. Each shutter controls the light transmitted through a microslit defined on the transparent substrate supporting the array. Two approaches were considered for the shutter array implementation: sweeping blades and zipping actuators. Simulation results and fabrication constraints led to the selection of the zipping actuators. The device was fabricated using a surface micromachining process. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient throughout the actuator thickness. When a sufficient voltage is applied between the microshutter and an actuation electrode surrounding the microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force due to the actuator deformation. Microshutter arrays were fabricated successfully. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. A pull-in voltage of about 110 V closes the microslit and the response times to close and open the microslit are about 2 and 7 ms, respectively.

  11. Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data.

    PubMed

    Hu, Zhiyong; Hu, Hongda; Huang, Yuxia

    2018-08-01

    Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the "Florida Statewide Nesting Beach Survey program". We used the new generation of satellite sensor "Visible Infrared Imaging Radiometer Suite (VIIRS)" (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45° of elevation (>1.14 × 10 -11 Wm -2 sr -1 ). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Wadawurrung Dya Baap Ngobeeyt: Teaching Spatial Mapping Technologies

    ERIC Educational Resources Information Center

    Woodley, Carolyn J.; Fagan, Sean; Marshall, Sue

    2014-01-01

    Purpose: Aboriginal communities in Australia must have mapping information and technology to effectively and independently administer their land holdings and to define, evidence and thus protect their community and cultural identity. The purpose of this paper is to report on a pilot project that developed a customisable education programme to…

  13. Programming in Preschool--With a Focus on Learning Mathematics

    ERIC Educational Resources Information Center

    Palmér, Hanna

    2017-01-01

    This article presents a teaching intervention where programming was used to facilitate preschoolers' learning of mathematics, especially in their development of spatial thinking. In the intervention, the programming was made with a small programmable robot especially designed for young students. The results indicate that the children developed…

  14. Optical imaging using spatial grating effects in ferrofluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Vishakha; Virpura, Hiral; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in

    2015-06-24

    Under the effect of magnetic field the magnetic nanoparticles of the ferrofluid tend to align in the direction of the magnetic field. This alignment of the magnetic nanoparticles behaves as a spatial grating and diffract light, when light is propagating perpendicular to the direction of the applied magnetic field. The chains of the magnetic nanoparticles represents a linear series of fringes like those observed in a grating/wire. Under applied magnetic field the circular beam of light transforms into a prominent diffraction line in the direction perpendicular to the applied magnetic field. This diffracted light illuminates larger area on the screen.more » This behavior can be used as magneto controlled illumination of the object and image analysis.« less

  15. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe.

    PubMed

    Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K

    2014-12-12

    Freshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts. A biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence. Predicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099). It is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low- suitability areas and that temperature may be the main driving factor. It is concluded that future climate change in Zimbabwe may cause a reduced spatial distribution of suitable habitat of host snails with a probable exception of Bi. pfeifferi, the intermediate host for intestinal schistosomiasis that may increase around 2055 before declining towards 2100.

  16. Integrating the statistical analysis of spatial data in ecology

    Treesearch

    A. M. Liebhold; J. Gurevitch

    2002-01-01

    In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...

  17. Self-imaging of partially coherent light in graded-index media.

    PubMed

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  18. Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers.

    PubMed

    Frenzel, Tobias; Findeisen, Claudio; Kadic, Muamer; Gumbsch, Peter; Wegener, Martin

    2016-07-01

    Structures and materials absorbing mechanical (shock) energy commonly exploit either viscoelasticity or destructive modifications. Based on a class of uniaxial light-weight geometrically nonlinear mechanical microlattices and using buckling of inner elements, either a sequence of snap-ins followed by irreversible hysteretic - yet repeatable - self-recovery or multistability is achieved, enabling programmable behavior. Proof-of-principle experiments on three-dimensional polymer microstructures are presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland

    Treesearch

    Stephen D. Pecot; Stephen B. Horsley; Michael A. Battaglia; Robert J. Mitchell

    2005-01-01

    Light transmittance estimates under open, heterogeneous woodland canopies such as those of longleaf pine (Pinus palustris Mill.) forests report high spatial and temporal variation in the quantity of the light environment. In addition, light quality, that is, the ratio of red to far-red light (R:FR), regulates important aspects of plant...

  1. Spatial filtering, color constancy, and the color-changing dress.

    PubMed

    Dixon, Erica L; Shapiro, Arthur G

    2017-03-01

    The color-changing dress is a 2015 Internet phenomenon in which the colors in a picture of a dress are reported as blue-black by some observers and white-gold by others. The standard explanation is that observers make different inferences about the lighting (is the dress in shadow or bright yellow light?); based on these inferences, observers make a best guess about the reflectance of the dress. The assumption underlying this explanation is that reflectance is the key to color constancy because reflectance alone remains invariant under changes in lighting conditions. Here, we demonstrate an alternative type of invariance across illumination conditions: An object that appears to vary in color under blue, white, or yellow illumination does not change color in the high spatial frequency region. A first approximation to color constancy can therefore be accomplished by a high-pass filter that retains enough low spatial frequency content so as to not to completely desaturate the object. We demonstrate the implications of this idea on the Rubik's cube illusion; on a shirt placed under white, yellow, and blue illuminants; and on spatially filtered images of the dress. We hypothesize that observer perceptions of the dress's color vary because of individual differences in how the visual system extracts high and low spatial frequency color content from the environment, and we demonstrate cross-group differences in average sensitivity to low spatial frequency patterns.

  2. Light extraction in planar light-emitting diode with nonuniform current injection: model and simulation.

    PubMed

    Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei

    2014-07-20

    We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.

  3. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Zhu, Bingcheng; Shi, Zheng; Wang, Jinyuan; Li, Xin; Gao, Xumin; Yuan, Jialei; Li, Yuanhang; Jiang, Yan; Wang, Yongjin

    2017-04-01

    Here, we propose, fabricate and characterize suspended photonic integration of InGaN multiple-quantum-well light-emitting diode (MQW-LED), waveguide and InGaN MQW-photodetector on a single chip. The unique light emission property of InGaN MQW-LED makes it feasible to establish multi-dimensional spatial data transmission using visible light. The in-plane light communication system is comprised of InGaN MQW-LED, waveguide and InGaN MQW-photodetector, and the out-of-plane data transmission is realized by detecting the free-space light emission via a commercial photodiode module. Moreover, a full-duplex light communication is experimentally demonstrated at a data transmission rate of 50 Mbps when both InGaN MQW-diodes operate under simultaneous light emission and detection mode. The in-plane superimposed signals are able to be extracted through the self-interference cancellation method, and the out-of-plane superimposed signals are in good agreement with the calculated signals according to the extracted transmitted signals. These results are promising for the development of on-chip InGaN photonic integration for diverse applications.

  4. Nanofocusing of structured light for quadrupolar light-matter interactions.

    PubMed

    Sakai, Kyosuke; Yamamoto, Takeaki; Sasaki, Keiji

    2018-05-17

    The spatial structure of an electromagnetic field can determine the characteristics of light-matter interactions. A strong gradient of light in the near field can excite dipole-forbidden atomic transitions, e.g., electric quadrupole transitions, which are rarely observed under plane-wave far-field illumination. Structured light with a higher-order orbital angular momentum state may also modulate the selection rules in which an atom can absorb two quanta of angular momentum: one from the spin and another from the spatial structure of the beam. Here, we numerically demonstrate a strong focusing of structured light with a higher-order orbital angular momentum state in the near field. A quadrupole field was confined within a gap region of several tens of nanometres in a plasmonic tetramer structure. A plasmonic crystal surrounding the tetramer structure provides a robust antenna effect, where the incident structured light can be strongly coupled to the quadrupole field in the gap region with a larger alignment tolerance. The proposed system is expected to provide a platform for light-matter interactions with strong multipolar effects.

  5. A new cognitive rehabilitation programme for patients with multiple sclerosis: the 'MS-line! Project'.

    PubMed

    Gich, Jordi; Freixenet, Jordi; Garcia, Rafael; Vilanova, Joan Carles; Genís, David; Silva, Yolanda; Montalban, Xavier; Ramió-Torrentà, Lluís

    2015-09-01

    Cognitive rehabilitation is often delayed in multiple sclerosis (MS). To develop a free and specific cognitive rehabilitation programme for MS patients to be used from early stages that does not interfere with daily living activities. MS-line!, cognitive rehabilitation materials consisting of written, manipulative and computer-based materials with difficulty levels developed by a multidisciplinary team. Mathematical, problem-solving and word-based exercises were designed. Physical materials included spatial, coordination and reasoning games. Computer-based material included logic and reasoning, working memory and processing speed games. Cognitive rehabilitation exercises that are specific for MS patients have been successfully developed. © The Author(s), 2014.

  6. Developmental mechanisms facilitating the evolution of bills and quills

    PubMed Central

    Schneider, Richard A

    2005-01-01

    Beaks and feathers epitomize inimitable avian traits. Within individuals and across species there exists astounding diversity in the size, shape, arrangement, and colour of beaks and feathers in association with various functional adaptations. What has enabled the concomitantly divergent evolution of beaks and feathers? The common denominator may lie in their developmental programmes. As revealed through recent transplant experiments using quail and duck embryos, the developmental programme for each structure utilizes mesenchyme as a dominant source of species-specific patterning information, acts as a module of closely coupled molecular and histogenic events, and operates with a high degree of spatial and temporal plasticity. By synergizing these three features, the developmental programmes underlying beaks and feathers likely have the essential potential to react spontaneously to novel conditions and new gene functions, and as a consequence are well equipped to generate and accommodate innovative phenotypes during the course of evolution. PMID:16313392

  7. The clock gene Period1 regulates innate routine behaviour in mice

    PubMed Central

    Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik

    2014-01-01

    Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour. PMID:24598427

  8. The clock gene Period1 regulates innate routine behaviour in mice.

    PubMed

    Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik

    2014-04-22

    Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.

  9. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  10. Spatial signal correlation from an III-nitride synaptic device

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin

    2017-10-01

    The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.

  11. Optimizing density patterns to achieve desired light extraction for displays

    NASA Astrophysics Data System (ADS)

    Davenport, T. L. R.; Cassarly, W. J.

    2007-01-01

    In displays such as backlights and signage, it is often desirable to produce a particular spatial luminance distribution of light. This work demonstrates an iterative optimization technique for determining the density of light extractors required to produce desired luminance distributions.

  12. Limitation of Liquid Crystal on Silicon Spatial Light Modular for Holographic Three-dimensional Displays

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz

    2004-01-01

    In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.

  13. EDITORIAL: Micro-pixellated LEDs for science and instrumentation

    NASA Astrophysics Data System (ADS)

    Dawson, Martin D.; Neil, Mark A. A.

