[Programmed necrosis and necroptosis - molecular mechanisms].
Giżycka, Agata; Chorostowska-Wynimko, Joanna
2015-12-16
Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.
Endothelial necrosis at 1h post-burn predicts progression of tissue injury
Hirth, Douglas; McClain, Steve A.; Singer, Adam J.; Clark, Richard A.F.
2013-01-01
Burn injury progression has not been well characterized at the cellular level. To define burn injury progression in terms of cell death, histopathologic spatiotemporal relationships of cellular necrosis and apoptosis were investigated in a validated porcine model of vertical burn injury progression. Cell necrosis was identified by High Mobility Group Box 1 protein and apoptosis by Caspase 3a staining of tissue samples taken 1h, 24h and 7 days post-burn. Level of endothelial cell necrosis at 1h was predictive of level of apoptosis at 24h (Pearson's r=0.87) and of level of tissue necrosis at 7 days (Pearson's r=0.87). Furthermore, endothelial cell necrosis was deeper than interstitial cell necrosis at 1h (p<0.001). Endothelial cell necrosis at 1h divided the zone of injury progression (Jackson's zone of stasis) into an upper subzone with necrotic endothelial cells and initially viable adnexal and interstitial cells at 1h that progressed to necrosis by 24h, and a lower zone with initially viable endothelial cells at 1h, but necrosis and apoptosis of all cell types by 24h. Importantly, this spatiotemporal series of events and rapid progression resembles myocardial infarction and stroke, and implicates mechanisms of these injuries, ischemia, ischemia reperfusion, and programmed cell death, in burn progression. PMID:23627744
Regulation of Tumor Progression by Programmed Necrosis
Jeon, Hyun Min; Jeong, Eui Kyong; Lee, Yig Ji; Kim, Cho Hee; Park, Hye Gyeong
2018-01-01
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness. PMID:29636841
Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.
LaRocca, Timothy J; Stivison, Elizabeth A; Hod, Eldad A; Spitalnik, Steven L; Cowan, Peter J; Randis, Tara M; Ratner, Adam J
2014-08-26
A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. In this work, we provide the first description of a new form of programmed cell death in erythrocytes (RBCs) that occurs as a consequence of cellular attack by human-specific bacterial toxins. By defining a new RBC death pathway that shares important components with necroptosis, a programmed necrosis module that occurs in nucleated cells, these findings expand our understanding of RBC biology and RBC-pathogen interactions. In addition, our work provides a link between cholesterol-dependent cytolysin (CDC) host restriction and promotion of bacterial growth in the presence of RBCs, which may provide a selective advantage to human-associated bacterial strains that elaborate such toxins and a potential explanation for the narrowing of host range observed in this toxin family. Copyright © 2014 LaRocca et al.
... Meningococcemia associated purpura Necrosis of the toes References Kumar V, Abbas AK, Aster JC. Cellular responses to ... and toxic insults: adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ...
Humanin Derivatives Inhibit Necrotic Cell Death in Neurons
Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H
2015-01-01
Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019
Chen, Rui; Grosche, Antje; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon
2014-01-01
Purpose Vegetable polyphenols (bioflavonoids) have been suggested to represent promising drugs for treating cancer and retinal diseases. We compared the effects of various bioflavonoids (epigallocatechin-3-gallate [EGCG], luteolin, apigenin, myricetin, quercetin, and cyanidin) on the physiological properties and viability of cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were obtained from several donors within 48 h of death. Secretion of vascular endothelial growth factor (VEGF) was determined with enzyme-linked immunosorbent assay. Messenger ribonucleic acid levels were determined with real-time reverse transcription polymerase chain reaction. Cellular proliferation was investigated with a bromodeoxyuridine immunoassay, and chemotaxis was examined with a Boyden chamber assay. The number of viable cells was determined by Trypan Blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation enzyme-linked immunosorbent assay. The phosphorylation level of signaling proteins was revealed by western blotting. Results With the exception of EGCG, all flavonoids tested decreased dose-dependently the RPE cell proliferation, migration, and secretion of VEGF. EGCG inhibited the secretion of VEGF evoked by CoCl2-induced hypoxia. The gene expression of VEGF was reduced by myricetin at low concentrations and elevated at higher concentrations. Luteolin, apigenin, myricetin, and quercetin induced significant decreases in the cell viability at higher concentration, by triggering cellular necrosis. Cyanidin reduced the rate of RPE cell necrosis. Myricetin caused caspase-3 independent RPE cell necrosis mediated by free radical generation and activation of calpain and phospholipase A2. The myricetin- and quercetin-induced RPE cell necrosis was partially inhibited by necrostatin-1, a blocker of programmed necrosis. Most flavonoids tested diminished the phosphorylation levels of extracellular signal-regulated kinases 1/2 and Akt proteins. Conclusions The intake of luteolin, apigenin, myricetin, and quercetin as supplemental cancer therapy or in treating retinal diseases should be accompanied by careful monitoring of the retinal function. The possible beneficial effects of EGCG and cyanidin, which had little effect on RPE cell viability, in treating retinal diseases should be examined in further investigations. PMID:24623967
Schmidt, Carl R; Shires, Peter; Mootoo, Mary
2012-02-01
Irreversible electroporation (IRE) is a largely non-thermal method for the ablation of solid tumours. The ability of ultrasound (US) to measure the size of the IRE ablation zone was studied in a porcine liver model. Three normal pig livers were treated in vivo with a total of 22 ablations using IRE. Ultrasound was used within minutes after ablation and just prior to liver harvest at either 6 h or 24 h after the procedure. The area of cellular necrosis was measured after staining with nitroblue tetrazolium and the percentage of cell death determined by histomorphometry. Visible changes in the hepatic parenchyma were apparent by US after all 22 ablations using IRE. The mean maximum diameter of the ablation zone measured by US during the procedure was 20.1 ± 2.7 mm. This compared with a mean cellular necrosis zone maximum diameter of 20.3 ± 2.9 mm as measured histologically. The mean percentage of dead cells within the ablation zone was 77% at 6 h and 98% at 24 h after ablation. Ultrasound is a useful modality for measuring the ablation zone within minutes of applying IRE to normal liver tissue. The area of parenchymal change measured by US correlates with the area of cellular necrosis. © 2011 International Hepato-Pancreato-Biliary Association.
miR-874 regulates myocardial necrosis by targeting caspase-8
Wang, K; Liu, F; Zhou, L-Y; Ding, S-L; Long, B; Liu, C-Y; Sun, T; Fan, Y-Y; Sun, L; Li, P-F
2013-01-01
Cardiomyocyte death is an important reason for the cardiac syndromes, such as heart failure (HF) and myocardial infarction (MI). In the heart diseases, necrosis is one of the main forms of cell death. MicroRNAs (miRNAs) are a class of small non-coding RNAs that mediate post-transcriptional gene silencing. Hitherto, it is not yet clear whether miRNA can regulate necrosis in cardiomyocyte. In this work, we performed a microarray to detect miRNAs in response to H2O2 treatment, and the results showed that miR-874 was substantially increased. We further studied the function of miR-874, and observed that knockdown of miR-874 attenuated necrosis in the cellular model and also MI in the animal model. We searched for the downstream mediator of miR-874 and identified that caspase-8 was a target of miR-874. Caspase-8 was able to antagonize necrosis. When suppressed by miR-874, caspase-8 lost the ability to repress necrotic program. In exploring the molecular mechanism by which miR-874 expression is regulated, we identified that Foxo3a could transcriptionally repress miR-874 expression. Foxo3a transgenic or knockout mice exhibited a low or high expression level of miR-874, and a reduced or enhanced necrosis and MI. Our present study reveals a novel myocardial necrotic regulating model, which is composed of Foxo3a, miR-874 and caspase-8. Modulation of their levels may provide a new approach for tackling myocardial necrosis. PMID:23828572
Helm, Katharina; Beyreis, Marlena; Mayr, Christian; Ritter, Markus; Jakab, Martin; Kiesslich, Tobias; Plaetzer, Kristjan
2017-01-01
For in vitro cytotoxicity testing, discrimination of apoptosis and necrosis represents valuable information. Viability analysis performed at two different time points post treatment could serve such a purpose because the dynamics of metabolic activity of apoptotic and necrotic cells is different, i.e. a more rapid decline of cellular metabolism during necrosis whereas cellular metabolism is maintained during the entire execution phase of apoptosis. This study describes a straightforward approach to distinguish apoptosis and necrosis. A431 human epidermoid carcinoma cells were treated with different concentrations/doses of actinomycin D (Act-D), 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), Ro 31-8220, H2O2 and photodynamic treatment (PDT). The resazurin viability signal was recorded at 2 and 24 hrs post treatment. Apoptosis and necrosis were verified by measuring caspase 3/7 and membrane integrity. Calculation of the difference curve between the 2 and 24 hrs resazurin signals yields the following information: a positive difference signal indicates apoptosis (i.e. high metabolic activity at early time points and low signal at 24 hrs post treatment) while an early reduction of the viability signal indicates necrosis. For all treatments, this dose-dependent sequence of cellular responses could be confirmed by independent assays. Simple and cost-effective viability analysis provides reliable information about the dose ranges of a cytotoxic agent where apoptosis or necrosis occurs. This may serve as a starting point for further in-depth characterisation of cytotoxic treatments. © 2017 The Author(s)Published by S. Karger AG, Basel.
Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun
2015-01-01
ABSTRACT Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. IMPORTANCE This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. PMID:26559832
Yu, Xiaoliang; Li, Yun; Chen, Qin; Su, Chenhe; Zhang, Zili; Yang, Chengkui; Hu, Zhilin; Hou, Jue; Zhou, Jinying; Gong, Ling; Jiang, Xuejun; Zheng, Chunfu; He, Sudan
2016-01-15
Receptor-interacting protein kinase 3 (RIP3) and its substrate mixed-lineage kinase domain-like protein (MLKL) are core regulators of programmed necrosis. The elimination of pathogen-infected cells by programmed necrosis acts as an important host defense mechanism. Here, we report that human herpes simplex virus 1 (HSV-1) and HSV-2 had opposite impacts on programmed necrosis in human cells versus their impacts in mouse cells. Similar to HSV-1, HSV-2 infection triggered programmed necrosis in mouse cells. However, neither HSV-1 nor HSV-2 infection was able to induce programmed necrosis in human cells. Moreover, HSV-1 or HSV-2 infection in human cells blocked tumor necrosis factor (TNF)-induced necrosis by preventing the induction of an RIP1/RIP3 necrosome. The HSV ribonucleotide reductase large subunit R1 was sufficient to suppress TNF-induced necrosis, and its RIP homotypic interaction motif (RHIM) domain was required to disrupt the RIP1/RIP3 complex in human cells. Therefore, this study provides evidence that HSV has likely evolved strategies to evade the host defense mechanism of programmed necrosis in human cells. This study demonstrated that infection with HSV-1 and HSV-2 blocked TNF-induced necrosis in human cells while these viruses directly activated programmed necrosis in mouse cells. Expression of HSV R1 suppressed TNF-induced necrosis of human cells. The RHIM domain of R1 was essential for its association with human RIP3 and RIP1, leading to disruption of the RIP1/RIP3 complex. This study provides new insights into the species-specific modulation of programmed necrosis by HSV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cervico-endometrial cytology and physiological aspects of the post-partum mare.
Saltiel, A; Gutierrez, A; de Buen-Llado, N; Sosa, C
1987-01-01
After parturition, Thoroughbred mares were mated at the first post-partum oestrus (N = 24) or at a subsequent oestrus (N = 12). All mares were examined daily for: oestrous detection, palpation per rectum of the genital tract, vaginoscopic examination and cervico-endometrial cytology. Pregnancy diagnosis was carried out at Days 18, 35 and 45 after mating. An identical first service conception rate of 50% was found in both groups. The number of neutrophils followed a descending profile to only scattered cells at the first post-partum oestrus and in Group II mares remained at this very low level during the period of study. The percentage of histiocytes and eosinophils increased on Days 10 and 17, and 5 and 6 post partum, respectively. The percentage of lymphocytes remained low and constant during the period of study. Bacterial flora decreased from Days 2 to 9 and increased from Days 13 to 17 post partum. Cellular necrosis and erythrocytes decreased and ciliocytopholia increased as mares approached the first post-partum oestrus. A positive correlation was found between amount, colour, viscosity and turbidity of secretions and all cellular types, ciliocytopholia, cellular necrosis and bacterial flora. The number of neutrophils was positively correlated with the percentage of eosinophils, bacterial flora and cellular necrosis but had a negative association with the presence of ciliocytopholia. Two mares that did not re-establish cyclic ovarian activity after parturition had delayed uterine involution. Mares not conceiving at the first post-partum oestrus exhibited a more prolonged presence of cellular necrosis and erythrocytes and an increased presence of bacterial flora and lymphocytes as compared to mares conceiving at this period.
Recommendations from the INHAND Apoptosis/Necrosis Working Group.
Elmore, Susan A; Dixon, Darlene; Hailey, James R; Harada, Takanori; Herbert, Ronald A; Maronpot, Robert R; Nolte, Thomas; Rehg, Jerold E; Rittinghausen, Susanne; Rosol, Thomas J; Satoh, Hiroshi; Vidal, Justin D; Willard-Mack, Cynthia L; Creasy, Dianne M
2016-02-01
Historically, there has been confusion relating to the diagnostic nomenclature for individual cell death. Toxicologic pathologists have generally used the terms "single cell necrosis" and "apoptosis" interchangeably. Increased research on the mechanisms of cell death in recent years has led to the understanding that apoptosis and necrosis involve different cellular pathways and that these differences can have important implications when considering overall mechanisms of toxicity, and, for these reasons, the separate terms of apoptosis and necrosis should be used whenever differentiation is possible. However, it is also recognized that differentiation of the precise pathway of cell death may not be important, necessary, or possible in routine toxicity studies and so a more general term to indicate cell death is warranted in these situations. Morphological distinction between these two forms of cell death can sometimes be straightforward but can also be challenging. This article provides a brief discussion of the cellular mechanisms and morphological features of apoptosis and necrosis as well as guidance on when the pathologist should use these terms. It provides recommended nomenclature along with diagnostic criteria (in hematoxylin and eosin [H&E]-stained sections) for the most common forms of cell death (apoptosis and necrosis). This document is intended to serve as current guidance for the nomenclature of cell death for the International Harmonization of Nomenclature and Diagnostic Criteria Organ Working Groups and the toxicologic pathology community at large. The specific recommendations are:Use necrosis and apoptosis as separate diagnostic terms.Use modifiers to denote the distribution of necrosis (e.g., necrosis, single cell; necrosis, focal; necrosis, diffuse; etc.).Use the combined term apoptosis/single cell necrosis whenThere is no requirement or need to split the processes, orWhen the nature of cell death cannot be determined with certainty, orWhen both processes are present together. The diagnosis should be based primarily on the morphological features in H&E-stained sections. When needed, additional, special techniques to identify and characterize apoptosis can also be used. © The Author(s) 2016.
Dunn, S R; Thomason, J C; Le Tissier, M D A; Bythell, J C
2004-11-01
Bleaching of reef building corals and other symbiotic cnidarians due to the loss of their dinoflagellate algal symbionts (=zooxanthellae), and/or their photosynthetic pigments, is a common sign of environmental stress. Mass bleaching events are becoming an increasingly important cause of mortality and reef degradation on a global scale, linked by many to global climate change. However, the cellular mechanisms of stress-induced bleaching remain largely unresolved. In this study, the frequency of apoptosis-like and necrosis-like cell death was determined in the symbiotic sea anemone Aiptasia sp. using criteria that had previously been validated for this symbiosis as indicators of programmed cell death (PCD) and necrosis. Results indicate that PCD and necrosis occur simultaneously in both host tissues and zooxanthellae subject to environmentally relevant doses of heat stress. Frequency of PCD in the anemone endoderm increased within minutes of treatment. Peak rates of apoptosis-like cell death in the host were coincident with the timing of loss of zooxanthellae during bleaching. The proportion of apoptosis-like host cells subsequently declined while cell necrosis increased. In the zooxanthellae, both apoptosis-like and necrosis-like activity increased throughout the duration of the experiment (6 days), dependent on temperature dose. A stress-mediated PCD pathway is an important part of the thermal stress response in the sea anemone symbiosis and this study suggests that PCD may play different roles in different components of the symbiosis during bleaching.
Oxidative Stress and Programmed Cell Death in Yeast
Farrugia, Gianluca; Balzan, Rena
2012-01-01
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670
Oropesa-Ávila, Manuel; Fernández-Vega, Alejandro; de la Mata, Mario; Garrido-Maraver, Juan; Cotán, David; Paz, Marina Villanueva; Pavón, Ana Delgado; Cordero, Mario D; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Lema, Rafael; Zaderenko, Ana Paula; Sánchez-Alcázar, José A
2014-09-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.
Guo, Xiaoyun; Yin, Haifeng; Li, Lei; Chen, Yi; Li, Jing; Doan, Jessica; Steinmetz, Rachel; Liu, Qinghang
2017-08-22
Programmed cell death, including apoptosis, mitochondria-mediated necrosis, and necroptosis, is critically involved in ischemic cardiac injury, pathological cardiac remodeling, and heart failure progression. Whereas apoptosis and mitochondria-mediated necrosis signaling is well established, the regulatory mechanisms of necroptosis and its significance in the pathogenesis of heart failure remain elusive. We examined the role of tumor necrosis factor receptor-associated factor 2 (Traf2) in regulating myocardial necroptosis and remodeling using genetic mouse models. We also performed molecular and cellular biology studies to elucidate the mechanisms by which Traf2 regulates necroptosis signaling. We identified a critical role for Traf2 in myocardial survival and homeostasis by suppressing necroptosis. Cardiac-specific deletion of Traf2 in mice triggered necroptotic cardiac cell death, pathological remodeling, and heart failure. Plasma tumor necrosis factor α level was significantly elevated in Traf2 -deficient mice, and genetic ablation of TNFR1 largely abrogated pathological cardiac remodeling and dysfunction associated with Traf2 deletion. Mechanistically, Traf2 critically regulates receptor-interacting proteins 1 and 3 and mixed lineage kinase domain-like protein necroptotic signaling with the adaptor protein tumor necrosis factor receptor-associated protein with death domain as an upstream regulator and transforming growth factor β-activated kinase 1 as a downstream effector. It is important to note that genetic deletion of RIP3 largely rescued the cardiac phenotype triggered by Traf2 deletion, validating a critical role of necroptosis in regulating pathological remodeling and heart failure propensity. These results identify an important Traf2-mediated, NFκB-independent, prosurvival pathway in the heart by suppressing necroptotic signaling, which may serve as a new therapeutic target for pathological remodeling and heart failure. © 2017 American Heart Association, Inc.
Wang, Xing; Li, Yun; Liu, Shan; Yu, Xiaoliang; Li, Lin; Shi, Cuilin; He, Wenhui; Li, Jun; Xu, Lei; Hu, Zhilin; Yu, Lu; Yang, Zhongxu; Chen, Qin; Ge, Lin; Zhang, Zili; Zhou, Biqi; Jiang, Xuejun; Chen, She; He, Sudan
2014-01-01
The receptor-interacting kinase-3 (RIP3) and its downstream substrate mixed lineage kinase domain-like protein (MLKL) have emerged as the key cellular components in programmed necrotic cell death. Receptors for the cytokines of tumor necrosis factor (TNF) family and Toll-like receptors (TLR) 3 and 4 are able to activate RIP3 through receptor-interacting kinase-1 and Toll/IL-1 receptor domain-containing adapter inducing IFN-β, respectively. This form of cell death has been implicated in the host-defense system. However, the molecular mechanisms that drive the activation of RIP3 by a variety of pathogens, other than the above-mentioned receptors, are largely unknown. Here, we report that human herpes simplex virus 1 (HSV-1) infection triggers RIP3-dependent necrosis. This process requires MLKL but is independent of TNF receptor, TLR3, cylindromatosis, and host RIP homotypic interaction motif-containing protein DNA-dependent activator of IFN regulatory factor. After HSV-1 infection, the viral ribonucleotide reductase large subunit (ICP6) interacts with RIP3. The formation of the ICP6–RIP3 complex requires the RHIM domains of both proteins. An HSV-1 ICP6 deletion mutant failed to cause effective necrosis of HSV-1–infected cells. Furthermore, ectopic expression of ICP6, but not RHIM mutant ICP6, directly activated RIP3/MLKL-mediated necrosis. Mice lacking RIP3 exhibited severely impaired control of HSV-1 replication and pathogenesis. Therefore, this study reveals a previously uncharacterized host antipathogen mechanism. PMID:25316792
Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar
2014-02-12
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This "in vitro" model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12-24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.
Antioxidant and Protective Mechanisms against Hypoxia and Hypoglycaemia in Cortical Neurons in Vitro
Merino, José Joaquín; Roncero, César; Oset-Gasque, María Jesús; Naddaf, Ahmad; González, María Pilar
2014-01-01
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage. PMID:24526229
Compton, Jonathan L.; Hellman, Amy N.; Venugopalan, Vasan
2013-01-01
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures. PMID:24209868
AICAR induces AMPK-independent programmed necrosis in prostate cancer cells.
Guo, Feng; Liu, Shuang-Qing; Gao, Xing-Hua; Zhang, Long-Yang
2016-05-27
AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which induces cytotoxic effect to several cancer cells. Its potential activity in prostate cancer cells and the underlying signaling mechanisms have not been extensively studied. Here, we showed that AICAR primarily induced programmed necrosis, but not apoptosis, in prostate cancer cells (LNCaP, PC-3 and PC-82 lines). AICAR's cytotoxicity to prostate cancer cells was largely attenuated by the necrosis inhibitor necrostatin-1. Mitochondrial protein cyclophilin-D (CYPD) is required for AICAR-induced programmed necrosis. CYPD inhibitors (cyclosporin A and sanglifehrin A) as well as CYPD shRNAs dramatically attenuated AICAR-induced prostate cancer cell necrosis and cytotoxicity. Notably, AICAR-induced cell necrosis appeared independent of AMPK, yet requiring reactive oxygen species (ROS) production. ROS scavengers (N-acetylcysteine and MnTBAP), but not AMPKα shRNAs, largely inhibited prostate cancer cell necrosis and cytotoxicity by AICAR. In summary, the results of the present study demonstrate mechanistic evidences that AMPK-independent programmed necrosis contributes to AICAR's cytotoxicity in prostate cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Lysosome-dependent necrosis specifically evoked in cancer cells by gold nanorods.
Zhang, Fulei; Chen, Di; Wang, Ying; Zhang, Li; Dong, Wei; Dai, Jianxin; Jin, Chong; Dong, Xia; Sun, Yun; Zhao, He; Fan, Kexin; Liu, Hui; Chen, Bingdi; Zou, Hao; Li, Wei
2017-07-01
This article aims to explain the necrosis mechanisms of cancer cells specifically induced by gold nanorods (GNRs). The intracellular route and location of GNRs, the interaction between GNRs and lysosome, lysosome damage, cathepsin B release, necrosis complex formation, receptor-interacting protein 1 and TNF-α expression were systematically investigated. The GNRs with serum corona were internalized quickly by cancer cells and finally taken up by lysosomes. The GNRs damaged the lysosomal membrane, resulting in the leakage of cathepsin B, which promoted the activation of receptor-interacting protein 1 and necrosomes formation. Necrotic cells and their debris or ill cellular contents were engulfed by macrophages resulting in high-level release of TNF-α, which further confirmed necrosis. GNRs can specifically trigger lysosome-dependent necrosis in cancer cells.
Molecular machines open cell membranes
NASA Astrophysics Data System (ADS)
García-López, Víctor; Chen, Fang; Nilewski, Lizanne G.; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B.; Robinson, Jacob T.; Wang, Gufeng; Pal, Robert; Tour, James M.
2017-08-01
Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.
Molecular machines open cell membranes.
García-López, Víctor; Chen, Fang; Nilewski, Lizanne G; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B; Robinson, Jacob T; Wang, Gufeng; Pal, Robert; Tour, James M
2017-08-30
Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.
USDA-ARS?s Scientific Manuscript database
Host cellular responses to coccidiosis infection are consistent with elements of apoptosis, autophagy, and necrosis. These processes are enhanced in the cell through cell-directed signaling or repressed through parasite-derived inhibitors of these processes favoring the survival of the parasite. Acr...
Production and action of cytokines in space
NASA Technical Reports Server (NTRS)
Chapes, Stephen K.; Morrison, Dennis R.; Guikema, James A.; Lewis, Marian L.; Spooner, Brian S.
1994-01-01
B6MP102 cells, a continuously cultured murine bone marrow macrophage cell line, were tested for secretion of tumor necrosis factor-alpha and Interleukin-1 during space flight. We found that B6MP102 cells secreted more tumor necrosis factor-alpha and interleukin-1 when stimulated in space with lipopolysaccharide than controls similarly stimulated on earth. This compared to increased secretion of interferon-beta and -gamma by lymphocytes that was measured on the same shuttle flights. Although space flight enhanced B6MP102 secretion of tumor necrosis factor-alpha, an experiment on a subsequent space flight (STS-50) found that cellular cytotoxicity, mediated by tumor necrosis factor-alpha, was inhibited.
Serrablo, A; Paliogiannis, P; Pulighe, F; Moro, S Saudi-Moro; Borrego-Estella, V; Attene, F; Scognamillo, F; Hörndler, C
2016-09-01
We evaluated the impacts of a series of novel histopathological factors on clinical-surgical outcomes and survival of patients who underwent surgery for colorectal cancer liver metastasis, with and without neoadjuvant chemotherapy. A prospective database including 150 consecutive patients who underwent 183 hepatic resections for metastatic colorectal cancer was evaluated. Among them, 74 (49.3%) received neoadjuvant chemotherapy before surgery. The histopathological factors studied were: a) microsatellitosis, b) type and pattern of tumour growth, c) nuclear grade and the number of mitoses/mm(2), d) perilesional pseudocapsule, e) intratumoural fibrosis, f) lesion cellularity, g) hypoxic-angiogenic perilesional growth pattern, and h) the tumour normal interface. Three or more metastatic lesions, R1 resection margins, and <50% tumour necrosis were prognostic factors for a worse OS, but only the former was confirmed to be an independent prognostic factor in the multivariate analysis. Furthermore, tumour fibrosis <40% and cellularity >10% were predictive of a worse neoadjuvant therapy response, but these findings were not confirmed in the multivariate analysis. Finally, tumour necrosis <50%, cellularity >10%, and TNI >0.5 mm were prognostic factors for a worse DFS and AS in the univariate but not in the multivariate analysis. Several factors seem to influence the outcomes of surgery for colorectal cancer liver metastasis, especially the number of the lesions, the margins of resection, the percentage of necrosis and fibrosis, as well as the cellularity and the TNI. Copyright © 2016 Elsevier Ltd. All rights reserved.
p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis.
Napoletano, Francesco; Gibert, Benjamin; Yacobi-Sharon, Keren; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Teil, Margaux; Chatelain, Gilles; Walter, Ludivine; Arama, Eli; Mollereau, Bertrand
2017-09-01
The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.
A novel Fizzy/Cdc20-dependent mechanism suppresses necrosis in neural stem cells
Kuang, Chaoyuan; Golden, Krista L.; Simon, Claudio R.; Damrath, John; Buttitta, Laura; Gamble, Caitlin E.; Lee, Cheng-Yu
2014-01-01
Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis. PMID:24598157
Zhang, Xiao; Xiao, Xinhua; Duan, Huawei; Gao, Feng; Li, Yuanyuan; Niu, Yong; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Zheng, Yuxin
2016-01-01
Diesel engine exhaust (DEE), a ubiquitous environmental pollutant, has been associated with adverse health effects. Revelation of cellular and molecular changes is critical for understanding environmental exposure-related diseases. Although the molecular-level effects of DEE exposure have been investigated, whether it is associated with aberrant changes at cellular level is largely unknown at the population level. In the present study, we measured urinary concentrations of 6 mono-hydroxylated PAHs (OH-PAHs) and cytotoxicity-related endpoints including apoptosis and necrosis frequencies, and nuclear division cytotoxicity index (NDCI) in peripheral blood lymphocytes (PBLs) of 79 DEE-exposed workers and 59 non-DEE-exposed workers. We found that DEE-exposed workers had significantly higher necrosis frequency and lower NDCI than did non-DEE-exposed workers (both p < 0.001). In all study subjects and nonsmoking workers, urinary summed OH-PAHs was associated with increased necrosis frequency and reduced NDCI. In nonsmoking workers, an interquartile range increase in urinary summed OH-PAHs was associated with 105.03% increase in necrosis frequency and 8.70% decrease in NDCI. Taking advantage of the previous measure of micronucleus frequency, we observed that micronucleus frequency was positively correlated with apoptosis and necrosis frequencies (r = 0.277, p = 0.047 and r = 0.452, p = 0.001, respectively) and negatively correlated with NDCI (r = -0.477, p < 0.001). In conclusion, our results suggested that DEE exposure was associated with increased necrosis frequency and further with reduced NDCI in PBLs, providing evidence of DEE exposure-induced cytotoxicity in humans.
Khan, M. Usman; Cheema, Yaser; Shahbaz, Atta U.; Ahokas, Robert A.; Sun, Yao; Gerling, Ivan C.; Bhattacharya, Syamal K.; Weber, Karl T.
2012-01-01
The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiologic and pathophysiologic demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis which are initiated from ischemic or nonischemic origins. Herein we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone- mediated intracellular Ca2+ overloading which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis. PMID:22328074
Zhang, J; Jing, Y; Li, Y N; Zhou, L; Wang, B M
2016-09-20
Hepatocyte death mainly includes apoptosis and necrosis and is a critical process in the pathophysiological mechanism of liver injury caused by various reasons. Recent studies have shown that key regulatory molecules in the inhibition of apoptosis such as caspase cannot be used as targets for inhibiting disease progression in clinical practice. In recent years, programmed necrosis mediated by receptor-interacting protein 3(RIP3)becomes a new hot research topic. It not only plays an important role in inducing inflammatory response, but also is closely regulated by intracellular signal factors, and it is a type of active cell death which can be interfered with. Compared with apoptosis, programmed necrosis is accompanied by the release of various inflammatory factors, which significantly affects local immune microenvironment. RIP3-mediated programmed necrosis has been taken seriously in many diseases. Although its mechanism of action in liver disease remains unclear, the results of recent studies confirmed its important role in the development of liver disease. This article reviews the research advances in the role of RIP3-mediated programmed necrosis signaling pathway in liver disease of various causes and investigates the possibility of RIP3-mediated programmed necrosis as a new target in the treatment of liver disease.
Human-Specific Bacterial Pore-Forming Toxins Induce Programmed Necrosis in Erythrocytes
LaRocca, Timothy J.; Stivison, Elizabeth A.; Hod, Eldad A.; Spitalnik, Steven L.; Cowan, Peter J.; Randis, Tara M.
2014-01-01
ABSTRACT A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis. PMID:25161188
p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis
Napoletano, Francesco; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Chatelain, Gilles; Walter, Ludivine; Arama, Eli
2017-01-01
The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis. PMID:28945745
TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation.
Morioka, Sho; Broglie, Peter; Omori, Emily; Ikeda, Yuka; Takaesu, Giichi; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun
2014-02-17
TNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8-mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)-dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis. Here we report the biological event switching to activate necrosis over apoptosis. TAK1 kinase is normally transiently activated upon TNF stimulation. We found that prolonged and hyperactivation of TAK1 induced phosphorylation and activation of RIPK3, leading to necrosis without caspase activation. In addition, we also demonstrated that activation of RIPK1 and RIPK3 promoted TAK1 activation, suggesting a positive feedforward loop of RIPK1, RIPK3, and TAK1. Conversely, ablation of TAK1 caused caspase-dependent apoptosis, in which Ripk3 deletion did not block cell death either in vivo or in vitro. Our results reveal that TAK1 activation drives RIPK3-dependent necrosis and inhibits apoptosis. TAK1 acts as a switch between apoptosis and necrosis.
RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.
Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J
2016-06-01
Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.
Cell Proliferation, Reactive Oxygen and Cellular Glutathione
Day, Regina M.; Suzuki, Yuichiro J.
2005-01-01
A variety of cellular activities, including metabolism, growth, and death, are regulated and modulated by the redox status of the environment. A biphasic effect has been demonstrated on cellular proliferation with reactive oxygen species (ROS)—especially hydrogen peroxide and superoxide—in which low levels (usually submicromolar concentrations) induce growth but higher concentrations (usually >10–30 micromolar) induce apoptosis or necrosis. This phenomenon has been demonstrated for primary, immortalized and transformed cell types. However, the mechanism of the proliferative response to low levels of ROS is not well understood. Much of the work examining the signal transduction by ROS, including H2O2, has been performed using doses in the lethal range. Although use of higher ROS doses have allowed the identification of important signal transduction pathways, these pathways may be activated by cells only in association with ROS-induced apoptosis and necrosis, and may not utilize the same pathways activated by lower doses of ROS associated with increased cell growth. Recent data has shown that low levels of exogenous H2O2 up-regulate intracellular glutathione and activate the DNA binding activity toward antioxidant response element. The modulation of the cellular redox environment, through the regulation of cellular glutathione levels, may be a part of the hormetic effect shown by ROS on cell growth. PMID:18648617
Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death.
Shi, Jianjin; Gao, Wenqing; Shao, Feng
2017-04-01
Pyroptosis was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroptosis is not cell type specific. Recent studies identified the pyroptosis executioner, gasdermin D (GSDMD), a substrate of both caspase-1 and caspase-11/4/5. GSDMD represents a large gasdermin family bearing a novel membrane pore-forming activity. Thus, pyroptosis is redefined as gasdermin-mediated programmed necrosis. Gasdermins are associated with various genetic diseases, but their cellular function and mechanism of activation (except for GSDMD) are unknown. The gasdermin family suggests a new area of research on pyroptosis function in immunity, disease, and beyond. Copyright © 2016 Elsevier Ltd. All rights reserved.
Debrided Skin as a Source of Autologous Stem Cells for Wound Repair
2011-08-01
dermal tissue shows the presence of hyalinized collagen (bold arrows) with loss of individual collagen bundles and cellular necrosis . The hypodermal...region consisted of intact adipo- cytes separated by intact interlobular septae and thermally collapsed areas with complete necrosis of both fat cells...and no dsASCs showed predom- inantly acellular multifocal amorphous matrix (Supporting In- formation Fig. S3A, S3B) and was avascular (Supporting Infor
TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells
2014-01-01
Background The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Methods Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. Results TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Conclusions Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of tumor cells, and that this treatment may represent a promising new option for the future development of combination therapies. Our data also suggest that RIPK3 expression may serve as a potential predictive marker for the sensitivity of tumor cells to programmed necrosis and extend the previously established role of ceramide as a key mediator of death receptor-induced programmed necrosis (and thus as a potential target for future therapies) also to the tumor cell lines examined here. PMID:24507727
The role of necroptosis in pulmonary diseases.
Mizumura, Kenji; Maruoka, Shuichiro; Gon, Yasuhiro; Choi, Augustine M K; Hashimoto, Shu
2016-11-01
By regulating the cell number and eliminating harmful cells, programmed cell death plays a critical role in development, homeostasis, and disease. While apoptosis is a recognized form of programmed cell death, necrosis was considered a type of uncontrolled cell death induced by extreme physical or chemical stress. However, recent studies have revealed the existence of a genetically programmed and regulated form of necrosis, termed necroptosis. Necroptosis is defined as necrotic cell death that is dependent on receptor-interacting protein kinase 3 (RIPK3). RIPK3, receptor-interacting protein kinase 1 (RIPK1), and a mixed-lineage kinase domain-like protein (MLKL) form a multiprotein complex called a necrosome. Although necroptosis generally provides a cell-autonomous host defense, on the other hand, cell rupture caused by necroptosis induces inflammation through the release of damage-associated molecular patterns, such as mitochondrial DNA, HMGB1, and IL-1. Previously, necroptosis was considered an alternative to apoptosis, but it is becoming increasingly clear that necroptosis itself is relevant to clinical disease, independent of apoptosis. According to some recent studies, autophagy, a cellular process for organelle and protein turnover, regulates necroptosis. This review outlines the principal components of necroptosis and provides an overview of the emerging importance of necroptosis in the pathogenesis of pulmonary disease, including chronic obstructive pulmonary disease, lung cancer, infection, and sepsis. We also discuss the molecular relationship between necroptosis and autophagy. Strategies targeting necroptosis may yield novel therapies for pulmonary diseases. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.
In vitro effects of platinum compounds on renal cellular respiration in mice.
Almarzooqi, Saeeda-S; Alfazari, Ali-S; Abdul-Kader, Hidaya-M; Saraswathiamma, Dhanya; Albawardi, Alia-S; Souid, Abdul-Kader
2015-01-01
Cisplatin, carboplatin and oxaliplatin are structurally-related compounds, which are commonly used in cancer therapy. Cisplatin (Platinol(®)) has Boxed Warning stating: "Cumulative renal toxicity associated with PLATINOL is severe", while carboplatin and oxaliplatin are less nephrotoxic. These drugs form platinum adducts with cellular DNA. Their bindings to cellular thiols (e.g., glutathione and metallothionein) are known to contribute to drug resistance while thiol depletion augments platinum toxicity. Using phosphorescence oxygen analyzer, this study investigated the effects of platinum drugs on renal cellular respiration (mitochondrial O2 consumption) in the presence and absence of the thiol blocking agent N-ethylmaleimide (used here as a model for thiol depletion). Renal cellular ATP was also determined. Kidney fragments from C57BL/6 mice were incubated at 37 °C in Krebs-Henseleit buffer (gassed with 95% O2:5% CO2) with and without 100 μM platinum drug in the presence and absence of 100 μM N-ethylmaleimide for ≤ 6 h. Platinum drugs alone had no effects on cellular respiration (P ≥ 0.143) or ATP (P ≥ 0.161). N-ethylmaleimide lowered cellular respiration (P ≤ 0.114) and ATP (P = 0.008). The combination of platinum drug and N-ethylmaleimide significantly lowered both cellular respiration (P ≤ 0.006) and ATP (P ≤ 0.003). Incubations with N-ethylmaleimide alone were associated with moderate-to-severe tubular necrosis. Incubations with cisplatin+N-ethylmaleimide vs. cisplatin alone produced similar severities of tubular necrosis. Tubular derangements were more prominent in carboplatin+N-ethylmaleimide vs. carboplatin alone and in oxaliplatin+N-ethylmaleimide vs. oxaliplatin alone. These results demonstrate the adverse events of thiol depletion on platinum-induced nephrotoxicities. The results suggest cellular bioenergetics is a useful surrogate biomarker for assessing drug-induced nephrotoxicities.
Jiang, Binghu; Wang, Jichen; Ni, Yicheng; Chen, Feng
2013-01-01
Hypericin has been widely studied as a potent photosensitizer for photodynamic therapy in both preclinical and clinical settings. Recently, hypericin has also been discovered to have a specific avidity for necrotic tissue. This affinity is also observed in a series of radiolabeled derivatives of hypericin, including [123I]iodohypericin, [124I]iodohypericin, and [131I]iodohypericin. Hypericin, along with other necrosis-avid contrast agents, has been investigated for use in noninvasively targeting necrotic tissues in numerous disorders. Potential clinical applications of hypericin include the identification of acute myocardial infarction, evaluation of tissue viability, assessment of therapeutic responses to treatments, and interventional procedures for solid tumors. The mechanisms of necrosis avidity in hypericin remain to be fully elucidated, although several hypotheses have been suggested. In particular, it has been proposed that the necrosis avidity of hypericin is compound specific; for instance, cholesterol, phosphatidylserine, or phosphatidylethanolamine components in the phospholipid bilayer of cellular membranes may be the major targets for its observed selectivity. Further investigations are needed to identify the specific binding moiety that is responsible for the necrosis avidity of hypericin. PMID:24052807
Staurosporine Induces Necroptotic Cell Death under Caspase-Compromised Conditions in U937 Cells
Dunai, Zsuzsanna A.; Imre, Gergely; Barna, Gabor; Korcsmaros, Tamas; Petak, Istvan; Bauer, Pal I.; Mihalik, Rudolf
2012-01-01
For a long time necrosis was thought to be an uncontrolled process but evidences recently have revealed that necrosis can also occur in a regulated manner. Necroptosis, a type of programmed necrosis is defined as a death receptor-initiated process under caspase-compromised conditions. The process requires the kinase activity of receptor-interacting protein kinase 1 and 3 (RIPK1 and RIPK3) and mixed lineage kinase domain-like protein (MLKL), as a substrate of RIPK3. The further downstream events remain elusive. We applied known inhibitors to characterize the contributing enzymes in necroptosis and their effect on cell viability and different cellular functions were detected mainly by flow cytometry. Here we report that staurosporine, the classical inducer of intrinsic apoptotic pathway can induce necroptosis under caspase-compromised conditions in U937 cell line. This process could be hampered at least partially by the RIPK1 inhibitor necrotstin-1 and by the heat shock protein 90 kDa inhibitor geldanamycin. Moreover both the staurosporine-triggered and the classical death ligand-induced necroptotic pathway can be effectively arrested by a lysosomal enzyme inhibitor CA-074-OMe and the recently discovered MLKL inhibitor necrosulfonamide. We also confirmed that the enzymatic role of poly(ADP-ribose)polymerase (PARP) is dispensable in necroptosis but it contributes to membrane disruption in secondary necrosis. In conclusion, we identified a novel way of necroptosis induction that can facilitate our understanding of the molecular mechanisms of necroptosis. Our results shed light on alternative application of staurosporine, as a possible anticancer therapeutic agent. Furthermore, we showed that the CA-074-OMe has a target in the signaling pathway leading to necroptosis. Finally, we could differentiate necroptotic and secondary necrotic processes based on participation of PARP enzyme. PMID:22860037
Fueling the Flames: Mammalian Programmed Necrosis in Inflammatory Diseases
Chan, Francis Ka-Ming
2012-01-01
Programmed necrosis or necroptosis is an inflammatory form of cell death driven by TNF-like death cytokines, toll-like receptors, and antigen receptors. Unlike necrosis induced by physical trauma, a dedicated pathway is involved in programmed necrosis. In particular, a kinase complex composed of the receptor interacting protein kinase 1 (RIPK1) and RIPK3 is a central step in necrotic cell death. Assembly and activation of this RIPK1–RIPK3 “necrosome” is critically controlled by protein ubiquitination, phosphorylation, and caspase-mediated cleavage events. The molecular signals cumulate in formation of intracellular vacuoles, organelle swelling, internal membrane leakage, and eventually plasma membrane rupture. These morphological changes can result in spillage of intracellular adjuvants to promote inflammation and further exacerbate tissue injury. Because of the inflammatory nature of necrosis, it is an attractive pathway for therapeutic intervention in acute inflammatory diseases. PMID:23125016
Effects of Radiation on Rat Retina after 18 days of Space Flight
NASA Technical Reports Server (NTRS)
Philpott, D.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; McGourty, J.; Lee, R.; Harrison, G.; Savick, L.
1978-01-01
Although cumulative effects an retina from low-dose radiation during prolonged spaceflight are not known, ary impairment of vision could set limits for spaceflight duration. Cosmic rays are now considered to be the cause of the "light flashes" seen during spaceflight by activating retina cells as they pass through the photoreceptors. Previous studies have also shown retinal cellular alterations and cell necrosis from high-energy, particle (HZE) radiation. Ten rats, 5 centrifuged during flight (FC) to simulate gravity and 5 in-flight stationary (FS) experiencing hypogravity, orbited Earth for 18.5 days on Cosmos 936. The animals were sacrificed 25 days post-recovery and the eyes flown to Ames Res. Ctr. The pattern of cell necrosis in the retinas from the FC group showed the same response to radiation as the FS. This would indicate that hypogravity was not a factor in the observed results. Also the cellular response in the retinas exposed in the Berkeley accelerator again matched both the FC and FS eyes. Thus all three conditions provide comparable changes and indicate HZE particles as the possible cause of the cellular alterations, channels, and breakdown.
Concannon, Caoimhín G.; Tuffy, Liam P.; Weisová, Petronela; Bonner, Helena P.; Dávila, David; Bonner, Caroline; Devocelle, Marc C.; Strasser, Andreas; Ward, Manus W.
2010-01-01
Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate–activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)–only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca2+ deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis. PMID:20351066
Hehlgans, Thomas; Pfeffer, Klaus
2005-05-01
The members of the tumour necrosis factor (TNF)/tumour necrosis factor receptor (TNFR) superfamily are critically involved in the maintenance of homeostasis of the immune system. The biological functions of this system encompass beneficial and protective effects in inflammation and host defence as well as a crucial role in organogenesis. At the same time, members of this superfamily are responsible for host damaging effects in sepsis, cachexia, and autoimmune diseases. This review summarizes recent progress in the immunobiology of the TNF/TNFR superfamily focusing on results obtained from animal studies using gene targeted mice. The different modes of signalling pathways affecting cell proliferation, survival, differentiation, apoptosis, and immune organ development as well as host defence are reviewed. Molecular and cellular mechanisms that demonstrate a therapeutic potential by targeting individual receptors or ligands for the treatment of chronic inflammatory or autoimmune diseases are discussed.
Albrecht, Simone; Kaisermayer, Christian; Gallagher, Clair; Farrell, Amy; Lindeberg, Anna; Bones, Jonathan
2018-06-01
Cell viability has a critical impact on product quantity and quality during the biomanufacturing of therapeutic proteins. An advanced understanding of changes in the cellular and conditioned media proteomes upon cell stress and death is therefore needed for improved bioprocess control. Here, a high pH/low pH reversed phase data independent 2D-LC-MS E discovery proteomics platform was applied to study the cellular and conditioned media proteomes of CHO-K1 apoptosis and necrosis models where cell death was induced by staurosporine exposure or aeration shear in a benchtop bioreactor, respectively. Functional classification of gene ontology terms related to molecular functions, biological processes, and cellular components revealed both cell death independent and specific features. In addition, label free quantitation using the Hi3 approach resulted in a comprehensive shortlist of 23 potential cell viability marker proteins with highest abundance and a significant increase in the conditioned media upon induction of cell death, including proteins related to cellular stress response, signal mediation, cytoskeletal organization, cell differentiation, cell interaction as well as metabolic and proteolytic enzymes which are interesting candidates for translating into targeted analysis platforms for monitoring bioprocessing response and increasing process control. © 2018 Wiley Periodicals, Inc.
Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun
2015-11-02
Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway.
Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun
2015-01-01
Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181
Necroptosis-inducing rhenium(V) oxo complexes.
Suntharalingam, Kogularamanan; Awuah, Samuel G; Bruno, Peter M; Johnstone, Timothy C; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E; Hemann, Michael T; Lippard, Stephen J
2015-03-04
Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.
Necroptosis-Inducing Rhenium(V) Oxo Complexes
Suntharalingam, Kogularamanan; Awuah, Samuel G.; Bruno, Peter M.; Johnstone, Timothy C.; Wang, Fang; Lin, Wei; Zheng, Yao-Rong; Page, Julia E.; Hemann, Michael T.; Lippard, Stephen J.
2015-01-01
Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptsosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular ROS production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood. PMID:25698398
Zhang, Yin-Zhuang; Wang, Lei; Zhang, Jie-Jie; Xiong, Xiao-Ming; Zhang, Di; Tang, Xuan-Meng; Luo, Xiu-Ju; Ma, Qi-Lin; Peng, Jun
2018-05-03
Vascular peroxidase 1 (VPO1) plays a key role in mediation of cardiovascular oxidative injury. This study aims to determine whether VPO1 can promote programmed necrosis of endothelial cells and the underlying mechanisms. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL, 100 μg/mL) for 48 h to induce cell injury, which showed an elevation in cell necrosis (reflected by the increased propidium iodide (PI) positive-staining cells, LDH release and decreased cell viability), concomitant with an increase in programmed necrosis-relevant proteins including receptor-interacting protein kinase 1/3 (RIPK1/3), p-RIPK3 and mixed lineage kinase domain like (MLKL); these phenomena were attenuated by necrostatin-1(Nec-1) and RIPK3 siRNA. Meanwhile, VPO1 was up-regulated in ox-LDL-treated endothelial cells accompanied by a decrease in GSK-3β activity and p-β-catenin levels, and an elevation of β-catenin levels; these phenomena were reversed in the presence of VPO1 siRNA or hypochlorous acid (HOCl) inhibitor; replacement of ox-LDL with HOCl could also induce endothelial programmed necrosis and activate the β-catenin signaling; β-catenin inhibitor could also suppress ox-LDL-induced RIPK-dependent necrosis. In hyperlipidemic patients, the plasma level of VPO1 was obviously increased concomitant with an elevation in plasma levels of RIPK1, RIPK3 and MLKL, and they were positively correlated. VPO1 plays an important role in promotion of endothelial programmed necrosis under hyperlipidemic conditions through activation of β-catenin signaling. It may serve as a novel therapeutic target for prevention of endothelial dysfunction in hyperlipidemia. Copyright © 2018 Elsevier B.V. All rights reserved.
Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.
1999-01-01
The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.
Woods, J W; Jones, R R; Schoultz, T W; Kuenz, M; Moore, R L
1988-08-01
In late 1984, the "General Professional Education of the Physician" (GPEP) report recommended, among other things, that medical curricula be revised to rely less on lectures and more on independent study and problem solving. We seem to have anticipated, in 1980, the findings of the GPEP panel by formulating and starting to test the hypothesis that certain "core" information in medical curricula can be as effectively delivered by technology-based self-study means as by lecture or formal laboratory. We began, at that time, to prepare a series of self-study materials using, at first, videotape and then computer-controlled optical videodiscs. The content area selected for study was basic microscopic pathology. The series was planned to cover the following areas of study: cellular alterations and adaptations, cell injury, acute inflammation, chronic inflammation and wound healing, cellular accumulations, circulatory disturbances, necrosis, and neoplasia. All are intended to provide learning experiences in basic pathology. The first two programs were released for testing in 1983 as a two-sided videodisc accompanied by computer-driven pretests, study modules, and posttests that used Apple computers and Pioneer (DiscoVision) videodisc players. An MS DOS (eg, IBM) version of the computer programs was released in 1984. The first two programs are now used in 57 US, Canadian, European, and Philippine health professions schools, and over 1300 student and faculty evaluations have been received. Student and faculty evaluations of these first two programs were very positive, and, as a result, the others are in production and will be completed in 1988. Only when a critical mass of curriculum is available can we really test our stated hypothesis. In the meantime, it is worthwhile to report the evaluation of the first two programs.
Postradiation atrophy of mature bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergun, H.; Howland, W.J.
1980-01-01
The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographic evidence of atrophy, localized osteopenia, is late in appearing. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. The differentiationmore » of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less
Moquin, David M.; McQuade, Thomas; Chan, Francis Ka-Ming
2013-01-01
Background Necroptosis/programmed necrosis is initiated by a macro-molecular protein complex termed the necrosome. Receptor interacting protein kinase 1 (RIPK1/RIP1) and RIP3 are key components of the necrosome. TNFα is a prototypic inducer of necrosome activation, and it is widely believed that deubiquitination of RIP1 at the TNFR-1 signaling complex precedes transition of RIP1 into the cytosol where it forms the RIP1-RIP3 necrosome. Cylindromatosis (CYLD) is believed to promote programmed necrosis by facilitating RIP1 deubiquitination at this membrane receptor complex. Methodology/Principal Findings We demonstrate that RIP1 is indeed the primary target of CYLD in TNFα-induced programmed necrosis. We observed that CYLD does not regulate RIP1 ubiquitination at the TNF receptor. TNF and zVAD-induced programmed necrosis was highly attenuated in CYLD-/- cells. However, in the presence of cycloheximide or SMAC mimetics, programmed necrosis was only moderately reduced in CYLD-/- cells. Under the latter conditions, RIP1-RIP3 necrosome formation is only delayed, but not abolished in CYLD-/- cells. We further demonstrate that RIP1 within the NP-40 insoluble necrosome is ubiquitinated and that CYLD regulates RIP1 ubiquitination in this compartment. Hence, RIP1 ubiquitination in this late-forming complex is greatly increased in CYLD-/- cells. Increased RIP1 ubiquitination impairs RIP1 and RIP3 phosphorylation, a signature of kinase activation. Conclusions/Significance Our results show that CYLD regulates RIP1 ubiquitination in the TNFα-induced necrosome, but not in the TNFR-1 signaling complex. In cells sensitized to programmed necrosis with SMAC mimetics, CYLD is not essential for necrosome assembly. Since SMAC mimetics induces the loss of the E3 ligases cIAP1 and cIAP2, reduced RIP1 ubiquitination could lead to reduced requirement for CYLD to remove ubiquitin chains from RIP1 in the TNFR-1 complex. As increased RIP1 ubiquitination in the necrosome correlates with impaired RIP1 and RIP3 phosphorylation and function, these results suggest that CYLD controls RIP1 kinase activity during necrosome assembly. PMID:24098568
Toxicology and cellular effect of manufactured nanomaterials
Chen, Fanqing
2014-07-22
The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.
