ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This instructional package contains two biological units developed for the Dade County Florida Quinmester Program. "Introduction to Life Sciences" develops student understandings of cell structure and function, and compares different levels of cellular organization. "Cell Biology" investigates the origin of modern cellular…
Soil microbial community restoration in conservation reserve program semi-arid grasslands
USDA-ARS?s Scientific Manuscript database
The Conservation Reserve Program (CRP) in the Southern High Plains (SHP) is known to play a crucial role in maintaining ecosystem health by reducing soil erosion. However, the restoration of its soil biological health (biological community and its function) over time have not been clearly elucidated...
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
Towards programming languages for genetic engineering of living cells
Pedersen, Michael; Phillips, Andrew
2009-01-01
Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions. An ultimate dream is to design these systems at a high level of abstraction using engineering-based tools and programming languages, press a button, and have the design translated to DNA sequences that can be synthesized and put to work in living cells. We introduce such a programming language, which allows logical interactions between potentially undetermined proteins and genes to be expressed in a modular manner. Programs can be translated by a compiler into sequences of standard biological parts, a process that relies on logic programming and prototype databases that contain known biological parts and protein interactions. Programs can also be translated to reactions, allowing simulations to be carried out. While current limitations on available data prevent full use of the language in practical applications, the language can be used to develop formal models of synthetic systems, which are otherwise often presented by informal notations. The language can also serve as a concrete proposal on which future language designs can be discussed, and can help to guide the emerging standard of biological parts which so far has focused on biological, rather than logical, properties of parts. PMID:19369220
Towards programming languages for genetic engineering of living cells.
Pedersen, Michael; Phillips, Andrew
2009-08-06
Synthetic biology aims at producing novel biological systems to carry out some desired and well-defined functions. An ultimate dream is to design these systems at a high level of abstraction using engineering-based tools and programming languages, press a button, and have the design translated to DNA sequences that can be synthesized and put to work in living cells. We introduce such a programming language, which allows logical interactions between potentially undetermined proteins and genes to be expressed in a modular manner. Programs can be translated by a compiler into sequences of standard biological parts, a process that relies on logic programming and prototype databases that contain known biological parts and protein interactions. Programs can also be translated to reactions, allowing simulations to be carried out. While current limitations on available data prevent full use of the language in practical applications, the language can be used to develop formal models of synthetic systems, which are otherwise often presented by informal notations. The language can also serve as a concrete proposal on which future language designs can be discussed, and can help to guide the emerging standard of biological parts which so far has focused on biological, rather than logical, properties of parts.
Towards a behavioral-matching based compilation of synthetic biology functions.
Basso-Blandin, Adrien; Delaplace, Franck
2015-09-01
The field of synthetic biology is looking forward engineering framework for safely designing reliable de-novo biological functions. In this undertaking, Computer-Aided-Design (CAD) environments should play a central role for facilitating the design. Although, CAD environment is widely used to engineer artificial systems the application in synthetic biology is still in its infancy. In this article we address the problem of the design of a high level language which at the core of CAD environment. More specifically the Gubs (Genomic Unified Behavioural Specification) language is a specification language used to describe the observations of the expected behaviour. The compiler appropriately selects components such that the observation of the synthetic biological function resulting to their assembly complies to the programmed behaviour.
UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences.
Du, Pu-Feng; Zhao, Wei; Miao, Yang-Yang; Wei, Le-Yi; Wang, Likun
2017-11-14
With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.
ERIC Educational Resources Information Center
De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores
2016-01-01
Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…
Mammalian Synthetic Biology: Engineering Biological Systems.
Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A
2017-06-21
The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2013-01-01
NASA currently has a program called the Space Synthetic Biology Project. Synthetic Biology or SynBio is the design and construction of new biological functions and systems not found in nature. Four NASA field centers, along with experts from industry and academia, have been partnering on the Space Synthetic Biology Project and are working on new breakthroughs in this increasingly useful pursuit, which is part a science discipline and part engineering. Led by researchers at NASA s Ames Research Center, the team is studying how this powerful new tool can help NASA now and in the future. The project was created to harness biology in reliable, robust, engineered systems to support the agency s exploration and science missions, to improve life on Earth and to help shape NASA's future. The program also is intended to contribute foundational tools to the synthetic biology research community.
Cellular automata with object-oriented features for parallel molecular network modeling.
Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan
2005-06-01
Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.
Cell-based composite materials with programmed structures and functions
None
2016-03-01
The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.
Cell-based composite materials with programmed structures and functions
Kaehr, Bryan J.; Brinker, C. Jeffrey; Townson, Jason L.
2018-05-15
The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.
Gyurcsik, Z; Bodnár, N; Szekanecz, Z; Szántó, S
2013-12-01
Biologics are highly effective in ankylosing spondylitis (AS). In this self-controlled study, we assessed the additive value of complex physiotherapy in decreasing chest pain and tenderness and improving respiratory function in AS patients treated with tumor necrosis factor α (TNF-α) inhibitors. The trial consisted of 2 parts. In study I, clinical data of AS patients with (n=55) or without biological therapy (n=20) were retrospectively analyzed and compared. Anthropometrical data, duration since diagnosis and patient assessment of disease activity, pain intensity, tender points, sacroiliac joint involvement determined by X-ray, functional condition, and physical activity level were recorded. Subjective, functional, and physical tests were performed. In study II, 10 voluntary patients (6 men and 4 women, age 52.4 ± 13.6 years) with definite AS and receiving anti-TNF therapy were recruited. It was a prospective, non-randomized physiotherapeutic trial. BASFI (Bath Ankylosing Spondylitis Functional Index), BASDAI (Bath Ankylosing Spondylitis Disease Activity Index), modified Schober Index, occiput-to-wall distance, and fingertip-to-floor distance were evaluated. Forced vital capacity, forced 1-s expiratory volume, peak expiratory flow, and maximum voluntary ventilation were recorded. Furthermore, typical tender points were recorded. A targeted physiotherapy program was conducted twice a week for 12 weeks and all above parameters were recorded at baseline and after 12 weeks. Differences in patient assessment of disease activity (p=0.019) and pain intensity (p=0.017) were found in study I. Pain and tenderness of the thoracic spine were observed in both groups. Back pain without biologic therapy was slightly higher than other group. In study II, we found that patient assessment of disease activity and pain intensity significantly improved after the physical therapy program (p=0.002 and p<0.001). BASFI and BASDAI increased after treatment (p=0.004 and p<0.001). The finger-to-floor distance, chest expansion, and modified Schober index increased (p=0.008, p<0.001, and p=0.031, respectively). The respiratory functional parameters showed a tendency towards improvement. AS patients already receiving biological therapy may benefit from additional targeted physiotherapy. Physical therapy may be of important additive value in AS patients being treated with biological. The exercise program presented here showed an improvement in functional parameters as well as spine and chest mobility, thereby enhancing the favorable effects of biological therapy.
Towards Engineering Biological Systems in a Broader Context.
Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P
2016-02-27
Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Discovering rules for protein-ligand specificity using support vector inductive logic programming.
Kelley, Lawrence A; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E
2009-09-01
Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks, an accurate structural model does not necessarily tell us about function. Thus, there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, is often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and to function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of inductive logic programming with the statistical learning power of support vector machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition, we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggests that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and data sets are freely available to non-commercial users at http://www.sbg.bio.ic.ac.uk/svilp_ligand/.
Toxicity Relationship Analysis Program (TRAP) Version 1.21
The Toxicity Relationship Analysis Program (TRAP) fits a sigmoidal toxic response versus exposure variable relationship to standard toxicity test data. It will analyze binary (e.g., survival) or continuous (e.g., growth, reproduction) biological effect variables as a function o...
The Installation Restoration Program Toxicology Guide. Volume 5
1990-11-01
biological systems may not differentiate metals on a basis other than oxidation state. In essence , this results in a specific function (e.g. intracellular...biological exposure Indices. 5th ed. Cincinnati, Ohio, pp. 422-426 (as cited in 6206). 6368. Jasmin , G. 1973. Experimental production of polycythcmia in
An Audiovisual Program in Cell Biology
ERIC Educational Resources Information Center
Fedoroff, Sergey; Opel, William
1978-01-01
A subtopic of cell biology, the structure and function of cell membranes, has been developed as a series of seven self-instructional slide-tape units and tested in five medical schools. Organization of advisers, analysis and definition of objectives and content, and development and evaluation of scripts and storyboards are discussed. (Author/LBH)
[Biotechnological functional systems].
Bokser, O Ia
1999-01-01
Based on the theory of functional systems and a concept of the quantum system of behavior, studies of the quantumsystems were conducted. Their structure, the interaction of biological and technical sections were analyzed. Mathematical, biophysical, and experimental models were designed. The paper shows that biotechnical quantumsystems are involved in the formation of biological feedback. A system with imperative feedback from the programmed and introduced current results of efforts has been developed and put into practice for the self-regulation of muscle tension. Training by using this biological feedback system causes a stable increase in the perception rate of proprioceptive stimulus in examinees (operates, sportsmen, neurological patients).
NASA Astrophysics Data System (ADS)
Kara, Yılmaz; Yeşilyurt, Selami
2008-02-01
The purpose of this study was to investigate the effects of tutorial and edutainment design of instructional software programs related to the "cell division" topic on student achievements, misconceptions and attitudes. An experimental research design including the cell division achievement test (CAT), the cell division concept test (CCT) and biology attitude scale (BAS) was applied at the beginning and at the end of the research. After the treatment, general achievement in CAT increased in favor of experimental groups. Instructional software programs also had the positive effect to the awareness of students' understandings to the general functions of mitosis and meiosis. However, the current study revealed that there were still some misconceptions in the experimental groups even after the treatment. It was also noticed that only using edutainment software program significantly changed students' attitudes towards biology.
Glenn, Andrea L
2018-04-16
A growing body of evidence suggests that biological factors such as genes, hormone levels, brain structure, and brain functioning influence the development and trajectory of conduct problems in youth. In addition, biological factors affect how individuals respond to the environment, including how individuals respond to programs designed to prevent or treat conduct problems. Programs designed to reduce behavior problems in youth would have the greatest impact if they were targeted toward youth who need it the most (e.g., who are mostly likely to demonstrate persistent behavior problems) as well as youth who may benefit the most from the program. Biological information may improve our ability to make decisions about which type or level of intervention is best for a particular child, thus maximizing overall effectiveness, but it also raises a number of ethical concerns. These include the idea that we may be providing fewer services to some youth based on biological factors, and that information about biological risk could potentially lead to discrimination or labeling. In this article, I discuss the risks and benefits of using biological information to individualize interventions for youth with conduct problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Automated Discovery of Functional Generality of Human Gene Expression Programs
Gerber, Georg K; Dowell, Robin D; Jaakkola, Tommi S; Gifford, David K
2007-01-01
An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-κB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal “cross-talk,” and genes from high generality programs may maintain common physiological responses that go awry in disease states. Further, our method is multipurpose, and can be applied readily to novel compendia of biological data. PMID:17696603
Self-restoration as fundamental property of CES providing their sustainability
NASA Astrophysics Data System (ADS)
Gitelson, I. I.; Degermendzhy, A. G.; Rodicheva, E. K.
Sustainability is one of the most important criteria in the creation and evaluation of human life support systems intended for use during long space flights. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. But there are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts — enzymes of protein nature — are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself — in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self-restoration of the function performed by the cells of this species in the ecosystem. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the process of self-restoration in unicellular algae population. Based on the data obtained, we proposed a mathematical model of the restoration process in a cell population that has suffered an acute radiation damage.
The NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology
NASA Technical Reports Server (NTRS)
Spooner, B. S.; Guikema, J. A.
1992-01-01
The Life Sciences Division of NASA has initiated a NASA Specialized Centers of Research and Training (NSCORT) program. Three Centers were designated in late 1990, as the culmination of an in-depth peer review analysis of proposals from universities across the nation and around the world. Kansas State University was selected as the NSCORT in Gravitational Biology. This Center is headquartered in the KSU Division of Biology and has a research, training, and outreach function that focuses on cellular and developmental biology.
Conduct, Biological Factors and Adult Delinquency in a Longitudinal Perspective.
ERIC Educational Resources Information Center
Magnusson, David
In the course of a longitudinal research program conducted in Sweden, data were being collected on biological and psychological aspects of individual functioning and on environmental factors for a fairly large representative sample (approximately 1,000) of Swedish males and females between 10 and 27 years of age. Based on data from the…
Additive manufacturing of biologically-inspired materials.
Studart, André R
2016-01-21
Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.
Wood, William B
2002-01-01
A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.
2002-01-01
A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors. PMID:12669097
Application of Virtual Reality Technology in Biology Education.
ERIC Educational Resources Information Center
Shim, Kew-Cheol; Park, Jong-Seok; Kim, Hyun-Sup; Kim, Jae-Hyun; Park, Young-Chul; Ryu, Hai-Il
2003-01-01
Reports on the findings of a study designed to develop three-dimensional virtual reality technology (VRT) learning programs for middle school students and evaluate the program's educational value. Focuses on the topic of structure and function of the eye. Concludes that VRT simulations allow comfortable interaction with computers and increase the…
U.S. Army Medical Department Journal, October-December 2007
2007-12-01
Warrior Task Training requirements (such as weapons assembly/disassembly and functions check; individual chemical, biological , radiological, nuclear...training program focused on hands-on training in the 40 Army Warrior Tasks and 11 Battle Drills, to include advanced land navigation training; weapons ...familiarization and qualification; convoy operations; chemical, biological , radiological, nuclear and high- explosive defense; and squad and platoon
Omar, Wan Maznah Wan
2010-01-01
Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators. PMID:24575199
Analyzing cell fate control by cytokines through continuous single cell biochemistry.
Rieger, Michael A; Schroeder, Timm
2009-10-01
Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.
BioLayout(Java): versatile network visualisation of structural and functional relationships.
Goldovsky, Leon; Cases, Ildefonso; Enright, Anton J; Ouzounis, Christos A
2005-01-01
Visualisation of biological networks is becoming a common task for the analysis of high-throughput data. These networks correspond to a wide variety of biological relationships, such as sequence similarity, metabolic pathways, gene regulatory cascades and protein interactions. We present a general approach for the representation and analysis of networks of variable type, size and complexity. The application is based on the original BioLayout program (C-language implementation of the Fruchterman-Rheingold layout algorithm), entirely re-written in Java to guarantee portability across platforms. BioLayout(Java) provides broader functionality, various analysis techniques, extensions for better visualisation and a new user interface. Examples of analysis of biological networks using BioLayout(Java) are presented.
Flifla, M J; Garreau, M; Rolland, J P; Coatrieux, J L; Thomas, D
1992-12-01
'IBIS' is a set of computer programs concerned with the processing of electron micrographs, with particular emphasis on the requirements for structural analyses of biological macromolecules. The software is written in FORTRAN 77 and runs on Unix workstations. A description of the various functions and the implementation mode is given. Some examples illustrate the user interface.
MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis
Roden, Christine; Lu, Jun
2016-01-01
Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields. PMID:27547713
Bacteria as computers making computers
Danchin, Antoine
2009-01-01
Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments. PMID:19016882
Bacteria as computers making computers.
Danchin, Antoine
2009-01-01
Various efforts to integrate biological knowledge into networks of interactions have produced a lively microbial systems biology. Putting molecular biology and computer sciences in perspective, we review another trend in systems biology, in which recursivity and information replace the usual concepts of differential equations, feedback and feedforward loops and the like. Noting that the processes of gene expression separate the genome from the cell machinery, we analyse the role of the separation between machine and program in computers. However, computers do not make computers. For cells to make cells requires a specific organization of the genetic program, which we investigate using available knowledge. Microbial genomes are organized into a paleome (the name emphasizes the role of the corresponding functions from the time of the origin of life), comprising a constructor and a replicator, and a cenome (emphasizing community-relevant genes), made up of genes that permit life in a particular context. The cell duplication process supposes rejuvenation of the machine and replication of the program. The paleome also possesses genes that enable information to accumulate in a ratchet-like process down the generations. The systems biology must include the dynamics of information creation in its future developments.
StrateGene: object-oriented programming in molecular biology.
Carhart, R E; Cash, H D; Moore, J F
1988-03-01
This paper describes some of the ways that object-oriented programming methodologies have been used to represent and manipulate biological information in a working application. When running on a Xerox 1100 series computer, StrateGene functions as a genetic engineering workstation for the management of information about cloning experiments. It represents biological molecules, enzymes, fragments, and methods as classes, subclasses, and members in a hierarchy of objects. These objects may have various attributes, which themselves can be defined and classified. The attributes and their values can be passed from the classes of objects down to the subclasses and members. The user can modify the objects and their attributes while using them. New knowledge and changes to the system can be incorporated relatively easily. The operations on the biological objects are associated with the objects themselves. This makes it easier to invoke them correctly and allows generic operations to be customized for the particular object.
The Intersection of Physics and Biology
Liphardt, Jan
2017-12-22
In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.
Biological Effects of Space Radiation and Development of Effective Countermeasures
Kennedy, Ann R.
2014-01-01
As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703
A method to identify and analyze biological programs through automated reasoning
Yordanov, Boyan; Dunn, Sara-Jane; Kugler, Hillel; Smith, Austin; Martello, Graziano; Emmott, Stephen
2016-01-01
Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior. However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological programs governing cell function. PMID:27668090
Biological effects of space radiation and development of effective countermeasures
NASA Astrophysics Data System (ADS)
Kennedy, Ann R.
2014-04-01
As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.
Gravitational Biology Facility on Space Station: Meeting the needs of space biology
NASA Technical Reports Server (NTRS)
Allen, Katherine; Wade, Charles
1992-01-01
The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems.
Differentiating the Neural Response to Intervention in Children with Developmental Dyslexia
ERIC Educational Resources Information Center
Odegard, Timothy N.; Ring, Jeremiah; Smith, Stephanie; Biggan, John; Black, Jeff
2008-01-01
Developmental dyslexia is associated with functional abnormalities within reading areas of the brain. For some children diagnosed with dyslexia, phonologically based remediation programs appear to rehabilitate brain function in key reading areas (Shaywitz et al., Biological Psychiatry 55: 101-110, 2004; Simos et al., Neuroscience 58: 1203-1213,…
Entringer, Sonja; Buss, Claudia; Swanson, James M.; Cooper, Dan M.; Wing, Deborah A.; Waffarn, Feizal; Wadhwa, Pathik D.
2012-01-01
Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice. PMID:22655178
NASA Astrophysics Data System (ADS)
Hagiwara, Yohsuke; Ohta, Takehiro; Tateno, Masaru
2009-02-01
An interface program connecting a quantum mechanics (QM) calculation engine, GAMESS, and a molecular mechanics (MM) calculation engine, AMBER, has been developed for QM/MM hybrid calculations. A protein-DNA complex is used as a test system to investigate the following two types of QM/MM schemes. In a 'subtractive' scheme, electrostatic interactions between QM/MM regions are truncated in QM calculations; in an 'additive' scheme, long-range electrostatic interactions within a cut-off distance from QM regions are introduced into one-electron integration terms of a QM Hamiltonian. In these calculations, 338 atoms are assigned as QM atoms using Hartree-Fock (HF)/density functional theory (DFT) hybrid all-electron calculations. By comparing the results of the additive and subtractive schemes, it is found that electronic structures are perturbed significantly by the introduction of MM partial charges surrounding QM regions, suggesting that biological processes occurring in functional sites are modulated by the surrounding structures. This also indicates that the effects of long-range electrostatic interactions involved in the QM Hamiltonian are crucial for accurate descriptions of electronic structures of biological macromolecules.
Taylor, Philip D; Brzustowski, John M; Matkovich, Carolyn; Peckford, Michael L; Wilson, Dave
2010-10-26
Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets.
2010-01-01
Background Radar has been used for decades to study movement of insects, birds and bats. In spite of this, there are few readily available software tools for the acquisition, storage and processing of such data. Program radR was developed to solve this problem. Results Program radR is an open source software tool for the acquisition, storage and analysis of data from marine radars operating in surveillance mode. radR takes time series data with a two-dimensional spatial component as input from some source (typically a radar digitizing card) and extracts and retains information of biological relevance (i.e. moving targets). Low-level data processing is implemented in "C" code, but user-defined functions written in the "R" statistical programming language can be called at pre-defined steps in the calculations. Output data formats are designed to allow for future inclusion of additional data items without requiring change to C code. Two brands of radar digitizing card are currently supported as data sources. We also provide an overview of the basic considerations of setting up and running a biological radar study. Conclusions Program radR provides a convenient, open source platform for the acquisition and analysis of radar data of biological targets. PMID:20977735
,
1999-01-01
North Dakota prairies contain numerous wetlands. The complex functions of these prairie wetlands have been of interest for decades. The hydrology, water chemistry, and biological characteristics of these wetlands are highly variable because of extreme warm/cold and wet/dry conditions. The U.S. Geological Survey (USGS) has been conducting studies (fig. 1) to gain insight into the functions of the prairie wetlands. The USGS Northern Prairie Wildlife Research Center in Jamestown has maintained an active wetland research program since the mid-1960’s. Current work in North Dakota began in 1978, and focuses on the response of biological communities to climate-induced variations in hydrology and chemistry, and on evaluating the success of previously drained wetlands restored under the Conservation Reserve Program (CRP) and on similar lands. The information provided from this long-term study has provided the bulk of our knowledge about prairie wetlands, and has provided land managers with valuable information to manage the Nation’s prairie wetland resource.
Multidisciplinary Russian biomedical research in space
NASA Astrophysics Data System (ADS)
Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.
2014-08-01
Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.
Drosophila melanogaster and the development of biology in the 20th century.
Arias, Alfonso Martinez
2008-01-01
The fruit fly Drosophila has played a central role in the development of biology during the 20th century. First chosen as a convenient organism to test evolutionary theories soon became the central element in an elaborate, fruitful, and insightful research program dealing with the nature and function of the gene. Through the activities of TH Morgan and his students, Drosophila did more than any other organism to lay down the foundations of genetics as a discipline and a tool for biology. In the last third of the century, a judicious blend of classical genetics and molecular biology focused on some mutants affecting the pattern of the Drosophila larva and the adult, and unlocked the molecular mechanisms of development. Surprisingly, many of the genes identified in this exercise turned to be conserved across organisms. This observation provided a vista of universality at a fundamental level of biological activity. At the dawn of the 21st century, Drosophila continues to be center stage in the development of biology and to open new ways of seeing cells and to understand the construction and the functioning of organisms.
Computer-aided design of biological circuits using TinkerCell
Bergmann, Frank T; Sauro, Herbert M
2010-01-01
Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. PMID:21327060
van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A
2015-11-07
Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Introduction to Programming for Bioscientists: A Python-Based Primer
Mura, Cameron
2016-01-01
Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language’s usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a “variable,” the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences. PMID:27271528
An Introduction to Programming for Bioscientists: A Python-Based Primer.
Ekmekci, Berk; McAnany, Charles E; Mura, Cameron
2016-06-01
Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in molecular biology, biochemistry, and other biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a "variable," the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.
Workshop on High-Field NMR and Biological Applications
NASA Astrophysics Data System (ADS)
Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.
NASA Astrophysics Data System (ADS)
Losik, L.
A predictive medicine program allows disease and illness including mental illness to be predicted using tools created to identify the presence of accelerated aging (a.k.a. disease) in electrical and mechanical equipment. When illness and disease can be predicted, actions can be taken so that the illness and disease can be prevented and eliminated. A predictive medicine program uses the same tools and practices from a prognostic and health management program to process biological and engineering diagnostic data provided in analog telemetry during prelaunch readiness and space exploration missions. The biological and engineering diagnostic data necessary to predict illness and disease is collected from the pre-launch spaceflight readiness activities and during space flight for the ground crew to perform a prognostic analysis on the results from a diagnostic analysis. The diagnostic, biological data provided in telemetry is converted to prognostic (predictive) data using the predictive algorithms. Predictive algorithms demodulate telemetry behavior. They illustrate the presence of accelerated aging/disease in normal appearing systems that function normally. Mental illness can predicted using biological diagnostic measurements provided in CCSDS telemetry from a spacecraft such as the ISS or from a manned spacecraft in deep space. The measurements used to predict mental illness include biological and engineering data from an astronaut's circadian and ultranian rhythms. This data originates deep in the brain that is also damaged from the long-term exposure to cortisol and adrenaline anytime the body's fight or flight response is activated. This paper defines the brain's FOFR; the diagnostic, biological and engineering measurements needed to predict mental illness, identifies the predictive algorithms necessary to process the behavior in CCSDS analog telemetry to predict and thus prevent mental illness from occurring on human spaceflight missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liphardt, Jan
In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods showmore » how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.« less
Lu, Ying-Hao; Kuo, Chen-Chun; Huang, Yaw-Bin
2011-08-01
We selected HTML, PHP and JavaScript as the programming languages to build "WebBio", a web-based system for patient data of biological products and used MySQL as database. WebBio is based on the PHP-MySQL suite and is run by Apache server on Linux machine. WebBio provides the functions of data management, searching function and data analysis for 20 kinds of biological products (plasma expanders, human immunoglobulin and hematological products). There are two particular features in WebBio: (1) pharmacists can rapidly find out whose patients used contaminated products for medication safety, and (2) the statistics charts for a specific product can be automatically generated to reduce pharmacist's work loading. WebBio has successfully turned traditional paper work into web-based data management.
ERIC Educational Resources Information Center
Harris, Michelle A.; Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Neto, Elias Chaibub; Kallio, Julie
2009-01-01
We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging…
The aims of systems biology: between molecules and organisms.
Noble, D
2011-05-01
The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.
Programming by early nutrition: an experimental approach.
Lucas, A
1998-02-01
That events during critical or sensitive periods of development may "program" long-term or life-time structure or function of the organism is well recognized. Evidence for programming by nutrition is established in animals, in whom brief pre- or postnatal nutritional manipulations may program adult size, metabolism, blood lipids, diabetes, blood pressure, obesity, atherosclerosis, learning, behavior and life span. Human epidemiological data link potential markers of early nutrition (size at birth or in infancy) to cardiovascular disease and its risk factors in adulthood. However, these retrospective data cannot prove nutritional cause or underpin health policies. After 16 y, however, of ethical, randomized intervention studies of early nutrition in humans with long-term follow-up to test experimentally the nutritional programming hypothesis, we find that humans, like other species, have sensitive windows for nutrition in terms of later outcomes; for instance, perinatal diet influences neurodevelopment and bone mineralization into mid-childhood. Possible biological mechanisms for storing throughout life the "memory" of early nutritional experience and its expression in adulthood include adaptive changes in gene expression, preferential clonal selection of adapted cells in programmed tissues and programmed differential proliferation of tissue cell types. Animal and human evidence supporting nutritional programming has major potential biological and medical significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I; Collette, N
2007-02-26
Generating the sequence of the human genome represents a colossal achievement for science and mankind. The technical use for the human genome project information holds great promise to cure disease, prevent bioterror threats, as well as to learn about human origins. Yet converting the sequence data into biological meaningful information has not been immediately obvious, and we are still in the preliminary stages of understanding how the genome is organized, what are the functional building blocks and how do these sequences mediate complex biological processes. The overarching goal of this program was to develop novel methods and high throughput strategiesmore » for determining the functions of ''anonymous'' human genes that are evolutionarily deeply conserved in other vertebrates. We coupled analytical tool development and computational predictions regarding gene function with novel high throughput experimental strategies and tested biological predictions in the laboratory. The tools required for comparative genomic data-mining are fundamentally the same whether they are applied to scientific studies of related microbes or the search for functions of novel human genes. For this reason the tools, conceptual framework and the coupled informatics-experimental biology paradigm we developed in this LDRD has many potential scientific applications relevant to LLNL multidisciplinary research in bio-defense, bioengineering, bionanosciences and microbial and environmental genomics.« less
A program code generator for multiphysics biological simulation using markup languages.
Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi
2012-01-01
To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.
Computer-aided design of biological circuits using TinkerCell.
Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M
2010-01-01
Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience
A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions
Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.
2013-01-01
SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014
Modeling Structure-Function Relationships in Synthetic DNA Sequences using Attribute Grammars
Cai, Yizhi; Lux, Matthew W.; Adam, Laura; Peccoud, Jean
2009-01-01
Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in computer science to translate the text of a program source code into the computational operations it represents. By associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts. This formalism is also expected to provide a solid foundation for the development of computer assisted design applications for synthetic biology. PMID:19816554
Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.
Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai
2017-08-02
Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.
Driving in the Dark: Ten Propositions About Prediction and National Security
2011-10-01
to a predicted threat list. The evolution of modern biology has produced techniques of genetic sequencing and synthesis that will permit the...and Australia, often under the rubric of Capability Based Planning. See, for example, the work of The Technical Cooperation Program at www...attacking humans. See, for example, the website of Functional Genetics , www.functional-genetics.com. 143. Stewart Brand, How Buildings Learn: What
The city as a refuge for insect pollinators.
Hall, Damon M; Camilo, Gerardo R; Tonietto, Rebecca K; Ollerton, Jeff; Ahrné, Karin; Arduser, Mike; Ascher, John S; Baldock, Katherine C R; Fowler, Robert; Frankie, Gordon; Goulson, Dave; Gunnarsson, Bengt; Hanley, Mick E; Jackson, Janet I; Langellotto, Gail; Lowenstein, David; Minor, Emily S; Philpott, Stacy M; Potts, Simon G; Sirohi, Muzafar H; Spevak, Edward M; Stone, Graham N; Threlfall, Caragh G
2017-02-01
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
BioInt: an integrative biological object-oriented application framework and interpreter.
Desai, Sanket; Burra, Prasad
2015-01-01
BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.
MetNetAPI: A flexible method to access and manipulate biological network data from MetNet
2010-01-01
Background Convenient programmatic access to different biological databases allows automated integration of scientific knowledge. Many databases support a function to download files or data snapshots, or a webservice that offers "live" data. However, the functionality that a database offers cannot be represented in a static data download file, and webservices may consume considerable computational resources from the host server. Results MetNetAPI is a versatile Application Programming Interface (API) to the MetNetDB database. It abstracts, captures and retains operations away from a biological network repository and website. A range of database functions, previously only available online, can be immediately (and independently from the website) applied to a dataset of interest. Data is available in four layers: molecular entities, localized entities (linked to a specific organelle), interactions, and pathways. Navigation between these layers is intuitive (e.g. one can request the molecular entities in a pathway, as well as request in what pathways a specific entity participates). Data retrieval can be customized: Network objects allow the construction of new and integration of existing pathways and interactions, which can be uploaded back to our server. In contrast to webservices, the computational demand on the host server is limited to processing data-related queries only. Conclusions An API provides several advantages to a systems biology software platform. MetNetAPI illustrates an interface with a central repository of data that represents the complex interrelationships of a metabolic and regulatory network. As an alternative to data-dumps and webservices, it allows access to a current and "live" database and exposes analytical functions to application developers. Yet it only requires limited resources on the server-side (thin server/fat client setup). The API is available for Java, Microsoft.NET and R programming environments and offers flexible query and broad data- retrieval methods. Data retrieval can be customized to client needs and the API offers a framework to construct and manipulate user-defined networks. The design principles can be used as a template to build programmable interfaces for other biological databases. The API software and tutorials are available at http://www.metnetonline.org/api. PMID:21083943
Functions of MicroRNAs in Cardiovascular Biology and Disease
Hata, Akiko
2015-01-01
In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557
Unification of the macro- and microbiome in trophic ecology
USDA-ARS?s Scientific Manuscript database
Biological control is a key part of virtually any IPM program, and microbial bio-control agents represent particularly effective agents because of their capacity to be applied via conventional spray application methods. We are showing that fungi function just as arthropods do in the food web—the fun...