    2008-05-01

    This Cluster Issue of Journal of Physics D: Applied Physics highlights micro-pixellated gallium nitride light-emitting diodes or `micro-LEDs', an emerging technology offering considerable attractions for a broad range of scientific and instrumentation applications. It showcases the results of a Research Councils UK (RCUK) Basic Technology Research programme (http://bt-onethousand.photonics.ac.uk), running from 2004-2008, which has drawn together a multi-disciplinary and multi-institutional research partnership to develop these devices and explore their potential. Images of LEDs Examples of GaN micro-pixel LEDs in operation. Images supplied courtesy of the Guest Editors. The partnership, of physicists, engineers and chemists drawn from the University of Strathclyde, Heriot-Watt University, the University of Sheffield and Imperial College London, has sought to move beyond the established mass-market uses of gallium nitride LEDs in illumination and lighting. Instead, it focuses on specialised solid-state micro-projection devices the size of a match-head, containing up to several thousand individually-addressable micro-pixel elements emitting light in the ultraviolet or visible regions of the spectrum. Such sources are pattern-programmable under computer control and can project into materials fixed or high-frame rate optical images or spatially-controllable patterns of nanosecond excitation pulses. These materials can be as diverse as biological cells and tissues, biopolymers, photoresists and organic semiconductors, leading to new developments in optical microscopy, bio-sensing and chemical sensing, mask-free lithography and direct writing, and organic electronics. Particular areas of interest are multi-modal microscopy, integrated forms of organic semiconductor lasers, lab-on-a-chip, GaN/Si optoelectronics and hybrid inorganic/organic semiconductor structures. This Cluster Issue contains four invited papers and ten contributed papers. The invited papers serve to set the work in an international context. Fan et al, who introduced the original forms of these devices in 2000, give a historical perspective as well as illustrating some recent trends in their work. Xu et al, another of the main international groups in this area, concentrate on biological imaging and detection applications. One of the most exciting prospects for this technology is its compatibility with CMOS, and Charbon reviews recent results with single-photon detection arrays which facilitate integrated optical lab-on-chip devices in conjunction with the micro-LEDs. Belton et al, from within the project partnership, overview the hybrid inorganic/organic semiconductor structures achieved by combining gallium nitride optoelectronics with organic semiconductor materials. The contributed papers cover many other aspects related to the devices themselves, their integration with polymers and CMOS, and also cover several associated developments such as UV-emitting nitride materials, new polymers, and the broader use of LEDs in microscopy. Images of LED fibres Emission patterns generated at the end of a multicore image fibre 600 μm in diameter, from article 094013 by H Xu et al of Brown University. We would like to thank Paul French for suggesting this special issue, the staff of IOP Publishing for their help and support, Dr Caroline Vance for her administration of the programme, and EPSRC (particularly Dr Lindsey Weston) for organizational and financial support.

  14. Spatial Distribution of Phase Singularities in Optical Random Vector Waves.

    PubMed

    De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L

    2016-08-26

    Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.

  15. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.

    PubMed

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2018-06-15

    The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.

  16. ABOVE- AND BELOWGROUND CONTROLS ON FOREST TREE GROWTH, MORTALITY AND SPATIAL PATTERN

    EPA Science Inventory

    We investigated the relative importance of above- and belowground competition in controlling growth, mortality and spatial patterns of trees in a nitrogen-limited, old-growth forest in western Oregon. To assess the effects of competition for light, we applied a spatially-explici...

  17. Beyond spatial correlation effect in micro-Raman light scattering: An example of zinc-blende GaN/GaAs hetero-interface

    NASA Astrophysics Data System (ADS)

    Ning, J. Q.; Zheng, C. C.; Zheng, L. X.; Xu, S. J.

    2015-08-01

    Spatially resolved Raman light scattering experiments were performed on a zinc-blende GaN/GaAs heterostructure with confocal micro-Raman scattering technique under the backscattering geometric configuration. By varying the illumination spot locations across the heterostructure interface, we found that the Raman light scattering spectral features change remarkably. The interface effect on the GaAs substrate manifested as a much broader lineshape of the transverse optical (TO) phonon mode. Two kinds of broadening mechanisms, namely, spatial correlation induced wave-vector relaxation effect and lattice-mismatch strain + compositional intermixing effect, have been identified. The former leads to the broadening of the TO mode at the low-energy side, whereas the latter accounts for the broadening at the high-energy side. The diffuse light scattering from the highly defective nucleation layer of GaN was found to produce a broad scattering background of the GaN TO mode. The methodology and conclusions of the present work could be applicable to Raman spectroscopic studies on other material interfaces.

  18. Spatial light modulators for full cross-connections in optical networks

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    2004-01-01

    A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.

  19. Recent advances in patterned photostimulation for optogenetics

    NASA Astrophysics Data System (ADS)

    Ronzitti, Emiliano; Ventalon, Cathie; Canepari, Marco; Forget, Benoît C.; Papagiakoumou, Eirini; Emiliani, Valentina

    2017-11-01

    An important technological revolution is underway in the field of neuroscience as we begin the 21st century. The combination of optical methods with genetically encoded photosensitive tools (optogenetics) offers the opportunity to quickly modulate and monitor a large number of neuronal events and the ability to recreate the physiological, spatial, and temporal patterns of brain activity. The use of light instead of electrical stimulation is less invasive, and permits superior spatial and temporal specificity and flexibility. This ongoing revolution has motivated the development of new optical methods for light stimulation. They can be grouped in two main categories: scanning and parallel photostimulation techniques, each with its advantages and limitations. In scanning approaches, a small light spot is displaced in targeted regions of interest (ROIs), using galvanometric mirrors or acousto-optic deflectors, whereas in parallel approaches, the light beam can be spatially shaped to simultaneously cover all ROIs by modulating either the light intensity or the phase of the illumination beam. With amplitude modulation, light patterns are created by selectively blocking light rays that illuminate regions of no interest, while with phase modulation, the wavefront of the light beam is locally modified so that light rays are directed onto the target, thus allowing for higher intensity efficiency. In this review, we will describe the principle of each of these photostimulation techniques and review the use of these approaches in optogenetics experiments by presenting their advantages and drawbacks. Finally, we will review the challenges that need to be faced when photostimulation methods are combined with two-photon imaging approaches to reach an all-optical brain control through optogenetics and functional reporters (Ca2+ and voltage indicators).

  20. Spatially-resolved probing of biological phantoms by point-radiance spectroscopy

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.

    2011-03-01

    Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.

  1. Aliasing Detection and Reduction Scheme on Angularly Undersampled Light Fields.

    PubMed

    Xiao, Zhaolin; Wang, Qing; Zhou, Guoqing; Yu, Jingyi

    2017-05-01

    When using plenoptic camera for digital refocusing, angular undersampling can cause severe (angular) aliasing artifacts. Previous approaches have focused on avoiding aliasing by pre-processing the acquired light field via prefiltering, demosaicing, reparameterization, and so on. In this paper, we present a different solution that first detects and then removes angular aliasing at the light field refocusing stage. Different from previous frequency domain aliasing analysis, we carry out a spatial domain analysis to reveal whether the angular aliasing would occur and uncover where in the image it would occur. The spatial analysis also facilitates easy separation of the aliasing versus non-aliasing regions and angular aliasing removal. Experiments on both synthetic scene and real light field data sets (camera array and Lytro camera) demonstrate that our approach has a number of advantages over the classical prefiltering and depth-dependent light field rendering techniques.

  2. Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light.

    PubMed

    Hadjichristov, Georgi B; Marinov, Yordan G; Petrov, Alexander G

    2011-06-01

    The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 10-25 μm and droplet size up to 50 μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He-Ne laser (λ=633 nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.

  3. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging

    PubMed Central

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-01-01

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system. PMID:27025907

  4. Transmission-Type 2-Bit Programmable Metasurface for Single-Sensor and Single-Frequency Microwave Imaging.

    PubMed

    Li, Yun Bo; Li, Lian Lin; Xu, Bai Bing; Wu, Wei; Wu, Rui Yuan; Wan, Xiang; Cheng, Qiang; Cui, Tie Jun

    2016-03-30

    The programmable and digital metamaterials or metasurfaces presented recently have huge potentials in designing real-time-controlled electromagnetic devices. Here, we propose the first transmission-type 2-bit programmable coding metasurface for single-sensor and single- frequency imaging in the microwave frequency. Compared with the existing single-sensor imagers composed of active spatial modulators with their units controlled independently, we introduce randomly programmable metasurface to transform the masks of modulators, in which their rows and columns are controlled simultaneously so that the complexity and cost of the imaging system can be reduced drastically. Different from the single-sensor approach using the frequency agility, the proposed imaging system makes use of variable modulators under single frequency, which can avoid the object dispersion. In order to realize the transmission-type 2-bit programmable metasurface, we propose a two-layer binary coding unit, which is convenient for changing the voltages in rows and columns to switch the diodes in the top and bottom layers, respectively. In our imaging measurements, we generate the random codes by computer to achieve different transmission patterns, which can support enough multiple modes to solve the inverse-scattering problem in the single-sensor imaging. Simple experimental results are presented in the microwave frequency, validating our new single-sensor and single-frequency imaging system.

  5. Using Spatial Correlations of SPDC Sources for Increasing the Signal to Noise Ratio in Images

    NASA Astrophysics Data System (ADS)

    Ruíz, A. I.; Caudillo, R.; Velázquez, V. M.; Barrios, E.

    2017-05-01

    We experimentally show that, by using spatial correlations of photon pairs produced by Spontaneous Parametric Down-Conversion, it is possible to increase the Signal to Noise Ratio in images of objects illuminated with those photons; in comparison, objects illuminated with light from a laser present a minor ratio. Our simple experimental set-up was capable to produce an average improvement in signal to noise ratio of 11dB of Parametric Down-Converted light over laser light. This simple method can be easily implemented for obtaining high contrast images of faint objects and for transmitting information with low noise.

  6. The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength

    NASA Astrophysics Data System (ADS)

    Novikov, I. I.; Babichev, A. V.; Bugrov, V. E.; Gladyshev, A. G.; Karachinsky, L. Ya; Kolodeznyi, E. S.; Kurochkin, A. S.; Savelyev, A. V.; Sokolovskii, G. S.; Egorov, A. Yu

    2017-11-01

    We consider the advantages and disadvantages of various designs of waveguide for heterostructures of quantum cascade lasers (QCL) in a spectral region of 7.5 μm. Based on a numerical calculation we make a comparison of light wave distribution in QCL waveguides with different designs. We demonstrate the benefits of practical QCL realization with an extended five-layered waveguide formed by introducing extra layers of InGaAs, which allows to modify the spatial distribution of the light wave and get the rectangular shape of the spatial distribution of light wave intensity in the laser active area.