Deim, Zoltán; Palmai, Nimród; Cserni, Gábor
2008-03-01
Two cases of feline vaccine-associated fibrosarcoma (FVAF) are reported. The excised tumours were both characterised as well circumscribed, subcutaneous, firm and white with central necrosis. Histopathologically, they consisted of well-differentiated and variably sized and shaped anaplastic cells, characterised by marked nuclear and cellular pleomorphism including giant cells. The mitotic activity was low. Aluminium was demonstrated in the central necrosis and giant cells. Neoplastic cells were positive for vimentin and negative for desmin and cytokeratin. The presence of feline sarcoma virus and feline immunodeficiency virus could not be detected by PCR in either case.
Wohlgemuth, Stephanie E; Lees, Hazel A; Marzetti, Emanuele; Manini, Todd M; Aranda, Juan M; Daniels, Michael J; Pahor, Marco; Perri, Michael G; Leeuwenburgh, Christian; Anton, Stephen D
2011-06-01
Obese older adults are particularly susceptible to sarcopenia and have a higher prevalence of disability than their peers of normal weight. Interventions to improve body composition in late life are crucial to maintaining independence. The main mechanisms underlying sarcopenia have not been determined conclusively, but chronic inflammation, apoptosis, and impaired mitochondrial function are believed to play important roles. It has yet to be determined whether impaired cellular quality control mechanisms contribute to this process. The objective of this study was to assess the effects of a 6-month weight loss program combined with moderate-intensity exercise on the cellular quality control mechanisms autophagy and ubiquitin-proteasome, as well as on inflammation, apoptosis, and mitochondrial function, in the skeletal muscle of older obese women. The intervention resulted in significant weight loss (8.0 ± 3.9 % vs. 0.4 ± 3.1% of baseline weight, p = 0.002) and improvements in walking speed (reduced time to walk 400 meters, - 20.4 ± 16% vs. - 2.5 ± 12%, p = 0.03). In the intervention group, we observed a three-fold increase in messenger RNA (mRNA) levels of the autophagy regulators LC3B, Atg7, and lysosome-associated membrane protein-2 (LAMP-2) compared to controls. Changes in mRNA levels of FoxO3A and its targets MuRF1, MAFBx, and BNIP3 were on average seven-fold higher in the intervention group compared to controls, but these differences were not statistically significant. Tumor necrosis factor-α (TNF-α) mRNA levels were elevated after the intervention, but we did not detect significant changes in the downstream apoptosis markers caspase 8 and 3. Mitochondrial biogenesis markers (PGC1α and TFAm) were increased by the intervention, but this was not accompanied by significant changes in mitochondrial complex content and activity. In conclusion, although exploratory in nature, this study is among the first to report the stimulation of cellular quality control mechanisms elicited by a weight loss and exercise program in older obese women.
Zhou, Jian-hua; Shan, Hong-bo; Ou, Wei; Mo, Yun-xian; Xiang, Jin; Wang, Yu; Wang, Si-yu
2018-01-01
Based on the option that ultrasound-guided core needle biopsy (US-CNB) of the enhanced portion of anterior mediastinal masses (AMMs) identified by contrast-enhanced ultrasound (CEUS) would harvest viable tissue and benefit the histological diagnoses, a retrospective study was performed to elucidate the correlation between the prebiopsy CEUS and diagnostic yield of AMMs and found that CEUS potentially improved the diagnostic yield of AMMs compared with conventional US with a significant increase in the cellularity of samples. Furthermore, the marginal blood flow signals and absence of necrosis can predict the diagnostic yield of AMM. It was concluded that US-CNB of the viable part of AMMs, as verified by CEUS, was able to harvest sufficient tissue with more cellularity that could be used for ancillary studies and improve the diagnostic yield. And CEUS was recommended to those patients with AMMs undergoing repeated US-CNB, with the absence of marginal blood signals or presence of necrosis. PMID:29581992
2013-10-01
2 INTRODUCTION: The magnitude of acute post- traumatic hemorrhagic necrosis (PHN) is an early prognostic indicator of long-term...Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury PRINCIPAL INVESTIGATOR: J. Marc Simard...Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury 5b. GRANT NUMBER W81XWH-10-1-0898 5c. PROGRAM ELEMENT NUMBER 6
Proposed Mode of Action for Acrolein Respiratory Toxicity Associated with Inhaled Tobacco Smoke.
Yeager, R Philip; Kushman, Mary; Chemerynski, Susan; Weil, Roxana; Fu, Xin; White, Marcella; Callahan-Lyon, Priscilla; Rosenfeldt, Hans
2016-06-01
This article presents a mode of action (MOA) analysis that identifies key mechanisms in the respiratory toxicity of inhaled acrolein and proposes key acrolein-related toxic events resulting from the inhalation of tobacco smoke. Smoking causes chronic obstructive pulmonary disorder (COPD) and acrolein has been previously linked to the majority of smoking-induced noncancer respiratory toxicity. In contrast to previous MOA analyses for acrolein, this MOA focuses on the toxicity of acrolein in the lower respiratory system, reflecting the exposure that smokers experience upon tobacco smoke inhalation. The key mechanisms of acrolein toxicity identified in this proposed MOA include (1) acrolein chemical reactivity with proteins and other macromolecules of cells lining the respiratory tract, (2) cellular oxidative stress, including compromise of the important anti-oxidant glutathione, (3) chronic inflammation, (4) necrotic cell death leading to a feedback loop where necrosis-induced inflammation leads to more necrosis and oxidative damage and vice versa, (5) tissue remodeling and destruction, and (6) loss of lung elasticity and enlarged lung airspaces. From these mechanisms, the proposed MOA analysis identifies the key cellular processes in acrolein respiratory toxicity that consistently occur with the development of COPD: inflammation and necrosis in the middle and lower regions of the respiratory tract. Moreover, the acrolein exposures that occur as a result of smoking are well above exposures that induce both inflammation and necrosis in laboratory animals, highlighting the importance of the role of acrolein in smoking-related respiratory disease. Published by Oxford University Press on behalf of the Society of Toxicology 2016. This work is written by US Government employees and is in the public domain in the US.
NEMO Inhibits Programmed Necrosis in an NFκB-Independent Manner by Restraining RIP1
Legarda, Diana; Ting, Adrian T.
2012-01-01
TNF can trigger two opposing responses: cell survival and cell death. TNFR1 activates caspases that orchestrate apoptosis but some cell types switch to a necrotic death when treated with caspase inhibitors. Several genes that are required to orchestrate cell death by programmed necrosis have been identified, such as the kinase RIP1, but very little is known about the inhibitory signals that keep this necrotic cell death pathway in check. We demonstrate that T cells lacking the regulatory subunit of IKK, NFκB essential modifier (NEMO), are hypersensitive to programmed necrosis when stimulated with TNF in the presence of caspase inhibitors. Surprisingly, this pro-survival activity of NEMO is independent of NFκB-mediated gene transcription. Instead, NEMO inhibits necrosis by binding to ubiquitinated RIP1 to restrain RIP1 from engaging the necrotic death pathway. In the absence of NEMO, or if ubiquitination of RIP1 is blocked, necrosis ensues when caspases are blocked. These results indicate that recruitment of NEMO to ubiquitinated RIP1 is a key step in the TNFR1 signaling pathway that determines whether RIP1 triggers a necrotic death response. PMID:22848449
NASA Technical Reports Server (NTRS)
D'Amelio, F.; Daunton, N. G.
1992-01-01
The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.
Calcium and Reactive Oxygen Species in Acute Pancreatitis: Friend or Foe?
Booth, David M.; Mukherjee, Rajarshi; Sutton, Robert
2011-01-01
Abstract Significance Acute pancreatitis (AP) is a debilitating and, at times, lethal inflammatory disease, the causes and progression of which are incompletely understood. Disruption of Ca2+ homeostasis in response to precipitants of AP leads to loss of mitochondrial integrity and cellular necrosis. Recent Advances While oxidative stress has been implicated as a major player in the pathogenesis of this disease, its precise roles remain to be defined. Recent developments are challenging the perception of reactive oxygen species (ROS) as nonspecific cytotoxic agents, suggesting that ROS promote apoptosis that may play a vital protective role in cellular stress since necrosis is avoided. Critical Issues Fresh clinical findings have indicated that antioxidant treatment does not ameliorate AP and may actually worsen the outcome. This review explores the complex links between cellular Ca2+ signaling and the intracellular redox environment, with particular relevance to AP. Future Directions Recent publications have underlined the importance of both Ca2+ and ROS within the pathogenesis of AP, particularly in the determination of cell fate. Future research should elucidate the subtle interplay between Ca2+ and redox mechanisms that operate to modulate mitochondrial function, with a view to devising strategies for the preservation of organellar function. Antioxid. Redox Signal. 15, 2683–2698. PMID:21861696
Studies of physiology and the morphology of the cat LGN following proton irradiation.
Reder, C S; Moyers, M F; Lau, D; Kirby, M A
2000-03-15
We have examined the effects of proton irradiation on the histologic and receptive field properties of thalamic relay cells in the cat visual system. The cat lateral geniculate nucleus (LGN) is a large structure with well-defined anatomical boundaries, and well-described afferent, efferent, and receptive field properties. A 1.0-mm proton microbeam was used on the cat LGN to determine short-term (3 months) and long-term (9 months) receptive field effects of irradiation on LGN relay cells. The doses used were 16-, 40-, and 60-gray (Gy). Following irradiation, abnormalities in receptive field organization were found in 40- and 60-Gy short-term animals, and in all of the long-term animals. The abnormalities included "silent" areas of the LGN where a visual response could not be evoked and other regions that had unusually large or small compound receptive fields. Histologic analysis failed to identify cellular necrosis or vascular damage in the irradiated LGN, but revealed a disruption in retinal afferents to areas of the LGN. These results indicate that microbeam proton irradiation can disrupt cellular function in the absence of obvious cellular necrosis. Moreover, the area and extent of this disruption increased with time, having larger affect with longer post-irradiation periods.
Anilkumar, Ujval; Weisova, Petronela; Schmid, Jasmin; Bernas, Tytus; Huber, Heinrich J; Düssmann, Heiko; Connolly, Niamh M C; Prehn, Jochen H M
2017-01-01
Cell death induced by excessive glutamate receptor overactivation, excitotoxicity, has been implicated in several acute and chronic neurological disorders. While numerous studies have demonstrated the contribution of biochemically and genetically activated cell death pathways in excitotoxic injury, the factors mediating passive, excitotoxic necrosis are less thoroughly investigated. To address this question, we developed a high content screening (HCS) based assay to collect high volumes of quantitative cellular imaging data and elucidated the effects of intrinsic and external factors on excitotoxic necrosis and apoptosis. The analysis workflow consisted of robust nuclei segmentation, tracking and a classification algorithm, which enabled automated analysis of large amounts of data to identify and quantify viable, apoptotic and necrotic neuronal populations. We show that mouse cerebellar granule neurons plated at low or high density underwent significantly increased necrosis compared to neurons seeded at medium density. Increased extracellular Ca2+ sensitized neurons to glutamate-induced excitotoxicity, but surprisingly potentiated cell death mainly through apoptosis. We also demonstrate that inhibition of various cell death signaling pathways (including inhibition of calpain, PARP and AMPK activation) primarily reduced excitotoxic apoptosis. Excitotoxic necrosis instead increased with low extracellular glucose availability. Our study is the first of its kind to establish and implement a HCS based assay to investigate the contribution of external and intrinsic factors to excitotoxic apoptosis and necrosis.
Weisova, Petronela; Schmid, Jasmin; Bernas, Tytus; Huber, Heinrich J.; Düssmann, Heiko; Connolly, Niamh M. C.; Prehn, Jochen H. M.
2017-01-01
Cell death induced by excessive glutamate receptor overactivation, excitotoxicity, has been implicated in several acute and chronic neurological disorders. While numerous studies have demonstrated the contribution of biochemically and genetically activated cell death pathways in excitotoxic injury, the factors mediating passive, excitotoxic necrosis are less thoroughly investigated. To address this question, we developed a high content screening (HCS) based assay to collect high volumes of quantitative cellular imaging data and elucidated the effects of intrinsic and external factors on excitotoxic necrosis and apoptosis. The analysis workflow consisted of robust nuclei segmentation, tracking and a classification algorithm, which enabled automated analysis of large amounts of data to identify and quantify viable, apoptotic and necrotic neuronal populations. We show that mouse cerebellar granule neurons plated at low or high density underwent significantly increased necrosis compared to neurons seeded at medium density. Increased extracellular Ca2+ sensitized neurons to glutamate-induced excitotoxicity, but surprisingly potentiated cell death mainly through apoptosis. We also demonstrate that inhibition of various cell death signaling pathways (including inhibition of calpain, PARP and AMPK activation) primarily reduced excitotoxic apoptosis. Excitotoxic necrosis instead increased with low extracellular glucose availability. Our study is the first of its kind to establish and implement a HCS based assay to investigate the contribution of external and intrinsic factors to excitotoxic apoptosis and necrosis. PMID:29145487
Cancer and necroptosis: friend or foe?
Philipp, Stephan; Sosna, Justyna; Adam, Dieter
2016-06-01
Regulated cell death is one major factor to ensure homoeostasis in multicellular organisms. For decades, apoptosis was considered as the sole form of regulated cell death, whereas necrosis was believed to be accidental and unregulated. Due to this view, research on necrosis was somewhat neglected, especially in the field of anti-cancer treatment. However, new interest in necrosis has been sparked by the recent discovery of different forms of necrosis that show indeed regulated pathways. More and more studies now address the molecular pathways of regulated necrosis and its connections within the cellular signaling networks. Necroptosis, a subform of regulated necrosis, has so far hardly been focused on with regard to a future treatment of cancer patients and may emerge as a novel and effective approach to eliminate tumor cells. However, and similar to apoptosis, tumor cells can develop resistances against necroptosis to ensure their own survival. In this context, new molecules that enhance necroptosis are currently being identified to overcome such resistances. This review discusses cancer and necroptosis as friends or foes, i.e. the options to exploit necroptosis in anti-cancer therapies ("foes"), but also potential limitations that may block or actually cause necroptosis to act in a protumoral manner ("friends"). The balance between these two possible roles will determine whether necroptosis can indeed be used as a promising tool for early diagnosis of tumors, prevention of metastasis and anti-cancer treatment.
Mikitas, Olga V; Ivin, Yuri Y; Golyshev, Sergey A; Povarova, Natalia V; Galkina, Svetlana I; Pletjushkina, Olga Y; Nadezhdina, Elena S; Gmyl, Anatoly P; Agol, Vadim I
2012-05-01
Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive ("security") viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L(-) mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases.
Mikitas, Olga V.; Ivin, Yuri Y.; Golyshev, Sergey A.; Povarova, Natalia V.; Galkina, Svetlana I.; Pletjushkina, Olga Y.; Nadezhdina, Elena S.; Gmyl, Anatoly P.
2012-01-01
Viruses often elicit cell injury (cytopathic effect [CPE]), a major cause of viral diseases. CPE is usually considered to be a prerequisite for and/or consequence of efficient viral growth. Recently, we proposed that viral CPE may largely be due to host defensive and viral antidefensive activities. This study aimed to check the validity of this proposal by using as a model HeLa cells infected with mengovirus (MV). As we showed previously, infection of these cells with wild-type MV resulted in necrosis, whereas a mutant with incapacitated antidefensive (“security”) viral leader (L) protein induced apoptosis. Here, we showed that several major morphological and biochemical signs of CPE (e.g., alterations in cellular and nuclear shape, plasma membrane, cytoskeleton, chromatin, and metabolic activity) in cells infected with L− mutants in the presence of an apoptosis inhibitor were strongly suppressed or delayed for long after completion of viral reproduction. These facts demonstrate that the efficient reproduction of a lytic virus may not directly require development of at least some pathological alterations normally accompanying infection. They also imply that L protein is involved in the control of many apparently unrelated functions. The results also suggest that the virus-activated program with competing necrotic and apoptotic branches is host encoded, with the choice between apoptosis and necrosis depending on a variety of intrinsic and extrinsic conditions. Implementation of this defensive suicidal program could be uncoupled from the viral reproduction. The possibility of such uncoupling has significant implications for the pathogenesis and treatment of viral diseases. PMID:22438537
Apoptosis: a guide for the perplexed.
Sloviter, Robert S
2002-01-01
The term 'apoptosis' describes an active process of cellular deconstruction originally contrasted morphologically with necrosis. The mistaken equivalence of the terms apoptosis and 'programmed cell death' has caused confusion and implied that apoptosis is an identifiable therapeutic target rather than a name of a type of cell death. The roots of confusion are suggested to lie not in superficial disagreements about the morphology and biochemistry of cell death, but in the lamentable disconnection of modern science from its philosophical foundations (i.e. Socratic definition, nominalism versus realism, and William of Ockham's advocacy of Aristotelian metaphysics over Plato's Theory of Forms). Renewed awareness of these issues might be the key to understanding that apoptosis is a created concept, not a real entity, and that the use of terms that defy definition has become an obstacle to clear thinking about preventable cell death.
USDA-ARS?s Scientific Manuscript database
Background: Several single nucleotide polymorphisms have been proposed as potential predictors of the development of age-related diseases. Objective: To explore whether Tumor Necrosis Factor Alpha (TNFA) gene variants were associated with inflammatory status, thus facilitating the rate of telomere s...
Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential.
Martinet, Wim; De Meyer, Guido R Y
2009-02-13
Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.
Sreedhar, Amere Subbarao; Csermely, Peter
2004-03-01
Heat shock proteins (Hsp) form the most ancient defense system in all living organisms on earth. These proteins act as molecular chaperones by helping in the refolding of misfolded proteins and assisting in their elimination if they become irreversibly damaged. Hsp interact with a number of cellular systems and form efficient cytoprotective mechanisms. However, in some cases, wherein it is better if the cell dies, there is no reason for any further defense. Programmed cell death is a widely conserved general phenomenon helping in many processes involving the reconstruction of multicellular organisms, as well as in the elimination of old or damaged cells. Here, we review some novel elements of the apoptotic process, such as its interrelationship with cellular senescence and necrosis, as well as bacterial apoptosis. We also give a survey of the most important elements of the apoptotic machinery and show the various modes of how Hsp interact with the apoptotic events in detail. We review caspase-independent apoptotic pathways and anoikis as well. Finally, we show the emerging variety of pharmacological interventions inhibiting or, just conversely, inducing Hsp and review the emergence of Hsp as novel therapeutic targets in anticancer protocols.
Photo-induced toxic epidermal necrolysis caused by clobazam.
Redondo, P; Vicente, J; España, A; Subira, M L; De Felipe, I; Quintanilla, E
1996-12-01
Toxic epidermal necrolysis (TEN) is a life-threatening disease, the pathogenesis of which remains largely unknown. We describe a 23-year-old woman under treatment with clobazam who developed lesions of TEN in light-exposed areas. Patch and photopatch tests with clobazam were negative. The cellular phenotype and cytokines were studied in blister fluid. The cellular infiltrate was composed mainly of T lymphocytes with a predominant cytotoxic phenotype. There was an increase in the level of tumour necrosis factor (TNF)-alpha in blister fluid compared with the control (a patient with bullous pemphigoid).
Regulation of programmed cell death or apoptosis in atherosclerosis.
Geng, Y J
1997-01-01
Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.
Ferroptosis is Involved in Acetaminophen Induced Cell Death.
Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András
2015-09-01
The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.
USDA-ARS?s Scientific Manuscript database
Many cellular immune assays are impractical because they require labor-intensive isolation of cells from their natural environment. The objectives of this study were to determine the relationship between cell culture supernatant TNF-alpha from isolated peripheral blood mononuclear cells (PBMC) and w...
Kabashima, Ayano; Hirsova, Petra; Bronk, Steven F; Hernandez, Matthew C; Truty, Mark J; Rizvi, Sumera; Kaufmann, Scott H; Gores, Gregory J
2018-03-08
Myeloid cell leukemia 1 (MCL1), a prosurvival member of the BCL2 protein family, has a pivotal role in human cholangiocarcinoma (CCA) cell survival. We previously reported that fibroblast growth factor receptor (FGFR) signalling mediates MCL1-dependent survival of CCA cells in vitro and in vivo. However, the mode and mechanisms of cell death in this model were not delineated. Human CCA cell lines were treated with the pan-FGFR inhibitor LY2874455 and the mode of cell death examined by several complementary assays. Mitochondrial oxidative metabolism was examined using a XF24 extracellular flux analyser. The efficiency of FGFR inhibition in patient-derived xenografts (PDX) was also assessed. CCA cells expressed two species of MCL1, a full-length form localised to the outer mitochondrial membrane, and an N terminus-truncated species compartmentalised within the mitochondrial matrix. The pan-FGFR inhibitor LY2874455 induced non-apoptotic cell death in the CCA cell lines associated with cellular depletion of both MCL1 species. The cell death was accompanied by failure of mitochondrial oxidative metabolism and was most consistent with necrosis. Enforced expression of N terminus-truncated MCL1 targeted to the mitochondrial matrix, but not full-length MCL1 targeted to the outer mitochondrial membrane, rescued cell death and mitochondrial function. LY2874455 treatment of PDX-bearing mice was associated with tumour cell loss of MCL1 and cell necrosis. FGFR inhibition induces loss of matrix MCL1, resulting in cell necrosis. These observations support a heretofore unidentified, alternative MCL1 survival function, namely prevention of cell necrosis, and have implications for treatment of human CCA. Herein, we report that therapeutic inhibition of a cell receptor expressed by bile duct cancer cells resulted in the loss of a critical survival protein termed MCL1. Cellular depletion of MCL1 resulted in the death of the cancer cells by a process characterised by cell rupture. Cell death by this process can stimulate the immune system and has implications for combination therapy using receptor inhibition with immunotherapy. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Kim, Moses; Christley, Scott; Alverdy, John C; Liu, Donald; An, Gary
2012-02-01
Necrotizing enterocolitis (NEC) is a complex disease involving prematurity, enteral feeding, and bacterial effects. We propose that the underlying initial condition in its pathogenesis is reduced ability of the neonatal gut epithelial cells (NGECs) to clear oxidative stress (OS), and that when such a NGEC population is exposed to enteral feeding, the increased metabolic OS tips the population toward apoptosis, inflammation, bacterial activation, and eventual necrosis. The multi-factorial complexity of NEC requires characterization with computational modeling, and herein, we used an agent-based model (ABM) to instantiate and examine our unifying hypothesis of the pathogenesis of NEC. An ABM of the neonatal gut was created with NGEC computational agents incorporating rules for pathways for OS, p53, tight junctions, Toll-like receptor (TLR)-4, nitric oxide, and nuclear factor-kappa beta (NF-κB). The modeled bacteria activated TLR-4 on contact with NGECs. Simulations included parameter sweeps of OS response, response to feeding, addition of bacteria, and alterations in gut mucus production. The ABM reproduced baseline cellular respiration and clearance of OS. Reduction in OS clearance consistent with clinical NEC led to senescence, apoptosis, or inflammation, with disruption of tight junctions, but rarely to NGEC necrosis. An additional "hit" of bacteria activating TLR-4 potentiated a shift to NGEC necrosis across the entire population. The mucus layer was modeled to limit bacterial-NGEC interactions and reduce this effect, but concomitant apoptosis in the goblet cell population reduced the efficacy of the mucus layer and limited its protective effect in simulated experiments. This finding suggests a means by which increased apoptosis at the cellular population level can lead to a transition to the necrosis outcome. Our ABM incorporates known components of NEC and demonstrates that impaired OS management can lead to apoptosis and inflammation of NGECs, rendering the system susceptible to an additional insult involving regionalized mucus barrier failure and TLR-4 activation, which potentiates the necrosis outcome. This type of integrative dynamic knowledge representation can be a useful adjunct to help guide and contextualize research.
A systems approach for analysis of high content screening assay data with topic modeling.
Bisgin, Halil; Chen, Minjun; Wang, Yuping; Kelly, Reagan; Fang, Hong; Xu, Xiaowei; Tong, Weida
2013-01-01
High Content Screening (HCS) has become an important tool for toxicity assessment, partly due to its advantage of handling multiple measurements simultaneously. This approach has provided insight and contributed to the understanding of systems biology at cellular level. To fully realize this potential, the simultaneously measured multiple endpoints from a live cell should be considered in a probabilistic relationship to assess the cell's condition to response stress from a treatment, which poses a great challenge to extract hidden knowledge and relationships from these measurements. In this work, we applied a text mining method of Latent Dirichlet Allocation (LDA) to analyze cellular endpoints from in vitro HCS assays and related to the findings to in vivo histopathological observations. We measured multiple HCS assay endpoints for 122 drugs. Since LDA requires the data to be represented in document-term format, we first converted the continuous value of the measurements to the word frequency that can processed by the text mining tool. For each of the drugs, we generated a document for each of the 4 time points. Thus, we ended with 488 documents (drug-hour) each having different values for the 10 endpoints which are treated as words. We extracted three topics using LDA and examined these to identify diagnostic topics for 45 common drugs located in vivo experiments from the Japanese Toxicogenomics Project (TGP) observing their necrosis findings at 6 and 24 hours after treatment. We found that assay endpoints assigned to particular topics were in concordance with the histopathology observed. Drugs showing necrosis at 6 hour were linked to severe damage events such as Steatosis, DNA Fragmentation, Mitochondrial Potential, and Lysosome Mass. DNA Damage and Apoptosis were associated with drugs causing necrosis at 24 hours, suggesting an interplay of the two pathways in these drugs. Drugs with no sign of necrosis we related to the Cell Loss and Nuclear Size assays, which is suggestive of hepatocyte regeneration. The evidence from this study suggests that topic modeling with LDA can enable us to interpret relationships of endpoints of in vitro assays along with an in vivo histological finding, necrosis. Effectiveness of this approach may add substantially to our understanding of systems biology.
Van Leenders, G J L H; Beerlage, H; Ruijter, E; de la Rosette, J J M C H; van de Kaa, C A
2000-01-01
Aims—Investigation of the histopathological changes in prostatectomy specimens of patients with prostate cancer after high intensity focused ultrasound (HIFU) and identification of immunohistochemical markers for tissue damage after HIFU treatment. Methods—Nine patients diagnosed with adenocarcinoma of the prostate underwent unilateral HIFU treatment seven to 12 days before radical prostatectomy. The prostatectomy specimens were analysed histologically. Immunohistochemical staining and electron microscopy were performed to characterise more subtle phenotypic changes. Results—All prostatectomy specimens revealed well circumscribed HIFU lesions at the dorsal side of the prostate lobe treated. Most epithelial glands in the centre of the HIFU lesions revealed signs of necrosis. Glands without apparently necrotic features were also situated in the HIFU lesions, raising the question of whether lethal destruction had occurred. This epithelium reacted with antibodies to pancytokeratin, prostate specific antigen (PSA), and Ki67, but did not express cytokeratin 8, which is indicative of severe cellular damage. Ultrastructural examination revealed disintegration of cellular membranes and cytoplasmic organelles consistent with cell necrosis. HIFU treatment was incomplete at the ventral, lateral, and dorsal sides of the prostate lobe treated. Conclusions—HIFU treatment induces a spectrum of morphological changes ranging from apparent light microscopic necrosis to more subtle ultrastructural cell damage. All HIFU lesions are marked by loss of cytokeratin 8. HIFU does not affect the whole area treated, leaving vital tissue at the ventral, lateral, and dorsal sides of the prostate. Key Words: prostate cancer • high intensity focused ultrasound treatment PMID:10889823
NASA Technical Reports Server (NTRS)
Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.
1994-01-01
The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.
Rupasov, Andrey; Cain, Usa; Montoya, Simone; Blickman, Johan G
2017-09-01
This article focuses on the imaging of 5 discrete entities with a common end result of disability: posttraumatic arthritis, a common form of secondary osteoarthritis that results from a prior insult to the joint; avascular necrosis, a disease of impaired osseous blood flow, leading to cellular death and subsequent osseous collapse; septic arthritis, an infectious process leading to destructive changes within the joint; complex regional pain syndrome, a chronic limb-confined painful condition arising after injury; and cases of cancer mimicking arthritis, in which the initial findings seem to represent arthritis, despite a more insidious cause. Copyright © 2017 Elsevier Inc. All rights reserved.
Janko, Christina; Munoz, Luis; Chaurio, Ricardo; Maueröder, Christian; Berens, Christian; Lauber, Kirsten; Herrmann, Martin
2013-01-01
Apoptosis and necrosis reflect the program of cell death employed by a dying cell and the final stage of death, respectively. Whereas apoptosis is defined as a physiological, highly organized cell death process, necrosis is commonly considered to be accidental and uncontrolled. Physiological and weak pathological death stimuli preferentially induce apoptosis, while harsh non-physiological insults often immediately instigate (primary) necrosis. If an apoptosing cell transits into a phase of plasma membrane disintegration, this stage of death is referred to as secondary or post-apoptotic necrosis.Here, we present several conditions that stimulate primary and/or secondary necrosis and show that necrosis displays considerably different time courses. For subclassification of necrotic phenotypes we employed a flow cytometric single-tube 4-color staining technique including annexin A5-FITC, propidium iodide, DiIC1(5), and Hoechst 33342.
Regulation of Apoptosis during Flavivirus Infection.
Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu
2017-08-28
Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.
Sweet, L.I.; Passino-Reader, D. R.; Meier, P.G.; Omann, G.M.
2006-01-01
Apoptosis, or programmed cell death, has been proposed as a biomarker for environmental contaminant effects. In this work, we test the hypothesis that in vitro assays of apoptosis are sensitive indicators of immunological effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophils. Apoptosis, necrosis, and viability as well as the related indicators F-actin levels, and active thiol state were measured in purified human neutrophils after treatment with contaminants. Effective concentrations observed were 0.3 μM (60 μg/L) mercury, 750 μg/L Aroclor 1254, and 50 μM (14,500 μg/L) hexachlorocylcohexanes. Concentrations of contaminants that induced apoptosis also decreased cellular F-actin levels. Active thiols were altered by mercury, but not organochlorines. Comparison of these data with levels of contaminants reported to be threats to human health indicate neutrophil apoptosis is a sensitive indicator of mercury toxicity.
Immunoexpression of p16 in uterine leiomyomas with infarct-type necrosis: an analysis of 35 cases.
Ip, Philip P; Lim, Diana; Cheung, Annie N Y; Oliva, Esther
2017-11-01
Uterine leiomyosarcomas frequently show p16 immunoexpression. However, p16 may also be expressed in some benign leiomyoma variants such as leiomyomas with bizarre nuclei and cellular leiomyomas, limiting its utility as a biomarker to distinguish between benign and malignant neoplasms. We investigated p16 expression in leiomyomas with infarct-type necrosis, tumours which may sometimes be misinterpreted as smooth muscle tumours of uncertain malignant potential or even leiomyosarcoma on conventional light microscopy. p16 immunostaining was performed on 35 leiomyomas with infarct-type necrosis and the staining pattern was analysed. Staining was classified as absent, scattered/isolated, <33-, 33-66- or >66%-positive cells, and was assessed in the areas immediately surrounding and distant from the infarct. The median age of patients was 44 years. Seventeen had hormonal/non-hormonal drugs and three were pregnant. The median tumour size was 7.25 cm. The mean mitotic count was 0.9/10 high-power fields. Only one tumour had multifocal mild nuclear atypia. Positive p16 was noted in 34 of 35 (97.2%) tumours. It was typically patchy, and was concentrated in areas immediately surrounding the necrosis. Distant from the necrosis, p16 positivity was seen predominantly in scattered/isolated cells. One tumour without any worrisome microscopic features showed diffuse p16 positivity throughout. Median follow-up was 55 months, and none of the patients experienced any recurrence. p16 expression in benign uterine smooth muscle tumours with infarct-type necrosis is common. The staining is particularly concentrated adjacent to areas of necrosis. It is important to be aware of this potential pitfall when interpreting p16 expression. © 2017 John Wiley & Sons Ltd.
Bey, Erik A.; Reinicke, Kathryn E.; Srougi, Melissa C.; Varnes, Marie; Anderson, Vernon; Pink, John J.; Li, Long Shan; Patel, Malina; Cao, Lifen; Moore, Zachary; Rommel, Amy; Boatman, Michael; Lewis, Cheryl; Euhus, David M.; Bornmann, William G.; Buchsbaum, Donald J.; Spitz, Douglas R.; Gao, Jinming; Boothman, David A.
2013-01-01
Improving patient outcome by personalized therapy involves a thorough understanding of an agent’s mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme, NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is dramatically elevated in solid cancers, including primary and metastatic (e.g., triple-negative (ER-, PR-, Her2/Neu-)) breast cancers. To define cellular factors that influence the efficacy of β-lapachone using knowledge of its mechanism of action, we confirmed that NQO1 was required for lethality and mediated a futile redox cycle where ~120 moles of superoxide were formed per mole of β-lapachone in 5 min. β-Lapachone induced reactive oxygen species (ROS), stimulated DNA single strand break-dependent PARP1 hyperactivation, caused dramatic loss of essential nucleotides (NAD+/ATP) and elicited programmed necrosis in breast cancer cells. While PARP1 hyperactivation and NQO1 expression were major determinants of β-lapachone-induced lethality, alterations in catalase expression, including treatment with exogenous enzyme, caused marked cytoprotection. Thus, catalase is an important resistance factor, and highlights H2O2 as an obligate ROS for cell death from this agent. Exogenous superoxide dismutase (SOD) enhanced catalase-induced cytoprotection. β-Lapachone-induced cell death included AIF translocation from mitochondria to nuclei, TUNEL+ staining, atypical PARP1 cleavage, and GAPDH S-nitrosylation, which were abrogated by catalase. We predict that the ratio of NQO1:catalase activities in breast cancer versus associated normal tissue are likely to be the major determinants affecting the therapeutic window of β-lapachone and other NQO1 bioactivatable drugs. PMID:23883585
Necrosis in human neuronal cells exposed to paraquat.
Hirayama, Naho; Aki, Toshihiko; Funakoshi, Takeshi; Noritake, Kanako; Unuma, Kana; Uemura, Koichi
2018-01-01
Paraquat (PQ) is an herbicide that was once used worldwide, but is now prohibited in many nations due to its high toxicity to humans. However, there are still rare cases of the fetal intoxication of PQ, which was purchased prior to the prohibition in Japan. In this study, several cell death pathways, the mitochondrial stress response, and autophagy were examined in SH-SY5Y cells exposed to PQ. The results reveal the decrease of a mitochondrial stress sensitive-BNIP3 (Bcl-2/adenovirus E1B 19-kDa-interacting protein 3) protein, the suppression of autophagic flux, and the lack of apoptosis as well as other regulated forms of necrosis, such as necroptosis and ferroptosis. Taken together, our preliminary survey of cellular responses against PQ shows that, although responses of mitochondria and autophagy are observed, subsequent cell death is necrosis. Mechanism of PQ-induced SH-SY5Y cell death should be complicated and cannot be explained thoroughly by already-known mechanisms.
Salmeri, Francesca M.; Sofo, Vincenza; Triolo, Onofrio; Sturlese, Emanuele; Retto, Giovanni; Pizzo, Alfonsa; D'Ascola, Angela; Campo, Salvatore
2015-01-01
During endometriosis, a breakdown occurs in endometrial and peritoneal homeostasis caused by cytokine-induced cell proliferation and dysregulation of apoptosis. We studied tumor necrosis factor (TNF)-α, TNF receptor (TNFR) 1, and TNFR2 gene expression at both messenger RNA (mRNA) and protein levels in peritoneal fluid (PF) mononuclear cells (PFMCs), the percentages of these cells bearing the same markers, and soluble TNF-α (sTNF-α) values in PF of 80 women with endometriosis. We found that TNFR1 mRNA and protein levels, the percentages of TNFR1-bearing PFMCs, and sTNF-α values decreased from minimal to severe stages of the disease. Instead, TNF-α and TNFR2 mRNA and protein levels, the percentages of membrane TNF-α (mTNF-α)- and TNFR2-bearing PFMCs increased as the disease worsened. These data allow us to hypothesize that, in early stages, the high percentages of TNFR1-bearing PFMCs and the high levels of sTNF-α could address signal toward complex I pathway, favoring the inflammatory response. With the worsening of the disease, the low percentages of TNFR1-bearing PFMCs are probably due to decreased TNFR1 mRNA transcription and protein translation rate. In early stages (minimal and mild), the percentages of both TNFR2- and mTNF-α–bearing PFMCs are so low, due to decreased mRNA transcription and protein translation rate, that subsequent cellular events may depend minimally by this interaction. The high levels of sTNF-α may be rerouted to bind TNFR1. In contrast, in the moderate and severe stages, the high percentages of TNFR2-bearing PFMCs may be saturated by high percentages of mTNF-α–bearing PFMCs, triggering death process. So, in endometriosis, each component of the TNF-α/TNFRs system may trigger opposite cellular fate. PMID:24844917
Pravastatin Protects Against Avascular Necrosis of Femoral Head via Autophagy.
Liao, Yun; Zhang, Ping; Yuan, Bo; Li, Ling; Bao, Shisan
2018-01-01
Autophagy serves as a stress response and may contribute to the pathogenesis of avascular necrosis of the femoral head induced by steroids. Statins promote angiogenesis and ameliorate endothelial functions through apoptosis inhibition and necrosis of endothelial progenitor cells, however the process used by statins to modulate autophagy in avascular necrosis of the femoral head remains unclear. This manuscript determines whether pravastatin protects against dexamethasone-induced avascular necrosis of the femoral head by activating endothelial progenitor cell autophagy. Pravastatin was observed to enhance the autophagy activity in endothelial progenitor cells, specifically by upregulating LC3-II/Beclin-1 (autophagy related proteins), and autophagosome formation in vivo and in vitro . An autophagy inhibitor, 3-MA, reduced pravastatin protection in endothelial progenitor cells exposed to dexamethasone by attenuating pravastatin-induced autophagy. Adenosine monophosphate-activated protein kinase (AMPK) is a key autophagy regulator by sensing cellular energy changes, and indirectly suppressing activation of the mammalian target of rapamycin (mTOR). We found that phosphorylation of AMPK was upregulated however phosphorylation of mTOR was downregulated in pravastatin-treated endothelial progenitor cells, which was attenuated by AMPK inhibitor compound C. Furthermore, liver kinase B1 (a phosphorylase of AMPK) knockdown eliminated pravastatin regulated autophagy protein LC3-II in endothelial progenitor cells in vitro . We therefore demonstrated pravastatin rescued endothelial progenitor cells from dexamethasone-induced autophagy dysfunction through the AMPK-mTOR signaling pathway in a liver kinase B1-dependent manner. Our results provide useful information for the development of novel therapeutics for management of glucocorticoids-induced avascular necrosis of the femoral head.
Buetler, Timo M; Latado, Hélia; Baumeyer, Alexandra; Delatour, Thierry
2008-04-01
Advanced glycation endproducts (AGEs) and their precursor dicarbonyls are generally perceived as having adverse health effects. They are also considered to be initiators and promoters of disease and aging. However, proof for a causal relationship is lacking. On the other hand, it is known that AGEs and melanoidins possess beneficial properties, such as antioxidant and metal-chelating activities. Furthermore, some AGEs may stimulate the cellular detoxification system, generally known as the phase II drug metabolizing system. We show here that several reactive dicarbonyl intermediates have the capability to stimulate the cellular phase II detoxification systems in both a reporter cell line and primary rat hepatocytes. In addition, we demonstrate that dicarbonyls can attenuate the inflammatory signaling induced by tumor necrosis factor-alpha in a reporter cell system.
Xu, Bei; Bobek, Gabriele; Makris, Angela; Hennessy, Annemarie
2017-03-01
Medications used to control hypertension in pregnancy also improve trophoblast and endothelial cellular interaction in vitro. Tumour necrosis factor-α (TNF-α) inhibits trophoblast and endothelial cellular interactions and simultaneously decreases endothelial nitric oxide synthase (eNOS) expression. This study investigated whether antihypertensive medications improved these cellular interactions by modulating eNOS and inducible nitric oxide synthase (iNOS) expression. Human uterine myometrial microvascular endothelial cells (UtMVECs) were pre-incubated with (or without) low dose TNF-α (0.5 ng/mL) or TNF-α plus soluble fms-like tyrosine kinase-1 (sFlt-1) (100 ng/mL). The endothelial cells were cultured on Matrigel. After endothelial cellular networks appeared, trophoblast derived HTR-8/SVneo cells were co-cultured in the presence of clinically relevant doses of methyldopa, labetalol, hydralazine or clonidine for 24 hours. Cells were retrieved from the Matrigel to extract mRNA and eNOS and iNOS expression were examined by quantitative PCR. Methyldopa, labetalol, hydralazine and clonidine reversed the inhibitory effect of TNF-α on eNOS mRNA expression. After pre-incubating endothelial cells with TNF-α and sFlt-1, all the medications except methyldopa lost their effect on eNOS mRNA expression. In the absence of TNF-α, antihypertensive medications did not change eNOS expression. The mRNA expression of iNOS was not affected by TNF-α or any medications. This study shows that selected antihypertensive medications used in the treatment of hypertension in pregnancy increase eNOS expression in vitro when induced by the inflammatory TNF-α. The anti-angiogenic molecule sFlt-1 may antagonise the potential benefit of these medications by interfering with the NOS pathway. © 2016 John Wiley & Sons Australia, Ltd.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-03-07
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na(+)/Ca(2+) exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na(+)/K(+) pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.
Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A
2013-01-01
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis. PMID:23470534
NASA Astrophysics Data System (ADS)
Kessel, David
2007-02-01
Cellular targets of photodynamic therapy include mitochondria, lysosomes, the endoplasmic reticulum (ER) and the plasma membrane. PDT can evoke necrosis, autophagy and apoptosis, or combinations of these, depending on the PDT dose, the site(s) of photodamage and the cellular phenotype. It has been established that loss of viability occurs even when the apoptotic program is inhibited. Studies assessing effects of ER or mitochondrial photodamage, involving loss of Bcl-2 function, indicate that low-dose PDT elicited a rapid autophagic response in L1210 cells. This was attributed to the ability of autophagy to recycle photodamaged organelles, and there was partial protection from loss of viability. This effect was not observed in L1210/Atg7, where autophagy was silenced. At higher PDT doses, apoptotic cells were observed within 60 min in both cell lines, but more so in L1210. The ability of L1210 cells to undergo autophagy did not offer protection from cell death at the higher PDT dose. Previous studies had indicated that autophagy can contribute to cell death, since L1210 cells that do not undergo an initial apoptotic response often contain multiple autophagic vacuoles 24 hr later. With L1210/Atg7, apoptosis alone may account for the loss of viability at an LD 90 PDT dose.
Atypia in fine needle aspirates of breast lesions.
Tran, Phuong Viet The; Lui, Philip C W; Yu, Alex M C; Vinh, Pham The; Chau, Helen H L; Ma, Tony K F; Tan, Puay-Hoon; Tse, Gary M
2010-07-01
The atypical category is controversial in fine needle aspiration cytology (FNAC) of the breast; most are benign, but a significant number are malignant. To date, no morphological criterion has been found to be consistent in predicting malignancy. To evaluate specific cytological parameters and assess their usefulness in predicting histological outcome in a cohort of atypical breast FNAC, in order to establish a set of objective criteria in defining 'high risk' atypical breast FNAC. A retrospective review of 98 cases of atypical breast FNAC with histological correlation was undertaken. The cytological preparations were evaluated for cellularity, percentage of epithelial cell cluster and single epithelial cells, nuclear atypia, nucleus:cytoplasm ratio, percentage of bipolar nuclei, and the presence of stromal fragments, histiocytes and necrosis. 66 of 98 cases (67.35%) showed benign histology and 32 cases (32.65%) showed malignant histology. Compared with the malignant group, the benign group had significantly lower patient age (p=0.05), higher bipolar nuclei (p<0.0001), less degree of nuclear pleomorphism (p<0.0001), lower nucleus:cytoplasm ratio (p<0.0001), lower cellularity (p=0.05) and less necrosis (p<0.001). There was no difference in the percentage of epithelial clusters and single cells, or the presence of stromal fragments and histiocytes. The presence of nuclear pleomorphism, high nucleus:cytoplasm ratio, epithelial cell atypia, low number of bipolar nuclei and necrosis are useful parameters to predict malignancy in atypical FNAC of the breast. Assessment of these factors in atypical FNAC may be helpful in predicting cancer risk and subsequent management decision making.
Truong, Warren Ty; Su, Yingying; Gloria, Danmar; Braet, Filip; Thordarson, Pall
2015-02-01
Herein we report an approach to assess in vitro cellular responses to the dissolution or degradation products from Fmoc-diphenylalanine (Fmoc-FF) self-assembled hydrogels. Three cell lines were used in these studies and two-way ANOVA was used to assess (i) the age of gel dissolution and degradation products and (ii) exposure time on cell fate and state, using viability assays in conjunction with time-lapse fluorescence and high-resolution scanning electron microscopy investigation. The studies show that leaching time but not the exposure time affects the overall cell viability. The cytotoxic effect was only observed once the gel is completely dissolved. Further analysis revealed that the principal mechanism of cell death is necrosis. In addition, the effect of chemotherapeutics (5-fluorouracil and paclitaxel) released from the Fmoc-FF gel (with addition before and after gelation) on colorectal cancer cells were investigated using this methodology, demonstrating enhanced activity of these drugs compared to bulk control. This enhanced activity, however, appears to be a combination of the apoptosis caused by the cancer drugs and necrosis caused by gel dissolution and degradation products. Given that in vivo studies by others on Fmoc-peptides that this material is not harmful to animals, our work highlights that conventional in vitro cellular assays may yield conflicting messages when used for the evaluation of cytotoxicity and drug release from self-assembled gels such as Fmoc-FF and that better in vitro models, (e.g. 3D cell culture systems) need to be developed to evaluate these materials for biomedical applications.
Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony
2017-01-01
Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787
Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*
Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.
2012-01-01
Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666
Kim, S J; Li, Jianrong
2013-07-11
Microglia are the resident immune cells in the central nervous system and key players against pathogens and injury. However, persistent microglial activation often exacerbates pathological damage and has been implicated in many neurological diseases. Despite their pivotal physiological and pathophysiological roles, how the survival and death of activated microglia is regulated remains poorly understood. We report here that microglia activated through Toll-like receptors (TLRs) undergo RIP1/RIP3-dependent programmed necrosis (necroptosis) when exposed to the pan caspase inhibitor zVAD-fmk. Although zVAD-fmk and the caspase-8 inhibitor IETD-fmk had no effect on unstimulated primary microglia, they markedly sensitized microglia to TLR1/2,3,4,7/8 ligands or TNF treatment, triggering programmed necrosis that was completely blocked by R1P1 kinase inhibitor necrostatin-1. Interestingly, necroptosis induced by TLR ligands and zVAD was restricted to microglial cells and was not observed in astrocytes, neurons or oligodendrocytes even though they are known to express certain TLRs. Deletion of genes encoding TNF or TNFR1 failed to prevent lipopolysaccharide- and poly(I:C)-induced microglial necroptosis, unveiling a TNF-independent programmed necrosis pathway in TLR3- and TLR4-activated microglia. Microglia from mice lacking functional TRIF were fully protected against TLR3/4 activation and zVAD-fmk-induced necrosis, and genetic deletion of rip3 also prevented microglia necroptosis. Activation of c-jun N-terminal kinase and generation of specific reactive oxygen species were downstream signaling events required for microglial cell death execution. Taken together, this study reveals a robust RIP3-dependent necroptosis signaling pathway in TLR-activated microglia upon caspase blockade and suggests that TLR signaling and programmed cell death pathways are closely linked in microglia, which could contribute to neuropathology and neuroinflammation when dysregulated.
Komatsu, Ken; Hashimoto, Masayoshi; Ozeki, Johji; Yamaji, Yasuyuki; Maejima, Kensaku; Senshu, Hiroko; Himeno, Misako; Okano, Yukari; Kagiwada, Satoshi; Namba, Shigetou
2010-03-01
Resistant plants respond rapidly to invading avirulent plant viruses by triggering a hypersensitive response (HR). An HR is accompanied by a restraint of virus multiplication and programmed cell death (PCD), both of which have been observed in systemic necrosis triggered by a successful viral infection. Here, we analyzed signaling pathways underlying the HR in resistance genotype plants and those leading to systemic necrosis. We show that systemic necrosis in Nicotiana benthamiana, induced by Plantago asiatica mosaic virus (PlAMV) infection, was associated with PCD, biochemical features, and gene expression patterns that are characteristic of HR. The induction of necrosis caused by PlAMV infection was dependent on SGT1, RAR1, and the downstream mitogen-activated protein kinase (MAPK) cascade involving MAPKKKalpha and MEK2. However, although SGT1 and RAR1 silencing led to an increased accumulation of PlAMV, silencing of the MAPKKKalpha-MEK2 cascade did not. This observation indicates that viral multiplication is partly restrained even in systemic necrosis induced by viral infection, and that this restraint requires SGT1 and RAR1 but not the MAPKKKalpha-MEK2 cascade. Similarly, although both SGT1 and MAPKKKalpha were essential for the Rx-mediated HR to Potato virus X (PVX), SGT1 but not MAPKKKalpha was involved in the restraint of PVX multiplication. These results suggest that systemic necrosis and HR consist of PCD and a restraint of virus multiplication, and that the latter is induced through unknown pathways independent from the former.
Diagnosis of Cell Death by Means of Infrared Spectroscopy
Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana
2009-01-01
Abstract Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis inducers. Cell death mode was determined by various gold standard biochemical methods in parallel with FTIR-microscope measurements. Both cell death modes exhibit large spectral changes in lipid absorbance during apoptosis and necrosis; however, these changes are similar and thus cannot be used to distinguish apoptosis from necrosis. In contrast to the above confounding factor, our results reveal that apoptosis and necrosis can still be distinguished by the degree of DNA opaqueness to infrared light. Moreover, these two cell death modes also can be differentiated by their infrared absorbance, which relates to the secondary structure of total cellular protein. In light of these findings, we conclude that, because of its capacity to monitor multiple biomolecular parameters, FTIR spectroscopy enables unambiguous and easy analysis of cell death modes and may be useful for biochemical and medical applications. PMID:19804743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.
Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI.more » Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.« less
Heinrich, A; Balszuweit, F; Thiermann, H; Kehe, K
2009-12-15
Sulfur mustard (SM; bis(2-chloroethyl)sulphide; HD) is a blister inducing agent causing DNA damage and subsequently, cell death, mostly by apoptosis in basal keratinocytes. Despite intensive investigations on the cellular mechanism, there are, as of now, no causal therapeutics to prevent or antagonize SM-related damage to cells and tissues. In order to develop treatment strategies against vesication, it is important to distinguish apoptosis from necrosis in SM treated human keratinocytes. DNA fragmentation is a hallmark of apoptosis and regulated by a cascade of enzymes (endonucleases, DNase I, NUC 18), which finally cut the chromatin into specific formations of 180-200 base pairs, the nucleosomes. A feasible way to monitor apoptosis is the detection of nucleosomes by means of the Cell Death Detection ELISA(plus) (CDDE). In contrast, during necrosis DNA fragmentation is at random and delivers larger fragments, which therefore are significantly less in number and predominantly occur in cell culture supernatant. To monitor necrosis, we measured the release of intracellular adenylate kinase (AK) into cell culture supernatant by means of the ToxiLight Bioluminescence Assay (TL). With combination of the Cell Death Detection ELISA(plus) and the ToxiLight Bioluminescence Assay, we acquired more comprehensive information on cell survival and mechanisms of cell death, following an SM exposure. To validate the assay we tested common apoptosis- and necrosis-inducing agents like SM 300 microM for 30 min, Lewisite (L) 60 microM for 5 min and Triton X-100 0.1%. The results show that it is possible to differentiate between the two modes of cell death and to quantify their extent. This assay is highly effective in quantifying apoptosis and necrosis caused by cytotoxic agents and in estimating protective effects of potential active pharmaceutical ingredients.