Biological standards for the Knowledge-Based BioEconomy: What is at stake.
de Lorenzo, Víctor; Schmidt, Markus
2018-01-25
The contribution of life sciences to the Knowledge-Based Bioeconomy (KBBE) asks for the transition of contemporary, gene-based biotechnology from being a trial-and-error endeavour to becoming an authentic branch of engineering. One requisite to this end is the need for standards to measure and represent accurately biological functions, along with languages for data description and exchange. However, the inherent complexity of biological systems and the lack of quantitative tradition in the field have largely curbed this enterprise. Fortunately, the onset of systems and synthetic biology has emphasized the need for standards not only to manage omics data, but also to increase reproducibility and provide the means of engineering living systems in earnest. Some domains of biotechnology can be easily standardized (e.g. physical composition of DNA sequences, tools for genome editing, languages to encode workflows), while others might be standardized with some dedicated research (e.g. biological metrology, operative systems for bio-programming cells) and finally others will require a considerable effort, e.g. defining the rules that allow functional composition of biological activities. Despite difficulties, these are worthy attempts, as the history of technology shows that those who set/adopt standards gain a competitive advantage over those who do not. Copyright © 2017 Elsevier B.V. All rights reserved.
In vitro studies of actin filament and network dynamics
Mullins, R Dyche; Hansen, Scott D
2013-01-01
Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766
Biological effects of radiation, metabolic and replication kinetics alterations
NASA Technical Reports Server (NTRS)
Post, J.
1972-01-01
The biological effects of radiation upon normal and cancerous tissues were studied. A macromolecular precursor of DNA, 3ETdR, was incorporated into the cell nucleus during synthesis and provided intranuclear beta radiation. Tritium labeled cells were studied with autoradiographic methods; cell cycle kinetics were determined and cell functions modified by radiation dosage or by drugs were also evaluated. The long term program has included; (1) effects of radiation on cell replication and the correlation with incorporated dose levels, (2) radiation induced changes in cell function, viz., the response of beta irradiated spleen lymphocytes to antigenic stimulation by sheep red blood cells (SRBC), (3) kinetics of tumor and normal cell replication; and (4) megakaryocyte formation and modification by radiomimetic drugs.
Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott
2018-05-01
The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Weijun; Lucke, Andrew J; Fairlie, David P
2015-04-01
Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches. Copyright © 2015 Elsevier Inc. All rights reserved.
The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry–Biology Interface
2017-01-01
A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure. PMID:28945374
NASA Astrophysics Data System (ADS)
To, Cuong; Pham, Tuan D.
2010-01-01
In machine learning, pattern recognition may be the most popular task. "Similar" patterns identification is also very important in biology because first, it is useful for prediction of patterns associated with disease, for example cancer tissue (normal or tumor); second, similarity or dissimilarity of the kinetic patterns is used to identify coordinately controlled genes or proteins involved in the same regulatory process. Third, similar genes (proteins) share similar functions. In this paper, we present an algorithm which uses genetic programming to create decision tree for binary classification problem. The application of the algorithm was implemented on five real biological databases. Base on the results of comparisons with well-known methods, we see that the algorithm is outstanding in most of cases.
Biology Intensive Orientation for Students (BIOS): A Biology "Boot Camp"
ERIC Educational Resources Information Center
Wischusen, Sheri Maples; Wischusen, E. William
2007-01-01
The Biology Intensive Orientation for Students (BIOS) Program was designed to assess the impact of a 5-d intensive prefreshman program on success and retention of biological science majors at Louisiana State University. The 2005 pilot program combined content lectures and examinations for BIOL 1201, Introductory Biology for Science Majors, as well…
Chaste: A test-driven approach to software development for biological modelling
NASA Astrophysics Data System (ADS)
Pitt-Francis, Joe; Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Fletcher, Alexander G.; Mirams, Gary R.; Murray, Philip; Osborne, James M.; Walter, Alex; Chapman, S. Jon; Garny, Alan; van Leeuwen, Ingeborg M. M.; Maini, Philip K.; Rodríguez, Blanca; Waters, Sarah L.; Whiteley, Jonathan P.; Byrne, Helen M.; Gavaghan, David J.
2009-12-01
Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling. Program summaryProgram title: Chaste Catalogue identifier: AEFD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL 2.1 No. of lines in distributed program, including test data, etc.: 5 407 321 No. of bytes in distributed program, including test data, etc.: 42 004 554 Distribution format: tar.gz Programming language: C++ Operating system: Unix Has the code been vectorised or parallelized?: Yes. Parallelized using MPI. RAM:<90 Megabytes for two of the scenarios described in Section 6 of the manuscript (Monodomain re-entry on a slab or Cylindrical crypt simulation). Up to 16 Gigabytes (distributed across processors) for full resolution bidomain cardiac simulation. Classification: 3. External routines: Boost, CodeSynthesis XSD, CxxTest, HDF5, METIS, MPI, PETSc, Triangle, Xerces Nature of problem: Chaste may be used for solving coupled ODE and PDE systems arising from modelling biological systems. Use of Chaste in two application areas are described in this paper: cardiac electrophysiology and intestinal crypt dynamics. Solution method: Coupled multi-physics with PDE, ODE and discrete mechanics simulation. Running time: The largest cardiac simulation described in the manuscript takes about 6 hours to run on a single 3 GHz core. See results section (Section 6) of the manuscript for discussion on parallel scaling.
RAFT Nano-constructs: surfing to biological applications.
Boturyn, Didier; Defrancq, Eric; Dolphin, Gunnar T; Garcia, Julian; Labbe, Pierre; Renaudet, Olivier; Dumy, Pascal
2008-02-01
Biologically programmed molecular recognition provides the basis of all natural systems and supplies evolution-optimized functional materials from self-assembly of a limited number of molecular building blocks. Biomolecules such as peptides, nucleic acids and carbohydrates represent a diverse supply of structural building blocks for the chemist to design and fabricate new functional nanostructured architectures. In this context, we review here the chemistry we have developed to conjugate peptides with nucleic acids, carbohydrates, and organic molecules, as well as combinations thereof using a template-assembled approach. With this methodology, we have prepared new integrated functional systems exhibiting designed properties in the field of nanovectors, biosensors as well as controlled peptide self-assembly. Thus this molecular engineering approach allows for the rational design of systems with integrated tailor-made properties and paves the way to more elaborate applications by bottom-up design in the domain of nanobiosciences.
NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.
Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques
2008-07-01
The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources.
Research Programs Constituting U.S. Participation in the International Biological Program.
ERIC Educational Resources Information Center
National Academy of Sciences--National Research Council, Washington, DC. Div. of Biology and Agriculture.
The United States contribution to the International Biological Program, which aims to understand more clearly the interrelationships within ecosystems, is centered on multidisciplinary research programs investigating the biological basis of ecological productivity and human welfare. Integrated research programs have been established for the…
Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...
The US EPA ToxCast program is using in vitro high-throughput screening assays to profile the bioactivity of environmental chemicals, with the ultimate goal of predicting in vivo toxicity. We hypothesize that in modeling toxicity it will be more constructive to understand the pert...
Nasiri, Hamid; Ebrahimi, Amrollah; Zahed, Arash; Arab, Mostafa; Samouei, Rahele
2015-05-01
Functional neurological symptom disorder commonly presents with symptoms and defects of sensory and motor functions. Therefore, it is often mistaken for a medical condition. It is well known that functional neurological symptom disorder more often caused by psychological factors. There are three main approaches namely analytical, cognitive and biological to manage conversion disorder. Any of such approaches can be applied through short-term treatment programs. In this case, study a 12-year-old boy with the diagnosed functional neurological symptom disorder (psychogenic myopia) was put under a cognitive-analytical treatment. The outcome of this treatment modality was proved successful.
Canonical Genetic Signatures of the Adult Human Brain
Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed
2015-01-01
The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460
Experiment module concepts study. Volume 2: Experiments and mission operations
NASA Technical Reports Server (NTRS)
Macdonald, J. M.
1970-01-01
The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.
Applicability of NASQAN data for ecosystem assessments on the Missouri River
Blevins, Dale W.; Fairchild, James
2001-01-01
The effectiveness of ecological restoration efforts on large developed rivers is often unknown because comprehensive ecological monitoring programs are often absent. Although Eulerian water-quality monitoring programs, such as the National Stream Quality Accounting Network (NASQAN) program, are more common, they are usually not designed for ecological assessment. Therefore, this paper addresses the value of NASQAN for ecological assessments on the Missouri River and identifies potential program additions and modifications to assess certain ecological changes in physical habitat, biological structure and function, and ecotoxicity. Five additional sites: The analysis of chlorophyll, mercury, ATP, potential endocrine disruptors, total trace elements, and selected total hydrophobic organics; and the hourly measurement of dissolved oxygen, turbidity, and temperature are recommended. Hourly measurements would require an entirely new operational aspect to NASQAN. However, the presence of data loggers and satellite transmitters in the gauging stations at all NASQAN sites substantially improves the feasibility of continuous water-quality monitoring. The use of semipermeable membrane devices (SPMDs) to monitor dissolved bioaccumulating organics and trace elements, identification and enumeration of zooplankton, and characterization of the bioavailability of organic matter are also recommended. The effect of biological processes on the conservative assumptions that are used in flux and source determinations of NASQAN constituents are also evaluated. Organic carbon, organic nitrogen, dissolved phosphate, and dissolved inorganic nitrogen are the NASQAN constituents most vulnerable to biological processes and thus violation of conservative assumptions.
Kohl, Kevin D; Dearing, M Denise
2017-10-01
The role that host-associated microbes play in animal biology is gaining attention in comparative biology. Numerous research groups study the roles that microbes play in human health and nutrition, or in enhancing the production of agricultural animals. However, inclusion of host-associated microbes into research questions of integrative and comparative biology has lagged behind. We hosted a symposium to bring together top researchers in the field of host-associated microbes who also incorporate aspects of integrative and comparative biology. In this introduction, we highlight recent research demonstrating the profound roles that host-associated microbes play in many aspects of animal biology, such as immune function, endocrinology, and even behavior. It is our hope that integrative and comparative biologists will begin to include aspects of host-associated microbes into their research programs, enhancing both the fields of comparative biology and host-microbe interactions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.
Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W
2012-04-01
A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.
Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs
Ferry, Quentin R. V.; Lyutova, Radostina; Fulga, Tudor A.
2017-01-01
CRISPR-based transcription regulators (CRISPR-TRs) have transformed the current synthetic biology landscape by allowing specific activation or repression of any target gene. Here we report a modular and versatile framework enabling rapid implementation of inducible CRISPR-TRs in mammalian cells. This strategy relies on the design of a spacer-blocking hairpin (SBH) structure at the 5′ end of the single guide RNA (sgRNA), which abrogates the function of CRISPR-transcriptional activators. By replacing the SBH loop with ligand-controlled RNA-cleaving units, we demonstrate conditional activation of quiescent sgRNAs programmed to respond to genetically encoded or externally delivered triggers. We use this system to couple multiple synthetic and endogenous target genes with specific inducers, and assemble gene regulatory modules demonstrating parallel and orthogonal transcriptional programs. We anticipate that this ‘plug and play' approach will be a valuable addition to the synthetic biology toolkit, facilitating the understanding of natural gene circuits and the design of cell-based therapeutic strategies. PMID:28256578
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.
Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify codingmore » regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.« less
[Progress in synthetic biology of "973 Funding Program" in China].
Chen, Guoqiang; Wang, Ying
2015-06-01
This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.
Role of temperature dependence of optical properties in laser irradiation of biological tissue
NASA Astrophysics Data System (ADS)
Rastegar, Sohi; Kim, Beop-Min; Jacques, Steven L.
1992-08-01
Optical properties of biological tissue can change as a result of thermal denaturation due to temperature rise; a familiar example is whitening observed in cooking egg-white. Changes in optical properties with temperature have been reported in the literature. Temperature rise due to laser irradiation is a function of the optical properties of tissue which themselves are a function of temperature of the tissue. This creates a coupling between light and temperature fields for biological tissue under laser irradiation. The effects of this coupling on the temperature response and light distribution may play an important role in dosimetry consideration for therapeutic as well as diagnostic application of lasers in medicine. In a previous study this problem was addressed in one dimension, for short irradiation exposures, using certain simplifying assumptions. The purpose of this research was to develop a mathematical model for dynamic optical changes with thermal denaturation and a computer program for simulation of these effects for a multi-dimensional geometry.
CHARMM: The Biomolecular Simulation Program
Brooks, B.R.; Brooks, C.L.; MacKerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M.
2009-01-01
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. In addition, the CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This paper provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM paper in 1983. PMID:19444816
Development of a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum)
2008-08-01
spicatum). Rawalpindi: Pakistan Station Commonwealth Institute of Biological Control. Gleason, H. A ., and A . Cronquist . 1991. Manual of vascular plants...ER D C/ EL T R- 08 -2 2 Aquatic Plant Control Research Program Development of a Biological Control Program for Eurasian Watermilfoil... a Biological Control Program for Eurasian Watermilfoil (Myriophyllum spicatum) Matthew J. W. Cock, Hariet L. Hinz, Gitta Grosskopf, and Patrick
Health and Environmental Research [OHER], the program that supported most Biology in the Department. The origins of DOE's biology program traced to the Manhattan Project, the World War II program that produced Technical Report; 1964 Impact of Radiation Biology on Fundamental Insights in Biology; DOE Technical Report
Programming gene expression with combinatorial promoters
Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B
2007-01-01
Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278
Genetic programs can be compressed and autonomously decompressed in live cells
NASA Astrophysics Data System (ADS)
Lapique, Nicolas; Benenson, Yaakov
2018-04-01
Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.
Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems
Carroll, Scott P
2011-01-01
Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes. PMID:25567967
2013-03-01
function is based on how individualistic or collectivistic a system is. Low individualism values mean the system is more collective and is less likely...Hofstede’s cultural dimensions, integrated with a modified version of the Bak- Sneppen biological evolutionary model, this research highlights which set...14 Hofstede’s Cultural Dimensions
Evolutionary Developmental Linguistics: Naturalization of the Faculty of Language
ERIC Educational Resources Information Center
Locke, John L.
2009-01-01
Since language is a biological trait, it is necessary to investigate its evolution, development, and functions, along with the mechanisms that have been set aside, and are now recruited, for its acquisition and use. It is argued here that progress toward each of these goals can be facilitated by new programs of research, carried out within a new…
Gerstein, Mark; Greenbaum, Dov; Cheung, Kei; Miller, Perry L
2007-02-01
Computational biology and bioinformatics (CBB), the terms often used interchangeably, represent a rapidly evolving biological discipline. With the clear potential for discovery and innovation, and the need to deal with the deluge of biological data, many academic institutions are committing significant resources to develop CBB research and training programs. Yale formally established an interdepartmental Ph.D. program in CBB in May 2003. This paper describes Yale's program, discussing the scope of the field, the program's goals and curriculum, as well as a number of issues that arose in implementing the program. (Further updated information is available from the program's website, www.cbb.yale.edu.)
Ham, Timothy S; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J; Keasling, Jay D
2012-10-01
The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about 'legacy' parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects.
The Center for Computational Biology: resources, achievements, and challenges
Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott
2011-01-01
The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains. PMID:22081221
The Center for Computational Biology: resources, achievements, and challenges.
Toga, Arthur W; Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott
2012-01-01
The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains.
Roadmap to a Sustainable Structured Trusted Employee Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Cameron W; Eisele, Gerhard R
2013-08-01
Organizations (facility, regulatory agency, or country) have a compelling interest in ensuring that individuals who occupy sensitive positions affording access to chemical biological, radiological and nuclear (CBRN) materials facilities and programs are functioning at their highest level of reliability. Human reliability and human performance relate not only to security but also focus on safety. Reliability has a logical and direct relationship to trustworthiness for the organization is placing trust in their employees to conduct themselves in a secure, safe, and dependable manner. This document focuses on providing an organization with a roadmap to implementing a successful and sustainable Structured Trustedmore » Employee Program (STEP).« less
ERIC Educational Resources Information Center
Moody, John Charles
Assessed were the effects of linear and modified linear programed materials on the achievement of slow learners in tenth grade Biological Sciences Curriculum Study (BSCS) Special Materials biology. Two hundred and six students were randomly placed into four programed materials formats: linear programed materials, modified linear program with…
The inception and evolution of a unique masters program in cancer biology, prevention and control.
Cousin, Carolyn; Blancato, Jan
2010-09-01
The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.
A toolbox for discrete modelling of cell signalling dynamics.
Paterson, Yasmin Z; Shorthouse, David; Pleijzier, Markus W; Piterman, Nir; Bendtsen, Claus; Hall, Benjamin A; Fisher, Jasmin
2018-06-18
In an age where the volume of data regarding biological systems exceeds our ability to analyse it, many researchers are looking towards systems biology and computational modelling to help unravel the complexities of gene and protein regulatory networks. In particular, the use of discrete modelling allows generation of signalling networks in the absence of full quantitative descriptions of systems, which are necessary for ordinary differential equation (ODE) models. In order to make such techniques more accessible to mainstream researchers, tools such as the BioModelAnalyzer (BMA) have been developed to provide a user-friendly graphical interface for discrete modelling of biological systems. Here we use the BMA to build a library of discrete target functions of known canonical molecular interactions, translated from ordinary differential equations (ODEs). We then show that these BMA target functions can be used to reconstruct complex networks, which can correctly predict many known genetic perturbations. This new library supports the accessibility ethos behind the creation of BMA, providing a toolbox for the construction of complex cell signalling models without the need for extensive experience in computer programming or mathematical modelling, and allows for construction and simulation of complex biological systems with only small amounts of quantitative data.
Directed evolution of a synthetic phylogeny of programmable Trp repressors.
Ellefson, Jared W; Ledbetter, Michael P; Ellington, Andrew D
2018-04-01
As synthetic regulatory programs expand in sophistication, an ever increasing number of biological components with predictable phenotypes is required. Regulators are often 'part mined' from a diverse, but uncharacterized, array of genomic sequences, often leading to idiosyncratic behavior. Here, we generate an entire synthetic phylogeny from the canonical allosteric transcription factor TrpR. Iterative rounds of positive and negative compartmentalized partnered replication (CPR) led to the exponential amplification of variants that responded with high affinity and specificity to halogenated tryptophan analogs and novel operator sites. Fourteen repressor variants were evolved with unique regulatory profiles across five operators and three ligands. The logic of individual repressors can be modularly programmed by creating heterodimeric fusions, resulting in single proteins that display logic functions, such as 'NAND'. Despite the evolutionarily limited regulatory role of TrpR, vast functional spaces exist around this highly conserved protein scaffold and can be harnessed to create synthetic regulatory programs.
The Virtual Liver Network: systems understanding from bench to bedside.
Henney, Adriano; Coaker, Hannah
2014-01-01
Adriano Henney speaks to Hannah Coaker, Commissioning Editor. After achieving a PhD in medicine and spending many years in academic research in the field of cardiovascular disease, Adriano Henney was recruited by Zeneca Pharmaceuticals from a British Heart Foundation Senior Fellowship, where he led the exploration of new therapeutic approaches in atherosclerosis, specifically focusing on his research interests in vascular biology. Following the merger with Astra to form AstraZeneca, Henney became responsible for exploring strategic improvements to the company's approaches to pharmaceutical target identification and the reduction of attrition in early development, directing projects across research sites and across functional project teams in the USA, Sweden and the UK. This resulted in the creation of a new multidisciplinary department that focused on pathway mapping, modeling and simulation and supporting projects across research and development, which evolved into the establishment of the practice of systems biology within the company. Here, projects prototyped the application of mechanistic disease-modeling approaches in order to support the discovery of innovative new medicines, such as Iressa®. Since leaving AstraZeneca, Henney has continued his interest in systems biology, synthetic biology and systems medicine through his company, Obsidian Biomedical Consulting Ltd. He now directs a major €50 million German national flagship program – the Virtual Liver Network – which is currently the largest systems biology program in Europe.
Use of mutation spectra analysis software.
Rogozin, I; Kondrashov, F; Glazko, G
2001-02-01
The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.
Year 2 Report: Protein Function Prediction Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, C E
2012-04-27
Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fullymore » automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.« less
Analytic programming with FMRI data: a quick-start guide for statisticians using R.
Eloyan, Ani; Li, Shanshan; Muschelli, John; Pekar, Jim J; Mostofsky, Stewart H; Caffo, Brian S
2014-01-01
Functional magnetic resonance imaging (fMRI) is a thriving field that plays an important role in medical imaging analysis, biological and neuroscience research and practice. This manuscript gives a didactic introduction to the statistical analysis of fMRI data using the R project, along with the relevant R code. The goal is to give statisticians who would like to pursue research in this area a quick tutorial for programming with fMRI data. References of relevant packages and papers are provided for those interested in more advanced analysis.
Zager, Richard A
2013-08-01
Following the induction of ischemic or toxin-mediated acute kidney injury (AKI), cellular adaptations occur that 're-program' how the kidney responds to future superimposed insults. This re-programming is not simply a short-lived phenomenon; rather it can persist for many weeks, implying that a state of 'biologic memory' has emerged. These changes can be both adaptive and maladaptive in nature and they can co-exist in time. A beneficial adaptation is the emergence of acquired cytoresistance, whereby a number of physiologic responses develop that serve to protect the kidney against further ischemic or nephrotoxic attack. Conversely, some changes are maladaptive, such as a predisposition to Gram-negative or Gram-positive bacteremia due to a renal tubular up-regulation of toll-like receptor responses. This latter change culminates in exaggerated cytokine production, and with efflux into the systemic circulation, extra-renal tissue injury can result (so-called 'organ cross talk'). Another maladaptive response is a persistent up-regulation of pro-inflammatory, pro-fibrotic and vasoconstrictive genes, culminating in progressive renal injury and ultimately end-stage renal failure. The mechanisms by which this biologic re-programming, or biologic memory, is imparted remain subjects for considerable debate. However, injury-induced, and stable, epigenetic remodeling at pro-inflammatory/pro-fibrotic genes seems likely to be involved. The goal of this editorial is to highlight that the so-called 'maintenance phase' of acute renal failure is not a static one, somewhere between injury induction and the onset of repair. Rather, this period is one in which the induction of 'biologic memory' can ultimately impact renal functional recovery, extra-renal injury and the possible transition of AKI into chronic, progressive renal disease.
Spreadsheet-based program for alignment of overlapping DNA sequences.
Anbazhagan, R; Gabrielson, E
1999-06-01
Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.
Establishing a national biological laboratory safety and security monitoring program.
Blaine, James W
2012-12-01
The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.
NASA Astrophysics Data System (ADS)
Juntarapaso, Yada
Scanning Acoustic Microscopy (SAM) is one of the most powerful techniques for nondestructive evaluation and it is a promising tool for characterizing the elastic properties of biological tissues/cells. Exploring a single cell is important since there is a connection between single cell biomechanics and human cancer. Scanning acoustic microscopy (SAM) has been accepted and extensively utilized for acoustical cellular and tissue imaging including measurements of the mechanical and elastic properties of biological specimens. SAM provides superb advantages in that it is non-invasive, can measure mechanical properties of biological cells or tissues, and fixation/chemical staining is not necessary. The first objective of this research is to develop a program for simulating the images and contrast mechanism obtained by high-frequency SAM. Computer simulation algorithms based on MatlabRTM were built for simulating the images and contrast mechanisms. The mechanical properties of HeLa and MCF-7 cells were computed from the measurement data of the output signal amplitude as a function of distance from the focal planes of the acoustics lens which is known as V(z) . Algorithms for simulating V(z) responses involved the calculation of the reflectance function and were created based on ray theory and wave theory. The second objective is to design transducer arrays for SAM. Theoretical simulations based on Field II(c) programs of the high frequency ultrasound array designs were performed to enhance image resolution and volumetric imaging capabilities. Phased array beam forming and dynamic apodization and focusing were employed in the simulations. The new transducer array design will be state-of-the-art in improving the performance of SAM by electronic scanning and potentially providing a 4-D image of the specimen.
Stahnisch, Frank W
2016-01-01
Research in biological psychiatry during the first half of the 20 th century was based upon a wide range of interrelated disciplines, including neurology, neuroanatomy, neuropathology, and experimental biology. The work of German-American psychiatrist and neurologist Lothar B. Kalinowsky (1899-1992) is taken here as an example of how such fields could be combined to produce a highly innovative and multidimensional research program in clinical neuroscience. Kalinowsky functioned exceptionally well in both scientific and clinical cultures despite the marked contextual differences between the Charité in Berlin and his later workplace in New York's Columbia Medical School. The innovative ideas exemplified by Kalinowsky's efforts, however, sometimes amounted to a dubious advantage for émigré clinical neuroscientists: they easily led to incommensurable scientific views, and sometimes even resulted in the marginalization of the innovator from existing research programs.
Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana
2013-11-25
We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-01-01
Summary Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. PMID:24936448
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.
Quantitative reactive modeling and verification.
Henzinger, Thomas A
Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.
International review of cytology. Volume 109: A survey of cell biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourne, G.; Jeon, K.W.; Friedlander, M.
1987-01-01
This book's contents are: Local Regulation of Testicular Function;Microtubules and DNA Replication;Differentiation of Spermatogenic Cells from Vertebrates in Vitro;The Developmental Program of Spermiogenesis in Drosophila: A Genetic Analysis;Cell Motility and Ionic Relations in Characean Cells as Revealed by Internal Perfusion and Other Cell Models;and The Culture of Oral Epithelium. Each chapter includes references.
The US EPA ToxCast program aims to develop methods for mechanistically-based chemical prioritization using a suite of high throughput, in vitro assays that probe relevant biological pathways, and coupling them with statistical and machine learning methods that produce predictive ...
Understanding Microbial Communities: Function, Structure and Dynamics
2015-02-11
allow us to characterise the species composition of these communities from a variety of environmentally and medically-relevant habitats. Despite this...ecology. The primary purpose of this program was to facilitate the building a scientific community around using and developing mathematical...biology and advancement of new biotechnologies and medical applications. Summary of results (a) Activities Over the course of the 4 months of
Powell, Richard D.; Hainfeld, James F.
2013-01-01
Nanogold and undecagold are covalently linked gold cluster labels which enable the identification and localization of biological components with molecular precision and resolution. They can be prepared with different reactivities, which means they can be conjugated to a wide variety of molecules, including nucleic acids, at specific, unique sites. The location of these sites can be synthetically programmed in order to preserve the binding affinity of the conjugate and impart novel characteristics and useful functionality. Methods for the conjugation of undecagold and Nanogold to DNA and RNA are discussed, and applications of labeled conjugates to the high-resolution microscopic identification of binding sites and characterization of biological macromolecular assemblies are described. In addition to providing insights into their molecular structure and function, high-resolution microscopic methods also show how Nanogold and undecagold conjugates can be synthetically assembled, or self-assemble, into supramolecular materials to which the gold cluster labels impart useful functionality. PMID:20869258
The GS (genetic selection) Principle.
Abel, David L
2009-01-01
The GS (Genetic Selection) Principle states that biological selection must occur at the nucleotide-sequencing molecular-genetic level of 3'5' phosphodiester bond formation. After-the-fact differential survival and reproduction of already-living phenotypic organisms (ordinary natural selection) does not explain polynucleotide prescription and coding. All life depends upon literal genetic algorithms. Even epigenetic and "genomic" factors such as regulation by DNA methylation, histone proteins and microRNAs are ultimately instructed by prior linear digital programming. Biological control requires selection of particular configurable switch-settings to achieve potential function. This occurs largely at the level of nucleotide selection, prior to the realization of any integrated biofunction. Each selection of a nucleotide corresponds to the setting of two formal binary logic gates. The setting of these switches only later determines folding and binding function through minimum-free-energy sinks. These sinks are determined by the primary structure of both the protein itself and the independently prescribed sequencing of chaperones. The GS Principle distinguishes selection of existing function (natural selection) from selection for potential function (formal selection at decision nodes, logic gates and configurable switch-settings).
Space Biology Initiative. Trade Studies, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Space Biology Initiative. Trade Studies, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Innovation in academic chemical screening: filling the gaps in chemical biology.
Hasson, Samuel A; Inglese, James
2013-06-01
Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape. Published by Elsevier Ltd.
Harnessing QbD, Programming Languages, and Automation for Reproducible Biology.
Sadowski, Michael I; Grant, Chris; Fell, Tim S
2016-03-01
Building robust manufacturing processes from biological components is a task that is highly complex and requires sophisticated tools to describe processes, inputs, and measurements and administrate management of knowledge, data, and materials. We argue that for bioengineering to fully access biological potential, it will require application of statistically designed experiments to derive detailed empirical models of underlying systems. This requires execution of large-scale structured experimentation for which laboratory automation is necessary. This requires development of expressive, high-level languages that allow reusability of protocols, characterization of their reliability, and a change in focus from implementation details to functional properties. We review recent developments in these areas and identify what we believe is an exciting trend that promises to revolutionize biotechnology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Therapeutic Targeting of IL-17 and IL-23 Cytokines in Immune-Mediated Diseases.
Fragoulis, George E; Siebert, Stefan; McInnes, Iain B
2016-01-01
The discovery of the biological functions of the interleukin-23/-17 axis led to the identification of IL-23 and IL-17 as important participants in the pathogenesis of several immune-mediated diseases. Therapeutic agents targeting these cytokines and/or their receptors have now been developed as potential treatment strategies for common immune-mediated diseases. Anti-IL-17 and anti-IL-12/-23 regimens appear particularly effective in psoriasis, with promising results in spondyloarthropathies also emerging. Overall, these agents appear well tolerated, with adverse-event rates that are commensurate with those in other biologic treatment programs. The strategic utility of these new agents, however, remains uncertain, and further studies will be required to determine their place in the context of existing conventional and biologic immune-modifying agents.
Margaliot, Michael; Sontag, Eduardo D; Tuller, Tamir
2014-01-01
Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a desired, periodic, protein synthesis rate.
Musculoskeletal system in the old age and the demand for healthy ageing biomarkers.
Collino, Sebastiano; Martin, François-Pierre; Karagounis, Leonidas G; Horcajada, Marie Noelle; Moco, Sofia; Franceschi, Claudio; Kussmann, Martin; Offord, Elizabeth
2013-01-01
Population ageing has emerged as a major demographic trend worldwide due to improved health and longevity. This global ageing phenomenon will have a major impact on health-care systems worldwide due to increased morbidity and greater needs for hospitalization/institutionalization. As the ageing population increases worldwide, there is an increasing awareness not only of increased longevity but also of the importance of "healthy ageing" and "quality of life". Yet, the age related chronic inflammation is believed to be pathogenic with regards to its contribution to frailty and degenerative disorders. In particular, the frailty syndrome is increasingly being considered as a key risk indicator of adverse health outcomes. In addition, elderly may be also prone to be resistant to anabolic stimuli which is likely a key factor in the loss of skeletal muscle mass with ageing. Vital to understand these key biological processes is the development of biological markers, through system biology approaches, aiding at strategies for tailored therapeutic and personalized nutritional program. Overall aim is to prevent or attenuate decline of key physiological functions required to live an active, independent life. This review focus on core indicators of health and functions in older adults, where nutrition and tailored personalized programs could exhibit preventive roles, and where the aid of metabolomics technologies are increasingly displaying potential in revealing key molecular mechanisms/targets linked to specific ageing and/or healthy ageing processes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Reprint of: Musculoskeletal system in the old age and the demand for healthy ageing biomarkers.