  7. Quantifying seagrass light requirements using an algorithm to spatially resolve depth of colonization.

    EPA Science Inventory

    Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light availability. Similarly, percent surface irradiance at Zc (% SI) is an indicator of seagrass light requirements with applications in seagrass ecology and management. Methods ...

  8. A volumetric three-dimensional digital light photoactivatable dye display

    NASA Astrophysics Data System (ADS)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  9. Tunable Spin dependent beam shift by simultaneously tailoring geometric and dynamical phases of light in inhomogeneous anisotropic medium

    PubMed Central

    Pal, Mandira; Banerjee, Chitram; Chandel, Shubham; Bag, Ankan; Majumder, Shovan K.; Ghosh, Nirmalya

    2016-01-01

    Spin orbit interaction and the resulting Spin Hall effect of light are under recent intensive investigations because of their fundamental nature and potential applications. Here, we report an interesting manifestation of spin Hall effect of light and demonstrate its tunability in an inhomogeneous anisotropic medium exhibiting spatially varying retardance level. In our system, the beam shift occurs only for one circular polarization mode keeping the other orthogonal mode unaffected, which is shown to arise due to the combined spatial gradients of the geometric phase and the dynamical phase of light. The constituent two orthogonal circular polarization modes of an input linearly polarized light evolve in different trajectories, eventually manifesting as a large and tunable spin separation. The spin dependent beam shift and the demonstrated principle of simultaneously tailoring space-varying geometric and dynamical phase of light for achieving its tunability (of both magnitude and direction), may provide an attractive route towards development of spin-optical devices. PMID:28004825

  10. A volumetric three-dimensional digital light photoactivatable dye display

    PubMed Central

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-01-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887

  11. Design of light-small high-speed image data processing system

    NASA Astrophysics Data System (ADS)

    Yang, Jinbao; Feng, Xue; Li, Fei

    2015-10-01

    A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.

  12. Design and implementation of a scene-dependent dynamically selfadaptable wavefront coding imaging system

    NASA Astrophysics Data System (ADS)

    Carles, Guillem; Ferran, Carme; Carnicer, Artur; Bosch, Salvador

    2012-01-01

    A computational imaging system based on wavefront coding is presented. Wavefront coding provides an extension of the depth-of-field at the expense of a slight reduction of image quality. This trade-off results from the amount of coding used. By using spatial light modulators, a flexible coding is achieved which permits it to be increased or decreased as needed. In this paper a computational method is proposed for evaluating the output of a wavefront coding imaging system equipped with a spatial light modulator, with the aim of thus making it possible to implement the most suitable coding strength for a given scene. This is achieved in an unsupervised manner, thus the whole system acts as a dynamically selfadaptable imaging system. The program presented here controls the spatial light modulator and the camera, and also processes the images in a synchronised way in order to implement the dynamic system in real time. A prototype of the system was implemented in the laboratory and illustrative examples of the performance are reported in this paper. Program summaryProgram title: DynWFC (Dynamic WaveFront Coding) Catalogue identifier: AEKC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 483 No. of bytes in distributed program, including test data, etc.: 2 437 713 Distribution format: tar.gz Programming language: Labview 8.5 and NI Vision and MinGW C Compiler Computer: Tested on PC Intel ® Pentium ® Operating system: Tested on Windows XP Classification: 18 Nature of problem: The program implements an enhanced wavefront coding imaging system able to adapt the degree of coding to the requirements of a specific scene. The program controls the acquisition by a camera, the display of a spatial light modulator and the image processing operations synchronously. The spatial light modulator is used to implement the phase mask with flexibility given the trade-off between depth-of-field extension and image quality achieved. The action of the program is to evaluate the depth-of-field requirements of the specific scene and subsequently control the coding established by the spatial light modulator, in real time.

  13. Methodology and results of integrated WNV surveillance programmes in Serbia

    PubMed Central

    Šekler, Milanko; Petrić, Dušan; Lazić, Sava; Debeljak, Zoran; Vidanović, Dejan; Ignjatović Ćupina, Aleksandra; Lazić, Gospava; Lupulović, Diana; Kolarević, Mišo; Plavšić, Budimir

    2018-01-01

    Studies conducted during the past few years have confirmed active West Nile virus (WNV) circulation in Serbia. Based on these studies and the epidemiological situation, the Veterinary Directorate of the Ministry of Agriculture and Environmental Protection launched national WNV surveillance programmes in 2014 and 2015. The programmes encompassed the territory of Serbia and were conducted by the veterinary service in collaboration with entomologists and ornithologists. The objective of the programmes was early detection of WNV and timely reporting to the public health service and local authorities to increase both clinical and mosquito control preparedness. The WNV surveillance programmes were based on direct and indirect surveillance of the presence of WNV by the serological testing of initially seronegative sentinel horses and chickens as well as through viral detection in pooled mosquito and wild bird samples. The most intense WNV circulation was observed in all seven districts of Vojvodina Province (northern Serbia) and Belgrade City, where most of the positive samples were detected among sentinel animals, mosquitoes and wild birds. The West Nile virus surveillance programmes in 2014 and 2015 showed satisfactory results in their capacity to indicate the spatial distribution of the risk for humans and their sensitivity to early detect viral circulation at the enzootic level. Most of the human cases were preceded by the detection of WNV circulation as part of the surveillance programmes. According to the existing data, it can be reasonably assumed that WNV infection, now an endemic infection in Serbia, will continue to present a significant problem for the veterinary service and public health. PMID:29624622

  14. Programmable and electrically controllable light scattering from surface-polymer stabilized liquid crystals.

    PubMed

    Bédard-Arcand, Jean-Philippe; Galstian, Tigran

    2012-08-01

    We report the creation and study of a polarization independent light scattering material system based on surface-polymer stabilized liquid crystals. Originally isotropic cell substrates with thin nonpolymerized reactive mesogen layers are used for the alignment of pure nonreactive nematic liquid crystals. The partial interdiffusion of the two materials followed by the application of orienting external electric and magnetic fields and the photo polymerization of the reactive mesogen allow us the control of electro-optic scattering properties of obtained cells.

  15. Programmable Spectral Source and Design Tool for 3D Imaging Using Complementary Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam (Inventor); Korniski, Ronald J. (Inventor); Ream, Allen (Inventor); Shearn, Michael J. (Inventor); Shahinian, Hrayr Karnig (Inventor); Fritz, Eric W. (Inventor)

    2017-01-01

    An endoscopic illumination system for illuminating a subject for stereoscopic image capture, includes a light source which outputs light; a first complementary multiband bandpass filter (CMBF) and a second CMBF, the first and second CMBFs being situated in first and second light paths, respectively, where the first CMBF and the second CMBF filter the light incident thereupon to output filtered light; and a camera which captures video images of the subject and generates corresponding video information, the camera receiving light reflected from the subject and passing through a pupil CMBF pair and a detection lens. The pupil CMBF includes a first pupil CMBF and a second pupil CMBF, the first pupil CMBF being identical to the first CMBF and the second pupil CMBF being identical to the second CMBF, and the detection lens includes one unpartitioned section that covers both the first pupil CMBF and the second pupil CMBF.

  16. Dissipative structure in the photo-induced phase under steady light irradiation in the spin crossover complex.

    PubMed

    Nishihara, Taishi; Bousseksou, Azzdine; Tanaka, Koichiro

    2013-12-16

    We report the spatial and temporal dynamics of the photo-induced phase in the iron (II) spin crossover complex Fe(ptz)(6)(BF(4))(2) studied by image measurement under steady light irradiation and transient absorption measurement. The dynamic factors are derived from the spatial and temporal fluctuation of the image in the steady state under light irradiation between 65 and 100 K. The dynamic factors clearly indicate that the fluctuation has a resonant frequency that strongly depends on the temperature, and is proportional to the relaxation rate of the photo-induced phase. This oscillation of the speckle pattern under steady light irradiation is ascribed to the nonlinear interaction between the spin state and the lattice volume at the surface.

  17. Nonparaxial fractional Bessel and Bessel-Gauss auto-focusing light-sheet pincers and their higher-order spatial derivatives

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Nonparaxial fractional electromagnetic Bessel and Bessel-Gauss auto-focusing light-sheet solutions and their spatial derivatives are synthesized stemming from the angular spectrum decomposition in plane waves. The propagation characteristics of these transverse electric-polarized light-sheets are analyzed by computing the radiated component of the incident electric field. Tight bending of the beam along curved trajectories and slit openings are observed, which could offer unique features and potential applications in the development of improved methods and devices in light-sheet tweezers for particle manipulation applications and dynamics in opto-fluidics, particle sizing and imaging to name a few examples. Moreover, computations of the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solutions.

  18. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  19. Programmable fuzzy associative memory processor

    NASA Astrophysics Data System (ADS)

    Shao, Lan; Liu, Liren; Li, Guoqiang

    1996-02-01

    An optical system based on the method of spatial area-coding and multiple image scheme is proposed for fuzzy associative memory processing. Fuzzy maximum operation is accomplished by a ferroelectric liquid crystal PROM instead of a computer-based approach. A relative subsethood is introduced here to be used as a criterion for the recall evaluation.

  20. Are Two Systemic Fish Assemblage Sampling Programmes on the Upper Mississippi River Telling Us the Same Thing?

    EPA Science Inventory

    We applied an Index of Biotic Integrity (IBI) used on the Upper Mississippi River (UMR) to compare data from three sampling programs. Ability to use multiple sampling programs could greatly extend spatial and temporal coverage of river assessment and monitoring efforts. We an...

  1. Computer-Based Working Memory Training in Children with Mild Intellectual Disability

    ERIC Educational Resources Information Center

    Delavarian, Mona; Bokharaeian, Behrouz; Towhidkhah, Farzad; Gharibzadeh, Shahriar

    2015-01-01

    We designed a working memory (WM) training programme in game framework for mild intellectually disabled students. Twenty-four students participated as test and control groups. The auditory and visual-spatial WM were assessed by primary test, which included computerised Wechsler numerical forward and backward sub-tests and secondary tests, which…

  2. Notes.

    ERIC Educational Resources Information Center

    Physics Teacher, 1979

    1979-01-01

    Some topics included are: the relative merits of a programmable calculator and a microcomputer; the advantages of acquiring a sound-level meter for the laboratory; how to locate a virtual image in a plane mirror; center of gravity of a student; and how to demonstrate interference of light using two cords.

  3. Two spatial light modulator system for laboratory simulation of random beam propagation in random media.

    PubMed

    Wang, Fei; Toselli, Italo; Korotkova, Olga

    2016-02-10

    An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.