Ying, Songmin; Christian, Jan G; Paschen, Stefan A; Häcker, Georg
2008-01-01
Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.
Cluzeau, Thomas; McGraw, Kathy L; Irvine, Brittany; Masala, Erico; Ades, Lionel; Basiorka, Ashley A; Maciejewski, Jaroslaw; Auberger, Patrick; Wei, Sheng; Fenaux, Pierre; Santini, Valeria; List, Alan
2017-12-01
Accumulating evidence implicates innate immune activation in the pathobiology of myelodysplastic syndromes. A key myeloid-related inflammatory protein, S100A9, serves as a Toll-like receptor ligand regulating tumor necrosis factor-α and interleukin-1β production. The role of myelodysplastic syndrome-related inflammatory proteins in endogenous erythropoietin regulation and response to erythroid-stimulating agents or lenalidomide has not been investigated. The HepG2 hepatoma cell line was used to investigate in vitro erythropoietin elaboration. Serum samples collected from 311 patients with myelodysplastic syndrome were investigated (125 prior to treatment with erythroid-stimulating agents and 186 prior to lenalidomide therapy). Serum concentrations of S100A9, S100A8, tumor necrosis factor-α, interleukin-1β and erythropoietin were analyzed by enzyme-linked immunosorbent assay. Using erythropoietin-producing HepG2 cells, we show that S100A9, tumor necrosis factor-α and interleukin-1β suppress transcription and cellular elaboration of erythropoietin. Pre-incubation with lenalidomide significantly diminished suppression of erythropoietin production by S100A9 or tumor necrosis factor-α. Moreover, in peripheral blood mononuclear cells from patients with myelodysplastic syndromes, lenalidomide significantly reduced steady-state S100A9 generation ( P =0.01) and lipopolysaccharide-induced tumor necrosis factor-α elaboration ( P =0.002). Enzyme-linked immunosorbent assays of serum from 316 patients with non-del(5q) myelodysplastic syndromes demonstrated a significant inverse correlation between tumor necrosis factor-α and erythropoietin concentrations ( P =0.006), and between S100A9 and erythropoietin ( P =0.01). Moreover, baseline serum tumor necrosis factor-α concentration was significantly higher in responders to erythroid-stimulating agents ( P =0.03), whereas lenalidomide responders had significantly lower tumor necrosis factor-α and higher S100A9 serum concentrations ( P =0.03). These findings suggest that S100A9 and its nuclear factor-κB transcriptional target, tumor necrosis factor-α, directly suppress erythropoietin elaboration in myelodysplastic syndromes. These cytokines may serve as rational biomarkers of response to lenalidomide and erythroid-stimulating agent treatments. Therapeutic strategies that either neutralize or suppress S100A9 may improve erythropoiesis in patients with myelodysplastic syndromes. Copyright© 2017 Ferrata Storti Foundation.
Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging
NASA Astrophysics Data System (ADS)
Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro
2015-05-01
Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.
CHOP mediates XBP1S-induced renal mesangial cell necrosis following high glucose treatment.
Shao, Decui; Ni, Jun; Shen, Yang; Liu, Jia; Zhou, Li; Xue, Hong; Huang, Yu; Zhang, Wei; Lu, Limin
2015-07-05
High glucose (HG)-induced apoptosis in mesangial cells (MCs) is a critical determinant during the pathogenesis of diabetic nephropathy. The signaling cascade inducing MCs apoptosis by HG involves overproduction of reactive oxygen species. Our previous studies have demonstrated that HG-induced oxidative stress is mediated by suppression of spliced/active X-box binding protein 1 (XBP1S), suggesting the importance of XBP1S in HG-induced MCs apoptosis. CHOP, an endoplasmic reticulum stress-associated proapoptotic signal, is involved in downstream of XBP1S. In the present study, we explored the effect of XBP1S in modulating HG-induced apoptosis in renal MCs and then identified the role of CHOP in these processes. Apoptosis and necrosis were quantified by flow cytometry; protein levels of XBP1S, caspase3, Bax, Bcl2, BNIP3, and CHOP were analyzed by Western blotting. The cellular localization of XBP1S was determined by immunofluorescence histochemistry. The binding of XBP1 to CHOP promoter was determined by chromatin immunoprecipitation assays. In addition, adenoviruses harboring XBP1S gene (Ad-XBP1S) were used to overexpress XBP1S, whereas the knockdown of CHOP was achieved by small interference RNA. HG suppressed nuclear distribution of XBP1S and induced apoptosis and necrosis in MCs. Ad-XBP1S infection enhanced the nuclear translocation of XBP1S and reduced MCs apoptosis and necrosis. XBP1S bound to the promoter region of CHOP and upregulated CHOP expression. Conversely, CHOP expression was reduced upon HG exposure and knockdown of CHOP increased necrosis but not apoptosis in MCs. These results suggest that XBP1S protected MCs from HG-induced apoptosis and necrosis, and CHOP participates in XBP1S-regulated necrosis but not apoptosis. Copyright © 2015. Published by Elsevier B.V.
Sendler, Matthias; Dummer, Annegret; Weiss, Frank U; Krüger, Burkhard; Wartmann, Thomas; Scharffetter-Kochanek, Karin; van Rooijen, Nico; Malla, Sudarshan Ravi; Aghdassi, Ali; Halangk, Walter; Lerch, Markus M; Mayerle, Julia
2013-03-01
Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings from the present work further suggest that targeting TNFα, for which pharmaceutical agents are readily available, could be an effective treatment strategy that directly addresses the cellular causes of pancreatitis.
Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo
2017-08-01
Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.
Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki
2015-07-08
Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filatova, S A; Kamynin, V A; Ryabova, A V
The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinicallymore » acceptable degree of destruction in tissue samples with a minimal carbonisation zone. (laser applications in medicine)« less
NASA Technical Reports Server (NTRS)
Graf, B. K.; Fujisaki, K.; Vanderby, R. Jr; Vailas, A. C.
1992-01-01
Cell necrosis has been well documented as one of the many changes that occur in autogenous tendon when it is used to reconstruct the anterior cruciate ligament. The purpose of this experiment was to isolate cell necrosis as a variable and study its effect on the patellar tendon. To accomplish this, both knees of 25 New Zealand White rabbits were operated on. In one knee, a 5-mm wide band of patellar tendon was subjected to two rapid freeze-thaw cycles, while the other knee underwent sham surgery. Histologic evaluation showed a zone of necrosis at 2 and 4 weeks with cellular repopulation complete at 8 weeks. patellar tendon cross-sectional area was 0.118 cm2 at 8 weeks for the frozen specimens compared to 0.102 cm2 for the sham-operated controls. This difference was significant at the P = 0.025 level. Mechanical testing at 4 and 8 weeks revealed no significant changes in tendon length, maximum load, or stiffness. The collagen content was also unchanged at both 4 and 8 weeks.
Fang, Cheng; Wang, Kun; Zeng, Chaoting; Chi, Chongwei; Shang, Wenting; Ye, Jinzuo; Mao, Yamin; Fan, Yingfang; Yang, Jian; Xiang, Nan; Zeng, Ning; Zhu, Wen; Fang, Chihua; Tian, Jie
2016-01-01
Tissue necrosis commonly accompanies the development of a wide range of serious diseases. Therefore, highly sensitive detection and precise boundary delineation of necrotic tissue via effective imaging techniques are crucial for clinical treatments; however, no imaging modalities have achieved satisfactory results to date. Although fluorescence molecular imaging (FMI) shows potential in this regard, no effective necrosis-avid fluorescent probe has been developed for clinical applications. Here, we demonstrate that indocyanine green (ICG) can achieve high avidity of necrotic tissue owing to its interaction with lipoprotein (LP) and phospholipids. The mechanism was explored at the cellular and molecular levels through a series of in vitro studies. Detection of necrotic tissue and real-time image-guided surgery were successfully achieved in different organs of different animal models with the help of FMI using in house-designed imaging devices. The results indicated that necrotic tissue with a 0.6 mm diameter could be effectively detected with precise boundary definition. We believe that the new discovery and the associated imaging techniques will improve personalized and precise surgery in the near future. PMID:26864116
Postradiation atrophy of mature bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erguen, H.; Howland, W.J.
1980-01-01
The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecting demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less
Postradiation atrophy of mature bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ergun, H.; Howland, W.J.
1980-01-01
The growing number of oncological patients subjected to radiotherapy require the diagnostic radiologist to be aware of expected bone changes following irradiation and the differentiation of this entity from metastasis. The primary event of radiation damage to bone is atrophy and true necrosis of bone is uncommon. The postradiation atrophic changes of bone are the result of combined cellular and vascular damage, the former being more important. The damage to the osteoblast resulting in decreased matrix production is apparently the primary histopathologic event. Radiation damaged bone is susceptible to superimposed complications of fracture, infection, necrosis, and sarcoma. The primary radiographicmore » evidence of atrophy, localized osteopenia, is late in appearing, mainly because of the relative insensitivity of radiographs in detecing demineralization. Contrary to former views, the mature bone is quite radiosensitive and reacts quickly to even small doses of radiation. In vivo midrodensitometric analysis and radionuclide bone and bone marrow scans can reveal early changes following irradiation. The differentiation of postirradiation atrophy and metastasis may be difficult. Biopsy should be the last resort because of the possibility of causing true necrosis in atrophic bone by trauma and infection.« less
Carvalho, Helena; Alguero, Carmen; Santos, Matilde; de Sousa, Gracinda; Trindade, Helder; Seghatchian, Jerard
2006-04-01
Platelets are known to undergo shape change, activation, a release reaction and apoptosis/necrosis during processing and storage, all of which are collectively known as the platelet storage lesion. Any additional processing may have some deleterious impact on platelet activability and functional integrity, which need to be investigated. This preliminary investigation was undertaken to establish the combined effects of standard platelet storage media and the intercept pathogen reduction technology on platelet activation and activability during 7 day storage, using buffy-coat derived platelets in standard storage media containing 35% plasma (N=24). P-selectin (CD62p) expression, a classical marker of platelet activation, and phosphatidylserine (PS) exposure on the platelet surface membrane, a hallmark of cellular necrosis/apoptosis, were both measured by flow cytometry. The results reveal significant increases in activation, from an average of 22.7% on day 1 before treatment to 31.6% on day 2 after treatment and 58.7% at the end of storage. Concomitantly, the basal expression of PS was slightly increased from 1.9% to 2.8% at day 2 after treatment and 7.3% at the end of storage. However, the functional reserve of platelets during storage, which reflects their capability to undergo activation and the release reaction when platelets were challenged with either calcium ionophore or thrombin, was relatively well maintained. These preliminary data confirm the earlier data on the use of intercept, and for the first time, based on the assessment of platelet functional integrity, suggest that platelet functional reserve is relatively well maintained, with little change in the formation of apoptotic cells.
Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.
Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve
2006-09-18
Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.
Regulation of Apoptosis during Flavivirus Infection
Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu
2017-01-01
Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses. PMID:28846635
Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells†
Ernst, Russell J.; Komor, Alexis C.; Barton, Jacqueline K.
2011-01-01
Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents. PMID:22103240
Fulminant bilateral acute retinal necrosis after chickenpox - a case report.
Dascalu, Ana Maria; Stana, Daniela; Popa-Cherecheanu, Alina; Popa-Cherecheanu, Matei; Serban, Dragos
2016-01-01
We present the case of a 34-year-old male, admitted for progressive bilateral loss of vision after a recent episode of chickenpox. Ophthalmological exam revealed bilateral acute retinal necrosis. As the patient was following a drug detoxification program, he was tested for HIV, HVB, HVC, and results highly positive. Immediate intravenous therapy with high doses of acyclovir and methylprednisolone was initiated, but the evolution was extremely severe resulting in necrotic retinal detachment. Surgery was performed in right eye, but no improvement of visual acuity was observed. The fulminant evolution of bilateral acute retinal necrosis and the lack of response to maximal intravenous therapy were clinical elements indicating coexistent immunosuppressive disease. Very severe acute retinal necrosis may occur in immunosuppressed patients, leading to blindness.
Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress
Denais, Celine; Chan, Maxine F.; Wang, Zhexiao; Lammerding, Jan
2015-01-01
Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs. PMID:26447202
The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.
Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah
2017-03-01
Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia. NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN. Copyright © 2017 the American Physiological Society.
Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E
2017-03-01
Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the interaction of these two intestinal toxic routes was found to be synergistic.
Effects of sodium fluoride on blood cellular and humoral immunity in mice.
Guo, Hongrui; Kuang, Ping; Luo, Qin; Cui, Hengmin; Deng, Huidan; Liu, Huan; Lu, Yujiao; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Li, Yinglun; Wang, Xun; Zhao, Ling
2017-10-17
Exposure to high fluorine can cause toxicity in human and animals. Currently, there are no systematic studies on effects of high fluorine on blood cellular immunity and humoral immunity in mice. We evaluated the alterations of blood cellular immunity and humoral immunity in mice by using flow cytometry and ELISA. In the cellular immunity, we found that sodium fluoride (NaF) in excess of 12 mg/Kg resulted in a significant decrease in the percentages of CD3 + , CD3 + CD4 + , CD3 + CD8 + T lymphocytes in the peripheral blood. Meanwhile, serum T helper type 1 (Th1) cytokines including interleukin (IL)-2, interferon (IFN)-γ, tumor necrosis factor (TNF), and Th2 cytokines including IL-4, IL-6, IL-10, and Th17 cytokine (IL-17A) contents were decreased. In the humoral immunity, NaF reduced the peripheral blood percentages of CD19 + B lymphocytes and serum immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM). The above results show that NaF can reduce blood cellular and humoral immune function in mice, providing an excellent animal model for clinical studies on immunotoxicity-related fluorosis.
Martin, Keith R; Brophy, Sara K
2010-11-01
Worldwide, over one million women will be newly diagnosed with breast cancer in the next year. Moreover, breast cancer is the second leading cause of cancer death in the USA. An accumulating body of evidence suggests that consumption of dietary mushrooms can protect against breast cancer. In this study, we tested and compared the ability of five commonly consumed or specialty mushrooms to modulate cell number balance in the cancer process using MCF-7 human breast cancer cells. Hot water extracts (80°C for 2 h) of maitake (MT, Grifola frondosa), crimini (CRIM, Agaricus bisporus), portabella (PORT, Agaricus bisporus), oyster (OYS, Pleurotus ostreatus) and white button (WB, Agaricus bisporus) mushrooms or water alone (5% v/v) were incubated for 24 h with MCF-7 cells. Cellular proliferation determined by bromodeoxyuridine incorporation was significantly (P < 0.05) reduced up to 33% by all mushrooms, with MT and OYS being the most effective. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction, an often used mitochondrion-dependent marker of proliferation, was unchanged although decreased (P > 0.05) by 15% with OYS extract. Lactate dehydrogenase release, as a marker of necrosis, was significantly increased after incubation with MT but not with other test mushrooms. Furthermore, MT extract significantly increased apoptosis, or programmed cell death, as determined by terminal deoxynucleotidyl end labeling method, whereas other test mushrooms displayed trends of ∼15%. The total numbers of cells per flask, determined by hemacytometry, were not different from control cultures. Overall, all test mushrooms significantly suppressed cellular proliferation, with MT further significantly inducing apoptosis and cytotoxicity in human breast cancer cells. This suggests that both common and specialty mushrooms may be chemoprotective against breast cancer.
Angiogenesis and Therapeutic Approaches to NF1 Tumors
2007-04-01
corneal neovascularization model was developed. In this model, the avascularity of the cornea highly facilitates the quantification of neovascularture...wild-type corneas in avascular area. However, in the NV zone, the number of macrophage was 4.6-fold greater in Nf1þ /– corneas than wild-type corneas...GEM tumor classification because of low cellularity and no necrosis . They exceed that clas- sification, however, due to their low to moderate prolif
Mechanism of chlorogenic acid treatment on femoral head necrosis and its protection of osteoblasts.
Zhang, Mingjuan; Hu, Xianda
2016-07-01
The aim of the present study was to investigate the therapeutic effect of chlorogenic acid on hormonal femoral head necrosis and its protection of osteoblasts. The study established a femoral head necrosis model in Wistar rats using Escherichia coli endotoxin and prednisolone acetate. The rats were divided into five groups and were treated with different concentrations of chlorogenic acid (1, 10 and 20 mg/kg). The main detected indicators were the blood rheology, bone mineral density, and the hydroxyproline and hexosamine (HOM) contents. At a cellular level, osteoblasts were cultured and treated by drug-containing serum. Subsequently, cell proliferation and the osteoblast cycle were measured using flow cytometry, and the protein expression levels of Bax and B-cell lymphoma 2 (Bcl-2) were detected using western blotting. Chlorogenic acid at a concentration of 20 mg/kg (high-dose) enhanced the bone mineral density of the femoral head and femoral neck following ischemia. Simultaneously, blood flow following the injection of prednisolone acetate was significantly improved, and the HOM contents of the high-dose chlorogenic acid group were significantly different. The results from the flow cytometry analysis indicated that chlorogenic acid can efficiently ameliorate hormone-induced necrosis. The osteoblasts were isolated and cultured. The MTT colorimetric assay showed that chlorogenic acid at different densities can increase the proliferation capabilities of osteoblasts and accelerate the transition process of G 0 /G 1 phase to S phase, as well as enhance mitosis and the regeneration of osteoblasts. Western blotting detection indicated that chlorogenic acid may prohibit the decrease of Bcl-2 and the increase of Bax during apoptosis, thereby inhibiting osteoblast apoptosis and preventing the deterioration of femoral head necrosis. In conclusion, chlorogenic acid at the density of 20 mg/kg is effective in the treatment of hormonal femoral head necrosis, which may be applicable for future treatment.
Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar
2014-03-15
A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.
Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation.
Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi
2016-11-25
Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation*
Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi
2016-01-01
Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. PMID:27756839
Peker, Kemal; Sayar, Ilyas; Gelincik, İbrahim; Bulut, Gülay; Ünal, Tuba Dilay Kökenek; Şenol, Serkan; Gökçe, Aysun; Isik, Arda
2014-01-01
Background The importance of the matrix metalloproteinase-7 (MMP-7) and nestin immunomarkers, C-kit proto-oncogene (CD117), and the efficiency of the Ki-67 proliferation index for gastrointestinal stromal tumors were evaluated. Material/Methods This study was conducted by examining the microscope slides of 72 patients with gastrointestinal stromal tumors that were sent to the pathology laboratory between 2007 and 2012. Immunohistochemical staining for CD117, MMP-7, nestin, and marker of proliferation Ki-67 was performed. The correlations between the positive results for Ki-67, CD117, MMP-7, and nestin were evaluated relative to the tumor characteristics of size, localization, grade, cellular type, cellularity, cytology type, growth pattern, ulceration, necrosis, hemorrhage, invasion depth, and lymph node metastasis. Results The tumor was localized in the stomach in 42 of the patients, the intestines in 19, the colon in 7, and the rectum in 4. Comparisons among the groups showed that MMP-7 was correlated with the tumor grade (p<0.001), cellularity (p<0.009), cytologic atypia (p<0.001), ulceration (p=0.002), necrosis (p<0.001), and tumor size (p=0.001). Nestin was correlated with the tumor grade (p=0.013), and tumor size (p=0.024). Correlations among CD117, MMP-7, nestin, and Ki-67 were examined. Nestin and Ki-67 were both significantly correlated with CD117 and MMP-7 [(r=0.279, p=0.018), (r=0.322, p=0.006), (r=0.386, p=0.001), (r=0.386, p=0.002)], respectively. Conclusions MMP-7 and nestin may be beneficial as markers, given their sensitivity to gastrointestinal stromal tumors. PMID:24755685
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ming-Chung; Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Chen, Chia-Ling
An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-likemore » cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase in peritoneal vascular permeability.« less
Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasui, Linda; Gladden, Samantha; Andorf, Christine
Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy {gamma} rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy {gamma} rays or 2 Gy fast neutrons. Very few {gamma} irradiated cells had features of necrosis (U87 or U251 cell samplesmore » processed for TEM 1 day after 10 Gy {gamma} irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to {gamma} irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.« less
2014-01-01
Background Adverse local tissue reaction (ALTR) is characterized by periprosthetic soft tissue inflammation composed of a mixed inflammatory cell infiltrate, extensive soft tissue necrosis, and vascular changes. Multiple hip implant classes have been reported to result in ALTR, and clinical differences may represent variation in the soft tissue response at the cellular and tissue levels. The purpose of this study was to describe similarities and differences in periprosthetic tissue structure, organization, and cellular composition by conventional histology and immunohistochemistry in ALTR resulting from two common total hip arthroplasty (THA) implant classes. Methods Consecutive patients presenting with ALTR from two major hip implant classes (N = 54 patients with Dual-Modular Neck implant; N = 14 patients with Metal-on-Metal implant) were identified from our prospective Osteolysis Tissue Database and Repository. Clinical characteristics including age, sex, BMI, length of implantation, and serum metal ion levels were recorded. Retrieved synovial tissue morphology was graded using light microscopy and cellular composition was assessed using immunohistochemistry. Results Length of implantation was shorter in the DMN group versus MoM THA group (21.3 [8.4] months versus 43.6 [13.8] months respectively; p < 0.005) suggesting differences in implant performance. Morphologic examination revealed a common spectrum of neo-synovial proliferation and necrosis in both groups. Macrophages were more commonly present in diffuse sheets (Grade 3) in the MoM relative to DMN group (p = 0.016). Perivascular lymphocytes with germinal centers (Grade 4) were more common in the DMN group, which trended towards significance (p = 0.066). Qualitative differences in corrosion product morphology were seen between the two groups. Immunohistochemistry showed features of a CD4 and GATA-3 rich lymphocyte reaction in both implants, with increased ratios of perivascular T-cell relative to B-cell markers in the DMN relative to the MoM group (p = 0.032). Conclusion Our results demonstrate that both implant classes display common features of neo-synovial proliferation and necrosis with a CD4 and GATA-3 rich inflammatory infiltrate. Qualitative differences in corrosion product appearance, macrophage morphology, and lymphocyte distributions were seen between the two implant types. Our data suggests that ALTR represents a histological spectrum with implant-based features. PMID:25242891
Perino, Giorgio; Ricciardi, Benjamin F; Jerabek, Seth A; Martignoni, Guido; Wilner, Gabrielle; Maass, Dan; Goldring, Steven R; Purdue, P Edward
2014-01-01
Adverse local tissue reaction (ALTR) is characterized by periprosthetic soft tissue inflammation composed of a mixed inflammatory cell infiltrate, extensive soft tissue necrosis, and vascular changes. Multiple hip implant classes have been reported to result in ALTR, and clinical differences may represent variation in the soft tissue response at the cellular and tissue levels. The purpose of this study was to describe similarities and differences in periprosthetic tissue structure, organization, and cellular composition by conventional histology and immunohistochemistry in ALTR resulting from two common total hip arthroplasty (THA) implant classes. Consecutive patients presenting with ALTR from two major hip implant classes (N = 54 patients with Dual-Modular Neck implant; N = 14 patients with Metal-on-Metal implant) were identified from our prospective Osteolysis Tissue Database and Repository. Clinical characteristics including age, sex, BMI, length of implantation, and serum metal ion levels were recorded. Retrieved synovial tissue morphology was graded using light microscopy and cellular composition was assessed using immunohistochemistry. Length of implantation was shorter in the DMN group versus MoM THA group (21.3 [8.4] months versus 43.6 [13.8] months respectively; p < 0.005) suggesting differences in implant performance. Morphologic examination revealed a common spectrum of neo-synovial proliferation and necrosis in both groups. Macrophages were more commonly present in diffuse sheets (Grade 3) in the MoM relative to DMN group (p = 0.016). Perivascular lymphocytes with germinal centers (Grade 4) were more common in the DMN group, which trended towards significance (p = 0.066). Qualitative differences in corrosion product morphology were seen between the two groups. Immunohistochemistry showed features of a CD4 and GATA-3 rich lymphocyte reaction in both implants, with increased ratios of perivascular T-cell relative to B-cell markers in the DMN relative to the MoM group (p = 0.032). Our results demonstrate that both implant classes display common features of neo-synovial proliferation and necrosis with a CD4 and GATA-3 rich inflammatory infiltrate. Qualitative differences in corrosion product appearance, macrophage morphology, and lymphocyte distributions were seen between the two implant types. Our data suggests that ALTR represents a histological spectrum with implant-based features.
Fatty acids trigger mitochondrion-dependent necrosis.
Rockenfeller, Patrick; Ring, Julia; Muschett, Vera; Beranek, Andreas; Buettner, Sabrina; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Khoury, Chamel; Rechberger, Gerald; Kohlwein, Sepp D; Kroemer, Guido; Madeo, Frank
2010-07-15
Obesity is characterised by lipid accumulation in non-adipose tissues, leading to organ degeneration and a wide range of diseases, including diabetes, heart attack and liver cirrhosis. Free fatty acids (FFA) are believed to be the principal toxic triggers mediating the adverse cellular effects of lipids. Here, we show that various cooking oils used in human nutrition cause cell death in yeast in the presence of a triacylglycerol lipase, mimicking the physiological microenvironment of the small intestine. Combining genetic and cell death assays, we demonstrate that elevated FFA concentrations lead to necrotic cell death, as evidenced by loss of membrane integrity and release of nuclear HMGB1. FFA-mediated necrosis depends on functional mitochondria and leads to the accumulation of reactive oxygen species. We conclude that lipotoxicity is executed via a mitochondrial necrotic pathway, challenging the dogma that the adverse effects of lipid stress are exclusively apoptotic.
Peng, Shuang; Gerasimenko, Julia V.; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Gerasimenko, Oleg V.
2016-01-01
Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377732
Peng, Shuang; Gerasimenko, Julia V; Tsugorka, Tatiana; Gryshchenko, Oleksiy; Samarasinghe, Sujith; Petersen, Ole H; Gerasimenko, Oleg V
2016-08-05
Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca(2+) signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca(2+) elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca(2+) signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5-10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca(2+) release followed by Ca(2+) entry and also substantially reduced Ca(2+) extrusion because of decreased intracellular ATP levels. The toxic Ca(2+) signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca(2+) signals and necrosis. We tested the effects of inhibiting the Ca(2+) release-activated Ca(2+) entry by the Ca(2+) channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca(2+) entry and also protected effectively against the development of necrosis.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. © 2016 The Authors.
RIP3: a molecular switch for necrosis and inflammation
Moriwaki, Kenta; Chan, Francis Ka-Ming
2013-01-01
The receptor-interacting protein kinase 3 (RIP3/RIPK3) has emerged as a critical regulator of programmed necrosis/necroptosis, an inflammatory form of cell death with important functions in pathogen-induced and sterile inflammation. RIP3 activation is tightly regulated by phosphorylation, ubiquitination, and caspase-mediated cleavage. These post-translational modifications coordinately regulate the assembly of a macromolecular signaling complex termed the necrosome. Recently, several reports indicate that RIP3 can promote inflammation independent of its pronecrotic activity. Here, we review our current understanding of the mechanisms that drive RIP3-dependent necrosis and its role in different inflammatory diseases. PMID:23913919
An Evaluation of the Softperm Contact Lens in the Simulated Aircraft Environment
1991-01-01
potential effect on the eye of low atmospheric pressure and resultant low oxygen pressure that occurs with increased altitude. The cornea, which is avascular ... avascularity as well as its morphology and chemical composition. The epithelial cells are not keratinized and their components have a uniform index of refraction...noted that cell damage and/or necrosis was much less likely to occur if cellular swelling does not occur. They observed no epithelial staining in their
2006-10-01
local metal- induced toxicity daily for two weeks following surgery and weekly thereafter for the duration of the study. Task 1 - Determine whether...A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor...4 months, no signs of local or systemic toxic- ity were observed (Peuster et al. 2003). Studies on health effects of Ni and Co are more numerous
Huang, De-Bin; Ran, Rui-Zhi; Yu, Zhao-Fen
2005-04-01
To study the effect of Acanthopanax senticosus injection (ASI) on the activities of human tumor necrosis factor (TNF) and natural killer cell (NKC) in the patients with lung cancer and the underlying mechanism. 73 cases with lung cancer were randomly divided into two groups, namely, the treatment group (n = 39) and observation group (n = 34); 61 cases with or without other diseases were respectively divided into control A (n = 30) and B (n = 31) groups. The patients in treatment group were injected with ASI for 21 days. The activities of human TNF and NKC and the levels of IgG, IgA and IgM were detected respectively. After injection with ASI the activity of TNF-alpha in treatment group was comparable with that in the two control groups and was significant lower that that in observation group. The activity of TNF-beta and the levels of IgA, IgG and IgM were significantly higher than those in observation group and two control groups (P < 0.01). The activity of NKC was also remarkably higher than observation and two control groups. ASI can regulate the cellular immunity and factor, indicating that ASI can be used as an assistant drug to regulate the function of cellular immunity in the patients with lung cancer.
Luan, Zhou; He, Ying; He, Fan; Chen, Zhishui
2015-01-01
The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.
Zhao, Nan; Zhou, Lanping; Liu, Fang; Cichacz, Zbigniew; Zhang, Lin; Zhan, Qimin; Zhao, Xiaohang
2014-01-01
Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer. PMID:24959694
Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons.
Xiong, Kun; Liao, Huidan; Long, Lingling; Ding, Yanjun; Huang, Jufang; Yan, Jie
2016-09-01
Necroptosis, a programmed necrosis, is involved in various types of neurodegenerative diseases. In this study, we investigated whether necroptosis contributed to neuronal damage in a methamphetamine injury model. Primary cultures of embryonic cortical neurons from Sprague-Dawley rats were subjected to different doses of methamphetamine with/without pre-treatment with a specific necroptosis inhibitor, Necrostatin-1. Necrosis was assessed by determining lactate dehydrogenase release and by Annexin V/propidium iodide double staining, while the neuronal ultra-structure was examined by electron microscopy. Tumor necrosis factor-α protein levels were determined by enzyme-linked immunosorbent assay. At early stages (12h) of post-treatment with methamphetamine, significant necrosis occurred and the viability of neurons decreased in a dose- and time-dependent manner in this model of acute neuronal injury. Pretreatment with Necrostatin-1 led to significant neuronal preservation compared with the methamphetamine-treated groups. Furthermore, tumor necrosis factor-α expression increased in a dose-dependent manner following methamphetamine exposure. Methamphetamine induced necrosis in rat cortical neurons in vitro, both time and dose dependently, and necroptosis may be an important newly identified mode of cortical neuronal death caused by single high-dose methamphetamine administration. Copyright © 2016 Elsevier B.V. All rights reserved.
Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells
Kim, Sun Ja; Chung, T. H.
2016-01-01
Cold atmospheric helium plasma jets were fabricated and utilized for plasma–cell interactions. The effect of operating parameters and jet design on the generation of specific reactive oxygen and nitrogen species (RONS) within cells and cellular response were investigated. It was found that plasma treatment induced the overproduction of RONS in various cancer cell lines selectively. The plasma under a relatively low applied voltage induced the detachment of cells, a reduction in cell viability, and apoptosis, while the plasma under higher applied voltage led to cellular necrosis in our case. To determine whether plasma-induced reactive oxygen species (ROS) generation occurs through interfering with mitochondria-related cellular response, we examined the plasma effects on ROS generation in both parental A549 cells and A549 ρ0 cells. It was observed that cancer cells were more susceptible to plasma-induced RONS (especially nitric oxide (NO) and nitrogen dioxide (NO2−) radicals) than normal cells, and consequently, plasma induced apoptotic cell responses mainly in cancer cells. PMID:26838306
Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr
2018-01-01
Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521
Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Com, Emmanuelle, E-mail: emmanuelle.com@univ-rennes1.fr; INSERM U625, Proteomics Core Facility Biogenouest, Rennes; Boitier, Eric
2012-01-01
Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 andmore » 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings. -- Highlights: ► Gentamicin induces renal tubular necrosis in rats. ► The mechanisms of gentamicin nephrotoxicity remain still elusive. ► Transcriptomic and proteomic analyses were performed to study this toxicity in rats. ► Transcriptomic and proteomic data turned out to be complementary and are integrated. ► A more comprehensive putative model of nephrotoxicity of gentamicin is presented.« less
NASA Astrophysics Data System (ADS)
Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia
2017-03-01
Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.
Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia
2017-01-01
Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488
Wang, Linlin; Wang, Tingting; Li, Haobo; Liu, Qing; Zhang, Zhongjun; Xie, Wanli; Feng, Yinglu; Socorburam, Tumenjavkhlan; Wu, Gui; Xia, Zhengyuan; Wu, Qingping
2016-01-01
Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose LPS- induced severe ARDS in mice.
Li, Haobo; Liu, Qing; Zhang, Zhongjun; Xie, Wanli; Feng, Yinglu; Socorburam, Tumenjavkhlan; Wu, Gui; Xia, Zhengyuan; Wu, Qingping
2016-01-01
Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose LPS- induced severe ARDS in mice. PMID:27195494
NASA Astrophysics Data System (ADS)
Huang, Tao; Browning, Lauren M.; Xu, Xiao-Hong Nancy
2012-04-01
Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11739h
Cell death features induced in Leishmania major by 1,3,4-thiadiazole derivatives.
Ardestani, Sussan K; Poorrajab, Fatemeh; Razmi, Sepideh; Foroumadi, Alireza; Ajdary, Soheila; Gharegozlou, Behnaz; Behrouzi-Fardmoghadam, Mina; Shafiee, Abbas
2012-10-01
Under a variety of stress conditions, Leishmania species display some morphological and biochemical features characteristic of mammalian programmed cell death or necrosis. Nitroheteroaryl-1,3,4-thiadiazoles induce cell death in Leishmania major (L. major). Putative mechanisms of action of these compounds were investigated in vitro at cellular and molecular levels. We used colorimetric assay to measure acid phosphatase activity which is an indicator of cell viability in the promastigotes. The mode of toxicity was determined by detection of phosphatidylserine translocation to the surface, evaluation of cell membrane integrity, and in situ dUTP nick end-labeling assay. We also determined poly-ADP-ribose polymerase-like protein (PARP) level in the parasites after treatment. A significant reduction of acid phosphatase level, one of the most crucial and virulent factors of the parasite was found in parasites treated with 1,3,4-thiadiazole derivatives. In addition, 1,3,4-thiadiazole derivatives induced loss of plasma membrane integrity, DNA breakage, proteolysis of PARP and necrotic-like death in the parasites. Copyright © 2012 Elsevier Inc. All rights reserved.
Guidelines and recommendations on yeast cell death nomenclature
Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank
2018-01-01
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647
Virus inhibition of RIP3-dependent necrosis.
Upton, Jason W; Kaiser, William J; Mocarski, Edward S
2010-04-22
Viral infection activates cytokine expression and triggers cell death, the modulation of which is important for successful pathogenesis. Necroptosis is a form of programmed necrosis dependent on two related RIP homotypic interaction motif (RHIM)-containing signaling adaptors, receptor-interacting protein kinases (RIP) 1 and 3. We find that murine cytomegalovirus infection induces RIP3-dependent necrosis. Whereas RIP3 kinase activity and RHIM-dependent interactions control virus-associated necrosis, virus-induced death proceeds independently of RIP1 and is therefore distinct from TNFalpha-dependent necroptosis. Viral M45-encoded inhibitor of RIP activation (vIRA) targets RIP3 during infection and disrupts RIP3-RIP1 interactions characteristic of TNFalpha-induced necroptosis, thereby suppressing both death pathways. Importantly, attenuation of vIRA mutant virus in wild-type mice is normalized in RIP3-deficient mice. Thus, vIRA function validates necrosis as central to host defense against viral infections and highlights the benefit of multiple virus-encoded cell-death suppressors that inhibit not only apoptotic, but also necrotic mechanisms of virus clearance. Copyright 2010 Elsevier Inc. All rights reserved.
Rajtik, Tomas; Carnicka, Slavka; Szobi, Adrian; Giricz, Zoltan; O-Uchi, Jin; Hassova, Veronika; Svec, Pavel; Ferdinandy, Peter; Ravingerova, Tanya; Adameova, Adriana
2016-06-01
Content of particular proteins indicating cellular injury due to apoptosis and necrosis has been investigated in ischemic/reperfused (IR) hearts and ischemic/reperfused hearts treated with CaMKII inhibitor and/or AT1 receptor inhibitor. This data article provides information in support of the original research article "Oxidative activation of CaMKIIδ in acute myocardial ischemia/reperfusion injury: a role of angiotensin AT1 receptor-NOX2 signaling axis" [1].
2005-06-01
subsequently trigger a cascade of tumor cell death in experimental tumors [4,5]. Although massive necrosis can be induced, tumors usually regrow from a...the Statement of Work Task 2, experimental radiation therapy has been designed and initiated based on the MRI oximetry data. Preliminary data of control...Hoechst dye 33342 showed a significant reduction in perfused vessels at 2hr after CA4P, which recovered 24 h later. * Experimental radiation therapy a
Live or let die: manipulation of cellular suicide programs by murine cytomegalovirus.
Handke, Wiebke; Krause, Eva; Brune, Wolfram
2012-11-01
Cytomegaloviruses (CMVs) are large double-stranded DNA viruses that replicate slowly and cause life-long persisting infections in their hosts. To achieve this, the CMVs had to evolve numerous countermeasures against innate and adaptive immune responses. Induction of programmed cell death is one important host defense mechanism against intracellular pathogens such as viruses. For a multicellular organism, it is advantageous to let infected cells die in order to thwart viral replication and dissemination. For a virus, by contrast, it is better to inhibit cell death and keep infected cells alive until the viral replication cycle has been completed. As a matter of fact, the CMVs encode a number of proteins devoted to interfering with different forms of programmed cell death: apoptosis and necroptosis. In this review, we summarize the known functions of the four best characterized cell death inhibitors of murine cytomegalovirus (MCMV), which are encoded by open reading frames, M36, m38.5, m41.1, and M45. The viral proteins interact with key molecules within different cell death pathways, namely caspase-8, Bax, Bak, and RIP1/RIP3. In addition, we discuss which events during MCMV infection might trigger apoptosis or necrosis and how MCMV's countermeasures compare to those of other herpesviruses. Since both, MCMV and its natural host, are amenable to genetic manipulation, the mouse model for CMV infection provides a particularly suitable system to study mechanisms of cell death induction and inhibition.
In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells
NASA Astrophysics Data System (ADS)
Tabish, Tanveer A.; Pranjol, Md Zahidul I.; Hayat, Hasan; Rahat, Alma A. M.; Abdullah, Trefa M.; Whatmore, Jacqueline L.; Zhang, Shaowei
2017-12-01
The intriguing properties of reduced graphene oxide (rGO) have paved the way for a number of potential biomedical applications such as drug delivery, tissue engineering, gene delivery and bio-sensing. Over the last decade, there have been escalating concerns regarding the possible toxic effects, behaviour and fate of rGO in living systems and environments. This paper reports on integrative chemical-biological interactions of rGO with lung cancer cells, i.e. A549 and SKMES-1, to determine its potential toxicological impacts on them, as a function of its concentration. Cell viability, early and late apoptosis and necrosis were measured to determine oxidative stress potential, and induction of apoptosis for the first time by comparing two lung cancer cells. We also showed the general trend between cell death rates and concentrations for different cell types using a Gaussian process regression model. At low concentrations, rGO was shown to significantly produce late apoptosis and necrosis rather than early apoptotic events, suggesting that it was able to disintegrate the cellular membranes in a dose dependent manner. For the toxicity exposures undertaken, late apoptosis and necrosis occurred, which was most likely resultant from limited bioavailability of unmodified rGO in lung cancer cells.
Blood micronutrients and DNA damage in children.
Milne, Elizabeth; Greenop, Kathryn R; Ramankutty, Padmaja; Miller, Margaret; de Klerk, Nicholas H; Armstrong, Bruce K; Almond, Theodora; O'Callaghan, Nathan J; Fenech, Michael
2015-10-01
Maintenance of normal cellular phenotype depends largely on accurate DNA replication and repair. DNA damage causes gene mutations and predisposes to cancer and other chronic diseases. Growing evidence indicates that nutritional factors are associated with DNA damage in adults; here, we investigate these associations in children. We conducted a cross-sectional study among 462 healthy children 3, 6, and 9 years of age. Blood was collected and micronutrient levels were measured. The cytokinesis-block micronucleus cytome assay was used to measure chromosomal DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds) in lymphocytes. Cell apoptosis, necrosis, and the nuclear division index were also measured. Nine loci in genes involved in folate metabolism and DNA repair were genotyped. Data were analyzed using linear regression with adjustment for potential confounders. Plasma calcium was positively associated with micronuclei and necrosis, and α-tocopherol negatively associated with apoptosis, nuclear division index, and nucleoplasmic bridges; lutein was positively associated with nucleoplasmic bridges. α-tocopherol was positively associated with necrosis. DNA damage in healthy children may be influenced by blood micronutrient levels and certain genotypes. Further investigation of associations between nutritional status and genomic integrity in children is needed to shed additional light on potential mechanisms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sano, T.; Nishimura, T.; Fukuda, H.; Hayashida, T.; Momoyama, K.
1984-03-01
In many shrimp farms in the Kyushu and Chugoku areas of Japan, the so-called mid-gut gland cloudy disease of kuruma shrimp larvae (Penaeus japonicus) has occurred since 1971. The pathological changes associated with this baculoviral mid-gut gland necrosis (BMN) are extensive cellular necrosis, collapse of mid-gut gland cells, nuclear hypertrophy and finally karyorrhexis. Electron microscopic examination revealed the presence of virions and virogenic stages in the affected nuclei. Average length and diameter of the virions detected was 310 and 72 nm, respectively; nucleocapsids were 250 nm in size. Virions enclosing 2 nucleocapsids within a single envelope were rarely found. The spirally arranged capsomeres were at an angle of 37 to 38° to a horizontal line meeting at right angles with the long axis of the virion. Infectivity trials resulted in high mortality of healthy mysis and juveniles (2nd post-larval stage). Juveniles at the 9th post-larval stage showed no mortality, although they could be infected easily by the agent. Hypertrophied nuclei in squashed and stained preparations of the affected gland cells can be considered to be of reliable presumptive diagnostic character, and fluorescent antibody staining can be employed to confirm the diagnosis of BMN.
Navaei-Nigjeh, Mona; Asadi, Hamidreza; Baeeri, Maryam; Pedram, Sahar; Rezvanfar, Mohammad Amin; Mohammadirad, Azadeh; Abdollahi, Mohammad
2015-01-01
Objective(s): Chlorpyrifos (CP) is a broad-spectrum organophosphorus pesticide used extensively in agricultural and domestic pest control, accounting for 50% of the global insecticidal use. In the present study, protective effects of two selenium-enriched strong antioxidative medicines IMOD and Angipars were examined in human lymphocytes treated with CP in vitro. Materials and Methods: Isolated lymphocytes were exposed to 12 µg/ml CP either alone or in combination with effective doses (ED50) of IMOD (0.2 µg/ml) and Angipars (1 µg/ml). After 3 days incubation, the viability and oxidative stress markers including cellular lipid peroxidation (LPO), myeloperoxidase (MPO), total thiol molecules (TTM), and total antioxidant power (TAP) were evaluated. Also, the levels of tumor necrosis factor-α (TNF-α), as inflammatory index along with acetylcholinesterase (AChE) activity and cell apoptosis were assessed by flow cytometry. Results: Results indicated that effective doses of IMOD and Angipars reduced CP-exposed lymphocyte mortality rate along with oxidative stress. Both agents restored CP-induced elevation of TNF-α and protected the lymphocytes from CP-induced apoptosis and necrosis. Conclusion: Overall, results confirm that IMOD and Angipars reduce the toxic effects associated with CP through free radical scavenging and protection from apoptosis and necrosis. PMID:25945242
Peptidases released by necrotic cells control CD8+ T cell cross-priming
Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P.; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O.; Citrin, Deborah E.; Korangy, Firouzeh; Greten, Tim F.
2013-01-01
Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells. PMID:24216478
Peptidases released by necrotic cells control CD8+ T cell cross-priming.
Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O; Citrin, Deborah E; Korangy, Firouzeh; Greten, Tim F
2013-11-01
Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.
García-Marcos, Alberto; Pacheco, Remedios; Manzano, Aranzazu; Aguilar, Emmanuel
2013-01-01
One of the most severe symptoms caused by compatible plant-virus interactions is systemic necrosis, which shares common attributes with the hypersensitive response to incompatible pathogens. Although several studies have identified viral symptom determinants responsible for systemic necrosis, mechanistic models of how they contribute to necrosis in infected plants remain scarce. Here, we examined the involvement of different branches of the oxylipin biosynthesis pathway in the systemic necrosis response caused either by the synergistic interaction of Potato virus X with Potato virus Y (PVX-PVY) or by Tomato spotted wilt virus (TSWV) in Nicotiana benthamiana. Silencing either 9-lipoxygenase (LOX), 13-LOX, or α-dioxygenase-1 (α-DOX-1) attenuated the programmed cell death (PCD)-associated symptoms caused by infection with either PVX-PVY or TSWV. In contrast, silencing of the jasmonic acid perception gene, COI1 (Coronatine insensitive 1), expedited cell death during infection with compatible viruses. This correlated with an enhanced expression of oxylipin biosynthesis genes and dioxygenase activity in PVX-PVY-infected plants. Moreover, the Arabidopsis thaliana double lox1 α-dox-1 mutant became less susceptible to TSWV infection. We conclude that oxylipin metabolism is a critical component that positively regulates the process of PCD during compatible plant-virus interactions but does not play a role in restraining virus accumulation in planta. PMID:23487466
Yamanaka, Kazunori; Saito, Yoshiro; Yamamori, Tohru; Urano, Yasuomi; Noguchi, Noriko
2011-07-15
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.
Yamanaka, Kazunori; Saito, Yoshiro; Yamamori, Tohru; Urano, Yasuomi; Noguchi, Noriko
2011-01-01
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis. PMID:21613228
Spencer, Juliet V
2007-02-01
Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.
Griffiths, Mark R; Gasque, Philippe; Neal, James W
2009-03-01
Central nervous system (CNS) tissues contain cells (i.e. glia and neurons) that have innate immune functions. These cells express a range of receptors that are capable of detecting and clearing apoptotic cells and regulating inflammatory responses. Phagocytosis of apoptotic cells is a nonphlogistic (i.e. noninflammatory) process that provides immune regulation through anti-inflammatory cytokines andregulatory T cells. Neurons and glia express cellular death signals, including CD95Fas/CD95L, FasL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor receptor 1 (TNFR), through which they can trigger apoptosis in T cells and other infiltrating cells. Microglia, astrocytes, ependymal cells, and neurons express defense collagens and scavenger and phagocytic receptors that recognize apoptotic cells displaying apoptotic cell-associated molecular patterns, which serve as markers of "altered self." Glia also express pentraxins and complement proteins (C1q, C3b, and iC3b) that opsonize apoptotic cells, making them targets for the phagocytic receptors CR3 and CR4. Immunoregulatory molecules such as the complement regulator CD46 are lost from apoptotic cells and stimulate phagocytosis, whereas the expression of CD47 and CD200 is upregulated during apoptosis; this inhibits proinflammatory microglial cytokine expression, thereby reducing the severity of inflammation. This review outlines the cellular pathways used for the detection and phagocytosis of apoptotic cells in vitro and in experimental models of CNS inflammation.
Inaba, Jun-ichi; Kim, Bo Min; Shimura, Hanako; Masuta, Chikara
2011-01-01
Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis. PMID:21622812
Inaba, Jun-ichi; Kim, Bo Min; Shimura, Hanako; Masuta, Chikara
2011-08-01
Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis.
Coronavirus Infection in Ferrets: Antigen Distribution and Inflammatory Response.
Doria-Torra, G; Vidaña, B; Ramis, A; Amarilla, S P; Martínez, J
2016-11-01
Multisystemic granulomatous lesions are the most common finding in ferrets infected by ferret systemic coronavirus (FRSCV). To characterize the inflammatory response developed against this virus, lesions from 4 naturally infected ferrets were examined. Lesions were classified into the 4 known types of granulomas (granulomas without necrosis [G], granulomas with necrosis [G-N], granulomas with neutrophils [G-NL], and diffuse granulomatous inflammation [DG]). The cellular composition of the lesions was characterized on the basis of cellular morphology and immunohistochemistry using markers for T and B-lymphocytes, plasma cells, macrophages, and neutrophils. The extent and distribution of viral antigen expression was also assessed. In G lesions, macrophages were mainly located in the center of the granuloma, with a moderate number of T-lymphocytes scattered among the macrophages, plasma cells, and B-lymphocytes. G-N lesions exhibited a necrotic center surrounded by abundant macrophages, some T-lymphocytes, plasma cells, and a few B-lymphocytes. In G-NL lesions, there was a central area dominated by neutrophils with low numbers of macrophages, plasma cells, and lymphocytes. DG presented similar cell proportions, but distributed evenly throughout the lesions. FRSCV was expressed in G, G-NL, G-N, and DG, with decreasing numbers of immunoreactive cells. This study reveals the important role of macrophages in the inflammatory response of ferrets against the virus and the variable proportions of leukocytes among different types of lesions, indicating their variable age. The results also confirm the similarities of the disease in ferrets to feline infectious peritonitis. © The Author(s) 2016.
Desmoplastic malignant mesothelioma: a review of 17 cases.
Wilson, G. E.; Hasleton, P. S.; Chatterjee, A. K.
1992-01-01
AIMS: To identify the histological features of desmoplastic mesothelioma, and to determine its incidence and prognosis. METHODS: Two hundred and fifty five cases of malignant mesothelioma were examined over seven years (1982-9) to identify the desmoplastic variant. Sections were cut at 5 microns and stained with haemotoxylin and eosin and with CAM 5.2 (Dakopatts). Asbestos fibre counts were carried out by light microscopy in 14 cases using the potash digestion method. RESULTS: Seventeen cases were identified as desmoplastic mesothelioma giving an incidence of 6.6%. In 11 cases the cell type in more cellular areas was sarcomatous and in six others it was biphasic. The mean survival time from onset of symptoms to death was 5.8 months for the sarcomatous variant and 6.8 months for the biphasic variant. Twelve of 16 patients had had previous occupational exposure to asbestos, ranging from five months to 43 years. The diagnosis of desmoplastic mesothelioma was only accepted if acellular connective tissue comprised 50% or more of the tumour bulk. Also seen was collagen necrosis, anastomosing bands of often hyalinised collagen with a prominent storiform pattern, and where cellular detail was present there were hyperchromatic nuclei. CONCLUSIONS: Desmoplastic mesothelioma is a rare variant of malignant mesothelioma with a storiform collagen pattern, collagen necrosis, bland acellular collagen and focal cytological features of malignancy. Though rare, it is important to recognise this variant and distinguish it from a pleural plaque, nonspecific reactive pleural fibrosis, pleurisy, rheumatoid disease, or, rarely, spindle cell sarcomas. Images PMID:1577967
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Wei, E-mail: dr-lw@163.com; Li Yanhao, E-mail: liyanhao@fimmu.com; He Xiaofeng
Our purpose was to study necrosis and apoptosis of hepatocellular carcinoma (HCC) cells after preoperative transcatheter arterial chemoembolization (TACE) with use of low-dose and high-dose anticancer drugs in HCCs. Fifty-four patients with advanced but surgically resectable HCC were studied. Thirty-four patients who elected to undergo preoperative superselective TACE were randomized to low- and high-dose TACE. Patients in group A (n = 16) received low-dose anticancer drugs: 2 mg mitomycin C (MMC), 10 mg epirubicin (EPI), and 100 mg carboplatin (CBP). Patients in group B (n = 18) were given high doses of anticancer drugs (10 mg MMC, 40 mg EPI,more » and 300 mg CBP). Hepatic resection was subsequently performed. Group C comprised 20 patients who underwent resection without TACE. In all patients the necrosis rates and apoptosis index of tumor cells were evaluated by pathologic examinations and terminal deoxynucleotidyl transferase-mediated nick-end labeling assay. There was no significant difference between group A and group B in tumor response (p > 0.05) after TACE. Necrosis rates in groups A, B, and C were 88.4 {+-} 11.1%, 87.1 {+-} 12.5%, and 7.3 {+-} 3.5%, respectively. There was no significant difference between group A and group B (p > 0.05), while statistical difference was found between group A and group C (p < 0.001) and between group B and group C (p < 0.001). Apoptosis indexes in the three groups were 11.0 {+-} 4.0%, 10.7 {+-} 3.9%, and 5.6 {+-} 2.6%, respectively. Statistical difference exhibited between group A and group C (p < 0.001) and group B versus group C (p < 0.001). No significant difference was observed between group A and group B (p > 0.05). In conclusion, superselective TACE with low- and high-dose chemotherapeutic agents induced similar degrees of cellular apoptosis and necrosis.« less
Ishikawa, F; Ushida, K; Mori, K; Shibanuma, M
2015-01-22
Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis. Overall, the present study highlighted outstanding cell subtype or differentiation stage specificity in cell death phenotypes induced upon anchorage loss in human MECs.