Collino, Sebastiano; Martin, François-Pierre; Karagounis, Leonidas G; Horcajada, Marie Noelle; Moco, Sofia; Franceschi, Claudio; Kussmann, Martin; Offord, Elizabeth
2014-01-01
Population ageing has emerged as a major demographic trend worldwide due to improved health and longevity. This global ageing phenomenon will have a major impact on health-care systems worldwide due to increased morbidity and greater needs for hospitalization/institutionalization. As the ageing population increases worldwide, there is an increasing awareness not only of increased longevity but also of the importance of "healthy ageing" and "quality of life". Yet, the age related chronic inflammation is believed to be pathogenic with regards to its contribution to frailty and degenerative disorders. In particular, the frailty syndrome is increasingly being considered as a key risk indicator of adverse health outcomes. In addition, elderly may be also prone to be resistant to anabolic stimuli which is likely a key factor in the loss of skeletal muscle mass with ageing. Vital to understand these key biological processes is the development of biological markers, through system biology approaches, aiding at strategies for tailored therapeutic and personalized nutritional program. Overall aim is to prevent or attenuate decline of key physiological functions required to live an active, independent life. This review focus on core indicators of health and functions in older adults, where nutrition and tailored personalized programs could exhibit preventive roles, and where the aid of metabolomics technologies are increasingly displaying potential in revealing key molecular mechanisms/targets linked to specific ageing and/or healthy ageing processes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chemical Biodynamics Division: Annual report, October 1, 1985-September 30, 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-10-01
The research in the Laboratory of Chemical Biodynamics is almost entirely fundamental research. The biological research component is strongly dominated by a long term interest in two main themes which make up our Structural Biology Program. The first interest has to do with understanding the molecular dynamics of photosynthesis. The Laboratory's investigators are studying the various components that make up the photosynthetic reaction center complexes in many different organisms. This work not only involves understanding the kinetics of energy transfer and storage in plants, but also includes studies to work out how photosynthetic cells regulate the expression of genes encodingmore » the photosynthetic apparatus. The second biological theme is a series of investigations into the relationship between structure and function in nucleic acids. Our basic mission in this program is to couple our chemical and biophysical expertise to understand how not only the primary structure of nucleic acids, but also higher levels of structure including interactions with proteins and other nucleic acids regulate the functional activity of genes. In the chemical sciences work in the Laboratory, our investigators are increasing our understanding of the fundamental chemistry of electronically excited molecules, a critical dimension of every photosynthetic energy storage process. We are developing approaches not only toward the utilization of sophisticated chemistry to store photon energy, but also to develop systems that can emulate the photosynthetic apparatus in the trapping and transfer of photosynthetic energy.« less
The Space Shuttle Program and Its Support for Space Bioresearch
ERIC Educational Resources Information Center
Mason, J. A.; Heberlig, J. C.
1973-01-01
The Space Shuttle Program is aimed at not only providing low cost transportation to and from near earth orbit, but also to conduct important biological research. Fields of research identified include gravitational biology, biological rhythms, and radiation biology. (PS)
A Biological Safety Cabinet Certification Program: Experiences in Southeast Asia
Whistler, Toni; Kaewpan, Anek; Blacksell, Stuart D.
2016-01-01
Biological safety cabinets (BSCs) are the primary means of containment used in laboratories worldwide for the safe handling of infectious microorganisms. They provide protection to the laboratory worker and the surrounding environment from pathogens. To ensure the correct functioning of BSCs, they need to be properly maintained beyond the daily care routines of the laboratory. This involves annual maintenance and certification by a qualified technician in accordance to the NSF/American National Standards Institute 49-2014 Biosafety Cabinetry: Design, Construction, Performance, and Field Certification. Service programs can be direct from the manufacturer or through third-party service companies, but in many instances, technicians are not accredited by international bodies, and these services are expensive. This means that a large number of BSCs may not be operating in a safe manner. In this article, we discuss our approach to addressing the lack of trained and qualified personnel in Thailand who can install, maintain, and certify BSCs in a cost-effective and practical manner. We initiated a program to create both local and regional capacity for repair, maintenance, and certification of BSCs and share our experiences with the reader. PMID:27721674
Biology. Focus on Excellence. Volume 1, Number 3.
ERIC Educational Resources Information Center
Penick, John E., Ed.; Bonnstetter, Ronald J.
The 1982 Search for Excellence in Science Education project has identified 10 exemplary programs in biology. Descriptions of the programs and the criteria used in their selection are presented. Chapter 1 discusses the desired state in biology education, examining the goals of biology education and how these goals relate to biology curriculum and…
The NR3B subgroup: an ovERRview
Tremblay, Annie M.; Giguère, Vincent
2007-01-01
Members of the NR3B group of the nuclear receptor superfamily, known as the estrogen-related receptors (ERRs), were the first orphan receptors to be identified two decades ago. Despite the fact that a natural ligand has yet to be associated with the ERRs, considerable knowledge about their mode of action and biological functions has emerged through extensive biochemical, genetic and functional genomics studies. This review describes our current understanding of how the ERRs work as transcription factors and as such, how they control diverse developmental and physiological programs. PMID:18174917
Titov, V N; Dmitriev, V A; Oshchepkov, E V; Balakhonova, T V; Tripoten', M I; Shiriaeva, Iu K
2012-08-01
The article deals with studying of the relationship between biologic reaction of inflammation with glycosylation reaction and content of methylglyoxal in blood serum. The positive correlation between pulse wave velocity and content of methylglyoxal, C-reactive protein in intercellular medium and malleolar brachial index value was established. This data matches the experimental results concerning involvement of biological reaction of inflammation into structural changes of elastic type arteries under hypertension disease, formation of arteries' rigidity and increase of pulse wave velocity. The arterial blood pressure is a biological reaction of hydrodynamic pressure which is used in vivo by several biological functions: biological function of homeostasis, function of endoecology, biological function of adaptation and function of locomotion. The biological reaction of hydrodynamic (hydraulic) pressure is a mode of compensation of derangement of several biological functions which results in the very high rate of hypertension disease in population. As a matter of fact, hypertension disease is a syndrome of lingering pathological compensation by higher arterial blood pressure of the biological functions derangements occurring in the distal section at the level of paracrine cenoses of cells. The arterial blood pressure is a kind of in vivo integral indicator of deranged metabolism. The essential hypertension disease pathogenically is a result of the derangement of three biological functions: biological function of homeostasis, biological function of trophology - nutrition (biological reaction of external feeding - exotrophia) and biological function of endoecology. In case of "littering" of intercellular medium in vivo with nonspecific endogenic flogogens a phylogenetically earlier activation of biological reactions of excretion, inflammation and hydrodynamic arterial blood pressure occur. In case of derangement of biological function of homeostasis, decreasing of perfusion even in single paracrine cenoses and derangement of biological function of endoecology ("purity" of intercellular medium) the only response always will be the increase of arterial blood pressure.
Change is necessary in a biological engineering curriculum.
Johnson, Arthur T; Montas, Hubert; Shirmohammadi, Adel; Wheaton, Fredrick W
2006-01-01
Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed. The Biological Resources Engineering program has evolved into a program that emphasizes breadth, fundamentals, communications skills, diversity, and practical engineering judgment.
Nonlinear dynamics based digital logic and circuits.
Kia, Behnam; Lindner, John F; Ditto, William L
2015-01-01
We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.
Music enrichment programs improve the neural encoding of speech in at-risk children.
Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis
2014-09-03
Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function. Copyright © 2014 the authors 0270-6474/14/3411913-06$15.00/0.
Flow Cytometry Technician | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture
Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki
2012-09-01
The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .
SH2 Ligand Prediction-Guidance for In-Silico Screening.
Li, Shawn S C; Li, Lei
2017-01-01
Systematic identification of binding partners for SH2 domains is important for understanding the biological function of the corresponding SH2 domain-containing proteins. Here, we describe two different web-accessible computer programs, SMALI and DomPep, for predicting binding ligands for SH2 domains. The former was developed using a Scoring Matrix method and the latter based on the Support Vector Machine model.
Effects of Stress and Nicotine on Cognitive Function in Male and Female Rats
2016-05-20
abnormal psychology 109:188-97 84. Shih RA, Glass TA, Bandeen-Roche K, Carlson MC, Bolla KI, et al. 2006. Environmental lead exposure and cognitive...submitted to the Faculty of the Medical and Clinical Psychology Graduate Program Uniformed Services University of the Health Sciences In partial...Molecular & Cell Biology -Neuroscience Departmental -Cli.nical Psychology -Environmental Health Sciences -Medical Psychology -Medical Zoology
Noble, Dorottya B; Mochrie, Simon G J; O'Hern, Corey S; Pollard, Thomas D; Regan, Lynne
2016-11-12
In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co-teaching by faculty with complementary specializations, student peer learning, and novel hands-on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.-granting home programs in the physical, engineering, and biological sciences. Moreover, the wide-ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution-level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical "how to" manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537-549, 2016. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Li, Jiang; Green, Alexander A.; Yan, Hao; Fan, Chunhai
2017-11-01
Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.
Fuel management optimization using genetic algorithms and code independence
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1994-12-31
Fuel management optimization is a hard problem for traditional optimization techniques. Loading pattern optimization is a large combinatorial problem without analytical derivative information. Therefore, methods designed for continuous functions, such as linear programming, do not always work well. Genetic algorithms (GAs) address these problems and, therefore, appear ideal for fuel management optimization. They do not require derivative information and work well with combinatorial. functions. The GAs are a stochastic method based on concepts from biological genetics. They take a group of candidate solutions, called the population, and use selection, crossover, and mutation operators to create the next generation of bettermore » solutions. The selection operator is a {open_quotes}survival-of-the-fittest{close_quotes} operation and chooses the solutions for the next generation. The crossover operator is analogous to biological mating, where children inherit a mixture of traits from their parents, and the mutation operator makes small random changes to the solutions.« less
Metabolic Compensation and Circadian Resilience in Prokaryotic Cyanobacteria
Johnson, Carl Hirschie; Egli, Martin
2014-01-01
For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value. PMID:24905782
Physiological significance of polyploidization in mammalian cells.
Pandit, Shusil K; Westendorp, Bart; de Bruin, Alain
2013-11-01
Programmed polyploidization occurs in all mammalian species during development and aging in selected tissues, but the biological properties of polyploid cells remain obscure. Spontaneous polyploidization arises during stress and has been observed in a variety of pathological conditions, such as cancer and degenerative diseases. A major challenge in the field is to test the predicted functions of polyploidization in vivo. However, recent genetic mouse models with diminished polyploidization phenotypes represent novel, powerful tools to unravel the biological function of polyploidization. Contrary to a longstanding hypothesis, polyploidization appears to not be required for differentiation and has no obvious impact on proliferation. Instead, polyploidization leads to increased cell size and genetic diversity, which could promote better adaptation to chronic injury or stress. We discuss here the consequences of reducing polyploidization in mice and review which stress responses and molecular signals trigger polyploidization during development and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Impact of a Short Pre-Freshman Program on Retention
ERIC Educational Resources Information Center
Wischusen, Sheri M.; Wischusen, E. William; Pomarico, Steven M.
2011-01-01
The Biology Intensive Orientation for Students (BIOS) Program at Louisiana State University was designed to increase the success of incoming freshman biology majors in the first course in their major. The program combined content lectures and examinations for BIOL 1201-Introductory Biology for Science Majors, the first course in their major, as…
Chemical and biological nonproliferation program. FY99 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-03-01
This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overviewmore » of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.« less
Pécourneau, Virginie; Degboé, Yannick; Barnetche, Thomas; Cantagrel, Alain; Constantin, Arnaud; Ruyssen-Witrand, Adeline
2018-02-01
To assess the effectiveness of exercise programs on disease activity and function in ankylosing spondylitis (AS) by a systematic review and meta-analysis of randomized controlled trials (RCTs). Medline via PubMed and Cochrane Library. Reports of RCTs examining the effectiveness of exercise programs for AS published up to May 2017. Outcomes were evolution of the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Bath Ankylosing Spondylitis Functional Index (BASFI) after the completion of exercise programs. Modalities of exercise were compared and the use of biologic therapy was reported. After screening 190 abstracts, we selected 26 reports for detailed evaluation and finally investigated 8 trials that assessed a home-based exercise program (2/8), swimming (1/8), Pilates training (1/8), or supervised exercises (4/8), for a total of 331 patients with AS. Four trials included patients receiving antitumor necrosis factor therapy. All trials except one showed a decrease in BASDAI and BASFI with exercise. The weighted mean difference was -0.90 (95% confidence interval, -1.52 to -0.27; I 2 =69%; P=.005) for the BASDAI and -0.72 (95% confidence interval, -1.03 to -0.40; I 2 =0%; P<.00001) for the BASFI in favor of exercise programs. Despite the small number of patients and the heterogeneity of exercise programs in the RCTs included in this meta-analysis, its results support the potential of exercise programs to improve disease activity and body function in AS. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
L-GRAAL: Lagrangian graphlet-based network aligner.
Malod-Dognin, Noël; Pržulj, Nataša
2015-07-01
Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S
1996-09-15
For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.
Merks, Roeland M H; Guravage, Michael; Inzé, Dirk; Beemster, Gerrit T S
2011-02-01
Plant organs, including leaves and roots, develop by means of a multilevel cross talk between gene regulation, patterned cell division and cell expansion, and tissue mechanics. The multilevel regulatory mechanisms complicate classic molecular genetics or functional genomics approaches to biological development, because these methodologies implicitly assume a direct relation between genes and traits at the level of the whole plant or organ. Instead, understanding gene function requires insight into the roles of gene products in regulatory networks, the conditions of gene expression, etc. This interplay is impossible to understand intuitively. Mathematical and computer modeling allows researchers to design new hypotheses and produce experimentally testable insights. However, the required mathematics and programming experience makes modeling poorly accessible to experimental biologists. Problem-solving environments provide biologically intuitive in silico objects ("cells", "regulation networks") required for setting up a simulation and present those to the user in terms of familiar, biological terminology. Here, we introduce the cell-based computer modeling framework VirtualLeaf for plant tissue morphogenesis. The current version defines a set of biologically intuitive C++ objects, including cells, cell walls, and diffusing and reacting chemicals, that provide useful abstractions for building biological simulations of developmental processes. We present a step-by-step introduction to building models with VirtualLeaf, providing basic example models of leaf venation and meristem development. VirtualLeaf-based models provide a means for plant researchers to analyze the function of developmental genes in the context of the biophysics of growth and patterning. VirtualLeaf is an ongoing open-source software project (http://virtualleaf.googlecode.com) that runs on Windows, Mac, and Linux.
Distelberg, Brian; Tapanes, Daniel; Emerson, Natacha D; Brown, Whitney N; Vaswani, Deepti; Williams-Reade, Jackie; Anspikian, Ara M; Montgomery, Susanne
2018-03-01
Psychosocial interventions for pediatric chronic illness (CI) have been shown to support health management. Interventions that include a family systems approach offer potentially stronger and more sustainable improvements. This study explores the biopsychosocial benefits of a novel family systems psychosocial intervention (MEND: Mastering Each New Direction). Forty-five families participated in a 21-session intensive outpatient family systems-based program for pediatric CI. Within this single arm design, families were measured on five domains of Health-Related Quality of Life (HRQL) self-report measures; Stress, Cognitive Functioning, Mental Health, Child HRQL, Family Functioning. Both survey and biological measures (stress: catecholamine) were used in the study. Results from multivariate general linear models showed positive pre-, post-, and 3-month posteffects in all five domains. The program effects ranged from small to moderate (η 2 = .07-.64). The largest program effects were seen in the domains of cognitive functioning (η 2 = .64) and stress (η 2 = .27). Also, between disease groups, differences are noted and future implications for research and clinical practice are discussed. Conclusions suggest that the MEND program may be useful in helping families manage pediatric chronic illnesses. Study results also add to the growing body of literature suggesting that psychosocial interventions for pediatric chronic illness benefit from a family systems level of intervention. © 2017 Family Process Institute.
The Comet Cometh: Evolving Developmental Systems.
Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner
In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.
Sobie, Eric A
2011-09-13
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy.
Sobie, Eric A.
2014-01-01
This two-part lecture introduces students to the scientific computing language MATLAB. Prior computer programming experience is not required. The lectures present basic concepts of computer programming logic that tend to cause difficulties for beginners in addition to concepts that relate specifically to the MATLAB language syntax. The lectures begin with a discussion of vectors, matrices, and arrays. Because many types of biological data, such as fluorescence images and DNA microarrays, are stored as two-dimensional objects, processing these data is a form of array manipulation, and MATLAB is especially adept at handling such array objects. The students are introduced to basic commands in MATLAB, as well as built-in functions that provide useful shortcuts. The second lecture focuses on the differences between MATLAB scripts and MATLAB functions and describes when one method of programming organization might be preferable to the other. The principles are illustrated through the analysis of experimental data, specifically measurements of intracellular calcium concentration in live cells obtained using confocal microscopy. PMID:21934110
The Human Genome Initiative of the Department of Energy
DOE R&D Accomplishments Database
1988-01-01
The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.
Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
Design and validation of general biology learning program based on scientific inquiry skills
NASA Astrophysics Data System (ADS)
Cahyani, R.; Mardiana, D.; Noviantoro, N.
2018-03-01
Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.
BioASF: a framework for automatically generating executable pathway models specified in BioPAX.
Haydarlou, Reza; Jacobsen, Annika; Bonzanni, Nicola; Feenstra, K Anton; Abeln, Sanne; Heringa, Jaap
2016-06-15
Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF CONTACT: j.heringa@vu.nl. © The Author 2016. Published by Oxford University Press.
Implementation and Assessment of a Molecular Biology and Bioinformatics Undergraduate Degree Program
ERIC Educational Resources Information Center
Pham, Daphne Q. -D.; Higgs, David C.; Statham, Anne; Schleiter, Mary Kay
2008-01-01
The Department of Biological Sciences at the University of Wisconsin-Parkside has developed and implemented an innovative, multidisciplinary undergraduate curriculum in Molecular Biology and Bioinformatics (MBB). The objective of the MBB program is to give students a hands-on facility with molecular biology theories and laboratory techniques, an…
Symposium: The Role of Biological Sciences in the Optometric Curriculum.
ERIC Educational Resources Information Center
And Others; Rapp, Jerry
1980-01-01
Papers from a symposium probing some of the curricular elements of the program in biological sciences at a school or college of optometry are provided. The overall program sequence in the biological sciences, microbiology, pharmacology, and the curriculum in the biological sciences from a clinical perspective are discussed. (Author/MLW)
Global Biology Research Program: Program plan
NASA Technical Reports Server (NTRS)
1983-01-01
Biological processes which play a dominant role in these cycles which transform and transfer much of this material throughout the biosphere are examined. A greater understanding of planetary biological processes as revealed by the interaction of the biota and the environment. The rationale, scope, research strategy, and research priorities of the global biology is presented.
Recent Progress and Development of Crystal Structure Analysis of Enzymes and Other Proteins
NASA Astrophysics Data System (ADS)
Tanokura, Masaru; Nagata, Koji; Miyazono, Ken-Ichi; Miyakawa, Takuya; Okai, Masahiko
Structural biology has made tremendous progress in this decade. Here we briefly introduce the Target Proteins Research Program, a national project promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The program aims to reveal the structure and function of proteins that are of great importance in both academic research and industrial application. We also summarize the results of structure-function analyses of (i) transcriptional regulatory proteins useful for the breading of drought and heat stress tolerant crops, (ii) useful enzymes for the production of chiral compounds, and (iii) useful enzymes for the degradation of environmental pollution substances. These results can be utilized in various areas of industries, to enhance food production, to improve the efficiency of pharmaceutical compound production, and to promote the bioremediation of contaminated soil and water.
Sequential self-assembly of DNA functionalized droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less
Sequential self-assembly of DNA functionalized droplets
Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia; ...
2017-06-16
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less
Advanced physical-chemical life support systems research
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.
1988-01-01
A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.
LIGO detector characterization with genetic programming
NASA Astrophysics Data System (ADS)
Cavaglia, Marco; Staats, Kai; Errico, Luciano; Mogushi, Kentaro; Gabbard, Hunter
2017-01-01
Genetic Programming (GP) is a supervised approach to Machine Learning. GP has for two decades been applied to a diversity of problems, from predictive and financial modelling to data mining, from code repair to optical character recognition and product design. GP uses a stochastic search, tournament, and fitness function to explore a solution space. GP evolves a population of individual programs, through multiple generations, following the principals of biological evolution (mutation and reproduction) to discover a model that best fits or categorizes features in a given data set. We apply GP to categorization of LIGO noise and show that it can effectively be used to characterize the detector non-astrophysical noise both in low latency and offline searches. National Science Foundation award PHY-1404139.
NASA Astrophysics Data System (ADS)
Pesquies, P. C.; Milhaud, C.; Nogues, C.; Klein, M.; Cailler, B.; Bost, R.
The need to acquire a better knowledge of the main biological problems induced by microgravity implies—in addition to human experimentation—the use of animal models, and primates seem to be particularly well adapted to this type of research. The major areas of investigation to be considered are the phospho-calcium metabolism and the metabolism of supporting tissues, the hydroelectrolytic metabolism, the cardiovascular function, awakeness, sleep-awakeness cycles, the physiology of equilibrium and the pathophysiology of space sickness. Considering this program, the Centre d'Etudes et de Recherches de Medecine Aerospatiale, under the sponsorship of the Centre National d'Etudes Spatiales, developed both a program of research on restrained primates for the French-U.S. space cooperation (Spacelab program) and for the French-Soviet space cooperation (Bio-cosmos program), and simulation of the effects of microgravity by head-down bedrest. Its major characteristics are discussed in the study.
Processing sequence annotation data using the Lua programming language.
Ueno, Yutaka; Arita, Masanori; Kumagai, Toshitaka; Asai, Kiyoshi
2003-01-01
The data processing language in a graphical software tool that manages sequence annotation data from genome databases should provide flexible functions for the tasks in molecular biology research. Among currently available languages we adopted the Lua programming language. It fulfills our requirements to perform computational tasks for sequence map layouts, i.e. the handling of data containers, symbolic reference to data, and a simple programming syntax. Upon importing a foreign file, the original data are first decomposed in the Lua language while maintaining the original data schema. The converted data are parsed by the Lua interpreter and the contents are stored in our data warehouse. Then, portions of annotations are selected and arranged into our catalog format to be depicted on the sequence map. Our sequence visualization program was successfully implemented, embedding the Lua language for processing of annotation data and layout script. The program is available at http://staff.aist.go.jp/yutaka.ueno/guppy/.
ERIC Educational Resources Information Center
Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.; Regan, Lynne
2016-01-01
In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to…
Joint Program on Molecular Biology of Marine Organisms
1992-08-20
and lateral flagella formation in a marine vibrio (Belas and Colwell, 1982). Upon contact with a surface, the polar flagella of Vibrio ... parahemolyticus ceased to function. Shortl’ thereafter, lateral flagella formed around the cells, apparently mediating the "irreversible" attachment process. Pilus...Colwell. 1982. Adsorption kinetics of 18 Slaterally and polarly flagellated Vibrio . J. Bacteriol. 151:1568-1580. S-- Brown, C.M., D.C. Ellwood, and
Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen
2000-01-01
A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...
MOCHA - Multi-Study Ocean Acoustics Human Effects Analysis
2015-09-30
understanding of the response of marine mammals to navy sonar and other acoustic stimuli, by maximizing the information gain from Behavioral Response Studies...focussed on a functional/taxonomic group of marine mammals (deep divers, other odontocetes, pilot whales and baleen whales). We began with deep divers...Controlled Exposure Experiments component of the Marine Mammals and Biology Program, and it will also address broader commitments of the Navy for
Modeling Ocean Ecosystems: The PARADIGM Program
2006-03-01
of biological reality: the wonderful com- 2. Nitrogen-fixing bacteria and archaea our concept of a species (e.g., Venter et plexity of ocean...ecosystems will never be ( diazotrophs ), which convert atmo- al., 2004; Doney et al., 2004; DeLong and fully described with numerical models of spheric...applying ocean inventory of nitrogen nutrients. numerical models, we are confronted Specifying "Functional Groups" Some diazotrophs fix both CO 2 and with
Dar A. Robertsa; Michael Keller; Joao Vianei Soares
2003-01-01
We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in AmazoËnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...
The EPA Comptox Chemistry Dashboard: A Web-Based Data ...
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data driven approaches that integrate chemistry, exposure and biological data. As an outcome of these efforts the National Center for Computational Toxicology (NCCT) has measured, assembled and delivered an enormous quantity and diversity of data for the environmental sciences including high-throughput in vitro screening data, in vivo and functional use data, exposure models and chemical databases with associated properties. A series of software applications and databases have been produced over the past decade to deliver these data but recent developments have focused on the development of a new software architecture that assembles the resources into a single platform. A new web application, the CompTox Chemistry Dashboard provides access to data associated with ~720,000 chemical substances. These data include experimental and predicted physicochemical property data, bioassay screening data associated with the ToxCast program, product and functional use information and a myriad of related data of value to environmental scientists. The dashboard provides chemical-based searching based on chemical names, synonyms and CAS Registry Numbers. Flexible search capabilities allow for chemical identificati
The EPA CompTox Chemistry Dashboard - an online resource ...
The U.S. Environmental Protection Agency (EPA) Computational Toxicology Program integrates advances in biology, chemistry, and computer science to help prioritize chemicals for further research based on potential human health risks. This work involves computational and data driven approaches that integrate chemistry, exposure and biological data. As an outcome of these efforts the National Center for Computational Toxicology (NCCT) has measured, assembled and delivered an enormous quantity and diversity of data for the environmental sciences including high-throughput in vitro screening data, in vivo and functional use data, exposure models and chemical databases with associated properties. A series of software applications and databases have been produced over the past decade to deliver these data. Recent work has focused on the development of a new architecture that assembles the resources into a single platform. With a focus on delivering access to Open Data streams, web service integration accessibility and a user-friendly web application the CompTox Dashboard provides access to data associated with ~720,000 chemical substances. These data include research data in the form of bioassay screening data associated with the ToxCast program, experimental and predicted physicochemical properties, product and functional use information and related data of value to environmental scientists. This presentation will provide an overview of the CompTox Dashboard and its va
[Attributes of forest infrastructure].
Gao, Jun-kai; Jin, Ying-shan
2007-06-01
This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.
A Synthetic Circuit for Mercury Bioremediation Using Self-Assembling Functional Amyloids.
Tay, Pei Kun R; Nguyen, Peter Q; Joshi, Neel S
2017-10-20
Synthetic biology approaches to bioremediation are a key sustainable strategy to leverage the self-replicating and programmable aspects of biology for environmental stewardship. The increasing spread of anthropogenic mercury pollution into our habitats and food chains is a pressing concern. Here, we explore the use of programmed bacterial biofilms to aid in the sequestration of mercury. We demonstrate that by integrating a mercury-responsive promoter and an operon encoding a mercury-absorbing self-assembling extracellular protein nanofiber, we can engineer bacteria that can detect and sequester toxic Hg 2+ ions from the environment. This work paves the way for the development of on-demand biofilm living materials that can operate autonomously as heavy-metal absorbents.
Autopoiesis + extended cognition + nature = can buildings think?
Dollens, Dennis
2015-01-01
To incorporate metabolic, bioremedial functions into the performance of buildings and to balance generative architecture's dominant focus on computational programming and digital fabrication, this text first discusses hybridizing Maturana and Varela's biological theory of autopoiesis with Andy Clark's hypothesis of extended cognition. Doing so establishes a procedural protocol to research biological domains from which design could source data/insight from biosemiotics, sensory plants, and biocomputation. I trace computation and botanic simulations back to Alan Turing's little-known 1950s Morphogenetic drawings, reaction-diffusion algorithms, and pioneering artificial intelligence (AI) in order to establish bioarchitecture's generative point of origin. I ask provocatively, Can buildings think? as a question echoing Turing's own, "Can machines think?" PMID:26478784
The development of current biological monitoring and bioassessment programs was a drastic improvement over previous programs created for monitoring a limited number of specific chemical pollutants. Although these assessment programs are better designed to address the transient an...
UC Merced Center for Computational Biology Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvin, Michael; Watanabe, Masakatsu
Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformationmore » of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs made possible by the CCB from its inception until August, 2010, at the end of the final extension. Although DOE support for the center ended in August 2010, the CCB will continue to exist and support its original objectives. The research and academic programs fostered by the CCB have led to additional extramural funding from other agencies, and we anticipate that CCB will continue to provide support for quantitative and computational biology program at UC Merced for many years to come. Since its inception in fall 2004, CCB research projects have continuously had a multi-institutional collaboration with Lawrence Livermore National Laboratory (LLNL), and the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, as well as individual collaborators at other sites. CCB affiliated faculty cover a broad range of computational and mathematical research including molecular modeling, cell biology, applied math, evolutional biology, bioinformatics, etc. The CCB sponsored the first distinguished speaker series at UC Merced, which had an important role is spreading the word about the computational biology emphasis at this new campus. One of CCB's original goals is to help train a new generation of biologists who bridge the gap between the computational and life sciences. To archive this goal, by summer 2006, a new program - summer undergraduate internship program, have been established under CCB to train the highly mathematical and computationally intensive Biological Science researchers. By the end of summer 2010, 44 undergraduate students had gone through this program. Out of those participants, 11 students have been admitted to graduate schools and 10 more students are interested in pursuing graduate studies in the sciences. The center is also continuing to facilitate the development and dissemination of undergraduate and graduate course materials based on the latest research in computational biology.« less
Bandak, M; Jørgensen, N; Juul, A; Lauritsen, J; Kier, M G G; Mortensen, M S; Oturai, P S; Mortensen, J; Hojman, P; Helge, J W; Daugaard, G
2017-07-01
Testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to healthy controls. However, because of the fetal etiology of testicular cancer, familial unrelated healthy men might not be an optimal control group. The objective of this study was to clarify if testicular cancer survivors have impaired gonadal function and increased risk of metabolic syndrome when compared to their biological brothers. A cross-sectional study of testicular cancer survivors (ClinicalTrials.gov number, NCT02240966) was conducted between 2014 and 2016. Of 158 testicular cancer survivors included, 24 had a biological brother who accepted to participate in the study. Serum levels of reproductive hormones and prevalence of metabolic syndrome according to International Diabetes Federation Criteria and National Cholesterol Education Program (Adult Treatment Panel III) criteria comprised the main outcome measures of the study. Median age was similar in testicular cancer survivors and their biological brothers [44 years (IQR 39-50) vs. 46 (40-53) years respectively (p = 0.1)]. In testicular cancer survivors, follow-up since treatment was 12 years (7-19). Serum levels of luteinizing hormone and follicle-stimulating hormone were elevated (p ≤ 0.001), while total testosterone, free testosterone, inhibin B and anti-Müllerian hormone were lower (p ≤ 0.001) in testicular cancer survivors than in their biological brothers. The prevalence of metabolic syndrome was similar and apart from HDL-cholesterol, which was lower in testicular cancer survivors (p = 0.01); there were no differences in the individual components of the metabolic syndrome between testicular cancer survivors and their brothers. In conclusion, gonadal function was impaired in testicular cancer survivors, while we did not detect any difference in the prevalence of metabolic syndrome between testicular cancer survivors and their biological brothers. © 2017 American Society of Andrology and European Academy of Andrology.