  4. Calibration of a spatial light modulator containing dual frequency liquid crystal

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce; Wen, Bing; Taber, Don; Brackley, Andrew; Wirth, Allan; Albanese, Marc; Landers, Frank

    2005-08-01

    Characterization and calibration process for a liquid crystal (LC) spatial light modulator (SLM) containing dual frequency liquid crystal is described. Special care was taken when dealing with LC cell gap non-uniformity and defect pixels. The calibration results were fed into a closed loop control algorithm to demonstrate correction of wavefront distortions. The performance characteristics of the device were reported. Substantial improvements were made in speed (bandwidth), resolution, power consumption and system weight/volume.

  5. Nonlinear ring resonator: spatial pattern generation

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir Y.; Lachinova, Svetlana L.; Irochnikov, Nikita G.

    2000-03-01

    We consider theoretically spatial pattern formation processes in a unidirectional ring cavity with thin layer of Kerr-type nonlinear medium. Our method is based on studying of two coupled equations. The first is a partial differential equation for temporal dynamics of phase modulation of light wave in the medium. It describes nonlinear interaction in the Kerr-type lice. The second is a free propagation equation for the intracavity field complex amplitude. It involves diffraction effects of light wave in the cavity.

  6. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  7. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE PAGES

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; ...

    2014-12-29

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  8. A Lithography-Free and Field-Programmable Photonic Metacanvas.

    PubMed

    Dong, Kaichen; Hong, Sukjoon; Deng, Yang; Ma, He; Li, Jiachen; Wang, Xi; Yeo, Junyeob; Wang, Letian; Lou, Shuai; Tom, Kyle B; Liu, Kai; You, Zheng; Wei, Yang; Grigoropoulos, Costas P; Yao, Jie; Wu, Junqiao

    2018-02-01

    The unique correspondence between mathematical operators and photonic elements in wave optics enables quantitative analysis of light manipulation with individual optical devices. Phase-transition materials are able to provide real-time reconfigurability of these devices, which would create new optical functionalities via (re)compilation of photonic operators, as those achieved in other fields such as field-programmable gate arrays (FPGA). Here, by exploiting the hysteretic phase transition of vanadium dioxide, an all-solid, rewritable metacanvas on which nearly arbitrary photonic devices can be rapidly and repeatedly written and erased is presented. The writing is performed with a low-power laser and the entire process stays below 90 °C. Using the metacanvas, dynamic manipulation of optical waves is demonstrated for light propagation, polarization, and reconstruction. The metacanvas supports physical (re)compilation of photonic operators akin to that of FPGA, opening up possibilities where photonic elements can be field programmed to deliver complex, system-level functionalities. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasmonic photonic crystals realized through DNA-programmable assembly.

    PubMed

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  10. Mapping Disaster Risk Reduction and Climate Change Adaptation: progress in South Africa

    NASA Astrophysics Data System (ADS)

    Storie, Judith M.

    2018-05-01

    Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA) strategies in Africa are on the increase. South Africa is no different, and a number of strategies have seen the light in aid of reducing disaster risk and adapting to cli-mate change. The DRR and CCA processes include the mapping of location and extent of known and potential hazards, vulnerable communities and environments, and opportunities that may exist to manage these risks. However, the mapping of often fast-changing urban and rural spaces in a standardized manner presents challenges that relate to processes, scales of data capture, level of detail recorded, software and compatibility related to data formats and net-works, human resources skills and understanding, as well as differences in approaches to the nature in which the map-ping processes are executed and spatial data is managed. As a result, projects and implementation of strategies that re-late to the use of such data is affected, and the success of activities based on the data may therefore be uncertain. This paper investigates data custodianship and data categories that is processed and managed across South Africa. It explores the process and content management of disaster risk and climate change related information and defines the challenges that exist in terms of governance. The paper also comments on the challenges and potential solutions for the situation as it gives rise to varying degrees of accuracy, effectiveness for use, and applicability of the spatial data available to affect DRR and improve the value of CCA programmes in the region.

  11. Differential foraging success across a light level spectrum explains the maintenance and spatial structure of colour morphs in a polymorphic bird.

    PubMed

    Tate, Gareth J; Bishop, Jacqueline M; Amar, Arjun

    2016-06-01

    Detectability of different colour morphs under varying light conditions has been proposed as an important driver in the maintenance of colour polymorphism via disruptive selection. To date, no studies have tested whether different morphs have selective advantages under differing light conditions. We tested this hypothesis in the black sparrowhawk, a polymorphic raptor exhibiting a discrete white and dark morph, and found that prey provisioning rates differ between the morphs depending on light condition. Dark morphs delivered more prey in lower light conditions, while white morphs provided more prey in brighter conditions. We found support for the role of breeding season light level in explaining the clinal pattern of variation in morph ratio across the species range throughout South Africa. Our results provide the first empirical evidence supporting the hypothesis that polymorphism in a species, and the spatial structuring of morphs across its distribution, may be driven by differential selective advantage via improved crypsis, under varying light conditions. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization-CERF presentation

    EPA Science Inventory

    Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light availability. Similarly, percent surface irradiance at Zc (% SI) is an indicator of seagrass light requirements with applications in seagrass ecology and management. Methods ...

  13. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization-Conf Abstract

    EPA Science Inventory

    Depth of colonization (Zc) is a useful seagrass growth metric that describes seagrass response to light attenuation. Similarly, percent surface irradiance (% SI) at Zc is a measure of seagrass light requirements with applications in seagrass ecology and management. Methods for ...

  14. Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model.

    PubMed

    Brunker, K; Hampson, K; Horton, D L; Biek, R

    2012-12-01

    Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes.

  15. Method to optimize patch size based on spatial frequency response in image rendering of the light field

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui

    2018-05-01

    A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.

  16. Increasing the space-time product of super-resolution structured illumination microscopy by means of two-pattern illumination

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Pozzi, P.; Bezzubik, V. V.; Belashenkov, N. R.

    2017-06-01

    Superresolution image reconstruction method based on the structured illumination microscopy (SIM) principle with reduced and simplified pattern set is presented. The method described needs only 2 sinusoidal patterns shifted by half a period for each spatial direction of reconstruction, instead of the minimum of 3 for the previously known methods. The method is based on estimating redundant frequency components in the acquired set of modulated images. Digital processing is based on linear operations. When applied to several spatial orientations, the image set can be further reduced to a single pattern for each spatial orientation, complemented by a single non-modulated image for all the orientations. By utilizing this method for the case of two spatial orientations, the total input image set is reduced up to 3 images, providing up to 2-fold improvement in data acquisition time compared to the conventional 3-pattern SIM method. Using the simplified pattern design, the field of view can be doubled with the same number of spatial light modulator raster elements, resulting in a total 4-fold increase in the space-time product. The method requires precise knowledge of the optical transfer function (OTF). The key limitation is the thickness of object layer that scatters or emits light, which requires to be sufficiently small relatively to the lens depth of field. Numerical simulations and experimental results are presented. Experimental results are obtained on the SIM setup with the spatial light modulator based on the 1920x1080 digital micromirror device.

  17. COSMIC INFRARED BACKGROUND FLUCTUATIONS AND ZODIACAL LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ∼2 over the range of solar elongations atmore » which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.« less

  18. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  19. If it works there, will it work here? The effect of a multi-component responsible beverage service (RBS) programme on violence in Oslo.

    PubMed

    Skardhamar, Torbjørn; Fekjær, Silje Bringsrud; Pedersen, Willy

    2016-12-01

    The Stockholm Prevents Alcohol and Drug Problems (STAD) programme has been regarded as one of the most successful programmes to date, in reducing alcohol-related violence. This multi-component Responsible Beverage Service (RBS) programme was implemented in Stockholm, Sweden, and has been documented to be extremely effective in reducing alcohol-related nightlife violence. The SALUTT programme in Oslo, Norway was carefully modelled on the STAD project. We investigate whether the results from STAD were replicated in the SALUTT intervention. Using geocoded data, the level of violence in the intervention area was compared with different control areas before and after the intervention. Autoregressive moving average models (ARIMA). The SALUTT programme had no statistically significant effect on violence. However, the level of violence in the different potential control areas of Oslo fluctuated without a clear common trend. Hence, it was difficult to establish proper control areas. The results from the Swedish STAD-intervention were not replicated in Oslo. Successful interventions are not necessarily replicated in other contexts, and the current literature does not shed sufficient light on the conditions under which such interventions actually work. Moreover, more attention should be devoted to the identification of adequate control areas in future research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The safety of magnetic resonance imaging in patients with programmable implanted intrathecal drug delivery systems: a 3-year prospective study.

    PubMed

    De Andres, Jose; Villanueva, Vicente; Palmisani, Stefano; Cerda-Olmedo, German; Lopez-Alarcon, Maria Dolores; Monsalve, Vicente; Minguez, Ana; Martinez-Sanjuan, Vicente

    2011-05-01

    It is common clinical practice to perform magnetic resonance imaging (MRI) in patients with indwelling programmable intrathecal drug delivery (IDD) systems, although the safety of the procedure has never been documented. We performed a single-center, 3-year, prospective evaluation in patients with a programmable implanted IDD to assess patient discomfort, IDD technical failures, and adverse effects during and after exposure to MRI. Forty-three consecutive patients with an implanted programmable IDD system (SynchroMed® EL Implantable Infusion Pump, Model 8626L-18, and SynchroMed® II Model 8637-20, 8637-40; Medtronic, Inc., Minneapolis, MN) requiring a scheduled MRI evaluation were studied during a 3-year period. All MRI scans were performed with a 1.5-tesla clinical use magnet and a specific absorption rate of no more than 0.9 W/kg. Radiograph control was used to confirm postexposure pump rotor movement and detect system dislocations. IDD system failures, patient satisfaction, and discomfort were recorded. None of the patients experienced signs of drug overinfusion that could lead to hemodynamic, respiratory, or neurologic alterations. Radiologic evaluation after MRI revealed no spatial displacements of the intrathecal catheter tip or body pump, and programmer telemetry confirmed the infusion recovery. Patients' satisfaction after the procedure was high. Performing an MRI scan with the proposed protocol in patients with an implanted Medtronic programmable IDD system resulted in virtually no technical or medical complications. © 2011 International Anesthesia Research Society

  1. The effects of computer-aided design software on engineering students' spatial visualisation skills

    NASA Astrophysics Data System (ADS)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  2. Influence of alternative silvicultural treatments on spatial variability in light in central hardwood stands on the Cumberland Plateau

    Treesearch

    Stephen F. Grayson; David S. Buckley; Jason G. Henning; Callie J. Schweitzer; Stacy L. Clark

    2011-01-01

    Effective oak silvicultural treatments allow light to reach the forest floor with sufficient intensity and duration to enable establishment, growth, and development of preferred species. Although it is intuitive that increases in light will accompany various levels of canopy removal, specific amounts and the distribution of light resulting from different silvicultural...