Plasma membrane changes during programmed cell deaths
Zhang, Yingying; Chen, Xin; Gueydan, Cyril; Han, Jiahuai
2018-01-01
Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. PMID:29076500
Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii
Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.
2013-01-01
Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of the cells, algal PCD may take different forms and proceed through different pathways. PMID:23250917
Feline Toxoplasmosis: Tumor Necrosis Factor, Nitric Oxide, and Free Radicals in Seropositive Cats.
Faria, Joice L M; Couto, Caroline do; Wierzynski, Sheron L; Bottari, Nathieli B; Baldissera, Matheus D; Pereira, Wanderson A B; Da Silva, Aleksandro S
2018-02-01
Toxoplasma gondii is a cosmopolitan protozoan that causes disease in several species, including humans. In cats, these infections are usually asymptomatic, but in other species they can lead to high levels of inflammatory and cell damage markers, causing cellular damage. Therefore, the aim of this study was to measure levels of tumor necrosis factor (TNF-α), reactive oxygen species (ROS), and nitric oxide (nitrite/nitrate-NO x ) in the serum of cats seropositive for T. gondii. Initially, we investigated the presence of antibodies against T. gondii in cats in the city of Concordia, Santa Catarina, Brazil, with the use of indirect immunofluorescence (IFA), and found 30 cats seropositive for T. gondii and 30 seronegative cats. In this study, seropositive cats showed higher levels of TNF-α, ROS, and NO x compared to seronegative cats. Although cats do not show clinical signs of disease, constant inflammatory response can cause cell damage, which over time may adversely affect the animal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterse, J.L.; Thunnissen, F.B.; van Heerde, P.
1989-03-01
The range of radiation-induced changes in fine needle aspiration (FNA) smears of the breast is described. In 41 of more than 800 patients who underwent breast-conserving treatment, a palpable breast lesion developed, and FNA was performed. In six cases, a recurrent carcinoma was present. In the remaining cases, three patterns of nonneoplastic lesions could be discerned: epithelial atypia (14 cases), fat necrosis (10 cases) and poorly cellular smears without epithelial atypia or fat necrosis (13 cases). It is important to be familiar with the patterns of radiation-induced epithelial atypia, since such atypia may lead to a misdiagnosis of recurrent carcinoma.more » These atypical cells may show impressive anisocytosis and anisonucleosis; however, the nuclear/cytoplasmic ratio remains normal and an admixture of bipolar cells is present. Cell dissociation and necrotic cell debris, as often seen in breast cancer smears, were never encountered in FNA smears from radiated nonneoplastic breasts.« less
NASA Astrophysics Data System (ADS)
Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc
1990-10-01
The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).
Crystallographic analysis of CD40 recognition and signaling by human TRAF2
McWhirter, Sarah M.; Pullen, Steven S.; Holton, James M.; Crute, James J.; Kehry, Marilyn R.; Alber, Tom
1999-01-01
Tumor necrosis factor receptor superfamily members convey signals that promote diverse cellular responses. Receptor trimerization by extracellular ligands initiates signaling by recruiting members of the tumor necrosis factor receptor-associated factor (TRAF) family of adapter proteins to the receptor cytoplasmic domains. We report the 2.4-Å crystal structure of a 22-kDa, receptor-binding fragment of TRAF2 complexed with a functionally defined peptide from the cytoplasmic domain of the CD40 receptor. TRAF2 forms a mushroom-shaped trimer consisting of a coiled coil and a unique β-sandwich domain. Both domains mediate trimerization. The CD40 peptide binds in an extended conformation with every side chain in contact with a complementary groove on the rim of each TRAF monomer. The spacing between the CD40 binding sites on TRAF2 supports an elegant signaling mechanism in which trimeric, extracellular ligands preorganize the receptors to simultaneously recognize three sites on the TRAF trimer. PMID:10411888
Gustafson, Sally J.; Dunlap, Kriya L.; McGill, Colin M.; Kuhn, Thomas B.
2012-01-01
Inflammation and oxidative stress are key to the progressive neuronal degeneration common to chronic pathologies, traumatic injuries, and aging processes in the CNS. The proinflammatory cytokine tumor necrosis factor-alpha (TNF-α) orchestrates cellular stress by stimulating the production and release of neurotoxic mediators including reactive oxygen species (ROS). NADPH oxidases (NOX), ubiquitously expressed in all cells, have recently emerged as pivotal ROS sources in aging and disease. We demonstrated the presence of potent NOX inhibitors in wild Alaska bog blueberries partitioning discretely into a nonpolar fraction with minimal antioxidant capacity and largely devoid of polyphenols. Incubation of SH-SY5Y human neuroblastoma cells with nonpolar blueberry fractions obstructed the coalescing of lipid rafts into large domains disrupting NOX assembly therein and abolishing ROS production characteristic for TNF-α exposure. These findings illuminate nutrition-derived lipid raft modulation as a novel therapeutic approach to blunt inflammatory and oxidative stress in the aging or diseased CNS. PMID:22530077
Aeromonas hydrophila exotoxin induces cytoplasmic vacuolation and cell death in VERO cells.
Di Pietro, Angela; Picerno, Isa; Visalli, Giuseppa; Chirico, Cristina; Spataro, Pasquale; Cannavò, Giuseppe; Scoglio, Maria E
2005-07-01
Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.
Bao, Cheng; Namgung, Hyeju; Lee, Jaehoo; Park, Hyun-Chang; Ko, Jiwon; Moon, Heejung; Ko, Hyuk Wan; Lee, Hong Jin
2014-04-30
In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion.
The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.
Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George
2016-04-14
Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.
Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji
2017-01-01
Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment.
Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.
Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste
2018-04-11
Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kumar, Neeraj; Krishnani, Kishore Kumar; Singh, Narendra Pratap
2018-03-01
Recent studies have demonstrated that selenium (Se) and selenium nanoparticles (Se-NPs) exhibited toxicity at a higher concentration. The lethal concentration of Se and Se-NPs was estimated as 5.29 and 3.97 mg/L at 96 h in Pangasius hypophthalmus. However, the effect of different definite concentration of Se (4.5, 5.0, 5.5, and 6.0 mg/L) and Se-NPs (2.5, 3.0, 3.5, and 4.0 mg/L) was decided for acute experiment. Selenium and Se-NPs alter the biochemical attributes such as anti-oxidative status [catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activities], neurotransmitter enzyme, cellular metabolic enzymes, stress marker, and histopathology of P. hypophthalmus in a dose- and time-dependent manner. CAT, SOD, and GST were significantly elevated (p < 0.01) when exposed to Se and Se-NPs, and similarly, a neurotransmitter enzyme (acetylcholine esterase (AChE)) was significantly inhibited in a time- and dose-dependent manner. Further, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and malate hydrogenase were noticeably (p < 0.01) affected by Se and Se-NPs from higher concentration to lower concentration. Stress markers such as cortisol and HSP 70 were drastically enhanced by exposure to Se and Se-NPs. All the cellular metabolic and stress marker parameters were elevated which might be due to hyperaccumulation of Se and Se-NPs in the vital organ and target tissues. The histopathology of liver and gill was also altered such as large vacuole, cloudy swelling, focal necrosis, interstitial edema, necrosis in liver, and thickening of primary lamellae epithelium and curling of secondary lamellae due to Se and Se-NP exposure. The study suggested that essential trace element in both forms (inorganic and nano) at higher concentration in acute exposure of Se and Se-NPs led to pronounced deleterious alteration on histopathology and cellular and metabolic activities of P. hypophthalmus.
Kubota, Kohei; Onishi, Kohei; Sawaki, Kazuaki; Li, Tianshu; Mitsuoka, Kaoru; Sato, Takaaki; Takeoka, Shinji
2017-01-01
Two lipid-based nanoformulations have been used to date in clinical studies: lipoplexes and lipid nanoparticles (LNPs). In this study, we prepared small interfering RNA (siRNA)-loaded carriers using lipid components of the same composition to form molecular assemblies of differing structures, and evaluated the impact of structure on cellular uptake and immune stimulation. Lipoplexes are electrostatic complexes formed by mixing preformed cationic lipid liposomes with anionic siRNA in an aqueous environment, whereas LNPs are nanoparticles embedding siRNA prepared by mixing an alcoholic lipid solution with an aqueous siRNA solution in one step. Although the physicochemical properties of lipoplexes and LNPs were similar except for small increases in apparent size of lipoplexes and zeta potential of LNPs, siRNA uptake efficiency of LNPs was significantly higher than that of lipoplexes. Furthermore, in the case of LNPs, both siRNA and lipid were effectively incorporated into cells in a co-assembled state; however, in the case of lipoplexes, the amount of siRNA internalized into cells was small in comparison with lipid. siRNAs in lipoplexes were thought to be more likely to localize on the particle surface and thereby undergo dissociation into the medium. Inflammatory cytokine responses also appeared to differ between lipoplexes and LNPs. For tumor necrosis factor-α, release was mainly caused by siRNA. On the other hand, the release of interleukin-1β was mainly due to the cationic nature of particles. LNPs released lower amounts of tumor necrosis factor-α and interleukin-1β than lipoplexes and were thus considered to be better tolerated with respect to cytokine release. In conclusion, siRNA-loaded nanoformulations effect their cellular uptake and immune stimulation in a manner that depends on the structure of the molecular assembly; therefore, nanoformulations should be optimized before extending studies into the in vivo environment. PMID:28790820
Crosby, Heith A; Ihnat, Michael; Miller, Kenneth E
2018-01-01
6-diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist produced naturally by Streptomyces. It inhibits several glutamine-dependent enzyme pathways. Of particular note is its inhibitory effect on the mitochondrial enzyme, glutaminase (GLS), the primary producer of neuronal glutamate. Glutamate is an excitatory neurotransmitter released by primary sensory peripheral nerve terminals and spinal synaptic terminals during pain signaling. Previous work using the tail incision and inflammatory models of pain has demonstrated that a single application of the glutaminase inhibitor, DON, into a surgical incision or the paw of arthritic animals results in pain relief. Even though this compound shows promise as a therapeutic agent, limited data exist regarding its dermal toxicity. As a first approach, we evaluated the effect of several concentrations of DON, on the viability, mitochondrial oxidative capacity and proliferation of rat skin fibroblasts, and then examined the effect of DON after incubation with human liver microsomes on proliferation. Finally, we evaluated DON treated rat skin (tail and hind paw) for cellular necrosis, inflammation and mitotic bodies. No significant effects (p > 0.05) of DON were noted on apoptosis, necrosis, and mitochondrial activity in experiments with cultured rat skin fibroblasts. Flow cytometry revealed the absence of apoptosis in cells treated at the IC50 of 232.5 μM. Enhanced toxicity post-exposure to human microsomes was not observed when compared to DON alone. The H&E staining of the rat skin revealed no obvious pathology in the DON treatment group (10 mM). DON has no/minimal cellular toxicity in vitro on dermal fibroblasts at concentrations that effectively provide analgesia. The local application of concentrations greater than the in vitro IC50 for DON revealed no in vivo skin toxicity. These data provide results indicating zero-to-minimal cellular toxicity with DON and support the further investigation of DON as an analgesic. PMID:29750203
Caprariello, Andrew V.; Henry, Tyler J.; Tsutsui, Shigeki; Chu, Tak H.; Schenk, Geert J.; Yong, V. Wee
2017-01-01
Cellular injury and death are ubiquitous features of disease, yet tools to detect them are limited and insensitive to subtle pathological changes. Acridine orange (AO), a nucleic acid dye with unique spectral properties, enables real-time measurement of RNA and DNA as proxies for cell viability during exposure to various noxious stimuli. This tool illuminates spectral signatures unique to various modes of cell death, such as cells undergoing apoptosis versus necrosis/necroptosis. This new approach also shows that cellular RNA decreases during necrotic, necroptotic, and apoptotic cell death caused by demyelinating, ischemic, and traumatic injuries, implying its involvement in a wide spectrum of tissue pathologies. Furthermore, cells with pathologically low levels of cytoplasmic RNA are detected earlier and in higher numbers than with standard markers including TdT-mediated dUTP biotin nick-end labeling and cleaved caspase 3 immunofluorescence. Our technique highlights AO-labeled cytoplasmic RNA as an important early marker of cellular injury and a sensitive indicator of various modes of cell death in a range of experimental models. PMID:28264914
Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J
2015-01-01
Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell-cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell-cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system.
Yu, Jiashing; Hsu, Che-Hao; Huang, Chih-Chia; Chang, Po-Yang
2015-01-14
Photodynamic therapy (PDT) involves the cellular uptake of a photosensitizer (PS) combined with oxygen molecules and light at a specific wavelength to be able to trigger cancer cell death via the apoptosis pathway, which is less harmful and has less inflammatory side effect than necrosis. However, the traditional PDT treatment has two main deficiencies: the dark toxicity of the PS and the poor selectivity of the cellular uptake of PS between the target cells and normal tissues. In this work, methylene blue (MB), a known effective PS, combined with Au nanoparticles (NPs) was prepared using an intermolecular interaction between a polystyrene-alt-maleic acid (PSMA) layer on the Au NPs and MB. The Au@polymer/MB NPs produced a high quantum yield of singlet oxygen molecules, over 50% as much as that of free MB, when they were excited by a dark red light source at 660 nm, but without significant dark toxicity. Furthermore, transferrin (Tf) was conjugated on the Au@polymer/MB NPs via an EDC/NHS reaction to enhance the selectivity to HeLa cells compared to 3T3 fibroblasts. With a hand-held single laser treatment (32 mW/cm) for 4 min, the new Au@polymer/MB-Tf NPs showed a 2-fold enhancement of PDT efficiency toward HeLa cells over the use of free MB at 4 times dosage. Cellular staining examinations showed that the HeLa cells reacted with Au@polymer/MB-Tf NPs and the 660 nm light excitation triggered PDT, which caused the cells to undergo apoptosis ("programmed" cell death). We propose that applying this therapeutic Au@polymer/MB-Tf nanoagent is facile and safe for delivery and cancer cell targeting to simultaneously minimize side effects and accomplish a significant enhancement in photodynamic therapeutic efficiency toward next-generation nanomedicine development.
Comparison of ThinPrep and conventional preparations on fine needle aspiration cytology material.
Dey, P; Luthra, U K; George, J; Zuhairy, F; George, S S; Haji, B I
2000-01-01
To compare the various cytologic features on ThinPrep 2000 (TP) (Cytyc Corporation, Marlborough, Massachusetts, U.S.A.) and conventional preparation (CP) specimens from fine needle aspiration cytology (FNAC) material by a semiquantitative scoring system. In this prospective study a total of 71 consecutive cases were included. In each case, two passes were performed. The first pass was used for conventional preparations, with direct smears made and fixed immediately in 95% alcohol for Papanicolaou stain. For TP preparation a second pass produced material for processing in the ThinPrep 2000. The TP and CP slides were studied independently by two observers and representative slides of CP and TP compared for cellularity, background blood and necrotic cell debris, cell architecture, informative background, presence of monolayer cells, and nuclear and cytoplasmic details by a semiquantitative scoring system. Statistical analysis was performed by Wilcoxon's signed rank test on an SPSS program (Chicago, Illinois, U.S.A.). TP preparations contained adequate diagnostic cells in all cases and were tangibly superior to CP preparations concerning monolayer cells, absence of blood and necrosis, and preservation of nuclear and cytoplasmic detail (statistically significant, Wilcoxon's signed rank test, P < .000). TP preparations are superior to conventional preparations with regard to clear background, monolayer cell preparation and cell preservation. It is easier and less time consuming to screen and interpret TP preparations because the cells are limited to smaller areas on clear backgrounds, with excellent cellular preservation. However, TP preparations are more expensive than CP and require some experience for interpretation.
[Methuosis: a novel type of cell death].
Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin
2013-12-01
Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.
Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang
2012-08-15
Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Cheng, Chao-Wen; Rifai, Abdalla; Ka, Shuk-Man; Shui, Hao-Ai; Lin, Yuh-Feng; Lee, Wei-Hwa; Chen, Ann
2005-12-01
Rise in cellular calcium is associated with acute tubular necrosis, the most common cause of acute renal failure (ARF). The mechanisms that calcium signaling induce in the quiescent tubular cells to proliferate and differentiate during acute tubular necrosis have not been elucidated. Acute tubular necrosis induced in mice by single intravenous injection of uranyl nitrate and examined after 1, 3, 7, and 14 days. Renal function was monitored and kidneys were evaluated by histology, immunohistochemistry, Western blotting, in situ hybridization, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Models of folic acid induced-ARF and ischemic/reperfusion (I/R) injury were similarly investigated. Analysis of mRNA expression of intracellular calcium and phospholipid-binding proteins demonstrated selective expression of S100A6 and Annexin A2 (Anxa2) in the renal cortex with marked elevation on day 3, and gradually decline on day 7 and further attenuation on day 14. Similarly, the expression of both proteins, as demonstrated by immunohistochemistry and Western blot analysis, was increased and reached the peak level on day 7 and then gradually declined by day 14. Vimentin, a marker of dedifferentiated cells, was highly expressed during the recovery phase. Combined in situ hybridization immunohistochemistry revealed colocalization of both S100A6 and Anxa2 with proliferating cell nuclear antigen (PCNA). The universality of this phenomenon was confirmed in two other mouse acute tubular necrosis models, the ischemic-reperfusion injury and folic acid-induced ARF. Collectively, these findings demonstrate that S100A6 and Anxa2 expression, initiated in response to tubular injury, persist in parallel throughout the recovery process of tubular cells in acute renal failure.
Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness
NASA Astrophysics Data System (ADS)
Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.
1989-09-01
Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.
Trehalose does not affect the functions of human neutrophils in vitro.
Tanaka, Koji; Kawamura, Mikio; Otake, Kohei; Toiyama, Yuji; Okugawa, Yoshinaga; Inoue, Yasuhiro; Uchida, Keiichi; Araki, Toshimitsu; Mohri, Yasuhiko; Kusunoki, Masato
2014-02-01
Trehalose, naturally occurring disaccharide, has been reported to prevent postoperative abdominal adhesions in animal models. We investigated whether trehalose affects the function of human polymorphonuclear neutrophils (PMNs) in vitro to assess the feasibility of its clinical application as an anti-adhesive barrier. Human PMNs were obtained from 17 healthy volunteers. Escherichia coli and Staphylococcus aureus were used for the bacterial infection model, whereas lipopolysaccharide (LPS) and interleukin (IL)-1β were used for inflammation induction model. The PMN phagocytosis rates of bacteria and apoptosis/necrosis were assessed on trehalose, maltose, and control media. Cytokines; namely, tumor necrosis factor-α, IL-1α, IL-1Ra, IL-6, and IL-8; and PMN-elastase were measured on each medium in both models. There were no significant differences in the phagocytosis rates, apoptosis/necrosis rates, or levels of all cytokines or PMN-elastase among the three media in the bacterial infection model. There were also no significant differences in the levels of all cytokines and PMN-elastase among the three media in the IL-1β inflammation induction model. PMN-elastase was lower in trehalose and maltose medium after LPS stimulation, at 3 and 24 h. Our results suggest that trehalose does not affect the cellular function, cytokine production, or release of PMN-elastase of human PMNs in an in vitro bacterial infection model.
Optofluidic cellular immunofunctional analysis by localized surface plasmon resonance
NASA Astrophysics Data System (ADS)
Kurabayashi, Katsuo; Oh, Bo-Ram
2014-08-01
Cytokine secretion assays provide the means to quantify intercellular-signaling proteins secreted by blood immune cells. These assays allow researchers and clinicians to obtain valuable information on the immune status of the donor. Previous studies have demonstrated that localized surface plasmon resonance (LSPR) effects enable label-free, real-time biosensing on a nanostructured metallic surface with simple optics and sensing tunability. However, limited sensitivity coupled with a lack of sample handling capability makes it challenging to implement LSPR biosensing in cellular functional immunoanalysis based on cytokine secretion assay. This paper describes our recent progress towards full development of a label-free LSPR biosensing technique to detect cell-secreted tumor necrosis factor (TNF)-α cytokines in clinical blood samples. We integrate LSPR bionanosensors in an optofluidic platform capable of handling target immune cells in a microfluidic chamber while readily permitting optical access for cytokine detection.
Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.
Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu
2015-11-07
Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.
Olivares-Navarrete, Rene; Hyzy, Sharon L; Slosar, Paul J; Schneider, Jennifer M; Schwartz, Zvi; Boyan, Barbara D
2015-03-15
An in vitro study examining factors produced by human mesenchymal stem cells on spine implant materials. The aim of this study was to examine whether the inflammatory microenvironment generated by cells on titanium-aluminum-vanadium (Ti-alloy, TiAlV) surfaces is affected by surface microtexture and whether it differs from that generated on poly-ether-ether-ketone (PEEK). Histologically, implants fabricated from PEEK have a fibrous connective tissue surface interface whereas Ti-alloy implants demonstrate close approximation with surrounding bone. Ti-alloy surfaces with complex micron/submicron scale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation whereas PEEK favors fibrous tissue formation. Human mesenchymal stem cells were cultured on tissue culture polystyrene, PEEK, smooth TiAlV, or macro-/micro-/nano-textured rough TiAlV (mmnTiAlV) disks. Osteoblastic differentiation and secreted inflammatory interleukins were assessed after 7 days. Fold changes in mRNAs for inflammation, necrosis, DNA damage, or apoptosis with respect to tissue culture polystyrene were measured by low-density polymerase chain reaction array. Data were analyzed by analysis of variance, followed by Bonferroni's correction of Student's t-test. Cells on PEEK upregulated mRNAs for chemokine ligand-2, interleukin (IL) 1β, IL6, IL8, and tumor necrosis factor. Cells grown on the mmnTiAlV had an 8-fold reduction in mRNAs for toll-like receptor-4. Cells grown on mmnTiAlV had reduced levels of proinflammatory interleukins. Cells on PEEK had higher mRNAs for factors strongly associated with cell death/apoptosis, whereas cells on mmnTiAlV exhibited reduced cytokine factor levels. All results were significant (P < 0.05). These results suggest that fibrous tissue around PEEK implants may be due to several factors: reduced osteoblastic differentiation of progenitor cells and production of an inflammatory environment that favors cell death via apoptosis and necrosis. Ti alloy surfaces with complex macro/micro/nanoscale roughness promote osteoblastic differentiation and foster a specific cellular environment that favors bone formation. N/A.
High content cell-based assay for the inflammatory pathway
NASA Astrophysics Data System (ADS)
Mukherjee, Abhishek; Song, Joon Myong
2015-07-01
Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.
Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.
Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs.
Wang, Yanhua; Zhang, Delin; Wang, Guangxiang; Yin, Hong; Wang, Meng
2013-11-01
It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs.
Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.
2008-06-15
The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less
Aksu, Ugur; Guner, Ibrahim; Yaman, Onur M; Erman, Hayriye; Uzun, Duygu; Sengezer-Inceli, Meliha; Sahin, Ahmet; Yelmen, Nermin; Gelisgen, Remisa; Uzun, Hafize; Sahin, Gulderen
2014-12-01
Ischemia-reperfusion (IR) has been reported to be associated with augmented reactive oxygen radicals and cytokines. Currently, we aimed to examine the influence of fluoxetine, which is already used as a preoperative anxiolytic, in the context of IR induced by occlusion of infrarenal abdominal aorta (60 min of ischemia) and its effects on renal oxidative status, inflammation, renal function, and cellular integrity in reperfusion (120 min post-ischemia). Male rats were randomly assigned as control, IR, and pretreated groups. The pretreated group animals received fluoxetine (20 mg/kg, i.p.) once daily for 3 days. Renal tissue oxidative stress, myeloperoxidase activity, proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6), histology, and function were assessed. As an anti-inflammatory cytokine, interleukin-10 was also assessed. IR led to a significant increase in lipid hydroperoxide, malondialdehyde, and pro-oxidant antioxidant balance and decrease in superoxide dismutase activity and ferric reducing/antioxidant power level (p < 0.05), but fluoxetine was able to restore these parameters. High concentrations of tumor necrosis factor-α, interleukin-1β, interleukin-6, and myeloperoxidase activity caused by IR were significantly decreased in kidney tissue with fluoxetine. In addition, interleukin-10 levels were high in fluoxetine pretreated group. IR resulted in disrupted cellular integrity, infiltration of tissue with leukocytes, and decreased serum creatinine-urea levels (p < 0.05). Fluoxetine significantly restored impaired redox balance and inflammation parameters of rats subjected to IR to baseline values. This beneficial effect of fluoxetine on redox balance might be addressed to an improvement in renal function.
Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease
2013-01-01
Recent evidence in humans indicate that defective phagocytic clearance of dying cells is linked to progression of advanced atherosclerotic lesions, the precursor to atherothrombosis, ischemic heart disease, and leading cause of death in the industrialized world. During atherogenesis, apoptotic cell turnover in the vascular wall is counterbalanced by neighboring phagocytes with high clearance efficiency, thereby limiting cellularity and maintaining lesion integrity. However, as lesions mature, phagocytic removal of apoptotic cells (efferocytosis) becomes defective, leading to secondary necrosis, expansion of plaque necrotic cores, and susceptibility to rupture. Recent genetic causation studies in experimental rodents have implicated key molecular regulators of efferocytosis in atherosclerotic progression. These include MER tyrosine kinase (MERTK), milk fat globule-EGF factor 8 (MFGE8), and complement C1q. At the cellular level, atheromata are infiltrated by a heterogenous population of professional phagocytes, comprised of monocytes, differentiated macrophages, and CD11c+ dendritic-like cells. Each cell type is characterized by disparate clearance efficiencies and varying activities of key phagocytic signaling molecules. It is in this context that we outline a working model whereby plaque necrosis and destabilization is jointly promoted by (1) direct inhibition of core phagocytic signaling pathways and (2) expansion of phagocyte subsets with poor clearance capacity. Towards identifying targets for promoting efficient apoptotic cell clearance and resolving inflammation in atherosclerosis and during ischemic heart disease and post myocardial infarction, this review will discuss potential in vivo suppressors of efferocytosis at each stage of clearance and how these putative interventional targets may differentially affect uptake at the level of vascular phagocyte subsets. PMID:20552278
FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP
Tsuchiya, Yuichi; Nakabayashi, Osamu; Nakano, Hiroyasu
2015-01-01
cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis. PMID:26694384
Hypericin in cancer treatment: more light on the way.
Agostinis, Patrizia; Vantieghem, Annelies; Merlevede, Wilfried; de Witte, Peter A M
2002-03-01
Photodynamic therapy (PDT) has been described as a promising new modality for the treatment of cancer. PDT involves the combination of a photosensitizing agent (photosensitizer), which is preferentially taken up and retained by tumor cells, and visible light of a wavelength matching the absorption spectrum of the drug. Each of these factors is harmless by itself, but when combined they ultimately produce, in the presence of oxygen, cytotoxic products that cause irreversible cellular damage and tumor destruction. Hypericin, a powerful naturally occurring photosensitizer, is found in Hypericum perforatum plants, commonly known as St. John's wort. In recent years increased interest in hypericin as a potential clinical anticancer agent has arisen since several studies established its powerful in vivo and in vitro antineoplastic activity upon irradiation. Investigations of the molecular mechanisms underlying hypericin photocytotoxicity in cancer cells have revealed that this photosensitizer can induce both apoptosis and necrosis in a concentration and light dose-dependent fashion. Moreover, PDT with hypericin results in the activation of multiple pathways that can either promote or counteract the cell death program. This review focuses on the more recent advances in the use of hypericin as a photodynamic agent and discusses the current knowledge on the signaling pathways underlying its photocytotoxic action.
Guidelines and recommendations on yeast cell death nomenclature.
Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank
2018-01-01
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Fluoride Induces Apoptosis in Mammalian Cells: In Vitro and In Vivo Studies.
Ribeiro, Daniel Araki; Cardoso, Caroline Margonato; Yujra, Veronica Quispe; DE Barros Viana, Milena; Aguiar, Odair; Pisani, Luciana Pellegrini; Oshima, Celina Tizuko Fujiyama
2017-09-01
Apoptosis is genetically programmed cell death, an irreversible process of cell senescence with characteristic features different from other cellular mechanisms of death such as necrosis. In the last years, apoptosis has been extensively studied in the scientific literature, because it has been established that apoptosis plays a crucial role following the time course of chronic degenerative diseases, such as cancer. Thus, several researchers have strugged to detect what chemical agents are able to inter fere with the apoptotic process. Thus, the purpose of this literature review is to assess if fluoride induces apoptosis in mammalian cells using in vivo and in vitro test systems. Certain mammalian cell types such as oral cells, blood and brain were exetensively investigated; the results showed that fluoride is able to induce apoptosis in both intrinsinc and extrinsic pathways. Moreover, other cells types have been poorly investigated such as bone, kidney and reproductive cells with conflicting results so far. Therefore, this area needs further investigation for the safety of human populations exposed to fluoride in a chronic way, as for example in developing countries. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience
2017-02-01
Photodynamic therapy (PDT) has emerged as an effective treatment modality for various malignant neoplasia and diseases. In PDT, the photochemical interaction of photosensitizer (PS), light and molecular oxygen produces singlet oxygen which can lead to tumour cell apoptosis, necrosis or autophagy. The success of PDT is limited by the hydrophobic characteristic of the PS which hinders treatment administration and efficiency. To circumvent this limitation, PS can be incorporated in nanostructured drug delivery systems such as gold nanoparticles (AuNPs). In this study, we investigated the effectiveness of free zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) and ZnMCPPc conjugated to AuNPs. Commercially purchased melanoma cancer cells cultured as cell monolayers were used in this study. Changes in cellular response were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated free ZnMCPPc and ZnMCPPc conjugated to AuNPs showed changes in cellular morphology and a dose dependent decrease in cellular viability and proliferation as well as an increase in cell membrane. ZnMCPPc conjugated to AuNPs showed an improved efficiency in PDT as compared to free ZnMCPPc, which might be as a result of the vehicle effect of AuNPs. Both PSs used in this study were effective in inducing cell death with ZnMCPPc conjugated to AuNPs showing great potential as an effective PS for PDT.
David, Manu S; Kelly, Elizabeth; Zoellner, Hans
2013-04-01
We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo
2018-05-01
T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.
Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool
2018-01-01
Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10 μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.
Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, TongFa; Gao, DaQuan; Fang, Zheng-yu, E-mail: fangzhengyu158@sina.com
In this study, we showed that PF-543, a novel sphingosine kinase 1 (SphK1) inhibitor, exerted potent anti-proliferative and cytotoxic effects against a panel of established (HCT-116, HT-29 and DLD-1) and primary human colorectal cancer (CRC) cells. Its sensitivity was negatively associated with SphK1 expression level in the CRC cells. Surprisingly, PF-543 mainly induced programmed necrosis, but not apoptosis, in the CRC cells. CRC cell necrotic death was detected by lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP) collapse and mitochondrial P53-cyclophilin-D (Cyp-D) complexation. Correspondingly, the necrosis inhibitor necrostatin-1 largely attenuated PF-543-induced cytotoxicity against CRC cells. Meanwhile, the Cyp-D inhibitors (sanglifehrinmore » A and cyclosporin A), or shRNA-mediated knockdown of Cyp-D, remarkably alleviated PF-543-induced CRC cell necrotic death. Reversely, over-expression of wild-type Cyp-D in HCT-116 cells significantly increased PF-543's sensitivity. In vivo, PF-543 intravenous injection significantly suppressed HCT-116 xenograft growth in severe combined immunodeficient (SCID) mice, whiling remarkably improving the mice survival. The in vivo activity by PF-543 was largely attenuated when combined with the Cyp-D inhibitor cyclosporin A. Collectively, our results demonstrate that PF-543 exerts potent anti-CRC activity in vitro and in vivo. Mitochondrial programmed necrosis pathway is likely the key mechanism responsible for PF-543's actions in CRC cells. - Highlights: • PF-543 is anti-proliferative and cytotoxic to established and primary CRC cells. • PF-543 induces programmed necrosis, but not apoptosis, in CRC cells. • Modulation of mitochondrial protein cyclophilin-D alters PF-543's sensitivity. • PF-543 inhibits HCT-116 xenograft growth in SCID mice, improving mice survival. • Co-administration of cyclophilin-D inhibitor CsA inhibits PF-543's activity in vivo.« less
Regulatory role of calpain in neuronal death
Cheng, Si-ying; Wang, Shu-chao; Lei, Ming; Wang, Zhen; Xiong, Kun
2018-01-01
Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases. PMID:29623944
Liu, Yewei; De Keyzer, Frederik; Wang, Yixing; Wang, Fengna; Feng, Yuanbo; Chen, Feng; Yu, Jie; Liu, Jianjun; Song, Shaoli; Swinnen, Johan; Bormans, Guy; Oyen, Raymond; Huang, Gang; Ni, Yicheng
2018-04-29
To better inform the next clinical trials of vascular disrupting agent Combretastatin-A4-phosphate (CA4P) in patients with hepatic malignancies, this preclinical study aimed at evaluating CA4P therapeutic efficacy in rats with primary hepatocellular carcinomas (HCCs) of a full spectrum of differentiation and vascularity by magnetic resonance imaging (MRI), microangiography and histopathology. Ninety-six HCCs were raised in 25 rats by diethylnitrosamine gavage. Tumor growth was monitored by T2-/T1-weighted-MRI (T2WI, T1WI) using a 3.0T scanner. Early vascular response and later intratumoral necrosis were detected by dynamic-contrast-enhanced (DCE) MRI and diffusion-weighted-imaging (DWI) before, 1h and 12h after CA4P iv-administration. In-vivo MRI-findings were validated by postmortem-techniques. Multi-parametric MRI revealed rapid CA4P-induced tumor vascular shutdown within 1h, followed by variable intratumoral necrosis at 12h. Tumor volumes decreased by 10% at 1h (P<0.05), but resumed at 12h. Correlations of semi-quantitative DCE parameter initial-area-under-the-gadolinium-curve (IAUGC30) with histopathology proved partial vascular closure and compensational reopening (P<0.05). The higher grades of vascularity prevented those residual tumor tissues from CA4P-caused ischemic necrosis. By histopathology using a 4-scale cellular-differentiation criteria and a 4-grade tumor-vascularity classification, percentage of CA4P-induced necrosis negatively correlated with HCC differentiation (r=-0.404, P<0.001) and tumor vascularity (r=-0.370, P<0.001). Ordinal-logistic-regression helped to predict early tumor responses to CA4P in terms of tumoral differentiation and vascularity. This study demonstrated that CA4P could induce vascular shutdown in primary HCCs within 1h, resulting in various degrees of tumor necrosis at 12h. MRI as a real-time imaging biomarker may help to define tumor vascularity and differentiation and further to predict CA4P therapeutic outcomes. This article is protected by copyright. All rights reserved. © 2018 UICC.
Ricucci, Domenico; Siqueira, José F; Loghin, Simona; Lin, Louis M
2017-01-01
Descriptions of the pathologic changes in the pulp and associated apical structures of human immature teeth in response to deep caries are lacking in the literature. This article describes the histologic events associated with the radicular pulp and the apical tissues of human immature teeth following pulp inflammation and necrosis. Twelve immature teeth with destructive caries lesions were obtained from 8 patients. Two intact immature teeth served as controls. Teeth were extracted for reasons not related to this study and immediately processed for histopathologic and histobacteriologic analyses. Serial sections were examined for the pulp conditions and classified as reversible or irreversible pulp inflammation, or pulp necrosis. Other histologic parameters were also evaluated. In the 3 cases with reversible pulp inflammation, tissue in the pulp chamber showed mild to moderate inflammation and tertiary dentin formation related to tubules involved in the caries process. Overall, the radicular pulp tissue, apical papilla and Hertwig's epithelial root sheath (HERS) exhibited characteristics of normality. In the 3 cases with irreversible pulp inflammation, the pulps were exposed and severe inflammation occurred in the pulp chamber, with minor areas of necrosis and infection. Large areas of the canal walls were free from odontoblasts and lined by an atubular mineralized tissue. The apical papilla showed extremely reduced cellularity or lack of cells and HERS was discontinuous or absent. In the 6 cases with pulp necrosis, the coronal and radicular pulp tissue was necrotic and colonized by bacterial biofilms. The apical papilla could not be discerned, except for one case. HERS was absent in the necrotic cases. While immature teeth with reversible pulpitis showed histologic features almost similar to normal teeth in the canal and in the apical region, those with irreversible pulpitis and necrosis exhibited significant alterations not only in the radicular pulp but also in the apical tissues, including the apical papilla and HERS. Alterations in the radicular pulp and apical tissues help explain the outcome of current regenerative/reparative therapies and should be taken into account when devising more predictable therapeutic protocols for teeth with incomplete root formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phase averaging method for the modeling of the multiprobe and cutaneous cryosurgery
NASA Astrophysics Data System (ADS)
E Shilnikov, K.; Kudryashov, N. A.; Y Gaiur, I.
2017-12-01
In this paper we consider the problem of planning and optimization of the cutaneous and multiprobe cryosurgery operations. An explicit scheme based on the finite volume approximation of phase averaged Pennes bioheat transfer model is applied. The flux relaxation method is used for the stability improvement of scheme. Skin tissue is considered as strongly inhomogeneous media. Computerized planning tool is tested on model cryotip-based and cutaneous cryosurgery problems. For the case of cutaneous cryosurgery the method of an additional freezing element mounting is studied as an approach to optimize the cellular necrosis front propagation.
Parvovirus B19 Myocarditis of Fulminant Evolution.
Spartalis, Michael; Tzatzaki, Eleni; Spartalis, Eleftherios; Damaskos, Christos; Mavrogeni, Sophie; Voudris, Vassilis
2017-08-01
Myocarditis is an inflammation of the myocardium. Clinical presentation ranges from non-specific systematic symptoms to fulminant collapse and sudden death. Sudden death occurs at rates of 8.6-12% and cardiomyopathy at 9%. In active myocarditis, there is inflammatory cellular infiltrate with myocardial necrosis. The disease is distinguished by clinical presentation in fulminant and non-fulminant myocarditis. We present a rare case of a parvovirus B19-induced fulminant viral myocarditis in a young female. The patient presented with acute onset heart failure mimicking a myocardial infarction, followed by non-specific symptoms that had been misdiagnosed as urinary tract infection.
Parvovirus B19 Myocarditis of Fulminant Evolution
Spartalis, Michael; Tzatzaki, Eleni; Spartalis, Eleftherios; Damaskos, Christos; Mavrogeni, Sophie; Voudris, Vassilis
2017-01-01
Myocarditis is an inflammation of the myocardium. Clinical presentation ranges from non-specific systematic symptoms to fulminant collapse and sudden death. Sudden death occurs at rates of 8.6-12% and cardiomyopathy at 9%. In active myocarditis, there is inflammatory cellular infiltrate with myocardial necrosis. The disease is distinguished by clinical presentation in fulminant and non-fulminant myocarditis. We present a rare case of a parvovirus B19-induced fulminant viral myocarditis in a young female. The patient presented with acute onset heart failure mimicking a myocardial infarction, followed by non-specific symptoms that had been misdiagnosed as urinary tract infection. PMID:28868104
Nitric Oxide and Peroxynitrite in Health and Disease
PACHER, PÁL; BECKMAN, JOSEPH S.; LIAUDET, LUCAS
2008-01-01
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review. PMID:17237348
Quantitative optical imaging of paracetamol-induced metabolism changes in the liver
NASA Astrophysics Data System (ADS)
Liang, Xiaowen; Wang, Haolu; Liu, Xin; Roberts, Michael
2016-12-01
Paracetamol is the most readily available and widely used painkiller. However, its toxicity remains the most common cause of liver injury. The toxicity of paracetamol has been attributing to its toxic metabolite, which depletes cellular glutathione (GSH) stores and reacts within cells to increase oxidative stress, leading to mitochondrial dysfunction and cell necrosis. Multiphoton microscopy (MPM) and fluorescence lifetime imaging (FLIM) can provide quantitative imaging of biological tissues and organs in vivo and allow direct visualization of cellular events, which were used to monitor cellular metabolism in paracetamol-induced toxicity in this study. To better understand mechanisms of paracetamol induced liver injury, the redox ratio of NADH/FAD in liver cells were detected and quantified by MPM imaging to represent the relative rates of glycolysis and oxidative phosphorylation within cells. Compared to normal liver, average fluorescence lifetime of NADH and redox ratio of NADH/FAD in hepatocytes was significantly decreased after paracetamol overdose for 12 and 24 hrs, reflecting impaired metabolic activity. GSH levels of treatment groups were significantly lower than those of normal livers, with gradually decreasing from periportal to centrilobular zonation. This imaging technique has significant implications for investigating metabolic mechanisms of paracetamol toxicity.
Tacher, Vania; Le Deley, Marie-Cécile; Hollebecque, Antoine; Deschamps, Frederic; Vielh, Philippe; Hakime, Antoine; Ileana, Ecaterina; Abedi-Ardekani, Behnoush; Charpy, Cécile; Massard, Christophe; Rosellini, Silvia; Gajda, Dorota; Celebic, Aljosa; Ferté, Charles; Ngo-Camus, Maud; Gouissem, Siham; Koubi-Pick, Valérie; Andre, Fabrice; Vassal, Gilles; Deandreis, Désirée; Lacroix, Ludovic; Soria, Jean-Charles; De Baère, Thierry
2016-05-01
MOSCATO-01 is a molecular triage trial based on on-purpose tumour biopsies to perform molecular portraits. We aimed at identifying factors associated with high tumour cellularity. Tumour cellularity (percentage of tumour cells in samples defined at pathology) was evaluated according to patient characteristics, target lesion characteristics, operators' experience and biopsy approach. Among 460 patients enrolled between November, 2011 and March, 2014, 334 patients (73%) had an image-guided needle biopsy of the primary tumour (N = 38) or a metastatic lesion (N = 296). Biopsies were performed on liver (N = 127), lung (N = 72), lymph nodes (N = 71), bone (N = 11), or another tumour site (N = 53). Eighteen patients (5%) experienced a complication: pneumothorax in 10 patients treated medically, and haemorrhage in 8, requiring embolisation in 3 cases. Median tumour cellularity was 50% (interquartile range, 30-70%). The molecular analysis was successful in 291/334 cases (87%). On-going chemotherapy, tumour origin (primary versus metastatic), lesion size, tumour growth rate, presence of necrosis on imaging, standardised uptake value, and needle size were not statistically associated with cellularity. Compared to liver or lung biopsies, cellularity was significantly lower in bone and higher in other sites (P < 0.0001). Cellularity significantly increased with the number of collected samples (P < 0.0001) and was higher in contrast-enhanced ultrasound-guided biopsies (P < 0.02). In paired samples, cellularity in central samples was lower than in peripheral samples in 85, equal in 68 and higher in 89 of the cases. Image-guided biopsy is feasible and safe in cancer patients for molecular screening. Imaging modality, multiple sampling of the lesion, and the organ chosen for biopsy were associated with higher tumour cellularity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Panus, Joanne Fanelli; Smith, Craig A.; Ray, Caroline A.; Smith, Terri Davis; Patel, Dhavalkumar D.; Pickup, David J.
2002-01-01
Cowpox virus (Brighton Red strain) possesses one of the largest genomes in the Orthopoxvirus genus. Sequence analysis of a region of the genome that is type-specific for cowpox virus identified a gene, vCD30, encoding a soluble, secreted protein that is the fifth member of the tumor necrosis factor receptor family known to be encoded by cowpox virus. The vCD30 protein contains 110 aa, including a 21-residue signal peptide, a potential O-linked glycosylation site, and a 58-aa sequence sharing 51–59% identity with highly conserved extracellular segments of both mouse and human CD30. A vCD30Fc fusion protein binds CD153 (CD30 ligand) specifically, and it completely inhibits CD153/CD30 interactions. Although the functions of CD30 are not well understood, the existence of vCD30 suggests that the cellular receptor plays a significant role in normal immune responses. Viral inhibition of CD30 also lends support to the potential therapeutic value of targeting CD30 in human inflammatory and autoimmune diseases. PMID:12034885
Dexamethasone enhances agonist induction of tissue factor in monocytes but not in endothelial cells.
Bottles, K D; Morrissey, J H
1993-06-01
Stimulation of monocytic cells by inflammatory agents such as bacterial lipopolysaccharide or tumour necrosis factor-alpha leads to the rapid and transient expression of tissue factor, the major cellular initiator of the extrinsic coagulation cascade in both haemostasis and tissue inflammation. In this study we investigated whether the synthetic anti-inflammatory glucocorticoid, dexamethasone, would inhibit agonist induction of tissue factor expression in both monocytes and endothelial cells. Surprisingly, dexamethasone significantly enhanced the induction of tissue factor expression by peripheral blood mononuclear cells and an established monocytic cell line, THP-1, in response to lipopolysaccharide or tumour necrosis factor-alpha. However, unlike monocytic cells, dexamethasone did not enhance agonist induction of tissue factor in endothelial cells. Synergistic enhancement of tissue factor expression by dexamethasone was also reflected in tissue factor mRNA levels in THP-1 cells, but was not the result of improved TF mRNA stability. Synergism between bacterial lipopolysaccharide and glucocorticoid in the induction of monocyte effector function is extremely unusual and may help to explain the variable outcome of glucocorticoid treatment of septic shock.
Patibandla, M. R.; Nayak, Madhukar; Purohit, A. K.; Thotakura, Amit Kumar; Uppin, Megha; Challa, Sundaram
2016-01-01
Pleomorphic xanthoastrocytoma (PXA) is an uncommon tumor constitutes less than 1% of all astrocytic glial neoplasms was first reported in 1979. PXA commonly occurs in young patients and manifests itself first as seizures followed by focal neurological deficits. The role of radiotherapy or chemotherapy has not yet been established because of the relative infrequency of this disease. PXA is classified as grade II tumor in the WHO classification of tumors of the CNS. In literature 9 to 20 % PXA may undergo malignant change at recurrence or may display at the time of initial presentation. Malignant transformation is mainly associated with high mitotic activity and necrosis. The criteria for PXA with anaplastic features was five or more mitotic activity per 10 high power fields, necrosis, microvascular proliferation, marked cellular anaplasia, and high Ki-67 labeling indices. PXA with anaplastic features management is highly controversial as very sparse literature is available. We are reporting a case of PXA with anaplastic features with atypical radiology and tried to review the up to date literature regarding this rare tumor. PMID:27366280
Marydasan, Betsy; Madhuri, Bollapalli; Cherukommu, Shirisha; Jose, Jedy; Viji, Mambattakkara; Karunakaran, Suneesh C; Chandrashekar, Tavarekere K; Rao, Kunchala Sridhar; Rao, Ch Mohan; Ramaiah, Danaboyina
2018-06-14
With the objective of developing efficient sensitizers for therapeutic applications, we synthesized a water-soluble 5,10,15,20-tetrakis(3,4-dihydroxyphenyl)chlorin (TDC) and investigated its in vitro and in vivo biological efficacy, comparing it with the commercially available sensitizers. TDC showed high water solubility (6-fold) when compared with that of Foscan and exhibited excellent triplet-excited-state (84%) and singlet-oxygen (80%) yields. In vitro photobiological investigations in human-ovarian-cancer cell lines SKOV-3 showed high photocytotoxicity, negligible dark toxicity, rapid cellular uptake, and specific localization of TDC in neoplastic cells as assessed by flow-cytometric cell-cycle and propidium iodide staining analysis. The photodynamic effects of TDC include confirmed reactive-oxygen-species-induced mitochondrial damage leading to necrosis in SKOV-3 cell lines. The in vivo photodynamic activity in nude-mouse models demonstrated abrogation of tumor growth without any detectable pathology in the skin, liver, spleen, or kidney, thereby demonstrating TDC application as an efficient and safe photosensitizer.
Photodynamic therapy on the ultrastructure of glioma cell
NASA Astrophysics Data System (ADS)
Hu, Shaoshan; Zhang, Ruyou; Zheng, Yongri
2005-07-01
OBJECTIVE :the main purpose of this experiment was to study the change of C6 glioma cells' ultrastructure treated by photodynamic therapy(PDT), observe the change of morphology METHOD :Make the model of rat glioma by transplanted C6 glioma cells into caudate nucleus,treated the glioma rat by PDT after two weeks. Observed the difference of subcellular structure before and after PDT by electron microscope. RESULT : Apoptosis and necrosis can be seen after treated by PDT in the C6 glioma, basal membrance damaged ,number of cellular organ of endothelial cell of blood capillary declined,tight junction of endothelial cell lengthen and the gap enlarge. The PDT has slightly effect on the nomorl rat"s subcellular structue. CONCLUSION: PDT can induce the apoptosis and necrosis of C6 glioma cell. The damage of the ultramicrostructure of mitochondria and endoplasmic reticulum was the foundmentol of the change. PDT initiate the damage of BBB of the C6 glioma cell and weeken the function、and makes it a useful way of treating the glioma combained with chemotherapy.