Network propagation in the cytoscape cyberinfrastructure.
Carlin, Daniel E; Demchak, Barry; Pratt, Dexter; Sage, Eric; Ideker, Trey
2017-10-01
Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus
2016-01-01
In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.
Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas
2015-07-14
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.
A portal for the ocean biogeographic information system
Zhang, Yunqing; Grassle, J. F.
2002-01-01
Since its inception in 1999 the Ocean Biogeographic Information System (OBIS) has developed into an international science program as well as a globally distributed network of biogeographic databases. An OBIS portal at Rutgers University provides the links and functional interoperability among member database systems. Protocols and standards have been established to support effective communication between the portal and these functional units. The portal provides distributed data searching, a taxonomy name service, a GIS with access to relevant environmental data, biological modeling, and education modules for mariners, students, environmental managers, and scientists. The portal will integrate Census of Marine Life field projects, national data archives, and other functional modules, and provides for network-wide analyses and modeling tools.
Plasmodesmata: channels for intercellular signaling during plant growth and development.
Sevilem, Iris; Yadav, Shri Ram; Helariutta, Ykä
2015-01-01
Plants have evolved strategies for short- and long-distance communication to coordinate plant development and to adapt to changing environmental conditions. Plasmodesmata (PD) are intercellular nanochannels that provide an effective pathway for both selective and nonselective movement of various molecules that function in diverse biological processes. Numerous non-cell-autonomous proteins (NCAP) and small RNAs have been identified that have crucial roles in cell fate determination and organ patterning during development. Both the density and aperture size of PD are developmentally regulated, allowing formation of spatial symplastic domains for establishment of tissue-specific developmental programs. The PD size exclusion limit (SEL) is controlled by reversible deposition of callose, as well as by some PD-associated proteins. Although a large number of PD-associated proteins have been identified, many of their functions remain unknown. Despite the fact that PD are primarily membranous structures, surprisingly very little is known about their lipid composition. Thus, future studies in PD biology will provide deeper insights into the high-resolution structure and tightly regulated functions of PD and the evolution of PD-mediated cell-to-cell communication in plants.
Programmable polyproteams built using twin peptide superglues
Veggiani, Gianluca; Nakamura, Tomohiko; Brenner, Michael D.; Yan, Jun; Robinson, Carol V.; Howarth, Mark
2016-01-01
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable “polyproteams” should enable exploration of a new area of biological space. PMID:26787909
Programmable polyproteams built using twin peptide superglues.
Veggiani, Gianluca; Nakamura, Tomohiko; Brenner, Michael D; Gayet, Raphaël V; Yan, Jun; Robinson, Carol V; Howarth, Mark
2016-02-02
Programmed connection of amino acids or nucleotides into chains introduced a revolution in control of biological function. Reacting proteins together is more complex because of the number of reactive groups and delicate stability. Here we achieved sequence-programmed irreversible connection of protein units, forming polyprotein teams by sequential amidation and transamidation. SpyTag peptide is engineered to spontaneously form an isopeptide bond with SpyCatcher protein. By engineering the adhesin RrgA from Streptococcus pneumoniae, we developed the peptide SnoopTag, which formed a spontaneous isopeptide bond to its protein partner SnoopCatcher with >99% yield and no cross-reaction to SpyTag/SpyCatcher. Solid-phase attachment followed by sequential SpyTag or SnoopTag reaction between building-blocks enabled iterative extension. Linear, branched, and combinatorial polyproteins were synthesized, identifying optimal combinations of ligands against death receptors and growth factor receptors for cancer cell death signal activation. This simple and modular route to programmable "polyproteams" should enable exploration of a new area of biological space.
Biology-Inspired Explorers for Space Systems
NASA Astrophysics Data System (ADS)
Ramohalli, Kumar; Lozano, Peter; Furfaro, Roberto
2002-01-01
Building upon three innovative technologies, each of which received a NTR award from NASA, a specific explorer is described. This "robot" does away with conventional gears, levers, pulleys,.... And uses "Muscle Materials" instead; these shape-memory materials, formerly in the Nickel-Titanium family, but now in the much wider class of ElectroActivePolymers(EAP), have the ability to precisely respond to pre"programmed" shape changes upon application of an electrical input. Of course, the pre"programs" are at the molecular level, much like in biological systems. Another important feature is the distributed power. That is, the power use in the "limbs" is distributed, so that if one "limb" should fail, the others can still function. The robot has been built and demonstrated to the media (newspapers and television). The fundamental control aspects are currently being worked upon, and we expect to have a more complete mathematical description of its operation. Future plans, and specific applications for reliable planetary exploration will be outlined.
The NASA Space Biology Program
NASA Technical Reports Server (NTRS)
Halstead, T. W.
1982-01-01
A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.
An Experimental Study of a BSCS-Style Laboratory Approach for University General Biology.
ERIC Educational Resources Information Center
Leonard, William H.
1983-01-01
A Biological Sciences Curriculum Study (BSCS) inquiry approach for university general biology laboratory was tested against a well-established commercial program judged to be highly directive. The BSCS was found to be more effective in learning biology laboratory concepts than the commercial program as measured by a laboratory concepts test.…
ERIC Educational Resources Information Center
Brownell, Sara E.; Khalfan, Waheeda; Bergmann, Dominique; Simoni, Robert
2013-01-01
Undergraduate biology majors are often overwhelmed by and underinformed about the diversity and complexity of biological research that is conducted on research-intensive campuses. We present a program that introduces undergraduates to the diversity and scope of biological research and also provides unique teaching opportunities for graduate…
Noble, Dorottya B.; Mochrie, Simon G. J.; O'Hern, Corey S.; Pollard, Thomas D.
2016-01-01
Abstract In 2008, we established the Integrated Graduate Program in Physical and Engineering Biology (IGPPEB) at Yale University. Our goal was to create a comprehensive graduate program to train a new generation of scientists who possess a sophisticated understanding of biology and who are capable of applying physical and quantitative methodologies to solve biological problems. Here we describe the framework of the training program, report on its effectiveness, and also share the insights we gained during its development and implementation. The program features co‐teaching by faculty with complementary specializations, student peer learning, and novel hands‐on courses that facilitate the seamless blending of interdisciplinary research and teaching. It also incorporates enrichment activities to improve communication skills, engage students in science outreach, and foster a cohesive program cohort, all of which promote the development of transferable skills applicable in a variety of careers. The curriculum of the graduate program is integrated with the curricular requirements of several Ph.D.‐granting home programs in the physical, engineering, and biological sciences. Moreover, the wide‐ranging recruiting activities of the IGPPEB serve to enhance the quality and diversity of students entering graduate school at Yale. We also discuss some of the challenges we encountered in establishing and optimizing the program, and describe the institution‐level changes that were catalyzed by the introduction of the new graduate program. The goal of this article is to serve as both an inspiration and as a practical “how to” manual for those who seek to establish similar programs at their own institutions. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(6):537–549, 2016. PMID:27292366
Schultz, Jane S; Rodgers, V G J
2012-07-01
The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.
Situating and teaching 21st century zoology: revealing pattern in the form and function of animals.
Russell, Anthony P
2009-09-01
The current challenges (increasing levels of integration in the biological sciences) facing the teaching of zoology and the structure of the zoology curriculum are explored herein. General context is provided and a more focused scrutiny of the situation in North America is presented. The changing emphases in more broadly-based biological sciences programs in North America are outlined, and their influence on the role of zoology as part of fundamental biological training is considered. The longer term impact of such changes in emphasis on the teaching of zoology is discussed, and the central role that zoology can play in dealing with both science content and science education is advanced. Based upon a focal workshop on the future of the zoology curriculum in Canada, a perspective on the challenges facing curriculum evolution is provided. Extensive curriculum redesign is called for to ensure that zoology provides a broad-scale integrative approach to the understanding of biodiversity in evolutionary, ecological and functional contexts. Barriers to, and drivers of change are identified and the need for collaborative approaches to curricular evolution is emphasized. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
NABS Program: (Native Americans in Biological Science).
ERIC Educational Resources Information Center
Gettys, Nancy, Comp.
1994-01-01
Describes the four-week summer program of the Native Americans in Biological Sciences Program that engages Native American eighth- and ninth-grade students in studying the problems related to the waste water treatment plant in Cushing, Oklahoma. (MDH)
Preparing Future Biology Faculty: An Advanced Professional Development Program for Graduate Students
ERIC Educational Resources Information Center
Lockwood, Stephanie A.; Miller, Amanda J.; Cromie, Meghan M.
2014-01-01
Formal professional development programs for biology graduate students interested in becoming faculty members have come far; however, programs that provide advanced teaching experience for seasoned graduate teaching assistants are scarce. We outline an advanced program that focuses on further training of graduate teaching assistants in pedagogy…
A strategy for space biology and medical science for the 1980s and 1990s
NASA Technical Reports Server (NTRS)
1987-01-01
A guideline is provided for developing NASA's long-term mission plans and a rational, coherent research program. Ten topical areas for research are addressed: developmental biology, gravitropism in plants, sensorimotor integration, bone and mineral metabolism, cardiovascular/pulmonary function, muscle remodeling, nutrition, human reproduction, space anemia, and human behavior. Scientific goals, objectives, and required measurements and facilities for each of the major areas of space biology and medicine are identified and described along with primary goals and objectives for each of these disciplines. Proposals are made concerning the use of scientific panels to oversee the implementation of the strategy, life sciences' need for continuous access to spaceflight opportunities, the advantages of a focused mission strategy, certain design features that will enhance spaceflight experimentation, and general facilities. Other topics that are considered include mission planning, crew selection and training, and interagency and international cooperation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Bruce W.
2010-05-18
Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may causemore » disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.« less
The NASA light-emitting diode medical program-progress in space flight and terrestrial applications
NASA Astrophysics Data System (ADS)
Whelan, Harry T.; Houle, John M.; Whelan, Noel T.; Donohoe, Deborah L.; Cwiklinski, Joan; Schmidt, Meic H.; Gould, Lisa; Larson, David L.; Meyer, Glenn A.; Cevenini, Vita; Stinson, Helen
2000-01-01
This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate cell growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long termspace flight. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. This LED-technology is also biologically optimal for photodynamic therapy of cancer. .
Brodney, Michael A; Sharma, Raman; Lazzaro, John T; Walker, Gregory S; Scott Obach, R
2018-06-15
A facile method for late stage diversification of lead molecules for the M1 PAM program using biosynthesis is described. Liver microsomes from several species are screened to identify a high turnover system. Subsequent incubations using less than 1 mg of substrate generate nanomole quantities of drug metabolites that are purified, characterized by microcryoprobe NMR spectroscopy, and quantified to known concentrations to enable rapid biology testing. The late-stage diversification of lead compounds provides rapid SAR feedback to the medicinal chemistry design cycle. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yeast as a model to study apoptosis?
Fleury, Christophe; Pampin, Mathieu; Tarze, Agathe; Mignotte, Bernard
2002-02-01
Programmed cell death (PCD) serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes termed apoptosis. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. This crucial position of mitochondria in programmed cell death control is not due to a simple loss of function (deficit in energy supplying), but rather to an active process in the regulation of effector mechanisms. The large diversity of regulators of apoptosis in mammals and their numerous interactions complicate the analysis of their individual functions. Yeast, eukaryotic but unicellular organism, lack the main regulators of apoptosis (caspases, Bcl-2 family members, ...) found in mammals. This absence render them a powerful tool for heterologous expression, functional studies, and even cloning of new regulators of apoptosis. Great advances have thus been made in our understanding of the molecular mechanisms of Bcl-2 family members interactions with themselves and other cellular proteins, specially thanks to the two hybrid system and the easy manipulation of yeast (molecular biology and genetics). This review will focus on the use of yeast as a tool to identify new regulators and study function of mammalian apoptosis regulators.
Savino, Vivina; Coviella, Carlos E.; Luna, María G.
2012-01-01
The tomato moth, Tuta absoluta (Lepidoptera: Gelechiidae), is a major pest in South America and is at present an important invasive species in the Mediterranean Basin. The larval stadium mines leaves, stems, and fruits, and chemical control is the most used control method in both its original range and the invaded distribution regions. Since current T. absoluta control strategies seem limited, biological control is a prominent tool to be applied abroad. The naturally occurring larval ectoparasitoid in Argentina and Chile Dineulophus phtorimaeae (Hymenoptera: Eulophidae) has been reported to have potential biocontrol efficiency. In this study, the ovigeny strategy of D. phtorimaeae was analyzed throughout the adult female lifetime, and the functional response of females offered a range of 2–15 T. absoluta larvae was measured over a 48-hour period. Mean D. phtorimaeae egg load was 4.15 eggs, and egg production resulted in extremely synovigenic behavior. Meanwhile, a decreasing number of eggs, due to resorption, was found. Proportions of attacked (host-fed and/or parasitized) and only host-fed hosts by the ectoparasitoid were density independent for the tested host range, exhibiting a type I functional response to T. absoluta, with an attack rate of 0.20 host larvae. Meanings of this reproductive strategy in evolutionary time as well as the consequences for augmentative biological control programs are discussed. PMID:23464576
NASA Space Biology Research Associate Program for the 21st Century
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1999-01-01
The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective manner. The program began on June 1, 1980 with funding to support several Research Associates each year. 113 awards, plus 1 from an independently supported minority component were made for the Research Associates program. The program was changed from a one year award with a possibility for renewal to a two year award. In 1999, the decision was made by NASA to discontinue the program due to development of new priorities for funding. This grant was discontinued because of the move of the Program Director to a new institution; a new grant was provided to that new institution to allow completion of the training of the remaining 2 research associates in 1999. After 1999, the program will be discontinued.
Oral biology in middle age: a history of the University at Buffalo Oral Biology PhD Program.
Scannapieco, F A
2014-05-01
In 1960, the first Department of Oral Biology in the United States dedicated to the conduct of research, graduate biomedical research education, and the provision of basic oral science education for the DDS curriculum was established at the University at Buffalo. In 1963, the Department organized the first PhD Program in Oral Biology in the United States. This PhD program has produced a large cadre of oral health researchers, many of whom have gone on to make major contributions to dental research and education. This article provides a brief history of the program, the context within which the program was organized and developed, and a description of some of the many faculty, students, and fellows associated with the program. Additionally, to celebrate the 50th anniversary of this program, a symposium, entitled "The Oral Microbiome, Immunity and Chronic Disease", was held on June 12-14, 2013, in Buffalo, New York. The proceedings are published online in Advances in Dental Research (2014, Vol. 26).
Exemplary Programs in Secondary School Biology.
ERIC Educational Resources Information Center
McComas, William F.; Penick, John E.
1989-01-01
Summarizes 10 exemplary programs which address topics on individualized biology, a modified team approach, limnology, physical anthropology, the relevance of biology to society, ecology, and health. Provides names and addresses of contact persons for further information. Units cover a broad range of abilities and activities. (RT)
Environmental Biology Programs at the University of Illinois, Urbana-Champaign.
ERIC Educational Resources Information Center
Getz, Lowell L.
1987-01-01
Describes the programs of the Department of Ecology, Ethology, and Evolution at the University of Illinois (Urbana-Champaign). Focuses on the graduate degrees offered in environmental biology. Lists research interests and courses in plant biology, entomology, forestry, civil engineering, and landscape architecture. (TW)
Interruption of Neural Function.
1987-05-01
applcbse) University of Colorado I Be. ADDRESS (City. Stele and ZIP Code) 10. SOURCE OF FUNDING NOS. Campus Box B-19 PROGRAM PROJECT TASK WORK UNIT Boulder...rectification, frequency-sensitive phenomena, safety, and some effects on bio - logical systems," invited review, Charles Polk, Ed., CRC Handbook of Biological...experimental test", Mathematical Bio - Sciences, Vol. 29, pp. 235-253, 1978. [131 Kuf1er. S. WV., J. G. Nicholls, and A. R. Martin, "From Nettron to Brain
A federated design for a neurobiological simulation engine: the CBI federated software architecture.
Cornelis, Hugo; Coop, Allan D; Bower, James M
2012-01-01
Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.
A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture
Cornelis, Hugo; Coop, Allan D.; Bower, James M.
2012-01-01
Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components. PMID:22242154
Evolution of Aging Theories: Why Modern Programmed Aging Concepts Are Transforming Medical Research.
Goldsmith, Theodore C
2016-12-01
Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.
Neural system prediction and identification challenge.
Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.
Neural system prediction and identification challenge
Vlachos, Ioannis; Zaytsev, Yury V.; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered. PMID:24399966
A BSCS-Style Laboratory Approach for University General Biology.
ERIC Educational Resources Information Center
Leonard, William H.
1982-01-01
Compared effectiveness of a Biological Sciences Curriculum Study (BSCS)-style laboratory program in a university general biology course against a popular traditionally oriented program. Although learning gains for both groups were significant, students using the BSCS-style investigations scored significantly higher on a posttest of laboratory…
Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.
2014-01-01
Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063
BioBlocks: Programming Protocols in Biology Made Easier.
Gupta, Vishal; Irimia, Jesús; Pau, Iván; Rodríguez-Patón, Alfonso
2017-07-21
The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-demand biology enterprises are making automating entire experiments a reality. Automation offers the benefit of high-throughput experimentation, rapid prototyping, and improved reproducibility of results. However, learning to automate and codify experiments is a difficult task as it requires programming expertise. Here, we present a web-based visual development environment called BioBlocks for describing experimental protocols in biology. It is based on Google's Blockly and Scratch, and requires little or no experience in computer programming to automate the execution of experiments. The experiments can be specified, saved, modified, and shared between multiple users in an easy manner. BioBlocks is open-source and can be customized to execute protocols on local robotic platforms or remotely, that is, in the cloud. It aims to serve as a de facto open standard for programming protocols in Biology.
Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.
Lai, Wei; Ren, Lei; Tang, Qian; Qu, Xiangmeng; Li, Jiang; Wang, Lihua; Li, Li; Fan, Chunhai; Pei, Hao
2018-06-22
The programmable regulation of chemical reaction networks (CRNs) represents a major challenge toward the development of complex molecular devices performing sophisticated motions and functions. Nevertheless, regulation of artificial CRNs is generally energy- and time-intensive as compared to natural regulation. Inspired by allosteric regulation in biological CRNs, we herein develop an intramolecular conformational motion strategy (InCMS) for programmable regulation of DNA CRNs. We design a DNA switch as the regulatory element to program the distance between the toehold and branch migration domain. The presence of multiple conformational transitions leads to wide-range kinetic regulation spanning over 4 orders of magnitude. Furthermore, the process of energy-cost-free strand exchange accompanied by conformational change discriminates single base mismatches. Our strategy thus provides a simple yet effective approach for dynamic programming of complex CRNs.
The NASA planetary biology internship experience
NASA Technical Reports Server (NTRS)
Hinkle, G.; Margulis, L.
1991-01-01
By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.
The Chemical Biology of S-Nitrosothiols
Broniowska, Katarzyna A.
2012-01-01
Abstract Significance: S-nitrosothiol formation and protein S-nitrosation is an important nitric oxide (NO)-dependent signaling paradigm that is relevant to almost all aspects of cell biology, from proliferation, to homeostasis, to programmed cell death. However, the mechanisms by which S-nitrosothiols are formed are still largely unknown, and there are gaps of understanding between the known chemical biology of S-nitrosothiols and their reported functions. Recent Advances: This review attempts to describe the biological chemistry of S-nitrosation and to point out where the challenges lie in matching the known chemical biology of these compounds with their reported functions. The review will detail new discoveries concerning the mechanisms of the formation of S-nitrosothiols in biological systems. Critical Issues: Although S-nitrosothiols may be formed with some degree of specificity on particular protein thiols, through un-catalyzed chemistry, and mechanisms for their degradation and redistribution are present, these processes are not sufficient to explain the vast array of specific and targeted responses of NO that have been attributed to S-nitrosation. Elements of catalysis have been discovered in the formation, distribution, and metabolism of S-nitrosothiols, but it is less clear whether these represent a specific network for targeted NO-dependent signaling. Future Directions: Much recent work has uncovered new targets for S-nitrosation through either targeted or proteome-wide approaches There is a need to understand which of these modifications represent concerted and targeted signaling processes and which is an inevitable consequence of living with NO. There is still much to be learned about how NO transduces signals in cells and the role played by protein S-nitrosation. Antioxid. Redox Signal. 17, 969–980. PMID:22468855
The Simulation and Analysis of an Evolutionary Model of Deoxyribonucleic Acid (DNA).
1983-09-01
current interest in evolutionary biology . This section identifies the organization of the remainder of the paper. The second chapter reports the...the field of evolutionary biology . 77 APPENDIX 78 APPENDIX A PROGRAM SOURCE LISTING -79 PROGRAM SOURCE LISTING 00005 PROGRAM (COMPUTERANDOM MUTATIONS...34Some Theoretical Aspects of the Problem of Life Origin," Journal 2f Theoreical Biology : 13-23, 1975. 27. Chirpich, Thomas P. "Rates of Protein
Implementation Plans for a Systems Microbiology and Extremophile Research Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, H. S.
Introduction Biological organisms long ago solved many problems for which scientists and engineers seek solutions. Microbes in particular offer an astonishingly diverse set of capabilities that can help revolutionize our approach to solving many important DOE problems. For example, photosynthetic organisms can generate hydrogen from light while simultaneously sequestering carbon. Others can produce enzymes that break down cellulose and other biomass to produce liquid fuels. Microbes in water and soil can capture carbon and store it in the earth and ocean depths. Understanding the dynamic interaction between living organisms and the environment is critical to predicting and mitigating the impactsmore » of energy-production-related activities on the environment and human health. Collectively, microorganisms contain most of the biochemical diversity on Earth and they comprise nearly one-half of its biomass. They primary impact the planet by acting as catalysts of biogeochemical cycles; they capture light energy and fix CO2 in the worlds oceans, they degrade plant polymers and convert them to humus in soils, they weather rocks and facilitate mineral precipitation. Although the ability of selected microorganisms to participate in these processes is known, they rarely live in monoculture but rather function within communities. In spite of this, little is known about the composition of microbial communities and how individual species function within them. We lack an understanding of the nature of the individual organisms and their genes, how they interact to perform complex functions such as energy and materials exchange, how they sense and respond to their environment and how they evolve and adapt to environmental change. Understanding these aspects of microbes and their communities would be transformational with far-reaching impacts on climate, energy and human health. This knowledge would create a foundation for predicting their behavior and, ultimately, manipulating them to solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.« less
Next-Generation High-Throughput Functional Annotation of Microbial Genomes.
Baric, Ralph S; Crosson, Sean; Damania, Blossom; Miller, Samuel I; Rubin, Eric J
2016-10-04
Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community. Copyright © 2016 Baric et al.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... Program; Homeland Security Research Program; Human Health Risk Assessment Research Program; Safe and... --atmospheric physics Biology --biogeochemistry --cell biology --endocrinology (endocrine disruptors... analysis --uncertainty analysis Nanotechnology Public Health --children's health --community health...
Gurdita, Akshay; Vovko, Heather; Ungrin, Mark
2016-01-01
Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.
Clustering and Network Analysis of Reverse Phase Protein Array Data.
Byron, Adam
2017-01-01
Molecular profiling of proteins and phosphoproteins using a reverse phase protein array (RPPA) platform, with a panel of target-specific antibodies, enables the parallel, quantitative proteomic analysis of many biological samples in a microarray format. Hence, RPPA analysis can generate a high volume of multidimensional data that must be effectively interrogated and interpreted. A range of computational techniques for data mining can be applied to detect and explore data structure and to form functional predictions from large datasets. Here, two approaches for the computational analysis of RPPA data are detailed: the identification of similar patterns of protein expression by hierarchical cluster analysis and the modeling of protein interactions and signaling relationships by network analysis. The protocols use freely available, cross-platform software, are easy to implement, and do not require any programming expertise. Serving as data-driven starting points for further in-depth analysis, validation, and biological experimentation, these and related bioinformatic approaches can accelerate the functional interpretation of RPPA data.
From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.
Faivre, Damien; Godec, Tina Ukmar
2015-04-13
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…
PatchSurfers: Two methods for local molecular property-based binding ligand prediction.
Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke
2016-01-15
Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.
DNA-Based Applications in Nanobiotechnology
Abu-Salah, Khalid M.; Ansari, Anees A.; Alrokayan, Salman A.
2010-01-01
Biological molecules such as deoxyribonucleic acid (DNA) have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated. PMID:20652049
DNA-based applications in nanobiotechnology.
Abu-Salah, Khalid M; Ansari, Anees A; Alrokayan, Salman A
2010-01-01
Biological molecules such as deoxyribonucleic acid (DNA) have shown great potential in fabrication and construction of nanostructures and devices. The very properties that make DNA so effective as genetic material also make it a very suitable molecule for programmed self-assembly. The use of DNA to assemble metals or semiconducting particles has been extended to construct metallic nanowires and functionalized nanotubes. This paper highlights some important aspects of conjugating the unique physical properties of dots or wires with the remarkable recognition capabilities of DNA which could lead to miniaturizing biological electronics and optical devices, including biosensors and probes. Attempts to use DNA-based nanocarriers for gene delivery are discussed. In addition, the ecological advantages and risks of nanotechnology including DNA-based nanobiotechnology are evaluated.
Biological and Chemical Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, P J
2002-12-19
The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defensemore » Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.« less
Breaking down Barriers: A Bridge Program Helps First-Year Biology Students Connect with Faculty
ERIC Educational Resources Information Center
Cooper, Katelyn M.; Ashley, Michael; Brownell, Sara E.
2018-01-01
Summer bridge programs often aim to build social connections for first-year students to ease their transition into college, yet few studies have reported on bridge programs successfully leading to these outcomes. We backward designed a summer bridge program for incoming biology majors to increase the comfort and connections among students and…
Life sciences flight experiments program - Overview
NASA Technical Reports Server (NTRS)
Berry, W. E.; Dant, C. C.
1981-01-01
The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.
Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks
Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.
2013-01-01
Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less
Clarity of objectives and working principles enhances the success of biomimetic programs.
Wolff, Jonas O; Wells, David; Reid, Chris R; Blamires, Sean J
2017-09-26
Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examining three flagship examples of biomimetic design approaches from different disciplines: (1) the creation of gecko-inspired adhesives; (2) the synthesis of spider silk, and (3) the derivation of computer algorithms from natural self-organizing systems. We find that identification of the elemental working principles is the most crucial step in the biomimetic design process. It bears the highest risk of failure (e.g. losing the target function) due to false assumptions about the working principle. Common problems that hamper successful implementation are: (i) a discrepancy between biological functions and the desired properties of the product, (ii) uncertainty about objectives and applications, (iii) inherent limits in methodologies, and (iv) false assumptions about the biology of the models. Projects that aim for multi-functional products are particularly challenging to accomplish. We suggest a simplification, modularisation and specification of objectives, and a critical assessment of the suitability of the model. Comparative analyses, experimental manipulation, and numerical simulations followed by tests of artificial models have led to the successful extraction of working principles. A searchable database of biological systems would optimize the choice of a model system in top-down approaches that start at an engineering problem. Only when biomimetic projects become more predictable will there be wider acceptance of biomimetics as an innovative problem-solving tool among engineers and industry.
Toward synthesizing executable models in biology.
Fisher, Jasmin; Piterman, Nir; Bodik, Rastislav
2014-01-01
Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell's behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions), even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modeling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.
ERIC Educational Resources Information Center
Norman, Colin
1983-01-01
Provides top-rated programs (by university) in biochemistry, botany, cellular/molecular biology, microbiology, physiology, and zoology. Overall scores included with each program were obtained from 1,848 biologists who were asked to rate programs in terms of faculty quality and their effectiveness in educating graduate students. (Author/JN)
Computerized bioterrorism education and training for nurses on bioterrorism attack agents.
Nyamathi, Adeline M; Casillas, Adrian; King, Major L; Gresham, Louise; Pierce, Elaine; Farb, Daniel; Wiechmann, Carrie; Weichmann, Carrie
2010-08-01
Biological agents have the ability to cause large-scale mass casualties. For this reason, their likely use in future terrorist attacks is a concern for national security. Recent studies show that nurses are ill prepared to deal with agents used in biological warfare. Achieving a goal for bioterrorism preparedness is directly linked to comprehensive education and training that enables first-line responders such as nurses to diagnose infectious agents rapidly. The study evaluated participants' responses to biological agents using a computerized bioterrorism education and training program versus a standard bioterrorism education and training program. Both programs improved participants' ability to complete and solve case studies involving the identification of specific biological agents. Participants in the computerized bioterrorism education and training program were more likely to solve the cases critically without reliance on expert consultants. However, participants in the standard bioterrorism education and training program reduced the use of unnecessary diagnostic tests.
NASA Technical Reports Server (NTRS)
Souza, K. A. (Compiler); Young, R. S. (Compiler)
1976-01-01
The Planetary Biology Program of the National Aeronautics and Space Administration is the first and only integrated program to methodically investigate the planetary events which may have been responsible for, or related to, the origin, evolution, and distribution of life in the universe. Research supported by this program is divided into the seven areas listed below: (1) chemical evolution, (2) organic geochemistry, (3) life detection, (4) biological adaptation, (5) bioinstrumentation, (6) planetary environments, and (7) origin of life. The arrangement of references in this bibliography follows the division of research described above. Articles are listed alphabetically by author under the research area with which they are most closely related. Only those publications which resulted from research supported by the Planetary Biology Program and which bear a 1975 publication date have been included. Abstracts and theses are not included because of the preliminary and abbreviated nature of the former and the frequent difficulty of obtaining the latter.
Biomarkers in nutrition: new frontiers in research and application.
Combs, Gerald F; Trumbo, Paula R; McKinley, Michelle C; Milner, John; Studenski, Stephanie; Kimura, Takeshi; Watkins, Steven M; Raiten, Daniel J
2013-03-01
Nutritional biomarkers--biochemical, functional, or clinical indices of nutrient intake, status, or functional effects--are needed to support evidence-based clinical guidance and effective health programs and policies related to food, nutrition, and health. Such indices can reveal information about biological or physiological responses to dietary behavior or pathogenic processes, and can be used to monitor responses to therapeutic interventions and to provide information on interindividual differences in response to diet and nutrition. Many nutritional biomarkers are available; yet there has been no formal mechanism to establish consensus regarding the optimal biomarkers for particular nutrients and applications. © 2013 New York Academy of Sciences.
Bottom-up synthetic biology: modular design for making artificial platelets
NASA Astrophysics Data System (ADS)
Majumder, Sagardip; Liu, Allen P.
2018-01-01
Engineering artificial cells to mimic one or multiple fundamental cell biological functions is an emerging area of synthetic biology. Reconstituting functional modules from biological components in vitro is a challenging yet an important essence of bottom-up synthetic biology. Here we describe the concept of building artificial platelets using bottom-up synthetic biology and the four functional modules that together could enable such an ambitious effort.
Logic programming to infer complex RNA expression patterns from RNA-seq data.