  3. Quantifying contributions to light attenuation in estuaries and coastal embayments: Application to Narragansett Bay, Rhode Island

    EPA Science Inventory

    In Narragansett Bay, light attenuation by total suspended sediments (TSS), colored dissolved organic matter (CDOM), and phytoplankton chlorophyll-a (chl-a) pigment is 129, 97, and 70%, respectively, of that by pure seawater. Spatial distribution of light attenuation indicates hig...

  4. Light adaptation alters the source of inhibition to the mouse retinal OFF pathway

    PubMed Central

    Mazade, Reece E.

    2013-01-01

    Sensory systems must avoid saturation to encode a wide range of stimulus intensities. One way the retina accomplishes this is by using both dim-light-sensing rod and bright-light-sensing cone photoreceptor circuits. OFF cone bipolar cells are a key point in this process, as they receive both excitatory input from cones and inhibitory input from AII amacrine cells via the rod pathway. However, in addition to AII amacrine cell input, other inhibitory inputs from cone pathways also modulate OFF cone bipolar cell light signals. It is unknown how these inhibitory inputs to OFF cone bipolar cells change when switching between rod and cone pathways or whether all OFF cone bipolar cells receive rod pathway input. We found that one group of OFF cone bipolar cells (types 1, 2, and 4) receive rod-mediated inhibitory inputs that likely come from the rod-AII amacrine cell pathway, while another group of OFF cone bipolar cells (type 3) do not. In both cases, dark-adapted rod-dominant light responses showed a significant contribution of glycinergic inhibition, which decreased with light adaptation and was, surprisingly, compensated by an increase in GABAergic inhibition. As GABAergic input has distinct timing and spatial spread from glycinergic input, a shift from glycinergic to GABAergic inhibition could significantly alter OFF cone bipolar cell signaling to downstream OFF ganglion cells. Larger GABAergic input could reflect an adjustment of OFF bipolar cell spatial inhibition, which may be one mechanism that contributes to retinal spatial sensitivity in the light. PMID:23926034

  5. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  6. Work Programme, 2003.

    ERIC Educational Resources Information Center

    European Centre for the Development of Vocational Training, Thessaloniki (Greece).

    This publication presents work program 2003 in light of the new medium-term priorities 2003-06 and activities 2003 as a consistent and systematic translation of this multiannual approach, specifying activities and outputs to meet the medium-term strategy. A main strategic activity is described--further development of a knowledge management system…

  7. The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲ z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Krajnović, Davor; Epinat, Benoit; Contini, Thierry; Emsellem, Eric; Bouché, Nicolas; Bacon, Roland; Michel-Dansac, Leo; Richard, Johan; Weilbacher, Peter M.; Schaye, Joop; Marino, Raffaella Anna; den Brok, Mark; Erroz-Ferrer, Santiago

    2017-11-01

    We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 ≲ z ≲ 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hubble Ultra Deep Field (HUDF), resulting from ≈30 h integration time per field, each covering 1' × 1' field of view, with ≈ 0.̋65 spatial resolution. We selected all galaxies brighter than 25 mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 108.5 M⊙ ≲ M∗ ≲ 1010.5 M⊙. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion σ. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the second order velocity moments Vrms = √V2+σ2 of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of the stellar kinematics of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4-7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  8. Parity generator and parity checker in the modified trinary number system using savart plate and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.

    2010-09-01

    The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).

  9. Liquid Crystal Bragg Gratings: Dynamic Optical Elements for Spatial Light Modulators (Preprint)

    DTIC Science & Technology

    2007-01-01

    of the index of refraction in a material . If the index of refraction can be strongly modulated on a pixel •sutherlandr@saic.com 1 • level, then a...two optical beams .~,incident on a photorefractive material write a grating, due to the generation of a periodic space-charge field inducing an index ...modification of the material’s optical properties proportional to the applied voltage. A "read" beam of light incident on the material is thus spatially

  10. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation

    PubMed Central

    Tang, Weixin; Hu, Johnny H.; Liu, David R.

    2017-01-01

    Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells. PMID:28656978

  11. Spatio-temporal optimization of sampling for bluetongue vectors (Culicoides) near grazing livestock

    PubMed Central

    2013-01-01

    Background Estimating the abundance of Culicoides using light traps is influenced by a large variation in abundance in time and place. This study investigates the optimal trapping strategy to estimate the abundance or presence/absence of Culicoides on a field with grazing animals. We used 45 light traps to sample specimens from the Culicoides obsoletus species complex on a 14 hectare field during 16 nights in 2009. Findings The large number of traps and catch nights enabled us to simulate a series of samples consisting of different numbers of traps (1-15) on each night. We also varied the number of catch nights when simulating the sampling, and sampled with increasing minimum distances between traps. We used resampling to generate a distribution of different mean and median abundance in each sample. Finally, we used the hypergeometric distribution to estimate the probability of falsely detecting absence of vectors on the field. The variation in the estimated abundance decreased steeply when using up to six traps, and was less pronounced when using more traps, although no clear cutoff was found. Conclusions Despite spatial clustering in vector abundance, we found no effect of increasing the distance between traps. We found that 18 traps were generally required to reach 90% probability of a true positive catch when sampling just one night. But when sampling over two nights the same probability level was obtained with just three traps per night. The results are useful for the design of vector monitoring programmes on fields with grazing animals. PMID:23705770

  12. Effects of spatial coherence in diffraction phase microscopy.

    PubMed

    Edwards, Chris; Bhaduri, Basanta; Nguyen, Tan; Griffin, Benjamin G; Pham, Hoa; Kim, Taewoo; Popescu, Gabriel; Goddard, Lynford L

    2014-03-10

    Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.

  13. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  14. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  15. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  16. Spatial Phase Coding for Incoherent Optical Processors

    NASA Technical Reports Server (NTRS)

    Tigin, D. V.; Lavrentev, A. A.; Gary, C. K.

    1994-01-01

    In this paper we introduce spatial phase coding of incoherent optical signals for representing signed numbers in optical processors and present an experimental demonstration of this coding technique. If a diffraction grating, such as an acousto-optic cell, modulates a stream of light, the image of the grating can be recovered from the diffracted beam. The position of the grating image, or more precisely its phase, can be used to denote the sign of the number represented by the diffracted light. The intensity of the light represents the magnitude of the number. This technique is more economical than current methods in terms of the number of information channels required to represent a number and the amount of post processing required.

  17. Trinary Encoder, Decoder, Multiplexer and Demultiplexer Using Savart Plate and Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha

    Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.

  18. Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator.

    PubMed

    Takaki, Yasuhiro; Hayashi, Yuki

    2008-07-01

    The narrow viewing zone angle is one of the problems associated with electronic holography. We propose a technique that enables the ratio of horizontal and vertical resolutions of a spatial light modulator (SLM) to be altered. This technique increases the horizontal resolution of a SLM several times, so that the horizontal viewing zone angle is also increased several times. A SLM illuminated by a slanted point light source array is imaged by a 4f imaging system in which a horizontal slit is located on the Fourier plane. We show that the horizontal resolution was increased four times and that the horizontal viewing zone angle was increased approximately four times.

  19. Transparent, conformable, active multielectrode array using organic electrochemical transistors.

    PubMed

    Lee, Wonryung; Kim, Dongmin; Matsuhisa, Naoji; Nagase, Masae; Sekino, Masaki; Malliaras, George G; Yokota, Tomoyuki; Someya, Takao

    2017-10-03

    Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.

  20. A simple laser locking system based on a field-programmable gate array.

    PubMed

    Jørgensen, N B; Birkmose, D; Trelborg, K; Wacker, L; Winter, N; Hilliard, A J; Bason, M G; Arlt, J J

    2016-07-01

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

  1. A simple laser locking system based on a field-programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, N. B.; Birkmose, D.; Trelborg, K.

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The lockingmore » system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.« less

  2. A general purpose wideband optical spatial frequency spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Ballard, G. S.; Mellor, F. A.

    1972-01-01

    The light scattered at various angles by a transparent media is studied. An example of these applications is the optical Fourier spectrum measurement resulting from various spatial frequencies which were recorded on a photographic emulsion. A method for obtaining these measurements consists of illuminating the test object with parallel monochromatic light. A stationary lens, placed in the resulting wavefield at a distance of one focal length from the object, will focus parallel waves emanating from the test object at a point lying in the focal plane of the lens. A light detector with a small filtering aperture is then used to measure the intensity variation of the light in the focal or transform plane of the lens. Such measurements require the use of a lens which is highly corrected for all of the common aberrations except chromatic aberration.

  3. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.

    PubMed

    Yu, Arthur; Li, Shaowei; Wang, Hui; Chen, Siyu; Wu, Ruqian; Ho, W

    2018-05-09

    The coupling between localized plasmon and molecular orbital in the light emission from a metallic nanocavity has been directly detected and imaged with sub-0.1 nm resolution. The light emission intensity was enhanced when the energy difference between the tunneling electrons and the lowest unoccupied molecular orbital (LUMO) of an azulene molecule matches the energy of a plasmon mode of the nanocavity defined by the Ag-tip and Ag (110) substrate of a scanning tunneling microscope (STM). The spatially resolved image of the light emission intensity matches the spatial distribution of the LUMO obtained by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. Our results highlight the near-field coupling of a molecular orbital to the radiative decay of a plasmonic excitation in a confined nanoscale junction.

  4. Chromatic aberration of light focusing in hyperbolic anisotropic metamaterial made of metallic slit array.

    PubMed

    Guo, Kai; Liu, Jianlong; Zhang, Yan; Liu, Shutian

    2012-12-17

    The dispersion of a hyperbolic anisotropic metamaterial (HAM) and the chromatic aberration of light focusing in this kind of HAM are studied. The HAM is formed by alternately stacking metal and dielectric layers. The rules of materials and filling factors affecting the optical property of HAM are given. The chromatic aberration of light focusing is demonstrated both theoretically and numerically. By comparing the theory with the simulation results, the factors influencing the focal length, including the heat loss of material and low spatial frequency modes, are discussed. The investigation emphasizes the anomalous properties, such as chromatic aberration and low spatial frequency modes influencing focus position, of HAM compared with that in conventional lens. Based on the analysis, the possibility of using HAM to focus light with two different wavelengths at the same point is studied.

  5. Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej

    2016-03-01

    Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).

  6. A 3D radiative transfer model based on lidar data and its application on hydrological and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Li, W.; Su, Y.; Harmon, T. C.; Guo, Q.