Zhang, Wen; Wu, Ben-Juan; Fu, Nan-Nan; Zheng, Wei-Ping; Don, Chong; Shen, Zhong-Yang
2014-01-01
Background Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats. Methods Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point. Results Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels. Conclusion BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation. PMID:25500836
Forde, Hannah; Harper, Emma; Davenport, Colin; Rochfort, Keith D; Wallace, Robert; Murphy, Ronan P; Smith, Diarmuid; Cummins, Philip M
2016-04-01
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein that belongs to the tumour necrosis factor (TNF) cytokine superfamily. TRAIL is expressed by numerous cell types including vascular cells, immune cells and adipocytes. Although originally thought to induce apoptosis in malignant or transformed cells only, it is now known that TRAIL can bind up to 5 distinct receptors to activate complex signalling pathways, and is capable of exerting pleiotropic effects in non-transformed cells. In this respect, a number of clinical and animal studies point to the potential vasoprotective influence of TRAIL, with TRAIL deficiency being linked to accelerated atherosclerosis and vascular calcification. Moreover, exogenous TRAIL administration has been shown to exhibit anti-atherosclerotic activity in-vivo. In-vitro studies on TRAIL in this context have yielded conflicting results however, with evidence of both pro-atherogenic and vasoprotective effects ascribed to TRAIL. Notwithstanding these various studies, mechanistic information on the precise nature of TRAIL-mediated injury/protection within the vasculature, as well as the identity of the downstream molecular/cellular targets of TRAIL, is still quite limited. In this review, we will summarize our current knowledge of TRAIL regulation, signalling mechanisms, and its apparent involvement in CVD pathogenesis as a prelude to examining the existing evidence for TRAIL-mediated vasoprotection. To this end, extensive in vitro, in vivo, and clinical studies will be reviewed and critical findings highlighted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rigoni, Vera Lucia Silva; Kwasniewski, Fabio H; Vieira, Rodolfo Paula; Linhares, Ingrid Sestrem; da Silva, Joelmir Lucena Veiga; Nogueira-Pedro, Amanda; Zamuner, Stella Regina
2016-09-15
Tityus serrulatus is the scorpion specie responsible for the majority of scorpion sting accidents in Brazil. Symptoms of envenomation by Tityus serrulatus range from local pain to severe systemic reactions such as cardiac dysfunction and pulmonary edema. Thus, this study has evaluated the participation of bronchial epithelial cells in the pulmonary effects of Tityus serrulatus scorpion venom (Tsv). Human bronchial epithelial cell line BEAS-2B were utilized as a model target and were incubated with Tsv (10 or 50 μg/mL) for 1, 3, 6 and 24 h. Effects on cellular response of venom-induce cytotoxicity were examined including cell viability, cell integrity, cell morphology, apoptosis/necrosis as well as cell activation through the release of pro-inflammatory cytokines IL-1β, IL-6 and IL-8. Tsv caused a decrease in cell viability at 10 and 50 μg/mL, which was confirmed by lactate dehydrogenase (LDH) measurement. Flow cytometry analyses revealed necrosis as the main cell death pathway caused by Tsv. Furthermore, Tsv induced the release of IL-1β, IL-6 and IL-8. Altogether, these results demonstrate that Tsv induces cytotoxic effects on bronchial epithelial cells, involving necrosis and release of pro-inflammatory cytokines, suggesting that bronchial epithelial cells may play a role in the pulmonary injury caused by Tsv. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liraglutide attenuates partial warm ischemia-reperfusion injury in rat livers.
Abdelsameea, Ahmed A; Abbas, Noha A T; Abdel Raouf, Samar M
2017-03-01
Ischemia-reperfusion (IR) injury constitutes the most important cause of primary dysfunction of liver grafts. In this study, we have addressed the possible hepatoprotective action of liraglutide against partial warm hepatic IR injury in male rats. Rats were randomly assigned into: sham, IR, and liraglutide-pretreated IR groups. Liraglutide was administered 50 μg/kg s.c. twice daily for 14 days, and then, hepatic IR was induced by clamping portal vein and hepatic artery to left and median lobes for 30 min followed by reperfusion for 24 h. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transferase (GGT) activities were determined. Malondialdehyde (MDA) level, reduced glutathione (GSH) content, tumor necrosis factor-α (TNF-α), phosphoralated Akt (p-Akt), and caspase-3 levels of the liver were determined. Hematoxylin and eosin (H&E) stained sections from liver were examined as well as immunohistochemical sections for detection of Bcl-2 expression. IR injury increased ALT, AST, and GGT while decreased GSH and p-Akt with increase in MDA, TNF-α, and caspase-3 levels in the liver with necrosis and inflammatory cellular infiltration with decreased Bcl-2 expression. Pretreatment with liraglutide decreased ALT, AST, and GGT activities while increased glutathione content and Akt activation with decrements in MDA, TNF-α, and caspase-3 levels with attenuation of necrosis and inflammation while enhanced Bcl-2 expression in the liver. Liraglutide protects against IR injury of the liver through antiinflammatory and antioxidant actions as well as inhibition of apoptosis.
Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.
Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan
2014-01-01
Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Micrococcus sp.--the pathogen of leaf necrosis of horse-chestnuts (Aesculus L.) in Kiev].
Iakovleva, L M; Makhinia, L V; Shcherbina, T N; Ogorodnik, L E
2013-01-01
A group of phytopathogenic bacteria was isolated from patterns of drying horse-chestnuts (Aesculus L.), which grow in Kyiv. The properties of slowly growing, highly aggressive microorganisms have been described in the paper. They grow up on the 8-10th day after sowing. The investigated microorganisms form very small (0.5-1 mm in diameter) colonies on the potato agar. Bacteria are protuberant, shining, smooth with flat edges, they are pale yellow, yellow, or pink. The bacteria are Gram-positive, spherical, are disposed in smears singly, in pairs, as accumulations, or netting. They are aerobes, do not form spores, are not mobile. They are inert in respect of different sources of carbon. They reduce nitrates, do not dilute gelatin, do not hydrolyze starch, do not release hydrogen sulphide and indole. The bacteria are catalase-positive, oxidase-negative. They do not cause potato and carrot rot. They lose quickly their viability under the laboratory conditions. The saturated acids C 14:0; C 15:0; C16:0; C18:0 have been revealed in the composition of cellular fatty acids. Microorganisms are identified as Micrococcus sp. Under artificial inoculation this highly aggressive pathogen causes drying of the horse-chestnut buds and necrosis, which occupies 1/3-1/2 of the leaf plate. A wide zone of chlorosis, surrounding necrosis, may occupy the whole leaf surface. The infected leaves use to twist up from the top (apex) or along a midrib and to dry.
Kim, Ji-Ye; Na, Kiyong; Kim, Hyun-Soo
2017-05-01
Mitotically-active cellular fibroma (MACF) is a rare form of ovarian fibromatous tumor. Although it is generally acknowledged to have indolent biological behavior, its rarity and overlapping histopathological features with more common and aggressive entities make MACF prone to misdiagnosis and overtreatment. The clinicopathological characteristics of ovarian MACF have not been clearly established. Our 10-year review of cellular fibromatous tumors of the ovary diagnosed at a single institution revealed four cases of cellular fibroma (CF) and three cases of MACF. The mean age of patients with MACF was 46 years (range=20-71 years). Patients presented with symptoms related to pelvic masses, such as abdominal pain and discomfort and flank pain. Serum levels of cancer antigen 125 was increased in two patients with MACF. All cases of MACF were a single unilateral tumor. Magnetic resonance imaging revealed solid or mixed solid and cystic ovarian masses with diameters of 7.3-14.9 cm. The radiological impressions included benign stromal tumor, benign epithelial tumor, and borderline epithelial tumor. Grossly, MACFs exhibited yellow-to-tan fleshy cut surfaces, without necrosis or hemorrhage. Extensive hyaline degeneration, resulting in a fibrotic cut surface, was observed in one case. Histologically, MACF displayed frequent mitotic figures, as well as increased cellularity and mild cytological atypia. The mean mitotic count was 8.7 per 10 high-power fields. MACF is a newly-recognized subtype of ovarian cellular fibromatous tumor. Pathologists and clinicians should be aware of this rare entity to prevent misdiagnosis of MACF as fibrosarcoma or adult granulosa cell tumor and resultant overtreatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... meeting will be closed to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory... programs in the Cellular and Tissue Branch, Office of Cellular, Tissue and Gene Therapies, Center for...
Oh, Youngjoo; Baldwin, Ian T.; Gális, Ivan
2012-01-01
The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development. PMID:22496510
KEAP1-NRF2 COMPLEX IN ISCHEMIA-INDUCED HEPATOCELLULAR DAMAGE OF MOUSE LIVER TRANSPLANTS
Ke, Bibo; Shen, Xiu-Da; Zhang, Yu; Ji, Haofeng; Gao, Feng; Yue, Shi; Kamo, Naoko; Zhai, Yuan; Yamamoto, Masayuki; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.
2015-01-01
Background The Keap1-Nrf2 signaling pathway regulates host cell defense responses against oxidative stress and maintains the cellular redox balance. Aims&Methods: We investigated the function/molecular mechanisms by which Keap1-Nrf2 complex may influence liver ischemia/reperfusion injury (IRI) in a mouse model of hepatic cold storage (20h at 4 C) followed by orthotopic liver transplantation (OLT). Results The Keap1 hepatocyte-specific knock-out (HKO) in the donor liver ameliorated post-transplant IRI, evidenced by improved hepatocellular function and OLT outcomes (Keap1HKO Keap1HKO; 100% survival), as compared with controls (WT WT; 50% survival; p<0.01). In contrast, donor liver Nrf2 deficiency exacerbated IRI in transplant recipients (Nrf2KO Nrf2KO; 40% survival). Ablation of Keap1 signaling reduced macrophage/neutrophil trafficking, pro-inflammatory cytokine programs, and hepatocellular necrosis/apoptosis, while simultaneously promoting anti-apoptotic functions in OLTs. At the molecular level, Keap1HKO increased Nrf2 levels, stimulated Akt phosphorylation, and enhanced expression of anti-oxidant Trx1, HIF-1 , and HO-1. Pretreatment of liver donors with PI3K inhibitor (LY294002) disrupted Akt/HIF-1 signaling and recreated hepatocellular damage in otherwise IR-resistant Keap1HKO transplants. In parallel in vitro studies, hydrogen peroxide-stressed Keap1-deficient hepatocytes were characterized by enhanced expression of Nrf2, Trx1, and Akt phosphorylation, in association with decreased release of lactate dehydrogenase (LDH) in cell culture supernatants. Conclusions Keap1-Nrf2 complex prevents oxidative injury in IR-stressed OLTs through Keap1 signaling, which negatively regulates Nrf2 pathway. Activation of Nrf2 induces Trx1 and promotes PI3K/Akt, crucial for HIF-1 activity. HIF-1 -mediated overexpression of HO-1/CyclinD1 facilitates cytoprotection by limiting hepatic inflammatory responses, and hepatocellular necrosis/apoptosis in PI3K-dependent manner. PMID:23867319
Torres-Vargas, Jatziri; Jiménez-Coello, Matilde; Guzmán-Marín, Eugenia; Acosta-Viana, Karla Y.; Yadon, Zaida E.; Gutiérrez-Blanco, Eduardo; Guillermo-Cordero, José Leonardo
2018-01-01
Objective We evaluated the effect of Trypanosoma cruzi infection on fertility, gestation outcome, and maternal-fetal transmission in guinea pigs (Cavia porcellus). Methods Animals were infected with T. cruzi H4 strain (TcI lineage) before gestation (IBG) or during gestation (IDG). Tissue and sera samples of dams and fetuses were obtained near parturition. Results All IBG and IDG dams were seropositive by two tests, and exhibited blood parasite load of 1.62±2.2 and 50.1±62 parasites/μl, respectively, by quantitative PCR. Histological evaluation showed muscle fiber degeneration and cellular necrosis in all infected dams. Parasite nests were not detected in infected dams by histology. However, qPCR analysis detected parasites-eq/g heart tissue of 153±104.7 and 169.3±129.4 in IBG and IDG dams, respectively. All fetuses of infected dams were positive for anti-parasite IgG antibodies and tissue parasites by qPCR, but presented a low level of tissue inflammatory infiltrate. Fetuses of IDG (vs. IBG) dams exhibited higher degree of muscle fiber degeneration and cellular necrosis in the heart and skeletal tissues. The placental tissue exhibited no inflammatory lesions and amastigote nests, yet parasites-eq/g of 381.2±34.3 and 79.2±84.9 were detected in IDG and IBG placentas, respectively. Fetal development was compromised, and evidenced by a decline in weight, crow-rump length, and abdominal width in both groups. Conclusions T. cruzi TcI has a high capacity of congenital transmission even when it was inoculated at a very low dose before or during gestation. Tissue lesions, parasite load, and fetal under development provide evidence for high virulence of the parasite during pregnancy. Despite finding of high parasite burden by qPCR, placentas were protected from cellular damage. Our studies offer an experimental model to study the efficacy of vaccines and drugs against congenital transmission of T. cruzi. These results also call for T. cruzi screening in pregnant women and adequate follow up of the newborns in endemic areas. PMID:29364882
Teoh, Narci C; Williams, Jacqueline; Hartley, Jennifer; Yu, Jun; McCuskey, Robert S; Farrell, Geoffrey C
2010-03-01
Steatosis increases operative morbidity/mortality from ischemia-reperfusion injury (IRI); few pharmacological approaches have been protective. Using novel genetic/dietary models of nonalcoholic steatohepatitis (NASH) and simple steatosis (SS) in Alms1 mutant (foz/foz) mice, we characterized severity of IRI in NASH versus SS and lean liver and tested our hypothesis that the lipid-lowering effects of the peroxisome proliferation-activator receptor (PPAR)-alpha agonist Wy-14,643 would be hepatoprotective. Mice were subjected to 60-minute partial hepatic IRI. Microvascular changes were assessed at 15-minute reperfusion by in vivo microscopy, injury at 24 hours by serum alanine aminotransferase (ALT), and hepatic necrosis area. Injury and inflammation mediators were determined by way of immunoblotting for intercellular cellular adhesion molecule, vascular cellular adhesion molecule, p38, c-jun N-terminal kinase, IkappaB-alpha, interleukin (IL)-1a, IL-12, tumor necrosis factor-alpha (TNF-alpha) and IL-6, cell cycle by cyclin D1 and proliferating cell nuclear antigen immunohistochemistry. In foz/foz mice fed a high-fat diet (HFD) to cause NASH or chow (SS), IRI was exacerbated compared with HFD-fed or chow-fed wild-type littermates by ALT release; corresponding necrotic areas were 60 +/- 22% NASH, 29 +/- 9% SS versus 7 +/- 1% lean. Microvasculature of NASH or SS livers was narrowed by enormous lipid-filled hepatocytes, significantly reducing numbers of perfused sinusoids, all exacerbated by IRI. Wy-14,643 reduced steatosis in NASH and SS livers, whereas PPAR-alpha stimulation conferred substantial hepatoprotection against IRI by ALT release, with reductions in vascular cellular adhesion molecule-1, IL-1a, TNF-alpha, IL-12, activated nuclear factor-kappaB (NF-kappaB), p38, IL-6 production and cell cycle entry. NASH and SS livers are both more susceptible to IRI. Mechanisms include possible distortion of the microvasculature by swollen fat-laden hepatocytes, and enhanced production of several cytokines. The beneficial effects of Wy-14,643 may be exerted by dampening adhesion molecule and cytokine responses, and activating NF-kappaB, IL-6 production, and p38 kinase to effect cell cycle entry.
Norovirus P particle efficiently elicits innate, humoral and cellular immunity.
Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi
2013-01-01
Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.
Zehsaz, Farzad; Farhangi, Negin; Mirheidari, Lamia
2014-01-01
The purpose of the present study was to investigate the effects of a 12-week training program on serum CXC ligand 5, tumor necrosis factor α (TNF-α) and insulin resistance index in obese sedentary women. To this end, twenty-four obese sedentary women were evaluated before and after a 12-week exercise program including a brief warm-up, followed by ~45 min per session of aerobic exercise at an intensity of 60-75% of age-predicted maximum heart rate (~300 kcal/day), followed by a brief cool down, five times per week. After the exercise program, body weight, waist circumference, waist to hip ratio, percentage body fat mass, fasting glucose and insulin of participants were decreased. Furthermore, serum CXCL5 levels were significantly decreased from 2693.2 ±375.8 to 2290.2 ±345.9 pg/ml (p < 0.001) after the training program, which was accompanied with significantly decreased HOMA-IR (p < 0.001) and TNF-α (p < 0.001). Exercise training induced weight loss resulted in a significant reduction in serum CXCL5 concentrations and caused an improvement in insulin resistance in obese sedentary women.
Induction of autophagy by spermidine promotes longevity.
Eisenberg, Tobias; Knauer, Heide; Schauer, Alexandra; Büttner, Sabrina; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Ring, Julia; Schroeder, Sabrina; Magnes, Christoph; Antonacci, Lucia; Fussi, Heike; Deszcz, Luiza; Hartl, Regina; Schraml, Elisabeth; Criollo, Alfredo; Megalou, Evgenia; Weiskopf, Daniela; Laun, Peter; Heeren, Gino; Breitenbach, Michael; Grubeck-Loebenstein, Beatrix; Herker, Eva; Fahrenkrog, Birthe; Fröhlich, Kai-Uwe; Sinner, Frank; Tavernarakis, Nektarios; Minois, Nadege; Kroemer, Guido; Madeo, Frank
2009-11-01
Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.
Ali, Nehad Mahmoud; Ibrahim, Ayman Nabil; Ahmed, Naglaa Samier
2016-09-01
The current study was carried out to evaluate the prophylactic and therapeutic effects of Allium sativum on experimental cystic echinococcosis by measuring the serum nitric oxide level and studying hepatic histopathological changes. The experimental animals were divided into five groups, ten mice in each, group (I): prophylactic; group (II): therapeutic; group (III): prophylactic and therapeutic; group (IV): infected nontreated; group (V): non infected non treated. The results showed that serum nitric oxide was significantly increased as a result of infection in all infected groups compared to group V. Statistical significant difference was noted in serum nitrate level in group I at 1st and 8th week post infection compared to the same time interval in group IV. In group II, statistical significance was noticed only at the 1st week post infection. Statistical significant difference was noted in serum nitrate level in group III at 1st, 4th, 6th and 8th week post infection compared to same time interval in group IV. Hydatid cysts developed in livers of mice of group IV as early as 4 weeks of infection while no cysts were found in groups I,II and III. Histopathologically there were moderate pathological changes in group I and group II as hepatocytes showed moderate steatosis, moderate venous congestion and inflammatory cellular infiltrate with foci of degeneration and necrosis. While livers of mice of group III showed mild steatosis, mild venous congestion, mild inflammatory cellular infiltrate, no necrosis and no biliary hyperplasia. Accordingly, that garlic (Allium sativum) may be a promising phototherapeutic agent for cystic echinococcosis.
Bridges, Christy C.; Zalups, Rudolfs K.; Joshee, Lucy
2015-01-01
Secretion of inorganic mercury (Hg2+) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg2+ was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg2+. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg2+-induced nephropathy, Sprague-Dawley and Bcrp knockout (bcrp−/−) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol • kg−1), a moderately nephrotoxic (1.5 μmol • kg−1) or a significantly nephrotoxic (2.0 μmol • kg−1) dose of HgCl2. In general, the accumulation of Hg2+ was greater in organs of bcrp−/− rats than in Sprague-Dawley rats, suggesting that Bcrp may play a role in the export of Hg2+ from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp−/− rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. PMID:25868844
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, H.; Crowley, J.J.; Chan, J.C.
Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents thatmore » attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.« less
Irwin, Scott M.; Driver, Emily; Lyon, Edward; Schrupp, Christopher; Ryan, Gavin; Gonzalez-Juarrero, Mercedes; Basaraba, Randall J.; Nuermberger, Eric L.; Lenaerts, Anne J.
2015-01-01
ABSTRACT Cost-effective animal models that accurately reflect the pathological progression of pulmonary tuberculosis are needed to screen and evaluate novel tuberculosis drugs and drug regimens. Pulmonary disease in humans is characterized by a number of heterogeneous lesion types that reflect differences in cellular composition and organization, extent of encapsulation, and degree of caseous necrosis. C3HeB/FeJ mice have been increasingly used to model tuberculosis infection because they produce hypoxic, well-defined granulomas exhibiting caseous necrosis following aerosol infection with Mycobacterium tuberculosis. A comprehensive histopathological analysis revealed that C3HeB/FeJ mice develop three morphologically distinct lesion types in the lung that differ with respect to cellular composition, degree of immunopathology and control of bacterial replication. Mice displaying predominantly the fulminant necrotizing alveolitis lesion type had significantly higher pulmonary bacterial loads and displayed rapid and severe immunopathology characterized by increased mortality, highlighting the pathological role of an uncontrolled granulocytic response in the lung. Using a highly sensitive novel fluorescent acid-fast stain, we were able to visualize the spatial distribution and location of bacteria within each lesion type. Animal models that better reflect the heterogeneity of lesion types found in humans will permit more realistic modeling of drug penetration into solid caseous necrotic lesions and drug efficacy testing against metabolically distinct bacterial subpopulations. A more thorough understanding of the pathological progression of disease in C3HeB/FeJ mice could facilitate modulation of the immune response to produce the desired pathology, increasing the utility of this animal model. PMID:26035867
Moriwaki, Kenta; Shinzaki, Shinichiro; Miyoshi, Eiji
2011-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through binding to TRAIL receptors, death receptor 4 (DR4), and DR5. TRAIL has potential therapeutic value against cancer because of its selective cytotoxic effects on several transformed cell types. Fucosylation of proteins and lipids on the cell surface is a very important posttranslational modification that is involved in many cellular events. Recently, we found that a deficiency in GDP-mannose-4,6-dehydratase (GMDS) rendered colon cancer cells resistant to TRAIL-induced apoptosis, resulting in tumor development and metastasis by escape from tumor immune surveillance. GMDS is an indispensable regulator of cellular fucosylation. In this study, we investigated the molecular mechanism of inhibition of TRAIL signaling by GMDS deficiency. DR4, but not DR5, was found to be fucosylated; however, GMDS deficiency inhibited both DR4- and DR5-mediated apoptosis despite the absence of fucosylation on DR5. In addition, GMDS deficiency also inhibited CD95-mediated apoptosis but not the intrinsic apoptosis pathway induced by anti-cancer drugs. Binding of TRAIL and CD95 ligand to their cognate receptors primarily leads to formation of a complex comprising the receptor, FADD, and caspase-8, referred to as the death-inducing signaling complex (DISC). GMDS deficiency did not affect formation of the primary DISC or recruitment to and activation of caspase-8 on the DISC. However, formation of secondary FADD-dependent complex II, comprising caspase-8 and cFLIP, was significantly inhibited by GMDS deficiency. These results indicate that GMDS regulates the formation of secondary complex II from the primary DISC independent of direct fucosylation of death receptors. PMID:22027835
Viability of randomized skin flaps-an experimental study in rats.
António, Nsingi N; Monte Alto Costa, Andréa; Marques, Ruy G
2017-01-01
Randomized skin flaps are extensively used in plastic surgery, but the possibility of necrosis has challenged their use. Several studies have been conducted aiming to find ways to reduce the occurrence of necrosis. We evaluated the effects of pentoxifylline (PTX) and hyaluronidase (HLD), each alone or combined, on randomized rat skin flaps. Fifty male Wistar rats were divided into five groups of 10 animals each: control I, control II, PTX, HLD, PTX-HLD. Substances were administered from the first to the 14th postoperative day. The necrotic area was measured on the seventh and 14th postoperative day; the animals were killed on the 14th day, when samples were collected for histologic and immunohistochemical examination. On the seventh day, percentage of the necrotic area was significantly reduced in PTX, HLD, and PTX-HLD animals compared with control groups. On 14th day, percentage of the necrotic area in PTX, HDL, and PTX-HLD groups was also significantly reduced compared with control groups. PTX and PTX-HLD showed a significant reduction in dermis cellularity, V V of macrophages, and myofibroblasts compared with control groups; PTX showed a significant enhancement of L V of blood vessels compared with all other groups. The use of each substance alone or combined increased flap viability compared with control groups. On the seventh day, PTX exhibited lower viability than HLD, whereas on the 14th day there was no difference between treated groups. PTX alone enhanced the L V of blood vessels, whereas PTX-HLD did not. However, PTX-HLD was more effective in decreasing the dermis cellularity and macrophage V V than HLD alone. Copyright © 2016 Elsevier Inc. All rights reserved.
Knizhnik, Anna V.; Roos, Wynand P.; Nikolova, Teodora; Quiros, Steve; Tomaszowski, Karl-Heinz; Christmann, Markus; Kaina, Bernd
2013-01-01
Apoptosis, autophagy, necrosis and cellular senescence are key responses of cells that were exposed to genotoxicants. The types of DNA damage triggering these responses and their interrelationship are largely unknown. Here we studied these responses in glioma cells treated with the methylating agent temozolomide (TMZ), which is a first-line chemotherapeutic for this malignancy. We show that upon TMZ treatment cells undergo autophagy, senescence and apoptosis in a specific time-dependent manner. Necrosis was only marginally induced. All these effects were completely abrogated in isogenic glioma cells expressing O6-methylguanine-DNA methyltransferase (MGMT), indicating that a single type of DNA lesion, O6-methylguanine (O6MeG), is able to trigger all these responses. Studies with mismatch repair mutants and MSH6, Rad51 and ATM knockdowns revealed that autophagy induced by O6MeG requires mismatch repair and ATM, and is counteracted by homologous recombination. We further show that autophagy, which precedes apoptosis, is a survival mechanism as its inhibition greatly ameliorated the level of apoptosis following TMZ at therapeutically relevant doses (<100 µM). Cellular senescence increases with post-exposure time and, similar to autophagy, precedes apoptosis. If autophagy was abrogated, TMZ-induced senescence was reduced. Therefore, we propose that autophagy triggered by O6MeG adducts is a survival mechanism that stimulates cells to undergo senescence rather than apoptosis. Overall, the data revealed that a specific DNA adduct, O6MeG, has the capability of triggering autophagy, senescence and apoptosis and that the decision between survival and death is determined by the balance of players involved. The data also suggests that inhibition of autophagy may ameliorate the therapeutic outcome of TMZ-based cancer therapy. PMID:23383259
Fischer, H-P
2005-05-01
High dosage regional chemotherapy, chemoembolization and other methods of regional treatment are commonly used to treat unresectable primary liver malignancies and liver metastases. In liver malignancies of childhood neoadjuvant chemotherapy is successfully combined with surgical treatment. Chemotherapy and local tumor ablation lead to characteristic histomorphologic changes: Complete destruction of the tumor tissue and its vascular bed is followed by encapsulated necroses. After selective eradication of the tumor cells under preservation of the fibrovasular bed the tumor is replaced by hypocellular edematous and fibrotic tissue. If completely damaged tumor tissue is absorbed quickly, the tumor area is replaced by regenerating liver tissue. Obliterating fibrohyalinosis of tumor vessels, and perivascular edema or necrosis indicate tissue damage along the vascular bed. Degenerative pleomorphism of tumor cells, steatosis, hydropic swelling and Malloryhyalin in HCC can represent cytologic findings of cytotoxic cellular damage. Macroscopic type of HCC influences significantly the response to treatment. Multinodular HCC often contain viable tumor nodules close to destroyed nodules after treatment. Encapsulated uninodular tumors undergo complete necrosis much easier. Large size and a tumor capsule limitate the effect of percutaneous injection of ethanol into HCC. In carcinomas with an infiltrating border, especially in metastases of adenocarcinomas and hepatic cholangiocarcinoma cytostatic treatment damages the tumor tissue mainly in the periphery. Nevertheless the infiltrating rim, portal veins, lymphatic spaces and bile ducts as well as the angle between liver capsule, tumor nodule and bordering parenchyma are the main refugees of viable tumor tissue even after high dosage regional chemotherapy. This local resistance is caused by special local conditions of vascularization and perfusion. These residues are the source of local tumor progression and distant metastases. Besides intrinsic cellular mechanisms architectural, and microenvironmental factors relevantly limitate the effect of intensive locoregional therapy.
Genier, Francielli S; Bizanek, Maximilian; Webster, Thomas J; Roy, Amit K
2018-01-01
Conditions of cellular stress are often the cause of cell death or dysfunction. Sustained cell stress can lead to several health complications, such as extensive inflammatory responses, tumor growth, and necrosis. To prevent disease and protect human tissue during these conditions and to avoid medication side effects, nanomaterials with unique characteristics have been applied to biological systems. This paper introduces the pretreatment in human dermal fibroblasts with cerium oxide nanoparticles during nutritional stress. For this purpose, human dermal fibroblast cells received cell culture media with concentrations of 250 µg/mL and 500 µg/mL of nano-cerium oxide before being exposed to 24, 48, and 72 hours of serum starvation. Contrast images demonstrated higher cell confluence and cell integrity in cells pretreated with ceria nanoparticles compared to untreated cells. It was confirmed by MTS assay after 72 hours of serum starvation that higher cell viability was achieved with ceria nanoparticles. The results demonstrate the potential of cerium oxide nanoparticles as protective agents during cellular starvation.
Solarska-Ściuk, K; Gajewska, A; Skolimowski, J; Gajek, A; Bartosz, G
2014-01-01
Diamond nanoparticles find numerous applications in pharmacy, medicine, cosmetics, and biotechnology. However, possible adverse cellular effects of diamond nanoparticle cells have been reported, which may limit their use. The aim of this study was to compare the effect of nonmodified diamond nanoparticles (D) and diamond nanoparticles modified by the Fenton reaction (D+OH) on human umbilical cord endothelial cells (HUVEC-ST). We found that both D and D+OH show time- and concentration-dependent cytotoxicity, inducing apoptosis and necrosis of HUVEC-ST. Interaction with D and D+OH also induced changes in the production of reactive oxygen and nitrogen species and changes in the level of glutathione and activities of antioxidant enzymes in the cells. These data demonstrate that diamond nanoparticles may induce oxidative stress in human endothelial cells, which contributes to their cytotoxic effects seen at higher concentrations of D and D+OH. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei; Yao, Guo-Dong; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2016-07-01
Gelatin has been considered to exist as intermediate substance of collagen catabolism in tissue remodeling or under inflammatory conditions. We have initiated the study on possible biological functions of gelatin that can exist temporally and locally under the conditions of remodeling and inflammation Materials and methods: To this purpose, we investigated cell proliferation and survival on gelatin-coated dishes and the response to tumor necrosis factor α (TNFα)-induced cytotoxicity in L929 cells. Autophagy level, ATP level, and ROS generation are examined. L929 cells detached from the gelatin-coated dishes and formed multicellular aggregates. TNFα-induced cytotoxicity in L929 cells was inhibited by gelatin-coating culture. The cells on gelatin-coated dishes showed reduced cellular ATP levels and increased adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation, leading to increased ROS generation and autophagy. This study showed that gelatin-coated culture protected L929 cells from TNFα-induced cytotoxicity and suggested for a possible pathophysiological function of gelatin in regulating cellular functions.
ADAM-17: The Enzyme That Does It All
Gooz, Monika
2010-01-01
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme or TACE, ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer’s disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme. PMID:20184396
Huang, Xiumei; Dong, Ying; Bey, Erik A; Kilgore, Jessica A; Bair, Joseph S; Li, Long-Shan; Patel, Malina; Parkinson, Elizabeth I; Wang, Yiguang; Williams, Noelle S; Gao, Jinming; Hergenrother, Paul J; Boothman, David A
2012-06-15
Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.
Galvan, Veronica; Brandimarti, Renato; Munger, Joshua; Roizman, Bernard
2000-01-01
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type virus blocks the execution of the cell death program triggered by expression of viral genes, by the Fas and tumor necrosis factor pathways, or by nonspecific stress agents. In particular, an earlier report from this laboratory showed that the mutant virus d120 lacking the genes encoding infected cell protein 4 (ICP4), the major regulatory protein of the virus, induces a caspase-3-independent pathway of apoptosis in human SK-N-SH cells. Here we report that the pathway of apoptosis induced by the d120 mutant in human HEp-2 cells is caspase dependent. Specifically, in HEp-2 cells infected with d120, (i) a broad-range inhibitor of caspase activity, z-vad-FMK, efficiently blocked DNA fragmentation, (ii) cytochrome c was released into the cytoplasm, (iii) caspase-3 was activated inasmuch as poly(ADP-ribose) polymerase was cleaved, and (iv) chromatin condensation and fragmentation of cellular DNA were observed. In parallel studies, HEp-2 cells were transfected with a plasmid encoding human Bcl-2 and a clone (VAX-3) expressing high levels of Bcl-2 was selected. This report shows that Bcl-2 blocked all of the manifestations associated with programmed cell death caused by infection with the d120 mutant. Consistent with their resistance to programmed cell death, VAX-3 cells overproduced infected cell protein 0 (ICP0). An unexpected observation was that ICP0 encoded by the d120 mutant accumulated late in infection in small, quasi-uniform vesicle-like structures in all cell lines tested. Immunofluorescence-based colocalization studies indicated that these structures were not mitochondria or components of the endoplasmic reticulum or the late endosomal compartment. These studies affirm the conclusion that HSV can induce programmed cell death at multiple steps in the course of its replication, that the d120 mutant can induce both caspase-dependent and -independent pathways of programmed cell death, and that virus-induced stimuli of programmed cell death may differ with respect to the pathway that they activate. PMID:10644366
[Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].
Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo
2015-06-01
The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to < 10 μm, < 25 μm and 10-25 μm by gravitational sedimentation in suspensions. We also examined the cellular effects of fine regolith simulant whose primary particle size is 5.10 μm. These regolith simulants were applied to human lung carcinoma A549 cells at concentrations of 0.1 and 1.0 mg/ml. Cytotoxicity, oxidative stress and immune response were examined after 24 h exposure. Cell membrane damage, mitochondrial dysfunction and induction of Interleukin-8 (IL-8) were observed at the concentration of 1.0 mg/ml. The cellular effects of the regolith simulant at the concentration of 0.1 mg/ml were small, as compared with crystalline silica as a positive control. Secretion of IL-1β and tumor necrosis factor-α (TNF-α) was observed at the concentration of 1.0 mg/ml, but induction of gene expression was not observed at 24 h after exposure. Induction of cellular oxidative stress was small. Although the cellular effects tended to be stronger in the < 10 μm particles, there was no remarkable difference. These results suggest that the chemical components and particle size have little relationship to the cellular effects of lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.
The cell signaling protein tumor necrosis factor (TNF), produced by white blood cells, promotes inflammation and immunity processes such as fever and is involved in tumorigenesis and apoptosis (programmed cell death). However, dysregulation of TNF can also lead to another form of programmed cell death called necroptosis, which is characterized by a rise in intracellular Ca2+,
Ito, Tomoki; Liu, Yong-Jun; Arima, Kazuhiko
2013-01-01
Thymic stromal lymphopoietin (TSLP) has been recently implicated as a key molecule for initiating allergic inflammation at the epithelial cell-dendritic cell (DC) interface. In humans, aberrant TSLP expression is observed in allergic tissues, such as lesional skins of atopic dermatitis, lungs of asthmatics, nasal mucosa of atopic rhinitis and nasal polyps, and ocular surface of allergic keratoconjunctivitis. TSLP is produced predominantly by damaged epithelial cells and stimulates myeloid DCs (mDCs). TSLP-activated mDCs can promote the differentiation of naïve CD4+ T cells into a Th2 phenotype and the expansion of CD4+ Th2 memory cells in a unique manner dependent on OX40L, one of the tumor necrosis factor superfamily members with Th2-promoting function, and lack of production of IL-12. From a genetic point of view, multiple genome-wide association studies have repeatedly identified the TSLP gene as one of the loci associated with susceptibility to allergic diseases. Thus, TSLP is a rational therapeutic target for the treatment of allergic disorders. Elucidating the mechanisms that regulate TSLP expression and the effects of TSLP on orchestrating the immune response toward a Th2 phenotype is essential for developing anti-TSLP therapy. PMID:22189594
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration.
Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang
2016-08-01
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death.
Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration
Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang
2016-01-01
Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death. PMID:27444869
Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells
Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor
2013-01-01
Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787
Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles
NASA Astrophysics Data System (ADS)
Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.
Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR
Bru, Antonio; Cardona, Pere-Joan
2010-01-01
Background Mycobacterium tuberculosis is a particularly aggressive microorganism and the host's defense is based on the induction of cellular immunity, in which the creation of a granulomatous structure has an important role. Methodology We present here a new 2D cellular automata model based on the concept of a multifunctional process that includes key factors such as the chemokine attraction of the cells; the role of innate immunity triggered by natural killers; the presence of neutrophils; apoptosis and necrosis of infected macrophages; the removal of dead cells by macrophages, which induces the production of foamy macrophages (FMs); the life cycle of the bacilli as a determinant for the evolution of infected macrophages; and the immune response. Results The results obtained after the inclusion of two degrees of tolerance to the inflammatory response triggered by the infection shows that the model can cover a wide spectrum, ranging from highly-tolerant (i.e. mice) to poorly-tolerant hosts (i.e. mini-pigs or humans). Conclusions This model suggest that stopping bacillary growth at the onset of the infection might be difficult and the important role played by FMs in bacillary drainage in poorly-tolerant hosts together with apoptosis and innate lymphocytes. It also shows the poor ability of the cellular immunity to control the infection, provides a clear protective character to the granuloma, due its ability to attract a sufficient number of cells, and explains why an already infected host can be constantly reinfected. PMID:20886087
Ryan-Payseur, Bridgett; Ali, Zahida; Huang, Dan; Chen, Crystal Y.; Yan, Lin; Wang, Richard C.; Collins, William E.; Wang, Yunqi
2011-01-01
Background. Malaria and AIDS represent 2 leading causes of death from infectious diseases worldwide, and their high geographic overlap means coinfection is prevalent. It remains unknown whether distinct immune responses during coinfection with malaria and human immunodeficiency virus (HIV) affect clinical outcomes. Methods. We tested this hypothesis by employing macaque models of coinfection with malaria and simian-human immunodeficiency virus (SHIV). Results. Plasmodium fragile malaria coinfection of acutely SHIV-infected macaques induced hyperimmune activation and remarkable expansion of CD4+ and CD8+ T effector cells de novo producing interferon γ or tumor necrosis factor α. Malaria-driven cellular hyperactivation/expansion and high-level Th1-cytokines enhanced SHIV disease characterized by increasing CD4+ T-cell depletion, profound lymphoid depletion or destruction, and even necrosis in lymph nodes and spleens. Importantly, malaria/SHIV-mediated depletion, destruction, and necrosis in lymphoid tissues led to bursting parasite replication and fatal virus-associated malaria. Surprisingly, chronically SHIV-infected macaques without AIDS employed different defense mechanisms during malaria coinfection, and mounted unique ∼200-fold expansion of interleukin 17+/interleukin 22+ T effectors with profound Th1 suppression. Such remarkable expansion of Th17/Th22 cells and inhibition of Th1 response coincided with development of immunity against fatal virus-associated malaria without accelerating SHIV disease. Conclusions. These novel findings suggest that virus infection status and selected Th1 or Th17/Th22 responses after malaria/AIDS-virus coinfection correlate with distinct outcomes of virus infection and malaria. PMID:21921207
Blazer, V.S.; Fabacher, D.L.; Little, E.E.; Ewing, M.S.; Kocan, K.M.
1997-01-01
Lahontan cutthroat trout Oncorhynchus clarki henshawi were sensitive to simulated solar ultraviolet-B radiation (UVB) and exhibited grossly visible signs of sunburn upon exposure. Razorback suckers Xyrauchen texanus, however, were tolerant to simulated solar UVB and showed no grossly visible signs of exposure. Cutthroat trout also had considerably less of an unidentified, possibly photoprotective, substance in the skin than did razorback suckers. In all attempt to characterize the cellular response to simulated solar UVB exposure in the skin of these two species, we examined sections from UVB-exposed fish by light and electron microscopy. Cutthroat trout showed grossly visible signs of sunburn by 48 h. Histologic observations included a sloughing of the mucous cells, necrosis and edema in the epidermis and dermis, and, in some cases, secondary fungal infections. Razorback suckers did not show any visible signs of sunburn during 72 h of experimental exposure. Histologic analyses revealed that cell necrosis had occurred, but the severe necrosis and sloughing noted in cutthroat trout was not observed. An increase in epidermal thickness, apparently due to hypertrophy and hyperplasia of large PAS-negative cells, occurred in the razorback suckers. These cells contained a large central region of low electron density and appeared to be club cells. In some, extensive interdigitation of the electron-lucent cytoplasm with adjacent epithelial cell margins occurred. Near the surface of the epidermis these cells were larger and the interface with epithelial cells lacked complex interdigitation. These cells may contain the substance that appears to protect razorback suckers against UV-B radiation.
The response of a boreal deep-sea sponge holobiont to acute thermal stress.
Strand, R; Whalan, S; Webster, N S; Kutti, T; Fang, J K H; Luter, H M; Bannister, R J
2017-05-22
Effects of elevated seawater temperatures on deep-water benthos has been poorly studied, despite reports of increased seawater temperature (up to 4 °C over 24 hrs) coinciding with mass mortality events of the sponge Geodia barretti at Tisler Reef, Norway. While the mechanisms driving these mortality events are unclear, manipulative laboratory experiments were conducted to quantify the effects of elevated temperature (up to 5 °C, above ambient levels) on the ecophysiology (respiration rate, nutrient uptake, cellular integrity and sponge microbiome) of G. barretti. No visible signs of stress (tissue necrosis or discolouration) were evident across experimental treatments; however, significant interactive effects of time and treatment on respiration, nutrient production and cellular stress were detected. Respiration rates and nitrogen effluxes doubled in responses to elevated temperatures (11 °C & 12 °C) compared to control temperatures (7 °C). Cellular stress, as measured through lysosomal destabilisation, was 2-5 times higher at elevated temperatures than for control temperatures. However, the microbiome of G. barretti remained stable throughout the experiment, irrespective of temperature treatment. Mortality was not evident and respiration rates returned to pre-experimental levels during recovery. These results suggest other environmental processes, either alone or in combination with elevated temperature, contributed to the mortality of G. barretti at Tisler reef.
Seet, Li-Fong; Su, Roseline; Toh, Li Zhen; Wong, Tina T
2012-06-01
Failure of glaucoma filtration surgery (GFS) is commonly attributed to scarring at the surgical site. The human Tenon's fibroblasts (HTFs) are considered the major cell type contributing to the fibrotic response. We previously showed that SPARC (secreted protein, acidic, rich in cysteine) knockout mice had improved surgical success in a murine model of GFS. To understand the mechanisms of SPARC deficiency in delaying subconjunctival fibrosis, we used the gene silencing approach to reduce SPARC expression in HTFs and examined parameters important for wound repair and fibrosis. Mitomycin C-treated HTFs were used for comparison. We demonstrate that SPARC-silenced HTFs showed normal proliferation and negligible cellular necrosis but were impaired in motility and collagen gel contraction. The expression of pro-fibrotic genes including collagen I, MMP-2, MMP-9, MMP-14, IL-8, MCP-1 and TGF-β(2) were also reduced. Importantly, TGF-β(2) failed to induce significant collagen I and fibronectin expressions in the SPARC-silenced HTFs. Together, these data demonstrate that SPARC knockdown in HTFs modulates fibroblast functions important for wound fibrosis and is therefore a promising strategy in the development of anti-scarring therapeutics. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Matucci, Andrea; Maggi, Enrico; Vultaggio, Alessandra
2014-05-01
In this review, recent insights into innate and adaptive cellular and humoral immune response to Mycobacterium tuberculosis (Mtb) are discussed and the role of specific cytokines such as tumor necrosis factor-α (TNF-α) is highlighted. According to recent findings, the immune system plays a key role in avoiding mycobacteria dissemination. The importance of different cell types (macrophages, dendritic cells, interferon-γ-producing T cells) as well as the production of proinflammatory cytokines such as interleukin 6 (IL-6), IL-12, and IL-23/IL-17 have been demonstrated. Alveolar macrophages are considered the first cells infected by Mtb during respiratory infection. Mtb proliferates within alveolar macrophages and dendritic cells and induces the release of cytokines such as TNF-α, IL-1, IL-6, and IL-12. Toll-like receptors-stimulated dendritic cells link innate and adaptive immunity by promoting polarization of effector T cells. The efficient induction of Th1 immunity is decisive in defense against Mtb. In fact, host effector immune response against Mtb is related to the presence of a Th1 response. The definition of the cellular and molecular mechanisms involved in the immune response to Mtb can be helpful in developing new preventive strategies to avoid infection relapse, particularly in patients treated with biological agents.
Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao
2011-01-01
Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122
Di Pietro, C; Piro, S; Tabbì, G; Ragusa, M; Di Pietro, V; Zimmitti, V; Cuda, F; Anello, M; Consoli, U; Salinaro, E T; Caruso, M; Vancheri, C; Crimi, N; Sabini, M G; Cirrone, G A P; Raffaele, L; Privitera, G; Pulvirenti, A; Giugno, R; Ferro, A; Cuttone, G; Lo Nigro, S; Purrello, R; Purrello, F; Purrello, M
2006-01-01
Due to their ballistic precision, apoptosis induction by protons could be a strategy to specifically eliminate neoplastic cells. To characterize the cellular and molecular effects of these hadrons, we performed dose-response and time-course experiments by exposing different cell lines (PC3, Ca301D, MCF7) to increasing doses of protons and examining them with FACS, RT-PCR, and electron spin resonance (ESR). Irradiation with a dose of 10 Gy of a 26,7 Mev proton beam altered cell structures such as membranes, caused DNA double strand breaks, and significantly increased intracellular levels of hydroxyl ions, are active oxygen species (ROS). This modified the transcriptome of irradiated cells, activated the mitochondrial (intrinsic) pathway of apoptosis, and resulted in cycle arrest at the G2/M boundary. The number of necrotic cells within the irradiated cell population did not significantly increase with respect to the controls. The effects of irradiation with 20 Gy were qualitatively as well as quantitatively similar, but exposure to 40 Gy caused massive necrosis. Similar experiments with photons demonstrated that they induce apoptosis in a significantly lower number of cells and in a temporally delayed manner. These data advance our knowledge on the cellular and molecular effects of proton irradiation and could be useful for improving current hadrontherapy protocols.
Cellular and Molecular Pathways Leading to External Root Resorption
Iglesias-Linares, A.; Hartsfield, J.K.
2016-01-01
External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component—specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels. PMID:27811065
Epstein-Barr virus growth/latency III program alters cellular microRNA expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, Jennifer E.; Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL79, New Orleans, LA 70112; Fewell, Claire
The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lowermore » in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.« less
Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals.
Maeda, A; Fadeel, B
2014-07-03
Necrosis leads to the release of so-called damage-associated molecular patterns (DAMPs), which may provoke inflammatory responses. However, the release of organelles from dying cells, and the consequences thereof have not been documented before. We demonstrate here that mitochondria are released from cells undergoing tumor necrosis factor-α (TNF-α)-induced, receptor-interacting protein (RIP)1-dependent necroptosis, a form of programmed necrosis. The released, purified mitochondria were determined to be intact as they did not emit appreciable amounts of mitochondrial DNA (mtDNA). Pharmacological inhibition of dynamin-related protein 1 (Drp1) prevented mitochondrial fission in TNF-α-triggered cells, but this did not block necroptosis nor the concomitant release of mitochondria. Importantly, primary human macrophages and dendritic cells engulfed mitochondria from necroptotic cells leading to modulation of macrophage secretion of cytokines and induction of dendritic cell maturation. Our results show that intact mitochondria are released from necroptotic cells and suggest that these organelles act as bona fide danger signals.
Blue light reduces organ injury from ischemia and reperfusion
Yuan, Du; Collage, Richard D.; Huang, Hai; Zhang, Xianghong; Kautza, Benjamin C.; Lewis, Anthony J.; Zuckerbraun, Brian S.; Tsung, Allan; Angus, Derek C.; Rosengart, Matthew R.
2016-01-01
Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (β3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury. PMID:27114521
Irwin, Scott M.; Gruppo, Veronica; Brooks, Elizabeth; Gilliland, Janet; Scherman, Michael; Reichlen, Matthew J.; Leistikow, Rachel; Kramnik, Igor; Nuermberger, Eric L.; Voskuil, Martin I.
2014-01-01
New drugs and drugs with a novel mechanism of action are desperately needed to shorten the duration of tuberculosis treatment, to prevent the emergence of drug resistance, and to treat multiple-drug-resistant strains of Mycobacterium tuberculosis. Recently, there has been renewed interest in clofazimine (CFZ). In this study, we utilized the C3HeB/FeJ mouse model, possessing highly organized, hypoxic pulmonary granulomas with caseous necrosis, to evaluate CFZ monotherapy in comparison to results with BALB/c mice, which form only multifocal, coalescing cellular aggregates devoid of caseous necrosis. While CFZ treatment was highly effective in BALB/c mice, its activity was attenuated in the lungs of C3HeB/FeJ mice. This lack of efficacy was directly related to the pathological progression of disease in these mice, since administration of CFZ prior to the formation of hypoxic, necrotic granulomas reconstituted bactericidal activity in this mouse strain. These results support the continued use of mouse models of tuberculosis infection which exhibit a granulomatous response in the lungs that more closely resembles the pathology found in human disease. PMID:24798275
Bradford, W. D.; Croker, B. P.; Tisher, C. C.
1979-01-01
The essential pathologic lesion in Rocky Mountain spotted fever (RMSF) is a vasculitis that may involve the kidneys as well as the heart, brain, skin, and subcutaneous tissues. Histopathologic information concerning the response of the kidneys in RMSF is rather limited, however. In this study renal tissue from 17 children who died of RMSF was examined by light, electron, and immunofluorescence microscopy. A lymphocytic or mixed inflammation, or both, involving vessels and interstitium of the kidney was found in all patients. In addition, 10 patients had histologic evidence of acute tubular necrosis, and another 3 had glomerular lesions consisting of focal segmental tuft necrosis or increased cellularity secondary to neutophilic infiltration, or both. Immunofluorescence- and electron-microscopic studies failed to demonstrate immune-complex deposition within glomeruli, a finding that suggests that immunoglobulin and classic immune complexes were not involved in the pathogenesis of the renal lesions at the time of death. These findings suggest the possibility that the pathogenesis of the renal lesion in RMSF may be due to a direct action of the organism (Rickettsia rickettsii) on the vessel wall. Images Figure 2 Figure 1 PMID:525676
Holzman, L B; Marks, R M; Dixit, V M
1990-11-01
We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor.
Holzman, L B; Marks, R M; Dixit, V M
1990-01-01
We have previously described the cloning of a group of novel cellular immediate-early response genes whose expression in human umbilical vein endothelial cells is induced by tumor necrosis factor alpha in the presence of cycloheximide. These genes are likely to participate in mediating the response of the vascular endothelium to proinflammatory cytokines. In this study, we further characterized one of these novel gene products named B61. Sequence analysis of cDNA clones encoding B61 revealed that its protein product has no significant homology to previously described proteins. Southern analysis suggested that B61 is an evolutionarily conserved single-copy gene. B61 is primarily a hydrophilic molecule but contains both a hydrophobic N-terminal and a hydrophobic C-terminal region. The N-terminal region is typical of a signal peptide, which is consistent with the secreted nature of the protein. The mature form of the predicted protein consists of 187 amino acid residues and has a molecular weight of 22,000. Immunoprecipitation of metabolically labeled human umbilical vein endothelial cell preparations revealed that B61 is a 25-kilodalton secreted protein which is markedly induced by tumor necrosis factor. Images PMID:2233719
Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.
Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita
2018-03-01
Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.
Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats
NASA Technical Reports Server (NTRS)
Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.
1990-01-01
Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.
Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas
2016-02-01
Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.
Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation.
Zhao, Jing; Zhang, Lei; Mu, Xiaodong; Doebelin, Christelle; Nguyen, William; Wallace, Callen; Reay, Daniel P; McGowan, Sara J; Corbo, Lana; Clemens, Paula R; Wilson, Gabriela Mustata; Watkins, Simon C; Solt, Laura A; Cameron, Michael D; Huard, Johnny; Niedernhofer, Laura J; Kamenecka, Theodore M; Robbins, Paul D
2018-06-11
Nuclear factor κB (NF-κB) is a transcription factor important for regulating innate and adaptive immunity, cellular proliferation, apoptosis, and senescence. Dysregulation of NF-κB and its upstream regulator IκB kinase (IKK) contributes to the pathogenesis of multiple inflammatory and degenerative diseases as well as cancer. An 11-amino acid peptide containing the NF-κB essential modulator (NEMO)-binding domain (NBD) derived from the C-terminus of β subunit of IKK, functions as a highly selective inhibitor of the IKK complex by disrupting the association of IKKβ and the IKKγ subunit NEMO. A structure-based pharmacophore model was developed to identify NBD mimetics by in silico screening. Two optimized lead NBD mimetics, SR12343 and SR12460, inhibited tumor necrosis factor α (TNF-α)- and lipopolysaccharide (LPS)-induced NF-κB activation by blocking the interaction between IKKβ and NEMO and suppressed LPS-induced acute pulmonary inflammation in mice. Chronic treatment of a mouse model of Duchenne muscular dystrophy (DMD) with SR12343 and SR12460 attenuated inflammatory infiltration, necrosis and muscle degeneration, demonstrating that these small-molecule NBD mimetics are potential therapeutics for inflammatory and degenerative diseases.