Weirick, Tyler; Militello, Giuseppe; Ponomareva, Yuliya; John, David; Döring, Claudia; Dimmeler, Stefanie; Uchida, Shizuka
2018-03-01
To meet the increasing demand in the field, numerous long noncoding RNA (lncRNA) databases are available. Given many lncRNAs are specifically expressed in certain cell types and/or time-dependent manners, most lncRNA databases fall short of providing such profiles. We developed a strategy using logic programming to handle the complex organization of organs, their tissues and cell types as well as gender and developmental time points. To showcase this strategy, we introduce 'RenalDB' (http://renaldb.uni-frankfurt.de), a database providing expression profiles of RNAs in major organs focusing on kidney tissues and cells. RenalDB uses logic programming to describe complex anatomy, sample metadata and logical relationships defining expression, enrichment or specificity. We validated the content of RenalDB with biological experiments and functionally characterized two long intergenic noncoding RNAs: LOC440173 is important for cell growth or cell survival, whereas PAXIP1-AS1 is a regulator of cell death. We anticipate RenalDB will be used as a first step toward functional studies of lncRNAs in the kidney.
GOGrapher: A Python library for GO graph representation and analysis.
Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua
2009-07-07
The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve.
Modena, Brian D; Bleecker, Eugene R; Busse, William W; Erzurum, Serpil C; Gaston, Benjamin M; Jarjour, Nizar N; Meyers, Deborah A; Milosevic, Jadranka; Tedrow, John R; Wu, Wei; Kaminski, Naftali; Wenzel, Sally E
2017-06-01
Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Identify networks of genes reflective of underlying biological processes that define SA. Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.
Modena, Brian D.; Bleecker, Eugene R.; Busse, William W.; Erzurum, Serpil C.; Gaston, Benjamin M.; Jarjour, Nizar N.; Meyers, Deborah A.; Milosevic, Jadranka; Tedrow, John R.; Wu, Wei; Kaminski, Naftali
2017-01-01
Rationale: Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. Objectives: Identify networks of genes reflective of underlying biological processes that define SA. Methods: Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. Measurements and Main Results: Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12–21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. Conclusions: In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes. PMID:27984699
2016-01-01
Copper is an essential nutrient for life, but at the same time, hyperaccumulation of this redox-active metal in biological fluids and tissues is a hallmark of pathologies such as Wilson’s and Menkes diseases, various neurodegenerative diseases, and toxic environmental exposure. Diseases characterized by copper hyperaccumulation are currently challenging to identify due to costly diagnostic tools that involve extensive technical workup. Motivated to create simple yet highly selective and sensitive diagnostic tools, we have initiated a program to develop new materials that can enable monitoring of copper levels in biological fluid samples without complex and expensive instrumentation. Herein, we report the design, synthesis, and properties of PAF-1-SMe, a robust three-dimensional porous aromatic framework (PAF) densely functionalized with thioether groups for selective capture and concentration of copper from biofluids as well as aqueous samples. PAF-1-SMe exhibits a high selectivity for copper over other biologically relevant metals, with a saturation capacity reaching over 600 mg/g. Moreover, the combination of PAF-1-SMe as a material for capture and concentration of copper from biological samples with 8-hydroxyquinoline as a colorimetric indicator affords a method for identifying aberrant elevations of copper in urine samples from mice with Wilson’s disease and also tracing exogenously added copper in serum. This divide-and-conquer sensing strategy, where functional and robust porous materials serve as molecular recognition elements that can be used to capture and concentrate analytes in conjunction with molecular indicators for signal readouts, establishes a valuable starting point for the use of porous polymeric materials in noninvasive diagnostic applications. PMID:27285482
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
...] Biologics Price Competition and Innovation Act of 2009; Proposed Recommendations for a User Fee Program for... meeting to discuss the proposed recommendations for a user fee program for biosimilar biological products... 20993-0002, (301) 796-4463, Fax: (301) 847-8443, Email: BiosimilarsUser[email protected
Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program
ERIC Educational Resources Information Center
O'Connor, Kim C.
2005-01-01
There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0602] Biologics Price Competition and Innovation Act of 2009; Meetings on User Fee Program for Biosimilar and Interchangeable Biological Product Applications; Request for Notification of Stakeholder Intention To Participate...
ERIC Educational Resources Information Center
Thomas, Hollie B.; And Others
To establish the feasibility of implementing applied biological and agricultural occupations programs in the metropolitan area of Chicago, four populations were surveyed by means of mailed questionnaires or interest inventories to determine: (1) the employment opportunities in the applied biological and agricultural industries, (2) the interests…
Human Ecology: A Perspective for Biology Education. Monograph Series II.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This monograph provides a framework for biology teachers who are rethinking and redesigning their programs. The major focus is on the human ecology perspective in biology programs. The first chapter attempts to define and clarify human ecology through historical review. The second chapter provides support, based on a survey of citizens…
Liu, Ying; Kumar, Sriram; Taylor, Rebecca E
2018-04-06
The evergrowing need to understand and engineer biological and biochemical mechanisms has led to the emergence of the field of nanobiosensing. Structural DNA nanotechnology, encompassing methods such as DNA origami and single-stranded tiles, involves the base pairing-driven knitting of DNA into discrete one-, two-, and three-dimensional shapes at nanoscale. Such nanostructures enable a versatile design and fabrication of nanobiosensors. These systems benefit from DNA's programmability, inherent biocompatibility, and the ability to incorporate and organize functional materials such as proteins and metallic nanoparticles. In this review, we present a mix-and-match taxonomy and approach to designing nanobiosensors in which the choices of bioanalyte and transduction mechanism are fully independent of each other. We also highlight opportunities for greater complexity and programmability of these systems that are built using structural DNA nanotechnology. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Diagnostic Tools > Biosensing Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Identification of Boolean Network Models From Time Series Data Incorporating Prior Knowledge.
Leifeld, Thomas; Zhang, Zhihua; Zhang, Ping
2018-01-01
Motivation: Mathematical models take an important place in science and engineering. A model can help scientists to explain dynamic behavior of a system and to understand the functionality of system components. Since length of a time series and number of replicates is limited by the cost of experiments, Boolean networks as a structurally simple and parameter-free logical model for gene regulatory networks have attracted interests of many scientists. In order to fit into the biological contexts and to lower the data requirements, biological prior knowledge is taken into consideration during the inference procedure. In the literature, the existing identification approaches can only deal with a subset of possible types of prior knowledge. Results: We propose a new approach to identify Boolean networks from time series data incorporating prior knowledge, such as partial network structure, canalizing property, positive and negative unateness. Using vector form of Boolean variables and applying a generalized matrix multiplication called the semi-tensor product (STP), each Boolean function can be equivalently converted into a matrix expression. Based on this, the identification problem is reformulated as an integer linear programming problem to reveal the system matrix of Boolean model in a computationally efficient way, whose dynamics are consistent with the important dynamics captured in the data. By using prior knowledge the number of candidate functions can be reduced during the inference. Hence, identification incorporating prior knowledge is especially suitable for the case of small size time series data and data without sufficient stimuli. The proposed approach is illustrated with the help of a biological model of the network of oxidative stress response. Conclusions: The combination of efficient reformulation of the identification problem with the possibility to incorporate various types of prior knowledge enables the application of computational model inference to systems with limited amount of time series data. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research.
ERIC Educational Resources Information Center
Gungor, Sema Nur; Ozkan, Muhlis
2017-01-01
This study examines the subjects and concepts in biology perceived to be difficult to learn and teach by 759 pre-service biology teachers registered in the pedagogical formation program at Uludag University Faculty of Education in the academic year of 2005-2016, as well as the associations that word "biology" first calls to their mind.…
Elsayed, M; Ismail, A H; Young, R J
1980-05-01
Fluid and crystalized intelligence differences among high-fit, young; high-fit, old; low-fit, young, and low-fit, old groups were investigated before and after an exercise program. The high-fit group had higher fluid intelligence than the low-fit group. Likewise, the young group scored higher than the old group. The four groups scored higher at the posttest on two of the fluid intelligence subtests of the Cattell Culture. Fair Intelligence Test. No differences were observed on crystallized intelligence. It is uncertain how biological factors and psychological changes, either individually or in combination, produce differences in cognitive functioning due to physical fitness.
The emerging genomics and systems biology research lead to systems genomics studies.
Yang, Mary Qu; Yoshigoe, Kenji; Yang, William; Tong, Weida; Qin, Xiang; Dunker, A; Chen, Zhongxue; Arbania, Hamid R; Liu, Jun S; Niemierko, Andrzej; Yang, Jack Y
2014-01-01
Synergistically integrating multi-layer genomic data at systems level not only can lead to deeper insights into the molecular mechanisms related to disease initiation and progression, but also can guide pathway-based biomarker and drug target identification. With the advent of high-throughput next-generation sequencing technologies, sequencing both DNA and RNA has generated multi-layer genomic data that can provide DNA polymorphism, non-coding RNA, messenger RNA, gene expression, isoform and alternative splicing information. Systems biology on the other hand studies complex biological systems, particularly systematic study of complex molecular interactions within specific cells or organisms. Genomics and molecular systems biology can be merged into the study of genomic profiles and implicated biological functions at cellular or organism level. The prospectively emerging field can be referred to as systems genomics or genomic systems biology. The Mid-South Bioinformatics Centre (MBC) and Joint Bioinformatics Ph.D. Program of University of Arkansas at Little Rock and University of Arkansas for Medical Sciences are particularly interested in promoting education and research advancement in this prospectively emerging field. Based on past investigations and research outcomes, MBC is further utilizing differential gene and isoform/exon expression from RNA-seq and co-regulation from the ChiP-seq specific for different phenotypes in combination with protein-protein interactions, and protein-DNA interactions to construct high-level gene networks for an integrative genome-phoneme investigation at systems biology level.
The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.
Anupama, Jigisha; Francescatto, Margherita; Rahman, Farzana; Fatima, Nazeefa; DeBlasio, Dan; Shanmugam, Avinash Kumar; Satagopam, Venkata; Santos, Alberto; Kolekar, Pandurang; Michaut, Magali; Guney, Emre
2018-01-01
Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.
Functions in Biological Kind Classification
ERIC Educational Resources Information Center
Lombrozo, Tania; Rehder, Bob
2012-01-01
Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…
ERIC Educational Resources Information Center
Edelman, Jack R.
The purpose of this book is to increase awareness of the numerous seminars, short courses, field courses, workshops, and programs for teachers, students, naturalists, and independent scholars. These programs emphasize the natural sciences including general biology, botany, zoology, ecology, marine biology, ichthyology, microbiology, natural…
Biology 20-30: Program of Studies.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Curriculum Branch.
Presented in English and French, Biology 20-30 is an academic program that helps students in Alberta, Canada, better understand and apply fundamental concepts and skills. The major goals of the program are: (1) to develop in students an understanding of the interconnecting ideas and principles that transcend and unify the natural science…
Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.
ERIC Educational Resources Information Center
Yager, Robert E., Ed.
The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…
Exploring DNA Structure with Cn3D
ERIC Educational Resources Information Center
Porter, Sandra G.; Day, Joseph; McCarty, Richard E.; Shearn, Allen; Shingles, Richard; Fletcher, Linnea; Murphy, Stephanie; Pearlman, Rebecca
2007-01-01
Researchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology…
Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.
2017-01-01
ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185
Programming function into mechanical forms by directed assembly of silk bulk materials
Patel, Nereus; Duggan, Thomas; Perotto, Giovanni; Shirman, Elijah; Li, Chunmei; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-01-01
We report simple, water-based fabrication methods based on protein self-assembly to generate 3D silk fibroin bulk materials that can be easily hybridized with water-soluble molecules to obtain multiple solid formats with predesigned functions. Controlling self-assembly leads to robust, machinable formats that exhibit thermoplastic behavior consenting material reshaping at the nanoscale, microscale, and macroscale. We illustrate the versatility of the approach by realizing demonstrator devices where large silk monoliths can be generated, polished, and reshaped into functional mechanical components that can be nanopatterned, embed optical function, heated on demand in response to infrared light, or can visualize mechanical failure through colorimetric chemistries embedded in the assembled (bulk) protein matrix. Finally, we show an enzyme-loaded solid mechanical part, illustrating the ability to incorporate biological function within the bulk material with possible utility for sustained release in robust, programmably shapeable mechanical formats. PMID:28028213
Shih, Andrew J; Purvis, Jeremy; Radhakrishnan, Ravi
2008-12-01
The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.
What makes closed ecological systems sustainable?
NASA Astrophysics Data System (ADS)
Gitelson, I.; Degermendzhy, A.; Rodicheva, E.
A closed ecosystem has some properties that an open systems lacks. Let us consider the ones that increase the sustainability of an ecosystem. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. There are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts - enzymes of protein nature - are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself - in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self- restoration of the function performed by the cells of this species in the ecosystem. The multi-cellular organisms with stem cells are constantly ready to repair themselves by intensifying the continuous process of regeneration. We (Gitelson) have made a quantitative investigation of this process by studying the regeneration and reparation of erythrocytes in mammals. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the similar functional process of self-restoration in unicellular algae (Rodicheva). Based on the data obtained, we proposed a mathematical model of the restoration process in the cell population that has suffered an acute radiation damage. Besides these general biological mechanisms responsible for their sustainability, closed systems also possess specific features enhancing their stability. They are as follows: 1. Nutrients cannot leave the system. 2. The metabolic pathways of the material cycling are closed. 3. The rates of interlink metabolism are in conformity with each other due to their mutual limitation. We present the data obtained in the Bios-3 experiments that prove the efficiency of this mechanism as a factor of the sustainability. The factors that reduce the sustainability of a CES are as follows: the range of ambient physicochemical parameters compatible with life is rather narrow and it takes rather a long time for the system to restore itself if damage is done to its relatively long-lived species, such as higher plants. A specific property of a small CES is that humans inhabiting it must perform a deterministic control. Our experiments in Bios-3 proved that this control is quite feasible and that it effectively increases the stability of the system. Thus, we can predict that humanity may perform the function of control in the Earth's biosphere in the course of its transformation into the noosphere. * "This work was made possible in part by Award No. REC-002 of the U.S. Civilian Research &Development Foundation for the Independent States of the Former Union (CRDF) and RF Ministry of Education."
Davin, Nicolas; Edger, Patrick P; Hefer, Charles A; Mizrachi, Eshchar; Schuetz, Mathias; Smets, Erik; Myburg, Alexander A; Douglas, Carl J; Schranz, Michael E; Lens, Frederic
2016-06-01
Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
Pérez-Quintero, Alvaro L.; Rodriguez-R, Luis M.; Dereeper, Alexis; López, Camilo; Koebnik, Ralf; Szurek, Boris; Cunnac, Sebastien
2013-01-01
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs. PMID:23869221
Jillson, I A; Cousin, C E; Blancato, J K
2013-09-01
This article provides the findings of a survey of previous and current students in the UDC/GU-LCCC master's degree program. This master's degree program, Cancer Biology, Prevention, and Control is administered and taught jointly by faculty of a Minority Serving Institution, the University of the District of Columbia, and the Lombardi Comprehensive Cancer Center to incorporate the strengths of a community-based school with a research intensive medical center. The program was initiated in 2008 through agreements with both University administrations and funding from the National Cancer Institute. The master's degree program is 36 credits with a focus on coursework in biostatistics, epidemiology, tumor biology, cancer prevention, medical ethics, and cancer outreach program design. For two semesters during the second year, students work full-time with a faculty person on a laboratory or outreach project that is a requirement for graduation. Students are supported and encouraged to transition to a doctoral degree after they obtain the master's and many of them are currently in doctorate programs. Since the inception of the program, 45 students have initiated the course of study, 28 have completed the program, and 13 are currently enrolled in the program. The survey was designed to track the students in their current activities, as well as determine which courses, program enhancements, and research experiences were the least and most useful, and to discern students' perceptions of knowledge acquired on various aspects of Cancer Biology Prevention, and Control Master's Program. Thirty of the 35 individuals to whom email requests were sent responded to the survey, for a response rate of 85.7%. The results of this study will inform the strengthening of the Cancer Biology program by the Education Advisory Committee. They can also be used in the development of comparable collaborative master's degree programs designed to address the significant disparities in prevalence of cancer, low screening awareness, and access to and outcomes of cancer prevention and treatment services. This, in turn, will contribute to the elimination of the dearth of underrepresented minority scientists who address these disparities. By far, the students were satisfied with the program and believe that it has had significant impact on their ability to contribute to cancer prevention and control. They provided both general and specific recommendations to strengthen the program.
Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program
Foti, Rossana; Gnan, Stefano; Cornacchia, Daniela; Dileep, Vishnu; Bulut-Karslioglu, Aydan; Diehl, Sarah; Buness, Andreas; Klein, Felix A.; Huber, Wolfgang; Johnstone, Ewan; Loos, Remco; Bertone, Paul; Gilbert, David M.; Manke, Thomas; Jenuwein, Thomas; Buonomo, Sara C.B.
2016-01-01
Summary DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals. PMID:26725008
NASA Astrophysics Data System (ADS)
Panksepp, Jaak; Davis, Ken
2014-12-01
In brain-based personality theory, two things seem certain: i) the evolved functional organization of our subcortical affective mind, and ii) the diverse potentials for developmental programming of our high cognitive minds (i.e., our initially empty - tabula rasa like - neocortical spaces are largely developmentally programed to manifest higher mental abilities). In considering these two global aspects of brain-mind functions, we can be confident that primal subcortical functions (e.g., the capacity for raw emotions/affects, evident in all vertebrate species) evolved. Indeed, ancient creatures such as lamprey eels, with whom we shared ancestry 560 million years ago, still posses most neural systems that are homologous to those that constitute our own primal affective capacities [1]. Considering that primal emotional affects arise from such systems, there appears to be some remarkable continuity in our primal mental origins. The neural foundations of human emotional feelings, long neglected by academic psychology (for lack of empirical accessibility), may contain the rudimentary neuro-affective substrates of personality [2].
Biological life-support systems
NASA Technical Reports Server (NTRS)
Shepelev, Y. Y.
1975-01-01
The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.
Biological Terrorism: US Policies to Reduce Global Biothreats
2008-09-01
program for pro- jects that advance BEP objectives. Global Cooperation to develop bio- safety and pathogen security stan- dards that are consistent with...security. The Organization for Economic Cooperation and Development ( OECD ) has recently developed voluntary biosecurity guidelines for implementation...Abbreviations AG Australia Group BEP Biosecurity Engagement Program BSL Biosafety level BWC Biological Weapons Convention BWC-ISU Biological Weapons
Development of a Biological Control Program for Eurasian Watermilfoil (Myriophyllum Spicatum)
2006-12-22
spicatum). Pakistan Station Commonwealth Institute of Biological Control, Rawalpindi. 16 Gleason, H.A., Cronquist , A . 1991. Manual of Vascular Plants of...Development of a biological control program for Eurasian watermilfoil (Myriophyllum spicatum...control agents have not considered potential impact on non target indigenous species. A phased programme to address these gaps is put forward. List of
ERIC Educational Resources Information Center
Duncan, Sarah I.; Bishop, Pamela; Lenhart, Suzanne
2010-01-01
We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics.…
ERIC Educational Resources Information Center
Halpin, Myra J.; Hoeffler, Leanne; Schwartz-Bloom, Rochelle D.
2005-01-01
To help students learn science concepts, Pharmacology Education Partnership (PEP)--a science education program that incorporates relevant topics related to drugs and drug abuse into standard biology and chemistry curricula was developed. The interdisciplinary PEP curriculum provides six modules to teach biology and chemistry principles within the…
Evolutionary Theory in Undergraduate Biology Programs at Lebanese Universities: A Comparative Study
ERIC Educational Resources Information Center
Vlaardingerbroek, Barend; Hachem-El-Masri, Yasmine
2006-01-01
The purpose of this study was to gauge the profile of evolutionary theory in Lebanese undergraduate biology programs. The research focused mainly on the views of university biology department heads, given that they are the people who exercise the most direct influence over their departments' ethos. An Australasian sample was chosen as a reference…
Postdoctoral Fellow | Center for Cancer Research
The Laboratory of Tumor Immunology and Biology (LTIB) functions as a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of developing novel immunotherapies for cancer. The LTIB strategic plan focuses on the development of novel immunotherapeutics for human cancer, not only as monotherapies, but more importantly, in combination with other immune-mediating modalities, and other conventional or experimental therapies, as part of an immuno-oncology programmatic effort. Within this effort are several research groups, a clinical trials group, and multiple collaborations with intramural and extramural scientific and clinical investigators and with investigators in the private sector. The program takes advantage of the uniqueness of the NCI intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. Focus is placed on the design and development of novel "off-the-shelf" recombinant immunotherapeutics that can be used in clinical studies at numerous institutions. A major strength of the program is the rapid translation of preclinical studies to hypothesis-generating clinical trials. We are looking for postdoctoral fellows interested in learning immunology and immunotherapy, as well as those postdoctoral fellows with a background and/or interest in experimental pathology. The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience.
SHAHI, Mehran; KAMRANI, Ehsan; SALEHI, Mehrdad; HABIBI, Reza; HANAFI-BOJD, Ahmad Ali
2015-01-01
Background: The widespread use of chemical insecticides, resistance in vectors and environmental problems, all have led to an increased interest in the use of biological agents in malaria control programs. The most important functional elements are the native fish. The aim of this study was to identify the native species of lavivorous fish in Rudan County, southern Iran, to introduce an effective species and to propose its’ implementation in the national malaria control program. Methods: This ecologically descriptive study was conducted during 2011–2012 using random sampling from different fish habitats of Rudan County. The shoals of fish were caught using fishing net. Fish samples were then identified in the Ichthyology lab, Department of Fisheries and the Environment, Hormozgan University. Results: Three species of larvivorous fish were identified as follows: Gambusia holbrooki, Aphaniusdispar dispar and Aphanius sp. The latter species has the most distribution in the study area and needs more morphological and molecular studies for identification at the species level. Conclusion: Two species of native fish, i.e., A. dispar and A. sp. with larvivorous potential live in the area. Further studies on their predatory property are recommended in order to apply this local potential against malaria vectors in the area. PMID:26744713
An undergraduate laboratory activity on molecular dynamics simulations.
Spitznagel, Benjamin; Pritchett, Paige R; Messina, Troy C; Goadrich, Mark; Rodriguez, Juan
2016-01-01
Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. © 2016 The International Union of Biochemistry and Molecular Biology.
Scoria: a Python module for manipulating 3D molecular data.
Ropp, Patrick; Friedman, Aaron; Durrant, Jacob D
2017-09-18
Third-party packages have transformed the Python programming language into a powerful computational-biology tool. Package installation is easy for experienced users, but novices sometimes struggle with dependencies and compilers. This presents a barrier that can hinder the otherwise broad adoption of new tools. We present Scoria, a Python package for manipulating three-dimensional molecular data. Unlike similar packages, Scoria requires no dependencies, compilation, or system-wide installation. One can incorporate the Scoria source code directly into their own programs. But Scoria is not designed to compete with other similar packages. Rather, it complements them. Our package leverages others (e.g. NumPy, SciPy), if present, to speed and extend its own functionality. To show its utility, we use Scoria to analyze a molecular dynamics trajectory. Our FootPrint script colors the atoms of one chain by the frequency of their contacts with a second chain. We are hopeful that Scoria will be a useful tool for the computational-biology community. A copy is available for download free of charge (Apache License 2.0) at http://durrantlab.com/scoria/ . Graphical abstract .
Benassi, Enrico
2017-01-15
A number of programs and tools that simulate 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts using empirical approaches are available. These tools are user-friendly, but they provide a very rough (and sometimes misleading) estimation of the NMR properties, especially for complex systems. Rigorous and reliable ways to predict and interpret NMR properties of simple and complex systems are available in many popular computational program packages. Nevertheless, experimentalists keep relying on these "unreliable" tools in their daily work because, to have a sufficiently high accuracy, these rigorous quantum mechanical methods need high levels of theory. An alternative, efficient, semi-empirical approach has been proposed by Bally, Rablen, Tantillo, and coworkers. This idea consists of creating linear calibrations models, on the basis of the application of different combinations of functionals and basis sets. Following this approach, the predictive capability of a wider range of popular functionals was systematically investigated and tested. The NMR chemical shifts were computed in solvated phase at density functional theory level, using 30 different functionals coupled with three different triple-ζ basis sets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Thomas, Hollie B.; Jackson, Franklin D. R.
The attitudes of teachers in a metropolitan area toward starting programs in applied biological and agricultural occupations and other vocational areas were studied in order to establish a base line of attitudes with which program implementation must start. Specific objectives were to: (1) determine the attitude of teachers toward offering such…
2010-01-01
Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to develop their own GPU implementations, and encourage others to implement their modeling methods on the GPU and to make that code available to the wider community. PMID:20696053
Function of ZFAND3 in the DNA Damage Response
2013-06-01
Department of Defense Breast Cancer Program Era of Hope Conference August 2011 iv. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D...Analysis of protein dynamics at active, stalled and collapsed replication forks; Vanderbilt Institute of Chemical and Physical Biology August 2011...BRIP1 MED16 FANCD2 COMT TONSL FANCI CUL2 TRRAP MDC1 DMD UNG PDS5B DNPH1 WRN POLE FANCI RFC1 INCENP RPA1 JMJD6 SART3 KIAA1598 BLM SMARCAD1 NBAS BRIP1
1981-10-01
Function of depressed immunologic reactivity during carcinogenesis, 3. Nati. Cancer Inst., 31, 791, 1963. 13. Tarr, M.3., Olsen, R.G., Hoover, E.A...cell line, RDII4/RD. This cell line was obtained from the biological carcinogenesis program of Frederick Cancer Research Center. After discussion with...Sandra West of the Frederick Cancer Research Center, a procedure was developed and is now routinely used to produce and isolate the RD14 virus. The RD14
Path finding methods accounting for stoichiometry in metabolic networks
2011-01-01
Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601
The relativity of biological function.
Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja
2015-12-01
Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail.
Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Risin, Diana; Stepaniak, P. C.; Grounds, D. J.
2011-01-01
As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of the medico-biological results of the SSP along with the data collected during the missions on the space stations (Mir and ISS) provides a good starting point in seeking the answer to this question.
Harnessing what lies within: Programming immunity with biocompatible devices to treat human disease
NASA Astrophysics Data System (ADS)
Roberts, Reid Austin
Advances in our mechanistic insight of cellular function and how this relates to host physiology have revealed a world which is intimately connected at the macro and micro level. Our increasing understanding of biology exemplifies this, where cells respond to environmental cues through interconnected networks of proteins which function as receptors and adaptors to elicit gene expression changes that drive appropriate cellular programs for a given stimulus. Consequently, our deeper molecular appreciation of host homeostasis implicates aberrations of these pathways in nearly all major human disease categories, including those of infectious, metabolic, neurologic, oncogenic, and autoimmune etiology. We have come to recognize the mammalian immune system as a common network hub among all these varied pathologies. As such, the major goal of this dissertation is to identify a platform to program immune responses in mammals so that we may enhance our ability to treat disease and improve health in the 21st century. Using advances in materials science, in particular a recently developed particle fabrication technology termed Particle Replication in Non-wetting Templates (PRINT), our studies systematically assess the murine and human immune response to precisely fabricated nano- and microscale particles composed of biodegradable and biocompatible materials. We then build on these findings and present particle design parameters to program a number of clinically attractive immune responses by targeting endogenous cellular signaling pathways. These include control of particle uptake through surface modification, design parameters that modulate the magnitude and kinetics of biological signaling dynamics that can be used to exacerbate or dampen inflammatory responses, as well as particle designs which may be of use in treating allergies and autoimmune disorders. In total, this dissertation provides evidence that rational design of biocompatible nano- and microparticles is a viable means to instruct therapeutic immune responses that may fundamentally improve how we treat human disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Kisailus; Lara Estroff; Himadri S. Gupta
The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. Thismore » symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.« less
Environmental management and monitoring for education building development
NASA Astrophysics Data System (ADS)
Masri, R. M.
2018-05-01
The purpose of research were (1) a conceptual, functional model designed and implementation for environmental management and monitoring for education building development, (2) standard operational procedure made for management and monitoring for education building development, (3) assessed physic-chemical, biological, social-economic environmental components so that fulfilling sustainable development, (4) environmental management and monitoring program made for decreasing negative and increasing positive impact in education building development activities. Descriptive method is used for the research. Cibiru UPI Campus, Bandung, West Java, Indonesia was study location. The research was conducted on July 2016 to January 2017. Spatial and activities analysis were used to assess physic-chemical, biological, social-economic environmental components. Environmental management and monitoring for education building development could be decreasing water, air, soil pollution and environmental degradation in education building development activities.
NASA Space Biology Research Associate Program for the 21st Century
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
2000-01-01
The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective model.
2014-01-01
valid OMB control number. 1. REPORT DATE 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Measuring...should approaches to monitoring program performance. Recognizing this, Congress requested that the Department of Defense improve metrics for measuring...Cooperative Biological Engagement Program Performance broader community of program evaluation practitioners, the work advances innovative approaches
The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide
Anupama, Jigisha; Shanmugam, Avinash Kumar; Santos, Alberto; Michaut, Magali
2018-01-01
Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one’s field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one’s research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program. PMID:29346365
[Undergraduate and postgraduate studies in the biological sciences in Chile (1985)].
Niemeyer, H
1986-01-01
A study group of scientists was convened by the Sociedad de Biología de Chile (Biological Society of Chile) and the Regional Program for Graduate Training in Biological Sciences, PNUD-Unesco, RLA 78/024, to assess undergraduate and graduate studies in life sciences in Chile. The group presented this report at the 28th Annual Meeting of the Society. Discussion centered on the features that should characterize the studies leading to the academic degrees of Licenciado (Licenciate), Magíster (Master) and Doctor (Ph. D) in Sciences, and also on the qualifications that the universities should satisfy in order to grant them. After analyzing the present situation of undergraduate and graduate studies in Biological Sciences in Chilean universities, the group made the following main suggestions: 1. It is recommended that Chilean universities agree on a 4-year plan for the Licenciado degree, without the requirement of a thesis. The importance of providing the students with good laboratory exercises and field experience and with the opportunity to perform short research projects is stressed. In addition, a sound theoretical training on mathematics, physics and chemistry in the education of a modern Biologist is important. Licenciate studies ought to be the basis for professional careers and the universities should offer to the Licenciados free access to their professional schools. 2. It is considered appropriate for Chile and its universities to develop graduate programs in those disciplines that have reached a level of excellence. To accomplish this aim, adequate finance of the universities is necessary to permit them to provide the essential facilities for doing research, and to create a wide system of fellowships for graduate students. Direct government support for research and graduate student fellowships is requested. 3. Research experience of the kind needed for the preparation of a doctoral thesis is recommended as the academic level appropriate for those engaged in teaching undergraduate students in sciences. Teachers in graduate programs should be qualified active researchers. 4. The creation is proposed of a Consejo Nacional de Universidades (National Council of Universities), to be autonomous and composed primarily of outstanding scientists. One of the main functions of this Council would be to licence universities to grant undergraduate and graduate academic degrees in science. 5. The Sociedad de Biología de Chile must maintain an interest in the evaluation of undergraduate and graduate studies in life sciences.
Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells.