    2013-12-01

    Light Detection and Ranging (lidar) is an optical remote sensing technology that measures properties of scattered light to find range and/or other information of a distant object. Due to its ability to generate 3-dimensional data with high spatial resolution and accuracy, lidar technology is being increasingly used in ecology, geography, geology, geomorphology, seismology, remote sensing, and atmospheric physics. In this study we construct a 3-dimentional (3D) radiative transfer model (RTM) using lidar data to simulate the spatial distribution of solar radiation (direct and diffuse) on the surface of water and mountain forests. The model includes three sub-models: a light model simulating the light source, a sensor model simulating the camera, and a scene model simulating the landscape. We use ground-based and airborne lidar data to characterize the 3D structure of the study area, and generate a detailed 3D scene model. The interactions between light and object are simulated using the Monte Carlo Ray Tracing (MCRT) method. A large number of rays are generated from the light source. For each individual ray, the full traveling path is traced until it is absorbed or escapes from the scene boundary. By locating the sensor at different positions and directions, we can simulate the spatial distribution of solar energy at the ground, vegetation and water surfaces. These outputs can then be incorporated into meteorological drivers for hydrologic and energy balance models to improve our understanding of hydrologic processes and ecosystem functions.

  7. Controversies about cervical cancer screening: A qualitative study of Roma women's (non)participation in cervical cancer screening in Romania.

    PubMed

    Andreassen, Trude; Weiderpass, Elisabete; Nicula, Florian; Suteu, Ofelia; Itu, Andreea; Bumbu, Minodora; Tincu, Aida; Ursin, Giske; Moen, Kåre

    2017-06-01

    Romania has Europe's highest incidence and mortality of cervical cancer. While a free national cervical cancer-screening programme has been in operation since 2012, participation in the programme is low, particularly in minority populations. The aim of this study was to explore Roma women's (non)participation in the programme from women's own perspectives and those of healthcare providers and policy makers. We carried out fieldwork for a period of 125 days in 2015/16 involving 144 study participants in Cluj and Bucharest counties. Fieldwork entailed participant observation, qualitative interviewing and focus group discussions. A striking finding was that screening providers and Roma women had highly different takes on the national screening programme. We identified four fundamental questions about which there was considerable disagreement between them: whether a free national screening programme existed in the first place, whether Roma women were meant to be included in the programme if it did, whether Roma women wanted to take part in screening, and to what degree screening participation would really benefit women's health. On the background of insights from actor-network theory, the article discusses to what degree the programme could be said to speak to the interest of its intended Roma public, and considers the controversies in light of the literature on patient centred care and user involvement in health care. The paper contributes to the understanding of the health and health-related circumstances of the largest minority in Europe. It also problematizes the use of the concept of "barriers" in research into participation in cancer screening, and exemplifies how user involvement can potentially help transform and improve screening programmes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.

    PubMed

    Zhang, Weifeng; Yao, Jianping

    2018-04-11

    Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.

  9. Random laser illumination: an ideal source for biomedical polarization imaging?

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  10. Development of a wing-beat-modulation scanning lidar system for insect studies

    NASA Astrophysics Data System (ADS)

    Tauc, Martin Jan; Fristrup, Kurt M.; Shaw, Joseph A.

    2017-08-01

    The spatial distributions of flying insects are not well understood since most sampling methods - Malaise traps, sticky traps, vacuum traps, light traps - are not suited to documenting movements or changing distributions of various insects on short time scales. These methods also capture and kill the insects. To noninvasively monitor the spatial distributions of flying insects, we developed and implemented a scanning lidar system that measured wing-beat-modulated scattered laser light. The oscillating signal from wing-beat returns allowed for reliable separation of lidar returns for insects and stationary objects. Transmitting and receiving optics were mounted to a telescope that was attached to a scanning mount. As it scanned, the lidar collected and analyzed the light scattered from insect wings of various species. Mount position and pulse time-of-flight determined spatial location and spectral analysis of the backscattered light provided clues to insect identity. During one day of a four-day field campaign at Grand Teton National Park in June of 2016, 76 very likely insects and 662 somewhat likely insects were detected, with a maximum range to the insect of 87.6 m for very likely insects

  11. Tracing the phase of focused broadband laser pulses

    NASA Astrophysics Data System (ADS)

    Hoff, Dominik; Krüger, Michael; Maisenbacher, Lothar; Sayler, A. M.; Paulus, Gerhard G.; Hommelhoff, Peter

    2017-10-01

    Precise knowledge of the behaviour of the phase of light in a focused beam is fundamental to understanding and controlling laser-driven processes. More than a hundred years ago, an axial phase anomaly for focused monochromatic light beams was discovered and is now commonly known as the Gouy phase. Recent theoretical work has brought into question the validity of applying this monochromatic phase formulation to the broadband pulses becoming ubiquitous today. Based on electron backscattering at sharp nanometre-scale metal tips, a method is available to measure light fields with sub-wavelength spatial resolution and sub-optical-cycle time resolution. Here we report such a direct, three-dimensional measurement of the spatial dependence of the optical phase of a focused, 4-fs, near-infrared pulsed laser beam. The observed optical phase deviates substantially from the monochromatic Gouy phase--exhibiting a much more complex spatial dependence, both along the propagation axis and in the radial direction. In our measurements, these significant deviations are the rule and not the exception for focused, broadband laser pulses. Therefore, we expect wide ramifications for all broadband laser-matter interactions, such as in high-harmonic and attosecond pulse generation, femtochemistry, ophthalmological optical coherence tomography and light-wave electronics.

  12. Automated measurement of spatial preference in the open field test with transmitted lighting.

    PubMed

    Kulikov, Alexander V; Tikhonova, Maria A; Kulikov, Victor A

    2008-05-30

    New modification of the open field was designed to improve automation of the test. The main innovations were: (1) transmitted lighting and (2) estimation of probability to find pixels associated with an animal in the selected region of arena as an objective index of spatial preference. Transmitted (inverted) lighting significantly ameliorated the contrast between an animal and arena and allowed to track white animals with similar efficacy as colored ones. Probability as a measure of preference of selected region was mathematically proved and experimentally verified. A good correlation between probability and classic indices of spatial preference (number of region entries and time spent therein) was shown. The algorithm of calculation of probability to find pixels associated with an animal in the selected region was implemented in the EthoStudio software. Significant interstrain differences in locomotion and the central zone preference (index of anxiety) were shown using the inverted lighting and the EthoStudio software in mice of six inbred strains. The effects of arena shape (circle or square) and a novel object presence in the center of arena on the open field behavior in mice were studied.

  13. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant

    PubMed Central

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630

  14. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant.

    PubMed

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.

  15. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  16. Light-sheet enhanced resolution of light field microscopy for rapid imaging of large volumes

    NASA Astrophysics Data System (ADS)

    Madrid Wolff, Jorge; Castro, Diego; Arbeláez, Pablo; Forero-Shelton, Manu

    2018-02-01

    Whole-brain imaging is challenging because it demands microscopes with high temporal and spatial resolution, which are often at odds, especially in the context of large fields of view. We have designed and built a light-sheet microscope with digital micromirror illumination and light-field detection. On the one hand, light sheets provide high resolution optical sectioning on live samples without compromising their viability. On the other hand, light field imaging makes it possible to reconstruct full volumes of relatively large fields of view from a single camera exposure; however, its enhanced temporal resolution comes at the expense of spatial resolution, limiting its applicability. We present an approach to increase the resolution of light field images using DMD-based light sheet illumination. To that end, we develop a method to produce synthetic resolution targets for light field microscopy and a procedure to correct the depth at which planes are refocused with rendering software. We measured the axial resolution as a function of depth and show a three-fold potential improvement with structured illumination, albeit by sacrificing some temporal resolution, also three-fold. This results in an imaging system that may be adjusted to specific needs without having to reassemble and realign it. This approach could be used to image relatively large samples at high rates.

  17. Producing Data through E-Assessment: A Trace Ethnographic Investigation into E-Assessment Events

    ERIC Educational Resources Information Center

    O'Keeffe, Cormac

    2016-01-01

    In this paper, I examine the role of human and digital actants in various material and spatial configurations during the Programme for the International Assessment of Adult Competencies (PIAAC) e-assessment events. It reports on an investigation into how data are produced and subsequently fed into statistical models that in turn produce analyses…

  18. Collaborative Imaginaries and Multi-Sited Ethnography: Space-Time Dimensions of Engagement in an Afterschool Science Programme for Girls

    ERIC Educational Resources Information Center

    Rahm, Jrene

    2012-01-01

    Temporal and spatial configurations that constitute learning and identity work across practices have been little explored in studies of science literacy development. Grounded in multi-sited ethnography, this paper explores diverse girls' engagement with and identity work in science locally, inside a newsletter activity in an afterschool programme…

  19. The NIHR Public Health Research Programme: responding to local authority research needs in the United Kingdom.

    PubMed

    Dorling, Hannah; Cook, Andrew; Ollerhead, Liz; Westmore, Matt

    2015-12-11

    The remit of the National Institute for Health Research Public Health Research (PHR) Programme is to evaluate public health interventions, providing new knowledge on the benefits, costs, acceptability and wider impacts of interventions, set outside of the National Health Service, intended to improve the health of the public and reduce inequalities. This paper illustrates how the PHR Programme is providing new knowledge for public health decision makers, based on the nine key areas for local authority public health action, described by the King's Fund. Many funded PHR projects are evaluating interventions, applied in a range of settings, across the identified key areas for local authority influence. For example, research has been funded on children and young people, and for some of the wider determinants of health, such as housing and travel. Other factors, such as spatial planning, or open and green spaces and leisure, are less represented in the PHR Programme. Further opportunities in research include interventions to improve the health of adolescents, adults in workplaces, and communities. Building evidence for public health interventions at local authority level is important to prioritise and implement effective changes to improve population health.

  20. A novel, cost-effective, multi-point Thomson scattering system on the Pegasus Toroidal Experiment (invited)

    DOE PAGES

    Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...

    2016-09-16

    Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fastmore » shutter. This –10 3 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot T e(R) for n e > 5 × 10 18 m –3.« less

  1. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.

    PubMed

    Goorden, Sebastianus A; Bertolotti, Jacopo; Mosk, Allard P

    2014-07-28

    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

  2. Scanning computed confocal imager

    DOEpatents

    George, John S.

    2000-03-14

    There is provided a confocal imager comprising a light source emitting a light, with a light modulator in optical communication with the light source for varying the spatial and temporal pattern of the light. A beam splitter receives the scanned light and direct the scanned light onto a target and pass light reflected from the target to a video capturing device for receiving the reflected light and transferring a digital image of the reflected light to a computer for creating a virtual aperture and outputting the digital image. In a transmissive mode of operation the invention omits the beam splitter means and captures light passed through the target.