Chen, Jingyun; Wei, Linlin; Xia, Yumin
2017-02-01
As one of the manifestations of patients with systemic lupus erythematosus, lupus nephritis (LN) has high morbidity and mortality. Although the explicit mechanism of LN remains to be fully elucidated, there is increasing evidence to support the notion that tumour necrosis factor-related weak inducer of apoptosis (TWEAK), acting via its sole receptor, fibroblast growth factor-inducible 14 (Fn14), plays a pivotal role in such pathologic process. TWEAK/Fn14 interactions occur prominently in kidneys of LN, inducing inflammatory responses, angiogenesis, mesangial proliferation, filtration barrier injuries, renal fibrosis, etc. This review will specify the important roles of TWEAK/Fn14 pathway in the pathogenesis of LN with experimental data from cellular and animal models. Additionally, the raised levels of urinary and serum soluble TWEAK correlate with renal disease activity in patients with LN. The neutralizing antibodies targeting TWEAK or other approaches inhibiting TWEAK/Fn14 signals can attenuate renal damage in the murine lupus models. Therefore, to focus on TWEAK/Fn14 signalling may be promising in both clinical evaluation and the treatment of patients with LN. © 2016 Asian Pacific Society of Nephrology.
Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young
2015-01-01
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression. [BMB Reports 2015; 48(10): 559-564] PMID:25739392
Dilshara, Matharage Gayani; Kang, Chang-Hee; Choi, Yung Hyun; Kim, Gi-Young
2015-10-01
We investigated the effects of mangiferin on the expression and activity of metalloproteinase (MMP)-9 and the invasion of tumor necrosis factor (TNF)-α-stimulated human LNCaP prostate carcinoma cells. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that mangiferin significantly reversed TNF-α-induced mRNA and protein expression of MMP-9 expression. Zymography data confirmed that stimulation of cells with TNF-α significantly increased MMP-9 activity. However, mangiferin substantially reduced the TNF-α-induced activity of MMP-9. Additionally, a matrigel invasion assay showed that mangiferin significantly reduced TNF-α-induced invasion of LNCaP cells. Compared to untreated controls, TNF-α-stimulated LNCaP cells showed a significant increase in nuclear factor-κB (NF-κB) luciferase activity. However, mangiferin treatment markedly decreased TNF-α-induced NF-κB luciferase activity. Furthermore, mangiferin suppressed nuclear translocation of the NF-κB subunits p65 and p50. Collectively, our results indicate that mangiferin is a potential anti-invasive agent that acts by suppressing NF-κB-mediated MMP-9 expression.
Diesel Exhaust Particles Contribute to Endothelia Apoptosis via Autophagy Pathway.
Wang, Jhih-Syuan; Tseng, Chia-Yi; Chao, Ming-Wei
2017-03-01
Epidemiological studies suggest that an increase of PM2.5 diesel exhaust particles (DEP) in ambient air corresponds to increased myocardial infarctions and atherosclerosis. When exposed to DEP, endothelial cells exhibit increases in oxidative stress and apoptosis, but the role of autophagy in this DEP-induced cell death remains unclear. Here, we suggest that acute DEP exposure produces intracellular reactive oxygen species (ROS) leading to induction of DEP internalization, endothelial dysfunction, and pro-inflammation in an in vitro human umbilical vein endothelial cells (HUVEC) model. This study found that increases in intracellular oxidative stress and cellular internalization of DEP occurred within 2 h of exposure to DEP. After 2 h of DEP exposure, Mdm2 expression was increased, which triggered cellular autophagy after 4 h of DEP exposure and suppressed cellular senescence. Unfortunately, phagocytized DEP could not be eliminated by cellular autophagy, which led to a continuous buildup of ROS, an increased release of cytokines, and an increased expression of anchoring molecules. After 12 h of DEP exposure, HUVEC reduced Mdm2 expression leading to increased p53 expression, which triggered apoptosis and ultimately resulted in endothelial dysfunction. On the other hand, when cells lacked the ability to induce autophagy, DEP was unable to induce cell senescence and most of the cells survived with only a small percentage of the cells undergoing necrosis. The results presented in this study clearly demonstrate the role cellular autophagy plays in DEP-induced atherosclerosis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mazzocca, Augustus D; McCarthy, Mary Beth R; Intravia, Jessica; Beitzel, Knut; Apostolakos, John; Cote, Mark P; Bradley, James; Arciero, Robert A
2013-04-01
The purpose of this study was to quantify the extent of the anti-inflammatory effect of platelet-rich plasma (PRP) in a controlled in vitro environment. Through the stimulation of human umbilical vein endothelial cells with inflammatory cytokines (tumor necrosis factor α and interferon γ), cell adhesion molecule expression (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) and PRP's anti-inflammatory effect can be measured. PRP was produced from 3 individuals using a single-spin (PRPLP) process. Treatment groups include negative (unstimulated) controls, positive (stimulated) controls, ketorolac tromethamine, methylprednisolone, PRP, ketorolac-PRP, and methylprednisolone-PRP. A fluorescence assay of the cellular inflammation markers was measured by the BioTek Synergy HT plate reader (BioTek Instruments, Winooski, VT) at 0, 1, 2, and 5 days. At days 2 and 5, methylprednisolone treatment showed a 2.1- to 5.8-fold reduction (P < .05) in inflammation markers over PRP. In addition, PRP and ketorolac showed a 1.4- to 2.5-fold reduction (P < .05) in cellular inflammation markers over the control. There was no statistically significant difference between ketorolac and PRP. Although PRP and ketorolac reduced cellular inflammation markers (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) compared with control, neither caused as great a reduction as methylprednisolone. Although PRP and ketorolac did not produce as significant a reduction in cellular inflammation markers as methylprednisolone, they reduced cellular inflammation compared with the control. These agents may have clinical application as injectable anti-inflammatory medications. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Dong, Yanru; Bao, Cuifen; Yu, Jingwei; Liu, Xia
2016-07-01
In the current study, the activation of tumor necrosis factor-α receptor 1 (TNFR1) and receptor-interacting protein kinase 3 (RIP3) were investigated following cerebral ischemia-reperfusion injury (CIRI). Healthy SD rats were randomly divided into 3 groups: Sham operation group, model group and inhibitor group. The model group and inhibitor group were further divided into 4 subgroups of 6, 12, 24 and 72 h following CIRI. Using right middle cerebral artery embolization, the CIRI model was generated. To confirm that the CIRI model was established, neurological scores, TTC staining and brain water content measurements were conducted. Immunohistochemistry and western blotting were conducted to investigate the expression of TNFR1 and RIP3 in the cerebral cortex. It was observed that nerve cell necrosis occurred following 6 h of CIRI. The appearance of necrotic cells was gradually increased with increasing CIRI duration. TNFR1 and RIP3 were positively expressed following 6 h of CIRI. With increasing durations of CIRI, the protein expression levels of TNFR1 and RIP3 were significantly increased. Pre‑administration with Z-VAD-FMK (zVAD) significantly increased the protein level of RIP3, however, had no effect on the levels of TNFR1, and was accompanied by a reduction in necrosis. In conclusion, RIP3‑mediated cell necrosis was enhanced by caspase blockade zVAD and the function of zVAD was independent of TNFR1 signaling following IR.
Necroptosis, necrostatins and tissue injury
Smith, Christopher CT; Yellon, Derek M
2011-01-01
Abstract Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of ‘programmed necrosis’. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions. PMID:21564515
Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program
ERIC Educational Resources Information Center
O'Connor, Kim C.
2005-01-01
There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…
Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia.
Su, Shan-Yu; Hsieh, Ching-Liang
2011-07-09
Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.
Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages.
Rezende, T M B; Vargas, D L; Cardoso, F P; Sobrinho, A P R; Vieira, L Q
2005-12-01
To test the effect of two commercial brands of grey mineral trioxide aggregate (ProRoot and MTA-Angelus) on cytokine production by M1 and M2 inflammatory macrophages. M1 (from C57BL/6 mice) and M2 peritoneal inflammatory macrophages (from C57BL/6 IL12p40-/- mice) were obtained and cultured in vitro in the presence of MTA. The cellular viability and the production of tumour necrosis factor-alpha, interleukin (IL)-12 and IL-10 in response to stimulation with interferon-gamma and Fusobacterium nucleatum or Peptostreptococcus anaerobius were evaluated. Data were analysed by Mann-Whitney, Kruskal-Wallis and anova tests. The cements did not interfere with cellular viability or with cytokine production by either type of macrophage. However, M2 macrophages produced higher levels of IL-10 when stimulated with F. nucleatum than M1 macrophages (P < 0.05). The brands of MTA evaluated did not interfere in the cytokine response by M1 or M2 macrophages to the two bacteria tested. However, a difference in cytokine production between the two types of macrophages was found.
TNF{alpha} release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskolci, Veronika; Department of Pediatrics, Feinstein Institute for Medical Research at the North Shore-Long Island Jewish Health System, New Hyde Park, NY 11040; Ghosh, Chandra C.
2006-12-15
Tumor necrosis factor-{alpha} (TNF{alpha}) is a potent pro-inflammatory cytokine that plays a major role in the pathogenesis of acute and chronic inflammatory disorders such as septic shock and arthritis, respectively. Leukocytes stimulated with inflammatory signals such as lipopolysaccharide (LPS) are the predominant producers of TNF{alpha}, and thus control of TNF{alpha} release from stimulated leukocytes represents a potential therapeutic target. Here, we report that leptomycin B (LMB), a specific inhibitor of CRM1-dependent nuclear protein export, inhibits TNF{alpha} release from LPS-stimulated human peripheral blood neutrophils and mononuclear cells. In addition, immunofluorescence confocal microscopy and immunoblotting analysis indicate that TNF{alpha} is localized inmore » the nucleus of human neutrophils and mononuclear cells. This study demonstrates that the cellular release of TNF{alpha} from stimulated leukocytes is mediated by the CRM1-dependent nuclear export mechanism. Inhibition of CRM1-dependent cellular release of TNF{alpha} could thus provide a novel therapeutic approach for disorders involving excessive TNF{alpha} release.« less
The Cellular Pathology of Experimental Hypertension
Wiener, Joseph; Giacomelli, Filiberto
1973-01-01
Acute hypertension was produced in rats by the infusion of angiotensin amide for 2 to 4 hours. These animals were injected intravenously prior to sacrifice with either colloidal carbon or iron dextran particles. The mesenteric vessels from hypertensive and control animals were processed for electron microscopy. Ultrastructural alterations are found in dilated segments of small arteries. Initially there is severe contraction of medial smooth muscle cells and the formation of processes of smooth muscle cytoplasm. This is followed by lysis of cell processes and bodies, and passage of plasma and colloidal iron into the media. Subsequently, carbon, platelets, fibrin and cellular debris are seen within these foci of medial necrosis. These changes appear as a sequence whose severity reflects the duration of the angiotensin infusion and degree of elevation of the systolic pressure. The morphologic alterations are discussed in relation to the generalized increase in vascular permeability that is associated with the hypertensive state. ImagesFig 5Fig 11Fig 12Fig 13Fig 14Fig 6Fig 7Fig 1Fig 2Fig 3Fig 4Fig 8Fig 9Fig 10 PMID:4124863
Glycation & Insulin Resistance: Novel Mechanisms and Unique Targets?
Song, Fei; Schmidt, Ann Marie
2012-01-01
Objectives Multiple biochemical, metabolic and signal transduction pathways contribute to insulin resistance. In this review, we present the evidence that the post-translational process of protein glycation may play role in insulin resistance. The post-translational modifications, the advanced glycation endproducts (AGEs), are formed and accumulate by endogenous and exogenous mechanisms. Methods and Results AGEs may contribute to insulin resistance by a variety of mechanisms, including generation of tumor necrosis factor-alpha, direct modification of the insulin molecule thereby leading to its impaired action, generation of oxidative stress, and impairment of mitochondrial function, as examples. AGEs may stimulate signal transduction via engagement of cellular receptors, such as RAGE, or receptor for AGE. AGE-RAGE interaction perpetuates AGE formation and cellular stress via induction of inflammation, oxidative stress and reduction in the expression and activity of the enzyme, glyoxalase I that detoxifies the AGE precursor, methylglyoxal, or MG. Conclusions Once set in motion, glycation-promoting mechanisms may stimulate ongoing AGE production and target tissue stresses that reduce insulin responsiveness. Strategies to limit AGE accumulation and action may contribute to prevention of insulin resistance and its consequences. PMID:22815341
Tuggle, Benjamin N.; Crites, John L.
1984-01-01
Kidneys from 309 Interior Canada geese from three locations in the Mississippi Flyway were examined for renal coccidia. Oocysts and/or young zygotes of Eimeria sp. were found in 6.8% of goose kidneys sampled. Only one type of renal coccidian oocyst was observed. Significantly more immature geese were infected than adults; however, there was no significant difference observed between the prevalences of infection in male and female birds. A host cellular response to zygotes and oocysts was noted in the majority of infected adult geese. Heavily infected kidneys were hypertrophic with minute foci on the surface of the organ. Histological examinations showed large numbers of unsporulated oocysts accumulated in distended collecting tubules, resulting in pressure necrosis to adjacent tissue and urate retention. Zygotes were observed in the cytoplasm of tubule cells and extracellularly in interstitial tissue. Infected tubule cells were characterized by the peripheral location of the nuclei, cytoplasmic basophilia, and cellular hypertrophy. This is the first report of an Eimeria sp. in the kidneys of Canada geese of the Mississippi Valley population.
Neuro-glial crosstalk in inflammatory bowel disease.
Neunlist, M; Van Landeghem, L; Bourreille, A; Savidge, T
2008-06-01
Inflammatory bowel disease (IBD) is a multifactorial disease in which environmental, immune and genetic factors are involved in the pathogenesis. Although biological therapies (antibodies anti-tumour necrosis factor-alpha or anti-integrin) have considerably improved the symptoms and quality of life of IBD patients, some drawbacks have emerged limiting their long-term use. In addition, prevention of relapses and treatment of resistant ulcers remains a clinical challenge. In this context, a better understanding of the pathophysiology of IBD and the development of novel therapeutic intervention would benefit from further basic and preclinical research into the role of the cellular microenvironment and the interaction between its cellular constituents. In this context, the role of the enteric nervous system (ENS) in the regulation of the intestinal epithelial barrier (IEB) and the gut immune response has fuelled an increased interest in the last few years. Recent advances, summarized in this review, have highlighted the ENS as playing a key role in the control of IEB functions and gut immune homeostasis, and that alterations of the ENS could be directly associated in the development of IBD and its associated symptoms.
Potential mechanisms of hepatitis B virus induced liver injury
Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq
2014-01-01
Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946
Marmary, Yitzhak; Adar, Revital; Gaska, Svetlana; Wygoda, Annette; Maly, Alexander; Cohen, Jonathan; Eliashar, Ron; Mizrachi, Lina; Orfaig-Geva, Carmit; Baum, Bruce J; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H
2016-03-01
Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy. ©2016 American Association for Cancer Research.
2012-01-01
Background Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. Results In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, 3H-mannitol fluxes, short-circuit current (Cl− secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl− secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca2+]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Conclusions Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS. PMID:22553939
Cuppoletti, John; Blikslager, Anthony T; Chakrabarti, Jayati; Nighot, Prashant K; Malinowska, Danuta H
2012-05-03
Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, (3)H-mannitol fluxes, short-circuit current (Cl(-) secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl(-) secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca(2+)]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.
Saha, Banishree; Momen-Heravi, Fatemeh; Furi, Istvan; Kodys, Karen; Catalano, Donna; Gangopadhyay, Anwesha; Haraszti, Reka; Satishchandran, Abhishek; Iracheta-Vellve, Arvin; Adejumo, Adeyinka; Shaffer, Scott A; Szabo, Gyongyi
2018-05-01
A salient feature of alcoholic liver disease (ALD) is Kupffer cell (KC) activation and recruitment of inflammatory monocytes and macrophages (MØs). These key cellular events of ALD pathogenesis may be mediated by extracellular vesicles (EVs). EVs transfer biomaterials, including proteins and microRNAs, and have recently emerged as important effectors of intercellular communication. We hypothesized that circulating EVs from mice with ALD have a protein cargo characteristic of the disease and mediate biological effects by activating immune cells. The total number of circulating EVs was increased in mice with ALD compared to pair-fed controls. Mass spectrometric analysis of circulating EVs revealed a distinct signature for proteins involved in inflammatory responses, cellular development, and cellular movement between ALD EVs and control EVs. We also identified uniquely important proteins in ALD EVs that were not present in control EVs. When ALD EVs were injected intravenously into alcohol-naive mice, we found evidence of uptake of ALD EVs in recipient livers in hepatocytes and MØs. Hepatocytes isolated from mice after transfer of ALD EVs, but not control EVs, showed increased monocyte chemoattractant protein 1 mRNA and protein expression, suggesting a biological effect of ALD EVs. Compared to control EV recipient mice, ALD EV recipient mice had increased numbers of F4/80 hi cluster of differentiation 11b (CD11b) lo KCs and increased percentages of tumor necrosis factor alpha-positive/interleukin 12/23-positive (inflammatory/M1) KCs and infiltrating monocytes (F4/80 int CD11b hi ), while the percentage of CD206 + CD163 + (anti-inflammatory/M2) KCs was decreased. In vitro, ALD EVs increased tumor necrosis factor alpha and interleukin-1β production in MØs and reduced CD163 and CD206 expression. We identified heat shock protein 90 in ALD EVs as the mediator of ALD-EV-induced MØ activation. Our study indicates a specific protein signature of ALD EVs and demonstrates a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000). © 2017 by the American Association for the Study of Liver Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr
This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redoxmore » state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.« less
Effects of Alcohol Injection in Rat Sciatic Nerve
Mazoch, Mathew J.; Cheema, Gulraiz A.; Suva, Larry J.; Thomas, Ruth L.
2015-01-01
Background Previous studies have shown that the injection of dehydrated alcohol has been successful for the treatment of Morton's neuroma in the foot. In this study, we determined the cellular effect of injection of alcohol into and around the sciatic nerve of rats, and measured the extent of cell necrosis and/or any associated histologic or inflammatory changes. Methods Twenty-two male (~375g) Wistar rats were randomized into two groups each receiving alcohol injections into or around the sciatic nerve after nerve exposure under sterile technique. Group 1 rats were injected with a 0.5ml solution of 0.5% Marcaine in the left sciatic nerve as a control group. In the right sciatic nerve a 0.5ml solution of 4% ethanol with 0.5% Marcaine was injected. Group 2 rats received 0.5ml of 20%ethanol with 0.5% Marcaine injected into the left sciatic nerve and 0.5 ml of 30% ethanol with 0.5% Marcaine injected into the right sciatic nerve. In each group, the rats were placed in 3 subgroups: intraneural, perineural, perimuscular injections. All rats were sacrificed and tissue harvested for histologic evaluation at day 10 post injection. Results No evidence of alcohol-associated cell necrosis, apoptosis or apparent inflammation was observed in histologic specimens of any injected nerves, perineural tissue, or muscles in controls or experimental groups regardless of concentration of ethanol injected on day 10. Conclusion We concluded that alcohol injection (≤30% ethanol) into and/or around the sciatic nerve or the adjacent muscle of rats has no histologic evidence of necrosis or inflammation to the nerve or surrounding tissue. There was no observable histological change in apoptosis, or cell number, in response to the alcohol injection. PMID:25097192
Ponce, Daniela P.; Salech, Felipe; SanMartin, Carol D.; Silva, Monica; Xiong, Chengjie; Roe, Catherine M.; Henriquez, Mauricio; Quest, Andrew F.; Behrens, Maria I.
2015-01-01
We previously reported on enhanced susceptibility to death of lymphocytes from Alzheimer’s disease (AD) patients when exposed to hydrogen peroxide (H2O2)-induced oxidative stress and an increased resistance to death in those of patients with a history of skin cancer. This is consistent with our hypothesis proposing that the cellular machinery controlling cell death is deregulated in opposite directions in Alzheimer’s disease (AD) and cancer, to explain the inverse association observed in epidemiological studies. Here we investigated whether the observed increased susceptibility correlates with the degree of dementia severity. Peripheral lymphocytes from 23 AD patients, classified using the Clinical Dementia Rating (CDR) into severe dementia (CDR 3, n=10) and mild-to-moderate dementia (CDR 1–2, n=13), and 15 healthy controls (HC) (CDR 0), were exposed to H2O2 for 20 hours. Lymphocyte death was determined by flow cytometry and propidium iodide staining. The greatest susceptibility to H2O2-induced death was observed for lymphocytes from severe dementia patients, whereas those with mild-to-moderate dementia exhibited intermediate values, compared to healthy controls. A significant increase in the apoptosis/necrosis ratio was found in AD patients. Poly (ADP-ribosyl) polymerase-1 (PARP-1) inhibition significantly protected from H2O2-induced death of lymphocytes, whereby a lower degree of protection was observed in severe AD patients. Moreover, inhibition of PARP-1 abolished the differences in apoptosis/necrosis ratios observed between the three groups of patients. These results support the notion that AD is a systemic disorder, whereby enhanced susceptibility to H2O2-induced death in peripheral lymphocytes correlates with dementia severity and enhanced death in AD patients is attributable to a PARP-dependent increase in the apoptosis/necrosis ratio. PMID:25274115
Fibroblasts regulate the migration of MCF7 mammary carcinoma cells in hydrated collagen gel.
Rossi, L; Reverberi, D; Capurro, C; Aiello, C; Cipolla, M; Bonanno, M; Podestà, G
1994-01-01
We have defined a tissue culture method suitable to study cell-cell interactions in an environmental set close to in vivo conditions. It consists of heterotypic cell populations mixed together inside a collagen gel in a chamber slide for a period of up to 14 days. When the three-dimensional system is saturated, cells will start to move on the plastic surface as monolayers surrounding the gel, with a characteristic speed depending on cell type. Usually fibroblasts move fast, while epithelial cells demonstrate a much lower pace of migration. At any given time gel contraction can be measured, and thus the rate of cell expansion, by knowing the distance from the edge of the gel to the leading edge of cell migration. By using this approach it was found that MCF7 mammary carcinoma cells display a great variety of morphologies following their mixture with different fibroblastic cell lines. In particular, when MCF7 cells were mixed with fibroblasts from human fetus, dog thymus and rat kidney, they migrated up to the leading edge of the fibroblastic front as isolated single cells or as cellular aggregates, many of which became necrotic in time, or took on an elongated morphology. Selective necrosis of MCF7 cells was also induced with serum concentration of 15% and 20% FCS, but only when they were mixed with fibroblasts. No necrosis was induced in MCF7 cells cultured alone. From these observations it is suggested that necrosis may sometimes favor the detachment and infiltration of resistant epithelial tumor cells by increasing their autonomous behaviour. Fibroblasts seem to be instrumental in regulating this process.
Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhou, Siying; Chen, Xiu; Tang, Jinhai
2017-08-01
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an endogenous adaptor of innate and adaptive immune responses, and serves a crucial role in tumor necrosis factor receptor and toll‑like/interleukin‑1 receptor signaling. Although studies have demonstrated that TRAF6 has oncogenic activity, its potential contributions to breast cancer in human remains largely uninvestigated. The present study examined the expression levels and function of TRAF6 in breast carcinoma (n=32) and adjacent healthy (n=25) tissue samples. Compared with adjacent healthy tissues, TRAF6 protein expression levels were significantly upregulated in breast cancer tissues. Reverse transcription‑quantitative polymerase chain reaction analysis revealed a significant upregulation of the cellular proliferative marker Ki‑67 and proliferation cell nuclear antigen expression levels in breast carcinoma specimens. Furthermore, protein expression levels of the accessory molecule, transforming growth factor β‑activated kinase 1 (TAK1), were significantly increased in breast cancer patients, as detected by western blot analysis. As determined by MTT assay, TRAF6 exerted profoundly proliferative effects in the MCF‑7 breast cancer cell line; however, these detrimental effects were ameliorated by TAK1 inhibition. Notably, protein kinase B (AKT)/glycogen synthase kinase (GSK)3β phosphorylation levels were markedly upregulated in breast cancer samples, compared with adjacent healthy tissues. In conclusion, an altered TRAF6‑TAK1 axis and its corresponding downstream AKT/GSK3β signaling molecules may contribute to breast cancer progression. Therefore, TRAF6 may represent a potential therapeutic target for the treatment of breast cancer.
Necrosis and apoptosis of renal tubular epithelial cells in rats exposed to 3-methyl-4-nitrophenol.
Yue, Zhuo; She, Rui-Ping; Bao, Hui-Hui; Tian, Jijing; Yu, Pin; Zhu, Jinfeng; Chang, Lingling; Ding, Ye; Sun, Quan
2012-11-01
The 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) exists in diesel exhaust particles (DEP), and is also one of the degradation products of insecticide fenitrothion. To assess potential nephrotoxicity of PNMC, male Sprague-Dawley (SD) rats were subcutaneously dosed with PNMC at 1, 10, and 100 mg/kg/day for five consecutive days. No significant changes were detected in body weights and relative weights of kidneys by the treatment of PNMC. However, the extent of cellular necrosis was found to be severe in renal tubular epithelial cells of PNMC-treated rats. In addition, PNMC exposure significantly increased the number of terminal deoxynucleotidyle transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells compared to the control in renal tubule of PNMC-treated rats. Moreover, immunohistochemical results indicated that significant decrease in the B-cell lymphoma 2 (Bcl-2) expressions andincrease in the Bcl-2 associated × protein (Bax) expression were detected in PNMC-treated rats. The ratio of Bcl-2/Bax was also reduced significantly at PNMC-treated rats dosed at 10 or 100 mg kg(-1) . Furthermore, the significant increase of FAS (CD95/APO-1) expression was found in the groups dosed at 10 or 100 mg kg(-1) of PNMC. The expression of Caspase-3 was higher in PNMC-treated rats, compared to the control group. Our results indicated that activation of mitochondria and Caspase-3 protease may contribute to the PNMC-induced apoptosis, suggesting that PNMC could cause both necrosis and apoptosis resulting in cell death of renal epithelium cells and could induce renal toxicity. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com; Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com; Felipe, K.B., E-mail: kakabettega@yahoo.com.br
2012-05-04
Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress inmore » juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.« less
Engin, Kaya N; Erdem-Kuruca, Serap; Akgün-Dar, Kadriye; Çetin, Beyza; Karadenizli, Sabriye; Gürel, Ebru; Yemisci, Bülent; Bilgiç, Sema; Arslan, Mehmet
2015-01-01
We aimed to evaluate the influence of current antifibrotic agents as well as the possible results obtained by combining these agents. This study included α-tocopherol, a strong antifibrotic and an efficient neuromediator of pathways used by other agents. Mitochondrial Bcl-2, Bax, cytochrome c and cytoplasmic caspase-3 expression, as well as toxic effect patterns, mitosis and cellular reactions due to α-tocopherol alone or combined with paclitaxel, mitomycin C and 5-flurouracil (5-FU), was studied in series obtained from human endothelial and primary Tenon's fibroblast cell cultures. The strongest apoptotic effect in both cell groups belonged to paclitaxel, followed by mitomycin C, and despite the overall suppressive effect of the α-tocopherol combination, mitomycin C increased its efficiency on the endothelial cells. The apoptosis/necrosis ratio was highest in α-tocopherol and lowest in paclitaxel, with α-tocopherol generally decreasing necrosis. Bax was observed at a high level with mitomycin C. Cytotoxicity was the highest with paclitaxel, and the caspase-3 reaction was markedly higher with mitomycin C in both cell types. In the α-tocopherol and 5-FU slides, mitosis and a layered formation were observed. The addition of α-tocopherol reduced the cytotoxicity of all antifibrotic agents in both cell series by decreasing the cell numbers, leading to necrosis. Alone or in combination, the use of α-tocopherol and 5-FU is safer than other agents. By suppressing the cytotoxic effects of other antifibrotic agents, α-tocopherol is a promising drug for improving the effects of antifibrotics in many aspects of medicine. In addition, it has the potential to play a role beyond its antioxidant and antifibrotic activity in ocular surgery.
Cellular automata with object-oriented features for parallel molecular network modeling.
Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan
2005-06-01
Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.
Regulation of Programmed Necrosis and Bone Marrow Failure
2017-03-01
length levels of another Caspase-8 substrate, Cylindromatosis (CYLD), was also observed (Fig. S3G). Furthermore, deletion of Caspase-8 using CRISPR ...down of Caspase-8 utilizing the CRISPR -Cas9 system in Bid +/+ cells. Experiment was performed two times. (I) Diagram of potential role for Bid in the
Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production
Fortes, Guilherme B.; Alves, Leticia S.; de Oliveira, Rosane; Dutra, Fabianno F.; Rodrigues, Danielle; Fernandez, Patricia L.; Souto-Padron, Thais; De Rosa, María José; Kelliher, Michelle; Golenbock, Douglas; Chan, Francis K. M.
2012-01-01
Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS. PMID:22262768
Morphological classification of plant cell deaths.
van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V
2011-08-01
Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.
Beltrán-Frutos, E; Seco-Rovira, V; Ferrer, C; Madrid, J F; Sáez, F J; Canteras, M; Pastor, L M
2016-04-01
The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.
Scudeler, Elton Luiz; Padovani, Carlos Roberto; Santos, Daniela Carvalho Dos
2014-06-01
Larvae of the lacewing Ceraeochrysa claveri were fed on eggs of Diatraeasaccharalis treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval period. Pupae obtained from treated larvae were used in the study at five days after the completion of cocoon spinning to investigate the effects of neem oil on the replacement of the midgut epithelium during the larval-pupal transition. We observed that the old larval epithelium was shed into the midgut lumen and transformed into the yellow body. Old cells from the yellow body were destroyed by apoptosis and autophagy and were not affected by neem oil. However, neem oil did affect the new pupal epithelium. Cells from treated pupae showed cellular injuries such as a loss of microvilli, cytoplasmic vacuolization, an increase of glycogen stores, deformation of the rough endoplasmic reticulum and dilation of the perinuclear space. Additionally, the neem oil treatment resulted in the release of cytoplasmic protrusions, rupture of the plasma membrane and leakage of cellular debris into the midgut lumen, characteristics of cell death by necrosis. The results indicate that neem oil ingestion affects the replacement of midgut epithelium, causing cytotoxic effects that can alter the organism's physiology due to extensive cellular injuries. Copyright © 2014 Elsevier GmbH. All rights reserved.
Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador
2016-01-01
Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging. PMID:27367679
Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador
2016-06-29
Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock(®), IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.
Toxicological and pharmacological concerns on oxidative stress and related diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeidnia, Soodabeh; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon; Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir
2013-12-15
Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is wellmore » documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.« less
Xiao, Bo; Ma, Panpan; Ma, Lijun; Chen, Qiubing; Si, Xiaoying; Walter, Lewins; Merlin, Didier
2017-03-15
Tumor necrosis factor-α (TNF-α) is a major pro-inflammatory cytokine that is mainly secreted by macrophages during inflammation. Here, we synthesized a series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chlorides (HTCCs), and then used a complex coacervation technique or tripolyphosphate (TPP)-assisted ionotropic gelation strategy to complex the HTCCs with TNF-α siRNA (siTNF) to form nanoparticles (NPs). The resultant NPs had a desirable particle size (210-279nm), a slightly positive zeta potential (14-22mV), and negligible cytotoxicity against Raw 264.7 macrophages and colon-26 cells. Subsequent cellular uptake tests demonstrated that the introduction of TPP to the NPs markedly increased their cellular uptake efficiency (to nearly 100%) compared with TPP-free NPs, and yielded a correspondingly higher intracellular concentration of siRNA. Critically, in vitro gene silencing experiments revealed that all of the TPP-containing NPs showed excellent efficiency in inhibiting the mRNA expression level of TNF-α (by approximately 85-92%, which was much higher than that obtained using Oligofectamine/siTNF complexes). Collectively, these results obviously suggest that our non-toxic TPP-containing chitosan-based NPs can be exploited as efficient siTNF carriers for the treatment of inflammatory diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Work, Thierry M.; Russell, Robin; Aeby, Greta S.
2012-01-01
Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings.
Menssen, Hans D; Harnack, Ulf; Erben, Ulrike; Neri, Dario; Hirsch, Burkhard; Dürkop, Horst
2018-03-01
To analyze the impact of TNFα or IL2 on human lymphocytes in vitro and the anti-tumor and immune-modifying effects of L19-IL2 and L19-TNFα on subcutaneously growing J558L myeloma in immunocompetent mice. PBMCs from three healthy volunteers were incubated with IL2, TNFα, or with IL2 plus addition of TNFα (final 20 h). BALB/c J558L mice with subcutaneous tumors were treated with intravenous L19-TNFα plus L19-IL2, or controls. Tumor growth and intra- and peri-tumoral tissues were analyzed for micro-vessel density, necrosis, immune cell composition, and PD1 or PD-L1 expressing cells. Exposure of PBMC in vitro to IL2, TNFα, or to IL2 over 3 and 5 days plus TNFα for the final 20 h resulted in an approximately 50 and 75% reduction of the CD25low effector cell/CD25high Treg cell ratio, respectively, compared to medium control. IL2 or TNFα increased the proportion of CD4- CD25low effector lymphocytes while reducing the proportion of CD4+ CD25low Teff cells. In the J558L myeloma model, tumor eradication was observed in 58, 42, 25, and 0% of mice treated with L19-TNFα plus L19-IL2, L19-TNFα, L19-IL2, and PBS, respectively. L19-TNFα/L19-IL2 combination caused tumor necrosis, capillary density doubling, peri-tumoral T cell and PD1+ T cell reduction (- 50%), and an increase in PD-L1+ myeloma cells. IL2, TNFα, or IL2 plus TNFα (final 20 h) increased the proportion of CD4- CD25low effector lymphocytes possibly indicating immune activation. L19-TNFα/L19-IL2 combination therapy eradicated tumors in J558L myeloma BALB/c mice likely via TNFα-induced tumor necrosis and L19-TNFα/L19-IL2-mediated local cellular immune reactions.
Okamoto, Akihisa; Tanaka, Masahiro; Sumi, Chisato; Oku, Kanako; Kusunoki, Munenori; Nishi, Kenichiro; Matsuo, Yoshiyuki; Takenaga, Keizo; Shingu, Koh; Hirota, Kiichi
2016-10-24
The local anesthetic lidocaine can affect intra- and extra-cellular signaling pathways in both neuronal and non-neuronal cells, resulting in long-term modulation of biological functions, including cell growth and death. Indeed, lidocaine was shown to induce necrosis and apoptosis in vitro. While several studies have suggested that lidocaine-induced apoptosis is mitochondrial pathway-dependent, it remains unclear whether reactive oxygen species (ROS) are involved in this process and whether the observed cell death can be prevented by antioxidant treatment. The effects of lidocaine and antioxidants on cell viability and death were evaluated using SH-SY5Y cells, HeLa cells, and HeLa cell derivatives. Cell viability was examined via MTS/PES ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]/phenazine ethosulfate) assay. Meanwhile, cell apoptosis and necrosis were evaluated using a cell death detection assay with Annexin V-FITC and PI staining, as well as by assaying for caspase-3/7 and caspase-9 activity, and by measuring the release of lactate dehydrogenase, respectively. Mitochondrial transmembrane potential (ΔΨm) was assessed using the fluorescent probe tetramethylrhodamine ethyl ester. Lidocaine treatment resulted in suppression of the mitochondrial electron transport chain and subsequent attenuation of mitochondrial membrane potential, as well as enhanced ROS production, activation of caspase-3/7 and caspase-9, and induction of apoptosis and necrosis in SH-SY5Y cells in a dose- and time-dependent manner. Likewise, the anesthetics mepivacaine and bupivacaine also induced apoptosis in SH-SY5Y cells. Notably, the antioxidants N-acetyl cysteine (NAC) and Trolox successfully scavenged the mitochondria-derived ROS and suppressed local lidocaine-induced cell death. Our findings demonstrate that the local anesthetics lidocaine, mepivacaine, and bupivacaine inhibited the activity of mitochondria and induced apoptosis and necrosis in a dose-dependent manner. Furthermore, they demonstrate that treatment with the antioxidants NAC, Trolox, and GGA resulted in preservation of mitochondrial voltage and inhibition of apoptosis via suppression of caspase activation.
77 FR 63840 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... meeting will be closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory... to hear updates of research programs in the Gene Transfer and Immunogenicity Branch, Office of...
Measuring Apoptosis by Microscopy and Flow Cytometry.
Hollville, Emilie; Martin, Seamus J
2016-02-02
Apoptosis is a mode of programmed cell death that plays an important role during development and in the maintenance of tissue homeostasis. Numerous physiological as well as pathological stimuli trigger apoptosis such as engagement of Fas, TRAIL, or TNF receptors, growth factor deprivation, hypoxia, or exposure to cytotoxic drugs. Apoptosis is coordinated from within by members of the caspase family of cysteine proteases that, upon activation, trigger a series of morphological changes including cell shrinkage, extensive plasma membrane blebbing, chromatin condensation, DNA hydrolysis, and nuclear fragmentation. These dramatic structural and biochemical alterations result not only in the controlled dismantling of the cell, but also in the efficient recognition and removal of apoptotic cells by phagocytes. Necrosis, which is typically nonprogrammed or imposed upon the cell by overwhelming membrane or organelle damage, is characterized by rapid plasma membrane rupture followed by organelle and cell swelling. Necrosis is often provoked by infectious agents or a severe departure from physiological conditions. This unit describes protocols for the measurement of apoptosis and for distinguishing apoptosis from necrosis. Copyright © 2016 John Wiley & Sons, Inc.
Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis.
Wu, Jianfeng; Huang, Zhe; Ren, Junming; Zhang, Zhirong; He, Peng; Li, Yangxin; Ma, Jianhui; Chen, Wanze; Zhang, Yingying; Zhou, Xiaojuan; Yang, Zhentao; Wu, Su-Qin; Chen, Lanfen; Han, Jiahuai
2013-08-01
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis
Wu, Jianfeng; Huang, Zhe; Ren, Junming; Zhang, Zhirong; He, Peng; Li, Yangxin; Ma, Jianhui; Chen, Wanze; Zhang, Yingying; Zhou, Xiaojuan; Yang, Zhentao; Wu, Su-Qin; Chen, Lanfen; Han, Jiahuai
2013-01-01
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. PMID:23835476
Qureshi, Irfan Zia; Bibi, Asia; Shahid, Sana; Ghazanfar, Madiha
2016-10-01
Use of pesticides or insecticides can be highly toxic to aquatic life forms due to leaching and agricultural runoff, rains or flood. Fipronil (FP) is a GABA receptor inhibitor, while buprofezin (BPFN) is an insect growth regulator. Presently, we exposed groups of aquaria acclimated carp fish (Cyprinus carpio) for 96h to sub-lethal concentrations of fipronil (400μgL(-1); 9.15×10(-7)molL(-1)) and buprofezin (BPFN, 100mgL(-1); 1.072×10(-6)molL(-1)) singly or in combination. The extent of damage was assessed at biochemical, hematological, molecular biological and histopathological level. Results obtained in treated fish were compared statistically with those of control non-treated fish and also among treatment groups. Significance level was p<0.05. Compared to control, serum total protein and globulin concentrations decreased significantly (p<0.0001) in fish treated with FP; while albumin concentration remained unaltered with all treatments. Glucose concentration decreased significantly (p<0.002) in fish treated with FP. In contrast, combined FP+BPFN treatment and BPFN treatment caused insignificant elevation of glucose concentration. Hematological assessment demonstrated significant decrease in red blood cell and thrombocyte counts, hemoglobin concentration and hematocrit percent; while white blood cell count showed an increase in all treatment groups (p<0.0001). Blood smears from pesticide treated fish revealed aberrant erythrocyte morphologies which included necrosis, micronuclear formation and hyperchromatosis. DNA laddering assay carried out on whole blood demonstrated excessive smear formation in combined FP+BPFN and BPFN treatment groups but no smear formation was noticeable in FP treated fish. Compared to control, whole blood DNA content increased significantly in the combined FP+BPFN and BPFN treatment groups (p<0.001 and p<0.009). With all treatments histopathological changes observed in the gills were: epithelial uplifting and necrosis of lamellae, lamellar atrophy, disruption of cartilaginous core, fusion and disorganization of lamellae and telangiectasia. In liver these were: karyorrhexis, hepatocellular hypertrophy, nuclear hypertrophy, melanomacrophage aggregates and central vein contraction, while in the kidney: deterioration of glomerulus and dilatation of Bowman's space, dilatation of renal tubules, thyroidisation, altered tubular lumen, nuclear hypertrophy, cellular atrophy, and cellular necrosis were the outcome. Our study revealed that FP and BPFN produce highly toxic effects on fish when given in combination or singly. To our knowledge, this is the first report on toxicity caused by FP and BPFN in single and combined state. Copyright © 2016 Elsevier B.V. All rights reserved.
Biodegradation of carbon nanohorns in macrophage cells
NASA Astrophysics Data System (ADS)
Zhang, Minfang; Yang, Mei; Bussy, Cyrill; Iijima, Sumio; Kostarelos, Kostas; Yudasaka, Masako
2015-02-01
With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction.With the rapid developments in the medical applications of carbon nanomaterials such as carbon nanohorns (CNHs), carbon nanotubes, and graphene based nanomaterials, understanding the long-term fate, health impact, excretion, and degradation of these materials has become crucial. Herein, the in vitro biodegradation of CNHs was determined using a non-cellular enzymatic oxidation method and two types of macrophage cell lines. Approximately 60% of the CNHs was degraded within 24 h in a phosphate buffer solution containing myeloperoxidase. Furthermore, approximately 30% of the CNHs was degraded by both RAW 264.7 and THP-1 macrophage cells within 9 days. Inflammation markers such as pro-inflammatory cytokines interleukin 6 and tumor necrosis factor α were not induced by exposure to CNHs. However, reactive oxygen species were generated by the macrophage cells after uptake of CNHs, suggesting that these species were actively involved in the degradation of the nanomaterials rather than in an inflammatory pathway induction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06175f
Derangements of liver tissue bioenergetics in concanavalin A-induced hepatitis.
Al-Shamsi, Mariam; Shahin, Allen; Mensah-Brown, Eric P K; Souid, Abdul-Kader
2013-01-12
A novel in vitro system was employed to investigate liver tissue respiration (mitochondrial O2 consumption) in mice treated with concanavalin A (Con A). This study aimed to investigate hepatocyte bioenergetics in this well-studied hepatitis model. C57Bl/6 and C57Bl/6 IFN-γ-/- mice were injected intravenously with 12 mg ConA/kg. Liver specimens were collected at various timepoints after injection and analyzed for cellular respiration and caspase activation. Serum was analyzed for interferon-gamma (IFN-γ) and aminotransferases. Fluorescence activated cell sorting analysis was used to determine the phenotype of infiltrating cells, and light and electron microscopy were used to monitor morphological changes. Phosphorescence analyzer that measured dissolved O2 as function of time was used to evaluate respiration. In sealed vials, O2 concentrations in solutions containing liver specimen and glucose declined linearly with time, confirming zero-order kinetics of hepatocyte respiration. O2 consumption was inhibited by cyanide, confirming the oxidation occurred in the respiratory chain. Enhanced liver respiration (by ≈68%, p<0.02) was noted 3 hr after ConA treatment, and occurred in conjunction with limited cellular infiltrations around the blood vessels. Diminished respiration (by ≈30%, p=0.005) was noted 12 hr after ConA treatment, and occurred in conjunction with deranged mitochondria, areas of necrosis, and prominent infiltrations with immune cells, most significantly, CD3+NKT+ cells. Increases in intracellular caspase activity and serum IFN-γ and aminotransferase levels were noted 3 hr after ConA treatment and progressed with time. The above-noted changes were less pronounced in C57Bl/6 IFN-γ-/- mice treated with ConA. Based on these results, liver tissue bioenergetics is increased 3 hr after ConA exposure. This effect is driven by the pathogenesis of the disease, in which IFN-γ and other cytokines contribute to. Subsequent declines in liver bioenergetics appear to be a result of necrosis and active caspases targeting the mitochondria within hepatocytes.
Chen, Yu-Fon; Shiau, Ai-Li; Chang, Sue-Joan; Fan, Nai-Shin; Wang, Chung-Teng; Wu, Chao-Liang; Jan, Jeng-Shiung
2017-06-01
Herein, we report the oncolytic activity of cationic, one-dimensional (1D) fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides for cancer therapy. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via the mitochondria-lytic effect. The concept is analogous to that of 1D drug carriers that exhibit enhanced cell penetration. In comparison to free PLL chains, PLL-b-PLT fibril assemblies exhibit selective cytotoxicity toward cancer cells, low hemolysis activity, enhanced membranolytic activity, and a different apoptosis pathway, which may be due to differences in the peptide-membrane interactions. Antitumor studies using a metastatic LL2 lung carcinoma model indicate that the fibril assemblies significantly inhibited tumor growth, improved survival in tumor-bearing mice and suppressed lung metastasis without obvious body weight loss. An additive efficacy was also observed for treatment with both PLL-b-PLT and cisplatin. These results support the feasibility of using 1D fibril assemblies as potential apoptotic anticancer therapeutics. We report that cationic, one-dimensional (1D) fibril assemblies formed by coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides exhibited potent anticancer activity by enhancing membranolysis. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via mitochondria-lytic effect. Moreover, the fibril assemblies exhibited low hemolytic activity and selective cytotoxicity toward cancer cell, which is advantageous as compared to PLL and most antimicrobial/anticancerous peptides. This study provides a new concept of using cationic, 1D fibril assemblies for cancer therapy. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Evolving binary classifiers through parallel computation of multiple fitness cases.
Cagnoni, Stefano; Bergenti, Federico; Mordonini, Monica; Adorni, Giovanni
2005-06-01
This paper describes two versions of a novel approach to developing binary classifiers, based on two evolutionary computation paradigms: cellular programming and genetic programming. Such an approach achieves high computation efficiency both during evolution and at runtime. Evolution speed is optimized by allowing multiple solutions to be computed in parallel. Runtime performance is optimized explicitly using parallel computation in the case of cellular programming or implicitly taking advantage of the intrinsic parallelism of bitwise operators on standard sequential architectures in the case of genetic programming. The approach was tested on a digit recognition problem and compared with a reference classifier.
Redente, Elizabeth F.; Keith, Rebecca C.; Janssen, William; Henson, Peter M.; Ortiz, Luis A.; Downey, Gregory P.; Bratton, Donna L.
2014-01-01
Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α−/− mice by measuring hydroxyproline levels, static compliance, and Masson’s trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α−/− mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α–induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve established pulmonary fibrosis. PMID:24325577
Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H
2014-04-01
Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve established pulmonary fibrosis.
Distribution and morphology of growth anomalies in Acropora from the Indo-Pacific
Work, Thierry M.; Aeby, Greta S.; Coles, Steve L.
2008-01-01
We assessed the distribution and prevalence of growth anomalies (GAs) in Acropora from French Frigate Shoals (Hawaii, USA), Johnston Atoll and Tutuila (American Samoa), developed a nomenclature for gross morphology, characterized GAs at the cellular level and obtained preliminary indices of their spatial patterns and progression within coral colonies. Acropora GAs were found in all 3 regions, but the distribution, variety and prevalence of Acropora GAs was highest in American Samoa. GAs were grouped into 7 gross morphologies (exophytic, bosselated, crateriform, nodular, vermiform, fimbriate or annular). On histology, GAs consisted of hyperplastic basal body wall (calicodermis, mesoglea and gastrodermis apposed to skeleton) with 3 distinct patterns of necrosis. There was no evidence of anaplasia or mitotic figures (common but not necessarily required morphologic indicators of neoplasia). Compared to normal tissues, GAs had significantly fewer polyps, zooxanthellae within the gastrodermis of the coenenchyme, mesenterial filaments and gonads but significantly more necrosis. On 2 colonies with GAs monitored at 2 points over 11 mo, numbers of GAs per colony increased from 0.9 to 3 times the original number seen, and significant clustering of GAs occurred within colonies. The evidence of GAs being true neoplasias (tumors) is mixed, so a cautionary approach is urged in use of morphologic terminology.
Phung, Thu-Ha; Jung, Sunyo
2015-04-03
This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Tamaki, Katsuyoshi; Shimizu, Ichiro; Oshio, Atsuo; Fukuno, Hiroshi; Inoue, Hiroshi; Tsutsui, Akemi; Shibata, Hiroshi; Sano, Nobuya; Ito, Susumu
2004-12-01
To determine whether the presence of large intrahepatic blood vessels (>/=3 mm) affect radiofrequency (RF)-induced coagulation necrosis, the gross and histological characteristics of RF-ablated areas proximal to or around vessels were examined in normal pig livers. An RF ablation treatment using a two-stepwise extension technique produced 12 lesions: six contained vessels (Group A), and the other six were localized around vessels (Group B). Gross examination revealed that the longest and shortest diameters of the ablated lesions were significantly larger in Group B than in Group A. In Group A, patent vessels contiguous to the lesion were present in a tongue-shaped area, whereas the lesions in Group B were spherical. Staining with nicotinamide adenine dinucleotide diaphorase was negative within the ablated area; but, if vessels were present in the ablated area, the cells around the vessels in an opposite direction to the ablation were stained blue. Roll-off can be achieved with 100% cellular destruction within a lesion that does not contain large vessels. The ablated area was decreased in lesions that contained large vessels, suggesting that the presence of large vessels in the ablated area further increases the cooling effect and may require repeated RF ablation treatment to achieve complete coagulation necrosis.
Si, Jin; Ge, Yan; Zhuang, Shougang; Juan Wang, Li; Chen, Shan; Gong, Rujun
2013-01-01
Adrenocorticotropic hormone (ACTH) has a renoprotective effect in chronic kidney disease; however, its effect on acute kidney injury (AKI) remains unknown. In a rat model of tumor necrosis factor (TNF)–induced AKI, we found that ACTH gel prevented kidney injury, corrected acute renal dysfunction, and improved survival. Morphologically, ACTH gel ameliorated TNF-induced acute tubular necrosis, associated with a reduction in tubular apoptosis. While the steroidogenic response to ACTH gel plateaued, the kidney-protective effect continued to increase at even higher doses, suggesting steroid-independent mechanisms. Of note, ACTH also acts as a key agonist of the melanocortin system, with its cognate melanocortin 1 receptor (MC1R) abundantly expressed in renal tubules. In TNF-injured tubular epithelial cells in vitro, ACTH reinstated cellular viability and eliminated apoptosis. This beneficial effect was blunted in MC1R-silenced cells, suggesting that this receptor mediates the anti-apoptotic signaling of ACTH. Moreover, ACTH gel protected mice against cecal ligation puncture–induced septic AKI better than α-melanocyte-stimulating hormone: a protein equal in biological activity to ACTH except for steroidogenesis. Thus, ACTH has additive renoprotective actions achieved by both steroid-dependent mechanisms and MC1R-directed anti-apoptosis. ACTH may represent a novel therapeutic strategy to prevent or treat AKI. PMID:23325074
Expression of autophagy-related protein beclin-1 in malignant canine mammary tumors
2013-01-01
Background Autophagy is a self-catabolic mechanism that degrades unnecessary cellular components through lysosomal enzymes. Beclin-1, an autophagy-related protein, establishes the first connection between autophagy and tumorigenesis. The purpose of this study is to assess the Beclin-1 expression pattern and to determine its prognostic significance in patients with malignant canine mammary tumor (CMT). Results We examined Beclin-1 expression in 70 cases of malignant CMTs by immunohistochemistry. Cytoplasmic Beclin-1 expression was significantly weaker in cancer cells than in nearby normal mammary glands (p < 0.001). Low cytoplasmic expression (57.14%) was associated with older age, lower degree of tubular formation, increased mitotic activity, higher histologic grade, and extensive necrosis. Low nuclear expression (40%) was connected with older age, lower degree of tubular formation, extensive necrosis, and negative for Her2/neu overexpression. Univariate survival analysis showed that Beclin-1 cytoplasmic expression was a poor prognostic factor for overall survival rate (p < 0.001). Multivariate survival analysis demonstrated that Beclin-1 cytoplasmic expression is an independent prognostic factor (p = 0.016). Conclusions Loss of Beclin-1 is associated with aggressive clinicopathologic features and poor overall survival. The results suggest that Beclin-1 plays an important role in tumor progression of malignant CMTs. PMID:23578251
Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.
Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe
2004-01-01
We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed. PMID:14748742
Ghayomi, F; Navaei-Nigjeh, M; Baeeri, M; Rezvanfar, M A; Abdollahi, M
2016-08-01
Chlorpyrifos (CP) is an organophosphorus pesticide that induces oxidative stress through the production of free radicals and depletes intracellular antioxidant reserves. In this study, the efficacy of three antioxidants (melatonin, coenzyme Q10 (CoQ10), and vinpocetine) on alleviation of toxic effects of CP was evaluated. Cytotoxicity of CP, in the presence or absence of effective doses of melatonin, CoQ10, and vinpocetine, was determined in human peripheral blood lymphocytes after 72-h exposure. The levels of acetylcholinesterase (AChE) activity along with tumor necrosis factor α (TNF-α), as inflammatory index, were measured. Further, the viability and oxidative stress markers including cellular mitochondrial activity, cell death modes (apoptosis vs. necrosis), total antioxidant power (TAP), total thiol molecules (TTM), lipid peroxidation (LPO), and myeloperoxidase (MPO) activity were measured. CoQ10 and also the combination of the three antioxidants were the most notable in opposing toxicity of CP and led to increasing TAP and TTM; improvement of AChE activity; and lowering LPO, MPO, TNF-α, and apoptosis compared to CP alone. CP toxicity overwhelms the intracellular antioxidant defense mechanisms. Exogenous supplementation with antioxidants, such as the ones we have investigated, seems to be effective in the prevention of cytotoxicity of CP. © The Author(s) 2015.
Fernández-Martínez, Eduardo; Pérez-Hernández, Nury; Muriel, Pablo; Pérez-Alvarez, Víctor; Shibayama, Mineko; Tsutsumi, Víctor
2009-09-01
Chronic cholestasis and cholangitis may lead to the last phase known as biliary cirrhosis, characterized by cellular necrosis, apoptosis, tissue damage, local regeneration, inflammation and fibrosis. Such events are mediated by cytokines. Thalidomide and its analogs have shown to be effective immunomodulatory and hepatoprotective agents. The aim of this work was to evaluate the hepatoprotective properties of a thalidomide analog, the 3-phthalimido-3-(3,4-dimethoxyphenyl)-propanoic acid (PDA), on bile duct obstruction-induced cirrhosis. Vehicle or PDA (67 mg/kg) was orally administered twice a day to sham (Sham) or bile duct-ligated (BDL) male Wistar rats. The animals were sacrificed 28 days after treatments. Alkaline phosphatase (AP), gamma-glutamyl transpeptidase (GGTP) and alanine aminotransferase (ALT) enzyme activities as well as direct and total bilirubins concentration were determined in plasma. Lipid peroxidation (LP), glycogen and collagen were quantified in liver; in addition, histopathology was performed. PDA improved cholestasis, necrosis and fibrosis by significantly diminishing most of liver injury markers (P<0.05). Histopathology also showed remarkable liver damage amelioration. PDA effectiveness may be due to its water-solubility, stability, phosphodiesterase-4 inhibitory and immunomodulatory actions. Thalidomide and its analogs seem to be promising drugs for further treatment of biliary cirrhosis.
NASA Astrophysics Data System (ADS)
Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim
2015-11-01
Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.
Distribution and morphology of growth anomalies in Acropora from the Indo-Pacific.
Work, Thierry M; Aeby, Greta S; Coles, Steve L
2008-01-24
We assessed the distribution and prevalence of growth anomalies (GAs) in Acropora from French Frigate Shoals (Hawaii, USA), Johnston Atoll and Tutuila (American Samoa), developed a nomenclature for gross morphology, characterized GAs at the cellular level and obtained preliminary indices of their spatial patterns and progression within coral colonies. Acropora GAs were found in all 3 regions, but the distribution, variety and prevalence of Acropora GAs was highest in American Samoa. GAs were grouped into 7 gross morphologies (exophytic, bosselated, crateriform, nodular, vermiform, fimbriate or annular). On histology, GAs consisted of hyperplastic basal body wall (calicodermis, mesoglea and gastrodermis apposed to skeleton) with 3 distinct patterns of necrosis. There was no evidence of anaplasia or mitotic figures (common but not necessarily required morphologic indicators of neoplasia). Compared to normal tissues, GAs had significantly fewer polyps, zooxanthellae within the gastrodermis of the coenenchyme, mesenterial filaments and gonads but significantly more necrosis. On 2 colonies with GAs monitored at 2 points over 11 mo, numbers of GAs per colony increased from 0.9 to 3 times the original number seen, and significant clustering of GAs occurred within colonies. The evidence of GAs being true neoplasias (tumors) is mixed, so a cautionary approach is urged in use of morphologic terminology.
Human cholestatic hepatitis owing to polyoxyethylene nonylphenol ingestion
Min, Jihye; Han, Joohye; Kim, Kyungju; Park, Samel; Lee, Sunhyo; Hong, Jungrak; Gil, Hyowook; Song, Hoyeon; Hong, Saeyong
2017-01-01
Abstract Rationale: The purpose of this study was to identify the chemical responsible for cholestatic hepatitis in a 55-year-old woman who ingested 1,1′-iminodi (octamethylene) diguanidinium triacetate (iminoctadine triacetate), a fungicide. The fungicide formulation was also composed of polyoxyethylene nonylphenol (NP-40) and methanol. Patient concerns: Severe cholestatic hepatitis developed, which led to the patient's death on day 88 of hospitalization. Post-mortem necropsy of the liver showed focal hepatocyte necrosis involving mostly the mid-zone, along with intracytoplasmic and intracanalicular cholestasis. Diagnoses: To identify the chemical responsible for hepatic injury, the cellular toxicity of all chemicals in the fungicide formulation was assessed in HepG2 cells using the 3-(4,5-dimethylthiaxol-2yl)-2, 5-diphenyl tetrazolium bromide test. Outcomes: Viability of cells treated with the surfactant NP-40 was significantly lower (P < .001), but that of cells treated with other components of the fungicide, including the active ingredient, iminoctadine triacetate, was unaffected. Fluorescence-activated cell sorting analysis confirmed that necrosis was induced in HepG2 cells treated with 25–80 μM of NP-40, while significant numbers of apoptotic cells were not detected. Lessons: NP-40 appears to be the chemical responsible for the patient's irreversible hepatic injury, accompanied by intracytoplasmic and intracanalicular cholestasis. PMID:28796059
Minoxidil attenuates ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes.
Takatani, Tomoka; Takahashi, Kyoko; Jin, Chengshi; Matsuda, Takahisa; Cheng, Xinyao; Ito, Takashi; Azuma, Junichi
2004-06-01
The effects of minoxidil (a mitochondrial K+(ATP) channel opener) on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia, since mitochondrial K+(ATP) channel openers have been suggested to be involved in the mechanisms of cardioprotective action against ischemia/reperfusion injury. In the absence of minoxidil, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation within 24 to 72 hours. Based on the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. Myocytes treated with 5 microM of minoxidil failed to alter the degree of ischemia-induced CPK loss for 48 to 72 hours. However, minoxidil treatment prevented the loss of beating function in many of the ischemic cells, and attenuated the decline in intracellular ATP content after a 48-hour ischemic incubation. The number of nuclear fragmentation was significantly reduced in minoxidil-treated cells after a 72-hour ischemic insult compared with untreated ischemic cells. This effect was blocked by the mitochondrial K+(ATP) channel antagonist 5-HD. The data suggest that minoxidil renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of minoxidil appear to be related to the opening of mitochondrial K+(ATP) channels.
Significance of increased expression of decoy receptor 3 in chronic liver disease.
Kim, S; Kotoula, V; Hytiroglou, P; Zardavas, D; Zhang, L
2009-08-01
Considerable evidence has indicated that apoptosis plays an important role in hepatocyte death in chronic liver disease. However, the cellular and molecular mechanisms underlying liver regeneration in these diseases are largely unknown. Plausibly, certain molecules expressed to counteract apoptosis might provide survival advantage of certain liver cells. Therefore, we investigated a possible expression of decoy receptor 3 of the tumour necrosis factor receptor family in chronic liver diseases since decoy receptor 3 is known to inhibit apoptosis mediated by pro-apoptotic tumour necrosis factor family ligands including Fas ligand. A series of liver biopsies from patients with different stages of fibrosis were subjected to immunohistochemistry and in situ hybridization. Both decoy receptor 3 protein and mRNA were mainly expressed in biliary epithelial cells and infiltrating lymphocytes in the diseased livers. Most noticeably, intense decoy receptor 3 expression was observed in newly developing biliary ductules in regenerative nodules as well as dysplastic nodules of cirrhotic livers. In addition, decoy receptor 3 secretion in hepatocellular carcinoma cells in culture was via the activation of mitogen-activated protein kinases. Decoy receptor 3 was specifically expressed in chronic liver diseases and hepatocellular carcinoma cells, and decoy receptor 3 might facilitate the survival of liver cells by exerting its anti-apoptotic activity during the progression of liver cirrhosis and hepatocarcinogenesis.
Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A
2003-01-01
Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173
Necrotic and apoptotic cell death induced by Captan on Saccharomyces cerevisiae.
Scariot, Fernando J; Jahn, Luciane; Delamare, Ana Paula L; Echeverrigaray, Sergio
2017-08-01
Captan is one of the most widely used broad-spectrum fungicide applied to control several early and late diseases of grapes, apples, and other fruits and vegetables, and as other phthalimide fungicides is defined as a multisite compound with thiol-reactivity. Captan can affect non-target organisms as yeasts, modifying microbial populations and fermentation processes. In this study, we asked whether Captan thiol-reactivity and other mechanisms are involved in acute Captan-induced cell death on aerobic growing Saccharomyces cerevisiae. Thus for, we analyze cellular protein and non-protein thiols, cell membrane integrity, reactive oxygen species accumulation, phosphatidylserine externalization, and apoptotic mutants behavior. The results showed that when submitted to acute Captan treatment most cells lost their membrane integrity and died by necrosis due to Captan reaction with thiols. However, part of the cells, even maintaining their membrane integrity, lost their culture ability. These cells showed an apoptotic behavior that may be the result of non-protein thiol depletion and consequent increase of reactive oxygen species (ROS). ROS accumulation triggers a metacaspase-dependent apoptotic cascade, as shown by the higher viability of the yca1-deleted mutant. Together, necrosis and apoptosis are responsible for the high mortality detected after acute Captan treatment of aerobically growing cells of S. cerevisiae.
Shindo, Ryodai; Yamazaki, Soh; Ohmuraya, Masaki; Araki, Kimi; Nakano, Hiroyasu
2016-11-04
Cellular FLICE-inhibitory protein (cFLIP) is a catalytically inactive homolog of the initiator caspase, caspase 8 and blocks apoptosis through binding to caspase 8. Human CFLAR gene encodes two proteins, a long form cFLIP (cFLIP L ) and a short form cFLIP (cFLIPs) due to an alternative splicing. Recent studies have shown that expression of cFLIPs, but not cFLIP L promotes programmed necrosis (also referred to as necroptosis) in an immortalized human keratinocyte cell line, HaCaT. Here, we found that expression of cFLIPs similarly promoted necroptosis in immortalized fibroblasts. To further expand this observation and exclude the possibility that immortalization process of keratinocytes or fibroblasts might affect the phenotype induced by cFLIPs expression, we generated human CFLARs transgenic (Tg) mice. Primary fibroblasts derived from CFLARs Tg mice were increased in susceptibility to TNFα-induced necroptosis, but not apoptosis compared to wild-type (WT) fibroblasts. Moreover, hallmarks of necroptosis, such as phosphorylation of receptor-interacting protein kinase (RIPK)1 and RIPK3, and oligomer formation of mixed lineage kinase domain-like (MLKL) were robustly induced in CFLARs Tg fibroblasts compared to wild-type fibroblasts following TNFα stimulation. Thus, cFLIPs-dependent promotion of necroptosis is not unique to immortalized keratinocytes or fibroblasts, but also to generalized to primary fibroblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
Kandhaya-Pillai, Renuka; Miro-Mur, Francesc; Alijotas-Reig, Jaume; Tchkonia, Tamara; Kirkland, James L.; Schwartz, Simo
2017-01-01
Cellular senescence is a cell fate program that entails essentially irreversible proliferative arrest in response to damage signals. Tumor necrosis factor-alpha (TNFα), an important pro-inflammatory cytokine secreted by some types of senescent cells, can induce senescence in mouse and human cells. However, downstream signaling pathways linking TNFα-related inflammation to senescence are not fully characterized. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that TNFα induces permanent growth arrest and increases p21CIP1, p16INK4A, and SA-β-gal, accompanied by persistent DNA damage and ROS production. By gene expression profiling, we identified the crucial involvement of inflammatory and JAK/STAT pathways in TNFα-mediated senescence. We found that TNFα activates a STAT-dependent autocrine loop that sustains cytokine secretion and an interferon signature to lock cells into senescence. Furthermore, we show STAT1/3 activation is necessary for cytokine and ROS production during TNFα-induced senescence. However, inhibition of STAT1/3 did not rescue cells from proliferative arrest, but rather suppressed cell cycle regulatory genes and altered TNFα-induced senescence. Our findings suggest a positive feedback mechanism via the STAT pathway that sustains cytokine production and reveal a reciprocal regulatory role of JAK/STAT in TNFα-mediated senescence. PMID:29176033
1992-01-09
necrosis and thus maintain viability during acute condi- tions of ischemia and compartmental syndrome . It is not known. how- ever, if HBO will continue...adds considerable incentive for flexible database design. Adding to the complexity of the database are emitter sector coverage, radiating power, and...rather, it supplements the time-weighted average(TWA) limit where there are recognized acute effects from a substance whose toxic effects are
Webster, Keith A
2013-01-01
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed. PMID:23176689
Micro-Encapsulated Porphyrins and Phthalocyanines - New Formulations in Photodynamic Therapy
NASA Astrophysics Data System (ADS)
Ion, R. M.
2017-06-01
Photodynamic therapy (PDT), as an innovative method for cancer tretament is based on a concerted action of some drugs, called sensitizers, which generate reactive oxygen species via a photochemical mechanism, leading to cellular necrosis or apoptosis. The present work aims at loading some sensitizers, as porphyrins (P) and phthalocyanines (Pc) into alginate particles. Particles were prepared by dropping alginate into an aqueous solution containing P or Pc and CaCl2, which allows the formation of particles through ionic crosslinking. It was obtained P or Pc loaded alginate beads with an average diameter of about 100 μm. For these systems, this paper analyses the spectroscopic properties, encapsulation into microcapsules, controlled releasing action and their photosensitizer capacity (singlet oxygen generation).
Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.
Velleman, Sandra G
2015-12-01
Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.
[Comparison of clinical and histological diagnosis in kidney post-transplantation period].
de Castro, M C; Chocair, P R; Saldanha, L B; Nahas, W; Arap, S; Sabbaga, E; Ianhez, L E
1998-01-01
To assess the agreement between clinical and histopathological diagnosis in a renal transplantation center, 40 episodes of acute renal failure were studied. Kidney biopsies were performed at the moment that a clinical diagnosis was made by the staff. Nineteen episodes of acute tubular necrosis (ATN), eighteen episodes of acute cellular rejection (ACR), 2 humoral rejections and 1 acute cyclosporin nephrotoxicity episodes were diagnosed. ATN episodes were confirmed by renal biopsy in 84.21%, ACR episodes in 83.33%, humoral rejections in 100%. Renal biopsy showed ATN in the occurrence of clinical cyclosporin nephrotoxicity. Total agreement was 82.5%. There is a good relationship between clinical and histopathological diagnosis in the post-transplantation period. Diagnostic mistakes occurred mainly when oliguria was present.
Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul
2014-01-01
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982
[Effect of ionizing radiation and other factors on the thermal sensitivity of mouse skin].
Kurpeshev, O K; Konopliannikov, A G
1987-03-01
A study was made of the effect of various agents on skin injury by hyperthermia in experiments on noninbred albino mice. The effects of heating were assessed by the frequency of skin necrosis development. The results of the study showed that irradiation of the skin (30 Gy) before heating did not influence its thermosensitivity whereas heating 45-180 days after irradiation proved more effective. Ethanol, metronidazole, thyrocalcitonin and actinomycin D decreased skin thermosensitivity, and cyclohexamide, serotonin, hyperglycemia and applying a tourniquet increased it. The DMF value for actinomycin D depended on the temperature of heating. One should distinguish between true modification of tissue thermosensitivity (determined by cellular factors) and indirect modification (associated with change in volumetric circulation rate).
Simulation of root forms using cellular automata model
NASA Astrophysics Data System (ADS)
Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu
2016-02-01
This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled "A New Kind of Science" discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram's investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.
E-cigarette aerosols induce lower oxidative stress in vitro when compared to tobacco smoke.
Taylor, Mark; Carr, Tony; Oke, Oluwatobiloba; Jaunky, Tomasz; Breheny, Damien; Lowe, Frazer; Gaça, Marianna
2016-07-01
Tobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking. E-cigarette vapor contains significantly lower levels of toxicants than cigarette smoke, but standardized methods to assess cellular responses to exposure are not well established. We investigated whether an in vitro model of the airway epithelium (human bronchial epithelial cells) and commercially available assays could differentiate cellular stress responses to aqueous aerosol extracts (AqE) generated from cigarette smoke and e-cigarette aerosols. After exposure to AqE concentrations of 0.063-0.500 puffs/mL, we measured the intracellular glutathione ratio (GSH:GSSG), intracellular generation of oxidant species, and activation of the nuclear factor erythroid-related factor 2 (Nrf2)-controlled antioxidant response elements (ARE) to characterize oxidative stress. Apoptotic and necrotic responses were characterized by increases in caspase 3/7 activity and reductions in viable cell protease activities. Concentration-dependent responses indicative of oxidative stress were obtained for all endpoints following exposure to cigarette smoke AqE: intracellular generation of oxidant species increased by up to 83%, GSH:GSSG reduced by 98.6% and transcriptional activation of ARE increased by up to 335%. Caspase 3/7 activity was increased by up to 37% and the viable cell population declined by up to 76%. No cellular stress responses were detected following exposure to e-cigarette AqE. The methods used were suitably sensitive to be employed for comparative studies of tobacco and nicotine products.
Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin
2014-01-01
Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.
Levine, Jaclynn; Kwon, Eunice; Paez, Pablo; Yan, Weihong; Czerwieniec, Gregg; Loo, Joseph A.; Sofroniew, Michael V.; Wanner, Ina-Beate
2015-01-01
Molecular markers associated with CNS injury are of diagnostic interest. Mechanical trauma generates cellular deformation associated with membrane permeability with unknown molecular consequences. We used an in vitro model of stretch-injury and proteomic analyses to determine protein changes in murine astrocytes and their surrounding fluids. Abrupt pressure-pulse stretching resulted in the rapid release of 59 astrocytic proteins with profiles reflecting cell injury and cell death, i.e. mechanoporation and cell lysis. This acute trauma-release proteome was overrepresented with metabolic proteins compared to the uninjured cellular proteome, bearing relevance for post-traumatic metabolic depression. Astrocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3-CKO) resulted in reduced stretch-injury tolerance, elevated necrosis and increased protein release. Consistent with more lysed cells, more protein complexes, nuclear and transport proteins were released from STAT3-CKO versus non-transgenic astrocytes. STAT3-CKO astrocytes had reduced basal expression of GFAP, lactate dehydrogenase B (LDHB), aldolase C (ALDOC) and astrocytic phosphoprotein 15 (PEA15), and elevated levels of tropomyosin (TPM4) and α actinin 4 (ACTN4). Stretching caused STAT3 dependent cellular depletion of PEA15 and GFAP, and its filament disassembly in subpopulations of injured astrocytes. PEA15 and ALDOC signals were low in injured astrocytes acutely after mouse spinal cord crush injury and robustly expressed in reactive astrocytes one day post-injury. In contrast, α crystallin (CRYAB) was present in acutely injured astrocytes, and absent from uninjured and reactive astrocytes, demonstrating novel marker differences among post-injury astrocytes. These findings reveal a proteomic signature of traumatically-injured astrocytes reflecting STAT3-dependent cellular survival with potential diagnostic value. PMID:26683444
Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy
Lindblom, Runa; Higgins, Gavin; Coughlan, Melinda; de Haan, Judy B.
2015-01-01
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease. PMID:26676666
Augustin, Ewa; Niemira, Magdalena; Hołownia, Adam; Mazerska, Zofia
2014-11-01
High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered. © 2014 International Federation for Cell Biology.
Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay
2018-01-24
The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tuet, Wing Y.; Chen, Yunle; Fok, Shierly; Champion, Julie A.; Ng, Nga L.
2017-09-01
Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different formation conditions (RO2 + HO2 vs. RO2 + NO dominant, dry vs. humid). Various cellular responses were measured, including reactive oxygen and nitrogen species (ROS/RNS) production and secreted levels of cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SOA precursor identity and formation condition affected all measured responses in a hydrocarbon-specific manner. With the exception of naphthalene SOA, cellular responses followed a trend where TNF-α levels reached a plateau with increasing IL-6 levels. ROS/RNS levels were consistent with relative levels of TNF-α and IL-6, due to their respective inflammatory and anti-inflammatory effects. Exposure to naphthalene SOA, whose aromatic-ring-containing products may trigger different cellular pathways, induced higher levels of TNF-α and ROS/RNS than suggested by the trend. Distinct cellular response patterns were identified for hydrocarbons whose photooxidation products shared similar chemical functionalities and structures, which suggests that the chemical structure (carbon chain length and functionalities) of photooxidation products may be important for determining cellular effects. A positive nonlinear correlation was also detected between ROS/RNS levels and previously measured DTT (dithiothreitol) activities for SOA samples. In the context of ambient samples collected during summer and winter in the greater Atlanta area, all laboratory-generated SOA produced similar or higher levels of ROS/RNS and DTT activities. These results suggest that the health effects of SOA are important considerations for understanding the health implications of ambient aerosols.
Jordan, Jacqueline A; Verhoff, Ashley M; Morgan, Julie E; Fischer, David G
2009-12-01
Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al(2)O(3) (0.7 μm) and fine SiO(2) (mean 1.6 μm) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 μm) and fine (0.5 μm) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO(2) and Al(2)O(3) (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO(2) for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO(2) for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO(2) resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al(2)O(3). Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles.
Apoptosis and necrosis in the liver.
Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L; Gores, Gregory J
2013-04-01
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.
2008-12-01
Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE,more » or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.« less
Experiments with suspended cells on the Space Shuttle
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Chapes, S. K.; Guikema, J. A.; Spooner, B. S.; Lewis, M. L.
1992-01-01
Spaceflight experiments since 1981 have demonstrated that certain cell functions are altered by micro-g. Biophysical models suggest that cell membranes and organelles should not be affected directly by gravity, however, the chemical microenvironment surrounding the cell and molecular transport could be altered by reduced gravity. Most experiments have used suspended live cells in small chambers without stirring or medium exchange. Flight results include increased attachment of anchorage-dependent human cells to collagen coated microcarriers, reduced secretion of growth hormone from pituitary cells, decreased mitogenic response of lymphocytes, increased Interferon-alpha by lymphocytes, increased Interleukin-1 and Tumor Necrosis Factor secretion by macrophages. Related experiments on cells immediately postflight and on procaryotic cells have shown significant changes in secretory capacity, cell proliferation, differentiation and development. Postulated mechanism include altered cell-cell interactions, altered calcium ion transport, effects on cell cytoskeleton, transport of transmitters and interactions with receptors. The discussion includes use of new molecular methods, considerations for cell environmental control and a preview of several experiments planned for the Shuttle and Spacelab flights to study the basic effects of microgravity on cellular physiology and potential interactions of spaceflight with radiation damage and cellular repair mechanisms.
A cellular automata model for avascular solid tumor growth under the effect of therapy
NASA Astrophysics Data System (ADS)
Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.
2009-04-01
Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.
Dimopoulou, Maria; Kirpensteijn, Jolle; Moens, Hester; Kik, Marja
2008-07-01
To investigate the histologic characteristics of feline osteosarcoma (OS) and compare the histologic data with phenotypically comparable canine OS. The effects of histologic and clinical variables on survival statistics were evaluated. Retrospective study. Cats (n=62) and dogs (22). Medical records of 62 cats with OS were reviewed for clinically relevant data. Clinical outcome was obtained by telephone interview. Histologic characteristics of OS were classified using a standardized grading system. Histologic characteristics in 22 feline skeletal OS were compared with 22 canine skeletal OS of identical location and subtype. Prognostic variables for clinical outcome were determined using multivariate analysis. Feline OS was characterized by moderate to abundant cellular pleomorphism, low mitotic index, small to moderate amounts of matrix, high cellularity, and a moderate amount of necrosis. There was no significant difference between histologic variables in feline and canine OS. Histologic grade, surgery, and mitotic index significantly influenced clinical outcome as determined by multivariate analysis. Tumor invasion into vessels was not identified as a significant prognosticator. Feline and canine skeletal OS have similar histologic but different prognostic characteristics. Prognosis for cats with OS is related to histologic grade and mitotic index of the tumor.
Portelli, M; Pollacco, J; Sacco, K; Schembri-Wismayer, P; Calleja-Agius, J
2011-12-01
Endometriosis occurs when ectopic cells from the endometrium implant within the peritoneum. It is considered as a disease of multifactorial aetiology and affects 7-10% of women of reproductive age worldwide. In endometriosis, the immune system is thought to be dysfunctional and various studies have shown cytokine imbalance. Commonly upregulated cytokines include Tumour necrosis factor-alpha, interferon gamma and interleukin-10. Through analysis of the molecular makeup of the peritoneal fluid, a change is shown to occur, conferring resistance from macrophages and lymphocytes to endometrial cells. This is possibly due to a reduced Inter-cellular adhesion molecule-1 synthesis. Survival of ectopic endometrial cells also arises through the expression of human leukocyte antigens. Apart from the survival of ectopic/eutopic cells in endometriosis, there is marked cellular proliferation, which has also been attributed to a change in the expression of proteins such as Bcl-2-Associated X protein, B-cell lymphoma-2 protein, transforming growth factor-beta and the enzyme aromatase. Danazol and aromatase inhibitors modulate the immune system, thus allowing partial restoration of cytokine levels. Pharmacogenomics may be the way forward in developing novel treatment modalities for endometriosis.
Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years.
Federico, Alessandro; Dallio, Marcello; Loguercio, Carmelina
2017-01-24
Silymarin is the extract of Silybum marianum , or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
Mammalian Cell-Based Sensor System
NASA Astrophysics Data System (ADS)
Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.
Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.
ten Hacken, Elisa; Burger, Jan A.
2015-01-01
Chronic Lymphocytic Leukemia (CLL) is a malignancy of mature B lymphocytes which are highly dependent on interactions with the tissue microenvironment for their survival and proliferation. Critical components of the microenvironment are monocyte-derived nurselike cells (NLCs), mesenchymal stromal cells, T cells and NK cells, which communicate with CLL cells through a complex network of adhesion molecules, chemokine receptors, tumor necrosis factor (TNF) family members, and soluble factors. (Auto-) antigens and/or autonomous mechanisms activate the B-cell receptor (BCR) and its downstream signaling cascade in secondary lymphatic tissues, playing a central pathogenetic role in CLL. Novel small molecule inhibitors, including the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib and the phosphoinositide-3-kinase delta (PI3Kδ) inhibitor idelalisib, target BCR signaling and have become the most successful new therapeutics in this disease. We here review the cellular and molecular characteristics of CLL cells, and discuss the cellular components and key pathways involved in the cross-talk with their microenvironment. We also highlight the relevant novel treatment strategies, focusing on immunomodulatory agents and BCR signaling inhibitors and how these treatments disrupt CLL-microenvironment interactions. PMID:26193078
A Negative Feedback Loop Between Autophagy and Immune Responses in Mycobacterium leprae Infection.
Ma, Yuelong; Zhang, Li; Lu, Jie; Shui, Tiejun; Chen, Jia; Yang, Jun; Yuan, Joanna; Liu, Yeqiang; Yang, Degang
2017-01-01
The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.
Vador, N.; Jagtap, Aarti G.; Damle, Archana
2012-01-01
Various studies have indicated that peptic ulcers occurring during the course of diabetic state are more severe and often associated with complications such as gastrointestinal bleeding. This study is the first attempt to understand the pathogenesis of gastric ulcers occurring during the diabetic state considering alternate biochemical pathways using suitable markers and its amelioration by Cuminum cyminum. In this study, diabetic rats showed a progressive increase in the stomach advanced glycated end products formation, gastric mucosal tumour necrosis factor-α and Thiobarbituric acid reactive substances levels as compared to normal control (nondiabetic) rats. There was decrease in gastric mucosal content, antioxidant enzymes and cellular ATPase enzyme levels of diabetic gastric mucosa when compared to the normal control group. mRNA expression of epidermal growth factor was found to be significantly higher as compared to normal control animals. Further methanol extract of Cuminum cyminum treatment to diabetic animals caused a reduction in blood glucose, and ulcer score when compared to diabetic control rats. It significantly increased gastric mucus content, antioxidant status and cellular ATPase enzyme levels as compared to diabetic control animals. Methanol extract of Cuminum cyminum inhibited advanced glycated end products formation in vitro as well as in vivo. PMID:23716866
Hashimoto, Masanori; Yamaguchi, Satoshi; Sasaki, Jun-Ichi; Kawai, Koji; Kawakami, Hayato; Iwasaki, Yasuhiko; Imazato, Satoshi
2016-02-01
This study evaluated the inhibition of matrix metalloproteases (MMPs) and cellular responses elicited by gold (Au) and platinum (Pt) nanoparticles (NPs). The interaction of MMP-1 and NPs was evaluated using an MMP assay kit. The cultured L929 cells were exposed to various concentrations of NPs. The cellular responses to NPs were examined using a cytotoxicity assay (that evaluated cell viability and lactic dehydrogenase production), real-time polymerase chain reaction (RT-qPCR), and transmission electron microscopy. Both types of NPs, when used at concentrations above 10 μg ml(-1), inhibited MMP-1 activity. No cytotoxic effects were found when the cells were exposed to AuNPs. In contrast, PtNPs, at both 100 and 400 μg ml(-1), induced cytotoxicity. No inflammatory responses (production of interleukin-6 and tumor necrosis factor-alpha) to NPs were identified by RT-qPCR. The negative surface charge of NPs (COOH(-)) binds to the Zn(2+) of the MMP active center by chelation, leading to MMP inhibition. Gold nanoparticles are plausible candidates for MMP inhibitors in resin-bonding materials because they effectively inhibit MMP-1 activity without cytotoxic or inflammatory effects. © 2015 Eur J Oral Sci.
A Liver-centric Multiscale Modeling Framework for Xenobiotics ...
We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. To validate the model, we estimated our model parameters by fi?tting serum concentrations of acetaminophen and its glucuronide and sulfate metabolites to experiments, and carried out sensitivity analysis on 35 parameters selected from three modules. Our study focuses on developing a multi-scale computational model to characterize both phase I and phase II metabolism of acetaminophen, by bridging Physiologically Based Pharmacokinetic (PBPK) modeling at the whole body level, cell movement and blood flow at the tissue level and cell signaling and drug metabolism at the sub-cellular level. This multiscale model bridges the CompuCell3D tool used by the Virtual Tissue project with the httk tool developed by the Rapid Exposure and Dosimetry project.
Rule-Based Simulation of Multi-Cellular Biological Systems—A Review of Modeling Techniques
Hwang, Minki; Garbey, Marc; Berceli, Scott A.; Tran-Son-Tay, Roger
2011-01-01
Emergent behaviors of multi-cellular biological systems (MCBS) result from the behaviors of each individual cells and their interactions with other cells and with the environment. Modeling MCBS requires incorporating these complex interactions among the individual cells and the environment. Modeling approaches for MCBS can be grouped into two categories: continuum models and cell-based models. Continuum models usually take the form of partial differential equations, and the model equations provide insight into the relationship among the components in the system. Cell-based models simulate each individual cell behavior and interactions among them enabling the observation of the emergent system behavior. This review focuses on the cell-based models of MCBS, and especially, the technical aspect of the rule-based simulation method for MCBS is reviewed. How to implement the cell behaviors and the interactions with other cells and with the environment into the computational domain is discussed. The cell behaviors reviewed in this paper are division, migration, apoptosis/necrosis, and differentiation. The environmental factors such as extracellular matrix, chemicals, microvasculature, and forces are also discussed. Application examples of these cell behaviors and interactions are presented. PMID:21369345
The recent progress of the mechanism and regulation of tumor necrosis in colorectal cancer.
Zhang, Xi; Chen, Lirong
2016-02-01
In colorectal cancer (CRC), despite the complex inducing and regulating mechanism in necrosis progress, the prognostic value of tumor necrosis has been reported. It is generally recognized that necrosis is associated with many process involving severe hypoxia, inflammatory responses and angiogenesis, all of which contribute to promote tumor growth and poor prognosis. In addition to local hypoxia, regulation by RIP kinase and the conversion from apoptosis to necrosis can result in necrosis also. Recent studies showed necrosis can be a histopathologic characteristic for special molecular phenotype of CRC. A novel and attractive complementary treatment, tumor necrosis therapy, using radiolabelled compounds avid for necrosis has emerged. However, the complicated regulatory mechanisms of tumor necrosis were rarely reported in CRC, and we collected and reviewed these effect and relevance in CRC.
Huai, Jisen; Firat, Elke; Nil, Ahmed; Million, Daniele; Gaedicke, Simone; Kanzler, Benoit; Freudenberg, Marina; van Endert, Peter; Kohler, Gabriele; Pahl, Heike L.; Aichele, Peter; Eichmann, Klaus; Niedermann, Gabriele
2008-01-01
The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8+ T cells. This coincides with up-regulation of p53 and dysregulation of NF-κB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors. PMID:18362329
Programmed cell death as a defence against infection
Jorgensen, Ine; Rayamajhi, Manira; Miao, Edward A.
2017-01-01
Eukaryotic cells can die from physical trauma, resulting in necrosis. Alternately, they can die via programmed cell death upon stimulation of specific signalling pathways. Here we discuss the utility of four cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary arms race with pathogens. Finally, we describe how the resulting cell corpses — apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) — promote clearance of infection. PMID:28138137
50 CFR 16.13 - Importation of live or dead fish, mollusks, and crustaceans, or their eggs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... necrosis, and infectious pancreatic necrosis have not been detected in the fish stocks from which the... hemorrhagic septicemia, infectious hematopoietic necrosis, and infectious pancreatic necrosis have not been... necrosis, and infectious pancreatic necrosis have been killed. (d) Any fish caught in the wild in North...
50 CFR 16.13 - Importation of live or dead fish, mollusks, and crustaceans, or their eggs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... necrosis, and infectious pancreatic necrosis have not been detected in the fish stocks from which the... hemorrhagic septicemia, infectious hematopoietic necrosis, and infectious pancreatic necrosis have not been... necrosis, and infectious pancreatic necrosis have been killed. (d) Any fish caught in the wild in North...
50 CFR 16.13 - Importation of live or dead fish, mollusks, and crustaceans, or their eggs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... necrosis, and infectious pancreatic necrosis have not been detected in the fish stocks from which the... hemorrhagic septicemia, infectious hematopoietic necrosis, and infectious pancreatic necrosis have not been... necrosis, and infectious pancreatic necrosis have been killed. (d) Any fish caught in the wild in North...
50 CFR 16.13 - Importation of live or dead fish, mollusks, and crustaceans, or their eggs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... necrosis, and infectious pancreatic necrosis have not been detected in the fish stocks from which the... hemorrhagic septicemia, infectious hematopoietic necrosis, and infectious pancreatic necrosis have not been... necrosis, and infectious pancreatic necrosis have been killed. (d) Any fish caught in the wild in North...
Simulation of root forms using cellular automata model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarno, Nanang, E-mail: nanang-winarno@upi.edu; Prima, Eka Cahya; Afifah, Ratih Mega Ayu
This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation usedmore » four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.« less
Supporting performance and configuration management of GTE cellular networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ming; Lafond, C.; Jakobson, G.
GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less
Zhang, Tingting; Stilwell, Jackie L; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A; Gray, Joe W; Alivisatos, A Paul; Chen, Fanqing Frank
2006-04-01
Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant change in expression level of greater than 2-fold. Genes activated in treated cells included those involved in carbohydrate binding, intracellular vesicle formation, and cellular response to stress. Conversely, PEG-silane-Qdots induce a down-regulation of genes involved in controlling the M-phase progression of mitosis, spindle formation, and cytokinesis. Promoter analysis of these results reveals that expression changes may be attributed to the down-regulation of FOXM and BHLB2 transcription factors. Remarkably, PEG-silane-Qdots, unlike carbon nanotubes, do not activate genes indicative of a strong immune and inflammatory response or heavy-metal-related toxicity. The experimental evidence shows that CdSe/ZnS Qdots, if appropriately protected, induce negligible toxicity to the model cell system studied here, even when exposed to high dosages. This study indicates that PEG-coated silanized Qdots pose minimal impact to cells and are a very promising alternative to uncoated Qdots.
Ziemann, Ewa; Olek, Robert Antoni; Kujach, Sylwester; Grzywacz, Tomasz; Antosiewicz, Jędrzej; Garsztka, Tomasz; Laskowski, Radosław
2012-01-01
Context Tournament season can provoke overreaching syndrome in professional tennis players, which may lead to deteriorated performance. Thus, appropriate recovery methods are crucial for athletes in order to sustain high-level performance and avoid injuries. We hypothesized that whole-body cryostimulation could be applied to support the recovery process. Objective To assess the effects of 5 days of whole-body cryostimulation combined with moderate-intensity training on immunologic, hormonal, and hematologic responses; resting metabolic rate; and tennis performance in a posttournament season. Design Controlled laboratory study. Setting National Olympic Sport Centre. Patients or Other Participants Twelve high-ranking professional tennis players. Intervention(s) Participants followed a moderate-intensity training program. A subgroup was treated with the 5-day whole-body cryostimulation (−120°C) applied twice a day. The control subgroup participated in the training only. Main Outcome Measure(s) Pretreatment and posttreatment blood samples were collected and analyzed for tumor necrosis factor α, interleukin 6, testosterone, cortisol, and creatine kinase. Resting metabolic rate and performance of a tennis drill were also assessed. Results Proinflammatory cytokine (tumor necrosis factor α) decreased and pleiotropic cytokine (interleukin 6) and cortisol increased in the group exposed to cryostimulation. In the same group, greater stroke effectiveness during the tennis drill and faster recovery were observed. Neither the training program nor cryostimulation affected resting metabolic rate. Conclusions Professional tennis players experienced an intensified inflammatory response after the completed tournament season, which may lead to overreaching. Applying whole-body cryostimulation in conjunction with moderate-intensity training was more effective for the recovery process than the training itself. The 5-day exposure to cryostimulation twice a day ameliorated the cytokine profile, resulting in a decrease in tumor necrosis factor α and an increase in interleukin 6. PMID:23182015
Spatial Pattern of Cell Damage in Tissue from Heavy Ions
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.
Scurr, E D; Collins, D J; Temple, L; Karanjia, N; Leach, M O; Koh, D-M
2012-03-01
To describe the appearances of colorectal liver metastases on diffusion-weighted MRI (DW-MRI) and to compare these appearances with histopathology. 43 patients with colorectal liver metastases were evaluated using breath-hold DW-MRI (b-values 0, 150 and 500 s mm(-2)). The b=500 s mm(-2) DW-MRI were reviewed consensually for lesion size and appearance by two readers. 18/43 patients underwent surgery allowing radiological-pathological comparison. Tissue sections were reviewed by a pathologist, who classified metastases histologically as cellular, fibrotic, necrotic or mixed. The frequency of DW-MRI findings and histological features were compared using the χ(2) test. 84 metastases were found in 43 patients. On b=500 s mm(-2) DW-MRI, metastases showed three high signal intensity patterns: rim (55/84), uniform (23/84) and variegate (6/84). Of the 55 metastases showing rim pattern, 54 were >1 cm in diameter (p<0.01, χ(2) test). 25/84 metastases were surgically resected. Of these, 11/22 metastases >1 cm in diameter showed rim pattern and demonstrated central necrosis at histopathology (p=0.04, χ(2) test). No definite relationship was found between uniform and variegate patterns with histology. Rim high signal intensity was the most common appearance of colorectal liver metastases >1 cm diameter on DW-MRI at b-values of 500 s mm(-2), a finding attributable to central necrosis.
Neuroprotective effects of tetrandrine against vascular dementia
Lv, Yan-ling; Wu, Ze-zhi; Chen, Li-xue; Wu, Bai-xue; Chen, Lian-lian; Qin, Guang-cheng; Gui, Bei; Zhou, Ji-ying
2016-01-01
Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S. Moore, and has specific therapeutic effects in ischemic cerebrovascular disease. Its use in vascular dementia has not been studied fully. Here, we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia. Eight weeks after model establishment, rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks. Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials, and spent less time swimming in the target quadrant in probe trials, than sham-operated rats. However, rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats. Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage, and more living cells, in the hippocampus of rats treated with tetrandrine than in untreated model rats. Western blot assay showed that interleukin-1β expression, and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472, were lower in model rats that received tetrandrine than in those that did not. The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1β expression, N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472, and neuronal necrosis. PMID:27127485
Yeh, Yueh-Chiao; Liu, Tsun-Jui; Lai, Hui-Chin
2015-01-01
Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice. PMID:25737737
Martyniszyn, L; Szulc-Dabrowska, L; Boratyńska-Jasińska, A; Badowska-Kozakiewicz, A M; Niemiałtowski, M G
2013-01-01
Autophagy is a self-degradation process of cellular components. It plays both antiviral and pro-viral roles in the life cycle of different viruses and the pathogenesis of different viral diseases. In this study, we evaluated autophagy induction in splenocytes of ectromelia virus (ECTV)-resistant C57BL/6 and ECTV-susceptible BALB/c mice during infection with the Moscow strain of the ectromelia virus (ECTV-MOS). Autophagy was analyzed using the Western blot method by assessing type II microtubule-associated protein 1 (MAP1) light chain 3 (LC3) and Beclin 1 expression levels relative to beta-actin. Results indicated an increased ratio of LC3-II to beta-actin in splenocytes of C57BL/6 mice only at 7 day post infection (d.p.i.) compared to uninfected animals. LC3-II/beta-actin and Beclin 1/beta-actin ratios in splenocytes of BALB/c mice increased at 5 d.p.i. and remained high until day 14 and 7 p.i., respectively. We confirmed the formation of autophagosome structures in the spleen of BALB/c mice by transmission electron microscopy (TEM). Moreover, autophagy accompanied necrosis in the splenocytes of infected animals. Results suggest that ECTV-MOS induced autophagy, especially in the spleen of the susceptible mouse strain, may support viral replication and promote cell necrosis.
Ghosh, Ayantika; Sil, Parames C
2009-01-27
Oxidative stress is a major cause of drug induced hepatic diseases. The present study aims to investigate the antioxidative signaling mechanism of a protein isolated from the herb, Cajanus indicus against acetaminophen induced necrotic cell death. We found that incubation of hepatocytes with the protein prevented acetaminophen-induced loss in cell viability, reduction in glutathione level and enhancement of reactive oxygen species generation. Treatment of mice with the protein before administration of acetaminophen also reduced serum nitrite and TNF-alpha formation. Moreover, it counteracted acetaminophen-induced loss in mitochondrial membrane potential, loss in adenosine tri phosphate and rise in intracellular calcium. Investigating the cell signaling pathways, we found that the protein exerts its protective action via the activation of NF-kappaB and Akt and deactivation of STAT-1. Surprisingly, no role of ERK1/2 or STAT-3 was found in the protein-mediated protection of hepatocytes during acetaminophen exposure. Finally, we found that acetaminophen introduces necrosis as the primary phenomena of cell death and protein treatment decreased the necrotic process as evident from the DNA fragmentation and flow-cytometry studies. In addition, administration of the protein to mice before acetaminophen application showed fewer number of TUNEL positive cells. Combining, data suggest that the protein possesses cytoprotective activity against acetaminophen-induced oxidative cellular damage and prevents hepatocytes from necrotic death.
Coscelli, Germán; Bermúdez, Roberto; Ronza, Paolo; Losada, Ana Paula; Quiroga, María Isabel
2016-09-01
Aeromonas salmonicida subsp. salmonicida represents one of the major threats in aquaculture, especially in salmonid fish and turbot farming. In order to fight bacterial infections, fish have an immune system composed by innate and specific cellular and humoral elements analogous to those present in mammals. However, innate immunity plays a primordial role against bacterial infections in teleost fish. Among these non-specific mechanisms, the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) pathway and the tumour necrosis factor-alpha (TNFα) produced by mononuclear phagocytes, are two of the main immune effectors to eliminate bacterial pathogens. In this study, the distribution and kinetic of iNOS and TNFα-producing cells of kidney and spleen of turbot experimentally inoculated with A. salmonicida was assessed by immunohistochemistry. In control and challenged fish, individual iNOS(+) and TNFα(+) cells, showing a similar pattern of distribution, were detected. In challenged fish, the number of immunoreactive cells was significantly increased in the evaluated organs, as well as the melanomacrophage centres showed variable positivity for both antigens. These results indicate that A. salmonicida induced an immune response in challenged turbot, which involved the increase of the activity of iNOS and TNFα in the leukocytic population from kidney and spleen. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ni, Chien-Hang; Yu, Chun-Shu; Lu, Hsu-Feng; Yang, Jai-Sing; Huang, Hui-Ying; Chen, Po-Yuan; Wu, Shin-Hwar; Ip, Siu-Wan; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung
2014-05-01
Chrysophanol (1,8-dihydroxy-3-methylanthraquinone) is one of the anthraquinone compounds, and it has been shown to induce cell death in different types of cancer cells. The effects of chrysophanol on human lung cancer cell death have not been well studied. The purpose of this study is to examine chrysophanol-induced cytotoxic effects and also to investigate such influences that involved apoptosis or necrosis in A549 human lung cancer cells in vitro. Our results indicated that chrysophanol decreased the viable A549 cells in a dose- and time-dependent manner. Chrysophanol also promoted the release of reactive oxygen species (ROS) and Ca(2+) and decreased the levels of mitochondria membrane potential (ΔΨm ) and adenosine triphosphate in A549 cells. Furthermore, chrysophanol triggered DNA damage by using Comet assay and DAPI staining. Importantly, chrysophanol only stimulated the cytocheome c release, but it did not activate other apoptosis-associated protein levels including caspase-3, caspase-8, Apaf-1, and AIF. In conclusion, human lung cancer A549 cells treated with chrysophanol exhibited a cellular pattern associated with necrotic cell death and not apoptosis in vitro. © 2012 Wiley Periodicals, Inc. Environ Toxicol 29: 740-749, 2014. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Apoptosis after gamma irradiation. Is it an important cell death modality?
Siles, E.; Villalobos, M.; Jones, L.; Guerrero, R.; Eady, J. J.; Valenzuela, M. T.; Núñez, M. I.; McMillan, T. J.; Ruiz de Almodóvar, J. M.
1998-01-01
Apoptosis and necrosis are two different forms of cell death that can be induced by cytotoxic stress, such as ionizing radiation. We have studied the importance of apoptotic death induced after treatment with 6 Gy of gamma-irradiation in a panel of eight human tumour cell lines of different radiosensitivities. Three different techniques based on the detection of DNA fragmentation have been used, a qualitative one--DNA ladder formation --and two quantitative approaches--in situ tailing and comet assay. No statistically significant relationship between the two quantitative assays was found (r= 0.327, P = 0.159) so these methods seem to show different aspects of the process of cell death. The presence of the DNA ladder related well to the end-labelling method in that the least amount of end labelling was seen in samples in which necrotic degradation rather than apoptotic ladders were seen. However, as the results obtained by the comet assay are not in agreement with the DNA ladder experiments, we suggest that the distinction between the degraded DNA produced by apoptosis and necrosis may be difficult by this technique. Finally, although apoptosis has been proposed to be dependent on p53 functionality, and this may explain differences in cellular radiosensitivity, no statistically significant relationship was found between these parameters and apoptosis in the eight cell lines studied. PMID:9862569
Pinto, Andrea M T; Sales, Paula C M; Camargos, Elizabeth R S; Silva, Aristóbolo M
2011-10-01
At the site of infection, pro-inflammatory cytokines locally produced by macrophages infected with Trypanosoma cruzi can activate surrounding non-professional phagocytes such as fibroblasts, epithelial and endothelial cells, which can be further invaded by the parasite. The effect of secreted soluble factors on the invasion of these cells remains, however, to be established. We show here that two epithelial cell lines become significantly susceptible to the infection by the Y strain of T. cruzi after tumour necrosis factor (TNF) treatment. The increase in the invasion was correlated with the increasing concentration of recombinant TNF added to cultures of HEK293T or LLC-MK2 cells. Supernatants taken from PMA-differentiated human monocytes infected with T. cruzi also increased the permissiveness of epithelial cells to subsequent infection with the parasite, which was inhibited by a TNF monoclonal antibody. Furthermore, the permissiveness induced by TNF was inhibited by TPCK, and led to significant decrease in the number of intracellular parasites, providing evidence that activation of NF-κB induced by TNF favours the invasion of the epithelial cell lines by T. cruzi through yet an unidentified mechanism. Our data indicate that soluble factors released from macrophages early in the infection favours T. cruzi invasion of non-professional phagocytic cells. © 2011 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conotte, R.; Colet, J.-M., E-mail: jean-marie.colet@umons.ac.be
The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. {sup 1}H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showedmore » significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea.« less
Sass, Gabriele; Shembade, Noula D.; Tiegs, Gisa
2004-01-01
TNF (tumour necrosis factor α) induces tolerance towards itself in experimental liver injury. Tolerance induction has been shown to be dependent on TNFR1 (TNF receptor 1) signalling, but mechanisms and mediators of TNF-induced hepatic tolerance are unknown. We investigated the TNF-inducible gene-expression profile in livers of TNFR2−/− mice, using cDNA array technology. We found that, out of 793 investigated genes involved in inflammation, cell cycle and signal transduction, 282 were expressed in the mouse liver in response to TNF via TNFR1. Among those, expression of 78 genes was induced, while expression of 60 genes was reduced. We investigated further the cellular expression of the 27 most prominently induced genes, and found that 20 of these genes were up-regulated directly in parenchymal liver cells, representing potentially protective proteins and possible mediators of TNF tolerance. In vitro experiments revealed that overexpression of SOCS1 (silencer of cytokine signalling 1), a member of the SOCS family of proteins, as well as of HO-1 (haem oxygenase-1), but not of SOCS2 or SOCS3, protected isolated primary mouse hepatocytes from TNF-induced apoptosis. The identification of protective genes in hepatocytes is the prerequisite for future development of gene therapies for immune-mediated liver diseases. PMID:15554901
TWEAK: A New Player in Obesity and Diabetes
Vendrell, Joan; Chacón, Matilde R.
2013-01-01
Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D. PMID:24416031
TWEAK: A New Player in Obesity and Diabetes.
Vendrell, Joan; Chacón, Matilde R
2013-12-30
Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D.
Carrion, Ricardo; Brasky, Kathleen; Mansfield, Keith; Johnson, Curtis; Gonzales, Monica; Ticer, Anysha; Lukashevich, Igor; Tardif, Suzette; Patterson, Jean
2007-06-01
Lassa virus causes thousands of deaths annually in western Africa and is considered a potential biological weapon. In an attempt to develop a small nonhuman primate model of Lassa fever, common marmosets were subcutaneously inoculated with Lassa virus strain Josiah. This inoculation resulted in a systemic disease with clinical and morphological features mirroring those in fatal human Lassa infection: fever, weight loss, high viremia and viral RNA load in tissues, elevated liver enzymes, and severe morbidity between days 15 and 20. The most prominent histopathology findings included multifocal hepatic necrosis with mild inflammation and hepatocyte proliferation, lymphoid depletion, and interstitial nephritis. Cellular aggregates in regions of hepatocellular necrosis were largely composed of HAM56-positive macrophages, devoid of CD3-positive and CD20-positive cells, and characterized by marked reductions in the intensity of HLA-DP, DQ, DR staining. A marked reduction in the major histocompatibility complex class II expression was also observed in the lymph nodes. Immunophenotypic alterations in spleen included reductions in overall numbers of CD20-positive and CD3-positive cells and the disruption of lymphoid follicular architecture. These findings identify the common marmoset as an appropriate model of human Lassa fever and present the first experimental evidence that replication of Lassa virus in tissues is associated with alterations that would be expected to impair adaptive immunity.