Hald, Bjørn Olav; Garkier Hendriksen, Morten; Sørensen, Preben Graae
2013-05-15
Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredictable. In heterogeneous populations, synchronization of events becomes a cardinal problem-particularly for phase coherence in oscillating systems. The present article presents a novel strategy for construction of large-scale simulation programs of heterogeneous biological entities. The strategy is designed to be tractable, to handle heterogeneity and to handle computational cost issues simultaneously, primarily by writing a generator of the 'model to be simulated'. We apply the strategy to model glycolytic oscillations among thousands of yeast cells coupled through the extracellular medium. The usefulness is illustrated through (i) benchmarking, showing an almost linear relationship between model size and run time, and (ii) analysis of the resulting simulations, showing that contrary to the experimental situation, synchronous oscillations are surprisingly hard to achieve, underpinning the need for tools to study heterogeneity. Thus, we present an efficient strategy to model the biological heterogeneity, neglected by ordinary mean-field models. This tool is well posed to facilitate the elucidation of the physiologically vital problem of synchronization. The complete python code is available as Supplementary Information. bjornhald@gmail.com or pgs@kiku.dk Supplementary data are available at Bioinformatics online.
The USGS role in mapping the nation's submerged lands
Schwab, Bill; Haines, John
2004-01-01
The seabed provides habitat for a diverse marine life having commercial, recreational, and intrinsic value. The habitat value of the seabed is largely a function of the geological structure and related geological, biological, oceanologic, and geochemical processes. Of equal importance, the nation's submerged lands contain energy and mineral resources and are utilized for the siting of offshore infrastructure and waste disposal. Seabed character and processes influence the safety and viability of offshore operations. Seabed and subseabed characterization is a prerequisite for the assessment, protection, and utilization of both living and non-living marine resources. A comprehensive program to characterize and understand the nation's submerged lands requires scientific expertise in the fields of geology, biology, hydrography, and oceanography. The U.S. Geological Survey (USGS) has long experience as the Federal agency charged with conducting geologic research and mapping in both coastal and offshore regions. The USGS Coastal and Marine Geology Program (CMGP) leads the nation in expertise related to characterization of seabed and subseabed geology, geological processes, seabed dynamics, and (in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and international partners) habitat geoscience. Numerous USGS studies show that sea-floor geology and processes determine the character and distribution of biological habitats, control coastal evolution, influence the coastal response to storm events and human alterations, and determine the occurrence and concentration of natural resources.
Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min
2009-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.
RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN
2010-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691
Micro-Computers in Biology Inquiry.
ERIC Educational Resources Information Center
Barnato, Carolyn; Barrett, Kathy
1981-01-01
Describes the modification of computer programs (BISON and POLLUT) to accommodate species and areas indigenous to the Pacific Coast area. Suggests that these programs, suitable for PET microcomputers, may foster a long-term, ongoing, inquiry-directed approach in biology. (DS)
NASA Astrophysics Data System (ADS)
Amelia, T.
2018-04-01
Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, S.P.
1996-08-01
This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.
Sequence Segmentation with changeptGUI.
Tasker, Edward; Keith, Jonathan M
2017-01-01
Many biological sequences have a segmental structure that can provide valuable clues to their content, structure, and function. The program changept is a tool for investigating the segmental structure of a sequence, and can also be applied to multiple sequences in parallel to identify a common segmental structure, thus providing a method for integrating multiple data types to identify functional elements in genomes. In the previous edition of this book, a command line interface for changept is described. Here we present a graphical user interface for this package, called changeptGUI. This interface also includes tools for pre- and post-processing of data and results to facilitate investigation of the number and characteristics of segment classes.
Brief report: theatre as therapy for children with autism spectrum disorder.
Corbett, Blythe A; Gunther, Joan R; Comins, Dan; Price, Jenifer; Ryan, Niles; Simon, David; Schupp, Clayton W; Rios, Taylor
2011-04-01
The pilot investigation evaluated a theatrical intervention program, Social Emotional NeuroScience Endocrinology (SENSE) Theatre, designed to improve socioemotional functioning and reduce stress in children with autism spectrum disorder (ASD). Eight children with ASD were paired with typically developing peers that served as expert models. Neuropsychological, biological (cortisol and oxytocin), and behavioral measures were assessed in a pretest-posttest design. The intervention was embedded in a full musical theatrical production. Participants showed some improvement in face identification and theory of mind skills. The intervention shows potential promise in improving the socioemotional functioning in children with ASD through the utilization of peers, video and behavioral modeling, and a community-based theatrical setting.
Miller, Jason E; Walston, Timothy
2010-01-01
Inspired by BIO2010 and leveraging institutional and external funding, Truman State University built an undergraduate program in mathematical biology with high-quality, faculty-mentored interdisciplinary research experiences at its core. These experiences taught faculty and students to bridge the epistemological gap between the mathematical and life sciences. Together they created the infrastructure that currently supports several interdisciplinary courses, an innovative minor degree, and long-term interdepartmental research collaborations. This article describes how the program was built with support from the National Science Foundation's Interdisciplinary Training for Undergraduates in Biology and Mathematics program, and it shares lessons learned that will help other undergraduate institutions build their own program.
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP), Basic Science Program, HLA Immunogenetics Section, under the leadership of Dr. Mary Carrington, studies the influence of human leukocyte antigens (HLA) and specific KIR/HLA genotypes on risk of and outcomes to infection, cancer, autoimmune disease, and maternal-fetal disease. Recent studies have focused on the impact of HLA gene expression in disease, the molecular mechanism regulating expression levels, and the functional basis for the effect of differential expression on disease outcome. The lab’s further focus is on the genetic basis for resistance/susceptibility to disease conferred by immunogenetic variation. KEY ROLES/RESPONSIBILITIES The Senior Computational Scientist will provide research support to the CIP-BSP-HLA Immunogenetics Section performing bio-statistical design, analysis and reporting of research projects conducted in the lab. This individual will be involved in the implementation of statistical models and data preparation. Successful candidate should have 5 or more years of competent, innovative biostatistics/bioinformatics research experience, beyond doctoral training Considerable experience with statistical software, such as SAS, R and S-Plus Sound knowledge, and demonstrated experience of theoretical and applied statistics Write program code to analyze data using statistical analysis software Contribute to the interpretation and publication of research results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.ed; Department of Radiation Oncology, New York University School of Medicine, New York, NY; Held, Kathryn D.
2009-11-01
Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less
von Arnim, Albrecht G; Missra, Anamika
2017-01-01
Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program's effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational-experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. © 2017 A. G. von Arnim and A. Missra. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Grand, Cécile; Pauget, Benjamin; Villenave, Cécile; Le Guédard, Marina; Piron, Denis; Nau, Jean-François; Pérès, Guénola
2017-04-01
When setting up new land management, contaminated site remediation or soil use change are sometimes necessary to ensure soil quality and the restoration of the ecosystem services. The biological characterization of the soil can be used as complementary information to chemical data in order to better define the conditions for operating. Then, in the context of urban areas, elements on the soil biological quality can be taken into consideration to guide the land development. To assess this "biological state of soil health", some biological tools, called bioindicators, could provide comprehensive information to understand and predict the functioning of the soil ecosystem. In this context, a city of 200 thousand inhabitants has decided to integrate soil bioindicators in their soil diagnostic for their soil urban management. This city had to elaborate a spatial soil management in urban areas which presented soil contamination linked to a complex industrial history associated with bad uses of gardens not always safe for the environment. The project will lead to establish a Natural Urban Park (PNU) in order to develop recreational and leisure activities in a quality environment. In order to complete the knowledge of soil contamination and to assess the transfer of contaminants to the terrestrial ecosystem, a biological characterization of soils located in different areas was carried out using six bioindicators: bioindicators of accumulation which allowed to evaluate the transfers of soil contaminants towards the first 2 steps of a trophic chain (plants and soil fauna, e.g. snails), bioindicators of effects (Omega 3 index was used to assess the effects of soil contamination and to measure their impact on plants), bioindicators of soil functioning (measurement of microbial biomass, nematodes and earthworm community) ; the interest of these last bioindicators is that they also act on the functioning of ecosystems as on the dynamics of organic matter (mineralization) but also on the structuring of the soils. The results from 14 measurement points demonstrated the relatively low average transfers towards the plants and soil fauna although the transfers can be changing a lot in relation to heterogeneity of soil contamination. Results obtained from other bioindicators (nematodes, earthworms and bacterial biomass) showed that the different soils are on average of good biological quality and can benefit from a diversity and abundance of communities of soil organisms. The data obtained in this program underline that these tools can be used to evaluate soil functions (habitat for biodiversity, soil capacity to store contaminants, etc.) and, consequently, the services that the soil can give to humans. Moreover, these biological tools allowed to assess the biological quality of soils and their compatibility with the soil use and the necessity of soil remediation (excavation of hot-spots, surface cover etc ..).Taking into account not only the behavior of soil contaminants but also the environmental factors that influence the biological functioning of the soil, these tools can be useful for land management of large-scale sites and for brownfield conquest.
Cousin, C. E.; Blancato, J. K.
2018-01-01
This article provides the findings of a survey of previous and current students in the UDC/GU-LCCC master’s degree program. This master’s degree program, Cancer Biology, Prevention, and Control is administered and taught jointly by faculty of a Minority Serving Institution, the University of the District of Columbia, and the Lombardi Comprehensive Cancer Center to incorporate the strengths of a community-based school with a research intensive medical center. The program was initiated in 2008 through agreements with both University administrations and funding from the National Cancer Institute. The master’s degree program is 36 credits with a focus on coursework in biostatistics, epidemiology, tumor biology, cancer prevention, medical ethics, and cancer outreach program design. For two semesters during the second year, students work full-time with a faculty person on a laboratory or outreach project that is a requirement for graduation. Students are supported and encouraged to transition to a doctoral degree after they obtain the master’s and many of them are currently in doctorate programs. Since the inception of the program, 45 students have initiated the course of study, 28 have completed the program, and 13 are currently enrolled in the program. The survey was designed to track the students in their current activities, as well as determine which courses, program enhancements, and research experiences were the least and most useful, and to discern students’ perceptions of knowledge acquired on various aspects of Cancer Biology Prevention, and Control Master’s Program. Thirty of the 35 individuals to whom email requests were sent responded to the survey, for a response rate of 85.7 %. The results of this study will inform the strengthening of the Cancer Biology program by the Education Advisory Committee. They can also be used in the development of comparable collaborative master’s degree programs designed to address the significant disparities in prevalence of cancer, low screening awareness, and access to and outcomes of cancer prevention and treatment services. This, in turn, will contribute to the elimination of the dearth of underrepresented minority scientists who address these disparities. By far, the students were satisfied with the program and believe that it has had significant impact on their ability to contribute to cancer prevention and control. They provided both general and specific recommendations to strengthen the program. PMID:23784366
Biocellion: accelerating computer simulation of multicellular biological system models
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-01-01
Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572
Marcucio, Ralph S; Qin, Ling; Alsberg, Eben; Boerckel, Joel D
2017-11-01
The fields of developmental biology and tissue engineering have been revolutionized in recent years by technological advancements, expanded understanding, and biomaterials design, leading to the emerging paradigm of "developmental" or "biomimetic" tissue engineering. While developmental biology and tissue engineering have long overlapping histories, the fields have largely diverged in recent years at the same time that crosstalk opportunities for mutual benefit are more salient than ever. In this perspective article, we will use musculoskeletal development and tissue engineering as a platform on which to discuss these emerging crosstalk opportunities and will present our opinions on the bright future of these overlapping spheres of influence. The multicellular programs that control musculoskeletal development are rapidly becoming clarified, represented by shifting paradigms in our understanding of cellular function, identity, and lineage specification during development. Simultaneously, advancements in bioartificial matrices that replicate the biochemical, microstructural, and mechanical properties of developing tissues present new tools and approaches for recapitulating development in tissue engineering. Here, we introduce concepts and experimental approaches in musculoskeletal developmental biology and biomaterials design and discuss applications in tissue engineering as well as opportunities for tissue engineering approaches to inform our understanding of fundamental biology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2356-2368, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
Biologically inspired intelligent robots
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph; Breazeal, Cynthia
2003-07-01
Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.
Publications of the planetary biology program for 1976: A special bibliography
NASA Technical Reports Server (NTRS)
Bradley, F. D. (Compiler); Young, R. S. (Compiler)
1977-01-01
An annual listing of current publications resulting from research pursued under the auspices of NASA's Planetary Biology Program is presented. To stimulate the exchange of information and ideas among scientists working in the different areas of the program. To facilitate the exchange process. The author of each publication who is presently participating in the program is identified by asterisk. Current addresses for all principal investigators are given in the appendix.
Multifunctional and biologically active matrices from multicomponent polymeric solutions
NASA Technical Reports Server (NTRS)
Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)
2010-01-01
The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.
Lonkvist, Camilla K; Lønbro, Simon; Vinther, Anders; Zerahn, Bo; Rosenbom, Eva; Primdahl, Hanne; Hojman, Pernille; Gehl, Julie
2017-06-03
Head and neck cancer patients undergoing concomitant chemoradiotherapy (CCRT) frequently experience loss of muscle mass and reduced functional performance. Positive effects of exercise training are reported for many cancer types but biological mechanisms need further elucidation. This randomized study investigates whether progressive resistance training (PRT) may attenuate loss of muscle mass and functional performance. Furthermore, biochemical markers and muscle biopsies will be investigated trying to link biological mechanisms to training effects. At the Departments of Oncology at Herlev and Aarhus University Hospitals, patients with stage III/IV squamous cell carcinoma of the head and neck, scheduled for CCRT are randomized 1:1 to either a 12-week PRT program or control group, both with 1 year follow-up. Planned enrollment is 72 patients, and stratification variables are study site, sex, p16-status, and body mass index. Primary endpoint is difference in change in lean body mass (LBM) after 12 weeks of PRT, assessed by dual-energy X-ray absorptiometry (DXA). The hypothesis is that 12 weeks of PRT can attenuate the loss of LBM by at least 25%. Secondary endpoints include training adherence, changes in body composition, muscle strength, functional performance, weight, adverse events, dietary intake, self-reported physical activity, quality of life, labor market affiliation, blood biochemistry, plasma cytokine concentrations, NK-cell frequency in blood, sarcomeric protein content in muscles, as well as muscle fiber type and fiber size in muscle biopsies. Muscle biopsies are optional. This randomized study investigates the impact of a 12-week progressive resistance training program on lean body mass and several other physiological endpoints, as well as impact on adverse events and quality of life. Furthermore, a translational approach is integrated with extensive biological sampling and exploration into cytokines and mechanisms involved. The current paper discusses decisions and methods behind exercise in head and neck cancer patients undergoing concomitant chemoradiotherapy. Approved by the Regional Ethics Committee for the Capital Region of Denmark (protocol id: H-15003725) and registered retrospectively at ClinicalTrials.gov ( NCT02557529 ) September 11th 2015.
Programmable biofilm-based materials from engineered curli nanofibres.
Nguyen, Peter Q; Botyanszki, Zsofia; Tay, Pei Kun R; Joshi, Neel S
2014-09-17
The significant role of biofilms in pathogenicity has spurred research into preventing their formation and promoting their disruption, resulting in overlooked opportunities to develop biofilms as a synthetic biological platform for self-assembling functional materials. Here we present Biofilm-Integrated Nanofiber Display (BIND) as a strategy for the molecular programming of the bacterial extracellular matrix material by genetically appending peptide domains to the amyloid protein CsgA, the dominant proteinaceous component in Escherichia coli biofilms. These engineered CsgA fusion proteins are successfully secreted and extracellularly self-assemble into amyloid nanofibre networks that retain the functions of the displayed peptide domains. We show the use of BIND to confer diverse artificial functions to the biofilm matrix, such as nanoparticle biotemplating, substrate adhesion, covalent immobilization of proteins or a combination thereof. BIND is a versatile nanobiotechnological platform for developing robust materials with programmable functions, demonstrating the potential of utilizing biofilms as large-scale designable biomaterials.
Bohler, Anwesha; Eijssen, Lars M T; van Iersel, Martijn P; Leemans, Christ; Willighagen, Egon L; Kutmon, Martina; Jaillard, Magali; Evelo, Chris T
2015-08-23
Biological pathways are descriptive diagrams of biological processes widely used for functional analysis of differentially expressed genes or proteins. Primary data analysis, such as quality control, normalisation, and statistical analysis, is often performed in scripting languages like R, Perl, and Python. Subsequent pathway analysis is usually performed using dedicated external applications. Workflows involving manual use of multiple environments are time consuming and error prone. Therefore, tools are needed that enable pathway analysis directly within the same scripting languages used for primary data analyses. Existing tools have limited capability in terms of available pathway content, pathway editing and visualisation options, and export file formats. Consequently, making the full-fledged pathway analysis tool PathVisio available from various scripting languages will benefit researchers. We developed PathVisioRPC, an XMLRPC interface for the pathway analysis software PathVisio. PathVisioRPC enables creating and editing biological pathways, visualising data on pathways, performing pathway statistics, and exporting results in several image formats in multiple programming environments. We demonstrate PathVisioRPC functionalities using examples in Python. Subsequently, we analyse a publicly available NCBI GEO gene expression dataset studying tumour bearing mice treated with cyclophosphamide in R. The R scripts demonstrate how calls to existing R packages for data processing and calls to PathVisioRPC can directly work together. To further support R users, we have created RPathVisio simplifying the use of PathVisioRPC in this environment. We have also created a pathway module for the microarray data analysis portal ArrayAnalysis.org that calls the PathVisioRPC interface to perform pathway analysis. This module allows users to use PathVisio functionality online without having to download and install the software and exemplifies how the PathVisioRPC interface can be used by data analysis pipelines for functional analysis of processed genomics data. PathVisioRPC enables data visualisation and pathway analysis directly from within various analytical environments used for preliminary analyses. It supports the use of existing pathways from WikiPathways or pathways created using the RPC itself. It also enables automation of tasks performed using PathVisio, making it useful to PathVisio users performing repeated visualisation and analysis tasks. PathVisioRPC is freely available for academic and commercial use at http://projects.bigcat.unimaas.nl/pathvisiorpc.
Fattore, Matteo; Arrigo, Patrizio
2005-01-01
The possibility to study an organism in terms of system theory has been proposed in the past, but only the advancement of molecular biology techniques allow us to investigate the dynamical properties of a biological system in a more quantitative and rational way than before . These new techniques can gave only the basic level view of an organisms functionality. The comprehension of its dynamical behaviour depends on the possibility to perform a multiple level analysis. Functional genomics has stimulated the interest in the investigation the dynamical behaviour of an organism as a whole. These activities are commonly known as System Biology, and its interests ranges from molecules to organs. One of the more promising applications is the 'disease modeling'. The use of experimental models is a common procedure in pharmacological and clinical researches; today this approach is supported by 'in silico' predictive methods. This investigation can be improved by a combination of experimental and computational tools. The Machine Learning (ML) tools are able to process different heterogeneous data sources, taking into account this peculiarity, they could be fruitfully applied to support a multilevel data processing (molecular, cellular and morphological) that is the prerequisite for the formal model design; these techniques can allow us to extract the knowledge for mathematical model development. The aim of our work is the development and implementation of a system that combines ML and dynamical models simulations. The program is addressed to the virtual analysis of the pathways involved in neurodegenerative diseases. These pathologies are multifactorial diseases and the relevance of the different factors has not yet been well elucidated. This is a very complex task; in order to test the integrative approach our program has been limited to the analysis of the effects of a specific protein, the Cyclin dependent kinase 5 (CDK5) which relies on the induction of neuronal apoptosis. The system has a modular structure centred on a textual knowledge discovery approach. The text mining is the only way to enhance the capability to extract ,from multiple data sources, the information required for the dynamical simulator. The user may access the publically available modules through the following site: http://biocomp.ge.ismac.cnr.it.
Accommodating life sciences on the Space Station
NASA Technical Reports Server (NTRS)
Arno, Roger D.
1987-01-01
The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.
BicPAMS: software for biological data analysis with pattern-based biclustering.
Henriques, Rui; Ferreira, Francisco L; Madeira, Sara C
2017-02-02
Biclustering has been largely applied for the unsupervised analysis of biological data, being recognised today as a key technique to discover putative modules in both expression data (subsets of genes correlated in subsets of conditions) and network data (groups of coherently interconnected biological entities). However, given its computational complexity, only recent breakthroughs on pattern-based biclustering enabled efficient searches without the restrictions that state-of-the-art biclustering algorithms place on the structure and homogeneity of biclusters. As a result, pattern-based biclustering provides the unprecedented opportunity to discover non-trivial yet meaningful biological modules with putative functions, whose coherency and tolerance to noise can be tuned and made problem-specific. To enable the effective use of pattern-based biclustering by the scientific community, we developed BicPAMS (Biclustering based on PAttern Mining Software), a software that: 1) makes available state-of-the-art pattern-based biclustering algorithms (BicPAM (Henriques and Madeira, Alg Mol Biol 9:27, 2014), BicNET (Henriques and Madeira, Alg Mol Biol 11:23, 2016), BicSPAM (Henriques and Madeira, BMC Bioinforma 15:130, 2014), BiC2PAM (Henriques and Madeira, Alg Mol Biol 11:1-30, 2016), BiP (Henriques and Madeira, IEEE/ACM Trans Comput Biol Bioinforma, 2015), DeBi (Serin and Vingron, AMB 6:1-12, 2011) and BiModule (Okada et al., IPSJ Trans Bioinf 48(SIG5):39-48, 2007)); 2) consistently integrates their dispersed contributions; 3) further explores additional accuracy and efficiency gains; and 4) makes available graphical and application programming interfaces. Results on both synthetic and real data confirm the relevance of BicPAMS for biological data analysis, highlighting its essential role for the discovery of putative modules with non-trivial yet biologically significant functions from expression and network data. BicPAMS is the first biclustering tool offering the possibility to: 1) parametrically customize the structure, coherency and quality of biclusters; 2) analyze large-scale biological networks; and 3) tackle the restrictive assumptions placed by state-of-the-art biclustering algorithms. These contributions are shown to be key for an adequate, complete and user-assisted unsupervised analysis of biological data. BicPAMS and its tutorial available in http://www.bicpams.com .
Gurdita, Akshay; Vovko, Heather; Ungrin, Mark
2016-01-01
Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659
NASA Astrophysics Data System (ADS)
Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.
GOGrapher: A Python library for GO graph representation and analysis
Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua
2009-01-01
Background The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. Findings An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. Conclusion The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve. PMID:19583843
Moreau, Thomas; Evans, Amanda L.; Vasquez, Louella; Tijssen, Marloes R.; Yan, Ying; Trotter, Matthew W.; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M.; Pask, Dean C.; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H.; Pedersen, Roger A.; Ghevaert, Cedric
2016-01-01
The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology. PMID:27052461
Moreau, Thomas; Evans, Amanda L; Vasquez, Louella; Tijssen, Marloes R; Yan, Ying; Trotter, Matthew W; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M; Pask, Dean C; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H; Pedersen, Roger A; Ghevaert, Cedric
2016-04-07
The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.
ERIC Educational Resources Information Center
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.
2006-01-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…
Syllabus for an Associate Degree Program in Applied Marine Biology and Oceanography.
ERIC Educational Resources Information Center
Banerjee, Tapan
Included is a detailed outline of the content of each course required or offered as an elective in the associate degree program. With an 18 or 19 unit load each semester the program requires two years, and includes 64 hours at sea every semester. In addition to chemistry, physics, biology, and oceanography courses, there is a required course in…
Reducing Future International Chemical and Biological Dangers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddal, Chad; Bull, Diana L.; Hernandez, Patricia Marie
The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for furthermore » technology road map development.« less
Incorporating biological control into IPM decision making
USDA-ARS?s Scientific Manuscript database
Of the many ways biological control can be incorporated into Integrated Pest Management (IPM) programs, natural enemy thresholds are arguably most easily adopted by stakeholders. Integration of natural enemy thresholds into IPM programs requires ecological and cost/benefit crop production data, thr...
Report of the Interagency biological methods workshop
Gurtz, Martin E.; Muir, Thomas A.
1994-01-01
The U.S. Geological Survey hosted the Interagency Biological Methods Workshop in Reston, Virginia, during June 22-23, 1993. The purposes of the workshop were to (1) promote better communication among Federal agencies that are using or developing biological methods in water-quality assessment programs for streams and rivers, and (2) facilitate the sharing of data and interagency collaboration. The workshop was attended by 45 biologists representing numerous Federal agencies and programs, and a few regional and State programs that were selected to provide additional perspectives. The focus of the workshop was community assessment methods for fish, invertebrates, and algae; physical habitat characterization; and chemical analyses of biological tissues. Charts comparing program objectives, design features, and sampling methods were compiled from materials that were provided by participating agencies prior to the workshop and formed the basis for small workgroup discussions. Participants noted that differences in methods among programs were often necessitated by differences in program objectives. However, participants agreed that where programs have identified similar data needs, the use of common methods is beneficial. Opportunities discussed for improving data compatibility and information sharing included (1) modifying existing methods, (2) adding parameters, (3) improving access to data through shared databases (potentially with common database structures), and (4) future collaborative efforts that range from research on selected protocol questions to followup meetings and continued discussions.
Importance of Data Management in a Long-term Biological Monitoring Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Sigurd W; Brandt, Craig C; McCracken, Kitty
2011-01-01
The long-term Biological Monitoring and Abatement Program (BMAP) has always needed to collect and retain high-quality data on which to base its assessments of ecological status of streams and their recovery after remediation. Its formal quality assurance, data processing, and data management components all contribute to this need. The Quality Assurance Program comprehensively addresses requirements from various institutions, funders, and regulators, and includes a data management component. Centralized data management began a few years into the program. An existing relational database was adapted and extended to handle biological data. Data modeling enabled the program's database to process, store, and retrievemore » its data. The data base's main data tables and several key reference tables are described. One of the most important related activities supporting long-term analyses was the establishing of standards for sampling site names, taxonomic identification, flagging, and other components. There are limitations. Some types of program data were not easily accommodated in the central systems, and many possible data-sharing and integration options are not easily accessible to investigators. The implemented relational database supports the transmittal of data to the Oak Ridge Environmental Information System (OREIS) as the permanent repository. From our experience we offer data management advice to other biologically oriented long-term environmental sampling and analysis programs.« less
Alford, Rebecca F.; Dolan, Erin L.
2017-01-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. PMID:29216185
Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J
2017-12-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.
Pérès, Sabine; Felicori, Liza; Rialle, Stéphanie; Jobard, Elodie; Molina, Franck
2010-01-01
Motivation: In the available databases, biological processes are described from molecular and cellular points of view, but these descriptions are represented with text annotations that make it difficult to handle them for computation. Consequently, there is an obvious need for formal descriptions of biological processes. Results: We present a formalism that uses the BioΨ concepts to model biological processes from molecular details to networks. This computational approach, based on elementary bricks of actions, allows us to calculate on biological functions (e.g. process comparison, mapping structure–function relationships, etc.). We illustrate its application with two examples: the functional comparison of proteases and the functional description of the glycolysis network. This computational approach is compatible with detailed biological knowledge and can be applied to different kinds of systems of simulation. Availability: www.sysdiag.cnrs.fr/publications/supplementary-materials/BioPsi_Manager/ Contact: sabine.peres@sysdiag.cnrs.fr; franck.molina@sysdiag.cnrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20448138
Multifunctional and biologically active matrices from multicomponent polymeric solutions
NASA Technical Reports Server (NTRS)
Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)
2012-01-01
A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.
A bioarchitectonic approach to the modular engineering of metabolism.
Kerfeld, Cheryl A
2017-09-26
Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).
Children and adolescent physical activity participation and enjoyment during active play.
Moghaddaszadeh, Asal; Ahmadi, Yasamin; Belcastro, Angelo N
2017-10-01
Girls' (9-19 years) participation in physical activity (PA) is known to decrease at a faster rate than boys. A reduction in PA attractiveness (enjoyment) and lower psychosocial profile of girls approaching biological maturity may underlie the decreasing rate of PA participation. Since engaging children in active play programs improves health related quality of life indictors and enjoyment levels; the purposes of this study were to: 1) assess psychosocial status and PA attractiveness/enjoyment of boys and girls to an eight-week active play program; and 2) investigate the relationships among PA participation, psychosocial status and PA attractiveness with both age and maturity status for boys and girls following an active play PA program. Thirty-three children (age 9.8±1.3 years; weight 43.1±13.4 kg; BMI 20.8±3.2 kg/m2) were recruited to participate in an active play program for 8 weeks (4x/week; 1hr/d). M-S estimates ranged from -6.7 to -2.5 years away from biological maturity Daily program PA was assessed and compared to pre-post measures of psychosocial functioning and PA attractiveness. Statistical procedures were performed using ANOVA and/or Pearson's correlation r (SPSS v. 22.0) with P=0.05. PA participation in the active play program showed a group average of 39±11% time spent in moderate-vigorous PA (%MVPA) with boys averaging 45% MVPA and girls averaging 30% MVPA (P<0.05). PA attractiveness scores for boys did not change following the program; whereas girls improved from 67±13% to 76±9% (P<0.05). Minimal changes were noted for the health-related quality of life measures as a result of the PA program. Comparing PA attractiveness to %MVPA, 80% of girls reporting positive changes or no change; in contrast 56% of boys responded with negative/less PA attractiveness. PA attractiveness for all children was negatively associated with age (r=-0.19) and/or M-S (r=-0.29). The relationships, however, were gender specific with boys exhibiting a coefficient of -0.28 (age) and -0.61 (M-S) (P<0.05). For girls, increased PA attractiveness promoted less decline in %MVPA for M-S (r=0.18) compared to age (r=-0.17). For girls, approaching biological maturity, PA enjoyment/attractiveness can be positively influenced with an active play program, which is a major consideration promoting PA participation in girls but not boys.
Genetic control of postnatal human brain growth
van Dyck, Laura I.; Morrow, Eric M.
2017-01-01
Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583
Darda, David M
2010-01-01
The observation that anatomical course offerings have decreased in undergraduate biology curricula is supported by a survey of undergraduate institutions in the state of Washington. This reduction, due partially to increased emphasis in other areas of the biology curriculum, along with the lack of anatomy prerequisites for admission to most medical and dental schools, has resulted in many biology majors who have little or no exposure to the anatomical sciences. This is a disservice to our students who need to understand organismal form and function to better connect our rapidly expanding knowledge of life at the cell and molecular level to our understanding of the role of organisms in ecosystems and as the primary target of natural selection in evolutionary change. Undergraduate anatomical courses can also serve as an extension of the anatomy curriculum in professional healthcare programs, where anatomical sciences are also experiencing a reduced allocation of instructional time. Given the importance of anatomical knowledge along with the many demands and constraints on biology curricula, what can we do? One suggestion, a course in integrative anatomy for undergraduates, is proposed and discussed. Copyright 2010 American Association of Anatomists.
Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine
Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng
2012-01-01
Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296
Torro-Alves, N; Herculano, R D; Terçariol, C A S; Kinouchi Filho, O; Graeff, C F O
2007-11-01
An analysis of scientific bibliographic productivity using the Hirsch h-index, information from the Institute of Scientific Information database and the Curriculum Lattes (CNPq, Brazil) was performed at the Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (FFCLRP-USP) that has four departments in natural, biological and social sciences. Bibliometric evaluations of undergraduate programs showed a better performance of the departments of Chemistry (P < 0.001) and Biology (P < 0.001) when compared to the departments of Physics and Mathematics and Psychology and Education. We also analyzed the scientific output of the six graduate programs of FFCLRP: Psychology, Psychobiology, Chemistry, Physics Applied to Medicine and Biology, Comparative Biology, and Entomology. The graduate program in Psychology presented a lower h-index (P < 0.001) and had fewer papers indexed by the ISI web of science (P < 0.001) when compared to the other graduate programs. The poorer performance of the Psychology program may be associated with the limited coverage by the Thompson Institute of Scientific Information database.