  3. Resolution-independent surface rendering using programmable graphics hardware

    DOEpatents

    Loop, Charles T.; Blinn, James Frederick

    2008-12-16

    Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.

  4. FOR LOVE OR REWARD? CHARACTERISING PREFERENCES FOR GIVING TO PARENTS IN AN EXPERIMENTAL SETTING*

    PubMed Central

    Porter, Maria; Adams, Abi

    2017-01-01

    Understanding the motivations behind intergenerational transfers is an important and active research area in economics. The existence and responsiveness of familial transfers have consequences for the design of intra and intergenerational redistributive programmes, particularly as such programmes may crowd out private transfers amongst altruistic family members. Yet, despite theoretical and empirical advances in this area, significant gaps in our knowledge remain. In this article, we advance the current literature by shedding light on both the motivation for providing intergenerational transfers, and on the nature of preferences for such giving behaviour, by using experimental techniques and revealed preference methods. PMID:29151611

  5. Controller for computer control of brushless dc motors. [automobile engines

    NASA Technical Reports Server (NTRS)

    Hieda, L. S. (Inventor)

    1981-01-01

    A motor speed and torque controller for brushless d.c. motors provides an unusually smooth torque control arrangement. The controller provides a means for controlling a current waveform in each winding of a brushless dc motor by synchronization of an excitation pulse train from a programmable oscillator. Sensing of torque for synchronization is provided by a light beam chopper mounted on the motor rotor shaft. Speed and duty cycle are independently controlled by controlling the frequency and pulse width output of the programmable oscillator. A means is also provided so that current transitions from one motor winding to another is effected without abrupt changes in output torque.

  6. Neuromythologies in Education

    ERIC Educational Resources Information Center

    Geake, John

    2008-01-01

    Background: Many popular educational programmes claim to be "brain-based", despite pleas from the neuroscience community that these neuromyths do not have a basis in scientific evidence about the brain. Purpose: The main aim of this paper is to examine several of the most popular neuromyths in the light of the relevant neuroscientific and…

  7. Engineering Lecturers' Views on CLIL and EMI

    ERIC Educational Resources Information Center

    Aguilar, Marta

    2017-01-01

    The present study aims to shed some light on how engineering lecturers teaching in English at a Spanish university view their work (teaching goals) within the current European internationalisation trend of offering courses and master programmes in English. A questionnaire where content and language integrated learning (CLIL) and English-medium…

  8. The liquid crystal light valve, an optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Beard, T. D.; Bleha, W. P.; Margerum, J. D.; Wong, S. Y.

    1972-01-01

    A photoactivated liquid crystal light valve is described as an optical-to-optical interface device (OTTO) which is designed to transfer an optical image from a noncoherent light beam to a spatially coherent beam of light, in real time. Schematics of OTTO in use, the liquid cyrstal cell, and the liquid crystal structure are presented. Sensitivity characteristics and the principles of operation are discussed.

  9. Sexual and reproductive health and rights of adolescent girls: Evidence from low- and middle-income countries

    PubMed Central

    Santhya, K.G.; Jejeebhoy, Shireen J.

    2015-01-01

    This paper reviews the evidence on sexual and reproductive health and rights (SRHR) of adolescent girls in low-income and middle-income countries (LMIC) in light of the policy and programme commitments made at the International Conference on Population and Development (ICPD), analyses progress since 1994, and maps challenges in and opportunities for protecting their health and human rights. Findings indicate that many countries have yet to make significant progress in delaying marriage and childbearing, reducing unintended childbearing, narrowing gender disparities that put girls at risk of poor SRH outcomes, expanding health awareness or enabling access to SRH services. While governments have reaffirmed many commitments, policy development and programme implementation fall far short of realising these commitments. Future success requires increased political will and engagement of young people in the formulation and implementation of policies and programmes, along with increased investments to deliver at scale comprehensive sexuality education, health services that are approachable and not judgemental, safe spaces programmes, especially for vulnerable girls, and programmes that engage families and communities. Stronger policy-making and programming also require expanding the evidence on adolescent health and rights in LMICs for both younger and older adolescents, boys and girls, and relating to a range of key health matters affecting adolescents. PMID:25554828

  10. The space-math link in preschool boys and girls: Importance of mental transformation, targeting accuracy, and spatial anxiety.

    PubMed

    Wong, Wang I

    2017-06-01

    Spatial abilities are pertinent to mathematical competence, but evidence of the space-math link has largely been confined to older samples and intrinsic spatial abilities (e.g., mental transformation). The roles of gender and affective factors are also unclear. This study examined the correlations between counting ability, mental transformation, and targeting accuracy in 182 Hong Kong preschoolers, and whether these relationships were weaker at higher spatial anxiety levels. Both spatial abilities related with counting similarly for boys and girls. Targeting accuracy also mediated the male advantage in counting. Interestingly, spatial anxiety moderated the space-math links, but differently for boys and girls. For boys, spatial abilities were irrelevant to counting at high anxiety levels; for girls, the role of anxiety on the space-math link is less clear. Results extend the evidence base of the space-math link to include an extrinsic spatial ability (targeting accuracy) and have implications for intervention programmes. Statement of contribution What is already known on this subject? Much evidence of a space-math link in adolescent and adult samples and for intrinsic spatial abilities. What does this study add? Extended the space-math link to include both intrinsic and extrinsic spatial abilities in a preschool sample. Showed how spatial anxiety moderated the space-math link differently for boys and girls. © 2016 The British Psychological Society.

  11. The application of traffic-light food labelling in a worksite canteen intervention in Taiwan.

    PubMed

    Chen, H-J; Weng, S-H; Cheng, Y-Y; Lord, A Y Z; Lin, H-H; Pan, W-H

    2017-09-01

    This study evaluated customer attitudes, perceptions, and utilisation of a traffic-light food labelling (TFL) programme before and after the TFL was implemented in a worksite canteen in Taiwan. A one-arm intervention was implemented in the canteen and buffet of a research park in Taiwan. Phase 1 consisted of dissemination of information regarding the TFL, targeting the customers (June-July, 2014); phase 2 consisted of implementation of the TFL in the buffet starting in August 2014. The TFL included red, yellow and green labels, indicating 'unhealthy/stop', 'moderately unhealthy/wait' and 'healthy/go', respectively. The evaluation was based on two independent anonymous surveys in July 2014 (in phase 1) and April 2015 (in phase 2). Customers were invited to take a survey regarding the TFL programme, the food environment in the canteen, and their lunch choices. Logistic regression models examined the changes in customers' attention and attitudes towards the labelling and their food choices between the two surveys. The customers reported positive attitudes towards the TFL. The proportion of customers who reported choosing foods based on the recommendations increased from 38% to 50% (P < 0.01). The proportion of the buffet customers who chose green-light entrées and red-light entrées changed from 13% and 63% to 36% and 21%, respectively (P < 0.001). The availability of green-light entrées in the buffet increased as well. This first report of a TFL intervention in an Asian worksite suggests that TFL is acceptable and well understood by this population and may assist customers in choosing healthier items when healthier choices are available. Copyright © 2017. Published by Elsevier Ltd.

  12. Combined organizational and activational effects of short and long photoperiods on spatial and temporal memory in rats.

    PubMed

    MacDonald, Christopher J; Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2007-02-22

    The present study examined the effects of photoperiod on spatial and temporal memory in adult Sprague-Dawley rats that were conceived and reared in different day lengths, i.e., short day (SD-8:16 light/dark) and long day (LD-16:8 light/dark). Both male and female LD rats demonstrated increased spatial memory capacity as evidenced by a lower number of choices to criterion in a 12-arm radial maze task relative to the performance of SD rats. SD rats also demonstrated a distortion in the content of temporal memory as evidenced by a proportional rightward shift in the 20 and 60 s temporal criteria trained using the peak-interval procedure that is consistent with reduced cholinergic function. The conclusion is that both spatial and temporal memory are sensitive to photoperiod variation in laboratory rats in a manner similar to that previously observed for reproductive behaviour.

  13. Monolithic LED arrays, next generation smart lighting sources

    NASA Astrophysics Data System (ADS)

    Lagrange, Alexandre; Bono, Hubert; Templier, François

    2016-03-01

    LED have become the main light sources of the future as they open the path for intelligent use of light in time, intensity and color. In many usages, strong energy economy is done by adjusting these properties. The smart lighting has three dimensions, energy efficiency brought by GaN blue emitting LEDs, integration of electronics, sensors, microprocessors in the lighting system and development of new functionalities and services provided by the light. Monolithic LED arrays allow two major innovations, the spatial control of light emission and the adjustment of the electrical properties of the source.

  14. The ecological impacts of nighttime light pollution: a mechanistic appraisal.

    PubMed

    Gaston, Kevin J; Bennie, Jonathan; Davies, Thomas W; Hopkins, John

    2013-11-01

    The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  15. Applications of Spatial Technology in Schistosomiasis Control Programme in The People's Republic of China.

    PubMed

    Wang, X-Y; He, J; Yang, K; Liang, S

    2016-01-01

    Schistosomiasis, as the important parasitic disease, has caused serious threats to human health globally. The People's Republic of China has acquired significant achievements based on large-scale interventions and innovational technology. The spatial technology was introduced in 1980s and widely used in the study and control of schistosomiasis in The People's Republic of China. This chapter reviews the progress and application of spatial technology in schistosomiasis control by analysing the spatiotemporal pattern of and the impact of ecological changes on schistosomiasis transmission, which have provided the information to design and select the control strategy, and assisted the establishment of the monitoring and early warning system in The People's Republic of China, especially in the marshland and mountainous regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Optical phase aberration generation using a Liquid Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.

    In this dissertation, a Liquid Crystal Spatial Light Modulator is used to simulate optical aberrations in an optical system. Any optical aberration can be simulated through the use of software developed for this project. A new method of simulating atmospheric turbulence is also presented. The Earth's atmosphere is a large, non-linear, non-homogeneous medium that is constantly flowing in a random fashion that affects light as it propagates through it. The Kolmogorov model for atmospheric turbulence is a description of the nature of the wavefront perturbations introduced by the atmosphere and it is one of the most accepted models. It is supported by a variety of experimental measurements and research and is quite widely used in simulations for atmospheric imaging. This model provides a statistical description of how random fluctuations in humidity and temperature affect the refractive index of the atmosphere for imaging through atmospheric turbulence. These refractive index fluctuations in turn affect the propagation of light through the atmosphere. An adaptive optical system can be developed to correct these wavefront perturbations for an optical system. However, prior to deployment, an adaptive optical system requires calibration and full characterization in the laboratory. Creating realistic atmospheric simulations is often expensive and computationally intensive using common techniques. To combat some of these issues often the temporal properties in the simulation are neglected. This dissertation outlines a new method developed for generating atmospheric turbulence and a testbed that simulates its aberrations far more inexpensively and with greater fidelity using a Liquid Crystal Spatial Light Modulator. This system allows the simulation of atmospheric seeing conditions ranging from very poor to very good and different algorithms may be easily employed on the device for comparison. These simulations can be dynamically generated and modified very quickly and easily. Using a Liquid Crystal Spatial Light Modulator to induce aberrations in an imaging system is not limited to simulating atmospheric turbulence. Any turbulence model can be used either statically or dynamically for multiple applications.