Albillos, Agustín; Hera Ad, Antonio de la; Reyes, Eduardo; Monserrat, Jorge; Muñoz, Leticia; Nieto, Mónica; Prieto, Alfredo; Sanz, Eva; Alvarez-Mon, Melchor
2004-04-01
To investigate the distribution and activation state of circulating monocytes and T-cell subsets, their contribution to tumour necrosis factor-alpha (TNFalpha) production, and their potential relationship with bacterial products of enteric origin in alcoholic cirrhosis. Peripheral blood monocytes and T-lymphocytes from 60 cirrhotic patients and 24 controls were characterized by four-color flow-cytometry after labelling of differentiation antigens and cytokines, before and after a 4-week course of norfloxacin or placebo. Monocytes from ascitic patients showed increased number, enhanced CD80 and HLA-DR surface levels, and spontaneous intracytoplasmic TNFalpha expression, when compared to non-ascitic patients and controls. Blood TNFalpha levels directly correlated with the amount of TNFalpha expressed by monocytes. In ascitic patients, there was a collapse of virgin CD4(+) and CD8(+) T-cell subsets; and, an expansion of activated CD4(+) T-cells. The above abnormalities were mainly restricted to ascitic patients with high serum levels of lypolysaccharide-binding-protein. Norfloxacin normalized the number of monocytes, reduced their activated phenotype and ability to produce TNFalpha and improved the abnormal T-cell homeostasis. In ascitic cirrhosis with high lipolysaccharide-binding-protein, monocytes are spontaneously activated to produce TNFalpha and are major contributors to the elevated serum TNFalpha. The T-cell compartment is profoundly depleted. Enteric bacterial products play a relevant role in these immune cellular abnormalities.
Wang, Buhai; Ge, Yizhi; Gu, Xiang
2016-10-06
Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.
Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells.
Gácsi, Mariann; Antal, Otilia; Vasas, Gábor; Máthé, Csaba; Borbély, György; Saker, Martin L; Gyori, János; Farkas, Anna; Vehovszky, Agnes; Bánfalvi, Gáspár
2009-06-01
In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu
2013-01-01
Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis. PMID:23921551
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.
Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu
2013-08-28
Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis.
Rouger, Caroline; Derbré, Séverine; Charreau, Béatrice; Pabois, Angélique; Cauchy, Thomas; Litaudon, Marc; Awang, Khalijah; Richomme, Pascal
2015-09-25
Phytochemical investigation on the fruits of Mesua lepidota (Calophyllaceae) led to the isolation of seven new phenylcoumarin derivatives named lepidotols A-E (1-5) and lepidotins A and B (6, 7). These structures were elucidated by spectroscopic and spectrometric methods including UV, NMR, and HRMS. Lepidotol A (1), the major compound, was evaluated for its inhibitory effect on inflammation and immunity using endothelial cell-based cellular assays. At 10 μM, 1 exhibited an anti-inflammatory activity, with a significant inhibition of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression induced by tumor necrosis factor-α. Lepidotol A also showed a mild immunosuppressive effect, with inhibition of the major histocompatibility complex molecules, namely, human leukocyte antigen (HLA)-DR and HLA-E.
Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death
Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio
2014-01-01
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992
Functional magnetic resonance imaging in oncology: state of the art.
Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson
2014-01-01
In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.
Stevens, Tyler; Conwell, Darwin L; Zuccaro, Gregory
2004-11-01
In the past several decades, four prominent theories of chronic pancreatitis pathogenesis have emerged: the toxic-metabolic theory, the oxidative stress hypothesis, the stone and duct obstruction theory, and the necrosis-fibrosis hypothesis. Although these traditional theories are formulated based on compelling scientific observations, substantial contradictory data also exist for each. Furthermore, the basic premises of some of these theories are directly contradictory. Because of the recent scientific progress in the underlying genetic, cellular, and molecular pathophysiology, there have been substantial advances in the understanding of chronic pancreatitis pathogenesis. This paper will provide an evidence-based review and critique of the traditional pathogenic theories, followed by a discussion of the new advances in pancreatic fibrogenesis. Moreover, we will discuss plausible pathogenic sequences applied to each of the known etiologies.
[Mechanisms of signaling associated with reactive nitrogen and oxygen in apoptosis].
Piłat, Justyna; Ługowski, Mateusz; Saczko, Jolanta; Choromańska, Anna; Chwiłkowska, Agnieszka; Banaś, Teresa; Kulbacka, Julita
2016-05-01
The knowledge of apoptotic mechanisms is essential in many biologic aspects related to both normal and neoplastic cells. Cell death by apoptosis is a very desirable way to eliminate unwanted cells: prevents release of the cellular content, which, in contrast to necrosis, provides no activation of inflammatory reactions. Apoptosis is a multistep process in where an extremely important role is played by caspases. Functions of caspases and their modifications are fundamental to understanding the signaling pathways responsible for regulation of apoptosis. These enzymes belong to a family of cysteine proteases that have the potential to destroy the enzymatic and structural proteins, and in the final stages of apoptosis, to lead to the disintegration of the cell. Apoptosis can be modulated by certain signaling pathway. © 2016 MEDPRESS.
Kim, Michele M; Penjweini, Rozhin; Liang, Xing; Zhu, Timothy C
2016-11-01
Photodynamic therapy (PDT) is an effective non-ionizing treatment modality that is currently being used for various malignant and non-malignant diseases. In type II PDT with photosensitizers such as benzoporphyrin monoacid ring A (BPD), cell death is based on the creation of singlet oxygen ( 1 O 2 ). With a previously proposed empirical five-parameter macroscopic model, the threshold dose of singlet oxygen ([ 1 O 2 ] rx,sh ]) to cause tissue necrosis in tumors treated with PDT was determined along with a range of the magnitude of the relevant photochemical parameters: the photochemical oxygen consumption rate per light fluence rate and photosensitizer concentration (ξ), the probability ratio of 1 O 2 to react with ground state photosensitizer compared to a cellular target (σ), the ratio of the monomolecular decay rate of the triplet state photosensitizer (β), the low photosensitizer concentration correction factor (δ), and the macroscopic maximum oxygen supply rate (g). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated interstitially with a linear light source at 690nm with total energy released per unit length of 22.5-135J/cm and source power per unit length of 12-150mW/cm to induce different radii of necrosis. A fitting algorithm was developed to determine the photochemical parameters by minimizing the error function involving the range between the calculated reacted singlet oxygen ([ 1 O 2 ] rx ) at necrosis radius and the [ 1 O 2 ] rx,sh . [ 1 O 2 ] rx was calculated based on explicit dosimetry of the light fluence distribution, the tissue optical properties, and the BPD concentration. The initial ground state oxygen concentration ([ 3 O 2 ] 0 ) was set to be 40μM in this study. The photochemical parameters were found to be ξ=(55±40)×10 -3 cm 2 mW -1 s -1 , σ=(1.8±3)×10 -5 μM -1 , and g=1.7±0.7μMs -1 . We have taken the literature values for δ=33μM, and β=11.9μM. [ 1 O 2 ] rx has shown promise to be a more effective dosimetry quantity for predicting necrosis than either light dose or PDT dose, where the latter is simplistically a temporal integral of the products of the photosensitizer concentration and light fluence rate. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori
Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in themore » cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.« less
Wang, Hai-rong; Xiao, Zhen-yu; Chen, Miao; Wang, Fei-long; Liu, Jia; Zhong, Hua; Zhong, Ji-hua; Ou-Yang, Ren-rong; Shen, Yan-lin; Pan, Shu-ming
2012-06-01
Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.
Final evaluation report for the CAPITAL-ITS operational test and demonstration program
DOT National Transportation Integrated Search
1997-05-01
The CAPITAL project was undertaken to assess the viability of using cellular-based traffic probes as a wide area vehicular traffic surveillance technique. From the test, cellular technology demonstrated the technical potential to provide vehicle spee...
Wang, X N; Yang, Q W; Du, Z W; Yu, T; Qin, Y G; Song, Y; Xu, M; Wang, J C
2016-05-25
This study aimed to evaluate 12 genes (18S, GAPDH, B2M, ACTB, ALAS1, GUSB, HPRT1, PBGD, PPIA, PUM1, RPL29, and TBP) for their reliability and stability as reference sequences for real-time quantitative PCR (RT-qPCR) in bone marrow-derived mesenchymal stem cells (BMSCs) isolated from patients with avascular necrosis of the femoral head (ANFH). BMSCs were isolated from 20 ANFH patients divided into four groups according to etiology, and four donors with femoral neck fractures. Total RNA was isolated from BMSCs and reverse transcribed into complementary DNA, which served as a template for RT-qPCR. Three commonly used programs were then used to analyze the results. Reference gene expression varied within each group, between specific groups, and among all five groups. Based on comparisons of all five groups, two of the programs used suggested that HPRT1 was the most stable reference gene, while 18S and ACTB were the most variable. Among the 12 candidate reference genes, HPRT1 exhibited the greatest reliability, followed by PPIA. Thus, these sequences could be used as references for the normalization of RT-qPCR results.
'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death.
Qiu, Shiqiao; Liu, Jing; Xing, Feiyue
2017-04-01
Pyroptosis is a lytic form of cell death distinguished from apoptosis, ferroptosis, necrosis, necroptosis, NETosis, oncosis, pyronecrosis and autophagy. Proinflammatory caspases cleave a gasdermin D (GSDMD) protein to generate a 31 kDa N-terminal domain. The cleavage relieves the intramolecular inhibition on the gasdermin-N domain, which then moves to the plasma membrane to exhibit pore-forming activity. Thus, GSDMD acts as the final and direct executor of pyroptotic cell death. Owing to the selective targeting of the inner leaflet of the plasma membrane with the pore-forming that determines pyroptotic cell death, GSDMD could be a potential target to control cell death or extracellular bacterial infections. Intriguingly, other gasdermin family members also share similar N-terminal domains, but they present different cell death programs. Herein, we summarize features and functions of the novel player proteins in cell death, including GSDMD triggering pyroptosis, Gsdma3/GSDMA initiating autophagy/apoptosis and DFNA5 inducing apoptosis/secondary necrosis. The gasdermin N terminus appears to be a novel pore-forming protein. This provides novel insight into the underlying roles and mechanisms of lytic or nonlytic forms of programmed cell death, as well as their potential applications in inflammation-associated diseases.
Lu, Yuwen; Yin, Mingyuan; Wang, Xiaodan; Chen, Binghua; Yang, Xue; Peng, Jiejun; Zheng, Hongying; Zhao, Jinping; Lin, Lin; Yu, Chulang; MacFarlane, Stuart; He, Jianqing; Liu, Yong; Chen, Jianping; Dai, Liangying; Yan, Fei
2016-06-01
Garlic virus X (GarVX) ORF3 encodes a p11 protein, which contributes to virus cell-to-cell movement and forms granules on the endoplasmic reticulum (ER) in Nicotiana benthamiana. Expression of p11 either from a binary vector, PVX or TMV induced ER stress and the unfolded protein response (UPR), as demonstrated by an increase in transcription of the ER luminal binding protein (BiP) and bZIP60 genes. UPR-related programmed cell death (PCD) was elicited by PVX : p11 or TMV : p11 in systemic infected leaves. Examination of p11 mutants with deletions of two transmembrane domains (TM) revealed that both were required for generating granules and for inducing necrosis. TRV-based VIGS was used to investigate the correlation between bZIP60 expression and p11-induced UPR-related PCD. Less necrosis was observed on local and systemic leaves of bZIP60 knockdown plants when infected with PVXp11, suggesting that bZIP60 plays an important role in the UPR-related PCD response to p11 in N. benthamiana.
Chakrabarti, Apratim; Velusamy, Thilaga; Tee, Choon Yang; Jones, David A
2016-05-01
The tomato Cf-9 gene encodes a membrane-anchored glycoprotein that imparts race-specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N-terminal half of the extracellular leucine-rich repeat (eLRR) domain of the Cf-9 protein determines its specificity for Avr9, the C-terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf-9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9-dependent necrosis triggered by Cf-9. Our results indicate that the membrane-proximal region of the cytosolic domain of Cf-9 plays an important role in Cf-9-mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf-9 function. An alanine mutation of T835 had no effect on Cf-9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf-9 function. We therefore postulate that phosphorylation/de-phosphorylation of T835 could act as a molecular switch to determine whether Cf-9 is in a primed or inactive state. Yeast two-hybrid analysis was used to show that the cytosolic domain of Cf-9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline-induced kink in the membrane-proximal region of the cytosolic domain of Cf-9 may be important for interaction with VAP27, which may, in turn, be important for Cf-9 function. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Xing, Yifei; Xiao, Yajun; Lu, Gongcheng; Zeng, Fuqing; Zhao, Jun; Xiong, Ping; Feng, Wei
2006-01-01
The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38% and 35.51%, and the proportion of necrosis being 33.05% and 28.87%, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment. Our results highlight the potential for such new combination therapies for future treatments of HRPC.
Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R
2016-12-01
The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. © 2016 The Author(s).
Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A.; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R.
2016-01-01
The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. PMID:27811014
Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer
2015-09-01
AWARD NUMBER: W81XWH-14-1-0177 TITLE: Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer PRINCIPAL INVESTIGATOR: Katerina Politi...CONTRACT NUMBER Cellular Plasticity and Heterogeneity of EGFR Mutant Lung Cancer 5b. GRANT NUMBER W81XWH-14-1-0177 5c. PROGRAM ELEMENT NUMBER 6...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Phenotypic changes have been observed in EGFR mutant lung cancers that become resistant to targeted
Verocytotoxin-induced apoptosis of human microvascular endothelial cells.
Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W
2001-04-01
The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.
... Financial Reports Watchdog Ratings Feedback Contact Select Page Avascular Necrosis Home > Cancer Resources > Late Effects of Treatment > Avascular Necrosis Avascular necrosis (AVN) is a disorder resulting from ...
Targeting of regulated necrosis in kidney disease.
Martin-Sanchez, Diego; Poveda, Jonay; Fontecha-Barriuso, Miguel; Ruiz-Andres, Olga; Sanchez-Niño, María Dolores; Ruiz-Ortega, Marta; Ortiz, Alberto; Sanz, Ana Belén
The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors) may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
To Be or Not to Be: Controlling Cellular Suicide | Center for Cancer Research
When a cell is damaged and can no longer function properly, a complex series of molecular steps is triggered that allows it to die in a controlled manner. This cellular suicide is called programmed cell death, or apoptosis.
Thermal inactivation of infectious hematopoietic necrosis and infectious pancreatic necrosis virus
Gosting, L.; Gould, R.W.
1981-01-01
A plaque assay was used to follow the inactivation kinetics of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in cell culture media at various temperatures. Inactivation of infectious hematopoietic necrosis virus in a visceral organ slurry was compared with that in culture media.
Rotondo Dottore, Giovanna; Leo, Marenza; Casini, Giamberto; Latrofa, Francesco; Cestari, Luca; Sellari-Franceschini, Stefano; Nardi, Marco; Vitti, Paolo; Marcocci, Claudio; Marinò, Michele
2017-02-01
A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H 2 O 2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. H 2 O 2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H 2 O 2 -treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H 2 O 2 did not significantly affect HA release, but it was reduced by SeMCys. H 2 O 2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H 2 O 2 -induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.
Nichols, Daniel Brian; Shisler, Joanna L.
2006-01-01
The pluripotent cytokine tumor necrosis factor alpha (TNF-α) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-κB transcription factor. To prevent the detrimental effects of TNF-α in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-α-mediated NF-κB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-κB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-κB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-κB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes. PMID:16378960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.« less
Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun
2016-09-01
Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of proinflammatory cytokines. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming
2008-04-01
Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated sequential activations of c-Jun N-terminal kinase and activator protein-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Christy C., E-mail: bridges_cc@mercer.edu; Zalups, Rudolfs K.; Joshee, Lucy
Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize themore » role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang; Han, Ya-Ling, E-mail: hanyaling53@gmail.com
2011-03-25
Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified asmore » a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this study indicate that CREG acts as a novel and potent survival factor in MSCs, and may therefore be a useful therapeutic adjunct for transplanting MSCs into the damaged heart after myocardial infarction.« less
Plum, J; Lordnejad, M R; Grabensee, B
1998-07-01
Cellular function, cell viability and the cytokine network of human monocytes are influenced by the specific composition of peritoneal dialysis (PD) fluids. In an in vitro study using isolated human blood monocytes, we investigated the effect of peritoneal dialysates containing amino acids (Amino) or glucose polymer (Glu-poly) instead of glucose (Glu) as the osmotic agent, and bicarbonate (Bic) or PBS instead of lactate (Lac) as a buffer. The following parameters were studied: mitochondrial dehydrogenase activity (using the MTT assay), interleukin (IL)-6 and IL-8 release (ELISA) and cellular IL-6 mRNA expression after lipopolysaccharide (LPS) stimulation (using RT-PCR). FACS flow cytometry with annexin V and propidium iodide as markers and fluorescence microscopic methods were used to study the effects of the test fluids on cell necrosis and apoptosis. Glu/Lac pH 5.5 and Glu-poly/PBS pH 7.4 both significantly reduced mitochondrial dehydrogenase activity by more than 50% after 60 minutes of incubation (30.5 +/- 7.6%, 42.5 +/- 6.5%, referred to RPMI 1640 as 100%). Amino/Bic and Glu/Bic were both superior (Mtt assay > 63%). The rate of necrotic cells after 15 minutes of incubation measured by FACS was mostly increased with Glu/Lac pH 5.5 (29.9 +/- 4.0%). The rate of apoptotic cells, however, was not significantly different between the test solutions. The concentration of IL-6 in the supernatant of stimulated monocytes was highest with Glu/Bic (1023 +/- 278 pg/ml) and Amino/Bic (776 +/- 296 pg/ml) an lowest with Glu/lac pH 5.5 (46 +/- 22 pg/ml) and Glu-poly/PBS (32 +/- 13 pg/ml). IL-8 release from stimulated monocytes showed a similar pattern. Glu-poly/PBS showed a suppressive effect on IL-6 mRNA expression (ratio IL-6/beta-Actin, 0.4 +/- 0.25 vs. RPMI 1.5 +/- 3.6). Bicarbonate buffered solutions both with glucose or amino acids as osmotic agents were superior when regarding cell metabolism, viability and cytokine release, while lactate buffered solutions and Glu-poly/PBS showed some reduced biocompatibility pattern for monocytes in vitro.
Lovecchio, Francis C; Manalo, John Paul; Demzik, Alysen; Sahota, Shawn; Beal, Matthew; Manning, David
2017-05-01
Avascular necrosis (AVN) may confer an increased risk of complications and readmission following total hip arthroplasty (THA). However, current risk-adjustment models do not account for AVN. A total of 1706 patients who underwent THA for AVN from 2011 to 2013 were selected from the American College of Surgeon's National Surgical Quality Improvement Program database and matched 1:1 to controls using a predetermined propensity score algorithm. Rates of 30-day medical and surgical complications, readmissions, and reoperations were compared between cohorts. Propensity-score logistic regression was used to determine independent associations between AVN and outcomes of interest. Patients with AVN had a higher rate of medical complications than those without AVN (20.3% vs 15.3%, respectively; P<.001). Bleeding transfusion was the most common medical complication, occurring at a significantly higher rate in patients with AVN than those without AVN (19.6% vs 13.9%, respectively; P<.001). Patients with AVN were also twice as likely to experience a readmission after THA (odds ratio, 2.093; 95% confidence interval, 1.385-3.164). Avascular necrosis of the femoral head is an independent risk factor for transfusion up to 72 hours postoperatively and readmission up to 30 days following total hip replacement. [Orthopedics. 2017; 40(3):171-176.]. Copyright 2017, SLACK Incorporated.
Tumor necrosis factor (TNF) biology and cell death.
Bertazza, Loris; Mocellin, Simone
2008-01-01
Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.
Penney, Zachary L.; Moffitt, Christine M.
2014-01-01
Steelhead trout (Oncorhynchus mykiss) are anadromous and iteroparous, but repeat-spawning rates are generally low. Like other anadromous salmonids, steelhead trout fast during freshwater spawning migrations, but little is known about the changes that occur in vital organs and tissues. We hypothesized that fish capable of repeat-spawning would not undergo the same irreversible degeneration and cellular necrosis documented in semelparous salmon. Using Snake River steelhead trout as a model we used histological analysis to assess the cellular architecture in the pyloric stomach, ovary, liver, and spleen in sexually mature and kelt steelhead trout. We observed 38 % of emigrating kelts with food or fecal material in the gastrointestinal tract. Evidence of feeding was more likely in good condition kelts, and feeding was associated with a significant renewal of villi in the pyloric stomach. No vitellogenic oocytes were observed in sections of kelt ovaries, but perinucleolar and early/late stage cortical alveolus oocytes were present suggesting iteroparity was possible. We documented a negative correlation between the quantity of perinucleolar oocytes in ovarian tissues and fork length of kelts suggesting that larger steelhead trout may invest more into a single spawning event. Liver and spleen tissues of both mature and kelt steelhead trout had minimal cellular necroses. Our findings indicate that the physiological processes causing rapid senescence and death in semelparous salmon are not evident in steelhead trout, and recovery begins in fresh water. Future management efforts to increase iteroparity in steelhead trout and Atlantic salmon must consider the physiological processes that influence post-spawning recovery.
Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha
2012-07-01
Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.
Yan, S Y; Chen, M M; Fan, J G; Wang, Y Q; Du, Y Q; Hu, Y; Xu, L M
2014-11-01
This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe₂O₃ nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe₂O₃ nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe₂O₃ MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe₂O₃ MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe₂O₃nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH (<24 h) and became low or absent after 24 h of MFH treatment. It can be concluded that Fe₂O₃MFH significantly inhibited the proliferation of in vitro cultured liver cancer cells (SMMC-7721), induced cell apoptosis and arrested the cell cycle at the G₂/M phase. Fe₂O₃ MFH can induce high Hsp70 expression at an early stage, enhance the expression of Bax, and decrease the expression of mutant p53, which promotes the apoptosis of tumor cells.
Fujiki, Kei
2004-01-01
The aims of this study were to clarify the geographic distribution of complete cell death in the radiofrequency ablated area in a porcine liver experiment, and to evaluate the efficacy of ultrasonography using contrast media in detecting the area of Radiofrequency-induced cell death. Radiofrequency ablation was performed at 3 sites in each liver in seven swine with a RF2000TM radiofrequency generator using an expandable type needle electrode. The ablation area was investigated histologically by Hematoxylin-Eosin staining and NADH staining. The area of radiofrequency-induced cell death was correlated to the ultrasonographic findings using contrast media, by means of contrast harmonic imaging, flash echo imaging-subtraction and flash echo imaging-power Doppler. The ablation area showed three distinct regions. Although the HE staining did not indicate necrosis, the NADH staining showed a complete loss of cellular activity in the inner and middle layers of the ablation area. However, in the outer layer cells displaying cellular integrity were intermingled with the necrotic cells, indicating that some of the cells in this layer had a chance to survive. Further, in some cases the outer layer of the ablated area had irregular margins. The flash-echo power-doppler images were accurately correlated in size and shape to the pathologically proved region of complete cell death in the radiofrequency-induced lesions. In the marginal part of the radiofrequency ablation area, cell death was incomplete. Flash echo imaging-power doppler was a useful and sensitive real time imaging technique for accurate evaluation of the region of complete cell death.
Borst, L B; Patterson, S K; Lanka, S; Suyemoto, M M; Maddox, C W
2013-05-01
Group C streptococci are highly contagious pyogenic bacteria responsible for respiratory tract, lymph node, urogenital tract, and wound infections. Wild-type strains of Streptococcus equi ssp equi (S. equi) and Streptococcus equi ssp zooepidemicus (S. zoo) as well as a commercially available modified live vaccine strain of S. equi were evaluated for virulence in zebrafish. Survival times, histologic lesions, and relative gene expression were compared among groups. Based on the intramuscular route of infection, significantly shorter survival times were observed in fish infected with wild-type strain when compared to modified live vaccine and S. zoo strains. Histologically, S. zoo-infected fish demonstrated a marked increase in inflammatory infiltrates (predominantly macrophages) at the site of infection, as well as increased cellularity in the spleen and renal interstitium. In contrast, minimal cellular immune response was observed in S. equi-injected fish with local tissue necrosis and edema predominating. Based on whole comparative genomic hybridization, increased transcription of positive acute-phase proteins, coagulation factors, and antimicrobial peptides were observed in S. equi-injected fish relative to S. zoo-injected fish, while mediators of cellular inflammation, including CXC chemokines and granulin, were upregulated in S. zoo-injected fish relative to S. equi-injected fish. In a screen of 11 clinical isolates, S. equi strains with a single nucleotide deletion in the upstream region of szp, a known virulence factor of streptococci, were found to be significantly attenuated in zebrafish. These collective findings underscore the value of the zebrafish as a model of streptococcal pathogenesis.
Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration.
Kaarniranta, Kai; Tokarz, Paulina; Koskela, Ali; Paterno, Jussi; Blasiak, Janusz
2017-04-01
Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.
... humerus). Knees. Shoulders. Ankles. It is also called: Avascular necrosis. Aseptic necrosis. Ischemic necrosis. Who gets it? Anyone ... Fast Facts Oral Health and Bone Disease Osteonecrosis (Avascular Necrosis), Questions and Answers about Last Reviewed: 10/30/ ...
Bomken, Simon; Davies, Beverley; Chong, Leeai; Cole, Michael; Wood, Katrina M; McDermott, Michael; Tweddle, Deborah A
2011-03-01
The percentage of chemotherapy-induced necrosis in primary tumors corresponds with outcome in several childhood malignancies, including high-risk metastatic diseases. In this retrospective pilot study, the authors assessed the importance of postchemotherapy necrosis in high-risk neuroblastoma with a histological and case notes review of surgically resected specimens. The authors reviewed all available histology of 31 high-risk neuroblastoma cases treated with COJEC (dose intensive etoposide and vincristine with either cyclophosphamide, cisplatin or carboplatin) or OPEC/OJEC (etoposide, vincristine and cyclophosphamide with alternating cisplatin [OPEC] or carboplatin [OJEC]) induction chemotherapy in 2 Children's Cancer & Leukaemia Group (CCLG) pediatric oncology centers. The percentage of postchemotherapy necrosis was assessed and compared with MYCN amplification status and overall survival. The median percentage of postchemotherapy tumor necrosis was 60%. MYCN status was available for 28 cases, of which 12 were amplified (43%). Survival in cases with ≥ 60% necrosis or ≥ 90% necrosis was not better than those with less necrosis, nor was percentage necrosis associated with survival using Cox regression. However, MYCN-amplified tumors showed a higher percentage of necrosis than non-MYCN-amplified tumors, 71.3% versus 37.2% (P = .006). This effect was not related to prechemotherapy necrosis and did not confer improved overall survival. Postchemotherapy tumor necrosis is higher in patients with MYCN amplification. In this study, postchemotherapy necrosis did not correlate with overall survival and should not lead to modification of postoperative treatment. However, these findings need to be confirmed in a larger prospective study of children with high-risk neuroblastoma.
An end-to-end workflow for engineering of biological networks from high-level specifications.
Beal, Jacob; Weiss, Ron; Densmore, Douglas; Adler, Aaron; Appleton, Evan; Babb, Jonathan; Bhatia, Swapnil; Davidsohn, Noah; Haddock, Traci; Loyall, Joseph; Schantz, Richard; Vasilev, Viktor; Yaman, Fusun
2012-08-17
We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow's modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.
Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori
2015-11-27
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.
Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori
2015-01-01
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program. PMID:26611489
75 FR 51280 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... Special Emphasis Panel; Member Conflict: Cellular and Molecular Aspects of Neurodevelopment. Date... Group; Cellular and Molecular Immunology--A Study Section. Date: September 30-October 1, 2010. Time: [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333...
Exploration of the recurrence in radiation brain necrosis after bevacizumab discontinuation.
Zhuang, Hongqing; Yuan, Xiangkun; Chang, Joe Y; Song, Yongchun; Wang, Junjie; Yuan, Zhiyong; Wang, Xiaoguang; Wang, Ping
2016-07-26
The aim of the paper was to investigate the recurrence and its causes of radiation brain necrosis following bevacizumab discontinuation. This study included 14 patients with radiation brain necrosis (confirmed through imaging) after stereotactic radiotherapy for a primary or metastatic brain tumor and who received bevacizumab treatment from June 2011 through December 2014. The patients received bevacizumab at 5 mg/kg, q3-4w, for at least 3 cycles. The T1 signal intensity from enhanced MRI images was used as the evaluation criteria for the brain necrosis treatment efficacy. brain necrosis improved in 13 of the 14 cases (92.9%). However, during follow-up, 10 of the 13 responsive patients (76.9%) exhibited a recurrence in brain necrosis, and a multiple linear regression analysis shows that brain necrosis recurrence was related to the follow-up time after the initial bevacizumab treatment discontinuation. bevacizumab produced good short-term effects for radiation brain necrosis; however, most of the patients would recurrence after bevacizumab is discontinued. Thus, brain necrosis was irreversible.
Ketoconazole attenuates radiation-induction of tumor necrosis factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.
1994-07-01
Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2more » inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.« less
Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.
Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y
2018-06-01
Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental calculus was significantly inhibited by cytochalasin D, z-YVAD-fmk and glyburide, indicating NLRP3 inflammasome involvement. In permeability assays, dental calculus attenuated the barrier function of HSC-2 cell monolayers. Dental calculus induces pyroptotic cell death in human oral epithelial cells and the crystalline structure plays a major role in this process. Oral epithelial cell death induced by dental calculus might be important for the etiology of periodontitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tavares, M; de Lima, C; Fernandes, W; Martinelli, V; de Lucena, M; Lima, F; Telles, A; Brandão, L; de Melo Júnior, M
2016-12-01
Inflammatory bowel disease consists of multifactorial diseases whose common manifestation is inflammation of the gastrointestinal tract and their pathogenesis remains unknown. This study aimed to analyse the gene polymorphisms in Brazilian patients with inflammatory bowel disease. A total of 101 patients diagnosed with inflammatory bowel disease were analysed for the tumour necrosis factor-alpha (-308 G/A; rs1800629) and interleukin-10 (-1082 G/A; rs1800896) gene polymorphisms. Genotyping was performed through polymerase chain reaction-sequence-specific primer, then fractionated on 2% agarose gel and visualized after staining by ethidium bromide. The anatomic-clinical form of Crohn's disease (CD) predominant was the inflammatory (32.75%), followed by fistulizing (29.31%) and 27.58% stricturing. As control group, a total of 136 healthy subjects, from the same geographical region, were enrolled. The statistical analyses were performed using R program. The frequency of the A allele at tumour necrosis factor-alpha was high in ulcerative colitis (UC) patients (51%) than in controls (22%; P > 0.01). No statistical difference was found with the genotypic and allelic frequencies of CD patients compared to controls (P = 0.54). The polymorphism -1082G/A of interleukin-10 was not statistical different between the diseases compared to controls. Tumour necrosis factor-alpha (TNF-α) (-308G/A) is associated with UC onset, suggesting that the presence of -308A allele could confer a relative risk of 3.62 more to develop UC in general population. Further studies, increasing the number of individuals, should be performed to ratify the role of TNF-α in the inflammatory bowel disease pathogenesis. © 2016 John Wiley & Sons Ltd.
Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice
NASA Astrophysics Data System (ADS)
Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun
2017-01-01
Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.
Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans.
Haeusler, Karl Georg; Schmidt, Wolf U H; Föhring, Fabian; Meisel, Christian; Helms, Thomas; Jungehulsing, G Jan; Nolte, Christian H; Schmolke, Katrin; Wegner, Brigitte; Meisel, Andreas; Dirnagl, Ulrich; Villringer, Arno; Volk, Hans-Dieter
2008-01-01
We have recently shown that ischemic stroke causes a stress-mediator-induced long-lasting immunodepressive state in mice. Using head magnetic resonance imaging and standardized immunoassays, we prospectively investigated whether poststroke immunodepression is also seen in humans. Compared to healthy volunteers (n = 30), a rapid depression of lymphocyte counts and a functional deactivation of monocytes and T helper type 1 cells was observed in acute stroke patients (SP; n = 40). Immunodepression was more pronounced in patients with severe clinical deficit or large infarction. On admission the combination of monocytic tumor necrosis factor alpha release ex vivo and the National Institute of Health Stroke Scale score were the best predictors for nosocomial infection, preferentially affecting older SP. Our data provide evidence for an immediate suppression of cell-mediated immune responses after ischemic stroke in humans. (c) 2007 S. Karger AG, Basel.
Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.
Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio
2013-08-01
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.
Yu, Fabiao; Li, Peng; Wang, Bingshuai; Han, Keli
2013-05-22
The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO(-) and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO(-) and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.
Martínez-González, Alicia; Calvo, Gabriel F; Pérez Romasanta, Luis A; Pérez-García, Víctor M
2012-12-01
Glioblastoma is a rapidly evolving high-grade astrocytoma that is distinguished pathologically from lower grade gliomas by the presence of necrosis and microvascular hyperplasia. Necrotic areas are typically surrounded by hypercellular regions known as "pseudopalisades" originated by local tumor vessel occlusions that induce collective cellular migration events. This leads to the formation of waves of tumor cells actively migrating away from central hypoxia. We present a mathematical model that incorporates the interplay among two tumor cell phenotypes, a necrotic core and the oxygen distribution. Our simulations reveal the formation of a traveling wave of tumor cells that reproduces the observed histologic patterns of pseudopalisades. Additional simulations of the model equations show that preventing the collapse of tumor microvessels leads to slower glioma invasion, a fact that might be exploited for therapeutic purposes.
Functional magnetic resonance imaging in oncology: state of the art*
Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson
2014-01-01
In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate. PMID:25741058
A rare case of atypical pleomorphic adenoma arising from periocular ectopic lacrimal gland.
Wajda, Brynn N; Mancini, Ronald; Evers, Bret; Nick Hogan, R
2018-06-23
To describe features of atypical pleomorphic adenoma, a rare clinical entity, particularly when found in ectopic periocular lacrimal gland tissue. Case report of biopsy-confirmed periocular atypical pleomorphic adenoma. A 35-year-old female presented with a unique orbital lesion found to be ectopic lacrimal gland demonstrating atypical pleomorphic adenoma on formal histopathologic review. Pleomorphic adenoma is pathologically characterized as an epithelial lesion intermixed with mesenchymal elements. It is further classified as atypical with the presence of features such as hypercellularity, regions of necrosis or hyalinization, cellular dysplasia, capsular violation, and malignant characteristics without frank local extension or distant metastases. Due to its rarity, the natural history and prognosis of atypical pleomorphic adenoma is unclear. Physicians need to recognize this entity, and complete surgical excision with strict follow-up regimens are likely warranted.
Necroptosis: Mechanisms and Relevance to Disease
Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido
2018-01-01
Necroptosis is a form of regulated cell death that critically depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and generally manifests with morphological features of necrosis. The molecular mechanisms that underlie distinct instances of necroptosis have just begun to emerge. Nonetheless, it has already been shown that necroptosis contributes to cellular demise in various pathophysiological conditions, including viral infection, acute kidney injury, and cardiac ischemia/reperfusion. Moreover, human tumors appear to obtain an advantage from the downregulation of key components of the molecular machinery for necroptosis. Although such an advantage may stem from an increased resistance to adverse microenvironmental conditions, accumulating evidence indicates that necroptosis-deficient cancer cells are poorly immunogenic and hence escape natural and therapy-elicited immunosurveillance. Here, we discuss the molecular mechanisms and relevance to disease of necroptosis. PMID:27959630
Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders.
Srivastava, Shikha; Singh, Deependra; Patel, Satish; Singh, Manju R
2017-08-01
Autoimmune disorders are distinct with over production and accumulation of free radicals due to its undisclosed genesis. The cause of numerous disorders as cancer, arthritis, psoriasis, diabetes, alzheimer's, cardiovascular disease, Parkinson's, respiratory distress syndrome, colitis, crohn's, pulmonary fibrosis, obesity and ageing have been associated with immune dysfunction and oxidative stress. In an oxidative stress, reactive oxygen species generally provoke the series of oxidation at cellular level. The buildup of free radicals in turn triggers various inflammatory cells causing release of various inflammatory interleukins, cytokines, chemokines, and tumor necrosis factors which mediate signal transduction and transcription pathways as nuclear factor- kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1 (HIF-1α) and nuclear factor-erythroid 2-related factor (Nrf2). The imbalance could only be combat by supplementing natural defensive antioxidant enzymes such as superoxide dismutase and catalase. The efficiency of these enzymes is enhanced by use of colloidal carriers which include cellular carriers, vesicular and particulate systems like erythrocytes, leukocytes, platelets, liposomes, transferosomes, solid lipid nanoparticles, microspheres, emulsions. Thus this review provides a platform for understanding importance of antioxidant enzymes and its therapeutic applications in treatment of various autoimmune disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Augmenter of liver regeneration: An important intracellular survival factor for hepatocytes☆
Thirunavukkarasu, Chinnasamy; Wang, Lian Fu; Harvey, Stephen A.K.; Watkins, Simon C.; Chaillet, J. Richard; Prelich, John; Starzl, Thomas E.; Gandhi, Chandrashekhar R.
2010-01-01
Background/Aims Augmenter of liver regeneration (ALR), a protein synthesized and stored in hepatocytes, is associated with mitochondria, and possesses sulfhydryl oxidase and cytochrome c reductase activities. We sought to determine the effects of ALR depletion in hepatocytes by antisense oligonucleotide transfection. Methods Rat hepatocytes in primary culture were transfected with antisense oligonucleotide for ALR mRNA (ALR-AS) or scrambled oligonucleotide. Various analyses were performed at times up to 24 h after transfection. Results Treatment with ALR-AS caused a decrease in ALR mRNA, cellular depletion of ALR protein primarily from mitochondria, and decreased viability. Flow cytometric analysis of ALR-AS-transfected hepatocytes stained with annexin-Vcy3 and 7-aminoactinomycin D revealed apoptosis as the predominant cause of death up to 6 h; incubation beyond this time resulted in necrosis in addition to apoptosis. ALR-AS-transfection caused release of mitochondrial cytochrome c, activation of caspase-3, profound reduction in the ATP content, and cellular release of LDH. Inhibition of caspase-3 inhibited the early phase of ALR-AS-induced death but not the late phase that included ALR and LDH release. Conclusions These results suggest that ALR is critically important for the survival of hepatocytes by its association with mitochondria and regulation of ATP synthesis. PMID:18272248
Cytotoxic and genotoxic affects of acid mine drainage on fish Channa punctata (Bloch).
Talukdar, B; Kalita, H K; Basumatary, S; Saikia, D J; Sarma, D
2017-10-01
The investigation deals with the effects of Acid Mine Drainage (AMD) of coal mine on fish Channa punctata (Bloch) by examining the incidence of haematological, morphological, histological changes and DNA fragmentation in tissues of C. punctata in laboratory condition. For this study fishes were exposed to 10% of AMD for a period of 30 days. The fusion of the primary and secondary gill lamellae, distortion, loss of alignment, deposition of worn out tissues and mucous on the surface of the lamella in the gills; degeneration of morphological architecture, loss of alignment of tubules, mucous deposition in the kidney; cellular damage, cellular necrosis, extraneous deposition on the surface, pore formation in the liver are some important changes detected by scanning electron microscopy. Fishes of AMD treated group showed gradual significant decrease in TEC, Hb and, increase in TLC and DLC as compared to that of the control. DNA fragmentation observed in kidney of fishes from treated group indicates an intricate pollutant present in the AMD. The high incidence of morphological and histological alterations, haematological changes along with DNA breakage in C. punctata is an evidence of the cytotoxic and genotoxic potential of AMD of coal mines. Copyright © 2017 Elsevier Inc. All rights reserved.
Castellano, Immacolata; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Pipino, Caterina; Formoso, Gloria; Napolitano, Alessandra; Palumbo, Anna; Pandolfi, Assunta
2018-01-01
Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor- α -stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.
Jung, Soohan; Kim, Min Hyung; Park, Jae Hee; Jeong, Yoonhwa; Ko, Kwang Suk
2017-06-01
During roasting, major changes occur in the composition and physiological effects of coffee beans. In this study, in vitro antioxidant effects and anti-inflammatory effects of Coffea arabica green coffee extracts were investigated at different roasting levels corresponding to Light, Medium, City, and French roast. Total caffeine did not show huge difference according to roasting level, but total chlorogenic acid contents were higher in light roasted coffee extract than other roasted groups. In addition, light roasted coffee extract had the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. To determine the in vitro antioxidant property, coffee extracts were used to treat AML-12 cells. Intracellular glutathione (GSH) concentration and mRNA expression levels of genes related to GSH synthesis were negatively related to roasting levels. The anti-inflammatory effects of coffee extracts were investigated in lipopolysaccharide-treated RAW 264.7 macrophage cells. The cellular antioxidant activity of coffee extracts exhibited similar patterns as the AML-12 cells. The expression of mRNA for tumor necrosis factor-alpha and interleukin-6 was decreased in cells treated with the coffee extracts and the expression decreased with increasing roasting levels. These data suggest that coffee has physiological antioxidant and anti-inflammatory activities and these effects are negatively correlated with roasting levels in the cell models.
Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models
Datta, Gourab; Fuller, Barry J; Davidson, Brian R
2013-01-01
Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery. Understanding the mechanisms of liver ischemia reperfusion injury (IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation, as well as expanding the potential pool of usable donor grafts. The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes, increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis. Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury. IRI involves a complex interplay between neutrophils, natural killer T-cells cells, CD4+ T cell subtypes, cytokines, nitric oxide synthases, haem oxygenase-1, survival kinases such as the signal transducer and activator of transcription, Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways. Transgenic animals, particularly genetic knockout models, have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies. Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein. This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI. PMID:23555157
Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank
2017-01-01
Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868
Mbaya, A W; Aliyu, M M; Ibrahim, U I
2009-10-01
Reports on the clinico-pathology and mechanisms of trypanosomosis in free-living and captive wild animals showed that clinical disease and outbreaks occur more commonly among captive than free-living wild animals. This is because the free-living wild animals co-exist with the disease until subjected to captivity. In exceptional cases however, draught, starvation and intercurrent diseases often compromised trypanotolerance leading to overt trypanosomosis in free-living wild animals. Meanwhile, in captivity, space restriction, reduced social interactions, change in social herd structure, reduced specie-to-specie specific behaviors, altered habitat and translocation were the major stressors that precipitated the disease. The cumulative effect of these factors produced severe physiological and somatic stress leading to diminished immune response due to increased blood cortisol output from adrenal cortex. The major symptoms manifested were pyrexia, innapetence, increased respiration, anaemia, cachexia and death. At necropsy, pulmonary oedema, splenomegally, hepatomegally, lympadenopathy and atrophy of body fats were the gross changes encountered. At the ultra-structural level, the tissues manifested degenerative changes, haemorghages, necrosis and mononuclear cellular infiltrations. The mechanisms of cellular and tissue injuries were primarily associated with physical and metabolic activities of the organisms. From the foregoing, it is evident that stress is the underlying mechanism that compromises trypanotolerance in wild animals leading to severe clinico-pathological effects.
The NIH Common Fund Human Biomolecular Atlas Program (HuBMAP) aims to develop a framework for functional mapping the human body with cellular resolution to enhance our understanding of cellular organization-function. HuBMAP will accelerate the development of the next generation of tools and techniques to generate 3D tissue maps using validated high-content, high-throughput imaging and omics assays, and establish an open data platform for integrating, visualizing data to build multi-dimensional maps.
Wallerian demyelination: chronicle of a cellular cataclysm.
Tricaud, Nicolas; Park, Hwan Tae
2017-11-01
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
76 FR 57066 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review, Group, Cellular and Molecular Biology of Glia Study Section. Date: October 14, 2011. Time: 8 a.m. to 7... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...
Huang, Hui-Ya; Huang, Xiao-Zhong; Han, Yi-Jiang; Zhu, Li-Bin; Huang, Kai-Yu; Lin, Jing; Li, Zhong-Rong
2017-05-01
Intestinal necrosis is the most serious complication of intussusception. The risk factors associated with intestinal necrosis in pediatric patients with intussusception have not been well characterized. This study aimed to investigate the risk factors associated with intestinal necrosis in pediatric patients with failed non-surgical reduction for intussusception. Hospitalized patients who failed the air-enema reduction for intussusception in the outpatient department and subsequently underwent surgery were retrospectively reviewed. All cases were categorized into two groups: intestinal necrosis group and non-intestinal necrosis group based on the surgical findings. Demographic and clinical features including the findings from the surgery were recorded and analyzed. Factors associated with intestinal necrosis were analyzed using univariate and multivariate unconditional logistic regression analyses. A total of 728 cases were included. Among them, 171 had intestinal necrosis at the time of surgery. The group with intestinal necrosis had a longer duration of symptom or length of illness (P = 0.000), and younger (P = 0.000) than the non-intestinal necrosis group. Complex/compound type of intussusceptions is more likely to have intestinal necrosis. Multivariate analysis showed that the presence of grossly bloody stool (OR = 2.12; 95% CI 1.19-3.76, P = 0.010) and duration of symptom (OR = 1.07; 95% CI 1.06-1.08, P = 0.000) were independent risk factors for intestinal necrosis in patients hospitalized for surgical reduction for intussusceptions. At time of admission, the presence of bloody stools and duration of symptom are the important risk factors for developing intestinal necrosis for those patients who failed non-surgical reduction. The length of illness has the highest sensitivity and specificity to correlate with intestinal necrosis. This finding may suggest that we should take the intussusception cases that have the longer duration of symptom directly to operation room for reduction.
Durur-Subasi, Irmak; Durur-Karakaya, Afak; Karaman, Adem; Seker, Mehmet; Demirci, Elif; Alper, Fatih
2017-05-01
To determine whether the necrosis/wall apparent diffusion coefficient (ADC) ratio is useful for the malignant-benign differentiation of necrotic breast lesions. Breast MRI was performed using a 3-T system. In this retrospective study, calculation of the necrosis/wall ADC ratio was based on ADC values measured from the necrosis and from the wall of malignant and benign breast lesions by diffusion-weighted imaging (DWI). By synchronizing post-contrast T 1 weighted images, the separate parts of wall and necrosis were maintained. All the diagnoses were pathologically confirmed. Statistical analyses were conducted using an independent sample t-test and receiver operating characteristic analysis. The intraclass and interclass correlations were evaluated. A total of 66 female patients were enrolled, 38 of whom had necrotic breast carcinomas and 28 of whom had breast abscesses. The ADC values were obtained from both the wall and necrosis. The mean necrosis/wall ADC ratio (± standard deviation) was 1.61 ± 0.51 in carcinomas, and it was 0.65 ± 0.33 in abscesses. The area under the curve values for necrosis ADC, wall ADC and the necrosis/wall ADC ratio were 0.680, 0.068 and 0.942, respectively. A wall/necrosis ADC ratio cut-off value of 1.18 demonstrated a sensitivity of 97%, specificity of 93%, a positive-predictive value of 95%, a negative-predictive value of 96% and an accuracy of 95% in determining the malignant nature of necrotic breast lesions. There was a good intra- and interclass reliability for the ADC values of both necrosis and wall. The necrosis/wall ADC ratio appears to be a reliable and promising tool for discriminating breast carcinomas from abscesses using DWI. Advances in knowledge: ADC values of the necrosis obtained by DWI are valuable for malignant-benign differentiation in necrotic breast lesions. The necrosis/wall ADC ratio appears to be a reliable and promising tool in the breast imaging field.
Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.
Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu
2018-01-20
The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.
Sempere, Raquel N; Gómez-Aix, Cristina; Ruíz-Ramón, Fabiola; Gómez, Pedro; Hasiów-Jaroszewska, Beata; Sánchez-Pina, María Amelia; Aranda, Miguel A
2016-04-01
Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.
Avascular necrosis Overview Avascular necrosis is the death of bone tissue due to a lack of blood supply. Also called osteonecrosis, it can lead to ... blood flow to a section of bone. Avascular necrosis is also associated with long-term use of ...
Inflammatory etiopathogenesis of systemic lupus erythematosus: an update
Podolska, Malgorzata J; Biermann, Mona HC; Maueröder, Christian; Hahn, Jonas; Herrmann, Martin
2015-01-01
The immune system struggles every day between responding to foreign antigens and tolerating self-antigens to delicately maintain tissue homeostasis. If self-tolerance is broken, the development of autoimmunity can be the consequence, as it is in the case of the chronic inflammatory autoimmune disease systemic lupus erythematosus (SLE). SLE is considered to be a multifactorial disease comprising various processes and cell types that act abnormally and in a harmful way. Oxidative stress, infections, or, in general, tissue injury are accompanied by massive cellular demise. Several processes such as apoptosis, necrosis, or NETosis (formation of Neutrophil Extracellular Traps [NETs]) may occur alone or in combination. If clearance of dead cells is insufficient, cellular debris may accumulate and trigger inflammation and leakage of cytoplasmic and nuclear autoantigens like ribonucleoproteins, DNA, or histones. Inadequate removal of cellular remnants in the germinal centers of secondary lymphoid organs may result in the presentation of autoantigens by follicular dendritic cells to autoreactive B cells that had been generated by chance during the process of somatic hypermutation (loss of peripheral tolerance). The improper exposure of nuclear autoantigens in this delicate location is consequently prone to break self-tolerance to nuclear autoantigens. Indeed, the germline variants of autoantibodies often do not show autoreactivity. The subsequent production of autoantibodies plays a critical role in the development of the complex immunological disorder fostering SLE. Immune complexes composed of cell-derived autoantigens and autoantibodies are formed and get deposited in various tissues, such as the kidney, leading to severe organ damage. Alternatively, they may also be formed in situ by binding to planted antigens of circulating autoantibodies. Here, we review current knowledge about the etiopathogenesis of SLE including the involvement of different types of cell death, serving as the potential source of autoantigens, and impaired clearance of cell remnants, causing accumulation of cellular debris. PMID:26316795
Poujade, Olivier; Ceccaldi, Pierre François; Davitian, Carine; Amate, Pascale; Chatel, Paul; Khater, Carine; Aflak, Nizar; Vilgrain, Valérie; Luton, Dominique
2013-10-01
Uterine necrosis is one of the rarest complications following pelvic arterial embolization for postpartum hemorrhage (PPH). With the increasing incidence of cesarean section and abnormal placental localization (placenta previa) or placental invasion (placenta accreta/increta/percreta), more and more cases of uterine necrosis after embolization are being diagnosed and reported. Pelvic computed tomography or magnetic resonance imaging provides high diagnostic accuracy, and surgical management includes hysterectomy. We performed a Medline database query following the first description of uterine necrosis after pelvic embolization (between January 1985 and January 2013). Medical subheading search words were the following: "uterine necrosis"; "embolization"; "postpartum hemorrhage". Seventeen citations reporting at least one case of uterine necrosis after pelvic embolization for PPH were included, with a total of 19 cases. This literature review discusses the etiopathogenesis, clinical and therapeutic aspects of uterine necrosis following pelvic arterial embolization, and guidelines are detailed. The mean time interval between pelvic embolization and diagnosis of uterine necrosis was 21 days (range 9-730). The main symptoms of uterine necrosis were fever, abdominal pain, menorrhagia and leukorrhea. Surgical management included total hysterectomy (n=15, 78%) or subtotal hysterectomy (n=2, 10%) and partial cystectomy with excision of the necrotic portion in three cases of associated bladder necrosis (15%). Uterine necrosis was partial in four cases (21%). Regarding the pathophysiology, four factors may be involved in uterine necrosis: the size and nature of the embolizing agent, the presence of the anastomotic vascular system and the embolization technique itself with the use of free flow embolization. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.