A Pharmacology-Based Enrichment Program for Undergraduates Promotes Interest in Science
Godin, Elizabeth A.; Wormington, Stephanie V.; Perez, Tony; Barger, Michael M.; Snyder, Kate E.; Richman, Laura Smart; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa
2015-01-01
There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the “fuel” that will power a science and technology–driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers. PMID:26538389
Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon
2013-01-01
A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.
Barbosa-Silva, A; Pafilis, E; Ortega, J M; Schneider, R
2007-12-11
Data integration has become an important task for biological database providers. The current model for data exchange among different sources simplifies the manner that distinct information is accessed by users. The evolution of data representation from HTML to XML enabled programs, instead of humans, to interact with biological databases. We present here SRS.php, a PHP library that can interact with the data integration Sequence Retrieval System (SRS). The library has been written using SOAP definitions, and permits the programmatic communication through webservices with the SRS. The interactions are possible by invoking the methods described in WSDL by exchanging XML messages. The current functions available in the library have been built to access specific data stored in any of the 90 different databases (such as UNIPROT, KEGG and GO) using the same query syntax format. The inclusion of the described functions in the source of scripts written in PHP enables them as webservice clients to the SRS server. The functions permit one to query the whole content of any SRS database, to list specific records in these databases, to get specific fields from the records, and to link any record among any pair of linked databases. The case study presented exemplifies the library usage to retrieve information regarding registries of a Plant Defense Mechanisms database. The Plant Defense Mechanisms database is currently being developed, and the proposal of SRS.php library usage is to enable the data acquisition for the further warehousing tasks related to its setup and maintenance.
On the role of soil fauna in providing soil functions - a meta study
NASA Astrophysics Data System (ADS)
Lang, Birgit; Russell, David J.; Vogel, Hans-Jörg; Wollschläger, Ute
2017-04-01
Fertile soils are fundamental for the production of biomass and therefore for the provision of goods such as food or fuel. However, soils are threatened by e.g. land degradation, but once lost their functionality cannot simply be replaced as soils are complex systems developed over long time periods. Thus, to develop strategies for sustainable soil use and management, we need a comprehensive functional understanding of soil systems. To this end, the interdisciplinary research program "Soil as a Natural Resource for the Bio-Economy - BonaRes" was launched by the German Federal Government in 2015. One part of this program is the development of a Knowledge Centre for soil functions and services. As part of the Knowledge Centre, we focus on the identification and quantification of biological drivers of soil functions. Based on a systematic review of existing literature, we assess the importance of different soil faunal groups for the soil functions and processes most relevant to agricultural production (i.e. decomposition, mineralization, soil structuring. Additionally, we investigate direct impacts of soil fauna on soil properties (e.g. aggregation, pore volume). As site specific conditions such as climate, soil type or management practices affect soil fauna and their performance, these responses must also be taken into account. In the end, our findings will be used in the development of modeling tools aiming to predict the impacts of different management measures on soil ecosystem services and functions.
Publications of the space biology program for 1975-1977: A special bibliography
NASA Technical Reports Server (NTRS)
Felt, J. C. (Compiler); Halstead, T. W. (Compiler)
1978-01-01
Documents cited represent research encompassing several disciplines of space biology: botany and plant pathology, physiology and biophysics, agricultural and environmental sciences, anatomy and embryology, cellular and comparative biology, horticulture and aerospace biology.
Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16
This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...
USDA-ARS?s Scientific Manuscript database
The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....
2009-01-01
Background A central task in contemporary biosciences is the identification of biological processes showing response in genome-wide differential gene expression experiments. Two types of analysis are common. Either, one generates an ordered list based on the differential expression values of the probed genes and examines the tail areas of the list for over-representation of various functional classes. Alternatively, one monitors the average differential expression level of genes belonging to a given functional class. So far these two types of method have not been combined. Results We introduce a scoring function, Gene Set Z-score (GSZ), for the analysis of functional class over-representation that combines two previous analysis methods. GSZ encompasses popular functions such as correlation, hypergeometric test, Max-Mean and Random Sets as limiting cases. GSZ is stable against changes in class size as well as across different positions of the analysed gene list in tests with randomized data. GSZ shows the best overall performance in a detailed comparison to popular functions using artificial data. Likewise, GSZ stands out in a cross-validation of methods using split real data. A comparison of empirical p-values further shows a strong difference in favour of GSZ, which clearly reports better p-values for top classes than the other methods. Furthermore, GSZ detects relevant biological themes that are missed by the other methods. These observations also hold when comparing GSZ with popular program packages. Conclusion GSZ and improved versions of earlier methods are a useful contribution to the analysis of differential gene expression. The methods and supplementary material are available from the website http://ekhidna.biocenter.helsinki.fi/users/petri/public/GSZ/GSZscore.html. PMID:19775443
A CellML simulation compiler and code generator using ODE solving schemes
2012-01-01
Models written in description languages such as CellML are becoming a popular solution to the handling of complex cellular physiological models in biological function simulations. However, in order to fully simulate a model, boundary conditions and ordinary differential equation (ODE) solving schemes have to be combined with it. Though boundary conditions can be described in CellML, it is difficult to explicitly specify ODE solving schemes using existing tools. In this study, we define an ODE solving scheme description language-based on XML and propose a code generation system for biological function simulations. In the proposed system, biological simulation programs using various ODE solving schemes can be easily generated. We designed a two-stage approach where the system generates the equation set associating the physiological model variable values at a certain time t with values at t + Δt in the first stage. The second stage generates the simulation code for the model. This approach enables the flexible construction of code generation modules that can support complex sets of formulas. We evaluate the relationship between models and their calculation accuracies by simulating complex biological models using various ODE solving schemes. Using the FHN model simulation, results showed good qualitative and quantitative correspondence with the theoretical predictions. Results for the Luo-Rudy 1991 model showed that only first order precision was achieved. In addition, running the generated code in parallel on a GPU made it possible to speed up the calculation time by a factor of 50. The CellML Compiler source code is available for download at http://sourceforge.net/projects/cellmlcompiler. PMID:23083065
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
Wang, Chunlin; Lefkowitz, Elliot J
2004-10-28
Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist.
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters
Wang, Chunlin; Lefkowitz, Elliot J
2004-01-01
Background Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. Results We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Conclusions Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist. PMID:15511296
NASA Space Biology Program. Eighth annual symposium's program and abstracts
NASA Technical Reports Server (NTRS)
Halstead, T. W. (Editor)
1984-01-01
The activities included five half days of presentations by space biology principal investigators, an evening of poster session presentations by research associates, and an afternoon session devoted to the Flight Experiments Program. Areas of discussion included the following: gravity receptor mechanisms; physiological effects of gravity, structural mass; fluid dynamics and metabolism; mechanisms of plant response; and the role of gravity in development.
Roos, Jason; Chue, Calvin; DiEuliis, Diane; Emanuel, Peter
The US Department of Defense (DOD) established programs to defend against chemical and biological weapons 100 years ago because military leaders understood that the operational capability of the US military is diminished when service member health is compromised. These threats to operational readiness can be from an overt attack using chemical and biological threats but may also arise from natural exposures. In the current era of rapidly emerging technologies, adversaries are not only rediscovering chemical and biological weapons; they are also displaying an increased propensity to employ them to cause strategic instability among deployed forces or nations undergoing conflict. The United States's investments in its Chemical and Biological Defense Program (CBDP) can be a critical enabler of the third offset strategy, which is a DOD initiative that seeks to maximize force capability to offset emerging threats. To realize this vision, the CBDP must make fundamental changes in acquiring and employing effective technologies so that enemy use of chemical and biological agents against US assets is no longer a viable option. Maximization of US force health status will provide a strategic advantage over theater opponents more vulnerable to operational degradation from chemical and biological threats.
Bishop, Pamela; Lenhart, Suzanne
2010-01-01
We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics. Participants were selected to work on projects with a biology mentor and a mathematics mentor in an environment that promoted collaboration outside of the students' respective disciplines. There were four research projects with teams of four participants and two faculty mentors. The participants consisted of a mixture of 10 undergraduates in biology- and mathematics-related disciplines, four veterinary students, and two high-school teachers. The activities included lectures on both the biological and mathematical backgrounds of the projects, tutorials for software, and sessions on ethics, graduate school, and possible career paths for individuals interested in biology and mathematics. The program was designed to give students the ability to actively participate in the scientific research process by working on a project, writing up their results in a final report, and presenting their work orally. We report on the results of our evaluation surveys of the participants. PMID:20810963
Duncan, Sarah I; Bishop, Pamela; Lenhart, Suzanne
2010-01-01
We describe a unique Research Experience for Undergraduates and Research Experience for Veterinary students summer program at the National Institute for Mathematical and Biological Synthesis on the campus of the University of Tennessee, Knoxville. The program focused on interdisciplinary research at the interface of biology and mathematics. Participants were selected to work on projects with a biology mentor and a mathematics mentor in an environment that promoted collaboration outside of the students' respective disciplines. There were four research projects with teams of four participants and two faculty mentors. The participants consisted of a mixture of 10 undergraduates in biology- and mathematics-related disciplines, four veterinary students, and two high-school teachers. The activities included lectures on both the biological and mathematical backgrounds of the projects, tutorials for software, and sessions on ethics, graduate school, and possible career paths for individuals interested in biology and mathematics. The program was designed to give students the ability to actively participate in the scientific research process by working on a project, writing up their results in a final report, and presenting their work orally. We report on the results of our evaluation surveys of the participants.
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-01-01
Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367
Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei
2012-06-15
The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.
Zhang, Ningbo; Li, Ruimin; Shen, Wei; Jiao, Shuzhen; Zhang, Junxiang; Xu, Weirong
2018-04-27
The major latex protein/ripening-related protein (MLP/RRP) subfamily is known to be involved in a wide range of biological processes of plant development and various stress responses. However, the biological function of MLP/RRP proteins is still far from being clear and identification of them may provide important clues for understanding their roles. Here, we report a genome-wide evolutionary characterization and gene expression analysis of the MLP family in European Vitis species. A total of 14 members, was found in the grape genome, all of which are located on chromosome 1, where are predominantly arranged in tandem clusters. We have noticed, most surprisingly, promoter-sharing by several non-identical but highly similar gene members to a greater extent than expected by chance. Synteny analysis between the grape and Arabidopsis thaliana genomes suggested that 3 grape MLP genes arose before the divergence of the two species. Phylogenetic analysis provided further insights into the evolutionary relationship between the genes, as well as their putative functions, and tissue-specific expression analysis suggested distinct biological roles for different members. Our expression data suggested a couple of candidate genes involved in abiotic stresses and phytohormone responses. The present work provides new insight into the evolution and regulation of Vitis MLP genes, which represent targets for future studies and inclusion in tolerance-related molecular breeding programs.
NASA Astrophysics Data System (ADS)
Barquilla, Manuel B.
2018-01-01
This mixed research, is a snapshot of some Filipino Biology teachers' knowledge structure and how their concepts of the five topics in Biology (Photosynthesis, Cellular Respiration, human reproductive system, Mendelian genetics and NonMendelian genetics) functions and develops inside a biology classroom. The study focuses on the six biology teachers and a total of 222 students in their respective classes. Of the Six (6) teachers, three (3) are under the Science curriculum and the other three (3) are under regular curriculum in both public and private schools in Iligan city and Lanao del Norte, Philippines. The study utilized classroom discourses, concept maps, interpretative case-study method, bracketing method, and concept analysis for qualitative part; the quantitative part uses a nonparametric statistical tool, Kendall's tau Coefficient for determining relationship and congruency while measures of central tendencies and dispersion (mean, and standard deviation) for concept maps scores interpretation. Knowledge Base of Biology teachers were evaluated by experts in field of specialization having a doctorate program (e.g. PhD in Genetics) and PhD Biology candidates. The data collection entailed seven (7) months immersion: one (1) month for preliminary phase for the researcher to gain teachers' and students' confidence and the succeeding six (6) months for main observation and data collection. The evaluation of teachers' knowledge base by experts indicated that teachers' knowledge of (65%) is lower than the minimum (75%) recommended by ABD-el-Khalick and Boujaoude (1997). Thus, the experts believe that content knowledge of the teachers is hardly adequate for their teaching assignment. Moreover, the teachers in this study do not systematically use reallife situation to apply the concepts they teach. They can identify concepts too abstract for their student; however, they seldom use innovative ways to bring the discussion to their students' level of readiness and capacity to learn. Kendall's Tau Coefficient of agreement indicated that there is an agreement of the rating by experts and PhD (Biology) candidates. As for recommended level for teaching based on the respondent content knowledge structure, the experts and the PhD (Biology) candidates agree that the content knowledge of the teachers is at the borderline (rating of 6) between elementary and high school. These results imply that biology teachers need in-service training to upgrade their content knowledge in the subject. At the same time, the pre-service curriculum for biology teachers needs upgrading.
Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T.; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter
2017-01-01
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner. PMID:28993767
Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter
2017-01-01
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro . In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula
ERIC Educational Resources Information Center
Haave, Neil
2012-01-01
A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…
Bioinspired Functional Surfaces for Technological Applications
NASA Astrophysics Data System (ADS)
Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata
2016-08-01
Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.
Computer Center. Interactive Biology with Videodisc.
ERIC Educational Resources Information Center
Kramer, David W.
1991-01-01
Ways in which students are allowed to choose, based on their curiosity at the moment, which way they will move through a lesson are described. Available software for interactive biology programs and available authoring software for developing interactive programs by teachers and students are listed. (KR)
BioMaPS: A Roadmap for Success
ERIC Educational Resources Information Center
McCarthy, Maeve L.; Fister, K. Renee
2010-01-01
The manuscript outlines the impact that our National Science Foundation Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences program, BioMaPS, has had on the students and faculty at Murray State University. This interdisciplinary program teams mathematics and biology undergraduate students with mathematics and…
Phu, Steven; Boersma, Derek; Duque, Gustavo
2015-01-01
Sarcopenia is a major component of the frailty syndrome and is also a strong predictor of disability, morbidity, and mortality in older persons. Without any available pharmacological intervention to sarcopenia, non-pharmacological interventions are the only option to prevent these poor outcomes in sarcopenic patients. Among those interventions, physical activity with or without protein supplementation has demonstrated to be effective in improving muscle mass and function and in preventing disability and frailty in older persons. Additionally, to the beneficial effect of physical activity on metabolic and cardiovascular diseases, a regular exercise program (3 times/wk) that includes resistance and endurance exercise training would have a major positive effect on sarcopenic muscle through improving muscle mass, strength, and function. In this review, we looked at the effect of exercise on sarcopenic frail older persons from the biological aspects of the response of the muscle to exercise to some practical aspects of exercise prescription in this high-risk population. We conclude that, although challenging, older persons should be encouraged to participate in this type of programs, which would improve not only their function and independence but also their quality of life. Copyright © 2015 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Boudreau, Aaron; van't Veer, Laura J; Bissell, Mina J
2012-01-01
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the "War on Cancer" in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a "rogue hacker"--one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its "security vulnerabilities" may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology--albeit imbalanced and exaggerated--is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment-a recurring theme that could potentially be exploited therapeutically.
Molecular control of steady-state dendritic cell maturation and immune homeostasis.
Hammer, Gianna Elena; Ma, Averil
2013-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
USDA-ARS?s Scientific Manuscript database
Researchers and implementers of biological control are confronted with a variety of scientific, regulatory and administrative challenges to their biological control programs. One developing challenge will arise from the implementation of provisions of the Convention on Biological Diversity (CBD) co...
Knoph, Jan T; Westerdahl, Kristina S
2006-01-01
Half-heartedly acknowledged by the Russian Federation, the Soviet Union ran the world's largest offensive program for biological weapons, breaching the Biological and Toxin Weapons Convention. Russia criminalized biological weapons in 1993 only to decriminalize them in 1996, but in 2003 president Putin partly recriminalized them. None of these changes were declared within the Convention. Several well-known official statements, when reviewed in their context, turned out to admit to neither an offensive program nor a breach of the Convention. Thus, the Russian biological weapons policy is more ambiguous than usually depicted, and various policy shapers can be discerned.
Programming languages for synthetic biology.
Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S
2010-12-01
In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.
Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities
2015-09-01
Award Number: W81XWH-12-2-0128 TITLE: Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities...2014 - 29 Aug 2015 4. TITLE AND SUBTITLE Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities 5a...effectiveness of a regenerative scaffold for the restoration of functional musculotendinous tissue , including the restoration of blood supply and innervation
Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle
NASA Technical Reports Server (NTRS)
Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)
1993-01-01
This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.
Lex genetica: the law and ethics of programming biological code.
Burk, Dan L
2002-01-01
Recent advances in genetic engineering now allow the design of programmable biological artifacts. Such programming may include usage constraints that will alter the balance of ownership and control for biotechnology products. Similar changes have been analyzed in the context of digital content management systems, and while this previous work is useful in analyzing issues related to biological programming, the latter technology presents new conceptual problems that require more comprehensive evaluation of the interplay between law and technologically embedded values. In particular, the ability to embed contractual terms in technological artifacts now requires a re-examination of disclosure and consent in transactions involving such artifacts.
Computer-aided biochemical programming of synthetic microreactors as diagnostic devices.
Courbet, Alexis; Amar, Patrick; Fages, François; Renard, Eric; Molina, Franck
2018-04-26
Biological systems have evolved efficient sensing and decision-making mechanisms to maximize fitness in changing molecular environments. Synthetic biologists have exploited these capabilities to engineer control on information and energy processing in living cells. While engineered organisms pose important technological and ethical challenges, de novo assembly of non-living biomolecular devices could offer promising avenues toward various real-world applications. However, assembling biochemical parts into functional information processing systems has remained challenging due to extensive multidimensional parameter spaces that must be sampled comprehensively in order to identify robust, specification compliant molecular implementations. We introduce a systematic methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors embedding biochemical logic circuits, or protosensors , to perform accurate biosensing and biocomputing operations in vitro according to temporal logic specifications. We show that proof-of-concept protosensors integrating diagnostic algorithms detect specific patterns of biomarkers in human clinical samples. Protosensors may enable novel approaches to medicine and represent a step toward autonomous micromachines capable of precise interfacing of human physiology or other complex biological environments, ecosystems, or industrial bioprocesses. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
News from the Biological Stain Commission No. 11.
Lyon, H O; Horobin, R W
2012-01-01
The 11th issue of News from the Biological Stain Commission (BSC) provides our first impressions of the REACH and ECHA programs. We intend to give a more thorough account of what these important programs actually mean in later editions of News from the Biological Stain Commission. Under the heading of Regulatory Affairs, the Biological Stain Commission's International Affairs Committee presents information from the opening session of the meeting of the International Standards Organization ISO/TC 212 Clinical laboratory testing and in vitro diagnostic test systems held on 2-4 June 2010 in Seoul, Republic of Korea.
Biosequence Similarity Search on the Mercury System
Krishnamurthy, Praveen; Buhler, Jeremy; Chamberlain, Roger; Franklin, Mark; Gyang, Kwame; Jacob, Arpith; Lancaster, Joseph
2007-01-01
Biosequence similarity search is an important application in modern molecular biology. Search algorithms aim to identify sets of sequences whose extensional similarity suggests a common evolutionary origin or function. The most widely used similarity search tool for biosequences is BLAST, a program designed to compare query sequences to a database. Here, we present the design of BLASTN, the version of BLAST that searches DNA sequences, on the Mercury system, an architecture that supports high-volume, high-throughput data movement off a data store and into reconfigurable hardware. An important component of application deployment on the Mercury system is the functional decomposition of the application onto both the reconfigurable hardware and the traditional processor. Both the Mercury BLASTN application design and its performance analysis are described. PMID:18846267
O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina
NASA Astrophysics Data System (ADS)
Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi
2014-10-01
Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.
Teaching Molecular Biology with Microcomputers.
ERIC Educational Resources Information Center
Reiss, Rebecca; Jameson, David
1984-01-01
Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)
2007-09-30
schedule was also a discussion of a draft plan for the next decade by NASA’s Ocean Biology and Bio- geochemistry Program, tentatively entitled, “Earth’s...workshop was being held in Seattle. (GLOBEC was a ten-year field program under ICSU that was co-sponsored by the In- ternational Geosphere- Biosphere
The Development of a Post-Baccalaureate Certificate Program in Molecular Diagnostics
Williams, Gail S.; Brown, Judith D.; Keagle, Martha B.
2000-01-01
A post-baccalaureate certificate program in diagnostic molecular sciences was created in 1995 by the Diagnostic Genetic Sciences Program in the School of Allied Health at the University of Connecticut. The required on-campus lecture and laboratory courses include basic laboratory techniques, health care issues, cell biology, immunology, human genetics, research, management, and molecular diagnostic techniques and laboratory in molecular diagnostics. These courses precede a 6-month, full-time practicum at an affiliated full-service molecular laboratory. The practicum includes amplification and blotting methods, a research project, and a choice of specialized electives including DNA sequencing, mutagenesis, in situ hybridization methods, or molecular diagnostic applications in microbiology. Graduates of the program are immediately eligible to sit for the National Credentialing Agency examination in molecular biology to obtain the credential Clinical Laboratory Specialist in Molecular Biology (CLSp(MB). This description of the University of Connecticut program may assist other laboratory science programs in creating similar curricula. PMID:11232107
Titov, V N
2014-01-01
Metabolic syndrome (overeating) is a phylogenetically-determined succession of symptoms with the same pathogenesis. There is only one etiological factor, namely, increased consumption of physiologically optimal food. Enterocytes and omental fat cells are a phylogenetically early paracrine-regulated cell community that realizes the biological reactions of exo- and endotrophy. Visceral obesity, high levels of unesterified fatty acids (FA), formation of a pool of micellar FA in the blood, integration of these FA into endothelial cell plasma membrane and enlargement of adipocytes are the causes of hydrodynamic pressure elevation. Toll-like receptors recognize the associates between albumin and greater than physiological number of FA as "foreing" and initiate inflammatory response. "Endoplasm stress" develops in lipid-overloaded cells, protein synthesis (folding) in them is impaired and apoptosis-like cell death is activated. Visceral fat is a phylogenetically early depot of FA to fulfill the biological function of homeostasis, trophology, endoecology and adaptation; it is regulated at the level of paracrine communities and is anatomically limited. The subcutaneous fat depot fulfills the phylogenetically late function of locomotion; the depot size is not anatomically limited. Visceral fat cells have no receptors for phylogenetically late insulin (INS); specialized adipocyes bearing INS and GLUT4 receptors are cells that form the subcutaneous depot. These cells are regulated by phylogenetically late humoral factors at the entire body level. Leptin is an initiator of humoral hypothalamic regulation of in vivo number of ontogenetically programmed number of visceral INS-insensitive fat cells. It prevents "endoplasm stress" and apoptosis, being designed to regulate the amount of consumed food. Leptin initiates storage of FA from visceral pool into subcutaneous pool. Adiponectin is a phylogenetically late humoral hypothalamic regulatory factor that controls optimal number of fat cells in vivo. Its biological role consists in regulation of the number (proliferation) of insulin-dependent adipocytes in subcutaneous fatty tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residencemore » in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to anticipating biological effects of pollutants are included in this section. They concern geothermal technology and its improvement using techniques based on organic and physical properties of certain materials.« less
NASA Astrophysics Data System (ADS)
Levine, J.; Bean, J. R.
2017-12-01
Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of key terms.
ERIC Educational Resources Information Center
Brokaw, James J.; O'Loughlin, Valerie D.
2015-01-01
In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the…
Importance of Data Management in a Long-Term Biological Monitoring Program
NASA Astrophysics Data System (ADS)
Christensen, Sigurd W.; Brandt, Craig C.; McCracken, Mary K.
2011-06-01
The long-term Biological Monitoring and Abatement Program (BMAP) has always needed to collect and retain high-quality data on which to base its assessments of ecological status of streams and their recovery after remediation. Its formal quality assurance, data processing, and data management components all contribute to meeting this need. The Quality Assurance Program comprehensively addresses requirements from various institutions, funders, and regulators, and includes a data management component. Centralized data management began a few years into the program when an existing relational database was adapted and extended to handle biological data. The database's main data tables and several key reference tables are described. One of the most important related activities supporting long-term analyses was the establishing of standards for sampling site names, taxonomic identification, flagging, and other components. The implemented relational database supports the transmittal of data to the Oak Ridge Environmental Information System (OREIS) as the permanent repository. We also discuss some limitations to our implementation. Some types of program data were not easily accommodated in the central systems, and many possible data-sharing and integration options are not easily accessible to investigators. From our experience we offer data management advice to other biologically oriented long-term environmental sampling and analysis programs.
Habicht, Jean-Pierre; Pelto, Gretel H.
2014-01-01
The biological efficacy of nutritional supplements to complement usual diets in poor populations is well established. This knowledge rests on decades of methodologic research development and, more recently, on codification of methods to compile and interpret results across studies. The challenge now is to develop implementation (delivery) science knowledge and achieve a similar consensus on efficacy criteria for the delivery of these nutrients by public health and other organizations. This requires analysis of the major policy instruments for delivery and well-designed program delivery studies that examine the flow of a nutrient through a program impact pathway. This article discusses the differences between biological and program efficacy, and why elucidating the fidelity of delivery along the program impact pathways is essential for implementing a program efficacy trial and for assessing its internal and external validity. Research on program efficacy is expanding, but there is a lack of adequate frameworks to facilitate the process of harmonizing concepts and vocabulary, which is essential for communication among scientists, policy planners, and program implementers. There is an urgent need to elaborate these frameworks at national and program levels not only for program efficacy studies but also for the broader research agenda to support and improve the science of delivering adequate nutrition to those who need it most. PMID:24425719
2011-01-01
Background Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific. Results Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1. The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response. Conclusions This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources. PMID:21569310
Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.
2015-01-01
Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.
Hybrid functional microfibers for textile electronics and biosensors
NASA Astrophysics Data System (ADS)
Nanda Sahoo, Bichitra; Choi, Byungwoo; Seo, Jungmok; Lee, Taeyoon
2018-01-01
Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors, chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications. Project supported by the Priority Research Centers Program (No. 2012-0006689) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) and the R&D program of MOTIE/KEIT [10064081, Development of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]. We gratefully acknowledge partial support from the National Research Foundation of Korea (No. NRF-2017K2A9A2A06013377, NRF-2017M3A7B4049466) and the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050. This work is also supported by KIST Project (Nos. 2E26900, 2E27630). Dr. Seo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A6A3A03006491).
Genetics and the unity of biology. Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-31
International Congresses of Genetics, convened just once every five years, provide a rare opportunity for overview in the field of genetic engineering. The Congress, held August 20-27, 1988 in Toronto, Canada focused on the theme Genetics and the Unity of Biology, which was chosen because the concepts of modern genetics have provided biology with a unifying theoretical structure. This program guide contains a schedule of all Congress activities and a listing of all Symposia, Workshops and Poster Sessions held.
Rouleau, Nicolas; Dotta, Blake T
2014-01-01
Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates.
An integrative approach to inferring biologically meaningful gene modules.
Cho, Ji-Hoon; Wang, Kai; Galas, David J
2011-07-26
The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.
75 FR 71734 - Outer Continental Shelf (OCS), Scientific Committee (SC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... program covers a wide range of field and laboratory studies in biology, chemistry, and physical... SC has 15 vacancies in the following disciplines: Biological oceanography/marine biology; social...
15. international conference on plant growth substances: Program -- Abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose workmore » focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.« less
ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.
Guiberteau, Milton J; Graham, Michael M
2011-06-01
The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.
Embryonic stem cells (ESCs) must maintain the integrity of their genomes or risk passing potentially deleterious mutations on to numerous tissues. Thus, ESCs have a unique genome surveillance system and easily undergo apoptosis or differentiation when DNA damage is detected. The protein p53 is known to promote differentiation in mouse ESCs (mESCs), but its role in DNA damage-induced apoptosis (DIA) is unclear. p53 may have a pro-apoptotic function since it can regulate apoptotic genes in embryonal cells. Given that ESCs have a distinct transcriptional program, Jing Huang, Ph.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues wondered whether p53 might regulate DIA in ESCs by utilizing the ESC-specific expression program.
ERIC Educational Resources Information Center
Nievas, Fiorela L.; Bogino, Pablo C.; Giordano, Walter
2016-01-01
Biochemistry courses in the Department of Molecular Biology at the National University of Río Cuarto, Argentina, are designed for undergraduate students in biology, microbiology, chemistry, agronomy, and veterinary medicine. Microbiology students typically have previous coursework in general, analytical, and organic chemistry. Programmed sequences…
Biology Curriculum Guide. Bulletin 1646.
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.
This curriculum guide, developed to establish statewide curriculum standards for the Louisiana Competency-based Education Program, contains the minimum competencies and process skills that should be included in a biology course. It consists of: (1) a rationale for an effective science program; (2) a list and description of four major goals of…
This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biologi...
Publications of the NASA space biology program for 1980 - 1984. [bibliographies
NASA Technical Reports Server (NTRS)
Pleasant, L. G. (Compiler); Solberg, J. L. (Compiler)
1984-01-01
A listing of 562 publications supported by the NASA Space Biology Program for the years 1980 to 1984 is presented. References are arranged under the headings which are plant gravitational research, animal gravitational research, and general. Keyword title indexes and a principal investigator listing are also included.
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),
The Graduate Training Program in Pharmacology at the University of Kansas School of Pharmacy
ERIC Educational Resources Information Center
Rutledge, Charles O.
1976-01-01
A multidisciplinary approach is used to teach the chemical mechanisms of biological processes and of drug action. Program prerequisites and objectives emphasize the training of creative scientists who are qualified to perform interesting and informative research on the interaction of drugs with biological systems. (LBH)
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides
Toward Integration: From Quantitative Biology to Mathbio-Biomath?
ERIC Educational Resources Information Center
Marsteller, Pat; de Pillis, Lisette; Findley, Ann; Joplin, Karl; Pelesko, John; Nelson, Karen; Thompson, Katerina; Usher, David; Watkins, Joseph
2010-01-01
In response to the call of "BIO2010" for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and…
Biocellion: accelerating computer simulation of multicellular biological system models.
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-11-01
Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data
Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M
2006-01-01
Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281
von Arnim, Albrecht G.; Missra, Anamika
2017-01-01
Leading voices in the biological sciences have called for a transformation in graduate education leading to the PhD degree. One area commonly singled out for growth and innovation is cross-training in computational science. In 1998, the University of Tennessee (UT) founded an intercollegiate graduate program called the UT-ORNL Graduate School of Genome Science and Technology in partnership with the nearby Oak Ridge National Laboratory. Here, we report outcome data that attest to the program’s effectiveness in graduating computationally enabled biologists for diverse careers. Among 77 PhD graduates since 2003, the majority came with traditional degrees in the biological sciences, yet two-thirds moved into computational or hybrid (computational–experimental) positions. We describe the curriculum of the program and how it has changed. We also summarize how the program seeks to establish cohesion between computational and experimental biologists. This type of program can respond flexibly and dynamically to unmet training needs. In conclusion, this study from a flagship, state-supported university may serve as a reference point for creating a stable, degree-granting, interdepartmental graduate program in computational biology and allied areas. PMID:29167223
ERIC Educational Resources Information Center
Couch, Brian A.; Wood, William B.; Knight, Jennifer K.