  17. Does spatial arrangement of 3D plants affect light transmission and extinction coefficient within maize crops?

    USDA-ARS?s Scientific Manuscript database

    Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...

  18. High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment

    Treesearch

    Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn

    2012-01-01

    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...

  19. Whole-animal imaging with high spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  20. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    PubMed

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  1. SPATIAL APPROACH TO PLANNING THE PHYSICAL ENVIRONMENT.

    ERIC Educational Resources Information Center

    BELLOMY, CLEON C.; CAUDILL, WILLIAM W.

    THE PURPOSE OF THIS REPORT DEFINES THE SPATIAL APPROACH TO PLANNING THE PHYSICAL ENVIRONMENT AND SUGGESTS A MORE NATURAL APPROACH TO A LESS RESTRICTED ARCHITECTURE. ONE OF THE TWO BASIC ARCHITECTURAL ELEMENTS IN THE SPATIAL CONCEPT IS THE HORIZONTAL SCREEN WHICH KEEPS THE SUN AND RAIN OFF, LETS IN LIGHT, KEEPS OUT SUN HEAT, RETAINS ROOM HEAT, AND…

  2. Light-Inducible Gene Regulation with Engineered Zinc Finger Proteins

    PubMed Central

    Polstein, Lauren R.; Gersbach, Charles A.

    2014-01-01

    The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells. PMID:24718797

  3. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation

    NASA Astrophysics Data System (ADS)

    Yang, Jiamiao; Shen, Yuecheng; Liu, Yan; Hemphill, Ashton S.; Wang, Lihong V.

    2017-11-01

    Optical scattering prevents light from being focused through thick biological tissue at depths greater than ˜1 mm. To break this optical diffusion limit, digital optical phase conjugation (DOPC) based wavefront shaping techniques are being actively developed. Previous DOPC systems employed spatial light modulators that modulated either the phase or the amplitude of the conjugate light field. Here, we achieve optical focusing through scattering media by using polarization modulation based generalized DOPC. First, we describe an algorithm to extract the polarization map from the measured scattered field. Then, we validate the algorithm through numerical simulations and find that the focusing contrast achieved by polarization modulation is similar to that achieved by phase modulation. Finally, we build a system using an inexpensive twisted nematic liquid crystal based spatial light modulator (SLM) and experimentally demonstrate light focusing through 3-mm thick chicken breast tissue. Since the polarization modulation based SLMs are widely used in displays and are having more and more pixel counts with the prevalence of 4 K displays, these SLMs are inexpensive and valuable devices for wavefront shaping.

  4. Demonstration of a large-size horizontal light-field display based on the LED panel and the micro-pinhole unit array

    NASA Astrophysics Data System (ADS)

    Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao

    2018-05-01

    A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.

  5. Controlling Light Transmission Through Highly Scattering Media Using Semi-Definite Programming as a Phase Retrieval Computation Method.

    PubMed

    N'Gom, Moussa; Lien, Miao-Bin; Estakhri, Nooshin M; Norris, Theodore B; Michielssen, Eric; Nadakuditi, Raj Rao

    2017-05-31

    Complex Semi-Definite Programming (SDP) is introduced as a novel approach to phase retrieval enabled control of monochromatic light transmission through highly scattering media. In a simple optical setup, a spatial light modulator is used to generate a random sequence of phase-modulated wavefronts, and the resulting intensity speckle patterns in the transmitted light are acquired on a camera. The SDP algorithm allows computation of the complex transmission matrix of the system from this sequence of intensity-only measurements, without need for a reference beam. Once the transmission matrix is determined, optimal wavefronts are computed that focus the incident beam to any position or sequence of positions on the far side of the scattering medium, without the need for any subsequent measurements or wavefront shaping iterations. The number of measurements required and the degree of enhancement of the intensity at focus is determined by the number of pixels controlled by the spatial light modulator.

  6. Design of an Oximeter Based on LED-LED Configuration and FPGA Technology

    PubMed Central

    Stojanovic, Radovan; Karadaglic, Dejan

    2013-01-01

    A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575

  7. A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators.

    PubMed

    Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping

    2014-10-20

    A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

  8. Navigational strategies underlying phototaxis in larval zebrafish.

    PubMed

    Chen, Xiuye; Engert, Florian

    2014-01-01

    Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.

  9. Socioeconomic inequality in salt intake in Britain 10 years after a national salt reduction programme.

    PubMed

    Ji, Chen; Cappuccio, Francesco P

    2014-08-14

    The impact of the national salt reduction programme in the UK on social inequalities is unknown. We examined spatial and socioeconomic variations in salt intake in the 2008-2011 British National Diet and Nutrition Survey (NDNS) and compared them with those before the programme in 2000-2001. Cross-sectional survey in Great Britain. 1027 Caucasian males and females, aged 19-64 years. Participants' dietary sodium intake measured with a 4-day food diary. Bayesian geo-additive models used to assess spatial and socioeconomic patterns of sodium intake accounting for sociodemographic, anthropometric and behavioural confounders. Dietary sodium intake varied significantly across socioeconomic groups, even when adjusting for geographical variations. There was higher dietary sodium intake in people with the lowest educational attainment (coefficient: 0.252 (90% credible intervals 0.003, 0.486)) and in low levels of occupation (coefficient: 0.109 (-0.069, 0.288)). Those with no qualification had, on average, a 5.7% (0.1%, 11.1%) higher dietary sodium intake than the reference group. Compared to 2000-2001 the gradient of dietary sodium intake from south to north was attenuated after adjustments for confounders. Estimated dietary sodium consumption from food sources (not accounting for discretionary sources) was reduced by 366 mg of sodium (∼0.9 g of salt) per day during the 10-year period, likely the effect of national salt reduction initiatives. Social inequalities in salt intake have not seen a reduction following the national salt reduction programme and still explain more than 5% of salt intake between more and less affluent groups. Understanding the socioeconomic pattern of salt intake is crucial to reduce inequalities. Efforts are needed to minimise the gap between socioeconomic groups for an equitable delivery of cardiovascular prevention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Socioeconomic inequality in salt intake in Britain 10 years after a national salt reduction programme

    PubMed Central

    Ji, Chen; Cappuccio, Francesco P

    2014-01-01

    Objectives The impact of the national salt reduction programme in the UK on social inequalities is unknown. We examined spatial and socioeconomic variations in salt intake in the 2008–2011 British National Diet and Nutrition Survey (NDNS) and compared them with those before the programme in 2000–2001. Setting Cross-sectional survey in Great Britain. Participants 1027 Caucasian males and females, aged 19–64 years. Primary outcome measures Participants’ dietary sodium intake measured with a 4-day food diary. Bayesian geo-additive models used to assess spatial and socioeconomic patterns of sodium intake accounting for sociodemographic, anthropometric and behavioural confounders. Results Dietary sodium intake varied significantly across socioeconomic groups, even when adjusting for geographical variations. There was higher dietary sodium intake in people with the lowest educational attainment (coefficient: 0.252 (90% credible intervals 0.003, 0.486)) and in low levels of occupation (coefficient: 0.109 (−0.069, 0.288)). Those with no qualification had, on average, a 5.7% (0.1%, 11.1%) higher dietary sodium intake than the reference group. Compared to 2000-2001 the gradient of dietary sodium intake from south to north was attenuated after adjustments for confounders. Estimated dietary sodium consumption from food sources (not accounting for discretionary sources) was reduced by 366 mg of sodium (∼0.9 g of salt) per day during the 10-year period, likely the effect of national salt reduction initiatives. Conclusions Social inequalities in salt intake have not seen a reduction following the national salt reduction programme and still explain more than 5% of salt intake between more and less affluent groups. Understanding the socioeconomic pattern of salt intake is crucial to reduce inequalities. Efforts are needed to minimise the gap between socioeconomic groups for an equitable delivery of cardiovascular prevention. PMID:25161292

  11. A Rewritable, Reprogrammable, Dual Light-Responsive Polymer Actuator.

    PubMed

    Gelebart, Anne Helene; Mulder, Dirk J; Vantomme, Ghislaine; Schenning, Albertus P H J; Broer, Dirk J

    2017-10-16

    We report on the fabrication of a rewritable and reprogrammable dual-photoresponsive liquid crystalline-based actuator containing an azomerocyanine dye that can be locally converted into the hydroxyazopyridinium form by acid treatment. Each dye absorbs at a different wavelength giving access to programmable actuators, the folding of which can be controlled by using different colors of light. The acidic patterning is reversible and allows the erasing and rewriting of patterns in the polymer film, giving access to reusable, adjustable soft actuators. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  13. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, Victor

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector.

  14. Perturbing laser field dependent high harmonic phase modulations

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.

    2018-06-01

    A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.

  15. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  16. Calculating potential fields using microchannel spatial light modulators

    NASA Technical Reports Server (NTRS)

    Reid, Max B.

    1993-01-01

    We describe and present experimental results of the optical calculation of potential field maps suitable for mobile robot navigation. The optical computation employs two write modes of a microchannel spatial light modulator (MSLM). In one mode, written patterns expand spatially, and this characteristic is used to create an extended two dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, non-expanding, mode. A model of the mechanisms determining MSLM write mode characteristics is developed and used to derive the optical calculation time for full potential field maps. Field calculations at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.

  17. Modeling spatial competition for light in plant populations with the porous medium equation.

    PubMed

    Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal

    2015-02-01

    We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.

  18. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2017-01-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR (near-infrared)background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC (Infrared Array Camera) observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS (Cosmic Evolution Survey) field at low ecliptic latitude where the zodiacal light intensity varies by factors of approximately 2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (greater than or approximately equal to 100 arcseconds) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  19. Fiberoptic spectrophotometer

    DOEpatents

    Tans, Petrus P.; Lashof, Daniel A.

    1986-01-01

    A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.

  20. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    PubMed Central

    Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-01-01

    Abstract The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea‐ice‐melt and under‐ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under‐ice radiance and irradiance using the new Nereid Under‐Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H‐ROV) designed for both remotely piloted and autonomous surveys underneath land‐fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under‐ice optical measurements with three dimensional under‐ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice‐thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under‐ice light field on small scales (<1000 m2), while sea ice‐thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo. PMID:27660738

Top