2015-01-01
Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…
Biological attachment devices: exploring nature's diversity for biomimetics.
Gorb, Stanislav N
2008-05-13
Many species of animals and plants are supplied with diverse attachment devices, in which morphology depends on the species biology and the particular function in which the attachment device is involved. Many functional solutions have evolved independently in different lineages of animals and plants. Since the diversity of such biological structures is huge, there is a need for their classification. This paper, based on the original and literature data, proposes ordering of biological attachment systems according to several principles: (i) fundamental physical mechanism, according to which the system operates, (ii) biological function of the attachment device, and (iii) duration of the contact. Finally, we show a biomimetic potential of studies on biological attachment devices.
Functionalized apertures for the detection of chemical and biological materials
Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.
2010-12-14
Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.
The Layer-Oriented Approach to Declarative Languages for Biological Modeling
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language. PMID:22615554
The layer-oriented approach to declarative languages for biological modeling.
Raikov, Ivan; De Schutter, Erik
2012-01-01
We present a new approach to modeling languages for computational biology, which we call the layer-oriented approach. The approach stems from the observation that many diverse biological phenomena are described using a small set of mathematical formalisms (e.g. differential equations), while at the same time different domains and subdomains of computational biology require that models are structured according to the accepted terminology and classification of that domain. Our approach uses distinct semantic layers to represent the domain-specific biological concepts and the underlying mathematical formalisms. Additional functionality can be transparently added to the language by adding more layers. This approach is specifically concerned with declarative languages, and throughout the paper we note some of the limitations inherent to declarative approaches. The layer-oriented approach is a way to specify explicitly how high-level biological modeling concepts are mapped to a computational representation, while abstracting away details of particular programming languages and simulation environments. To illustrate this process, we define an example language for describing models of ionic currents, and use a general mathematical notation for semantic transformations to show how to generate model simulation code for various simulation environments. We use the example language to describe a Purkinje neuron model and demonstrate how the layer-oriented approach can be used for solving several practical issues of computational neuroscience model development. We discuss the advantages and limitations of the approach in comparison with other modeling language efforts in the domain of computational biology and outline some principles for extensible, flexible modeling language design. We conclude by describing in detail the semantic transformations defined for our language.
Feldman, Ross D; Limbird, Lee E
2017-01-06
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
NASA Astrophysics Data System (ADS)
Zhou, J.; Deyhim, A.; Krueger, S.; Gregurick, S. K.
2005-08-01
A program for determining the low resolution shape of biological macromolecules, based on the optimization of a small angle neutron scattering profile to experimental data, is presented. This program, termed LORES, relies on a Monte Carlo optimization procedure and will allow for multiple scattering length densities of complex structures. It is therefore more versatile than utilizing a form factor approach to produce low resolution structural models. LORES is easy to compile and use, and allows for structural modeling of biological samples in real time. To illustrate the effectiveness and versatility of the program, we present four specific biological examples, Apoferritin (shell model), Ribonuclease S (ellipsoidal model), a 10-mer dsDNA (duplex helix) and a construct of a 10-mer DNA/PNA duplex helix (heterogeneous structure). These examples are taken from protein and nucleic acid SANS studies, of both large and small scale structures. We find, in general, that our program will accurately reproduce the geometric shape of a given macromolecule, when compared with the known crystallographic structures. We also present results to illustrate the lower limit of the experimental resolution which the LORES program is capable of modeling. Program summaryTitle of program:LORES Catalogue identifier: ADVC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVC Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:SGI Origin200, SGI Octane, SGI Linux, Intel Pentium PC Operating systems:UNIX64 6.5 and LINUX 2.4.7 Programming language used:C Memory required to execute with typical data:8 MB No. of lines in distributed program, including test data, etc.:2270 No. of bytes in distributed program, including test data, etc.:13 302 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MATH library
Identification of functional elements and regulatory circuits by Drosophila modENCODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.
2010-12-22
To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- andmore » tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions of {approx}40% of the protein and nonprotein-coding genes [FlyBase 5.12 (4)] have been determined from cDNA collections (5, 6), manual curation of gene models (7), gene mutations and comprehensive genome-wide RNA interference screens (8-10), and comparative genomic analyses (11, 12). The Drosophila modENCODE project has generated more than 700 data sets that profile transcripts, histone modifications and physical nucleosome properties, general and specific transcription factors (TFs), and replication programs in cell lines, isolated tissues, and whole organisms across several developmental stages (Fig. 1). Here, we computationally integrate these data sets and report (i) improved and additional genome annotations, including full-length proteincoding genes and peptides as short as 21 amino acids; (ii) noncoding transcripts, including 132 candidate structural RNAs and 1608 nonstructural transcripts; (iii) additional Argonaute (Ago)-associated small RNA genes and pathways, including new microRNAs (miRNAs) encoded within protein-coding exons and endogenous small interfering RNAs (siRNAs) from 3-inch untranslated regions; (iv) chromatin 'states' defined by combinatorial patterns of 18 chromatin marks that are associated with distinct functions and properties; (v) regions of high TF occupancy and replication activity with likely epigenetic regulation; (vi)mixed TF and miRNA regulatory networks with hierarchical structure and enriched feed-forward loops; (vii) coexpression- and co-regulation-based functional annotations for nearly 3000 genes; (viii) stage- and tissue-specific regulators; and (ix) predictive models of gene expression levels and regulator function.« less
Biological indices of soil quality: an ecosystem case study of their use
Jennifer D. Knoepp; David C. Coleman; D.A. Crossley; James S. Clark
2000-01-01
Soil quality indices can help ensure that site productivity and soil function are maintained. Biological indices yield evidence of how a soil functions and interacts with the plants, animals, and climate that comprise an ecosystem. Soil scientists can identify and quantify both chemical and biological soil-quality indicators for ecosystems with a single main function,...
BSCS BIOLOGY--IMPLEMENTATION IN THE SCHOOLS.
ERIC Educational Resources Information Center
GROBMAN, ARNOLD B.; AND OTHERS
INFORMATION FOR TEACHERS AND PRINCIPALS IMPLEMENTING BIOLOGICAL SCIENCE CURRICULUM STUDY (BSCS) BIOLOGY IN THE SCHOOL PROGRAM IS INCLUDED IN THIS GUIDE. THE RATIONALE AND CONTENT OF THE BSCS VERSIONS ARE EXPLAINED. PHYSICAL FACILITIES, LABORATORY EQUIPMENT, AND LABORATORY MATERIALS THAT FACILITATE TEACHING BSCS BIOLOGY ARE ANALYZED. ADMINISTRATIVE…
Werner, Marco; Auth, Thorsten; Beales, Paul A; Fleury, Jean Baptiste; Höök, Fredrik; Kress, Holger; Van Lehn, Reid C; Müller, Marcus; Petrov, Eugene P; Sarkisov, Lev; Sommer, Jens-Uwe; Baulin, Vladimir A
2018-04-03
Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media.
Department of Defense Joint Chemical and Biological Defense Program 2009 Annual Report to Congress
2009-03-27
completion at the ECBC on the Edgewood Area of Aberdeen Proving Ground (APG), MD. The SRF is a collaborative effort, funded by the DoD, DHS, and...Accelerated Manufacture of Pharmaceuticals APB Acquisition Program Baseline APG Aberdeen Proving Ground ARC Annual Report to Congress ASC Active...Critical Reagents Program CUGV Chemical, Biological, Radiological, and Nuclear Unmanned Ground Vehicle CW Chemical Weapons CWA Chemical Warfare Agent CWC
New Directions in NASA's Materials Science Program
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.
NASA Astrophysics Data System (ADS)
Fish, Janet D.
2014-05-01
Man has used poisons for assassination purposes ever since the dawn of civilization, not only against individual enemies but also occasionally against armies. According to (Frischknecht, 2003)11 article on the History of Biological Warfare, during the past century, more than 500 million people died of infectious diseases. Several tens of thousands of these deaths were due to the deliberate release of pathogens or toxins. Two international treaties outlawed biological weapons in 1925 and 1972, but they have largely failed to stop countries from conducting offensive weapons research and large-scale production of biological weapons. Before the 20th century, biological warfare took on three main forms: (1) deliberate poisoning of food and water with infectious material, (2) use of microorganisms or toxins in some form of weapon system, and (3) use of biologically inoculated fabrics (Dire, 2013)8. This action plan is aimed at the recognition of the lack of current processes in place under an unidentified lead agency to detect, identify, track, and contain biological agents that can enter into the United States through a human host. This action plan program has been identified as the Consumer of Concern Early Entry Program or a simpler title is C-CEEP.
Implications of Climate Change for State Bioassessment ...
This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes. The analyses suggest that several biological indicators may be used to detect climate change effects and such indicators can be used by state bioassessment programs to document changes at high-quality reference sites. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes.
Interacting domain-specific languages with biological problem solving environments
NASA Astrophysics Data System (ADS)
Cickovski, Trevor M.
Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.
Catalysis and biocatalysis program
NASA Technical Reports Server (NTRS)
Ingham, J. D.
1993-01-01
This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.
Baune, Bernhard T.; Air, Tracy
2016-01-01
Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological “genomic” correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological “genomic” correlates. The CoFaMS team welcomes collaborations with both national and international researchers. PMID:27616997
Baune, Bernhard T; Air, Tracy
2016-01-01
Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological "genomic" correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological "genomic" correlates. The CoFaMS team welcomes collaborations with both national and international researchers.
BioMaPS: A Roadmap for Success
Fister, K. Renee
2010-01-01
The manuscript outlines the impact that our National Science Foundation Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences program, BioMaPS, has had on the students and faculty at Murray State University. This interdisciplinary program teams mathematics and biology undergraduate students with mathematics and biology faculty and has produced research insights and curriculum developments at the intersection of these two disciplines. The goals, structure, achievements, and curriculum initiatives are described in relation to the effects they have had to enhance the study of biomathematics. PMID:20810948
2016-07-01
ER D C/ EL C R- 16 -5 Aquatic Plant Control Research Program Complete Host Range Testing on Common Reed with Potential Biological...client/default. Aquatic Plant Control Research Program ERDC/EL CR-16-5 July 2016 Complete Host Range Testing on Common Reed with Potential...and started with sequential no-choice oviposition tests. So far, no eggs were found on any of the 22 test plants offered. The authors also found the
Cook, Daniel L; Farley, Joel F; Tapscott, Stephen J
2001-01-01
Background: We propose that a computerized, internet-based graphical description language for systems biology will be essential for describing, archiving and analyzing complex problems of biological function in health and disease. Results: We outline here a conceptual basis for designing such a language and describe BioD, a prototype language that we have used to explore the utility and feasibility of this approach to functional biology. Using example models, we demonstrate that a rather limited lexicon of icons and arrows suffices to describe complex cell-biological systems as discrete models that can be posted and linked on the internet. Conclusions: Given available computer and internet technology, BioD may be implemented as an extensible, multidisciplinary language that can be used to archive functional systems knowledge and be extended to support both qualitative and quantitative functional analysis. PMID:11305940
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Beal, Jacob; Lu, Ting; Weiss, Ron
2011-01-01
Background The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. Methodology/Principal Findings To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks. Conclusions/Significance Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems. PMID:21850228
Beal, Jacob; Lu, Ting; Weiss, Ron
2011-01-01
The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes (~ 50%) and latency of the optimized engineered gene networks. Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.
Pascual-Guardia, Sergio; Wodja, Emil; Gorostiza, Amaya; López de Santamaría, Elena; Gea, Joaquim; Gáldiz, Juan B; Sliwinski, Pawel; Barreiro, Esther
2013-03-02
Despite the beneficial effects of exercise training in chronic obstructive pulmonary disease (COPD) patients, several studies have revealed functional and biological abnormalities in their peripheral muscles. The objective was to determine whether exercise training of high intensity and long duration modifies oxidative stress levels and structure of respiratory and peripheral muscles of severe COPD patients, while also improving their exercise capacity and quality of life. Multicenter study (Warsaw and Barakaldo) in which 25 severe COPD out-patients were recruited from the COPD clinics. In all patients, lung and muscle functions, exercise capacity (walking test and cycloergometer) and quality of life (QoL) were assessed, and open muscle biopsies from the vastus lateralis and external intercostals (n=14) were obtained before and after an exercise training program of high intensity (respiratory rehabilitation area, 70% maximal tolerated load in a cycloergometer) and long duration (10 weeks). Oxidative stress and muscle structural modifications were evaluated in all muscle biopsies using immunoblotting and immunohistochemistry. In all patients, after the training program, without any drop-outs, exercise capacity and QoL improved significantly, whereas oxidative stress, muscle damage and structure were not modified in their respiratory or limb muscles compared to baseline. In patients with severe COPD, exercise training of high intensity and long duration significantly improves their exercise capacity and QoL, without inducing significant modifications on oxidative stress levels or muscle structure in their respiratory or peripheral muscles. These results may have future clinical therapeutic implications. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, G.
1998-03-01
The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including amore » bibliography of published work, patents, and awards arising from work supported by the program.« less
Biology Division progress report for period of October 1, 1988--September 30, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-02-01
The Biology Division of the Oak Ridge National Laboratory is one component of the Department of Energy's intramural program in life sciences. With respect to experimental biology, the congressionally mandated mission of this Office is to study adverse health effects of energy production and utilization. Within this stated broad mission, common themes among the research programs of the Biology Division are interactions of animals, cells, and molecules with their respective environments. Investigations focus on genetic and somatic effects of radiation and chemicals. Goals include identification and quantification of these effects, elucidation of pathways by which the effects are expressed, assessmentmore » of risks associated with radiation and chemical exposures, and establishment of strategies for extrapolation of risk data from animals to humans. Concurrent basic studies in genetics, biochemistry, molecular biology, and cell biology illuminate normal life processes as prerequisites to comprehending mutagenic and carcinogenic effects of environmental agents. This Progress Report is intended to provide both broad perspectives of the Division's research programs and synopses of recent achievements. Readers are invited to contact individual principal investigators for more detailed information, including reprints of publications. 120 refs.« less
Mobile microRNAs hit the target.
Gursanscky, Nial R; Searle, Iain R; Carroll, Bernard J
2011-11-01
MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants. © 2011 John Wiley & Sons A/S.
D'Onofrio, David J; Abel, David L; Johnson, Donald E
2012-03-14
The fields of molecular biology and computer science have cooperated over recent years to create a synergy between the cybernetic and biosemiotic relationship found in cellular genomics to that of information and language found in computational systems. Biological information frequently manifests its "meaning" through instruction or actual production of formal bio-function. Such information is called prescriptive information (PI). PI programs organize and execute a prescribed set of choices. Closer examination of this term in cellular systems has led to a dichotomy in its definition suggesting both prescribed data and prescribed algorithms are constituents of PI. This paper looks at this dichotomy as expressed in both the genetic code and in the central dogma of protein synthesis. An example of a genetic algorithm is modeled after the ribosome, and an examination of the protein synthesis process is used to differentiate PI data from PI algorithms.
Emergent biological properties of arrestin pathway-selective biased agonism.
Appleton, Kathryn M; Luttrell, Louis M
2013-06-01
Our growing appreciation of the pluridimensionality of G protein-coupled receptor (GPCR) signaling, combined with the phenomenon of orthosteric ligand "bias", has created the possibility of drugs that selectively modulate different aspects of GPCR function for therapeutic benefit. When viewed from the short-term perspective, e.g. changes in receptor conformation, effector coupling or second messenger generation, biased ligands appear to activate a subset of the response profile produced by a conventional agonist. Yet when examined in vivo, the limited data available suggest that biased ligand effects can diverge from their conventional counterparts in ways that cannot be predicted from their in vitro efficacy profile. What is currently missing, at least with respect to G protein and arrestin pathway-selective ligands, is a rational framework for relating the in vitro efficacy of a "biased" agonist to its in vivo actions that will enable drug screening programs to identify ligands with the desired biological effects.
RE-PLAN: An Extensible Software Architecture to Facilitate Disaster Response Planning
O’Neill, Martin; Mikler, Armin R.; Indrakanti, Saratchandra; Tiwari, Chetan; Jimenez, Tamara
2014-01-01
Computational tools are needed to make data-driven disaster mitigation planning accessible to planners and policymakers without the need for programming or GIS expertise. To address this problem, we have created modules to facilitate quantitative analyses pertinent to a variety of different disaster scenarios. These modules, which comprise the REsponse PLan ANalyzer (RE-PLAN) framework, may be used to create tools for specific disaster scenarios that allow planners to harness large amounts of disparate data and execute computational models through a point-and-click interface. Bio-E, a user-friendly tool built using this framework, was designed to develop and analyze the feasibility of ad hoc clinics for treating populations following a biological emergency event. In this article, the design and implementation of the RE-PLAN framework are described, and the functionality of the modules used in the Bio-E biological emergency mitigation tool are demonstrated. PMID:25419503
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila
2016-10-20
The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.
Investigating the Use of Inquiry & Web-Based Activities with Inclusive Biology Learners
ERIC Educational Resources Information Center
Bodzin, Alec M.; Waller, Patricia L.; Edwards, Lana; Darlene Kale, Santoro
2007-01-01
A Web-integrated biology program is used to explore how to best assist inclusive high school students to learn biology with inquiry-based activities. Classroom adaptations and instructional strategies teachers may use to assist in promoting biology learning with inclusive learners are discussed.
9 CFR 106.1 - Biological products; exemption.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Biological products; exemption. 106.1...
9 CFR 106.1 - Biological products; exemption.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Biological products; exemption. 106.1...
9 CFR 106.1 - Biological products; exemption.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Biological products; exemption. 106.1...
9 CFR 106.1 - Biological products; exemption.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products; exemption. 106.1...
9 CFR 106.1 - Biological products; exemption.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Biological products; exemption. 106.1...
National Biological Information Infrastructure (NBII) | Information Center
National Biological Information Infrastructure (NBII) Contact Information Website: http://www.nbii.gov/ The National Biological Information Infrastructure (NBII) is a broad, collaborative program to provide increased access to data and information on the nation's biological resources. The NBII links diverse, high
Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J
2008-01-01
ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of predictive genomic investigations.
Gene Function Hypotheses for the Campylobacter jejuni Glycome Generated by a Logic-Based Approach
Sternberg, Michael J.E.; Tamaddoni-Nezhad, Alireza; Lesk, Victor I.; Kay, Emily; Hitchen, Paul G.; Cootes, Adrian; van Alphen, Lieke B.; Lamoureux, Marc P.; Jarrell, Harold C.; Rawlings, Christopher J.; Soo, Evelyn C.; Szymanski, Christine M.; Dell, Anne; Wren, Brendan W.; Muggleton, Stephen H.
2013-01-01
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning—the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. PMID:23103756
Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach.
Sternberg, Michael J E; Tamaddoni-Nezhad, Alireza; Lesk, Victor I; Kay, Emily; Hitchen, Paul G; Cootes, Adrian; van Alphen, Lieke B; Lamoureux, Marc P; Jarrell, Harold C; Rawlings, Christopher J; Soo, Evelyn C; Szymanski, Christine M; Dell, Anne; Wren, Brendan W; Muggleton, Stephen H
2013-01-09
Increasingly, experimental data on biological systems are obtained from several sources and computational approaches are required to integrate this information and derive models for the function of the system. Here, we demonstrate the power of a logic-based machine learning approach to propose hypotheses for gene function integrating information from two diverse experimental approaches. Specifically, we use inductive logic programming that automatically proposes hypotheses explaining the empirical data with respect to logically encoded background knowledge. We study the capsular polysaccharide biosynthetic pathway of the major human gastrointestinal pathogen Campylobacter jejuni. We consider several key steps in the formation of capsular polysaccharide consisting of 15 genes of which 8 have assigned function, and we explore the extent to which functions can be hypothesised for the remaining 7. Two sources of experimental data provide the information for learning-the results of knockout experiments on the genes involved in capsule formation and the absence/presence of capsule genes in a multitude of strains of different serotypes. The machine learning uses the pathway structure as background knowledge. We propose assignments of specific genes to five previously unassigned reaction steps. For four of these steps, there was an unambiguous optimal assignment of gene to reaction, and to the fifth, there were three candidate genes. Several of these assignments were consistent with additional experimental results. We therefore show that the logic-based methodology provides a robust strategy to integrate results from different experimental approaches and propose hypotheses for the behaviour of a biological system. Copyright © 2012 Elsevier Ltd. All rights reserved.
DIANA-microT web server: elucidating microRNA functions through target prediction.
Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G
2009-07-01
Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
simBio: a Java package for the development of detailed cell models.
Sarai, Nobuaki; Matsuoka, Satoshi; Noma, Akinori
2006-01-01
Quantitative dynamic computer models, which integrate a variety of molecular functions into a cell model, provide a powerful tool to create and test working hypotheses. We have developed a new modeling tool, the simBio package (freely available from ), which can be used for constructing cell models, such as cardiac cells (the Kyoto model from Matsuoka et al., 2003, 2004 a, b, the LRd model from Faber and Rudy, 2000, and the Noble 98 model from Noble et al., 1998), epithelial cells (Strieter et al., 1990) and pancreatic beta cells (Magnus and Keizer, 1998). The simBio package is written in Java, uses XML and can solve ordinary differential equations. In an attempt to mimic biological functional structures, a cell model is, in simBio, composed of independent functional modules called Reactors, such as ion channels and the sarcoplasmic reticulum, and dynamic variables called Nodes, such as ion concentrations. The interactions between Reactors and Nodes are described by the graph theory and the resulting graph represents a blueprint of an intricate cellular system. Reactors are prepared in a hierarchical order, in analogy to the biological classification. Each Reactor can be composed or improved independently, and can easily be reused for different models. This way of building models, through the combination of various modules, is enabled through the use of object-oriented programming concepts. Thus, simBio is a straightforward system for the creation of a variety of cell models on a common database of functional modules.
ERIC Educational Resources Information Center
D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora
2015-01-01
Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…
ERIC Educational Resources Information Center
Lauer, Antje; McConnel, Lonnie; Singh, Navdeep
2012-01-01
We designed a microbiology project that fully engaged undergraduate biology students, high school students, and their teachers in a summer research program as part of the Research Education Vitalizing Science University Program conducted at California State University Bakersfield. Modern molecular biological methods and microscopy were used to…
Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving
ERIC Educational Resources Information Center
Kim, H. S.; Prevost, L.; Lemons, P. P.
2015-01-01
The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…
ERIC Educational Resources Information Center
Gregg, Christine M.
1985-01-01
Analyzes data from an American Physiological Society survey on 88 physiology programs not associated with medical schools. Included are enrollment data and data on faculty characteristics, areas of specialization, and doctorates awarded. Indicates that the majority of physiology PhD programs are located within departments of biological sciences.…
Adams, Peter; Goos, Merrilyn
2010-01-01
Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate program. Inspired by the National Research Council's BIO2010 report, a new interdisciplinary first-year course (SCIE1000) was created, incorporating mathematics and computer programming in the context of modern science. In this study, the perceptions of biological science students enrolled in SCIE1000 in 2008 and 2009 are measured. Analysis indicates that, as a result of taking SCIE1000, biological science students gained a positive appreciation of the importance of mathematics in their discipline. However, the data revealed that SCIE1000 did not contribute positively to gains in appreciation for computing and only slightly influenced students' motivation to enroll in upper-level quantitative-based courses. Further comparisons between 2008 and 2009 demonstrated the positive effect of using genuine, real-world contexts to enhance student perceptions toward the relevance of mathematics. The results support the recommendation from BIO2010 that mathematics should be introduced to biology students in first-year courses using real-world examples, while challenging the benefits of introducing programming in first-year courses. PMID:20810961
Insights into Hox protein function from a large scale combinatorial analysis of protein domains.
Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine
2011-10-01
Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.
Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains
Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine
2011-01-01
Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139
Distinguishing between "function" and "effect" in genome biology.
Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan
2014-05-09
Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
An integrative approach to inferring biologically meaningful gene modules
2011-01-01
Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051
GENIUS: web server to predict local gene networks and key genes for biological functions.
Puelma, Tomas; Araus, Viviana; Canales, Javier; Vidal, Elena A; Cabello, Juan M; Soto, Alvaro; Gutiérrez, Rodrigo A
2017-03-01
GENIUS is a user-friendly web server that uses a novel machine learning algorithm to infer functional gene networks focused on specific genes and experimental conditions that are relevant to biological functions of interest. These functions may have different levels of complexity, from specific biological processes to complex traits that involve several interacting processes. GENIUS also enriches the network with new genes related to the biological function of interest, with accuracies comparable to highly discriminative Support Vector Machine methods. GENIUS currently supports eight model organisms and is freely available for public use at http://networks.bio.puc.cl/genius . genius.psbl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall
The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream inmore » Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.« less
Hitchcock, Penny J; Mair, Michael; Inglesby, Thomas V; Gross, Jonathan; Henderson, D A; O'Toole, Tara; Ahern-Seronde, Joa; Bahnfleth, William P; Brennan, Terry; Burroughs, H E Barney; Davidson, Cliff; Delp, William; Ensor, David S; Gomory, Ralph; Olsiewski, Paula; Samet, Jonathan M; Smith, William M; Streifel, Andrew J; White, Ronald H; Woods, James E
2006-01-01
The prospect of biological attacks is a growing strategic threat. Covert aerosol attacks inside a building are of particular concern. In the summer of 2005, the Center for Biosecurity of the University of Pittsburgh Medical Center convened a Working Group to determine what steps could be taken to reduce the risk of exposure of building occupants after an aerosol release of a biological weapon. The Working Group was composed of subject matter experts in air filtration, building ventilation and pressurization, air conditioning and air distribution, biosecurity, building design and operation, building decontamination and restoration, economics, medicine, public health, and public policy. The group focused on functions of the heating, ventilation, and air conditioning systems in commercial or public buildings that could reduce the risk of exposure to deleterious aerosols following biological attacks. The Working Group's recommendations for building owners are based on the use of currently available, off-the-shelf technologies. These recommendations are modest in expense and could be implemented immediately. It is also the Working Group's judgment that the commitment and stewardship of a lead government agency is essential to secure the necessary financial and human resources and to plan and build a comprehensive, effective program to reduce exposure to aerosolized infectious agents in buildings.
Peck, Ronald F.; Colton, Shannon; Morris, Jennifer; Chaibub Neto, Elias; Kallio, Julie
2009-01-01
We conducted a controlled investigation to examine whether a combination of computer imagery and tactile tools helps introductory cell biology laboratory undergraduate students better learn about protein structure/function relationships as compared with computer imagery alone. In all five laboratory sections, students used the molecular imaging program, Protein Explorer (PE). In the three experimental sections, three-dimensional physical models were made available to the students, in addition to PE. Student learning was assessed via oral and written research summaries and videotaped interviews. Differences between the experimental and control group students were not found in our typical course assessments such as research papers, but rather were revealed during one-on-one interviews with students at the end of the semester. A subset of students in the experimental group produced superior answers to some higher-order interview questions as compared with students in the control group. During the interview, students in both groups preferred to use either the hand-held models alone or in combination with the PE imaging program. Students typically did not use any tools when answering knowledge (lower-level thinking) questions, but when challenged with higher-level thinking questions, students in both the control and experimental groups elected to use the models. PMID:19255134
Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.
Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E
2011-09-01
The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-03-01
Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org
Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M
2012-08-01
This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
[Breast milk: its nutritional composition and functional properties].
Tackoen, M
2012-09-01
Human milk is a complex biological fluid with thousands of components. The milk composition in the mammalian species is specific and adapted to the needs of the offspring. It contains macronutrients (proteins, lipids and carbohydrates), micronutrients (minerals and vitamins) and numerous biologically active substrates. Human milk not only covers the nutritional needs of the newborn but protects the baby against infection, inflammation and oxidative stress. It has immunomodulation properties and confers trophical protection to the intestinal mucosa. The newborn infant is particularly immature: innate immunity, adaptive immunity and intestinal immaturity. Human milk will offer this exogenous protective and immunomodulating source. The development of the composition of the intestinal microflora of the neonate will be impacted by pre- and probiotic components of human milk. Current scientific knowledge of human milk properties highlights interdependency of the different components, ontogeny of the intestinal function, development of the mucosal intestinal immune system, colonization by the intestinal microbiota and protection against pathogens. Quality of these interactions influences the newborn's short and long-term health status. The promotion of breastfeeding with the support of the Baby Friendly Hospital Initiative (BFHI) program and labeling has been shown to have positive impact in public health.
GeneLab for High Schools: Data Mining for the Next Generation
NASA Technical Reports Server (NTRS)
Blaber, Elizabeth A.; Ly, Diana; Sato, Kevin Y.; Taylor, Elizabeth
2016-01-01
Modern biological sciences have become increasingly based on molecular biology and high-throughput molecular techniques, such as genomics, transcriptomics, and proteomics. NASA Scientists and the NASA Space Biology Program have aimed to examine the fundamental building blocks of life (RNA, DNA and protein) in order to understand the response of living organisms to space and aid in fundamental research discoveries on Earth. In an effort to enable NASA funded science to be available to everyone, NASA has collected the data from omics studies and curated them in a data system called GeneLab. Whilst most college-level interns, academics and other scientists have had some interaction with omics data sets and analysis tools, high school students often have not. Therefore, the Space Biology Program is implementing a new Summer Program for high-school students that aims to inspire the next generation of scientists to learn about and get involved in space research using GeneLabs Data System. The program consists of three main components core learning modules, focused on developing students knowledge on the Space Biology Program and Space Biology research, Genelab and the data system, and previous research conducted on model organisms in space; networking and team work, enabling students to interact with guest lecturers from local universities and their fellow peers, and also enabling them to visit local universities and genomics centers around the Bay area; and finally an independent learning project, whereby students will be required to form small groups, analyze a dataset on the Genelab platform, generate a hypothesis and develop a research plan to test their hypothesis. This program will not only help inspire high-school students to become involved in space-based research but will also help them develop key critical thinking and bioinformatics skills required for most college degrees and furthermore, will enable them to establish networks with their peers and connections with university Professors that may help them achieve their educational goals.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
related: an R package for analysing pairwise relatedness from codominant molecular markers.
Pew, Jack; Muir, Paul H; Wang, Jinliang; Frasier, Timothy R
2015-05-01
Analyses of pairwise relatedness represent a key component to addressing many topics in biology. However, such analyses have been limited because most available programs provide a means to estimate relatedness based on only a single estimator, making comparison across estimators difficult. Second, all programs to date have been platform specific, working only on a specific operating system. This has the undesirable outcome of making choice of relatedness estimator limited by operating system preference, rather than being based on scientific rationale. Here, we present a new R package, called related, that can calculate relatedness based on seven estimators, can account for genotyping errors, missing data and inbreeding, and can estimate 95% confidence intervals. Moreover, simulation functions are provided that allow for easy comparison of the performance of different estimators and for analyses of how much resolution to expect from a given data set. Because this package works in R, it is platform independent. Combined, this functionality should allow for more appropriate analyses and interpretation of pairwise relatedness and will also allow for the integration of relatedness data into larger R workflows. © 2014 John Wiley & Sons Ltd.
Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe
2017-01-01
High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986